• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Lex/Preprocessor.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/ExternalSemaSource.h"
25 #include "clang/Sema/Lookup.h"
26 #include "clang/Sema/Scope.h"
27 #include "clang/Sema/ScopeInfo.h"
28 #include "llvm/ADT/DenseSet.h"
29 
30 using namespace clang;
31 
32 /// Check whether the given method, which must be in the 'init'
33 /// family, is a valid member of that family.
34 ///
35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
36 ///   if non-null, check this as if making a call to it with the given
37 ///   receiver type
38 ///
39 /// \return true to indicate that there was an error and appropriate
40 ///   actions were taken
checkInitMethod(ObjCMethodDecl * method,QualType receiverTypeIfCall)41 bool Sema::checkInitMethod(ObjCMethodDecl *method,
42                            QualType receiverTypeIfCall) {
43   if (method->isInvalidDecl()) return true;
44 
45   // This castAs is safe: methods that don't return an object
46   // pointer won't be inferred as inits and will reject an explicit
47   // objc_method_family(init).
48 
49   // We ignore protocols here.  Should we?  What about Class?
50 
51   const ObjCObjectType *result = method->getResultType()
52     ->castAs<ObjCObjectPointerType>()->getObjectType();
53 
54   if (result->isObjCId()) {
55     return false;
56   } else if (result->isObjCClass()) {
57     // fall through: always an error
58   } else {
59     ObjCInterfaceDecl *resultClass = result->getInterface();
60     assert(resultClass && "unexpected object type!");
61 
62     // It's okay for the result type to still be a forward declaration
63     // if we're checking an interface declaration.
64     if (!resultClass->hasDefinition()) {
65       if (receiverTypeIfCall.isNull() &&
66           !isa<ObjCImplementationDecl>(method->getDeclContext()))
67         return false;
68 
69     // Otherwise, we try to compare class types.
70     } else {
71       // If this method was declared in a protocol, we can't check
72       // anything unless we have a receiver type that's an interface.
73       const ObjCInterfaceDecl *receiverClass = 0;
74       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75         if (receiverTypeIfCall.isNull())
76           return false;
77 
78         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79           ->getInterfaceDecl();
80 
81         // This can be null for calls to e.g. id<Foo>.
82         if (!receiverClass) return false;
83       } else {
84         receiverClass = method->getClassInterface();
85         assert(receiverClass && "method not associated with a class!");
86       }
87 
88       // If either class is a subclass of the other, it's fine.
89       if (receiverClass->isSuperClassOf(resultClass) ||
90           resultClass->isSuperClassOf(receiverClass))
91         return false;
92     }
93   }
94 
95   SourceLocation loc = method->getLocation();
96 
97   // If we're in a system header, and this is not a call, just make
98   // the method unusable.
99   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100     method->addAttr(new (Context) UnavailableAttr(loc, Context,
101                 "init method returns a type unrelated to its receiver type"));
102     return true;
103   }
104 
105   // Otherwise, it's an error.
106   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107   method->setInvalidDecl();
108   return true;
109 }
110 
CheckObjCMethodOverride(ObjCMethodDecl * NewMethod,const ObjCMethodDecl * Overridden)111 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
112                                    const ObjCMethodDecl *Overridden) {
113   if (Overridden->hasRelatedResultType() &&
114       !NewMethod->hasRelatedResultType()) {
115     // This can only happen when the method follows a naming convention that
116     // implies a related result type, and the original (overridden) method has
117     // a suitable return type, but the new (overriding) method does not have
118     // a suitable return type.
119     QualType ResultType = NewMethod->getResultType();
120     SourceRange ResultTypeRange;
121     if (const TypeSourceInfo *ResultTypeInfo
122                                         = NewMethod->getResultTypeSourceInfo())
123       ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
124 
125     // Figure out which class this method is part of, if any.
126     ObjCInterfaceDecl *CurrentClass
127       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
128     if (!CurrentClass) {
129       DeclContext *DC = NewMethod->getDeclContext();
130       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
131         CurrentClass = Cat->getClassInterface();
132       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
133         CurrentClass = Impl->getClassInterface();
134       else if (ObjCCategoryImplDecl *CatImpl
135                = dyn_cast<ObjCCategoryImplDecl>(DC))
136         CurrentClass = CatImpl->getClassInterface();
137     }
138 
139     if (CurrentClass) {
140       Diag(NewMethod->getLocation(),
141            diag::warn_related_result_type_compatibility_class)
142         << Context.getObjCInterfaceType(CurrentClass)
143         << ResultType
144         << ResultTypeRange;
145     } else {
146       Diag(NewMethod->getLocation(),
147            diag::warn_related_result_type_compatibility_protocol)
148         << ResultType
149         << ResultTypeRange;
150     }
151 
152     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
153       Diag(Overridden->getLocation(),
154            diag::note_related_result_type_family)
155         << /*overridden method*/ 0
156         << Family;
157     else
158       Diag(Overridden->getLocation(),
159            diag::note_related_result_type_overridden);
160   }
161   if (getLangOpts().ObjCAutoRefCount) {
162     if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
163          Overridden->hasAttr<NSReturnsRetainedAttr>())) {
164         Diag(NewMethod->getLocation(),
165              diag::err_nsreturns_retained_attribute_mismatch) << 1;
166         Diag(Overridden->getLocation(), diag::note_previous_decl)
167         << "method";
168     }
169     if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170               Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171         Diag(NewMethod->getLocation(),
172              diag::err_nsreturns_retained_attribute_mismatch) << 0;
173         Diag(Overridden->getLocation(), diag::note_previous_decl)
174         << "method";
175     }
176     ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
177                                          oe = Overridden->param_end();
178     for (ObjCMethodDecl::param_iterator
179            ni = NewMethod->param_begin(), ne = NewMethod->param_end();
180          ni != ne && oi != oe; ++ni, ++oi) {
181       const ParmVarDecl *oldDecl = (*oi);
182       ParmVarDecl *newDecl = (*ni);
183       if (newDecl->hasAttr<NSConsumedAttr>() !=
184           oldDecl->hasAttr<NSConsumedAttr>()) {
185         Diag(newDecl->getLocation(),
186              diag::err_nsconsumed_attribute_mismatch);
187         Diag(oldDecl->getLocation(), diag::note_previous_decl)
188           << "parameter";
189       }
190     }
191   }
192 }
193 
194 /// \brief Check a method declaration for compatibility with the Objective-C
195 /// ARC conventions.
CheckARCMethodDecl(ObjCMethodDecl * method)196 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
197   ObjCMethodFamily family = method->getMethodFamily();
198   switch (family) {
199   case OMF_None:
200   case OMF_finalize:
201   case OMF_retain:
202   case OMF_release:
203   case OMF_autorelease:
204   case OMF_retainCount:
205   case OMF_self:
206   case OMF_performSelector:
207     return false;
208 
209   case OMF_dealloc:
210     if (!Context.hasSameType(method->getResultType(), Context.VoidTy)) {
211       SourceRange ResultTypeRange;
212       if (const TypeSourceInfo *ResultTypeInfo
213           = method->getResultTypeSourceInfo())
214         ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
215       if (ResultTypeRange.isInvalid())
216         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217           << method->getResultType()
218           << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
219       else
220         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
221           << method->getResultType()
222           << FixItHint::CreateReplacement(ResultTypeRange, "void");
223       return true;
224     }
225     return false;
226 
227   case OMF_init:
228     // If the method doesn't obey the init rules, don't bother annotating it.
229     if (checkInitMethod(method, QualType()))
230       return true;
231 
232     method->addAttr(new (Context) NSConsumesSelfAttr(SourceLocation(),
233                                                      Context));
234 
235     // Don't add a second copy of this attribute, but otherwise don't
236     // let it be suppressed.
237     if (method->hasAttr<NSReturnsRetainedAttr>())
238       return false;
239     break;
240 
241   case OMF_alloc:
242   case OMF_copy:
243   case OMF_mutableCopy:
244   case OMF_new:
245     if (method->hasAttr<NSReturnsRetainedAttr>() ||
246         method->hasAttr<NSReturnsNotRetainedAttr>() ||
247         method->hasAttr<NSReturnsAutoreleasedAttr>())
248       return false;
249     break;
250   }
251 
252   method->addAttr(new (Context) NSReturnsRetainedAttr(SourceLocation(),
253                                                       Context));
254   return false;
255 }
256 
DiagnoseObjCImplementedDeprecations(Sema & S,NamedDecl * ND,SourceLocation ImplLoc,int select)257 static void DiagnoseObjCImplementedDeprecations(Sema &S,
258                                                 NamedDecl *ND,
259                                                 SourceLocation ImplLoc,
260                                                 int select) {
261   if (ND && ND->isDeprecated()) {
262     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
263     if (select == 0)
264       S.Diag(ND->getLocation(), diag::note_method_declared_at)
265         << ND->getDeclName();
266     else
267       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
268   }
269 }
270 
271 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
272 /// pool.
AddAnyMethodToGlobalPool(Decl * D)273 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
274   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
275 
276   // If we don't have a valid method decl, simply return.
277   if (!MDecl)
278     return;
279   if (MDecl->isInstanceMethod())
280     AddInstanceMethodToGlobalPool(MDecl, true);
281   else
282     AddFactoryMethodToGlobalPool(MDecl, true);
283 }
284 
285 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
286 /// has explicit ownership attribute; false otherwise.
287 static bool
HasExplicitOwnershipAttr(Sema & S,ParmVarDecl * Param)288 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
289   QualType T = Param->getType();
290 
291   if (const PointerType *PT = T->getAs<PointerType>()) {
292     T = PT->getPointeeType();
293   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
294     T = RT->getPointeeType();
295   } else {
296     return true;
297   }
298 
299   // If we have a lifetime qualifier, but it's local, we must have
300   // inferred it. So, it is implicit.
301   return !T.getLocalQualifiers().hasObjCLifetime();
302 }
303 
304 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
305 /// and user declared, in the method definition's AST.
ActOnStartOfObjCMethodDef(Scope * FnBodyScope,Decl * D)306 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
307   assert((getCurMethodDecl() == 0) && "Methodparsing confused");
308   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
309 
310   // If we don't have a valid method decl, simply return.
311   if (!MDecl)
312     return;
313 
314   // Allow all of Sema to see that we are entering a method definition.
315   PushDeclContext(FnBodyScope, MDecl);
316   PushFunctionScope();
317 
318   // Create Decl objects for each parameter, entrring them in the scope for
319   // binding to their use.
320 
321   // Insert the invisible arguments, self and _cmd!
322   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
323 
324   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
325   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
326 
327   // The ObjC parser requires parameter names so there's no need to check.
328   CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
329                            /*CheckParameterNames=*/false);
330 
331   // Introduce all of the other parameters into this scope.
332   for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
333        E = MDecl->param_end(); PI != E; ++PI) {
334     ParmVarDecl *Param = (*PI);
335     if (!Param->isInvalidDecl() &&
336         getLangOpts().ObjCAutoRefCount &&
337         !HasExplicitOwnershipAttr(*this, Param))
338       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
339             Param->getType();
340 
341     if ((*PI)->getIdentifier())
342       PushOnScopeChains(*PI, FnBodyScope);
343   }
344 
345   // In ARC, disallow definition of retain/release/autorelease/retainCount
346   if (getLangOpts().ObjCAutoRefCount) {
347     switch (MDecl->getMethodFamily()) {
348     case OMF_retain:
349     case OMF_retainCount:
350     case OMF_release:
351     case OMF_autorelease:
352       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
353         << 0 << MDecl->getSelector();
354       break;
355 
356     case OMF_None:
357     case OMF_dealloc:
358     case OMF_finalize:
359     case OMF_alloc:
360     case OMF_init:
361     case OMF_mutableCopy:
362     case OMF_copy:
363     case OMF_new:
364     case OMF_self:
365     case OMF_performSelector:
366       break;
367     }
368   }
369 
370   // Warn on deprecated methods under -Wdeprecated-implementations,
371   // and prepare for warning on missing super calls.
372   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
373     ObjCMethodDecl *IMD =
374       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
375 
376     if (IMD) {
377       ObjCImplDecl *ImplDeclOfMethodDef =
378         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
379       ObjCContainerDecl *ContDeclOfMethodDecl =
380         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
381       ObjCImplDecl *ImplDeclOfMethodDecl = 0;
382       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
383         ImplDeclOfMethodDecl = OID->getImplementation();
384       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl))
385         ImplDeclOfMethodDecl = CD->getImplementation();
386       // No need to issue deprecated warning if deprecated mehod in class/category
387       // is being implemented in its own implementation (no overriding is involved).
388       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
389         DiagnoseObjCImplementedDeprecations(*this,
390                                           dyn_cast<NamedDecl>(IMD),
391                                           MDecl->getLocation(), 0);
392     }
393 
394     // If this is "dealloc" or "finalize", set some bit here.
395     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
396     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
397     // Only do this if the current class actually has a superclass.
398     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
399       ObjCMethodFamily Family = MDecl->getMethodFamily();
400       if (Family == OMF_dealloc) {
401         if (!(getLangOpts().ObjCAutoRefCount ||
402               getLangOpts().getGC() == LangOptions::GCOnly))
403           getCurFunction()->ObjCShouldCallSuper = true;
404 
405       } else if (Family == OMF_finalize) {
406         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
407           getCurFunction()->ObjCShouldCallSuper = true;
408 
409       } else if (MDecl->hasAttr<ObjCRequiresSuperAttr>())
410         getCurFunction()->ObjCShouldCallSuper = true;
411       else {
412         const ObjCMethodDecl *SuperMethod =
413           SuperClass->lookupMethod(MDecl->getSelector(),
414                                    MDecl->isInstanceMethod());
415         getCurFunction()->ObjCShouldCallSuper =
416           (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
417       }
418     }
419   }
420 }
421 
422 namespace {
423 
424 // Callback to only accept typo corrections that are Objective-C classes.
425 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
426 // function will reject corrections to that class.
427 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
428  public:
ObjCInterfaceValidatorCCC()429   ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
ObjCInterfaceValidatorCCC(ObjCInterfaceDecl * IDecl)430   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
431       : CurrentIDecl(IDecl) {}
432 
ValidateCandidate(const TypoCorrection & candidate)433   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
434     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
435     return ID && !declaresSameEntity(ID, CurrentIDecl);
436   }
437 
438  private:
439   ObjCInterfaceDecl *CurrentIDecl;
440 };
441 
442 }
443 
444 Decl *Sema::
ActOnStartClassInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperName,SourceLocation SuperLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)445 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
446                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
447                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
448                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
449                          const SourceLocation *ProtoLocs,
450                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
451   assert(ClassName && "Missing class identifier");
452 
453   // Check for another declaration kind with the same name.
454   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
455                                          LookupOrdinaryName, ForRedeclaration);
456 
457   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
458     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
459     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
460   }
461 
462   // Create a declaration to describe this @interface.
463   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
464 
465   if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
466     // A previous decl with a different name is because of
467     // @compatibility_alias, for example:
468     // \code
469     //   @class NewImage;
470     //   @compatibility_alias OldImage NewImage;
471     // \endcode
472     // A lookup for 'OldImage' will return the 'NewImage' decl.
473     //
474     // In such a case use the real declaration name, instead of the alias one,
475     // otherwise we will break IdentifierResolver and redecls-chain invariants.
476     // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
477     // has been aliased.
478     ClassName = PrevIDecl->getIdentifier();
479   }
480 
481   ObjCInterfaceDecl *IDecl
482     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
483                                 PrevIDecl, ClassLoc);
484 
485   if (PrevIDecl) {
486     // Class already seen. Was it a definition?
487     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
488       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
489         << PrevIDecl->getDeclName();
490       Diag(Def->getLocation(), diag::note_previous_definition);
491       IDecl->setInvalidDecl();
492     }
493   }
494 
495   if (AttrList)
496     ProcessDeclAttributeList(TUScope, IDecl, AttrList);
497   PushOnScopeChains(IDecl, TUScope);
498 
499   // Start the definition of this class. If we're in a redefinition case, there
500   // may already be a definition, so we'll end up adding to it.
501   if (!IDecl->hasDefinition())
502     IDecl->startDefinition();
503 
504   if (SuperName) {
505     // Check if a different kind of symbol declared in this scope.
506     PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
507                                 LookupOrdinaryName);
508 
509     if (!PrevDecl) {
510       // Try to correct for a typo in the superclass name without correcting
511       // to the class we're defining.
512       ObjCInterfaceValidatorCCC Validator(IDecl);
513       if (TypoCorrection Corrected = CorrectTypo(
514           DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
515           NULL, Validator)) {
516         PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
517         Diag(SuperLoc, diag::err_undef_superclass_suggest)
518           << SuperName << ClassName << PrevDecl->getDeclName();
519         Diag(PrevDecl->getLocation(), diag::note_previous_decl)
520           << PrevDecl->getDeclName();
521       }
522     }
523 
524     if (declaresSameEntity(PrevDecl, IDecl)) {
525       Diag(SuperLoc, diag::err_recursive_superclass)
526         << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
527       IDecl->setEndOfDefinitionLoc(ClassLoc);
528     } else {
529       ObjCInterfaceDecl *SuperClassDecl =
530                                 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
531 
532       // Diagnose classes that inherit from deprecated classes.
533       if (SuperClassDecl)
534         (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
535 
536       if (PrevDecl && SuperClassDecl == 0) {
537         // The previous declaration was not a class decl. Check if we have a
538         // typedef. If we do, get the underlying class type.
539         if (const TypedefNameDecl *TDecl =
540               dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
541           QualType T = TDecl->getUnderlyingType();
542           if (T->isObjCObjectType()) {
543             if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
544               SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
545               // This handles the following case:
546               // @interface NewI @end
547               // typedef NewI DeprI __attribute__((deprecated("blah")))
548               // @interface SI : DeprI /* warn here */ @end
549               (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
550             }
551           }
552         }
553 
554         // This handles the following case:
555         //
556         // typedef int SuperClass;
557         // @interface MyClass : SuperClass {} @end
558         //
559         if (!SuperClassDecl) {
560           Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
561           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
562         }
563       }
564 
565       if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
566         if (!SuperClassDecl)
567           Diag(SuperLoc, diag::err_undef_superclass)
568             << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
569         else if (RequireCompleteType(SuperLoc,
570                                   Context.getObjCInterfaceType(SuperClassDecl),
571                                      diag::err_forward_superclass,
572                                      SuperClassDecl->getDeclName(),
573                                      ClassName,
574                                      SourceRange(AtInterfaceLoc, ClassLoc))) {
575           SuperClassDecl = 0;
576         }
577       }
578       IDecl->setSuperClass(SuperClassDecl);
579       IDecl->setSuperClassLoc(SuperLoc);
580       IDecl->setEndOfDefinitionLoc(SuperLoc);
581     }
582   } else { // we have a root class.
583     IDecl->setEndOfDefinitionLoc(ClassLoc);
584   }
585 
586   // Check then save referenced protocols.
587   if (NumProtoRefs) {
588     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
589                            ProtoLocs, Context);
590     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
591   }
592 
593   CheckObjCDeclScope(IDecl);
594   return ActOnObjCContainerStartDefinition(IDecl);
595 }
596 
597 /// ActOnCompatibilityAlias - this action is called after complete parsing of
598 /// a \@compatibility_alias declaration. It sets up the alias relationships.
ActOnCompatibilityAlias(SourceLocation AtLoc,IdentifierInfo * AliasName,SourceLocation AliasLocation,IdentifierInfo * ClassName,SourceLocation ClassLocation)599 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
600                                     IdentifierInfo *AliasName,
601                                     SourceLocation AliasLocation,
602                                     IdentifierInfo *ClassName,
603                                     SourceLocation ClassLocation) {
604   // Look for previous declaration of alias name
605   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
606                                       LookupOrdinaryName, ForRedeclaration);
607   if (ADecl) {
608     Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
609     Diag(ADecl->getLocation(), diag::note_previous_declaration);
610     return 0;
611   }
612   // Check for class declaration
613   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
614                                        LookupOrdinaryName, ForRedeclaration);
615   if (const TypedefNameDecl *TDecl =
616         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
617     QualType T = TDecl->getUnderlyingType();
618     if (T->isObjCObjectType()) {
619       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
620         ClassName = IDecl->getIdentifier();
621         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
622                                   LookupOrdinaryName, ForRedeclaration);
623       }
624     }
625   }
626   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
627   if (CDecl == 0) {
628     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
629     if (CDeclU)
630       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
631     return 0;
632   }
633 
634   // Everything checked out, instantiate a new alias declaration AST.
635   ObjCCompatibleAliasDecl *AliasDecl =
636     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
637 
638   if (!CheckObjCDeclScope(AliasDecl))
639     PushOnScopeChains(AliasDecl, TUScope);
640 
641   return AliasDecl;
642 }
643 
CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo * PName,SourceLocation & Ploc,SourceLocation PrevLoc,const ObjCList<ObjCProtocolDecl> & PList)644 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
645   IdentifierInfo *PName,
646   SourceLocation &Ploc, SourceLocation PrevLoc,
647   const ObjCList<ObjCProtocolDecl> &PList) {
648 
649   bool res = false;
650   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
651        E = PList.end(); I != E; ++I) {
652     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
653                                                  Ploc)) {
654       if (PDecl->getIdentifier() == PName) {
655         Diag(Ploc, diag::err_protocol_has_circular_dependency);
656         Diag(PrevLoc, diag::note_previous_definition);
657         res = true;
658       }
659 
660       if (!PDecl->hasDefinition())
661         continue;
662 
663       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
664             PDecl->getLocation(), PDecl->getReferencedProtocols()))
665         res = true;
666     }
667   }
668   return res;
669 }
670 
671 Decl *
ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,IdentifierInfo * ProtocolName,SourceLocation ProtocolLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)672 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
673                                   IdentifierInfo *ProtocolName,
674                                   SourceLocation ProtocolLoc,
675                                   Decl * const *ProtoRefs,
676                                   unsigned NumProtoRefs,
677                                   const SourceLocation *ProtoLocs,
678                                   SourceLocation EndProtoLoc,
679                                   AttributeList *AttrList) {
680   bool err = false;
681   // FIXME: Deal with AttrList.
682   assert(ProtocolName && "Missing protocol identifier");
683   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
684                                               ForRedeclaration);
685   ObjCProtocolDecl *PDecl = 0;
686   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
687     // If we already have a definition, complain.
688     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
689     Diag(Def->getLocation(), diag::note_previous_definition);
690 
691     // Create a new protocol that is completely distinct from previous
692     // declarations, and do not make this protocol available for name lookup.
693     // That way, we'll end up completely ignoring the duplicate.
694     // FIXME: Can we turn this into an error?
695     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
696                                      ProtocolLoc, AtProtoInterfaceLoc,
697                                      /*PrevDecl=*/0);
698     PDecl->startDefinition();
699   } else {
700     if (PrevDecl) {
701       // Check for circular dependencies among protocol declarations. This can
702       // only happen if this protocol was forward-declared.
703       ObjCList<ObjCProtocolDecl> PList;
704       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
705       err = CheckForwardProtocolDeclarationForCircularDependency(
706               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
707     }
708 
709     // Create the new declaration.
710     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
711                                      ProtocolLoc, AtProtoInterfaceLoc,
712                                      /*PrevDecl=*/PrevDecl);
713 
714     PushOnScopeChains(PDecl, TUScope);
715     PDecl->startDefinition();
716   }
717 
718   if (AttrList)
719     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
720 
721   // Merge attributes from previous declarations.
722   if (PrevDecl)
723     mergeDeclAttributes(PDecl, PrevDecl);
724 
725   if (!err && NumProtoRefs ) {
726     /// Check then save referenced protocols.
727     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
728                            ProtoLocs, Context);
729   }
730 
731   CheckObjCDeclScope(PDecl);
732   return ActOnObjCContainerStartDefinition(PDecl);
733 }
734 
735 /// FindProtocolDeclaration - This routine looks up protocols and
736 /// issues an error if they are not declared. It returns list of
737 /// protocol declarations in its 'Protocols' argument.
738 void
FindProtocolDeclaration(bool WarnOnDeclarations,const IdentifierLocPair * ProtocolId,unsigned NumProtocols,SmallVectorImpl<Decl * > & Protocols)739 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
740                               const IdentifierLocPair *ProtocolId,
741                               unsigned NumProtocols,
742                               SmallVectorImpl<Decl *> &Protocols) {
743   for (unsigned i = 0; i != NumProtocols; ++i) {
744     ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
745                                              ProtocolId[i].second);
746     if (!PDecl) {
747       DeclFilterCCC<ObjCProtocolDecl> Validator;
748       TypoCorrection Corrected = CorrectTypo(
749           DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
750           LookupObjCProtocolName, TUScope, NULL, Validator);
751       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
752         Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
753           << ProtocolId[i].first << Corrected.getCorrection();
754         Diag(PDecl->getLocation(), diag::note_previous_decl)
755           << PDecl->getDeclName();
756       }
757     }
758 
759     if (!PDecl) {
760       Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
761         << ProtocolId[i].first;
762       continue;
763     }
764     // If this is a forward protocol declaration, get its definition.
765     if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
766       PDecl = PDecl->getDefinition();
767 
768     (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
769 
770     // If this is a forward declaration and we are supposed to warn in this
771     // case, do it.
772     // FIXME: Recover nicely in the hidden case.
773     if (WarnOnDeclarations &&
774         (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()))
775       Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
776         << ProtocolId[i].first;
777     Protocols.push_back(PDecl);
778   }
779 }
780 
781 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
782 /// a class method in its extension.
783 ///
DiagnoseClassExtensionDupMethods(ObjCCategoryDecl * CAT,ObjCInterfaceDecl * ID)784 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
785                                             ObjCInterfaceDecl *ID) {
786   if (!ID)
787     return;  // Possibly due to previous error
788 
789   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
790   for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
791        e =  ID->meth_end(); i != e; ++i) {
792     ObjCMethodDecl *MD = *i;
793     MethodMap[MD->getSelector()] = MD;
794   }
795 
796   if (MethodMap.empty())
797     return;
798   for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
799        e =  CAT->meth_end(); i != e; ++i) {
800     ObjCMethodDecl *Method = *i;
801     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
802     if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
803       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
804             << Method->getDeclName();
805       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
806     }
807   }
808 }
809 
810 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
811 Sema::DeclGroupPtrTy
ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,const IdentifierLocPair * IdentList,unsigned NumElts,AttributeList * attrList)812 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
813                                       const IdentifierLocPair *IdentList,
814                                       unsigned NumElts,
815                                       AttributeList *attrList) {
816   SmallVector<Decl *, 8> DeclsInGroup;
817   for (unsigned i = 0; i != NumElts; ++i) {
818     IdentifierInfo *Ident = IdentList[i].first;
819     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
820                                                 ForRedeclaration);
821     ObjCProtocolDecl *PDecl
822       = ObjCProtocolDecl::Create(Context, CurContext, Ident,
823                                  IdentList[i].second, AtProtocolLoc,
824                                  PrevDecl);
825 
826     PushOnScopeChains(PDecl, TUScope);
827     CheckObjCDeclScope(PDecl);
828 
829     if (attrList)
830       ProcessDeclAttributeList(TUScope, PDecl, attrList);
831 
832     if (PrevDecl)
833       mergeDeclAttributes(PDecl, PrevDecl);
834 
835     DeclsInGroup.push_back(PDecl);
836   }
837 
838   return BuildDeclaratorGroup(DeclsInGroup, false);
839 }
840 
841 Decl *Sema::
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CategoryName,SourceLocation CategoryLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc)842 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
843                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
844                             IdentifierInfo *CategoryName,
845                             SourceLocation CategoryLoc,
846                             Decl * const *ProtoRefs,
847                             unsigned NumProtoRefs,
848                             const SourceLocation *ProtoLocs,
849                             SourceLocation EndProtoLoc) {
850   ObjCCategoryDecl *CDecl;
851   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
852 
853   /// Check that class of this category is already completely declared.
854 
855   if (!IDecl
856       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
857                              diag::err_category_forward_interface,
858                              CategoryName == 0)) {
859     // Create an invalid ObjCCategoryDecl to serve as context for
860     // the enclosing method declarations.  We mark the decl invalid
861     // to make it clear that this isn't a valid AST.
862     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
863                                      ClassLoc, CategoryLoc, CategoryName,IDecl);
864     CDecl->setInvalidDecl();
865     CurContext->addDecl(CDecl);
866 
867     if (!IDecl)
868       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
869     return ActOnObjCContainerStartDefinition(CDecl);
870   }
871 
872   if (!CategoryName && IDecl->getImplementation()) {
873     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
874     Diag(IDecl->getImplementation()->getLocation(),
875           diag::note_implementation_declared);
876   }
877 
878   if (CategoryName) {
879     /// Check for duplicate interface declaration for this category
880     if (ObjCCategoryDecl *Previous
881           = IDecl->FindCategoryDeclaration(CategoryName)) {
882       // Class extensions can be declared multiple times, categories cannot.
883       Diag(CategoryLoc, diag::warn_dup_category_def)
884         << ClassName << CategoryName;
885       Diag(Previous->getLocation(), diag::note_previous_definition);
886     }
887   }
888 
889   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
890                                    ClassLoc, CategoryLoc, CategoryName, IDecl);
891   // FIXME: PushOnScopeChains?
892   CurContext->addDecl(CDecl);
893 
894   if (NumProtoRefs) {
895     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
896                            ProtoLocs, Context);
897     // Protocols in the class extension belong to the class.
898     if (CDecl->IsClassExtension())
899      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
900                                             NumProtoRefs, Context);
901   }
902 
903   CheckObjCDeclScope(CDecl);
904   return ActOnObjCContainerStartDefinition(CDecl);
905 }
906 
907 /// ActOnStartCategoryImplementation - Perform semantic checks on the
908 /// category implementation declaration and build an ObjCCategoryImplDecl
909 /// object.
ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CatName,SourceLocation CatLoc)910 Decl *Sema::ActOnStartCategoryImplementation(
911                       SourceLocation AtCatImplLoc,
912                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
913                       IdentifierInfo *CatName, SourceLocation CatLoc) {
914   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
915   ObjCCategoryDecl *CatIDecl = 0;
916   if (IDecl && IDecl->hasDefinition()) {
917     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
918     if (!CatIDecl) {
919       // Category @implementation with no corresponding @interface.
920       // Create and install one.
921       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
922                                           ClassLoc, CatLoc,
923                                           CatName, IDecl);
924       CatIDecl->setImplicit();
925     }
926   }
927 
928   ObjCCategoryImplDecl *CDecl =
929     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
930                                  ClassLoc, AtCatImplLoc, CatLoc);
931   /// Check that class of this category is already completely declared.
932   if (!IDecl) {
933     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
934     CDecl->setInvalidDecl();
935   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
936                                  diag::err_undef_interface)) {
937     CDecl->setInvalidDecl();
938   }
939 
940   // FIXME: PushOnScopeChains?
941   CurContext->addDecl(CDecl);
942 
943   // If the interface is deprecated/unavailable, warn/error about it.
944   if (IDecl)
945     DiagnoseUseOfDecl(IDecl, ClassLoc);
946 
947   /// Check that CatName, category name, is not used in another implementation.
948   if (CatIDecl) {
949     if (CatIDecl->getImplementation()) {
950       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
951         << CatName;
952       Diag(CatIDecl->getImplementation()->getLocation(),
953            diag::note_previous_definition);
954       CDecl->setInvalidDecl();
955     } else {
956       CatIDecl->setImplementation(CDecl);
957       // Warn on implementating category of deprecated class under
958       // -Wdeprecated-implementations flag.
959       DiagnoseObjCImplementedDeprecations(*this,
960                                           dyn_cast<NamedDecl>(IDecl),
961                                           CDecl->getLocation(), 2);
962     }
963   }
964 
965   CheckObjCDeclScope(CDecl);
966   return ActOnObjCContainerStartDefinition(CDecl);
967 }
968 
ActOnStartClassImplementation(SourceLocation AtClassImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperClassname,SourceLocation SuperClassLoc)969 Decl *Sema::ActOnStartClassImplementation(
970                       SourceLocation AtClassImplLoc,
971                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
972                       IdentifierInfo *SuperClassname,
973                       SourceLocation SuperClassLoc) {
974   ObjCInterfaceDecl* IDecl = 0;
975   // Check for another declaration kind with the same name.
976   NamedDecl *PrevDecl
977     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
978                        ForRedeclaration);
979   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
980     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
981     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
982   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
983     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
984                         diag::warn_undef_interface);
985   } else {
986     // We did not find anything with the name ClassName; try to correct for
987     // typos in the class name.
988     ObjCInterfaceValidatorCCC Validator;
989     if (TypoCorrection Corrected = CorrectTypo(
990         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
991         NULL, Validator)) {
992       // Suggest the (potentially) correct interface name. However, put the
993       // fix-it hint itself in a separate note, since changing the name in
994       // the warning would make the fix-it change semantics.However, don't
995       // provide a code-modification hint or use the typo name for recovery,
996       // because this is just a warning. The program may actually be correct.
997       IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
998       DeclarationName CorrectedName = Corrected.getCorrection();
999       Diag(ClassLoc, diag::warn_undef_interface_suggest)
1000         << ClassName << CorrectedName;
1001       Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
1002         << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
1003       IDecl = 0;
1004     } else {
1005       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1006     }
1007   }
1008 
1009   // Check that super class name is valid class name
1010   ObjCInterfaceDecl* SDecl = 0;
1011   if (SuperClassname) {
1012     // Check if a different kind of symbol declared in this scope.
1013     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1014                                 LookupOrdinaryName);
1015     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1016       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1017         << SuperClassname;
1018       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1019     } else {
1020       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1021       if (SDecl && !SDecl->hasDefinition())
1022         SDecl = 0;
1023       if (!SDecl)
1024         Diag(SuperClassLoc, diag::err_undef_superclass)
1025           << SuperClassname << ClassName;
1026       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1027         // This implementation and its interface do not have the same
1028         // super class.
1029         Diag(SuperClassLoc, diag::err_conflicting_super_class)
1030           << SDecl->getDeclName();
1031         Diag(SDecl->getLocation(), diag::note_previous_definition);
1032       }
1033     }
1034   }
1035 
1036   if (!IDecl) {
1037     // Legacy case of @implementation with no corresponding @interface.
1038     // Build, chain & install the interface decl into the identifier.
1039 
1040     // FIXME: Do we support attributes on the @implementation? If so we should
1041     // copy them over.
1042     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1043                                       ClassName, /*PrevDecl=*/0, ClassLoc,
1044                                       true);
1045     IDecl->startDefinition();
1046     if (SDecl) {
1047       IDecl->setSuperClass(SDecl);
1048       IDecl->setSuperClassLoc(SuperClassLoc);
1049       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1050     } else {
1051       IDecl->setEndOfDefinitionLoc(ClassLoc);
1052     }
1053 
1054     PushOnScopeChains(IDecl, TUScope);
1055   } else {
1056     // Mark the interface as being completed, even if it was just as
1057     //   @class ....;
1058     // declaration; the user cannot reopen it.
1059     if (!IDecl->hasDefinition())
1060       IDecl->startDefinition();
1061   }
1062 
1063   ObjCImplementationDecl* IMPDecl =
1064     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1065                                    ClassLoc, AtClassImplLoc, SuperClassLoc);
1066 
1067   if (CheckObjCDeclScope(IMPDecl))
1068     return ActOnObjCContainerStartDefinition(IMPDecl);
1069 
1070   // Check that there is no duplicate implementation of this class.
1071   if (IDecl->getImplementation()) {
1072     // FIXME: Don't leak everything!
1073     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1074     Diag(IDecl->getImplementation()->getLocation(),
1075          diag::note_previous_definition);
1076     IMPDecl->setInvalidDecl();
1077   } else { // add it to the list.
1078     IDecl->setImplementation(IMPDecl);
1079     PushOnScopeChains(IMPDecl, TUScope);
1080     // Warn on implementating deprecated class under
1081     // -Wdeprecated-implementations flag.
1082     DiagnoseObjCImplementedDeprecations(*this,
1083                                         dyn_cast<NamedDecl>(IDecl),
1084                                         IMPDecl->getLocation(), 1);
1085   }
1086   return ActOnObjCContainerStartDefinition(IMPDecl);
1087 }
1088 
1089 Sema::DeclGroupPtrTy
ActOnFinishObjCImplementation(Decl * ObjCImpDecl,ArrayRef<Decl * > Decls)1090 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1091   SmallVector<Decl *, 64> DeclsInGroup;
1092   DeclsInGroup.reserve(Decls.size() + 1);
1093 
1094   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1095     Decl *Dcl = Decls[i];
1096     if (!Dcl)
1097       continue;
1098     if (Dcl->getDeclContext()->isFileContext())
1099       Dcl->setTopLevelDeclInObjCContainer();
1100     DeclsInGroup.push_back(Dcl);
1101   }
1102 
1103   DeclsInGroup.push_back(ObjCImpDecl);
1104 
1105   return BuildDeclaratorGroup(DeclsInGroup, false);
1106 }
1107 
CheckImplementationIvars(ObjCImplementationDecl * ImpDecl,ObjCIvarDecl ** ivars,unsigned numIvars,SourceLocation RBrace)1108 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1109                                     ObjCIvarDecl **ivars, unsigned numIvars,
1110                                     SourceLocation RBrace) {
1111   assert(ImpDecl && "missing implementation decl");
1112   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1113   if (!IDecl)
1114     return;
1115   /// Check case of non-existing \@interface decl.
1116   /// (legacy objective-c \@implementation decl without an \@interface decl).
1117   /// Add implementations's ivar to the synthesize class's ivar list.
1118   if (IDecl->isImplicitInterfaceDecl()) {
1119     IDecl->setEndOfDefinitionLoc(RBrace);
1120     // Add ivar's to class's DeclContext.
1121     for (unsigned i = 0, e = numIvars; i != e; ++i) {
1122       ivars[i]->setLexicalDeclContext(ImpDecl);
1123       IDecl->makeDeclVisibleInContext(ivars[i]);
1124       ImpDecl->addDecl(ivars[i]);
1125     }
1126 
1127     return;
1128   }
1129   // If implementation has empty ivar list, just return.
1130   if (numIvars == 0)
1131     return;
1132 
1133   assert(ivars && "missing @implementation ivars");
1134   if (LangOpts.ObjCRuntime.isNonFragile()) {
1135     if (ImpDecl->getSuperClass())
1136       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1137     for (unsigned i = 0; i < numIvars; i++) {
1138       ObjCIvarDecl* ImplIvar = ivars[i];
1139       if (const ObjCIvarDecl *ClsIvar =
1140             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1141         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1142         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1143         continue;
1144       }
1145       // Check class extensions (unnamed categories) for duplicate ivars.
1146       for (ObjCInterfaceDecl::visible_extensions_iterator
1147            Ext = IDecl->visible_extensions_begin(),
1148            ExtEnd = IDecl->visible_extensions_end();
1149          Ext != ExtEnd; ++Ext) {
1150         ObjCCategoryDecl *CDecl = *Ext;
1151         if (const ObjCIvarDecl *ClsExtIvar =
1152             CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1153           Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1154           Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
1155           continue;
1156         }
1157       }
1158       // Instance ivar to Implementation's DeclContext.
1159       ImplIvar->setLexicalDeclContext(ImpDecl);
1160       IDecl->makeDeclVisibleInContext(ImplIvar);
1161       ImpDecl->addDecl(ImplIvar);
1162     }
1163     return;
1164   }
1165   // Check interface's Ivar list against those in the implementation.
1166   // names and types must match.
1167   //
1168   unsigned j = 0;
1169   ObjCInterfaceDecl::ivar_iterator
1170     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1171   for (; numIvars > 0 && IVI != IVE; ++IVI) {
1172     ObjCIvarDecl* ImplIvar = ivars[j++];
1173     ObjCIvarDecl* ClsIvar = *IVI;
1174     assert (ImplIvar && "missing implementation ivar");
1175     assert (ClsIvar && "missing class ivar");
1176 
1177     // First, make sure the types match.
1178     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1179       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1180         << ImplIvar->getIdentifier()
1181         << ImplIvar->getType() << ClsIvar->getType();
1182       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1183     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1184                ImplIvar->getBitWidthValue(Context) !=
1185                ClsIvar->getBitWidthValue(Context)) {
1186       Diag(ImplIvar->getBitWidth()->getLocStart(),
1187            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1188       Diag(ClsIvar->getBitWidth()->getLocStart(),
1189            diag::note_previous_definition);
1190     }
1191     // Make sure the names are identical.
1192     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1193       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1194         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1195       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1196     }
1197     --numIvars;
1198   }
1199 
1200   if (numIvars > 0)
1201     Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1202   else if (IVI != IVE)
1203     Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
1204 }
1205 
WarnUndefinedMethod(SourceLocation ImpLoc,ObjCMethodDecl * method,bool & IncompleteImpl,unsigned DiagID)1206 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1207                                bool &IncompleteImpl, unsigned DiagID) {
1208   // No point warning no definition of method which is 'unavailable'.
1209   switch (method->getAvailability()) {
1210   case AR_Available:
1211   case AR_Deprecated:
1212     break;
1213 
1214       // Don't warn about unavailable or not-yet-introduced methods.
1215   case AR_NotYetIntroduced:
1216   case AR_Unavailable:
1217     return;
1218   }
1219 
1220   // FIXME: For now ignore 'IncompleteImpl'.
1221   // Previously we grouped all unimplemented methods under a single
1222   // warning, but some users strongly voiced that they would prefer
1223   // separate warnings.  We will give that approach a try, as that
1224   // matches what we do with protocols.
1225 
1226   Diag(ImpLoc, DiagID) << method->getDeclName();
1227 
1228   // Issue a note to the original declaration.
1229   SourceLocation MethodLoc = method->getLocStart();
1230   if (MethodLoc.isValid())
1231     Diag(MethodLoc, diag::note_method_declared_at) << method;
1232 }
1233 
1234 /// Determines if type B can be substituted for type A.  Returns true if we can
1235 /// guarantee that anything that the user will do to an object of type A can
1236 /// also be done to an object of type B.  This is trivially true if the two
1237 /// types are the same, or if B is a subclass of A.  It becomes more complex
1238 /// in cases where protocols are involved.
1239 ///
1240 /// Object types in Objective-C describe the minimum requirements for an
1241 /// object, rather than providing a complete description of a type.  For
1242 /// example, if A is a subclass of B, then B* may refer to an instance of A.
1243 /// The principle of substitutability means that we may use an instance of A
1244 /// anywhere that we may use an instance of B - it will implement all of the
1245 /// ivars of B and all of the methods of B.
1246 ///
1247 /// This substitutability is important when type checking methods, because
1248 /// the implementation may have stricter type definitions than the interface.
1249 /// The interface specifies minimum requirements, but the implementation may
1250 /// have more accurate ones.  For example, a method may privately accept
1251 /// instances of B, but only publish that it accepts instances of A.  Any
1252 /// object passed to it will be type checked against B, and so will implicitly
1253 /// by a valid A*.  Similarly, a method may return a subclass of the class that
1254 /// it is declared as returning.
1255 ///
1256 /// This is most important when considering subclassing.  A method in a
1257 /// subclass must accept any object as an argument that its superclass's
1258 /// implementation accepts.  It may, however, accept a more general type
1259 /// without breaking substitutability (i.e. you can still use the subclass
1260 /// anywhere that you can use the superclass, but not vice versa).  The
1261 /// converse requirement applies to return types: the return type for a
1262 /// subclass method must be a valid object of the kind that the superclass
1263 /// advertises, but it may be specified more accurately.  This avoids the need
1264 /// for explicit down-casting by callers.
1265 ///
1266 /// Note: This is a stricter requirement than for assignment.
isObjCTypeSubstitutable(ASTContext & Context,const ObjCObjectPointerType * A,const ObjCObjectPointerType * B,bool rejectId)1267 static bool isObjCTypeSubstitutable(ASTContext &Context,
1268                                     const ObjCObjectPointerType *A,
1269                                     const ObjCObjectPointerType *B,
1270                                     bool rejectId) {
1271   // Reject a protocol-unqualified id.
1272   if (rejectId && B->isObjCIdType()) return false;
1273 
1274   // If B is a qualified id, then A must also be a qualified id and it must
1275   // implement all of the protocols in B.  It may not be a qualified class.
1276   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1277   // stricter definition so it is not substitutable for id<A>.
1278   if (B->isObjCQualifiedIdType()) {
1279     return A->isObjCQualifiedIdType() &&
1280            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1281                                                      QualType(B,0),
1282                                                      false);
1283   }
1284 
1285   /*
1286   // id is a special type that bypasses type checking completely.  We want a
1287   // warning when it is used in one place but not another.
1288   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1289 
1290 
1291   // If B is a qualified id, then A must also be a qualified id (which it isn't
1292   // if we've got this far)
1293   if (B->isObjCQualifiedIdType()) return false;
1294   */
1295 
1296   // Now we know that A and B are (potentially-qualified) class types.  The
1297   // normal rules for assignment apply.
1298   return Context.canAssignObjCInterfaces(A, B);
1299 }
1300 
getTypeRange(TypeSourceInfo * TSI)1301 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1302   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1303 }
1304 
CheckMethodOverrideReturn(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)1305 static bool CheckMethodOverrideReturn(Sema &S,
1306                                       ObjCMethodDecl *MethodImpl,
1307                                       ObjCMethodDecl *MethodDecl,
1308                                       bool IsProtocolMethodDecl,
1309                                       bool IsOverridingMode,
1310                                       bool Warn) {
1311   if (IsProtocolMethodDecl &&
1312       (MethodDecl->getObjCDeclQualifier() !=
1313        MethodImpl->getObjCDeclQualifier())) {
1314     if (Warn) {
1315         S.Diag(MethodImpl->getLocation(),
1316                (IsOverridingMode ?
1317                  diag::warn_conflicting_overriding_ret_type_modifiers
1318                  : diag::warn_conflicting_ret_type_modifiers))
1319           << MethodImpl->getDeclName()
1320           << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1321         S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1322           << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1323     }
1324     else
1325       return false;
1326   }
1327 
1328   if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1329                                        MethodDecl->getResultType()))
1330     return true;
1331   if (!Warn)
1332     return false;
1333 
1334   unsigned DiagID =
1335     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1336                      : diag::warn_conflicting_ret_types;
1337 
1338   // Mismatches between ObjC pointers go into a different warning
1339   // category, and sometimes they're even completely whitelisted.
1340   if (const ObjCObjectPointerType *ImplPtrTy =
1341         MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1342     if (const ObjCObjectPointerType *IfacePtrTy =
1343           MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1344       // Allow non-matching return types as long as they don't violate
1345       // the principle of substitutability.  Specifically, we permit
1346       // return types that are subclasses of the declared return type,
1347       // or that are more-qualified versions of the declared type.
1348       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1349         return false;
1350 
1351       DiagID =
1352         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1353                           : diag::warn_non_covariant_ret_types;
1354     }
1355   }
1356 
1357   S.Diag(MethodImpl->getLocation(), DiagID)
1358     << MethodImpl->getDeclName()
1359     << MethodDecl->getResultType()
1360     << MethodImpl->getResultType()
1361     << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1362   S.Diag(MethodDecl->getLocation(),
1363          IsOverridingMode ? diag::note_previous_declaration
1364                           : diag::note_previous_definition)
1365     << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1366   return false;
1367 }
1368 
CheckMethodOverrideParam(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,ParmVarDecl * ImplVar,ParmVarDecl * IfaceVar,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)1369 static bool CheckMethodOverrideParam(Sema &S,
1370                                      ObjCMethodDecl *MethodImpl,
1371                                      ObjCMethodDecl *MethodDecl,
1372                                      ParmVarDecl *ImplVar,
1373                                      ParmVarDecl *IfaceVar,
1374                                      bool IsProtocolMethodDecl,
1375                                      bool IsOverridingMode,
1376                                      bool Warn) {
1377   if (IsProtocolMethodDecl &&
1378       (ImplVar->getObjCDeclQualifier() !=
1379        IfaceVar->getObjCDeclQualifier())) {
1380     if (Warn) {
1381       if (IsOverridingMode)
1382         S.Diag(ImplVar->getLocation(),
1383                diag::warn_conflicting_overriding_param_modifiers)
1384             << getTypeRange(ImplVar->getTypeSourceInfo())
1385             << MethodImpl->getDeclName();
1386       else S.Diag(ImplVar->getLocation(),
1387              diag::warn_conflicting_param_modifiers)
1388           << getTypeRange(ImplVar->getTypeSourceInfo())
1389           << MethodImpl->getDeclName();
1390       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1391           << getTypeRange(IfaceVar->getTypeSourceInfo());
1392     }
1393     else
1394       return false;
1395   }
1396 
1397   QualType ImplTy = ImplVar->getType();
1398   QualType IfaceTy = IfaceVar->getType();
1399 
1400   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1401     return true;
1402 
1403   if (!Warn)
1404     return false;
1405   unsigned DiagID =
1406     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1407                      : diag::warn_conflicting_param_types;
1408 
1409   // Mismatches between ObjC pointers go into a different warning
1410   // category, and sometimes they're even completely whitelisted.
1411   if (const ObjCObjectPointerType *ImplPtrTy =
1412         ImplTy->getAs<ObjCObjectPointerType>()) {
1413     if (const ObjCObjectPointerType *IfacePtrTy =
1414           IfaceTy->getAs<ObjCObjectPointerType>()) {
1415       // Allow non-matching argument types as long as they don't
1416       // violate the principle of substitutability.  Specifically, the
1417       // implementation must accept any objects that the superclass
1418       // accepts, however it may also accept others.
1419       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1420         return false;
1421 
1422       DiagID =
1423       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1424                        :  diag::warn_non_contravariant_param_types;
1425     }
1426   }
1427 
1428   S.Diag(ImplVar->getLocation(), DiagID)
1429     << getTypeRange(ImplVar->getTypeSourceInfo())
1430     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1431   S.Diag(IfaceVar->getLocation(),
1432          (IsOverridingMode ? diag::note_previous_declaration
1433                         : diag::note_previous_definition))
1434     << getTypeRange(IfaceVar->getTypeSourceInfo());
1435   return false;
1436 }
1437 
1438 /// In ARC, check whether the conventional meanings of the two methods
1439 /// match.  If they don't, it's a hard error.
checkMethodFamilyMismatch(Sema & S,ObjCMethodDecl * impl,ObjCMethodDecl * decl)1440 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1441                                       ObjCMethodDecl *decl) {
1442   ObjCMethodFamily implFamily = impl->getMethodFamily();
1443   ObjCMethodFamily declFamily = decl->getMethodFamily();
1444   if (implFamily == declFamily) return false;
1445 
1446   // Since conventions are sorted by selector, the only possibility is
1447   // that the types differ enough to cause one selector or the other
1448   // to fall out of the family.
1449   assert(implFamily == OMF_None || declFamily == OMF_None);
1450 
1451   // No further diagnostics required on invalid declarations.
1452   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1453 
1454   const ObjCMethodDecl *unmatched = impl;
1455   ObjCMethodFamily family = declFamily;
1456   unsigned errorID = diag::err_arc_lost_method_convention;
1457   unsigned noteID = diag::note_arc_lost_method_convention;
1458   if (declFamily == OMF_None) {
1459     unmatched = decl;
1460     family = implFamily;
1461     errorID = diag::err_arc_gained_method_convention;
1462     noteID = diag::note_arc_gained_method_convention;
1463   }
1464 
1465   // Indexes into a %select clause in the diagnostic.
1466   enum FamilySelector {
1467     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1468   };
1469   FamilySelector familySelector = FamilySelector();
1470 
1471   switch (family) {
1472   case OMF_None: llvm_unreachable("logic error, no method convention");
1473   case OMF_retain:
1474   case OMF_release:
1475   case OMF_autorelease:
1476   case OMF_dealloc:
1477   case OMF_finalize:
1478   case OMF_retainCount:
1479   case OMF_self:
1480   case OMF_performSelector:
1481     // Mismatches for these methods don't change ownership
1482     // conventions, so we don't care.
1483     return false;
1484 
1485   case OMF_init: familySelector = F_init; break;
1486   case OMF_alloc: familySelector = F_alloc; break;
1487   case OMF_copy: familySelector = F_copy; break;
1488   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1489   case OMF_new: familySelector = F_new; break;
1490   }
1491 
1492   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1493   ReasonSelector reasonSelector;
1494 
1495   // The only reason these methods don't fall within their families is
1496   // due to unusual result types.
1497   if (unmatched->getResultType()->isObjCObjectPointerType()) {
1498     reasonSelector = R_UnrelatedReturn;
1499   } else {
1500     reasonSelector = R_NonObjectReturn;
1501   }
1502 
1503   S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
1504   S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
1505 
1506   return true;
1507 }
1508 
WarnConflictingTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)1509 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1510                                        ObjCMethodDecl *MethodDecl,
1511                                        bool IsProtocolMethodDecl) {
1512   if (getLangOpts().ObjCAutoRefCount &&
1513       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1514     return;
1515 
1516   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1517                             IsProtocolMethodDecl, false,
1518                             true);
1519 
1520   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1521        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1522        EF = MethodDecl->param_end();
1523        IM != EM && IF != EF; ++IM, ++IF) {
1524     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1525                              IsProtocolMethodDecl, false, true);
1526   }
1527 
1528   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1529     Diag(ImpMethodDecl->getLocation(),
1530          diag::warn_conflicting_variadic);
1531     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1532   }
1533 }
1534 
CheckConflictingOverridingMethod(ObjCMethodDecl * Method,ObjCMethodDecl * Overridden,bool IsProtocolMethodDecl)1535 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1536                                        ObjCMethodDecl *Overridden,
1537                                        bool IsProtocolMethodDecl) {
1538 
1539   CheckMethodOverrideReturn(*this, Method, Overridden,
1540                             IsProtocolMethodDecl, true,
1541                             true);
1542 
1543   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1544        IF = Overridden->param_begin(), EM = Method->param_end(),
1545        EF = Overridden->param_end();
1546        IM != EM && IF != EF; ++IM, ++IF) {
1547     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1548                              IsProtocolMethodDecl, true, true);
1549   }
1550 
1551   if (Method->isVariadic() != Overridden->isVariadic()) {
1552     Diag(Method->getLocation(),
1553          diag::warn_conflicting_overriding_variadic);
1554     Diag(Overridden->getLocation(), diag::note_previous_declaration);
1555   }
1556 }
1557 
1558 /// WarnExactTypedMethods - This routine issues a warning if method
1559 /// implementation declaration matches exactly that of its declaration.
WarnExactTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)1560 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1561                                  ObjCMethodDecl *MethodDecl,
1562                                  bool IsProtocolMethodDecl) {
1563   // don't issue warning when protocol method is optional because primary
1564   // class is not required to implement it and it is safe for protocol
1565   // to implement it.
1566   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1567     return;
1568   // don't issue warning when primary class's method is
1569   // depecated/unavailable.
1570   if (MethodDecl->hasAttr<UnavailableAttr>() ||
1571       MethodDecl->hasAttr<DeprecatedAttr>())
1572     return;
1573 
1574   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1575                                       IsProtocolMethodDecl, false, false);
1576   if (match)
1577     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1578          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1579          EF = MethodDecl->param_end();
1580          IM != EM && IF != EF; ++IM, ++IF) {
1581       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1582                                        *IM, *IF,
1583                                        IsProtocolMethodDecl, false, false);
1584       if (!match)
1585         break;
1586     }
1587   if (match)
1588     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1589   if (match)
1590     match = !(MethodDecl->isClassMethod() &&
1591               MethodDecl->getSelector() == GetNullarySelector("load", Context));
1592 
1593   if (match) {
1594     Diag(ImpMethodDecl->getLocation(),
1595          diag::warn_category_method_impl_match);
1596     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1597       << MethodDecl->getDeclName();
1598   }
1599 }
1600 
1601 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1602 /// improve the efficiency of selector lookups and type checking by associating
1603 /// with each protocol / interface / category the flattened instance tables. If
1604 /// we used an immutable set to keep the table then it wouldn't add significant
1605 /// memory cost and it would be handy for lookups.
1606 
1607 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
1608 /// Declared in protocol, and those referenced by it.
CheckProtocolMethodDefs(SourceLocation ImpLoc,ObjCProtocolDecl * PDecl,bool & IncompleteImpl,const SelectorSet & InsMap,const SelectorSet & ClsMap,ObjCContainerDecl * CDecl)1609 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1610                                    ObjCProtocolDecl *PDecl,
1611                                    bool& IncompleteImpl,
1612                                    const SelectorSet &InsMap,
1613                                    const SelectorSet &ClsMap,
1614                                    ObjCContainerDecl *CDecl) {
1615   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1616   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1617                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
1618   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1619 
1620   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1621   ObjCInterfaceDecl *NSIDecl = 0;
1622   if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
1623     // check to see if class implements forwardInvocation method and objects
1624     // of this class are derived from 'NSProxy' so that to forward requests
1625     // from one object to another.
1626     // Under such conditions, which means that every method possible is
1627     // implemented in the class, we should not issue "Method definition not
1628     // found" warnings.
1629     // FIXME: Use a general GetUnarySelector method for this.
1630     IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1631     Selector fISelector = Context.Selectors.getSelector(1, &II);
1632     if (InsMap.count(fISelector))
1633       // Is IDecl derived from 'NSProxy'? If so, no instance methods
1634       // need be implemented in the implementation.
1635       NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1636   }
1637 
1638   // If this is a forward protocol declaration, get its definition.
1639   if (!PDecl->isThisDeclarationADefinition() &&
1640       PDecl->getDefinition())
1641     PDecl = PDecl->getDefinition();
1642 
1643   // If a method lookup fails locally we still need to look and see if
1644   // the method was implemented by a base class or an inherited
1645   // protocol. This lookup is slow, but occurs rarely in correct code
1646   // and otherwise would terminate in a warning.
1647 
1648   // check unimplemented instance methods.
1649   if (!NSIDecl)
1650     for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1651          E = PDecl->instmeth_end(); I != E; ++I) {
1652       ObjCMethodDecl *method = *I;
1653       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1654           !method->isPropertyAccessor() &&
1655           !InsMap.count(method->getSelector()) &&
1656           (!Super || !Super->lookupInstanceMethod(method->getSelector()))) {
1657             // If a method is not implemented in the category implementation but
1658             // has been declared in its primary class, superclass,
1659             // or in one of their protocols, no need to issue the warning.
1660             // This is because method will be implemented in the primary class
1661             // or one of its super class implementation.
1662 
1663             // Ugly, but necessary. Method declared in protcol might have
1664             // have been synthesized due to a property declared in the class which
1665             // uses the protocol.
1666             if (ObjCMethodDecl *MethodInClass =
1667                   IDecl->lookupInstanceMethod(method->getSelector(),
1668                                               true /*shallowCategoryLookup*/))
1669               if (C || MethodInClass->isPropertyAccessor())
1670                 continue;
1671             unsigned DIAG = diag::warn_unimplemented_protocol_method;
1672             if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1673                 != DiagnosticsEngine::Ignored) {
1674               WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1675               Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1676                 << PDecl->getDeclName();
1677             }
1678           }
1679     }
1680   // check unimplemented class methods
1681   for (ObjCProtocolDecl::classmeth_iterator
1682          I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1683        I != E; ++I) {
1684     ObjCMethodDecl *method = *I;
1685     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1686         !ClsMap.count(method->getSelector()) &&
1687         (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1688       // See above comment for instance method lookups.
1689       if (C && IDecl->lookupClassMethod(method->getSelector(),
1690                                         true /*shallowCategoryLookup*/))
1691         continue;
1692       unsigned DIAG = diag::warn_unimplemented_protocol_method;
1693       if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1694             DiagnosticsEngine::Ignored) {
1695         WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1696         Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1697           PDecl->getDeclName();
1698       }
1699     }
1700   }
1701   // Check on this protocols's referenced protocols, recursively.
1702   for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1703        E = PDecl->protocol_end(); PI != E; ++PI)
1704     CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
1705 }
1706 
1707 /// MatchAllMethodDeclarations - Check methods declared in interface
1708 /// or protocol against those declared in their implementations.
1709 ///
MatchAllMethodDeclarations(const SelectorSet & InsMap,const SelectorSet & ClsMap,SelectorSet & InsMapSeen,SelectorSet & ClsMapSeen,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool & IncompleteImpl,bool ImmediateClass,bool WarnCategoryMethodImpl)1710 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1711                                       const SelectorSet &ClsMap,
1712                                       SelectorSet &InsMapSeen,
1713                                       SelectorSet &ClsMapSeen,
1714                                       ObjCImplDecl* IMPDecl,
1715                                       ObjCContainerDecl* CDecl,
1716                                       bool &IncompleteImpl,
1717                                       bool ImmediateClass,
1718                                       bool WarnCategoryMethodImpl) {
1719   // Check and see if instance methods in class interface have been
1720   // implemented in the implementation class. If so, their types match.
1721   for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1722        E = CDecl->instmeth_end(); I != E; ++I) {
1723     if (InsMapSeen.count((*I)->getSelector()))
1724         continue;
1725     InsMapSeen.insert((*I)->getSelector());
1726     if (!(*I)->isPropertyAccessor() &&
1727         !InsMap.count((*I)->getSelector())) {
1728       if (ImmediateClass)
1729         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1730                             diag::warn_undef_method_impl);
1731       continue;
1732     } else {
1733       ObjCMethodDecl *ImpMethodDecl =
1734         IMPDecl->getInstanceMethod((*I)->getSelector());
1735       assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1736              "Expected to find the method through lookup as well");
1737       ObjCMethodDecl *MethodDecl = *I;
1738       // ImpMethodDecl may be null as in a @dynamic property.
1739       if (ImpMethodDecl) {
1740         if (!WarnCategoryMethodImpl)
1741           WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1742                                       isa<ObjCProtocolDecl>(CDecl));
1743         else if (!MethodDecl->isPropertyAccessor())
1744           WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1745                                 isa<ObjCProtocolDecl>(CDecl));
1746       }
1747     }
1748   }
1749 
1750   // Check and see if class methods in class interface have been
1751   // implemented in the implementation class. If so, their types match.
1752    for (ObjCInterfaceDecl::classmeth_iterator
1753        I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1754      if (ClsMapSeen.count((*I)->getSelector()))
1755        continue;
1756      ClsMapSeen.insert((*I)->getSelector());
1757     if (!ClsMap.count((*I)->getSelector())) {
1758       if (ImmediateClass)
1759         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1760                             diag::warn_undef_method_impl);
1761     } else {
1762       ObjCMethodDecl *ImpMethodDecl =
1763         IMPDecl->getClassMethod((*I)->getSelector());
1764       assert(CDecl->getClassMethod((*I)->getSelector()) &&
1765              "Expected to find the method through lookup as well");
1766       ObjCMethodDecl *MethodDecl = *I;
1767       if (!WarnCategoryMethodImpl)
1768         WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1769                                     isa<ObjCProtocolDecl>(CDecl));
1770       else
1771         WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1772                               isa<ObjCProtocolDecl>(CDecl));
1773     }
1774   }
1775 
1776   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1777     // when checking that methods in implementation match their declaration,
1778     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
1779     // extension; as well as those in categories.
1780     if (!WarnCategoryMethodImpl) {
1781       for (ObjCInterfaceDecl::visible_categories_iterator
1782              Cat = I->visible_categories_begin(),
1783            CatEnd = I->visible_categories_end();
1784            Cat != CatEnd; ++Cat) {
1785         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1786                                    IMPDecl, *Cat, IncompleteImpl, false,
1787                                    WarnCategoryMethodImpl);
1788       }
1789     } else {
1790       // Also methods in class extensions need be looked at next.
1791       for (ObjCInterfaceDecl::visible_extensions_iterator
1792              Ext = I->visible_extensions_begin(),
1793              ExtEnd = I->visible_extensions_end();
1794            Ext != ExtEnd; ++Ext) {
1795         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1796                                    IMPDecl, *Ext, IncompleteImpl, false,
1797                                    WarnCategoryMethodImpl);
1798       }
1799     }
1800 
1801     // Check for any implementation of a methods declared in protocol.
1802     for (ObjCInterfaceDecl::all_protocol_iterator
1803           PI = I->all_referenced_protocol_begin(),
1804           E = I->all_referenced_protocol_end(); PI != E; ++PI)
1805       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1806                                  IMPDecl,
1807                                  (*PI), IncompleteImpl, false,
1808                                  WarnCategoryMethodImpl);
1809 
1810     // FIXME. For now, we are not checking for extact match of methods
1811     // in category implementation and its primary class's super class.
1812     if (!WarnCategoryMethodImpl && I->getSuperClass())
1813       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1814                                  IMPDecl,
1815                                  I->getSuperClass(), IncompleteImpl, false);
1816   }
1817 }
1818 
1819 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1820 /// category matches with those implemented in its primary class and
1821 /// warns each time an exact match is found.
CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl * CatIMPDecl)1822 void Sema::CheckCategoryVsClassMethodMatches(
1823                                   ObjCCategoryImplDecl *CatIMPDecl) {
1824   SelectorSet InsMap, ClsMap;
1825 
1826   for (ObjCImplementationDecl::instmeth_iterator
1827        I = CatIMPDecl->instmeth_begin(),
1828        E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1829     InsMap.insert((*I)->getSelector());
1830 
1831   for (ObjCImplementationDecl::classmeth_iterator
1832        I = CatIMPDecl->classmeth_begin(),
1833        E = CatIMPDecl->classmeth_end(); I != E; ++I)
1834     ClsMap.insert((*I)->getSelector());
1835   if (InsMap.empty() && ClsMap.empty())
1836     return;
1837 
1838   // Get category's primary class.
1839   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1840   if (!CatDecl)
1841     return;
1842   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1843   if (!IDecl)
1844     return;
1845   SelectorSet InsMapSeen, ClsMapSeen;
1846   bool IncompleteImpl = false;
1847   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1848                              CatIMPDecl, IDecl,
1849                              IncompleteImpl, false,
1850                              true /*WarnCategoryMethodImpl*/);
1851 }
1852 
ImplMethodsVsClassMethods(Scope * S,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool IncompleteImpl)1853 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1854                                      ObjCContainerDecl* CDecl,
1855                                      bool IncompleteImpl) {
1856   SelectorSet InsMap;
1857   // Check and see if instance methods in class interface have been
1858   // implemented in the implementation class.
1859   for (ObjCImplementationDecl::instmeth_iterator
1860          I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1861     InsMap.insert((*I)->getSelector());
1862 
1863   // Check and see if properties declared in the interface have either 1)
1864   // an implementation or 2) there is a @synthesize/@dynamic implementation
1865   // of the property in the @implementation.
1866   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
1867     if  (!(LangOpts.ObjCDefaultSynthProperties &&
1868            LangOpts.ObjCRuntime.isNonFragile()) ||
1869          IDecl->isObjCRequiresPropertyDefs())
1870       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl);
1871 
1872   SelectorSet ClsMap;
1873   for (ObjCImplementationDecl::classmeth_iterator
1874        I = IMPDecl->classmeth_begin(),
1875        E = IMPDecl->classmeth_end(); I != E; ++I)
1876     ClsMap.insert((*I)->getSelector());
1877 
1878   // Check for type conflict of methods declared in a class/protocol and
1879   // its implementation; if any.
1880   SelectorSet InsMapSeen, ClsMapSeen;
1881   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1882                              IMPDecl, CDecl,
1883                              IncompleteImpl, true);
1884 
1885   // check all methods implemented in category against those declared
1886   // in its primary class.
1887   if (ObjCCategoryImplDecl *CatDecl =
1888         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1889     CheckCategoryVsClassMethodMatches(CatDecl);
1890 
1891   // Check the protocol list for unimplemented methods in the @implementation
1892   // class.
1893   // Check and see if class methods in class interface have been
1894   // implemented in the implementation class.
1895 
1896   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1897     for (ObjCInterfaceDecl::all_protocol_iterator
1898           PI = I->all_referenced_protocol_begin(),
1899           E = I->all_referenced_protocol_end(); PI != E; ++PI)
1900       CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1901                               InsMap, ClsMap, I);
1902     // Check class extensions (unnamed categories)
1903     for (ObjCInterfaceDecl::visible_extensions_iterator
1904            Ext = I->visible_extensions_begin(),
1905            ExtEnd = I->visible_extensions_end();
1906          Ext != ExtEnd; ++Ext) {
1907       ImplMethodsVsClassMethods(S, IMPDecl, *Ext, IncompleteImpl);
1908     }
1909   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1910     // For extended class, unimplemented methods in its protocols will
1911     // be reported in the primary class.
1912     if (!C->IsClassExtension()) {
1913       for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1914            E = C->protocol_end(); PI != E; ++PI)
1915         CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1916                                 InsMap, ClsMap, CDecl);
1917       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl);
1918     }
1919   } else
1920     llvm_unreachable("invalid ObjCContainerDecl type.");
1921 }
1922 
1923 /// ActOnForwardClassDeclaration -
1924 Sema::DeclGroupPtrTy
ActOnForwardClassDeclaration(SourceLocation AtClassLoc,IdentifierInfo ** IdentList,SourceLocation * IdentLocs,unsigned NumElts)1925 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1926                                    IdentifierInfo **IdentList,
1927                                    SourceLocation *IdentLocs,
1928                                    unsigned NumElts) {
1929   SmallVector<Decl *, 8> DeclsInGroup;
1930   for (unsigned i = 0; i != NumElts; ++i) {
1931     // Check for another declaration kind with the same name.
1932     NamedDecl *PrevDecl
1933       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1934                          LookupOrdinaryName, ForRedeclaration);
1935     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1936       // GCC apparently allows the following idiom:
1937       //
1938       // typedef NSObject < XCElementTogglerP > XCElementToggler;
1939       // @class XCElementToggler;
1940       //
1941       // Here we have chosen to ignore the forward class declaration
1942       // with a warning. Since this is the implied behavior.
1943       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1944       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1945         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1946         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1947       } else {
1948         // a forward class declaration matching a typedef name of a class refers
1949         // to the underlying class. Just ignore the forward class with a warning
1950         // as this will force the intended behavior which is to lookup the typedef
1951         // name.
1952         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
1953           Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
1954           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1955           continue;
1956         }
1957       }
1958     }
1959 
1960     // Create a declaration to describe this forward declaration.
1961     ObjCInterfaceDecl *PrevIDecl
1962       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1963 
1964     IdentifierInfo *ClassName = IdentList[i];
1965     if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
1966       // A previous decl with a different name is because of
1967       // @compatibility_alias, for example:
1968       // \code
1969       //   @class NewImage;
1970       //   @compatibility_alias OldImage NewImage;
1971       // \endcode
1972       // A lookup for 'OldImage' will return the 'NewImage' decl.
1973       //
1974       // In such a case use the real declaration name, instead of the alias one,
1975       // otherwise we will break IdentifierResolver and redecls-chain invariants.
1976       // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1977       // has been aliased.
1978       ClassName = PrevIDecl->getIdentifier();
1979     }
1980 
1981     ObjCInterfaceDecl *IDecl
1982       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1983                                   ClassName, PrevIDecl, IdentLocs[i]);
1984     IDecl->setAtEndRange(IdentLocs[i]);
1985 
1986     PushOnScopeChains(IDecl, TUScope);
1987     CheckObjCDeclScope(IDecl);
1988     DeclsInGroup.push_back(IDecl);
1989   }
1990 
1991   return BuildDeclaratorGroup(DeclsInGroup, false);
1992 }
1993 
1994 static bool tryMatchRecordTypes(ASTContext &Context,
1995                                 Sema::MethodMatchStrategy strategy,
1996                                 const Type *left, const Type *right);
1997 
matchTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,QualType leftQT,QualType rightQT)1998 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1999                        QualType leftQT, QualType rightQT) {
2000   const Type *left =
2001     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
2002   const Type *right =
2003     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
2004 
2005   if (left == right) return true;
2006 
2007   // If we're doing a strict match, the types have to match exactly.
2008   if (strategy == Sema::MMS_strict) return false;
2009 
2010   if (left->isIncompleteType() || right->isIncompleteType()) return false;
2011 
2012   // Otherwise, use this absurdly complicated algorithm to try to
2013   // validate the basic, low-level compatibility of the two types.
2014 
2015   // As a minimum, require the sizes and alignments to match.
2016   if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
2017     return false;
2018 
2019   // Consider all the kinds of non-dependent canonical types:
2020   // - functions and arrays aren't possible as return and parameter types
2021 
2022   // - vector types of equal size can be arbitrarily mixed
2023   if (isa<VectorType>(left)) return isa<VectorType>(right);
2024   if (isa<VectorType>(right)) return false;
2025 
2026   // - references should only match references of identical type
2027   // - structs, unions, and Objective-C objects must match more-or-less
2028   //   exactly
2029   // - everything else should be a scalar
2030   if (!left->isScalarType() || !right->isScalarType())
2031     return tryMatchRecordTypes(Context, strategy, left, right);
2032 
2033   // Make scalars agree in kind, except count bools as chars, and group
2034   // all non-member pointers together.
2035   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
2036   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
2037   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
2038   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
2039   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
2040     leftSK = Type::STK_ObjCObjectPointer;
2041   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
2042     rightSK = Type::STK_ObjCObjectPointer;
2043 
2044   // Note that data member pointers and function member pointers don't
2045   // intermix because of the size differences.
2046 
2047   return (leftSK == rightSK);
2048 }
2049 
tryMatchRecordTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,const Type * lt,const Type * rt)2050 static bool tryMatchRecordTypes(ASTContext &Context,
2051                                 Sema::MethodMatchStrategy strategy,
2052                                 const Type *lt, const Type *rt) {
2053   assert(lt && rt && lt != rt);
2054 
2055   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
2056   RecordDecl *left = cast<RecordType>(lt)->getDecl();
2057   RecordDecl *right = cast<RecordType>(rt)->getDecl();
2058 
2059   // Require union-hood to match.
2060   if (left->isUnion() != right->isUnion()) return false;
2061 
2062   // Require an exact match if either is non-POD.
2063   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
2064       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
2065     return false;
2066 
2067   // Require size and alignment to match.
2068   if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
2069 
2070   // Require fields to match.
2071   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
2072   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
2073   for (; li != le && ri != re; ++li, ++ri) {
2074     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
2075       return false;
2076   }
2077   return (li == le && ri == re);
2078 }
2079 
2080 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
2081 /// returns true, or false, accordingly.
2082 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
MatchTwoMethodDeclarations(const ObjCMethodDecl * left,const ObjCMethodDecl * right,MethodMatchStrategy strategy)2083 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
2084                                       const ObjCMethodDecl *right,
2085                                       MethodMatchStrategy strategy) {
2086   if (!matchTypes(Context, strategy,
2087                   left->getResultType(), right->getResultType()))
2088     return false;
2089 
2090   // If either is hidden, it is not considered to match.
2091   if (left->isHidden() || right->isHidden())
2092     return false;
2093 
2094   if (getLangOpts().ObjCAutoRefCount &&
2095       (left->hasAttr<NSReturnsRetainedAttr>()
2096          != right->hasAttr<NSReturnsRetainedAttr>() ||
2097        left->hasAttr<NSConsumesSelfAttr>()
2098          != right->hasAttr<NSConsumesSelfAttr>()))
2099     return false;
2100 
2101   ObjCMethodDecl::param_const_iterator
2102     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
2103     re = right->param_end();
2104 
2105   for (; li != le && ri != re; ++li, ++ri) {
2106     assert(ri != right->param_end() && "Param mismatch");
2107     const ParmVarDecl *lparm = *li, *rparm = *ri;
2108 
2109     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
2110       return false;
2111 
2112     if (getLangOpts().ObjCAutoRefCount &&
2113         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
2114       return false;
2115   }
2116   return true;
2117 }
2118 
addMethodToGlobalList(ObjCMethodList * List,ObjCMethodDecl * Method)2119 void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
2120   // Record at the head of the list whether there were 0, 1, or >= 2 methods
2121   // inside categories.
2122   if (ObjCCategoryDecl *
2123         CD = dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
2124     if (!CD->IsClassExtension() && List->getBits() < 2)
2125         List->setBits(List->getBits()+1);
2126 
2127   // If the list is empty, make it a singleton list.
2128   if (List->Method == 0) {
2129     List->Method = Method;
2130     List->setNext(0);
2131     return;
2132   }
2133 
2134   // We've seen a method with this name, see if we have already seen this type
2135   // signature.
2136   ObjCMethodList *Previous = List;
2137   for (; List; Previous = List, List = List->getNext()) {
2138     // If we are building a module, keep all of the methods.
2139     if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
2140       continue;
2141 
2142     if (!MatchTwoMethodDeclarations(Method, List->Method))
2143       continue;
2144 
2145     ObjCMethodDecl *PrevObjCMethod = List->Method;
2146 
2147     // Propagate the 'defined' bit.
2148     if (Method->isDefined())
2149       PrevObjCMethod->setDefined(true);
2150 
2151     // If a method is deprecated, push it in the global pool.
2152     // This is used for better diagnostics.
2153     if (Method->isDeprecated()) {
2154       if (!PrevObjCMethod->isDeprecated())
2155         List->Method = Method;
2156     }
2157     // If new method is unavailable, push it into global pool
2158     // unless previous one is deprecated.
2159     if (Method->isUnavailable()) {
2160       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2161         List->Method = Method;
2162     }
2163 
2164     return;
2165   }
2166 
2167   // We have a new signature for an existing method - add it.
2168   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2169   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2170   Previous->setNext(new (Mem) ObjCMethodList(Method, 0));
2171 }
2172 
2173 /// \brief Read the contents of the method pool for a given selector from
2174 /// external storage.
ReadMethodPool(Selector Sel)2175 void Sema::ReadMethodPool(Selector Sel) {
2176   assert(ExternalSource && "We need an external AST source");
2177   ExternalSource->ReadMethodPool(Sel);
2178 }
2179 
AddMethodToGlobalPool(ObjCMethodDecl * Method,bool impl,bool instance)2180 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2181                                  bool instance) {
2182   // Ignore methods of invalid containers.
2183   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2184     return;
2185 
2186   if (ExternalSource)
2187     ReadMethodPool(Method->getSelector());
2188 
2189   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2190   if (Pos == MethodPool.end())
2191     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2192                                            GlobalMethods())).first;
2193 
2194   Method->setDefined(impl);
2195 
2196   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2197   addMethodToGlobalList(&Entry, Method);
2198 }
2199 
2200 /// Determines if this is an "acceptable" loose mismatch in the global
2201 /// method pool.  This exists mostly as a hack to get around certain
2202 /// global mismatches which we can't afford to make warnings / errors.
2203 /// Really, what we want is a way to take a method out of the global
2204 /// method pool.
isAcceptableMethodMismatch(ObjCMethodDecl * chosen,ObjCMethodDecl * other)2205 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2206                                        ObjCMethodDecl *other) {
2207   if (!chosen->isInstanceMethod())
2208     return false;
2209 
2210   Selector sel = chosen->getSelector();
2211   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2212     return false;
2213 
2214   // Don't complain about mismatches for -length if the method we
2215   // chose has an integral result type.
2216   return (chosen->getResultType()->isIntegerType());
2217 }
2218 
LookupMethodInGlobalPool(Selector Sel,SourceRange R,bool receiverIdOrClass,bool warn,bool instance)2219 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2220                                                bool receiverIdOrClass,
2221                                                bool warn, bool instance) {
2222   if (ExternalSource)
2223     ReadMethodPool(Sel);
2224 
2225   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2226   if (Pos == MethodPool.end())
2227     return 0;
2228 
2229   // Gather the non-hidden methods.
2230   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2231   llvm::SmallVector<ObjCMethodDecl *, 4> Methods;
2232   for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
2233     if (M->Method && !M->Method->isHidden()) {
2234       // If we're not supposed to warn about mismatches, we're done.
2235       if (!warn)
2236         return M->Method;
2237 
2238       Methods.push_back(M->Method);
2239     }
2240   }
2241 
2242   // If there aren't any visible methods, we're done.
2243   // FIXME: Recover if there are any known-but-hidden methods?
2244   if (Methods.empty())
2245     return 0;
2246 
2247   if (Methods.size() == 1)
2248     return Methods[0];
2249 
2250   // We found multiple methods, so we may have to complain.
2251   bool issueDiagnostic = false, issueError = false;
2252 
2253   // We support a warning which complains about *any* difference in
2254   // method signature.
2255   bool strictSelectorMatch =
2256     (receiverIdOrClass && warn &&
2257      (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2258                                R.getBegin())
2259         != DiagnosticsEngine::Ignored));
2260   if (strictSelectorMatch) {
2261     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2262       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
2263         issueDiagnostic = true;
2264         break;
2265       }
2266     }
2267   }
2268 
2269   // If we didn't see any strict differences, we won't see any loose
2270   // differences.  In ARC, however, we also need to check for loose
2271   // mismatches, because most of them are errors.
2272   if (!strictSelectorMatch ||
2273       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2274     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2275       // This checks if the methods differ in type mismatch.
2276       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
2277           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
2278         issueDiagnostic = true;
2279         if (getLangOpts().ObjCAutoRefCount)
2280           issueError = true;
2281         break;
2282       }
2283     }
2284 
2285   if (issueDiagnostic) {
2286     if (issueError)
2287       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2288     else if (strictSelectorMatch)
2289       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2290     else
2291       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2292 
2293     Diag(Methods[0]->getLocStart(),
2294          issueError ? diag::note_possibility : diag::note_using)
2295       << Methods[0]->getSourceRange();
2296     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2297       Diag(Methods[I]->getLocStart(), diag::note_also_found)
2298         << Methods[I]->getSourceRange();
2299   }
2300   }
2301   return Methods[0];
2302 }
2303 
LookupImplementedMethodInGlobalPool(Selector Sel)2304 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2305   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2306   if (Pos == MethodPool.end())
2307     return 0;
2308 
2309   GlobalMethods &Methods = Pos->second;
2310 
2311   if (Methods.first.Method && Methods.first.Method->isDefined())
2312     return Methods.first.Method;
2313   if (Methods.second.Method && Methods.second.Method->isDefined())
2314     return Methods.second.Method;
2315   return 0;
2316 }
2317 
2318 static void
HelperSelectorsForTypoCorrection(SmallVectorImpl<const ObjCMethodDecl * > & BestMethod,StringRef Typo,const ObjCMethodDecl * Method)2319 HelperSelectorsForTypoCorrection(
2320                       SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
2321                       StringRef Typo, const ObjCMethodDecl * Method) {
2322   const unsigned MaxEditDistance = 1;
2323   unsigned BestEditDistance = MaxEditDistance + 1;
2324   std::string MethodName = Method->getSelector().getAsString();
2325 
2326   unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
2327   if (MinPossibleEditDistance > 0 &&
2328       Typo.size() / MinPossibleEditDistance < 1)
2329     return;
2330   unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
2331   if (EditDistance > MaxEditDistance)
2332     return;
2333   if (EditDistance == BestEditDistance)
2334     BestMethod.push_back(Method);
2335   else if (EditDistance < BestEditDistance) {
2336     BestMethod.clear();
2337     BestMethod.push_back(Method);
2338   }
2339 }
2340 
HelperIsMethodInObjCType(Sema & S,Selector Sel,QualType ObjectType)2341 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
2342                                      QualType ObjectType) {
2343   if (ObjectType.isNull())
2344     return true;
2345   if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
2346     return true;
2347   return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != 0;
2348 }
2349 
2350 const ObjCMethodDecl *
SelectorsForTypoCorrection(Selector Sel,QualType ObjectType)2351 Sema::SelectorsForTypoCorrection(Selector Sel,
2352                                  QualType ObjectType) {
2353   unsigned NumArgs = Sel.getNumArgs();
2354   SmallVector<const ObjCMethodDecl *, 8> Methods;
2355   bool ObjectIsId = true, ObjectIsClass = true;
2356   if (ObjectType.isNull())
2357     ObjectIsId = ObjectIsClass = false;
2358   else if (!ObjectType->isObjCObjectPointerType())
2359     return 0;
2360   else if (const ObjCObjectPointerType *ObjCPtr =
2361            ObjectType->getAsObjCInterfacePointerType()) {
2362     ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
2363     ObjectIsId = ObjectIsClass = false;
2364   }
2365   else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
2366     ObjectIsClass = false;
2367   else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
2368     ObjectIsId = false;
2369   else
2370     return 0;
2371 
2372   for (GlobalMethodPool::iterator b = MethodPool.begin(),
2373        e = MethodPool.end(); b != e; b++) {
2374     // instance methods
2375     for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
2376       if (M->Method &&
2377           (M->Method->getSelector().getNumArgs() == NumArgs) &&
2378           (M->Method->getSelector() != Sel)) {
2379         if (ObjectIsId)
2380           Methods.push_back(M->Method);
2381         else if (!ObjectIsClass &&
2382                  HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
2383           Methods.push_back(M->Method);
2384       }
2385     // class methods
2386     for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
2387       if (M->Method &&
2388           (M->Method->getSelector().getNumArgs() == NumArgs) &&
2389           (M->Method->getSelector() != Sel)) {
2390         if (ObjectIsClass)
2391           Methods.push_back(M->Method);
2392         else if (!ObjectIsId &&
2393                  HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
2394           Methods.push_back(M->Method);
2395       }
2396   }
2397 
2398   SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
2399   for (unsigned i = 0, e = Methods.size(); i < e; i++) {
2400     HelperSelectorsForTypoCorrection(SelectedMethods,
2401                                      Sel.getAsString(), Methods[i]);
2402   }
2403   return (SelectedMethods.size() == 1) ? SelectedMethods[0] : NULL;
2404 }
2405 
2406 static void
HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema & S,ObjCMethodList & MethList)2407 HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S,
2408                                               ObjCMethodList &MethList) {
2409   ObjCMethodList *M = &MethList;
2410   ObjCMethodDecl *TargetMethod = M->Method;
2411   while (TargetMethod &&
2412          isa<ObjCImplDecl>(TargetMethod->getDeclContext())) {
2413     M = M->getNext();
2414     TargetMethod = M ? M->Method : 0;
2415   }
2416   if (!TargetMethod)
2417     return;
2418   bool FirstTime = true;
2419   for (M = M->getNext(); M; M=M->getNext()) {
2420     ObjCMethodDecl *MatchingMethodDecl = M->Method;
2421     if (isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()))
2422       continue;
2423     if (!S.MatchTwoMethodDeclarations(TargetMethod,
2424                                       MatchingMethodDecl, Sema::MMS_loose)) {
2425       if (FirstTime) {
2426         FirstTime = false;
2427         S.Diag(TargetMethod->getLocation(), diag::warning_multiple_selectors)
2428         << TargetMethod->getSelector();
2429       }
2430       S.Diag(MatchingMethodDecl->getLocation(), diag::note_also_found);
2431     }
2432   }
2433 }
2434 
DiagnoseMismatchedMethodsInGlobalPool()2435 void Sema::DiagnoseMismatchedMethodsInGlobalPool() {
2436   unsigned DIAG = diag::warning_multiple_selectors;
2437   if (Diags.getDiagnosticLevel(DIAG, SourceLocation())
2438       == DiagnosticsEngine::Ignored)
2439     return;
2440   for (GlobalMethodPool::iterator b = MethodPool.begin(),
2441        e = MethodPool.end(); b != e; b++) {
2442     // first, instance methods
2443     ObjCMethodList &InstMethList = b->second.first;
2444     HelperToDiagnoseMismatchedMethodsInGlobalPool(*this, InstMethList);
2445     // second, class methods
2446     ObjCMethodList &ClsMethList = b->second.second;
2447     HelperToDiagnoseMismatchedMethodsInGlobalPool(*this, ClsMethList);
2448   }
2449 }
2450 
2451 /// DiagnoseDuplicateIvars -
2452 /// Check for duplicate ivars in the entire class at the start of
2453 /// \@implementation. This becomes necesssary because class extension can
2454 /// add ivars to a class in random order which will not be known until
2455 /// class's \@implementation is seen.
DiagnoseDuplicateIvars(ObjCInterfaceDecl * ID,ObjCInterfaceDecl * SID)2456 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2457                                   ObjCInterfaceDecl *SID) {
2458   for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2459        IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2460     ObjCIvarDecl* Ivar = *IVI;
2461     if (Ivar->isInvalidDecl())
2462       continue;
2463     if (IdentifierInfo *II = Ivar->getIdentifier()) {
2464       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2465       if (prevIvar) {
2466         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2467         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2468         Ivar->setInvalidDecl();
2469       }
2470     }
2471   }
2472 }
2473 
getObjCContainerKind() const2474 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2475   switch (CurContext->getDeclKind()) {
2476     case Decl::ObjCInterface:
2477       return Sema::OCK_Interface;
2478     case Decl::ObjCProtocol:
2479       return Sema::OCK_Protocol;
2480     case Decl::ObjCCategory:
2481       if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2482         return Sema::OCK_ClassExtension;
2483       else
2484         return Sema::OCK_Category;
2485     case Decl::ObjCImplementation:
2486       return Sema::OCK_Implementation;
2487     case Decl::ObjCCategoryImpl:
2488       return Sema::OCK_CategoryImplementation;
2489 
2490     default:
2491       return Sema::OCK_None;
2492   }
2493 }
2494 
2495 // Note: For class/category implementations, allMethods is always null.
ActOnAtEnd(Scope * S,SourceRange AtEnd,ArrayRef<Decl * > allMethods,ArrayRef<DeclGroupPtrTy> allTUVars)2496 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
2497                        ArrayRef<DeclGroupPtrTy> allTUVars) {
2498   if (getObjCContainerKind() == Sema::OCK_None)
2499     return 0;
2500 
2501   assert(AtEnd.isValid() && "Invalid location for '@end'");
2502 
2503   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2504   Decl *ClassDecl = cast<Decl>(OCD);
2505 
2506   bool isInterfaceDeclKind =
2507         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2508          || isa<ObjCProtocolDecl>(ClassDecl);
2509   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2510 
2511   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2512   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2513   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2514 
2515   for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
2516     ObjCMethodDecl *Method =
2517       cast_or_null<ObjCMethodDecl>(allMethods[i]);
2518 
2519     if (!Method) continue;  // Already issued a diagnostic.
2520     if (Method->isInstanceMethod()) {
2521       /// Check for instance method of the same name with incompatible types
2522       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2523       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2524                               : false;
2525       if ((isInterfaceDeclKind && PrevMethod && !match)
2526           || (checkIdenticalMethods && match)) {
2527           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2528             << Method->getDeclName();
2529           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2530         Method->setInvalidDecl();
2531       } else {
2532         if (PrevMethod) {
2533           Method->setAsRedeclaration(PrevMethod);
2534           if (!Context.getSourceManager().isInSystemHeader(
2535                  Method->getLocation()))
2536             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2537               << Method->getDeclName();
2538           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2539         }
2540         InsMap[Method->getSelector()] = Method;
2541         /// The following allows us to typecheck messages to "id".
2542         AddInstanceMethodToGlobalPool(Method);
2543       }
2544     } else {
2545       /// Check for class method of the same name with incompatible types
2546       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2547       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2548                               : false;
2549       if ((isInterfaceDeclKind && PrevMethod && !match)
2550           || (checkIdenticalMethods && match)) {
2551         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2552           << Method->getDeclName();
2553         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2554         Method->setInvalidDecl();
2555       } else {
2556         if (PrevMethod) {
2557           Method->setAsRedeclaration(PrevMethod);
2558           if (!Context.getSourceManager().isInSystemHeader(
2559                  Method->getLocation()))
2560             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2561               << Method->getDeclName();
2562           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2563         }
2564         ClsMap[Method->getSelector()] = Method;
2565         AddFactoryMethodToGlobalPool(Method);
2566       }
2567     }
2568   }
2569   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
2570     // Nothing to do here.
2571   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2572     // Categories are used to extend the class by declaring new methods.
2573     // By the same token, they are also used to add new properties. No
2574     // need to compare the added property to those in the class.
2575 
2576     if (C->IsClassExtension()) {
2577       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2578       DiagnoseClassExtensionDupMethods(C, CCPrimary);
2579     }
2580   }
2581   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2582     if (CDecl->getIdentifier())
2583       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2584       // user-defined setter/getter. It also synthesizes setter/getter methods
2585       // and adds them to the DeclContext and global method pools.
2586       for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2587                                             E = CDecl->prop_end();
2588            I != E; ++I)
2589         ProcessPropertyDecl(*I, CDecl);
2590     CDecl->setAtEndRange(AtEnd);
2591   }
2592   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2593     IC->setAtEndRange(AtEnd);
2594     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2595       // Any property declared in a class extension might have user
2596       // declared setter or getter in current class extension or one
2597       // of the other class extensions. Mark them as synthesized as
2598       // property will be synthesized when property with same name is
2599       // seen in the @implementation.
2600       for (ObjCInterfaceDecl::visible_extensions_iterator
2601              Ext = IDecl->visible_extensions_begin(),
2602              ExtEnd = IDecl->visible_extensions_end();
2603            Ext != ExtEnd; ++Ext) {
2604         for (ObjCContainerDecl::prop_iterator I = Ext->prop_begin(),
2605              E = Ext->prop_end(); I != E; ++I) {
2606           ObjCPropertyDecl *Property = *I;
2607           // Skip over properties declared @dynamic
2608           if (const ObjCPropertyImplDecl *PIDecl
2609               = IC->FindPropertyImplDecl(Property->getIdentifier()))
2610             if (PIDecl->getPropertyImplementation()
2611                   == ObjCPropertyImplDecl::Dynamic)
2612               continue;
2613 
2614           for (ObjCInterfaceDecl::visible_extensions_iterator
2615                  Ext = IDecl->visible_extensions_begin(),
2616                  ExtEnd = IDecl->visible_extensions_end();
2617                Ext != ExtEnd; ++Ext) {
2618             if (ObjCMethodDecl *GetterMethod
2619                   = Ext->getInstanceMethod(Property->getGetterName()))
2620               GetterMethod->setPropertyAccessor(true);
2621             if (!Property->isReadOnly())
2622               if (ObjCMethodDecl *SetterMethod
2623                     = Ext->getInstanceMethod(Property->getSetterName()))
2624                 SetterMethod->setPropertyAccessor(true);
2625           }
2626         }
2627       }
2628       ImplMethodsVsClassMethods(S, IC, IDecl);
2629       AtomicPropertySetterGetterRules(IC, IDecl);
2630       DiagnoseOwningPropertyGetterSynthesis(IC);
2631 
2632       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2633       if (IDecl->getSuperClass() == NULL) {
2634         // This class has no superclass, so check that it has been marked with
2635         // __attribute((objc_root_class)).
2636         if (!HasRootClassAttr) {
2637           SourceLocation DeclLoc(IDecl->getLocation());
2638           SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
2639           Diag(DeclLoc, diag::warn_objc_root_class_missing)
2640             << IDecl->getIdentifier();
2641           // See if NSObject is in the current scope, and if it is, suggest
2642           // adding " : NSObject " to the class declaration.
2643           NamedDecl *IF = LookupSingleName(TUScope,
2644                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2645                                            DeclLoc, LookupOrdinaryName);
2646           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2647           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2648             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2649               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2650           } else {
2651             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2652           }
2653         }
2654       } else if (HasRootClassAttr) {
2655         // Complain that only root classes may have this attribute.
2656         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2657       }
2658 
2659       if (LangOpts.ObjCRuntime.isNonFragile()) {
2660         while (IDecl->getSuperClass()) {
2661           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2662           IDecl = IDecl->getSuperClass();
2663         }
2664       }
2665     }
2666     SetIvarInitializers(IC);
2667   } else if (ObjCCategoryImplDecl* CatImplClass =
2668                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2669     CatImplClass->setAtEndRange(AtEnd);
2670 
2671     // Find category interface decl and then check that all methods declared
2672     // in this interface are implemented in the category @implementation.
2673     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2674       if (ObjCCategoryDecl *Cat
2675             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
2676         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
2677       }
2678     }
2679   }
2680   if (isInterfaceDeclKind) {
2681     // Reject invalid vardecls.
2682     for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2683       DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2684       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2685         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2686           if (!VDecl->hasExternalStorage())
2687             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2688         }
2689     }
2690   }
2691   ActOnObjCContainerFinishDefinition();
2692 
2693   for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2694     DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2695     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2696       (*I)->setTopLevelDeclInObjCContainer();
2697     Consumer.HandleTopLevelDeclInObjCContainer(DG);
2698   }
2699 
2700   ActOnDocumentableDecl(ClassDecl);
2701   return ClassDecl;
2702 }
2703 
2704 
2705 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2706 /// objective-c's type qualifier from the parser version of the same info.
2707 static Decl::ObjCDeclQualifier
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal)2708 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2709   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2710 }
2711 
2712 static inline
countAlignAttr(const AttrVec & A)2713 unsigned countAlignAttr(const AttrVec &A) {
2714   unsigned count=0;
2715   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
2716     if ((*i)->getKind() == attr::Aligned)
2717       ++count;
2718   return count;
2719 }
2720 
2721 static inline
containsInvalidMethodImplAttribute(ObjCMethodDecl * IMD,const AttrVec & A)2722 bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2723                                         const AttrVec &A) {
2724   // If method is only declared in implementation (private method),
2725   // No need to issue any diagnostics on method definition with attributes.
2726   if (!IMD)
2727     return false;
2728 
2729   // method declared in interface has no attribute.
2730   // But implementation has attributes. This is invalid.
2731   // Except when implementation has 'Align' attribute which is
2732   // immaterial to method declared in interface.
2733   if (!IMD->hasAttrs())
2734     return (A.size() > countAlignAttr(A));
2735 
2736   const AttrVec &D = IMD->getAttrs();
2737 
2738   unsigned countAlignOnImpl = countAlignAttr(A);
2739   if (!countAlignOnImpl && (A.size() != D.size()))
2740     return true;
2741   else if (countAlignOnImpl) {
2742     unsigned countAlignOnDecl = countAlignAttr(D);
2743     if (countAlignOnDecl && (A.size() != D.size()))
2744       return true;
2745     else if (!countAlignOnDecl &&
2746              ((A.size()-countAlignOnImpl) != D.size()))
2747       return true;
2748   }
2749 
2750   // attributes on method declaration and definition must match exactly.
2751   // Note that we have at most a couple of attributes on methods, so this
2752   // n*n search is good enough.
2753   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2754     if ((*i)->getKind() == attr::Aligned)
2755       continue;
2756     bool match = false;
2757     for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2758       if ((*i)->getKind() == (*i1)->getKind()) {
2759         match = true;
2760         break;
2761       }
2762     }
2763     if (!match)
2764       return true;
2765   }
2766 
2767   return false;
2768 }
2769 
2770 /// \brief Check whether the declared result type of the given Objective-C
2771 /// method declaration is compatible with the method's class.
2772 ///
2773 static Sema::ResultTypeCompatibilityKind
CheckRelatedResultTypeCompatibility(Sema & S,ObjCMethodDecl * Method,ObjCInterfaceDecl * CurrentClass)2774 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2775                                     ObjCInterfaceDecl *CurrentClass) {
2776   QualType ResultType = Method->getResultType();
2777 
2778   // If an Objective-C method inherits its related result type, then its
2779   // declared result type must be compatible with its own class type. The
2780   // declared result type is compatible if:
2781   if (const ObjCObjectPointerType *ResultObjectType
2782                                 = ResultType->getAs<ObjCObjectPointerType>()) {
2783     //   - it is id or qualified id, or
2784     if (ResultObjectType->isObjCIdType() ||
2785         ResultObjectType->isObjCQualifiedIdType())
2786       return Sema::RTC_Compatible;
2787 
2788     if (CurrentClass) {
2789       if (ObjCInterfaceDecl *ResultClass
2790                                       = ResultObjectType->getInterfaceDecl()) {
2791         //   - it is the same as the method's class type, or
2792         if (declaresSameEntity(CurrentClass, ResultClass))
2793           return Sema::RTC_Compatible;
2794 
2795         //   - it is a superclass of the method's class type
2796         if (ResultClass->isSuperClassOf(CurrentClass))
2797           return Sema::RTC_Compatible;
2798       }
2799     } else {
2800       // Any Objective-C pointer type might be acceptable for a protocol
2801       // method; we just don't know.
2802       return Sema::RTC_Unknown;
2803     }
2804   }
2805 
2806   return Sema::RTC_Incompatible;
2807 }
2808 
2809 namespace {
2810 /// A helper class for searching for methods which a particular method
2811 /// overrides.
2812 class OverrideSearch {
2813 public:
2814   Sema &S;
2815   ObjCMethodDecl *Method;
2816   llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2817   bool Recursive;
2818 
2819 public:
OverrideSearch(Sema & S,ObjCMethodDecl * method)2820   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2821     Selector selector = method->getSelector();
2822 
2823     // Bypass this search if we've never seen an instance/class method
2824     // with this selector before.
2825     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2826     if (it == S.MethodPool.end()) {
2827       if (!S.getExternalSource()) return;
2828       S.ReadMethodPool(selector);
2829 
2830       it = S.MethodPool.find(selector);
2831       if (it == S.MethodPool.end())
2832         return;
2833     }
2834     ObjCMethodList &list =
2835       method->isInstanceMethod() ? it->second.first : it->second.second;
2836     if (!list.Method) return;
2837 
2838     ObjCContainerDecl *container
2839       = cast<ObjCContainerDecl>(method->getDeclContext());
2840 
2841     // Prevent the search from reaching this container again.  This is
2842     // important with categories, which override methods from the
2843     // interface and each other.
2844     if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2845       searchFromContainer(container);
2846       if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2847         searchFromContainer(Interface);
2848     } else {
2849       searchFromContainer(container);
2850     }
2851   }
2852 
2853   typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
begin() const2854   iterator begin() const { return Overridden.begin(); }
end() const2855   iterator end() const { return Overridden.end(); }
2856 
2857 private:
searchFromContainer(ObjCContainerDecl * container)2858   void searchFromContainer(ObjCContainerDecl *container) {
2859     if (container->isInvalidDecl()) return;
2860 
2861     switch (container->getDeclKind()) {
2862 #define OBJCCONTAINER(type, base) \
2863     case Decl::type: \
2864       searchFrom(cast<type##Decl>(container)); \
2865       break;
2866 #define ABSTRACT_DECL(expansion)
2867 #define DECL(type, base) \
2868     case Decl::type:
2869 #include "clang/AST/DeclNodes.inc"
2870       llvm_unreachable("not an ObjC container!");
2871     }
2872   }
2873 
searchFrom(ObjCProtocolDecl * protocol)2874   void searchFrom(ObjCProtocolDecl *protocol) {
2875     if (!protocol->hasDefinition())
2876       return;
2877 
2878     // A method in a protocol declaration overrides declarations from
2879     // referenced ("parent") protocols.
2880     search(protocol->getReferencedProtocols());
2881   }
2882 
searchFrom(ObjCCategoryDecl * category)2883   void searchFrom(ObjCCategoryDecl *category) {
2884     // A method in a category declaration overrides declarations from
2885     // the main class and from protocols the category references.
2886     // The main class is handled in the constructor.
2887     search(category->getReferencedProtocols());
2888   }
2889 
searchFrom(ObjCCategoryImplDecl * impl)2890   void searchFrom(ObjCCategoryImplDecl *impl) {
2891     // A method in a category definition that has a category
2892     // declaration overrides declarations from the category
2893     // declaration.
2894     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2895       search(category);
2896       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2897         search(Interface);
2898 
2899     // Otherwise it overrides declarations from the class.
2900     } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2901       search(Interface);
2902     }
2903   }
2904 
searchFrom(ObjCInterfaceDecl * iface)2905   void searchFrom(ObjCInterfaceDecl *iface) {
2906     // A method in a class declaration overrides declarations from
2907     if (!iface->hasDefinition())
2908       return;
2909 
2910     //   - categories,
2911     for (ObjCInterfaceDecl::known_categories_iterator
2912            cat = iface->known_categories_begin(),
2913            catEnd = iface->known_categories_end();
2914          cat != catEnd; ++cat) {
2915       search(*cat);
2916     }
2917 
2918     //   - the super class, and
2919     if (ObjCInterfaceDecl *super = iface->getSuperClass())
2920       search(super);
2921 
2922     //   - any referenced protocols.
2923     search(iface->getReferencedProtocols());
2924   }
2925 
searchFrom(ObjCImplementationDecl * impl)2926   void searchFrom(ObjCImplementationDecl *impl) {
2927     // A method in a class implementation overrides declarations from
2928     // the class interface.
2929     if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2930       search(Interface);
2931   }
2932 
2933 
search(const ObjCProtocolList & protocols)2934   void search(const ObjCProtocolList &protocols) {
2935     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2936          i != e; ++i)
2937       search(*i);
2938   }
2939 
search(ObjCContainerDecl * container)2940   void search(ObjCContainerDecl *container) {
2941     // Check for a method in this container which matches this selector.
2942     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2943                                                 Method->isInstanceMethod(),
2944                                                 /*AllowHidden=*/true);
2945 
2946     // If we find one, record it and bail out.
2947     if (meth) {
2948       Overridden.insert(meth);
2949       return;
2950     }
2951 
2952     // Otherwise, search for methods that a hypothetical method here
2953     // would have overridden.
2954 
2955     // Note that we're now in a recursive case.
2956     Recursive = true;
2957 
2958     searchFromContainer(container);
2959   }
2960 };
2961 }
2962 
CheckObjCMethodOverrides(ObjCMethodDecl * ObjCMethod,ObjCInterfaceDecl * CurrentClass,ResultTypeCompatibilityKind RTC)2963 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
2964                                     ObjCInterfaceDecl *CurrentClass,
2965                                     ResultTypeCompatibilityKind RTC) {
2966   // Search for overridden methods and merge information down from them.
2967   OverrideSearch overrides(*this, ObjCMethod);
2968   // Keep track if the method overrides any method in the class's base classes,
2969   // its protocols, or its categories' protocols; we will keep that info
2970   // in the ObjCMethodDecl.
2971   // For this info, a method in an implementation is not considered as
2972   // overriding the same method in the interface or its categories.
2973   bool hasOverriddenMethodsInBaseOrProtocol = false;
2974   for (OverrideSearch::iterator
2975          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2976     ObjCMethodDecl *overridden = *i;
2977 
2978     if (!hasOverriddenMethodsInBaseOrProtocol) {
2979       if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
2980           CurrentClass != overridden->getClassInterface() ||
2981           overridden->isOverriding()) {
2982         hasOverriddenMethodsInBaseOrProtocol = true;
2983 
2984       } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
2985         // OverrideSearch will return as "overridden" the same method in the
2986         // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
2987         // check whether a category of a base class introduced a method with the
2988         // same selector, after the interface method declaration.
2989         // To avoid unnecessary lookups in the majority of cases, we use the
2990         // extra info bits in GlobalMethodPool to check whether there were any
2991         // category methods with this selector.
2992         GlobalMethodPool::iterator It =
2993             MethodPool.find(ObjCMethod->getSelector());
2994         if (It != MethodPool.end()) {
2995           ObjCMethodList &List =
2996             ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
2997           unsigned CategCount = List.getBits();
2998           if (CategCount > 0) {
2999             // If the method is in a category we'll do lookup if there were at
3000             // least 2 category methods recorded, otherwise only one will do.
3001             if (CategCount > 1 ||
3002                 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
3003               OverrideSearch overrides(*this, overridden);
3004               for (OverrideSearch::iterator
3005                      OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
3006                 ObjCMethodDecl *SuperOverridden = *OI;
3007                 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
3008                     CurrentClass != SuperOverridden->getClassInterface()) {
3009                   hasOverriddenMethodsInBaseOrProtocol = true;
3010                   overridden->setOverriding(true);
3011                   break;
3012                 }
3013               }
3014             }
3015           }
3016         }
3017       }
3018     }
3019 
3020     // Propagate down the 'related result type' bit from overridden methods.
3021     if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
3022       ObjCMethod->SetRelatedResultType();
3023 
3024     // Then merge the declarations.
3025     mergeObjCMethodDecls(ObjCMethod, overridden);
3026 
3027     if (ObjCMethod->isImplicit() && overridden->isImplicit())
3028       continue; // Conflicting properties are detected elsewhere.
3029 
3030     // Check for overriding methods
3031     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
3032         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
3033       CheckConflictingOverridingMethod(ObjCMethod, overridden,
3034               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
3035 
3036     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
3037         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
3038         !overridden->isImplicit() /* not meant for properties */) {
3039       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
3040                                           E = ObjCMethod->param_end();
3041       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
3042                                      PrevE = overridden->param_end();
3043       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
3044         assert(PrevI != overridden->param_end() && "Param mismatch");
3045         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
3046         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
3047         // If type of argument of method in this class does not match its
3048         // respective argument type in the super class method, issue warning;
3049         if (!Context.typesAreCompatible(T1, T2)) {
3050           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
3051             << T1 << T2;
3052           Diag(overridden->getLocation(), diag::note_previous_declaration);
3053           break;
3054         }
3055       }
3056     }
3057   }
3058 
3059   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
3060 }
3061 
ActOnMethodDeclaration(Scope * S,SourceLocation MethodLoc,SourceLocation EndLoc,tok::TokenKind MethodType,ObjCDeclSpec & ReturnQT,ParsedType ReturnType,ArrayRef<SourceLocation> SelectorLocs,Selector Sel,ObjCArgInfo * ArgInfo,DeclaratorChunk::ParamInfo * CParamInfo,unsigned CNumArgs,AttributeList * AttrList,tok::ObjCKeywordKind MethodDeclKind,bool isVariadic,bool MethodDefinition)3062 Decl *Sema::ActOnMethodDeclaration(
3063     Scope *S,
3064     SourceLocation MethodLoc, SourceLocation EndLoc,
3065     tok::TokenKind MethodType,
3066     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
3067     ArrayRef<SourceLocation> SelectorLocs,
3068     Selector Sel,
3069     // optional arguments. The number of types/arguments is obtained
3070     // from the Sel.getNumArgs().
3071     ObjCArgInfo *ArgInfo,
3072     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
3073     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
3074     bool isVariadic, bool MethodDefinition) {
3075   // Make sure we can establish a context for the method.
3076   if (!CurContext->isObjCContainer()) {
3077     Diag(MethodLoc, diag::error_missing_method_context);
3078     return 0;
3079   }
3080   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3081   Decl *ClassDecl = cast<Decl>(OCD);
3082   QualType resultDeclType;
3083 
3084   bool HasRelatedResultType = false;
3085   TypeSourceInfo *ResultTInfo = 0;
3086   if (ReturnType) {
3087     resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
3088 
3089     if (CheckFunctionReturnType(resultDeclType, MethodLoc))
3090       return 0;
3091 
3092     HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
3093   } else { // get the type for "id".
3094     resultDeclType = Context.getObjCIdType();
3095     Diag(MethodLoc, diag::warn_missing_method_return_type)
3096       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
3097   }
3098 
3099   ObjCMethodDecl* ObjCMethod =
3100     ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
3101                            resultDeclType,
3102                            ResultTInfo,
3103                            CurContext,
3104                            MethodType == tok::minus, isVariadic,
3105                            /*isPropertyAccessor=*/false,
3106                            /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
3107                            MethodDeclKind == tok::objc_optional
3108                              ? ObjCMethodDecl::Optional
3109                              : ObjCMethodDecl::Required,
3110                            HasRelatedResultType);
3111 
3112   SmallVector<ParmVarDecl*, 16> Params;
3113 
3114   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
3115     QualType ArgType;
3116     TypeSourceInfo *DI;
3117 
3118     if (!ArgInfo[i].Type) {
3119       ArgType = Context.getObjCIdType();
3120       DI = 0;
3121     } else {
3122       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
3123     }
3124 
3125     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
3126                    LookupOrdinaryName, ForRedeclaration);
3127     LookupName(R, S);
3128     if (R.isSingleResult()) {
3129       NamedDecl *PrevDecl = R.getFoundDecl();
3130       if (S->isDeclScope(PrevDecl)) {
3131         Diag(ArgInfo[i].NameLoc,
3132              (MethodDefinition ? diag::warn_method_param_redefinition
3133                                : diag::warn_method_param_declaration))
3134           << ArgInfo[i].Name;
3135         Diag(PrevDecl->getLocation(),
3136              diag::note_previous_declaration);
3137       }
3138     }
3139 
3140     SourceLocation StartLoc = DI
3141       ? DI->getTypeLoc().getBeginLoc()
3142       : ArgInfo[i].NameLoc;
3143 
3144     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
3145                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
3146                                         ArgType, DI, SC_None);
3147 
3148     Param->setObjCMethodScopeInfo(i);
3149 
3150     Param->setObjCDeclQualifier(
3151       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
3152 
3153     // Apply the attributes to the parameter.
3154     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
3155 
3156     if (Param->hasAttr<BlocksAttr>()) {
3157       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
3158       Param->setInvalidDecl();
3159     }
3160     S->AddDecl(Param);
3161     IdResolver.AddDecl(Param);
3162 
3163     Params.push_back(Param);
3164   }
3165 
3166   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
3167     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
3168     QualType ArgType = Param->getType();
3169     if (ArgType.isNull())
3170       ArgType = Context.getObjCIdType();
3171     else
3172       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
3173       ArgType = Context.getAdjustedParameterType(ArgType);
3174 
3175     Param->setDeclContext(ObjCMethod);
3176     Params.push_back(Param);
3177   }
3178 
3179   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
3180   ObjCMethod->setObjCDeclQualifier(
3181     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
3182 
3183   if (AttrList)
3184     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
3185 
3186   // Add the method now.
3187   const ObjCMethodDecl *PrevMethod = 0;
3188   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
3189     if (MethodType == tok::minus) {
3190       PrevMethod = ImpDecl->getInstanceMethod(Sel);
3191       ImpDecl->addInstanceMethod(ObjCMethod);
3192     } else {
3193       PrevMethod = ImpDecl->getClassMethod(Sel);
3194       ImpDecl->addClassMethod(ObjCMethod);
3195     }
3196 
3197     ObjCMethodDecl *IMD = 0;
3198     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
3199       IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
3200                                 ObjCMethod->isInstanceMethod());
3201     if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() &&
3202         !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) {
3203       // merge the attribute into implementation.
3204       ObjCMethod->addAttr(
3205         new (Context) ObjCRequiresSuperAttr(ObjCMethod->getLocation(), Context));
3206     }
3207     if (ObjCMethod->hasAttrs() &&
3208         containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
3209       SourceLocation MethodLoc = IMD->getLocation();
3210       if (!getSourceManager().isInSystemHeader(MethodLoc)) {
3211         Diag(EndLoc, diag::warn_attribute_method_def);
3212         Diag(MethodLoc, diag::note_method_declared_at)
3213           << ObjCMethod->getDeclName();
3214       }
3215     }
3216   } else {
3217     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
3218   }
3219 
3220   if (PrevMethod) {
3221     // You can never have two method definitions with the same name.
3222     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
3223       << ObjCMethod->getDeclName();
3224     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3225     ObjCMethod->setInvalidDecl();
3226     return ObjCMethod;
3227   }
3228 
3229   // If this Objective-C method does not have a related result type, but we
3230   // are allowed to infer related result types, try to do so based on the
3231   // method family.
3232   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
3233   if (!CurrentClass) {
3234     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
3235       CurrentClass = Cat->getClassInterface();
3236     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
3237       CurrentClass = Impl->getClassInterface();
3238     else if (ObjCCategoryImplDecl *CatImpl
3239                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
3240       CurrentClass = CatImpl->getClassInterface();
3241   }
3242 
3243   ResultTypeCompatibilityKind RTC
3244     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
3245 
3246   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
3247 
3248   bool ARCError = false;
3249   if (getLangOpts().ObjCAutoRefCount)
3250     ARCError = CheckARCMethodDecl(ObjCMethod);
3251 
3252   // Infer the related result type when possible.
3253   if (!ARCError && RTC == Sema::RTC_Compatible &&
3254       !ObjCMethod->hasRelatedResultType() &&
3255       LangOpts.ObjCInferRelatedResultType) {
3256     bool InferRelatedResultType = false;
3257     switch (ObjCMethod->getMethodFamily()) {
3258     case OMF_None:
3259     case OMF_copy:
3260     case OMF_dealloc:
3261     case OMF_finalize:
3262     case OMF_mutableCopy:
3263     case OMF_release:
3264     case OMF_retainCount:
3265     case OMF_performSelector:
3266       break;
3267 
3268     case OMF_alloc:
3269     case OMF_new:
3270       InferRelatedResultType = ObjCMethod->isClassMethod();
3271       break;
3272 
3273     case OMF_init:
3274     case OMF_autorelease:
3275     case OMF_retain:
3276     case OMF_self:
3277       InferRelatedResultType = ObjCMethod->isInstanceMethod();
3278       break;
3279     }
3280 
3281     if (InferRelatedResultType)
3282       ObjCMethod->SetRelatedResultType();
3283   }
3284 
3285   ActOnDocumentableDecl(ObjCMethod);
3286 
3287   return ObjCMethod;
3288 }
3289 
CheckObjCDeclScope(Decl * D)3290 bool Sema::CheckObjCDeclScope(Decl *D) {
3291   // Following is also an error. But it is caused by a missing @end
3292   // and diagnostic is issued elsewhere.
3293   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
3294     return false;
3295 
3296   // If we switched context to translation unit while we are still lexically in
3297   // an objc container, it means the parser missed emitting an error.
3298   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
3299     return false;
3300 
3301   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
3302   D->setInvalidDecl();
3303 
3304   return true;
3305 }
3306 
3307 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
3308 /// instance variables of ClassName into Decls.
ActOnDefs(Scope * S,Decl * TagD,SourceLocation DeclStart,IdentifierInfo * ClassName,SmallVectorImpl<Decl * > & Decls)3309 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3310                      IdentifierInfo *ClassName,
3311                      SmallVectorImpl<Decl*> &Decls) {
3312   // Check that ClassName is a valid class
3313   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
3314   if (!Class) {
3315     Diag(DeclStart, diag::err_undef_interface) << ClassName;
3316     return;
3317   }
3318   if (LangOpts.ObjCRuntime.isNonFragile()) {
3319     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
3320     return;
3321   }
3322 
3323   // Collect the instance variables
3324   SmallVector<const ObjCIvarDecl*, 32> Ivars;
3325   Context.DeepCollectObjCIvars(Class, true, Ivars);
3326   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
3327   for (unsigned i = 0; i < Ivars.size(); i++) {
3328     const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
3329     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
3330     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
3331                                            /*FIXME: StartL=*/ID->getLocation(),
3332                                            ID->getLocation(),
3333                                            ID->getIdentifier(), ID->getType(),
3334                                            ID->getBitWidth());
3335     Decls.push_back(FD);
3336   }
3337 
3338   // Introduce all of these fields into the appropriate scope.
3339   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3340        D != Decls.end(); ++D) {
3341     FieldDecl *FD = cast<FieldDecl>(*D);
3342     if (getLangOpts().CPlusPlus)
3343       PushOnScopeChains(cast<FieldDecl>(FD), S);
3344     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3345       Record->addDecl(FD);
3346   }
3347 }
3348 
3349 /// \brief Build a type-check a new Objective-C exception variable declaration.
BuildObjCExceptionDecl(TypeSourceInfo * TInfo,QualType T,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,bool Invalid)3350 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3351                                       SourceLocation StartLoc,
3352                                       SourceLocation IdLoc,
3353                                       IdentifierInfo *Id,
3354                                       bool Invalid) {
3355   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3356   // duration shall not be qualified by an address-space qualifier."
3357   // Since all parameters have automatic store duration, they can not have
3358   // an address space.
3359   if (T.getAddressSpace() != 0) {
3360     Diag(IdLoc, diag::err_arg_with_address_space);
3361     Invalid = true;
3362   }
3363 
3364   // An @catch parameter must be an unqualified object pointer type;
3365   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3366   if (Invalid) {
3367     // Don't do any further checking.
3368   } else if (T->isDependentType()) {
3369     // Okay: we don't know what this type will instantiate to.
3370   } else if (!T->isObjCObjectPointerType()) {
3371     Invalid = true;
3372     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3373   } else if (T->isObjCQualifiedIdType()) {
3374     Invalid = true;
3375     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3376   }
3377 
3378   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3379                                  T, TInfo, SC_None);
3380   New->setExceptionVariable(true);
3381 
3382   // In ARC, infer 'retaining' for variables of retainable type.
3383   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3384     Invalid = true;
3385 
3386   if (Invalid)
3387     New->setInvalidDecl();
3388   return New;
3389 }
3390 
ActOnObjCExceptionDecl(Scope * S,Declarator & D)3391 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3392   const DeclSpec &DS = D.getDeclSpec();
3393 
3394   // We allow the "register" storage class on exception variables because
3395   // GCC did, but we drop it completely. Any other storage class is an error.
3396   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3397     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3398       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3399   } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3400     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3401       << DeclSpec::getSpecifierName(SCS);
3402   }
3403   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
3404     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
3405          diag::err_invalid_thread)
3406      << DeclSpec::getSpecifierName(TSCS);
3407   D.getMutableDeclSpec().ClearStorageClassSpecs();
3408 
3409   DiagnoseFunctionSpecifiers(D.getDeclSpec());
3410 
3411   // Check that there are no default arguments inside the type of this
3412   // exception object (C++ only).
3413   if (getLangOpts().CPlusPlus)
3414     CheckExtraCXXDefaultArguments(D);
3415 
3416   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3417   QualType ExceptionType = TInfo->getType();
3418 
3419   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3420                                         D.getSourceRange().getBegin(),
3421                                         D.getIdentifierLoc(),
3422                                         D.getIdentifier(),
3423                                         D.isInvalidType());
3424 
3425   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3426   if (D.getCXXScopeSpec().isSet()) {
3427     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3428       << D.getCXXScopeSpec().getRange();
3429     New->setInvalidDecl();
3430   }
3431 
3432   // Add the parameter declaration into this scope.
3433   S->AddDecl(New);
3434   if (D.getIdentifier())
3435     IdResolver.AddDecl(New);
3436 
3437   ProcessDeclAttributes(S, New, D);
3438 
3439   if (New->hasAttr<BlocksAttr>())
3440     Diag(New->getLocation(), diag::err_block_on_nonlocal);
3441   return New;
3442 }
3443 
3444 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3445 /// initialization.
CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl * OI,SmallVectorImpl<ObjCIvarDecl * > & Ivars)3446 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3447                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3448   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3449        Iv= Iv->getNextIvar()) {
3450     QualType QT = Context.getBaseElementType(Iv->getType());
3451     if (QT->isRecordType())
3452       Ivars.push_back(Iv);
3453   }
3454 }
3455 
DiagnoseUseOfUnimplementedSelectors()3456 void Sema::DiagnoseUseOfUnimplementedSelectors() {
3457   // Load referenced selectors from the external source.
3458   if (ExternalSource) {
3459     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3460     ExternalSource->ReadReferencedSelectors(Sels);
3461     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3462       ReferencedSelectors[Sels[I].first] = Sels[I].second;
3463   }
3464 
3465   DiagnoseMismatchedMethodsInGlobalPool();
3466 
3467   // Warning will be issued only when selector table is
3468   // generated (which means there is at lease one implementation
3469   // in the TU). This is to match gcc's behavior.
3470   if (ReferencedSelectors.empty() ||
3471       !Context.AnyObjCImplementation())
3472     return;
3473   for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3474         ReferencedSelectors.begin(),
3475        E = ReferencedSelectors.end(); S != E; ++S) {
3476     Selector Sel = (*S).first;
3477     if (!LookupImplementedMethodInGlobalPool(Sel))
3478       Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3479   }
3480   return;
3481 }
3482