• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27 
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31 
32 #include "main.h"
33 
34 /* Delayed-decision quantizer for NLSF residuals */
silk_NLSF_del_dec_quant(opus_int8 indices[],const opus_int16 x_Q10[],const opus_int16 w_Q5[],const opus_uint8 pred_coef_Q8[],const opus_int16 ec_ix[],const opus_uint8 ec_rates_Q5[],const opus_int quant_step_size_Q16,const opus_int16 inv_quant_step_size_Q6,const opus_int32 mu_Q20,const opus_int16 order)35 opus_int32 silk_NLSF_del_dec_quant(                             /* O    Returns RD value in Q25                     */
36     opus_int8                   indices[],                      /* O    Quantization indices [ order ]              */
37     const opus_int16            x_Q10[],                        /* I    Input [ order ]                             */
38     const opus_int16            w_Q5[],                         /* I    Weights [ order ]                           */
39     const opus_uint8            pred_coef_Q8[],                 /* I    Backward predictor coefs [ order ]          */
40     const opus_int16            ec_ix[],                        /* I    Indices to entropy coding tables [ order ]  */
41     const opus_uint8            ec_rates_Q5[],                  /* I    Rates []                                    */
42     const opus_int              quant_step_size_Q16,            /* I    Quantization step size                      */
43     const opus_int16            inv_quant_step_size_Q6,         /* I    Inverse quantization step size              */
44     const opus_int32            mu_Q20,                         /* I    R/D tradeoff                                */
45     const opus_int16            order                           /* I    Number of input values                      */
46 )
47 {
48     opus_int         i, j, nStates, ind_tmp, ind_min_max, ind_max_min, in_Q10, res_Q10;
49     opus_int         pred_Q10, diff_Q10, out0_Q10, out1_Q10, rate0_Q5, rate1_Q5;
50     opus_int32       RD_tmp_Q25, min_Q25, min_max_Q25, max_min_Q25, pred_coef_Q16;
51     opus_int         ind_sort[         NLSF_QUANT_DEL_DEC_STATES ];
52     opus_int8        ind[              NLSF_QUANT_DEL_DEC_STATES ][ MAX_LPC_ORDER ];
53     opus_int16       prev_out_Q10[ 2 * NLSF_QUANT_DEL_DEC_STATES ];
54     opus_int32       RD_Q25[       2 * NLSF_QUANT_DEL_DEC_STATES ];
55     opus_int32       RD_min_Q25[       NLSF_QUANT_DEL_DEC_STATES ];
56     opus_int32       RD_max_Q25[       NLSF_QUANT_DEL_DEC_STATES ];
57     const opus_uint8 *rates_Q5;
58 
59     silk_assert( (NLSF_QUANT_DEL_DEC_STATES & (NLSF_QUANT_DEL_DEC_STATES-1)) == 0 );     /* must be power of two */
60 
61     nStates = 1;
62     RD_Q25[ 0 ] = 0;
63     prev_out_Q10[ 0 ] = 0;
64     for( i = order - 1; ; i-- ) {
65         rates_Q5 = &ec_rates_Q5[ ec_ix[ i ] ];
66         pred_coef_Q16 = silk_LSHIFT( (opus_int32)pred_coef_Q8[ i ], 8 );
67         in_Q10 = x_Q10[ i ];
68         for( j = 0; j < nStates; j++ ) {
69             pred_Q10 = silk_SMULWB( pred_coef_Q16, prev_out_Q10[ j ] );
70             res_Q10  = silk_SUB16( in_Q10, pred_Q10 );
71             ind_tmp  = silk_SMULWB( (opus_int32)inv_quant_step_size_Q6, res_Q10 );
72             ind_tmp  = silk_LIMIT( ind_tmp, -NLSF_QUANT_MAX_AMPLITUDE_EXT, NLSF_QUANT_MAX_AMPLITUDE_EXT-1 );
73             ind[ j ][ i ] = (opus_int8)ind_tmp;
74 
75             /* compute outputs for ind_tmp and ind_tmp + 1 */
76             out0_Q10 = silk_LSHIFT( ind_tmp, 10 );
77             out1_Q10 = silk_ADD16( out0_Q10, 1024 );
78             if( ind_tmp > 0 ) {
79                 out0_Q10 = silk_SUB16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
80                 out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
81             } else if( ind_tmp == 0 ) {
82                 out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
83             } else if( ind_tmp == -1 ) {
84                 out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
85             } else {
86                 out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
87                 out1_Q10 = silk_ADD16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
88             }
89             out0_Q10  = silk_SMULWB( (opus_int32)out0_Q10, quant_step_size_Q16 );
90             out1_Q10  = silk_SMULWB( (opus_int32)out1_Q10, quant_step_size_Q16 );
91             out0_Q10  = silk_ADD16( out0_Q10, pred_Q10 );
92             out1_Q10  = silk_ADD16( out1_Q10, pred_Q10 );
93             prev_out_Q10[ j           ] = out0_Q10;
94             prev_out_Q10[ j + nStates ] = out1_Q10;
95 
96             /* compute RD for ind_tmp and ind_tmp + 1 */
97             if( ind_tmp + 1 >= NLSF_QUANT_MAX_AMPLITUDE ) {
98                 if( ind_tmp + 1 == NLSF_QUANT_MAX_AMPLITUDE ) {
99                     rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ];
100                     rate1_Q5 = 280;
101                 } else {
102                     rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, 43, ind_tmp );
103                     rate1_Q5 = silk_ADD16( rate0_Q5, 43 );
104                 }
105             } else if( ind_tmp <= -NLSF_QUANT_MAX_AMPLITUDE ) {
106                 if( ind_tmp == -NLSF_QUANT_MAX_AMPLITUDE ) {
107                     rate0_Q5 = 280;
108                     rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ];
109                 } else {
110                     rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, -43, ind_tmp );
111                     rate1_Q5 = silk_SUB16( rate0_Q5, 43 );
112                 }
113             } else {
114                 rate0_Q5 = rates_Q5[ ind_tmp +     NLSF_QUANT_MAX_AMPLITUDE ];
115                 rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ];
116             }
117             RD_tmp_Q25            = RD_Q25[ j ];
118             diff_Q10              = silk_SUB16( in_Q10, out0_Q10 );
119             RD_Q25[ j ]           = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate0_Q5 );
120             diff_Q10              = silk_SUB16( in_Q10, out1_Q10 );
121             RD_Q25[ j + nStates ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate1_Q5 );
122         }
123 
124         if( nStates < NLSF_QUANT_DEL_DEC_STATES ) {
125             /* double number of states and copy */
126             for( j = 0; j < nStates; j++ ) {
127                 ind[ j + nStates ][ i ] = ind[ j ][ i ] + 1;
128             }
129             nStates = silk_LSHIFT( nStates, 1 );
130             for( j = nStates; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
131                 ind[ j ][ i ] = ind[ j - nStates ][ i ];
132             }
133         } else if( i > 0 ) {
134             /* sort lower and upper half of RD_Q25, pairwise */
135             for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
136                 if( RD_Q25[ j ] > RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] ) {
137                     RD_max_Q25[ j ]                         = RD_Q25[ j ];
138                     RD_min_Q25[ j ]                         = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ];
139                     RD_Q25[ j ]                             = RD_min_Q25[ j ];
140                     RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] = RD_max_Q25[ j ];
141                     /* swap prev_out values */
142                     out0_Q10 = prev_out_Q10[ j ];
143                     prev_out_Q10[ j ] = prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ];
144                     prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ] = out0_Q10;
145                     ind_sort[ j ] = j + NLSF_QUANT_DEL_DEC_STATES;
146                 } else {
147                     RD_min_Q25[ j ] = RD_Q25[ j ];
148                     RD_max_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ];
149                     ind_sort[ j ] = j;
150                 }
151             }
152             /* compare the highest RD values of the winning half with the lowest one in the losing half, and copy if necessary */
153             /* afterwards ind_sort[] will contain the indices of the NLSF_QUANT_DEL_DEC_STATES winning RD values */
154             while( 1 ) {
155                 min_max_Q25 = silk_int32_MAX;
156                 max_min_Q25 = 0;
157                 ind_min_max = 0;
158                 ind_max_min = 0;
159                 for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
160                     if( min_max_Q25 > RD_max_Q25[ j ] ) {
161                         min_max_Q25 = RD_max_Q25[ j ];
162                         ind_min_max = j;
163                     }
164                     if( max_min_Q25 < RD_min_Q25[ j ] ) {
165                         max_min_Q25 = RD_min_Q25[ j ];
166                         ind_max_min = j;
167                     }
168                 }
169                 if( min_max_Q25 >= max_min_Q25 ) {
170                     break;
171                 }
172                 /* copy ind_min_max to ind_max_min */
173                 ind_sort[     ind_max_min ] = ind_sort[     ind_min_max ] ^ NLSF_QUANT_DEL_DEC_STATES;
174                 RD_Q25[       ind_max_min ] = RD_Q25[       ind_min_max + NLSF_QUANT_DEL_DEC_STATES ];
175                 prev_out_Q10[ ind_max_min ] = prev_out_Q10[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ];
176                 RD_min_Q25[   ind_max_min ] = 0;
177                 RD_max_Q25[   ind_min_max ] = silk_int32_MAX;
178                 silk_memcpy( ind[ ind_max_min ], ind[ ind_min_max ], MAX_LPC_ORDER * sizeof( opus_int8 ) );
179             }
180             /* increment index if it comes from the upper half */
181             for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
182                 ind[ j ][ i ] += silk_RSHIFT( ind_sort[ j ], NLSF_QUANT_DEL_DEC_STATES_LOG2 );
183             }
184         } else {  /* i == 0 */
185             break;
186         }
187     }
188 
189     /* last sample: find winner, copy indices and return RD value */
190     ind_tmp = 0;
191     min_Q25 = silk_int32_MAX;
192     for( j = 0; j < 2 * NLSF_QUANT_DEL_DEC_STATES; j++ ) {
193         if( min_Q25 > RD_Q25[ j ] ) {
194             min_Q25 = RD_Q25[ j ];
195             ind_tmp = j;
196         }
197     }
198     for( j = 0; j < order; j++ ) {
199         indices[ j ] = ind[ ind_tmp & ( NLSF_QUANT_DEL_DEC_STATES - 1 ) ][ j ];
200         silk_assert( indices[ j ] >= -NLSF_QUANT_MAX_AMPLITUDE_EXT );
201         silk_assert( indices[ j ] <=  NLSF_QUANT_MAX_AMPLITUDE_EXT );
202     }
203     indices[ 0 ] += silk_RSHIFT( ind_tmp, NLSF_QUANT_DEL_DEC_STATES_LOG2 );
204     silk_assert( indices[ 0 ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT );
205     silk_assert( min_Q25 >= 0 );
206     return min_Q25;
207 }
208