1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/quic/quic_framer.h"
6
7 #include "base/containers/hash_tables.h"
8 #include "net/quic/crypto/quic_decrypter.h"
9 #include "net/quic/crypto/quic_encrypter.h"
10 #include "net/quic/quic_data_reader.h"
11 #include "net/quic/quic_data_writer.h"
12
13 using base::StringPiece;
14 using std::make_pair;
15 using std::map;
16 using std::max;
17 using std::min;
18 using std::numeric_limits;
19 using std::string;
20
21 namespace net {
22
23 namespace {
24
25 // Mask to select the lowest 48 bits of a sequence number.
26 const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
27 GG_UINT64_C(0x0000FFFFFFFFFFFF);
28 const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
29 GG_UINT64_C(0x00000000FFFFFFFF);
30 const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
31 GG_UINT64_C(0x000000000000FFFF);
32 const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
33 GG_UINT64_C(0x00000000000000FF);
34
35 const QuicGuid k1ByteGuidMask = GG_UINT64_C(0x00000000000000FF);
36 const QuicGuid k4ByteGuidMask = GG_UINT64_C(0x00000000FFFFFFFF);
37
38 // Number of bits the sequence number length bits are shifted from the right
39 // edge of the public header.
40 const uint8 kPublicHeaderSequenceNumberShift = 4;
41
42 // New Frame Types, QUIC v. >= 10:
43 // There are two interpretations for the Frame Type byte in the QUIC protocol,
44 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
45 //
46 // Regular Frame Types use the Frame Type byte simply. Currently defined
47 // Regular Frame Types are:
48 // Padding : 0b 00000000 (0x00)
49 // ResetStream : 0b 00000001 (0x01)
50 // ConnectionClose : 0b 00000010 (0x02)
51 // GoAway : 0b 00000011 (0x03)
52 //
53 // Special Frame Types encode both a Frame Type and corresponding flags
54 // all in the Frame Type byte. Currently defined Special Frame Types are:
55 // Stream : 0b 1xxxxxxx
56 // Ack : 0b 01xxxxxx
57 // CongestionFeedback : 0b 001xxxxx
58 //
59 // Semantics of the flag bits above (the x bits) depends on the frame type.
60
61 // Masks to determine if the frame type is a special use
62 // and for specific special frame types.
63 const uint8 kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000
64 const uint8 kQuicFrameTypeStreamMask = 0x80;
65 const uint8 kQuicFrameTypeAckMask = 0x40;
66 const uint8 kQuicFrameTypeCongestionFeedbackMask = 0x20;
67
68 // Stream frame relative shifts and masks for interpreting the stream flags.
69 // StreamID may be 1, 2, 3, or 4 bytes.
70 const uint8 kQuicStreamIdShift = 2;
71 const uint8 kQuicStreamIDLengthMask = 0x03;
72
73 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
74 const uint8 kQuicStreamOffsetShift = 3;
75 const uint8 kQuicStreamOffsetMask = 0x07;
76
77 // Data length may be 0 or 2 bytes.
78 const uint8 kQuicStreamDataLengthShift = 1;
79 const uint8 kQuicStreamDataLengthMask = 0x01;
80
81 // Fin bit may be set or not.
82 const uint8 kQuicStreamFinShift = 1;
83 const uint8 kQuicStreamFinMask = 0x01;
84
85 // Sequence number size shift used in AckFrames.
86 const uint8 kQuicSequenceNumberLengthShift = 2;
87
88 // Acks may be truncated.
89 const uint8 kQuicAckTruncatedShift = 1;
90 const uint8 kQuicAckTruncatedMask = 0x01;
91
92 // Acks may not have any nacks.
93 const uint8 kQuicHasNacksMask = 0x01;
94
95 // Returns the absolute value of the difference between |a| and |b|.
Delta(QuicPacketSequenceNumber a,QuicPacketSequenceNumber b)96 QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
97 QuicPacketSequenceNumber b) {
98 // Since these are unsigned numbers, we can't just return abs(a - b)
99 if (a < b) {
100 return b - a;
101 }
102 return a - b;
103 }
104
ClosestTo(QuicPacketSequenceNumber target,QuicPacketSequenceNumber a,QuicPacketSequenceNumber b)105 QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
106 QuicPacketSequenceNumber a,
107 QuicPacketSequenceNumber b) {
108 return (Delta(target, a) < Delta(target, b)) ? a : b;
109 }
110
111 } // namespace
112
QuicFramer(const QuicVersionVector & supported_versions,QuicTime creation_time,bool is_server)113 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
114 QuicTime creation_time,
115 bool is_server)
116 : visitor_(NULL),
117 fec_builder_(NULL),
118 entropy_calculator_(NULL),
119 error_(QUIC_NO_ERROR),
120 last_sequence_number_(0),
121 last_serialized_guid_(0),
122 supported_versions_(supported_versions),
123 alternative_decrypter_latch_(false),
124 is_server_(is_server),
125 creation_time_(creation_time) {
126 DCHECK(!supported_versions.empty());
127 quic_version_ = supported_versions_[0];
128 decrypter_.reset(QuicDecrypter::Create(kNULL));
129 encrypter_[ENCRYPTION_NONE].reset(
130 QuicEncrypter::Create(kNULL));
131 }
132
~QuicFramer()133 QuicFramer::~QuicFramer() {}
134
135 // static
GetMinStreamFrameSize(QuicVersion version,QuicStreamId stream_id,QuicStreamOffset offset,bool last_frame_in_packet)136 size_t QuicFramer::GetMinStreamFrameSize(QuicVersion version,
137 QuicStreamId stream_id,
138 QuicStreamOffset offset,
139 bool last_frame_in_packet) {
140 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
141 GetStreamOffsetSize(offset) +
142 (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize);
143 }
144
145 // static
GetMinAckFrameSize(QuicVersion version,QuicSequenceNumberLength sequence_number_length,QuicSequenceNumberLength largest_observed_length)146 size_t QuicFramer::GetMinAckFrameSize(
147 QuicVersion version,
148 QuicSequenceNumberLength sequence_number_length,
149 QuicSequenceNumberLength largest_observed_length) {
150 return kQuicFrameTypeSize + kQuicEntropyHashSize +
151 sequence_number_length + kQuicEntropyHashSize +
152 largest_observed_length + kQuicDeltaTimeLargestObservedSize;
153 }
154
155 // static
GetMinRstStreamFrameSize()156 size_t QuicFramer::GetMinRstStreamFrameSize() {
157 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicErrorCodeSize +
158 kQuicErrorDetailsLengthSize;
159 }
160
161 // static
GetMinConnectionCloseFrameSize()162 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
163 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
164 }
165
166 // static
GetMinGoAwayFrameSize()167 size_t QuicFramer::GetMinGoAwayFrameSize() {
168 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
169 kQuicMaxStreamIdSize;
170 }
171
172 // static
GetStreamIdSize(QuicStreamId stream_id)173 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
174 // Sizes are 1 through 4 bytes.
175 for (int i = 1; i <= 4; ++i) {
176 stream_id >>= 8;
177 if (stream_id == 0) {
178 return i;
179 }
180 }
181 LOG(DFATAL) << "Failed to determine StreamIDSize.";
182 return 4;
183 }
184
185 // static
GetStreamOffsetSize(QuicStreamOffset offset)186 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
187 // 0 is a special case.
188 if (offset == 0) {
189 return 0;
190 }
191 // 2 through 8 are the remaining sizes.
192 offset >>= 8;
193 for (int i = 2; i <= 8; ++i) {
194 offset >>= 8;
195 if (offset == 0) {
196 return i;
197 }
198 }
199 LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
200 return 8;
201 }
202
203 // static
GetVersionNegotiationPacketSize(size_t number_versions)204 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
205 return kPublicFlagsSize + PACKET_8BYTE_GUID +
206 number_versions * kQuicVersionSize;
207 }
208
209 // static
CanTruncate(QuicVersion version,const QuicFrame & frame,size_t free_bytes)210 bool QuicFramer::CanTruncate(
211 QuicVersion version, const QuicFrame& frame, size_t free_bytes) {
212 if ((frame.type == ACK_FRAME || frame.type == CONNECTION_CLOSE_FRAME) &&
213 free_bytes >= GetMinAckFrameSize(version,
214 PACKET_6BYTE_SEQUENCE_NUMBER,
215 PACKET_6BYTE_SEQUENCE_NUMBER)) {
216 return true;
217 }
218 return false;
219 }
220
IsSupportedVersion(const QuicVersion version) const221 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
222 for (size_t i = 0; i < supported_versions_.size(); ++i) {
223 if (version == supported_versions_[i]) {
224 return true;
225 }
226 }
227 return false;
228 }
229
GetSerializedFrameLength(const QuicFrame & frame,size_t free_bytes,bool first_frame,bool last_frame,QuicSequenceNumberLength sequence_number_length)230 size_t QuicFramer::GetSerializedFrameLength(
231 const QuicFrame& frame,
232 size_t free_bytes,
233 bool first_frame,
234 bool last_frame,
235 QuicSequenceNumberLength sequence_number_length) {
236 if (frame.type == PADDING_FRAME) {
237 // PADDING implies end of packet.
238 return free_bytes;
239 }
240 size_t frame_len =
241 ComputeFrameLength(frame, last_frame, sequence_number_length);
242 if (frame_len > free_bytes) {
243 // Only truncate the first frame in a packet, so if subsequent ones go
244 // over, stop including more frames.
245 if (!first_frame) {
246 return 0;
247 }
248 if (CanTruncate(quic_version_, frame, free_bytes)) {
249 // Truncate the frame so the packet will not exceed kMaxPacketSize.
250 // Note that we may not use every byte of the writer in this case.
251 DVLOG(1) << "Truncating large frame";
252 return free_bytes;
253 }
254 }
255 return frame_len;
256 }
257
AckFrameInfo()258 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) { }
259
~AckFrameInfo()260 QuicFramer::AckFrameInfo::~AckFrameInfo() { }
261
GetPacketEntropyHash(const QuicPacketHeader & header) const262 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
263 const QuicPacketHeader& header) const {
264 return header.entropy_flag << (header.packet_sequence_number % 8);
265 }
266
267 // Test only.
BuildUnsizedDataPacket(const QuicPacketHeader & header,const QuicFrames & frames)268 SerializedPacket QuicFramer::BuildUnsizedDataPacket(
269 const QuicPacketHeader& header,
270 const QuicFrames& frames) {
271 const size_t max_plaintext_size = GetMaxPlaintextSize(kMaxPacketSize);
272 size_t packet_size = GetPacketHeaderSize(header);
273 for (size_t i = 0; i < frames.size(); ++i) {
274 DCHECK_LE(packet_size, max_plaintext_size);
275 bool first_frame = i == 0;
276 bool last_frame = i == frames.size() - 1;
277 const size_t frame_size = GetSerializedFrameLength(
278 frames[i], max_plaintext_size - packet_size, first_frame, last_frame,
279 header.public_header.sequence_number_length);
280 DCHECK(frame_size);
281 packet_size += frame_size;
282 }
283 return BuildDataPacket(header, frames, packet_size);
284 }
285
BuildDataPacket(const QuicPacketHeader & header,const QuicFrames & frames,size_t packet_size)286 SerializedPacket QuicFramer::BuildDataPacket(
287 const QuicPacketHeader& header,
288 const QuicFrames& frames,
289 size_t packet_size) {
290 QuicDataWriter writer(packet_size);
291 const SerializedPacket kNoPacket(
292 0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
293 if (!AppendPacketHeader(header, &writer)) {
294 return kNoPacket;
295 }
296
297 for (size_t i = 0; i < frames.size(); ++i) {
298 const QuicFrame& frame = frames[i];
299
300 const bool last_frame_in_packet = i == (frames.size() - 1);
301 if (!AppendTypeByte(frame, last_frame_in_packet, &writer)) {
302 return kNoPacket;
303 }
304
305 switch (frame.type) {
306 case PADDING_FRAME:
307 writer.WritePadding();
308 break;
309 case STREAM_FRAME:
310 if (!AppendStreamFramePayload(
311 *frame.stream_frame, last_frame_in_packet, &writer)) {
312 return kNoPacket;
313 }
314 break;
315 case ACK_FRAME:
316 if (!AppendAckFramePayloadAndTypeByte(
317 header, *frame.ack_frame, &writer)) {
318 return kNoPacket;
319 }
320 break;
321 case CONGESTION_FEEDBACK_FRAME:
322 if (!AppendQuicCongestionFeedbackFramePayload(
323 *frame.congestion_feedback_frame, &writer)) {
324 return kNoPacket;
325 }
326 break;
327 case RST_STREAM_FRAME:
328 if (!AppendRstStreamFramePayload(*frame.rst_stream_frame, &writer)) {
329 return kNoPacket;
330 }
331 break;
332 case CONNECTION_CLOSE_FRAME:
333 if (!AppendConnectionCloseFramePayload(
334 *frame.connection_close_frame, &writer)) {
335 return kNoPacket;
336 }
337 break;
338 case GOAWAY_FRAME:
339 if (!AppendGoAwayFramePayload(*frame.goaway_frame, &writer)) {
340 return kNoPacket;
341 }
342 break;
343 default:
344 RaiseError(QUIC_INVALID_FRAME_DATA);
345 return kNoPacket;
346 }
347 }
348
349 // Save the length before writing, because take clears it.
350 const size_t len = writer.length();
351 // Less than or equal because truncated acks end up with max_plaintex_size
352 // length, even though they're typically slightly shorter.
353 DCHECK_LE(len, packet_size);
354 QuicPacket* packet = QuicPacket::NewDataPacket(
355 writer.take(), len, true, header.public_header.guid_length,
356 header.public_header.version_flag,
357 header.public_header.sequence_number_length);
358
359 if (fec_builder_) {
360 fec_builder_->OnBuiltFecProtectedPayload(header,
361 packet->FecProtectedData());
362 }
363
364 return SerializedPacket(header.packet_sequence_number,
365 header.public_header.sequence_number_length, packet,
366 GetPacketEntropyHash(header), NULL);
367 }
368
BuildFecPacket(const QuicPacketHeader & header,const QuicFecData & fec)369 SerializedPacket QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
370 const QuicFecData& fec) {
371 DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
372 DCHECK_NE(0u, header.fec_group);
373 size_t len = GetPacketHeaderSize(header);
374 len += fec.redundancy.length();
375
376 QuicDataWriter writer(len);
377 const SerializedPacket kNoPacket(
378 0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
379 if (!AppendPacketHeader(header, &writer)) {
380 return kNoPacket;
381 }
382
383 if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
384 return kNoPacket;
385 }
386
387 return SerializedPacket(
388 header.packet_sequence_number,
389 header.public_header.sequence_number_length,
390 QuicPacket::NewFecPacket(writer.take(), len, true,
391 header.public_header.guid_length,
392 header.public_header.version_flag,
393 header.public_header.sequence_number_length),
394 GetPacketEntropyHash(header), NULL);
395 }
396
397 // static
BuildPublicResetPacket(const QuicPublicResetPacket & packet)398 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
399 const QuicPublicResetPacket& packet) {
400 DCHECK(packet.public_header.reset_flag);
401 size_t len = GetPublicResetPacketSize();
402 QuicDataWriter writer(len);
403
404 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
405 PACKET_PUBLIC_FLAGS_8BYTE_GUID |
406 PACKET_PUBLIC_FLAGS_6BYTE_SEQUENCE);
407 if (!writer.WriteUInt8(flags)) {
408 return NULL;
409 }
410
411 if (!writer.WriteUInt64(packet.public_header.guid)) {
412 return NULL;
413 }
414
415 if (!writer.WriteUInt64(packet.nonce_proof)) {
416 return NULL;
417 }
418
419 if (!AppendPacketSequenceNumber(PACKET_6BYTE_SEQUENCE_NUMBER,
420 packet.rejected_sequence_number,
421 &writer)) {
422 return NULL;
423 }
424
425 return new QuicEncryptedPacket(writer.take(), len, true);
426 }
427
BuildVersionNegotiationPacket(const QuicPacketPublicHeader & header,const QuicVersionVector & supported_versions)428 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
429 const QuicPacketPublicHeader& header,
430 const QuicVersionVector& supported_versions) {
431 DCHECK(header.version_flag);
432 size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
433 QuicDataWriter writer(len);
434
435 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
436 PACKET_PUBLIC_FLAGS_8BYTE_GUID |
437 PACKET_PUBLIC_FLAGS_6BYTE_SEQUENCE);
438 if (!writer.WriteUInt8(flags)) {
439 return NULL;
440 }
441
442 if (!writer.WriteUInt64(header.guid)) {
443 return NULL;
444 }
445
446 for (size_t i = 0; i < supported_versions.size(); ++i) {
447 if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
448 return NULL;
449 }
450 }
451
452 return new QuicEncryptedPacket(writer.take(), len, true);
453 }
454
ProcessPacket(const QuicEncryptedPacket & packet)455 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
456 DCHECK(!reader_.get());
457 reader_.reset(new QuicDataReader(packet.data(), packet.length()));
458
459 visitor_->OnPacket();
460
461 // First parse the public header.
462 QuicPacketPublicHeader public_header;
463 if (!ProcessPublicHeader(&public_header)) {
464 DLOG(WARNING) << "Unable to process public header.";
465 DCHECK_NE("", detailed_error_);
466 return RaiseError(QUIC_INVALID_PACKET_HEADER);
467 }
468
469 if (is_server_ && public_header.version_flag &&
470 public_header.versions[0] != quic_version_) {
471 if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
472 reader_.reset(NULL);
473 return true;
474 }
475 }
476
477 bool rv;
478 if (!is_server_ && public_header.version_flag) {
479 rv = ProcessVersionNegotiationPacket(&public_header);
480 } else if (public_header.reset_flag) {
481 rv = ProcessPublicResetPacket(public_header);
482 } else {
483 rv = ProcessDataPacket(public_header, packet);
484 }
485
486 reader_.reset(NULL);
487 return rv;
488 }
489
ProcessVersionNegotiationPacket(QuicPacketPublicHeader * public_header)490 bool QuicFramer::ProcessVersionNegotiationPacket(
491 QuicPacketPublicHeader* public_header) {
492 DCHECK(!is_server_);
493 // Try reading at least once to raise error if the packet is invalid.
494 do {
495 QuicTag version;
496 if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
497 set_detailed_error("Unable to read supported version in negotiation.");
498 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
499 }
500 public_header->versions.push_back(QuicTagToQuicVersion(version));
501 } while (!reader_->IsDoneReading());
502
503 visitor_->OnVersionNegotiationPacket(*public_header);
504 return true;
505 }
506
ProcessDataPacket(const QuicPacketPublicHeader & public_header,const QuicEncryptedPacket & packet)507 bool QuicFramer::ProcessDataPacket(
508 const QuicPacketPublicHeader& public_header,
509 const QuicEncryptedPacket& packet) {
510 QuicPacketHeader header(public_header);
511 if (!ProcessPacketHeader(&header, packet)) {
512 DLOG(WARNING) << "Unable to process data packet header.";
513 return false;
514 }
515
516 if (!visitor_->OnPacketHeader(header)) {
517 // The visitor suppresses further processing of the packet.
518 return true;
519 }
520
521 if (packet.length() > kMaxPacketSize) {
522 DLOG(WARNING) << "Packet too large: " << packet.length();
523 return RaiseError(QUIC_PACKET_TOO_LARGE);
524 }
525
526 // Handle the payload.
527 if (!header.fec_flag) {
528 if (header.is_in_fec_group == IN_FEC_GROUP) {
529 StringPiece payload = reader_->PeekRemainingPayload();
530 visitor_->OnFecProtectedPayload(payload);
531 }
532 if (!ProcessFrameData(header)) {
533 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
534 DLOG(WARNING) << "Unable to process frame data.";
535 return false;
536 }
537 } else {
538 QuicFecData fec_data;
539 fec_data.fec_group = header.fec_group;
540 fec_data.redundancy = reader_->ReadRemainingPayload();
541 visitor_->OnFecData(fec_data);
542 }
543
544 visitor_->OnPacketComplete();
545 return true;
546 }
547
ProcessPublicResetPacket(const QuicPacketPublicHeader & public_header)548 bool QuicFramer::ProcessPublicResetPacket(
549 const QuicPacketPublicHeader& public_header) {
550 QuicPublicResetPacket packet(public_header);
551 if (!reader_->ReadUInt64(&packet.nonce_proof)) {
552 set_detailed_error("Unable to read nonce proof.");
553 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
554 }
555 // TODO(satyamshekhar): validate nonce to protect against DoS.
556
557 if (!reader_->ReadUInt48(&packet.rejected_sequence_number)) {
558 set_detailed_error("Unable to read rejected sequence number.");
559 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
560 }
561 visitor_->OnPublicResetPacket(packet);
562 return true;
563 }
564
ProcessRevivedPacket(QuicPacketHeader * header,StringPiece payload)565 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
566 StringPiece payload) {
567 DCHECK(!reader_.get());
568
569 visitor_->OnRevivedPacket();
570
571 header->entropy_hash = GetPacketEntropyHash(*header);
572
573 if (!visitor_->OnPacketHeader(*header)) {
574 return true;
575 }
576
577 if (payload.length() > kMaxPacketSize) {
578 set_detailed_error("Revived packet too large.");
579 return RaiseError(QUIC_PACKET_TOO_LARGE);
580 }
581
582 reader_.reset(new QuicDataReader(payload.data(), payload.length()));
583 if (!ProcessFrameData(*header)) {
584 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
585 DLOG(WARNING) << "Unable to process frame data.";
586 return false;
587 }
588
589 visitor_->OnPacketComplete();
590 reader_.reset(NULL);
591 return true;
592 }
593
AppendPacketHeader(const QuicPacketHeader & header,QuicDataWriter * writer)594 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
595 QuicDataWriter* writer) {
596 DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
597 uint8 public_flags = 0;
598 if (header.public_header.reset_flag) {
599 public_flags |= PACKET_PUBLIC_FLAGS_RST;
600 }
601 if (header.public_header.version_flag) {
602 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
603 }
604
605 public_flags |=
606 GetSequenceNumberFlags(header.public_header.sequence_number_length)
607 << kPublicHeaderSequenceNumberShift;
608
609 switch (header.public_header.guid_length) {
610 case PACKET_0BYTE_GUID:
611 if (!writer->WriteUInt8(public_flags | PACKET_PUBLIC_FLAGS_0BYTE_GUID)) {
612 return false;
613 }
614 break;
615 case PACKET_1BYTE_GUID:
616 if (!writer->WriteUInt8(public_flags | PACKET_PUBLIC_FLAGS_1BYTE_GUID)) {
617 return false;
618 }
619 if (!writer->WriteUInt8(header.public_header.guid & k1ByteGuidMask)) {
620 return false;
621 }
622 break;
623 case PACKET_4BYTE_GUID:
624 if (!writer->WriteUInt8(public_flags | PACKET_PUBLIC_FLAGS_4BYTE_GUID)) {
625 return false;
626 }
627 if (!writer->WriteUInt32(header.public_header.guid & k4ByteGuidMask)) {
628 return false;
629 }
630 break;
631 case PACKET_8BYTE_GUID:
632 if (!writer->WriteUInt8(public_flags | PACKET_PUBLIC_FLAGS_8BYTE_GUID)) {
633 return false;
634 }
635 if (!writer->WriteUInt64(header.public_header.guid)) {
636 return false;
637 }
638 break;
639 }
640 last_serialized_guid_ = header.public_header.guid;
641
642 if (header.public_header.version_flag) {
643 DCHECK(!is_server_);
644 writer->WriteUInt32(QuicVersionToQuicTag(quic_version_));
645 }
646
647 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
648 header.packet_sequence_number, writer)) {
649 return false;
650 }
651
652 uint8 private_flags = 0;
653 if (header.entropy_flag) {
654 private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
655 }
656 if (header.is_in_fec_group == IN_FEC_GROUP) {
657 private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
658 }
659 if (header.fec_flag) {
660 private_flags |= PACKET_PRIVATE_FLAGS_FEC;
661 }
662 if (!writer->WriteUInt8(private_flags)) {
663 return false;
664 }
665
666 // The FEC group number is the sequence number of the first fec
667 // protected packet, or 0 if this packet is not protected.
668 if (header.is_in_fec_group == IN_FEC_GROUP) {
669 DCHECK_GE(header.packet_sequence_number, header.fec_group);
670 DCHECK_GT(255u, header.packet_sequence_number - header.fec_group);
671 // Offset from the current packet sequence number to the first fec
672 // protected packet.
673 uint8 first_fec_protected_packet_offset =
674 header.packet_sequence_number - header.fec_group;
675 if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
676 return false;
677 }
678 }
679
680 return true;
681 }
682
CalculatePacketSequenceNumberFromWire(QuicSequenceNumberLength sequence_number_length,QuicPacketSequenceNumber packet_sequence_number) const683 QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
684 QuicSequenceNumberLength sequence_number_length,
685 QuicPacketSequenceNumber packet_sequence_number) const {
686 // The new sequence number might have wrapped to the next epoch, or
687 // it might have reverse wrapped to the previous epoch, or it might
688 // remain in the same epoch. Select the sequence number closest to the
689 // next expected sequence number, the previous sequence number plus 1.
690
691 // epoch_delta is the delta between epochs the sequence number was serialized
692 // with, so the correct value is likely the same epoch as the last sequence
693 // number or an adjacent epoch.
694 const QuicPacketSequenceNumber epoch_delta =
695 GG_UINT64_C(1) << (8 * sequence_number_length);
696 QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
697 QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
698 QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
699 QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
700
701 return ClosestTo(next_sequence_number,
702 epoch + packet_sequence_number,
703 ClosestTo(next_sequence_number,
704 prev_epoch + packet_sequence_number,
705 next_epoch + packet_sequence_number));
706 }
707
ProcessPublicHeader(QuicPacketPublicHeader * public_header)708 bool QuicFramer::ProcessPublicHeader(
709 QuicPacketPublicHeader* public_header) {
710 uint8 public_flags;
711 if (!reader_->ReadBytes(&public_flags, 1)) {
712 set_detailed_error("Unable to read public flags.");
713 return false;
714 }
715
716 public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
717 public_header->version_flag =
718 (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
719
720 if (!public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
721 set_detailed_error("Illegal public flags value.");
722 return false;
723 }
724
725 if (public_header->reset_flag && public_header->version_flag) {
726 set_detailed_error("Got version flag in reset packet");
727 return false;
728 }
729
730 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_GUID) {
731 case PACKET_PUBLIC_FLAGS_8BYTE_GUID:
732 if (!reader_->ReadUInt64(&public_header->guid)) {
733 set_detailed_error("Unable to read GUID.");
734 return false;
735 }
736 public_header->guid_length = PACKET_8BYTE_GUID;
737 break;
738 case PACKET_PUBLIC_FLAGS_4BYTE_GUID:
739 // If the guid is truncated, expect to read the last serialized guid.
740 if (!reader_->ReadBytes(&public_header->guid, PACKET_4BYTE_GUID)) {
741 set_detailed_error("Unable to read GUID.");
742 return false;
743 }
744 if ((public_header->guid & k4ByteGuidMask) !=
745 (last_serialized_guid_ & k4ByteGuidMask)) {
746 set_detailed_error(
747 "Truncated 4 byte GUID does not match previous guid.");
748 return false;
749 }
750 public_header->guid_length = PACKET_4BYTE_GUID;
751 public_header->guid = last_serialized_guid_;
752 break;
753 case PACKET_PUBLIC_FLAGS_1BYTE_GUID:
754 if (!reader_->ReadBytes(&public_header->guid, PACKET_1BYTE_GUID)) {
755 set_detailed_error("Unable to read GUID.");
756 return false;
757 }
758 if ((public_header->guid & k1ByteGuidMask) !=
759 (last_serialized_guid_ & k1ByteGuidMask)) {
760 set_detailed_error(
761 "Truncated 1 byte GUID does not match previous guid.");
762 return false;
763 }
764 public_header->guid_length = PACKET_1BYTE_GUID;
765 public_header->guid = last_serialized_guid_;
766 break;
767 case PACKET_PUBLIC_FLAGS_0BYTE_GUID:
768 public_header->guid_length = PACKET_0BYTE_GUID;
769 public_header->guid = last_serialized_guid_;
770 break;
771 }
772
773 public_header->sequence_number_length =
774 ReadSequenceNumberLength(
775 public_flags >> kPublicHeaderSequenceNumberShift);
776
777 // Read the version only if the packet is from the client.
778 // version flag from the server means version negotiation packet.
779 if (public_header->version_flag && is_server_) {
780 QuicTag version_tag;
781 if (!reader_->ReadUInt32(&version_tag)) {
782 set_detailed_error("Unable to read protocol version.");
783 return false;
784 }
785
786 // If the version from the new packet is the same as the version of this
787 // framer, then the public flags should be set to something we understand.
788 // If not, this raises an error.
789 QuicVersion version = QuicTagToQuicVersion(version_tag);
790 if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
791 set_detailed_error("Illegal public flags value.");
792 return false;
793 }
794 public_header->versions.push_back(version);
795 }
796 return true;
797 }
798
799 // static
ReadGuidFromPacket(const QuicEncryptedPacket & packet,QuicGuid * guid)800 bool QuicFramer::ReadGuidFromPacket(const QuicEncryptedPacket& packet,
801 QuicGuid* guid) {
802 QuicDataReader reader(packet.data(), packet.length());
803 uint8 public_flags;
804 if (!reader.ReadBytes(&public_flags, 1)) {
805 return false;
806 }
807 // Ensure it's an 8 byte guid.
808 if ((public_flags & PACKET_PUBLIC_FLAGS_8BYTE_GUID) !=
809 PACKET_PUBLIC_FLAGS_8BYTE_GUID) {
810 return false;
811 }
812
813 return reader.ReadUInt64(guid);
814 }
815
816 // static
ReadSequenceNumberLength(uint8 flags)817 QuicSequenceNumberLength QuicFramer::ReadSequenceNumberLength(uint8 flags) {
818 switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
819 case PACKET_FLAGS_6BYTE_SEQUENCE:
820 return PACKET_6BYTE_SEQUENCE_NUMBER;
821 case PACKET_FLAGS_4BYTE_SEQUENCE:
822 return PACKET_4BYTE_SEQUENCE_NUMBER;
823 case PACKET_FLAGS_2BYTE_SEQUENCE:
824 return PACKET_2BYTE_SEQUENCE_NUMBER;
825 case PACKET_FLAGS_1BYTE_SEQUENCE:
826 return PACKET_1BYTE_SEQUENCE_NUMBER;
827 default:
828 LOG(DFATAL) << "Unreachable case statement.";
829 return PACKET_6BYTE_SEQUENCE_NUMBER;
830 }
831 }
832
833 // static
GetMinSequenceNumberLength(QuicPacketSequenceNumber sequence_number)834 QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
835 QuicPacketSequenceNumber sequence_number) {
836 if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
837 return PACKET_1BYTE_SEQUENCE_NUMBER;
838 } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
839 return PACKET_2BYTE_SEQUENCE_NUMBER;
840 } else if (sequence_number <
841 GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
842 return PACKET_4BYTE_SEQUENCE_NUMBER;
843 } else {
844 return PACKET_6BYTE_SEQUENCE_NUMBER;
845 }
846 }
847
848 // static
GetSequenceNumberFlags(QuicSequenceNumberLength sequence_number_length)849 uint8 QuicFramer::GetSequenceNumberFlags(
850 QuicSequenceNumberLength sequence_number_length) {
851 switch (sequence_number_length) {
852 case PACKET_1BYTE_SEQUENCE_NUMBER:
853 return PACKET_FLAGS_1BYTE_SEQUENCE;
854 case PACKET_2BYTE_SEQUENCE_NUMBER:
855 return PACKET_FLAGS_2BYTE_SEQUENCE;
856 case PACKET_4BYTE_SEQUENCE_NUMBER:
857 return PACKET_FLAGS_4BYTE_SEQUENCE;
858 case PACKET_6BYTE_SEQUENCE_NUMBER:
859 return PACKET_FLAGS_6BYTE_SEQUENCE;
860 default:
861 LOG(DFATAL) << "Unreachable case statement.";
862 return PACKET_FLAGS_6BYTE_SEQUENCE;
863 }
864 }
865
866 // static
GetAckFrameInfo(const QuicAckFrame & frame)867 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
868 const QuicAckFrame& frame) {
869 const ReceivedPacketInfo& received_info = frame.received_info;
870
871 AckFrameInfo ack_info;
872 if (!received_info.missing_packets.empty()) {
873 DCHECK_GE(received_info.largest_observed,
874 *received_info.missing_packets.rbegin());
875 size_t cur_range_length = 0;
876 SequenceNumberSet::const_iterator iter =
877 received_info.missing_packets.begin();
878 QuicPacketSequenceNumber last_missing = *iter;
879 ++iter;
880 for (; iter != received_info.missing_packets.end(); ++iter) {
881 if (cur_range_length != numeric_limits<uint8>::max() &&
882 *iter == (last_missing + 1)) {
883 ++cur_range_length;
884 } else {
885 ack_info.nack_ranges[last_missing - cur_range_length]
886 = cur_range_length;
887 cur_range_length = 0;
888 }
889 ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
890 last_missing = *iter;
891 }
892 // Include the last nack range.
893 ack_info.nack_ranges[last_missing - cur_range_length] = cur_range_length;
894 // Include the range to the largest observed.
895 ack_info.max_delta = max(ack_info.max_delta,
896 received_info.largest_observed - last_missing);
897 }
898 return ack_info;
899 }
900
ProcessPacketHeader(QuicPacketHeader * header,const QuicEncryptedPacket & packet)901 bool QuicFramer::ProcessPacketHeader(
902 QuicPacketHeader* header,
903 const QuicEncryptedPacket& packet) {
904 if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
905 &header->packet_sequence_number)) {
906 set_detailed_error("Unable to read sequence number.");
907 return RaiseError(QUIC_INVALID_PACKET_HEADER);
908 }
909
910 if (header->packet_sequence_number == 0u) {
911 set_detailed_error("Packet sequence numbers cannot be 0.");
912 return RaiseError(QUIC_INVALID_PACKET_HEADER);
913 }
914
915 if (!visitor_->OnUnauthenticatedHeader(*header)) {
916 return false;
917 }
918
919 if (!DecryptPayload(*header, packet)) {
920 set_detailed_error("Unable to decrypt payload.");
921 return RaiseError(QUIC_DECRYPTION_FAILURE);
922 }
923
924 uint8 private_flags;
925 if (!reader_->ReadBytes(&private_flags, 1)) {
926 set_detailed_error("Unable to read private flags.");
927 return RaiseError(QUIC_INVALID_PACKET_HEADER);
928 }
929
930 if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
931 set_detailed_error("Illegal private flags value.");
932 return RaiseError(QUIC_INVALID_PACKET_HEADER);
933 }
934
935 header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
936 header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
937
938 if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
939 header->is_in_fec_group = IN_FEC_GROUP;
940 uint8 first_fec_protected_packet_offset;
941 if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
942 set_detailed_error("Unable to read first fec protected packet offset.");
943 return RaiseError(QUIC_INVALID_PACKET_HEADER);
944 }
945 if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
946 set_detailed_error("First fec protected packet offset must be less "
947 "than the sequence number.");
948 return RaiseError(QUIC_INVALID_PACKET_HEADER);
949 }
950 header->fec_group =
951 header->packet_sequence_number - first_fec_protected_packet_offset;
952 }
953
954 header->entropy_hash = GetPacketEntropyHash(*header);
955 // Set the last sequence number after we have decrypted the packet
956 // so we are confident is not attacker controlled.
957 last_sequence_number_ = header->packet_sequence_number;
958 return true;
959 }
960
ProcessPacketSequenceNumber(QuicSequenceNumberLength sequence_number_length,QuicPacketSequenceNumber * sequence_number)961 bool QuicFramer::ProcessPacketSequenceNumber(
962 QuicSequenceNumberLength sequence_number_length,
963 QuicPacketSequenceNumber* sequence_number) {
964 QuicPacketSequenceNumber wire_sequence_number = 0u;
965 if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
966 return false;
967 }
968
969 // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
970 // in case the first guess is incorrect.
971 *sequence_number =
972 CalculatePacketSequenceNumberFromWire(sequence_number_length,
973 wire_sequence_number);
974 return true;
975 }
976
ProcessFrameData(const QuicPacketHeader & header)977 bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
978 if (reader_->IsDoneReading()) {
979 set_detailed_error("Packet has no frames.");
980 return RaiseError(QUIC_MISSING_PAYLOAD);
981 }
982 while (!reader_->IsDoneReading()) {
983 uint8 frame_type;
984 if (!reader_->ReadBytes(&frame_type, 1)) {
985 set_detailed_error("Unable to read frame type.");
986 return RaiseError(QUIC_INVALID_FRAME_DATA);
987 }
988
989 if (frame_type & kQuicFrameTypeSpecialMask) {
990 // Stream Frame
991 if (frame_type & kQuicFrameTypeStreamMask) {
992 QuicStreamFrame frame;
993 if (!ProcessStreamFrame(frame_type, &frame)) {
994 return RaiseError(QUIC_INVALID_STREAM_DATA);
995 }
996 if (!visitor_->OnStreamFrame(frame)) {
997 DVLOG(1) << "Visitor asked to stop further processing.";
998 // Returning true since there was no parsing error.
999 return true;
1000 }
1001 continue;
1002 }
1003
1004 // Ack Frame
1005 if (frame_type & kQuicFrameTypeAckMask) {
1006 QuicAckFrame frame;
1007 if (!ProcessAckFrame(header, frame_type, &frame)) {
1008 return RaiseError(QUIC_INVALID_ACK_DATA);
1009 }
1010 if (!visitor_->OnAckFrame(frame)) {
1011 DVLOG(1) << "Visitor asked to stop further processing.";
1012 // Returning true since there was no parsing error.
1013 return true;
1014 }
1015 continue;
1016 }
1017
1018 // Congestion Feedback Frame
1019 if (frame_type & kQuicFrameTypeCongestionFeedbackMask) {
1020 QuicCongestionFeedbackFrame frame;
1021 if (!ProcessQuicCongestionFeedbackFrame(&frame)) {
1022 return RaiseError(QUIC_INVALID_CONGESTION_FEEDBACK_DATA);
1023 }
1024 if (!visitor_->OnCongestionFeedbackFrame(frame)) {
1025 DVLOG(1) << "Visitor asked to stop further processing.";
1026 // Returning true since there was no parsing error.
1027 return true;
1028 }
1029 continue;
1030 }
1031
1032 // This was a special frame type that did not match any
1033 // of the known ones. Error.
1034 set_detailed_error("Illegal frame type.");
1035 DLOG(WARNING) << "Illegal frame type: "
1036 << static_cast<int>(frame_type);
1037 return RaiseError(QUIC_INVALID_FRAME_DATA);
1038 }
1039
1040 switch (frame_type) {
1041 case PADDING_FRAME:
1042 // We're done with the packet.
1043 return true;
1044
1045 case RST_STREAM_FRAME: {
1046 QuicRstStreamFrame frame;
1047 if (!ProcessRstStreamFrame(&frame)) {
1048 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1049 }
1050 if (!visitor_->OnRstStreamFrame(frame)) {
1051 DVLOG(1) << "Visitor asked to stop further processing.";
1052 // Returning true since there was no parsing error.
1053 return true;
1054 }
1055 continue;
1056 }
1057
1058 case CONNECTION_CLOSE_FRAME: {
1059 QuicConnectionCloseFrame frame;
1060 if (!ProcessConnectionCloseFrame(&frame)) {
1061 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1062 }
1063
1064 if (!visitor_->OnConnectionCloseFrame(frame)) {
1065 DVLOG(1) << "Visitor asked to stop further processing.";
1066 // Returning true since there was no parsing error.
1067 return true;
1068 }
1069 continue;
1070 }
1071
1072 case GOAWAY_FRAME: {
1073 QuicGoAwayFrame goaway_frame;
1074 if (!ProcessGoAwayFrame(&goaway_frame)) {
1075 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1076 }
1077 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1078 DVLOG(1) << "Visitor asked to stop further processing.";
1079 // Returning true since there was no parsing error.
1080 return true;
1081 }
1082 continue;
1083 }
1084
1085 default:
1086 set_detailed_error("Illegal frame type.");
1087 DLOG(WARNING) << "Illegal frame type: "
1088 << static_cast<int>(frame_type);
1089 return RaiseError(QUIC_INVALID_FRAME_DATA);
1090 }
1091 }
1092
1093 return true;
1094 }
1095
ProcessStreamFrame(uint8 frame_type,QuicStreamFrame * frame)1096 bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
1097 QuicStreamFrame* frame) {
1098 uint8 stream_flags = frame_type;
1099
1100 stream_flags &= ~kQuicFrameTypeStreamMask;
1101
1102 // Read from right to left: StreamID, Offset, Data Length, Fin.
1103 const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1104 stream_flags >>= kQuicStreamIdShift;
1105
1106 uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1107 // There is no encoding for 1 byte, only 0 and 2 through 8.
1108 if (offset_length > 0) {
1109 offset_length += 1;
1110 }
1111 stream_flags >>= kQuicStreamOffsetShift;
1112
1113 bool has_data_length =
1114 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1115 stream_flags >>= kQuicStreamDataLengthShift;
1116
1117 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1118
1119 frame->stream_id = 0;
1120 if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
1121 set_detailed_error("Unable to read stream_id.");
1122 return false;
1123 }
1124
1125 frame->offset = 0;
1126 if (!reader_->ReadBytes(&frame->offset, offset_length)) {
1127 set_detailed_error("Unable to read offset.");
1128 return false;
1129 }
1130
1131 StringPiece frame_data;
1132 if (has_data_length) {
1133 if (!reader_->ReadStringPiece16(&frame_data)) {
1134 set_detailed_error("Unable to read frame data.");
1135 return false;
1136 }
1137 } else {
1138 if (!reader_->ReadStringPiece(&frame_data, reader_->BytesRemaining())) {
1139 set_detailed_error("Unable to read frame data.");
1140 return false;
1141 }
1142 }
1143 // Point frame to the right data.
1144 frame->data.Clear();
1145 if (!frame_data.empty()) {
1146 frame->data.Append(const_cast<char*>(frame_data.data()), frame_data.size());
1147 }
1148
1149 return true;
1150 }
1151
ProcessAckFrame(const QuicPacketHeader & header,uint8 frame_type,QuicAckFrame * frame)1152 bool QuicFramer::ProcessAckFrame(const QuicPacketHeader& header,
1153 uint8 frame_type,
1154 QuicAckFrame* frame) {
1155 if (!ProcessSentInfo(header, &frame->sent_info)) {
1156 return false;
1157 }
1158 if (!ProcessReceivedInfo(frame_type, &frame->received_info)) {
1159 return false;
1160 }
1161 return true;
1162 }
1163
ProcessReceivedInfo(uint8 frame_type,ReceivedPacketInfo * received_info)1164 bool QuicFramer::ProcessReceivedInfo(uint8 frame_type,
1165 ReceivedPacketInfo* received_info) {
1166 // Determine the three lengths from the frame type: largest observed length,
1167 // missing sequence number length, and missing range length.
1168 const QuicSequenceNumberLength missing_sequence_number_length =
1169 ReadSequenceNumberLength(frame_type);
1170 frame_type >>= kQuicSequenceNumberLengthShift;
1171 const QuicSequenceNumberLength largest_observed_sequence_number_length =
1172 ReadSequenceNumberLength(frame_type);
1173 frame_type >>= kQuicSequenceNumberLengthShift;
1174 received_info->is_truncated = frame_type & kQuicAckTruncatedMask;
1175 frame_type >>= kQuicAckTruncatedShift;
1176 bool has_nacks = frame_type & kQuicHasNacksMask;
1177
1178 if (!reader_->ReadBytes(&received_info->entropy_hash, 1)) {
1179 set_detailed_error("Unable to read entropy hash for received packets.");
1180 return false;
1181 }
1182
1183 if (!reader_->ReadBytes(&received_info->largest_observed,
1184 largest_observed_sequence_number_length)) {
1185 set_detailed_error("Unable to read largest observed.");
1186 return false;
1187 }
1188
1189 uint64 delta_time_largest_observed_us;
1190 if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
1191 set_detailed_error("Unable to read delta time largest observed.");
1192 return false;
1193 }
1194
1195 if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1196 received_info->delta_time_largest_observed = QuicTime::Delta::Infinite();
1197 } else {
1198 received_info->delta_time_largest_observed =
1199 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1200 }
1201
1202 if (!has_nacks) {
1203 return true;
1204 }
1205
1206 uint8 num_missing_ranges;
1207 if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
1208 set_detailed_error("Unable to read num missing packet ranges.");
1209 return false;
1210 }
1211
1212 QuicPacketSequenceNumber last_sequence_number =
1213 received_info->largest_observed;
1214 for (size_t i = 0; i < num_missing_ranges; ++i) {
1215 QuicPacketSequenceNumber missing_delta = 0;
1216 if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1217 set_detailed_error("Unable to read missing sequence number delta.");
1218 return false;
1219 }
1220 last_sequence_number -= missing_delta;
1221 QuicPacketSequenceNumber range_length = 0;
1222 if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1223 set_detailed_error("Unable to read missing sequence number range.");
1224 return false;
1225 }
1226 for (size_t i = 0; i <= range_length; ++i) {
1227 received_info->missing_packets.insert(last_sequence_number - i);
1228 }
1229 // Subtract an extra 1 to ensure ranges are represented efficiently and
1230 // can't overlap by 1 sequence number. This allows a missing_delta of 0
1231 // to represent an adjacent nack range.
1232 last_sequence_number -= (range_length + 1);
1233 }
1234
1235 return true;
1236 }
1237
ProcessSentInfo(const QuicPacketHeader & header,SentPacketInfo * sent_info)1238 bool QuicFramer::ProcessSentInfo(const QuicPacketHeader& header,
1239 SentPacketInfo* sent_info) {
1240 if (!reader_->ReadBytes(&sent_info->entropy_hash, 1)) {
1241 set_detailed_error("Unable to read entropy hash for sent packets.");
1242 return false;
1243 }
1244
1245 QuicPacketSequenceNumber least_unacked_delta = 0;
1246 if (!reader_->ReadBytes(&least_unacked_delta,
1247 header.public_header.sequence_number_length)) {
1248 set_detailed_error("Unable to read least unacked delta.");
1249 return false;
1250 }
1251 DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1252 sent_info->least_unacked =
1253 header.packet_sequence_number - least_unacked_delta;
1254
1255 return true;
1256 }
1257
ProcessQuicCongestionFeedbackFrame(QuicCongestionFeedbackFrame * frame)1258 bool QuicFramer::ProcessQuicCongestionFeedbackFrame(
1259 QuicCongestionFeedbackFrame* frame) {
1260 uint8 feedback_type;
1261 if (!reader_->ReadBytes(&feedback_type, 1)) {
1262 set_detailed_error("Unable to read congestion feedback type.");
1263 return false;
1264 }
1265 frame->type =
1266 static_cast<CongestionFeedbackType>(feedback_type);
1267
1268 switch (frame->type) {
1269 case kInterArrival: {
1270 CongestionFeedbackMessageInterArrival* inter_arrival =
1271 &frame->inter_arrival;
1272 if (!reader_->ReadUInt16(
1273 &inter_arrival->accumulated_number_of_lost_packets)) {
1274 set_detailed_error(
1275 "Unable to read accumulated number of lost packets.");
1276 return false;
1277 }
1278 uint8 num_received_packets;
1279 if (!reader_->ReadBytes(&num_received_packets, 1)) {
1280 set_detailed_error("Unable to read num received packets.");
1281 return false;
1282 }
1283
1284 if (num_received_packets > 0u) {
1285 uint64 smallest_received;
1286 if (!ProcessPacketSequenceNumber(PACKET_6BYTE_SEQUENCE_NUMBER,
1287 &smallest_received)) {
1288 set_detailed_error("Unable to read smallest received.");
1289 return false;
1290 }
1291
1292 uint64 time_received_us;
1293 if (!reader_->ReadUInt64(&time_received_us)) {
1294 set_detailed_error("Unable to read time received.");
1295 return false;
1296 }
1297 QuicTime time_received = creation_time_.Add(
1298 QuicTime::Delta::FromMicroseconds(time_received_us));
1299
1300 inter_arrival->received_packet_times.insert(
1301 make_pair(smallest_received, time_received));
1302
1303 for (uint8 i = 0; i < num_received_packets - 1; ++i) {
1304 uint16 sequence_delta;
1305 if (!reader_->ReadUInt16(&sequence_delta)) {
1306 set_detailed_error(
1307 "Unable to read sequence delta in received packets.");
1308 return false;
1309 }
1310
1311 int32 time_delta_us;
1312 if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1313 set_detailed_error(
1314 "Unable to read time delta in received packets.");
1315 return false;
1316 }
1317 QuicPacketSequenceNumber packet = smallest_received + sequence_delta;
1318 inter_arrival->received_packet_times.insert(
1319 make_pair(packet, time_received.Add(
1320 QuicTime::Delta::FromMicroseconds(time_delta_us))));
1321 }
1322 }
1323 break;
1324 }
1325 case kFixRate: {
1326 uint32 bitrate = 0;
1327 if (!reader_->ReadUInt32(&bitrate)) {
1328 set_detailed_error("Unable to read bitrate.");
1329 return false;
1330 }
1331 frame->fix_rate.bitrate = QuicBandwidth::FromBytesPerSecond(bitrate);
1332 break;
1333 }
1334 case kTCP: {
1335 CongestionFeedbackMessageTCP* tcp = &frame->tcp;
1336 if (!reader_->ReadUInt16(&tcp->accumulated_number_of_lost_packets)) {
1337 set_detailed_error(
1338 "Unable to read accumulated number of lost packets.");
1339 return false;
1340 }
1341 // TODO(ianswett): Remove receive window, since it's constant.
1342 uint16 receive_window = 0;
1343 if (!reader_->ReadUInt16(&receive_window)) {
1344 set_detailed_error("Unable to read receive window.");
1345 return false;
1346 }
1347 // Simple bit packing, don't send the 4 least significant bits.
1348 tcp->receive_window = static_cast<QuicByteCount>(receive_window) << 4;
1349 break;
1350 }
1351 default:
1352 set_detailed_error("Illegal congestion feedback type.");
1353 DLOG(WARNING) << "Illegal congestion feedback type: "
1354 << frame->type;
1355 return RaiseError(QUIC_INVALID_FRAME_DATA);
1356 }
1357
1358 return true;
1359 }
1360
ProcessRstStreamFrame(QuicRstStreamFrame * frame)1361 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
1362 if (!reader_->ReadUInt32(&frame->stream_id)) {
1363 set_detailed_error("Unable to read stream_id.");
1364 return false;
1365 }
1366
1367 uint32 error_code;
1368 if (!reader_->ReadUInt32(&error_code)) {
1369 set_detailed_error("Unable to read rst stream error code.");
1370 return false;
1371 }
1372
1373 if (error_code >= QUIC_STREAM_LAST_ERROR ||
1374 error_code < QUIC_STREAM_NO_ERROR) {
1375 set_detailed_error("Invalid rst stream error code.");
1376 return false;
1377 }
1378
1379 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1380
1381 StringPiece error_details;
1382 if (!reader_->ReadStringPiece16(&error_details)) {
1383 set_detailed_error("Unable to read rst stream error details.");
1384 return false;
1385 }
1386 frame->error_details = error_details.as_string();
1387
1388 return true;
1389 }
1390
ProcessConnectionCloseFrame(QuicConnectionCloseFrame * frame)1391 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
1392 uint32 error_code;
1393 if (!reader_->ReadUInt32(&error_code)) {
1394 set_detailed_error("Unable to read connection close error code.");
1395 return false;
1396 }
1397
1398 if (error_code >= QUIC_LAST_ERROR ||
1399 error_code < QUIC_NO_ERROR) {
1400 set_detailed_error("Invalid error code.");
1401 return false;
1402 }
1403
1404 frame->error_code = static_cast<QuicErrorCode>(error_code);
1405
1406 StringPiece error_details;
1407 if (!reader_->ReadStringPiece16(&error_details)) {
1408 set_detailed_error("Unable to read connection close error details.");
1409 return false;
1410 }
1411 frame->error_details = error_details.as_string();
1412
1413 return true;
1414 }
1415
ProcessGoAwayFrame(QuicGoAwayFrame * frame)1416 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
1417 uint32 error_code;
1418 if (!reader_->ReadUInt32(&error_code)) {
1419 set_detailed_error("Unable to read go away error code.");
1420 return false;
1421 }
1422 frame->error_code = static_cast<QuicErrorCode>(error_code);
1423
1424 if (error_code >= QUIC_LAST_ERROR ||
1425 error_code < QUIC_NO_ERROR) {
1426 set_detailed_error("Invalid error code.");
1427 return false;
1428 }
1429
1430 uint32 stream_id;
1431 if (!reader_->ReadUInt32(&stream_id)) {
1432 set_detailed_error("Unable to read last good stream id.");
1433 return false;
1434 }
1435 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1436
1437 StringPiece reason_phrase;
1438 if (!reader_->ReadStringPiece16(&reason_phrase)) {
1439 set_detailed_error("Unable to read goaway reason.");
1440 return false;
1441 }
1442 frame->reason_phrase = reason_phrase.as_string();
1443
1444 return true;
1445 }
1446
1447 // static
GetAssociatedDataFromEncryptedPacket(const QuicEncryptedPacket & encrypted,QuicGuidLength guid_length,bool includes_version,QuicSequenceNumberLength sequence_number_length)1448 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1449 const QuicEncryptedPacket& encrypted,
1450 QuicGuidLength guid_length,
1451 bool includes_version,
1452 QuicSequenceNumberLength sequence_number_length) {
1453 return StringPiece(encrypted.data() + kStartOfHashData,
1454 GetStartOfEncryptedData(
1455 guid_length, includes_version, sequence_number_length)
1456 - kStartOfHashData);
1457 }
1458
SetDecrypter(QuicDecrypter * decrypter)1459 void QuicFramer::SetDecrypter(QuicDecrypter* decrypter) {
1460 DCHECK(alternative_decrypter_.get() == NULL);
1461 decrypter_.reset(decrypter);
1462 }
1463
SetAlternativeDecrypter(QuicDecrypter * decrypter,bool latch_once_used)1464 void QuicFramer::SetAlternativeDecrypter(QuicDecrypter* decrypter,
1465 bool latch_once_used) {
1466 alternative_decrypter_.reset(decrypter);
1467 alternative_decrypter_latch_ = latch_once_used;
1468 }
1469
decrypter() const1470 const QuicDecrypter* QuicFramer::decrypter() const {
1471 return decrypter_.get();
1472 }
1473
alternative_decrypter() const1474 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1475 return alternative_decrypter_.get();
1476 }
1477
SetEncrypter(EncryptionLevel level,QuicEncrypter * encrypter)1478 void QuicFramer::SetEncrypter(EncryptionLevel level,
1479 QuicEncrypter* encrypter) {
1480 DCHECK_GE(level, 0);
1481 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1482 encrypter_[level].reset(encrypter);
1483 }
1484
encrypter(EncryptionLevel level) const1485 const QuicEncrypter* QuicFramer::encrypter(EncryptionLevel level) const {
1486 DCHECK_GE(level, 0);
1487 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1488 DCHECK(encrypter_[level].get() != NULL);
1489 return encrypter_[level].get();
1490 }
1491
SwapCryptersForTest(QuicFramer * other)1492 void QuicFramer::SwapCryptersForTest(QuicFramer* other) {
1493 for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1494 encrypter_[i].swap(other->encrypter_[i]);
1495 }
1496 decrypter_.swap(other->decrypter_);
1497 alternative_decrypter_.swap(other->alternative_decrypter_);
1498
1499 const bool other_latch = other->alternative_decrypter_latch_;
1500 other->alternative_decrypter_latch_ = alternative_decrypter_latch_;
1501 alternative_decrypter_latch_ = other_latch;
1502 }
1503
EncryptPacket(EncryptionLevel level,QuicPacketSequenceNumber packet_sequence_number,const QuicPacket & packet)1504 QuicEncryptedPacket* QuicFramer::EncryptPacket(
1505 EncryptionLevel level,
1506 QuicPacketSequenceNumber packet_sequence_number,
1507 const QuicPacket& packet) {
1508 DCHECK(encrypter_[level].get() != NULL);
1509
1510 scoped_ptr<QuicData> out(encrypter_[level]->EncryptPacket(
1511 packet_sequence_number, packet.AssociatedData(), packet.Plaintext()));
1512 if (out.get() == NULL) {
1513 RaiseError(QUIC_ENCRYPTION_FAILURE);
1514 return NULL;
1515 }
1516 StringPiece header_data = packet.BeforePlaintext();
1517 size_t len = header_data.length() + out->length();
1518 char* buffer = new char[len];
1519 // TODO(rch): eliminate this buffer copy by passing in a buffer to Encrypt().
1520 memcpy(buffer, header_data.data(), header_data.length());
1521 memcpy(buffer + header_data.length(), out->data(), out->length());
1522 return new QuicEncryptedPacket(buffer, len, true);
1523 }
1524
GetMaxPlaintextSize(size_t ciphertext_size)1525 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1526 // In order to keep the code simple, we don't have the current encryption
1527 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1528 size_t min_plaintext_size = ciphertext_size;
1529
1530 for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1531 if (encrypter_[i].get() != NULL) {
1532 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1533 if (size < min_plaintext_size) {
1534 min_plaintext_size = size;
1535 }
1536 }
1537 }
1538
1539 return min_plaintext_size;
1540 }
1541
DecryptPayload(const QuicPacketHeader & header,const QuicEncryptedPacket & packet)1542 bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
1543 const QuicEncryptedPacket& packet) {
1544 StringPiece encrypted;
1545 if (!reader_->ReadStringPiece(&encrypted, reader_->BytesRemaining())) {
1546 return false;
1547 }
1548 DCHECK(decrypter_.get() != NULL);
1549 decrypted_.reset(decrypter_->DecryptPacket(
1550 header.packet_sequence_number,
1551 GetAssociatedDataFromEncryptedPacket(
1552 packet,
1553 header.public_header.guid_length,
1554 header.public_header.version_flag,
1555 header.public_header.sequence_number_length),
1556 encrypted));
1557 if (decrypted_.get() == NULL && alternative_decrypter_.get() != NULL) {
1558 decrypted_.reset(alternative_decrypter_->DecryptPacket(
1559 header.packet_sequence_number,
1560 GetAssociatedDataFromEncryptedPacket(
1561 packet,
1562 header.public_header.guid_length,
1563 header.public_header.version_flag,
1564 header.public_header.sequence_number_length),
1565 encrypted));
1566 if (decrypted_.get() != NULL) {
1567 if (alternative_decrypter_latch_) {
1568 // Switch to the alternative decrypter and latch so that we cannot
1569 // switch back.
1570 decrypter_.reset(alternative_decrypter_.release());
1571 } else {
1572 // Switch the alternative decrypter so that we use it first next time.
1573 decrypter_.swap(alternative_decrypter_);
1574 }
1575 }
1576 }
1577
1578 if (decrypted_.get() == NULL) {
1579 return false;
1580 }
1581
1582 reader_.reset(new QuicDataReader(decrypted_->data(), decrypted_->length()));
1583 return true;
1584 }
1585
GetAckFrameSize(const QuicAckFrame & ack,QuicSequenceNumberLength sequence_number_length)1586 size_t QuicFramer::GetAckFrameSize(
1587 const QuicAckFrame& ack,
1588 QuicSequenceNumberLength sequence_number_length) {
1589 AckFrameInfo ack_info = GetAckFrameInfo(ack);
1590 QuicSequenceNumberLength largest_observed_length =
1591 GetMinSequenceNumberLength(ack.received_info.largest_observed);
1592 QuicSequenceNumberLength missing_sequence_number_length =
1593 GetMinSequenceNumberLength(ack_info.max_delta);
1594
1595 return GetMinAckFrameSize(quic_version_,
1596 sequence_number_length,
1597 largest_observed_length) +
1598 (ack_info.nack_ranges.empty() ? 0 : kNumberOfMissingPacketsSize) +
1599 ack_info.nack_ranges.size() *
1600 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1601 }
1602
ComputeFrameLength(const QuicFrame & frame,bool last_frame_in_packet,QuicSequenceNumberLength sequence_number_length)1603 size_t QuicFramer::ComputeFrameLength(
1604 const QuicFrame& frame,
1605 bool last_frame_in_packet,
1606 QuicSequenceNumberLength sequence_number_length) {
1607 switch (frame.type) {
1608 case STREAM_FRAME:
1609 return GetMinStreamFrameSize(quic_version_,
1610 frame.stream_frame->stream_id,
1611 frame.stream_frame->offset,
1612 last_frame_in_packet) +
1613 frame.stream_frame->data.TotalBufferSize();
1614 case ACK_FRAME: {
1615 return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1616 }
1617 case CONGESTION_FEEDBACK_FRAME: {
1618 size_t len = kQuicFrameTypeSize;
1619 const QuicCongestionFeedbackFrame& congestion_feedback =
1620 *frame.congestion_feedback_frame;
1621 len += 1; // Congestion feedback type.
1622
1623 switch (congestion_feedback.type) {
1624 case kInterArrival: {
1625 const CongestionFeedbackMessageInterArrival& inter_arrival =
1626 congestion_feedback.inter_arrival;
1627 len += 2;
1628 len += 1; // Number received packets.
1629 if (inter_arrival.received_packet_times.size() > 0) {
1630 len += PACKET_6BYTE_SEQUENCE_NUMBER; // Smallest received.
1631 len += 8; // Time.
1632 // 2 bytes per sequence number delta plus 4 bytes per delta time.
1633 len += PACKET_6BYTE_SEQUENCE_NUMBER *
1634 (inter_arrival.received_packet_times.size() - 1);
1635 }
1636 break;
1637 }
1638 case kFixRate:
1639 len += 4;
1640 break;
1641 case kTCP:
1642 len += 4;
1643 break;
1644 default:
1645 set_detailed_error("Illegal feedback type.");
1646 DVLOG(1) << "Illegal feedback type: " << congestion_feedback.type;
1647 break;
1648 }
1649 return len;
1650 }
1651 case RST_STREAM_FRAME:
1652 return GetMinRstStreamFrameSize() +
1653 frame.rst_stream_frame->error_details.size();
1654 case CONNECTION_CLOSE_FRAME:
1655 return GetMinConnectionCloseFrameSize() +
1656 frame.connection_close_frame->error_details.size();
1657 case GOAWAY_FRAME:
1658 return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1659 case PADDING_FRAME:
1660 DCHECK(false);
1661 return 0;
1662 case NUM_FRAME_TYPES:
1663 DCHECK(false);
1664 return 0;
1665 }
1666
1667 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1668 DCHECK(false);
1669 return 0;
1670 }
1671
AppendTypeByte(const QuicFrame & frame,bool last_frame_in_packet,QuicDataWriter * writer)1672 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1673 bool last_frame_in_packet,
1674 QuicDataWriter* writer) {
1675 uint8 type_byte = 0;
1676 switch (frame.type) {
1677 case STREAM_FRAME: {
1678 if (frame.stream_frame == NULL) {
1679 LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1680 }
1681 // Fin bit.
1682 type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1683
1684 // Data Length bit.
1685 type_byte <<= kQuicStreamDataLengthShift;
1686 type_byte |= last_frame_in_packet ? 0 : kQuicStreamDataLengthMask;
1687
1688 // Offset 3 bits.
1689 type_byte <<= kQuicStreamOffsetShift;
1690 const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1691 if (offset_len > 0) {
1692 type_byte |= offset_len - 1;
1693 }
1694
1695 // stream id 2 bits.
1696 type_byte <<= kQuicStreamIdShift;
1697 type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1698 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
1699 break;
1700 }
1701 case ACK_FRAME:
1702 return true;
1703 case CONGESTION_FEEDBACK_FRAME: {
1704 // TODO(ianswett): Use extra 5 bits in the congestion feedback framing.
1705 type_byte = kQuicFrameTypeCongestionFeedbackMask;
1706 break;
1707 }
1708 default:
1709 type_byte = frame.type;
1710 break;
1711 }
1712
1713 return writer->WriteUInt8(type_byte);
1714 }
1715
1716 // static
AppendPacketSequenceNumber(QuicSequenceNumberLength sequence_number_length,QuicPacketSequenceNumber packet_sequence_number,QuicDataWriter * writer)1717 bool QuicFramer::AppendPacketSequenceNumber(
1718 QuicSequenceNumberLength sequence_number_length,
1719 QuicPacketSequenceNumber packet_sequence_number,
1720 QuicDataWriter* writer) {
1721 // Ensure the entire sequence number can be written.
1722 if (writer->capacity() - writer->length() <
1723 static_cast<size_t>(sequence_number_length)) {
1724 return false;
1725 }
1726 switch (sequence_number_length) {
1727 case PACKET_1BYTE_SEQUENCE_NUMBER:
1728 return writer->WriteUInt8(
1729 packet_sequence_number & k1ByteSequenceNumberMask);
1730 break;
1731 case PACKET_2BYTE_SEQUENCE_NUMBER:
1732 return writer->WriteUInt16(
1733 packet_sequence_number & k2ByteSequenceNumberMask);
1734 break;
1735 case PACKET_4BYTE_SEQUENCE_NUMBER:
1736 return writer->WriteUInt32(
1737 packet_sequence_number & k4ByteSequenceNumberMask);
1738 break;
1739 case PACKET_6BYTE_SEQUENCE_NUMBER:
1740 return writer->WriteUInt48(
1741 packet_sequence_number & k6ByteSequenceNumberMask);
1742 break;
1743 default:
1744 NOTREACHED() << "sequence_number_length: " << sequence_number_length;
1745 return false;
1746 }
1747 }
1748
AppendStreamFramePayload(const QuicStreamFrame & frame,bool last_frame_in_packet,QuicDataWriter * writer)1749 bool QuicFramer::AppendStreamFramePayload(
1750 const QuicStreamFrame& frame,
1751 bool last_frame_in_packet,
1752 QuicDataWriter* writer) {
1753 if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1754 return false;
1755 }
1756 if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1757 return false;
1758 }
1759 if (!last_frame_in_packet) {
1760 if (!writer->WriteUInt16(frame.data.TotalBufferSize())) {
1761 return false;
1762 }
1763 }
1764
1765 if (!writer->WriteIOVector(frame.data)) {
1766 return false;
1767 }
1768 return true;
1769 }
1770
1771 // static
HasVersionFlag(const QuicEncryptedPacket & packet)1772 bool QuicFramer::HasVersionFlag(const QuicEncryptedPacket& packet) {
1773 return packet.length() > 0 &&
1774 (packet.data()[0] & PACKET_PUBLIC_FLAGS_VERSION) != 0;
1775 }
1776
1777 // static
CalculateLargestObserved(const SequenceNumberSet & missing_packets,SequenceNumberSet::const_iterator largest_written)1778 QuicPacketSequenceNumber QuicFramer::CalculateLargestObserved(
1779 const SequenceNumberSet& missing_packets,
1780 SequenceNumberSet::const_iterator largest_written) {
1781 SequenceNumberSet::const_iterator it = largest_written;
1782 QuicPacketSequenceNumber previous_missing = *it;
1783 ++it;
1784
1785 // See if the next thing is a gap in the missing packets: if it's a
1786 // non-missing packet we can return it.
1787 if (it != missing_packets.end() && previous_missing + 1 != *it) {
1788 return *it - 1;
1789 }
1790
1791 // Otherwise return the largest missing packet, as indirectly observed.
1792 return *largest_written;
1793 }
1794
set_version(const QuicVersion version)1795 void QuicFramer::set_version(const QuicVersion version) {
1796 DCHECK(IsSupportedVersion(version));
1797 quic_version_ = version;
1798 }
1799
AppendAckFramePayloadAndTypeByte(const QuicPacketHeader & header,const QuicAckFrame & frame,QuicDataWriter * writer)1800 bool QuicFramer::AppendAckFramePayloadAndTypeByte(
1801 const QuicPacketHeader& header,
1802 const QuicAckFrame& frame,
1803 QuicDataWriter* writer) {
1804 AckFrameInfo ack_info = GetAckFrameInfo(frame);
1805 QuicPacketSequenceNumber ack_largest_observed =
1806 frame.received_info.largest_observed;
1807 QuicSequenceNumberLength largest_observed_length =
1808 GetMinSequenceNumberLength(ack_largest_observed);
1809 QuicSequenceNumberLength missing_sequence_number_length =
1810 GetMinSequenceNumberLength(ack_info.max_delta);
1811 // Determine whether we need to truncate ranges.
1812 size_t available_range_bytes = writer->capacity() - writer->length() -
1813 GetMinAckFrameSize(quic_version_,
1814 header.public_header.sequence_number_length,
1815 largest_observed_length);
1816 size_t max_num_ranges = available_range_bytes /
1817 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1818 max_num_ranges =
1819 min(static_cast<size_t>(numeric_limits<uint8>::max()), max_num_ranges);
1820 bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
1821 DVLOG_IF(1, truncated) << "Truncating ack from "
1822 << ack_info.nack_ranges.size() << " ranges to "
1823 << max_num_ranges;
1824
1825 // Write out the type byte by setting the low order bits and doing shifts
1826 // to make room for the next bit flags to be set.
1827 // Whether there are any nacks.
1828 uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
1829
1830 // truncating bit.
1831 type_byte <<= kQuicAckTruncatedShift;
1832 type_byte |= truncated ? kQuicAckTruncatedMask : 0;
1833
1834 // Largest observed sequence number length.
1835 type_byte <<= kQuicSequenceNumberLengthShift;
1836 type_byte |= GetSequenceNumberFlags(largest_observed_length);
1837
1838 // Missing sequence number length.
1839 type_byte <<= kQuicSequenceNumberLengthShift;
1840 type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
1841
1842 type_byte |= kQuicFrameTypeAckMask;
1843
1844 if (!writer->WriteUInt8(type_byte)) {
1845 return false;
1846 }
1847
1848 // TODO(satyamshekhar): Decide how often we really should send this
1849 // entropy_hash update.
1850 if (!writer->WriteUInt8(frame.sent_info.entropy_hash)) {
1851 return false;
1852 }
1853
1854 DCHECK_GE(header.packet_sequence_number, frame.sent_info.least_unacked);
1855 const QuicPacketSequenceNumber least_unacked_delta =
1856 header.packet_sequence_number - frame.sent_info.least_unacked;
1857 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
1858 least_unacked_delta, writer)) {
1859 return false;
1860 }
1861
1862 const ReceivedPacketInfo& received_info = frame.received_info;
1863 QuicPacketEntropyHash ack_entropy_hash = received_info.entropy_hash;
1864 NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
1865 if (truncated) {
1866 // Skip the nack ranges which the truncated ack won't include and set
1867 // a correct largest observed for the truncated ack.
1868 for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
1869 ++i) {
1870 ++ack_iter;
1871 }
1872 // If the last range is followed by acks, include them.
1873 // If the last range is followed by another range, specify the end of the
1874 // range as the largest_observed.
1875 ack_largest_observed = ack_iter->first - 1;
1876 // Also update the entropy so it matches the largest observed.
1877 ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
1878 ++ack_iter;
1879 }
1880
1881 if (!writer->WriteUInt8(ack_entropy_hash)) {
1882 return false;
1883 }
1884
1885 if (!AppendPacketSequenceNumber(largest_observed_length,
1886 ack_largest_observed, writer)) {
1887 return false;
1888 }
1889
1890 uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
1891 if (!received_info.delta_time_largest_observed.IsInfinite()) {
1892 DCHECK_LE(0u,
1893 frame.received_info.delta_time_largest_observed.ToMicroseconds());
1894 delta_time_largest_observed_us =
1895 received_info.delta_time_largest_observed.ToMicroseconds();
1896 }
1897
1898 if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
1899 return false;
1900 }
1901
1902 if (ack_info.nack_ranges.empty()) {
1903 return true;
1904 }
1905
1906 const uint8 num_missing_ranges =
1907 min(ack_info.nack_ranges.size(), max_num_ranges);
1908 if (!writer->WriteBytes(&num_missing_ranges, 1)) {
1909 return false;
1910 }
1911
1912 int num_ranges_written = 0;
1913 QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
1914 for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
1915 // Calculate the delta to the last number in the range.
1916 QuicPacketSequenceNumber missing_delta =
1917 last_sequence_written - (ack_iter->first + ack_iter->second);
1918 if (!AppendPacketSequenceNumber(missing_sequence_number_length,
1919 missing_delta, writer)) {
1920 return false;
1921 }
1922 if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
1923 ack_iter->second, writer)) {
1924 return false;
1925 }
1926 // Subtract 1 so a missing_delta of 0 means an adjacent range.
1927 last_sequence_written = ack_iter->first - 1;
1928 ++num_ranges_written;
1929 }
1930
1931 DCHECK_EQ(num_missing_ranges, num_ranges_written);
1932 return true;
1933 }
1934
AppendQuicCongestionFeedbackFramePayload(const QuicCongestionFeedbackFrame & frame,QuicDataWriter * writer)1935 bool QuicFramer::AppendQuicCongestionFeedbackFramePayload(
1936 const QuicCongestionFeedbackFrame& frame,
1937 QuicDataWriter* writer) {
1938 if (!writer->WriteBytes(&frame.type, 1)) {
1939 return false;
1940 }
1941
1942 switch (frame.type) {
1943 case kInterArrival: {
1944 const CongestionFeedbackMessageInterArrival& inter_arrival =
1945 frame.inter_arrival;
1946 if (!writer->WriteUInt16(
1947 inter_arrival.accumulated_number_of_lost_packets)) {
1948 return false;
1949 }
1950 DCHECK_GE(numeric_limits<uint8>::max(),
1951 inter_arrival.received_packet_times.size());
1952 if (inter_arrival.received_packet_times.size() >
1953 numeric_limits<uint8>::max()) {
1954 return false;
1955 }
1956 // TODO(ianswett): Make num_received_packets a varint.
1957 uint8 num_received_packets =
1958 inter_arrival.received_packet_times.size();
1959 if (!writer->WriteBytes(&num_received_packets, 1)) {
1960 return false;
1961 }
1962 if (num_received_packets > 0) {
1963 TimeMap::const_iterator it =
1964 inter_arrival.received_packet_times.begin();
1965
1966 QuicPacketSequenceNumber lowest_sequence = it->first;
1967 if (!AppendPacketSequenceNumber(PACKET_6BYTE_SEQUENCE_NUMBER,
1968 lowest_sequence, writer)) {
1969 return false;
1970 }
1971
1972 QuicTime lowest_time = it->second;
1973 if (!writer->WriteUInt64(
1974 lowest_time.Subtract(creation_time_).ToMicroseconds())) {
1975 return false;
1976 }
1977
1978 for (++it; it != inter_arrival.received_packet_times.end(); ++it) {
1979 QuicPacketSequenceNumber sequence_delta = it->first - lowest_sequence;
1980 DCHECK_GE(numeric_limits<uint16>::max(), sequence_delta);
1981 if (sequence_delta > numeric_limits<uint16>::max()) {
1982 return false;
1983 }
1984 if (!writer->WriteUInt16(static_cast<uint16>(sequence_delta))) {
1985 return false;
1986 }
1987
1988 int32 time_delta_us =
1989 it->second.Subtract(lowest_time).ToMicroseconds();
1990 if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
1991 return false;
1992 }
1993 }
1994 }
1995 break;
1996 }
1997 case kFixRate: {
1998 const CongestionFeedbackMessageFixRate& fix_rate =
1999 frame.fix_rate;
2000 if (!writer->WriteUInt32(fix_rate.bitrate.ToBytesPerSecond())) {
2001 return false;
2002 }
2003 break;
2004 }
2005 case kTCP: {
2006 const CongestionFeedbackMessageTCP& tcp = frame.tcp;
2007 DCHECK_LE(tcp.receive_window, 1u << 20);
2008 // Simple bit packing, don't send the 4 least significant bits.
2009 uint16 receive_window = static_cast<uint16>(tcp.receive_window >> 4);
2010 if (!writer->WriteUInt16(tcp.accumulated_number_of_lost_packets)) {
2011 return false;
2012 }
2013 if (!writer->WriteUInt16(receive_window)) {
2014 return false;
2015 }
2016 break;
2017 }
2018 default:
2019 return false;
2020 }
2021
2022 return true;
2023 }
2024
AppendRstStreamFramePayload(const QuicRstStreamFrame & frame,QuicDataWriter * writer)2025 bool QuicFramer::AppendRstStreamFramePayload(
2026 const QuicRstStreamFrame& frame,
2027 QuicDataWriter* writer) {
2028 if (!writer->WriteUInt32(frame.stream_id)) {
2029 return false;
2030 }
2031
2032 uint32 error_code = static_cast<uint32>(frame.error_code);
2033 if (!writer->WriteUInt32(error_code)) {
2034 return false;
2035 }
2036
2037 if (!writer->WriteStringPiece16(frame.error_details)) {
2038 return false;
2039 }
2040 return true;
2041 }
2042
AppendConnectionCloseFramePayload(const QuicConnectionCloseFrame & frame,QuicDataWriter * writer)2043 bool QuicFramer::AppendConnectionCloseFramePayload(
2044 const QuicConnectionCloseFrame& frame,
2045 QuicDataWriter* writer) {
2046 uint32 error_code = static_cast<uint32>(frame.error_code);
2047 if (!writer->WriteUInt32(error_code)) {
2048 return false;
2049 }
2050 if (!writer->WriteStringPiece16(frame.error_details)) {
2051 return false;
2052 }
2053 return true;
2054 }
2055
AppendGoAwayFramePayload(const QuicGoAwayFrame & frame,QuicDataWriter * writer)2056 bool QuicFramer::AppendGoAwayFramePayload(const QuicGoAwayFrame& frame,
2057 QuicDataWriter* writer) {
2058 uint32 error_code = static_cast<uint32>(frame.error_code);
2059 if (!writer->WriteUInt32(error_code)) {
2060 return false;
2061 }
2062 uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2063 if (!writer->WriteUInt32(stream_id)) {
2064 return false;
2065 }
2066 if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2067 return false;
2068 }
2069 return true;
2070 }
2071
RaiseError(QuicErrorCode error)2072 bool QuicFramer::RaiseError(QuicErrorCode error) {
2073 DVLOG(1) << detailed_error_;
2074 set_error(error);
2075 visitor_->OnError(this);
2076 reader_.reset(NULL);
2077 return false;
2078 }
2079
2080 } // namespace net
2081