• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/Analysis/Analyses/LiveVariables.h"
20 #include "clang/Analysis/AnalysisContext.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
28 #include "llvm/ADT/ImmutableList.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 using namespace clang;
34 using namespace ento;
35 
36 //===----------------------------------------------------------------------===//
37 // Representation of binding keys.
38 //===----------------------------------------------------------------------===//
39 
40 namespace {
41 class BindingKey {
42 public:
43   enum Kind { Default = 0x0, Direct = 0x1 };
44 private:
45   enum { Symbolic = 0x2 };
46 
47   llvm::PointerIntPair<const MemRegion *, 2> P;
48   uint64_t Data;
49 
50   /// Create a key for a binding to region \p r, which has a symbolic offset
51   /// from region \p Base.
BindingKey(const SubRegion * r,const SubRegion * Base,Kind k)52   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
53     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
54     assert(r && Base && "Must have known regions.");
55     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
56   }
57 
58   /// Create a key for a binding at \p offset from base region \p r.
BindingKey(const MemRegion * r,uint64_t offset,Kind k)59   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
60     : P(r, k), Data(offset) {
61     assert(r && "Must have known regions.");
62     assert(getOffset() == offset && "Failed to store offset");
63     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
64   }
65 public:
66 
isDirect() const67   bool isDirect() const { return P.getInt() & Direct; }
hasSymbolicOffset() const68   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
69 
getRegion() const70   const MemRegion *getRegion() const { return P.getPointer(); }
getOffset() const71   uint64_t getOffset() const {
72     assert(!hasSymbolicOffset());
73     return Data;
74   }
75 
getConcreteOffsetRegion() const76   const SubRegion *getConcreteOffsetRegion() const {
77     assert(hasSymbolicOffset());
78     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
79   }
80 
getBaseRegion() const81   const MemRegion *getBaseRegion() const {
82     if (hasSymbolicOffset())
83       return getConcreteOffsetRegion()->getBaseRegion();
84     return getRegion()->getBaseRegion();
85   }
86 
Profile(llvm::FoldingSetNodeID & ID) const87   void Profile(llvm::FoldingSetNodeID& ID) const {
88     ID.AddPointer(P.getOpaqueValue());
89     ID.AddInteger(Data);
90   }
91 
92   static BindingKey Make(const MemRegion *R, Kind k);
93 
operator <(const BindingKey & X) const94   bool operator<(const BindingKey &X) const {
95     if (P.getOpaqueValue() < X.P.getOpaqueValue())
96       return true;
97     if (P.getOpaqueValue() > X.P.getOpaqueValue())
98       return false;
99     return Data < X.Data;
100   }
101 
operator ==(const BindingKey & X) const102   bool operator==(const BindingKey &X) const {
103     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
104            Data == X.Data;
105   }
106 
107   LLVM_ATTRIBUTE_USED void dump() const;
108 };
109 } // end anonymous namespace
110 
Make(const MemRegion * R,Kind k)111 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
112   const RegionOffset &RO = R->getAsOffset();
113   if (RO.hasSymbolicOffset())
114     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
115 
116   return BindingKey(RO.getRegion(), RO.getOffset(), k);
117 }
118 
119 namespace llvm {
120   static inline
operator <<(raw_ostream & os,BindingKey K)121   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
122     os << '(' << K.getRegion();
123     if (!K.hasSymbolicOffset())
124       os << ',' << K.getOffset();
125     os << ',' << (K.isDirect() ? "direct" : "default")
126        << ')';
127     return os;
128   }
129 
130   template <typename T> struct isPodLike;
131   template <> struct isPodLike<BindingKey> {
132     static const bool value = true;
133   };
134 } // end llvm namespace
135 
dump() const136 void BindingKey::dump() const {
137   llvm::errs() << *this;
138 }
139 
140 //===----------------------------------------------------------------------===//
141 // Actual Store type.
142 //===----------------------------------------------------------------------===//
143 
144 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
145 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
146 typedef std::pair<BindingKey, SVal> BindingPair;
147 
148 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
149         RegionBindings;
150 
151 namespace {
152 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
153                                  ClusterBindings> {
154  ClusterBindings::Factory &CBFactory;
155 public:
156   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
157           ParentTy;
158 
RegionBindingsRef(ClusterBindings::Factory & CBFactory,const RegionBindings::TreeTy * T,RegionBindings::TreeTy::Factory * F)159   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
160                     const RegionBindings::TreeTy *T,
161                     RegionBindings::TreeTy::Factory *F)
162     : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
163       CBFactory(CBFactory) {}
164 
RegionBindingsRef(const ParentTy & P,ClusterBindings::Factory & CBFactory)165   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
166     : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
167       CBFactory(CBFactory) {}
168 
add(key_type_ref K,data_type_ref D) const169   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
170     return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
171                              CBFactory);
172   }
173 
remove(key_type_ref K) const174   RegionBindingsRef remove(key_type_ref K) const {
175     return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
176                              CBFactory);
177   }
178 
179   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
180 
181   RegionBindingsRef addBinding(const MemRegion *R,
182                                BindingKey::Kind k, SVal V) const;
183 
operator =(const RegionBindingsRef & X)184   RegionBindingsRef &operator=(const RegionBindingsRef &X) {
185     *static_cast<ParentTy*>(this) = X;
186     return *this;
187   }
188 
189   const SVal *lookup(BindingKey K) const;
190   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
lookup(const MemRegion * R) const191   const ClusterBindings *lookup(const MemRegion *R) const {
192     return static_cast<const ParentTy*>(this)->lookup(R);
193   }
194 
195   RegionBindingsRef removeBinding(BindingKey K);
196 
197   RegionBindingsRef removeBinding(const MemRegion *R,
198                                   BindingKey::Kind k);
199 
removeBinding(const MemRegion * R)200   RegionBindingsRef removeBinding(const MemRegion *R) {
201     return removeBinding(R, BindingKey::Direct).
202            removeBinding(R, BindingKey::Default);
203   }
204 
205   Optional<SVal> getDirectBinding(const MemRegion *R) const;
206 
207   /// getDefaultBinding - Returns an SVal* representing an optional default
208   ///  binding associated with a region and its subregions.
209   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
210 
211   /// Return the internal tree as a Store.
asStore() const212   Store asStore() const {
213     return asImmutableMap().getRootWithoutRetain();
214   }
215 
dump(raw_ostream & OS,const char * nl) const216   void dump(raw_ostream &OS, const char *nl) const {
217    for (iterator I = begin(), E = end(); I != E; ++I) {
218      const ClusterBindings &Cluster = I.getData();
219      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
220           CI != CE; ++CI) {
221        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
222      }
223      OS << nl;
224    }
225   }
226 
dump() const227   LLVM_ATTRIBUTE_USED void dump() const {
228     dump(llvm::errs(), "\n");
229   }
230 };
231 } // end anonymous namespace
232 
233 typedef const RegionBindingsRef& RegionBindingsConstRef;
234 
getDirectBinding(const MemRegion * R) const235 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
236   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
237 }
238 
getDefaultBinding(const MemRegion * R) const239 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
240   if (R->isBoundable())
241     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
242       if (TR->getValueType()->isUnionType())
243         return UnknownVal();
244 
245   return Optional<SVal>::create(lookup(R, BindingKey::Default));
246 }
247 
addBinding(BindingKey K,SVal V) const248 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
249   const MemRegion *Base = K.getBaseRegion();
250 
251   const ClusterBindings *ExistingCluster = lookup(Base);
252   ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
253                              : CBFactory.getEmptyMap());
254 
255   ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
256   return add(Base, NewCluster);
257 }
258 
259 
addBinding(const MemRegion * R,BindingKey::Kind k,SVal V) const260 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
261                                                 BindingKey::Kind k,
262                                                 SVal V) const {
263   return addBinding(BindingKey::Make(R, k), V);
264 }
265 
lookup(BindingKey K) const266 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
267   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
268   if (!Cluster)
269     return 0;
270   return Cluster->lookup(K);
271 }
272 
lookup(const MemRegion * R,BindingKey::Kind k) const273 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
274                                       BindingKey::Kind k) const {
275   return lookup(BindingKey::Make(R, k));
276 }
277 
removeBinding(BindingKey K)278 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
279   const MemRegion *Base = K.getBaseRegion();
280   const ClusterBindings *Cluster = lookup(Base);
281   if (!Cluster)
282     return *this;
283 
284   ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
285   if (NewCluster.isEmpty())
286     return remove(Base);
287   return add(Base, NewCluster);
288 }
289 
removeBinding(const MemRegion * R,BindingKey::Kind k)290 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
291                                                 BindingKey::Kind k){
292   return removeBinding(BindingKey::Make(R, k));
293 }
294 
295 //===----------------------------------------------------------------------===//
296 // Fine-grained control of RegionStoreManager.
297 //===----------------------------------------------------------------------===//
298 
299 namespace {
300 struct minimal_features_tag {};
301 struct maximal_features_tag {};
302 
303 class RegionStoreFeatures {
304   bool SupportsFields;
305 public:
RegionStoreFeatures(minimal_features_tag)306   RegionStoreFeatures(minimal_features_tag) :
307     SupportsFields(false) {}
308 
RegionStoreFeatures(maximal_features_tag)309   RegionStoreFeatures(maximal_features_tag) :
310     SupportsFields(true) {}
311 
enableFields(bool t)312   void enableFields(bool t) { SupportsFields = t; }
313 
supportsFields() const314   bool supportsFields() const { return SupportsFields; }
315 };
316 }
317 
318 //===----------------------------------------------------------------------===//
319 // Main RegionStore logic.
320 //===----------------------------------------------------------------------===//
321 
322 namespace {
323 class invalidateRegionsWorker;
324 
325 class RegionStoreManager : public StoreManager {
326 public:
327   const RegionStoreFeatures Features;
328 
329   RegionBindings::Factory RBFactory;
330   mutable ClusterBindings::Factory CBFactory;
331 
332   typedef std::vector<SVal> SValListTy;
333 private:
334   typedef llvm::DenseMap<const LazyCompoundValData *,
335                          SValListTy> LazyBindingsMapTy;
336   LazyBindingsMapTy LazyBindingsMap;
337 
338   /// The largest number of fields a struct can have and still be
339   /// considered "small".
340   ///
341   /// This is currently used to decide whether or not it is worth "forcing" a
342   /// LazyCompoundVal on bind.
343   ///
344   /// This is controlled by 'region-store-small-struct-limit' option.
345   /// To disable all small-struct-dependent behavior, set the option to "0".
346   unsigned SmallStructLimit;
347 
348   /// \brief A helper used to populate the work list with the given set of
349   /// regions.
350   void populateWorkList(invalidateRegionsWorker &W,
351                         ArrayRef<SVal> Values,
352                         bool IsArrayOfConstRegions,
353                         InvalidatedRegions *TopLevelRegions);
354 
355 public:
RegionStoreManager(ProgramStateManager & mgr,const RegionStoreFeatures & f)356   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
357     : StoreManager(mgr), Features(f),
358       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
359       SmallStructLimit(0) {
360     if (SubEngine *Eng = StateMgr.getOwningEngine()) {
361       AnalyzerOptions &Options = Eng->getAnalysisManager().options;
362       SmallStructLimit =
363         Options.getOptionAsInteger("region-store-small-struct-limit", 2);
364     }
365   }
366 
367 
368   /// setImplicitDefaultValue - Set the default binding for the provided
369   ///  MemRegion to the value implicitly defined for compound literals when
370   ///  the value is not specified.
371   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
372                                             const MemRegion *R, QualType T);
373 
374   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
375   ///  type.  'Array' represents the lvalue of the array being decayed
376   ///  to a pointer, and the returned SVal represents the decayed
377   ///  version of that lvalue (i.e., a pointer to the first element of
378   ///  the array).  This is called by ExprEngine when evaluating
379   ///  casts from arrays to pointers.
380   SVal ArrayToPointer(Loc Array, QualType ElementTy);
381 
getInitialStore(const LocationContext * InitLoc)382   StoreRef getInitialStore(const LocationContext *InitLoc) {
383     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
384   }
385 
386   //===-------------------------------------------------------------------===//
387   // Binding values to regions.
388   //===-------------------------------------------------------------------===//
389   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
390                                            const Expr *Ex,
391                                            unsigned Count,
392                                            const LocationContext *LCtx,
393                                            RegionBindingsRef B,
394                                            InvalidatedRegions *Invalidated);
395 
396   StoreRef invalidateRegions(Store store,
397                              ArrayRef<SVal> Values,
398                              ArrayRef<SVal> ConstValues,
399                              const Expr *E, unsigned Count,
400                              const LocationContext *LCtx,
401                              const CallEvent *Call,
402                              InvalidatedSymbols &IS,
403                              InvalidatedSymbols &ConstIS,
404                              InvalidatedRegions *Invalidated,
405                              InvalidatedRegions *InvalidatedTopLevel,
406                              InvalidatedRegions *InvalidatedTopLevelConst);
407 
408   bool scanReachableSymbols(Store S, const MemRegion *R,
409                             ScanReachableSymbols &Callbacks);
410 
411   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
412                                             const SubRegion *R);
413 
414 public: // Part of public interface to class.
415 
Bind(Store store,Loc LV,SVal V)416   virtual StoreRef Bind(Store store, Loc LV, SVal V) {
417     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
418   }
419 
420   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
421 
422   // BindDefault is only used to initialize a region with a default value.
BindDefault(Store store,const MemRegion * R,SVal V)423   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
424     RegionBindingsRef B = getRegionBindings(store);
425     assert(!B.lookup(R, BindingKey::Default));
426     assert(!B.lookup(R, BindingKey::Direct));
427     return StoreRef(B.addBinding(R, BindingKey::Default, V)
428                      .asImmutableMap()
429                      .getRootWithoutRetain(), *this);
430   }
431 
432   /// Attempt to extract the fields of \p LCV and bind them to the struct region
433   /// \p R.
434   ///
435   /// This path is used when it seems advantageous to "force" loading the values
436   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
437   /// than using a Default binding at the base of the entire region. This is a
438   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
439   ///
440   /// \returns The updated store bindings, or \c None if binding non-lazily
441   ///          would be too expensive.
442   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
443                                                  const TypedValueRegion *R,
444                                                  const RecordDecl *RD,
445                                                  nonloc::LazyCompoundVal LCV);
446 
447   /// BindStruct - Bind a compound value to a structure.
448   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
449                                const TypedValueRegion* R, SVal V);
450 
451   /// BindVector - Bind a compound value to a vector.
452   RegionBindingsRef bindVector(RegionBindingsConstRef B,
453                                const TypedValueRegion* R, SVal V);
454 
455   RegionBindingsRef bindArray(RegionBindingsConstRef B,
456                               const TypedValueRegion* R,
457                               SVal V);
458 
459   /// Clears out all bindings in the given region and assigns a new value
460   /// as a Default binding.
461   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
462                                   const TypedRegion *R,
463                                   SVal DefaultVal);
464 
465   /// \brief Create a new store with the specified binding removed.
466   /// \param ST the original store, that is the basis for the new store.
467   /// \param L the location whose binding should be removed.
468   virtual StoreRef killBinding(Store ST, Loc L);
469 
incrementReferenceCount(Store store)470   void incrementReferenceCount(Store store) {
471     getRegionBindings(store).manualRetain();
472   }
473 
474   /// If the StoreManager supports it, decrement the reference count of
475   /// the specified Store object.  If the reference count hits 0, the memory
476   /// associated with the object is recycled.
decrementReferenceCount(Store store)477   void decrementReferenceCount(Store store) {
478     getRegionBindings(store).manualRelease();
479   }
480 
481   bool includedInBindings(Store store, const MemRegion *region) const;
482 
483   /// \brief Return the value bound to specified location in a given state.
484   ///
485   /// The high level logic for this method is this:
486   /// getBinding (L)
487   ///   if L has binding
488   ///     return L's binding
489   ///   else if L is in killset
490   ///     return unknown
491   ///   else
492   ///     if L is on stack or heap
493   ///       return undefined
494   ///     else
495   ///       return symbolic
getBinding(Store S,Loc L,QualType T)496   virtual SVal getBinding(Store S, Loc L, QualType T) {
497     return getBinding(getRegionBindings(S), L, T);
498   }
499 
500   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
501 
502   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
503 
504   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
505 
506   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
507 
508   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
509 
510   SVal getBindingForLazySymbol(const TypedValueRegion *R);
511 
512   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
513                                          const TypedValueRegion *R,
514                                          QualType Ty);
515 
516   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
517                       RegionBindingsRef LazyBinding);
518 
519   /// Get bindings for the values in a struct and return a CompoundVal, used
520   /// when doing struct copy:
521   /// struct s x, y;
522   /// x = y;
523   /// y's value is retrieved by this method.
524   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
525   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
526   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
527 
528   /// Used to lazily generate derived symbols for bindings that are defined
529   /// implicitly by default bindings in a super region.
530   ///
531   /// Note that callers may need to specially handle LazyCompoundVals, which
532   /// are returned as is in case the caller needs to treat them differently.
533   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
534                                                   const MemRegion *superR,
535                                                   const TypedValueRegion *R,
536                                                   QualType Ty);
537 
538   /// Get the state and region whose binding this region \p R corresponds to.
539   ///
540   /// If there is no lazy binding for \p R, the returned value will have a null
541   /// \c second. Note that a null pointer can represents a valid Store.
542   std::pair<Store, const SubRegion *>
543   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
544                   const SubRegion *originalRegion);
545 
546   /// Returns the cached set of interesting SVals contained within a lazy
547   /// binding.
548   ///
549   /// The precise value of "interesting" is determined for the purposes of
550   /// RegionStore's internal analysis. It must always contain all regions and
551   /// symbols, but may omit constants and other kinds of SVal.
552   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
553 
554   //===------------------------------------------------------------------===//
555   // State pruning.
556   //===------------------------------------------------------------------===//
557 
558   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
559   ///  It returns a new Store with these values removed.
560   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
561                               SymbolReaper& SymReaper);
562 
563   //===------------------------------------------------------------------===//
564   // Region "extents".
565   //===------------------------------------------------------------------===//
566 
567   // FIXME: This method will soon be eliminated; see the note in Store.h.
568   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
569                                          const MemRegion* R, QualType EleTy);
570 
571   //===------------------------------------------------------------------===//
572   // Utility methods.
573   //===------------------------------------------------------------------===//
574 
getRegionBindings(Store store) const575   RegionBindingsRef getRegionBindings(Store store) const {
576     return RegionBindingsRef(CBFactory,
577                              static_cast<const RegionBindings::TreeTy*>(store),
578                              RBFactory.getTreeFactory());
579   }
580 
581   void print(Store store, raw_ostream &Out, const char* nl,
582              const char *sep);
583 
iterBindings(Store store,BindingsHandler & f)584   void iterBindings(Store store, BindingsHandler& f) {
585     RegionBindingsRef B = getRegionBindings(store);
586     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
587       const ClusterBindings &Cluster = I.getData();
588       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
589            CI != CE; ++CI) {
590         const BindingKey &K = CI.getKey();
591         if (!K.isDirect())
592           continue;
593         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
594           // FIXME: Possibly incorporate the offset?
595           if (!f.HandleBinding(*this, store, R, CI.getData()))
596             return;
597         }
598       }
599     }
600   }
601 };
602 
603 } // end anonymous namespace
604 
605 //===----------------------------------------------------------------------===//
606 // RegionStore creation.
607 //===----------------------------------------------------------------------===//
608 
CreateRegionStoreManager(ProgramStateManager & StMgr)609 StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
610   RegionStoreFeatures F = maximal_features_tag();
611   return new RegionStoreManager(StMgr, F);
612 }
613 
614 StoreManager *
CreateFieldsOnlyRegionStoreManager(ProgramStateManager & StMgr)615 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
616   RegionStoreFeatures F = minimal_features_tag();
617   F.enableFields(true);
618   return new RegionStoreManager(StMgr, F);
619 }
620 
621 
622 //===----------------------------------------------------------------------===//
623 // Region Cluster analysis.
624 //===----------------------------------------------------------------------===//
625 
626 namespace {
627 /// Used to determine which global regions are automatically included in the
628 /// initial worklist of a ClusterAnalysis.
629 enum GlobalsFilterKind {
630   /// Don't include any global regions.
631   GFK_None,
632   /// Only include system globals.
633   GFK_SystemOnly,
634   /// Include all global regions.
635   GFK_All
636 };
637 
638 template <typename DERIVED>
639 class ClusterAnalysis  {
640 protected:
641   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
642   typedef llvm::PointerIntPair<const MemRegion *, 1, bool> WorkListElement;
643   typedef SmallVector<WorkListElement, 10> WorkList;
644 
645   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
646 
647   WorkList WL;
648 
649   RegionStoreManager &RM;
650   ASTContext &Ctx;
651   SValBuilder &svalBuilder;
652 
653   RegionBindingsRef B;
654 
655 private:
656   GlobalsFilterKind GlobalsFilter;
657 
658 protected:
getCluster(const MemRegion * R)659   const ClusterBindings *getCluster(const MemRegion *R) {
660     return B.lookup(R);
661   }
662 
663   /// Returns true if the memory space of the given region is one of the global
664   /// regions specially included at the start of analysis.
isInitiallyIncludedGlobalRegion(const MemRegion * R)665   bool isInitiallyIncludedGlobalRegion(const MemRegion *R) {
666     switch (GlobalsFilter) {
667     case GFK_None:
668       return false;
669     case GFK_SystemOnly:
670       return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
671     case GFK_All:
672       return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
673     }
674 
675     llvm_unreachable("unknown globals filter");
676   }
677 
678 public:
ClusterAnalysis(RegionStoreManager & rm,ProgramStateManager & StateMgr,RegionBindingsRef b,GlobalsFilterKind GFK)679   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
680                   RegionBindingsRef b, GlobalsFilterKind GFK)
681     : RM(rm), Ctx(StateMgr.getContext()),
682       svalBuilder(StateMgr.getSValBuilder()),
683       B(b), GlobalsFilter(GFK) {}
684 
getRegionBindings() const685   RegionBindingsRef getRegionBindings() const { return B; }
686 
isVisited(const MemRegion * R)687   bool isVisited(const MemRegion *R) {
688     return Visited.count(getCluster(R));
689   }
690 
GenerateClusters()691   void GenerateClusters() {
692     // Scan the entire set of bindings and record the region clusters.
693     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
694          RI != RE; ++RI){
695       const MemRegion *Base = RI.getKey();
696 
697       const ClusterBindings &Cluster = RI.getData();
698       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
699       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
700 
701       // If this is an interesting global region, add it the work list up front.
702       if (isInitiallyIncludedGlobalRegion(Base))
703         AddToWorkList(WorkListElement(Base), &Cluster);
704     }
705   }
706 
AddToWorkList(WorkListElement E,const ClusterBindings * C)707   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
708     if (C && !Visited.insert(C))
709       return false;
710     WL.push_back(E);
711     return true;
712   }
713 
AddToWorkList(const MemRegion * R,bool Flag=false)714   bool AddToWorkList(const MemRegion *R, bool Flag = false) {
715     const MemRegion *BaseR = R->getBaseRegion();
716     return AddToWorkList(WorkListElement(BaseR, Flag), getCluster(BaseR));
717   }
718 
RunWorkList()719   void RunWorkList() {
720     while (!WL.empty()) {
721       WorkListElement E = WL.pop_back_val();
722       const MemRegion *BaseR = E.getPointer();
723 
724       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR),
725                                                 E.getInt());
726     }
727   }
728 
VisitAddedToCluster(const MemRegion * baseR,const ClusterBindings & C)729   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
VisitCluster(const MemRegion * baseR,const ClusterBindings * C)730   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
731 
VisitCluster(const MemRegion * BaseR,const ClusterBindings * C,bool Flag)732   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
733                     bool Flag) {
734     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
735   }
736 };
737 }
738 
739 //===----------------------------------------------------------------------===//
740 // Binding invalidation.
741 //===----------------------------------------------------------------------===//
742 
scanReachableSymbols(Store S,const MemRegion * R,ScanReachableSymbols & Callbacks)743 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
744                                               ScanReachableSymbols &Callbacks) {
745   assert(R == R->getBaseRegion() && "Should only be called for base regions");
746   RegionBindingsRef B = getRegionBindings(S);
747   const ClusterBindings *Cluster = B.lookup(R);
748 
749   if (!Cluster)
750     return true;
751 
752   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
753        RI != RE; ++RI) {
754     if (!Callbacks.scan(RI.getData()))
755       return false;
756   }
757 
758   return true;
759 }
760 
isUnionField(const FieldRegion * FR)761 static inline bool isUnionField(const FieldRegion *FR) {
762   return FR->getDecl()->getParent()->isUnion();
763 }
764 
765 typedef SmallVector<const FieldDecl *, 8> FieldVector;
766 
getSymbolicOffsetFields(BindingKey K,FieldVector & Fields)767 void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
768   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
769 
770   const MemRegion *Base = K.getConcreteOffsetRegion();
771   const MemRegion *R = K.getRegion();
772 
773   while (R != Base) {
774     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
775       if (!isUnionField(FR))
776         Fields.push_back(FR->getDecl());
777 
778     R = cast<SubRegion>(R)->getSuperRegion();
779   }
780 }
781 
isCompatibleWithFields(BindingKey K,const FieldVector & Fields)782 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
783   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
784 
785   if (Fields.empty())
786     return true;
787 
788   FieldVector FieldsInBindingKey;
789   getSymbolicOffsetFields(K, FieldsInBindingKey);
790 
791   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
792   if (Delta >= 0)
793     return std::equal(FieldsInBindingKey.begin() + Delta,
794                       FieldsInBindingKey.end(),
795                       Fields.begin());
796   else
797     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
798                       Fields.begin() - Delta);
799 }
800 
801 /// Collects all bindings in \p Cluster that may refer to bindings within
802 /// \p Top.
803 ///
804 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
805 /// \c second is the value (an SVal).
806 ///
807 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
808 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
809 /// an aggregate within a larger aggregate with a default binding.
810 static void
collectSubRegionBindings(SmallVectorImpl<BindingPair> & Bindings,SValBuilder & SVB,const ClusterBindings & Cluster,const SubRegion * Top,BindingKey TopKey,bool IncludeAllDefaultBindings)811 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
812                          SValBuilder &SVB, const ClusterBindings &Cluster,
813                          const SubRegion *Top, BindingKey TopKey,
814                          bool IncludeAllDefaultBindings) {
815   FieldVector FieldsInSymbolicSubregions;
816   if (TopKey.hasSymbolicOffset()) {
817     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
818     Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
819     TopKey = BindingKey::Make(Top, BindingKey::Default);
820   }
821 
822   // Find the length (in bits) of the region being invalidated.
823   uint64_t Length = UINT64_MAX;
824   SVal Extent = Top->getExtent(SVB);
825   if (Optional<nonloc::ConcreteInt> ExtentCI =
826           Extent.getAs<nonloc::ConcreteInt>()) {
827     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
828     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
829     // Extents are in bytes but region offsets are in bits. Be careful!
830     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
831   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
832     if (FR->getDecl()->isBitField())
833       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
834   }
835 
836   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
837        I != E; ++I) {
838     BindingKey NextKey = I.getKey();
839     if (NextKey.getRegion() == TopKey.getRegion()) {
840       // FIXME: This doesn't catch the case where we're really invalidating a
841       // region with a symbolic offset. Example:
842       //      R: points[i].y
843       //   Next: points[0].x
844 
845       if (NextKey.getOffset() > TopKey.getOffset() &&
846           NextKey.getOffset() - TopKey.getOffset() < Length) {
847         // Case 1: The next binding is inside the region we're invalidating.
848         // Include it.
849         Bindings.push_back(*I);
850 
851       } else if (NextKey.getOffset() == TopKey.getOffset()) {
852         // Case 2: The next binding is at the same offset as the region we're
853         // invalidating. In this case, we need to leave default bindings alone,
854         // since they may be providing a default value for a regions beyond what
855         // we're invalidating.
856         // FIXME: This is probably incorrect; consider invalidating an outer
857         // struct whose first field is bound to a LazyCompoundVal.
858         if (IncludeAllDefaultBindings || NextKey.isDirect())
859           Bindings.push_back(*I);
860       }
861 
862     } else if (NextKey.hasSymbolicOffset()) {
863       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
864       if (Top->isSubRegionOf(Base)) {
865         // Case 3: The next key is symbolic and we just changed something within
866         // its concrete region. We don't know if the binding is still valid, so
867         // we'll be conservative and include it.
868         if (IncludeAllDefaultBindings || NextKey.isDirect())
869           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
870             Bindings.push_back(*I);
871       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
872         // Case 4: The next key is symbolic, but we changed a known
873         // super-region. In this case the binding is certainly included.
874         if (Top == Base || BaseSR->isSubRegionOf(Top))
875           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
876             Bindings.push_back(*I);
877       }
878     }
879   }
880 }
881 
882 static void
collectSubRegionBindings(SmallVectorImpl<BindingPair> & Bindings,SValBuilder & SVB,const ClusterBindings & Cluster,const SubRegion * Top,bool IncludeAllDefaultBindings)883 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
884                          SValBuilder &SVB, const ClusterBindings &Cluster,
885                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
886   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
887                            BindingKey::Make(Top, BindingKey::Default),
888                            IncludeAllDefaultBindings);
889 }
890 
891 RegionBindingsRef
removeSubRegionBindings(RegionBindingsConstRef B,const SubRegion * Top)892 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
893                                             const SubRegion *Top) {
894   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
895   const MemRegion *ClusterHead = TopKey.getBaseRegion();
896 
897   if (Top == ClusterHead) {
898     // We can remove an entire cluster's bindings all in one go.
899     return B.remove(Top);
900   }
901 
902   const ClusterBindings *Cluster = B.lookup(ClusterHead);
903   if (!Cluster) {
904     // If we're invalidating a region with a symbolic offset, we need to make
905     // sure we don't treat the base region as uninitialized anymore.
906     if (TopKey.hasSymbolicOffset()) {
907       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
908       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
909     }
910     return B;
911   }
912 
913   SmallVector<BindingPair, 32> Bindings;
914   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
915                            /*IncludeAllDefaultBindings=*/false);
916 
917   ClusterBindingsRef Result(*Cluster, CBFactory);
918   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
919                                                     E = Bindings.end();
920        I != E; ++I)
921     Result = Result.remove(I->first);
922 
923   // If we're invalidating a region with a symbolic offset, we need to make sure
924   // we don't treat the base region as uninitialized anymore.
925   // FIXME: This isn't very precise; see the example in
926   // collectSubRegionBindings.
927   if (TopKey.hasSymbolicOffset()) {
928     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
929     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
930                         UnknownVal());
931   }
932 
933   if (Result.isEmpty())
934     return B.remove(ClusterHead);
935   return B.add(ClusterHead, Result.asImmutableMap());
936 }
937 
938 namespace {
939 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
940 {
941   const Expr *Ex;
942   unsigned Count;
943   const LocationContext *LCtx;
944   InvalidatedSymbols &IS;
945   InvalidatedSymbols &ConstIS;
946   StoreManager::InvalidatedRegions *Regions;
947 public:
invalidateRegionsWorker(RegionStoreManager & rm,ProgramStateManager & stateMgr,RegionBindingsRef b,const Expr * ex,unsigned count,const LocationContext * lctx,InvalidatedSymbols & is,InvalidatedSymbols & inConstIS,StoreManager::InvalidatedRegions * r,GlobalsFilterKind GFK)948   invalidateRegionsWorker(RegionStoreManager &rm,
949                           ProgramStateManager &stateMgr,
950                           RegionBindingsRef b,
951                           const Expr *ex, unsigned count,
952                           const LocationContext *lctx,
953                           InvalidatedSymbols &is,
954                           InvalidatedSymbols &inConstIS,
955                           StoreManager::InvalidatedRegions *r,
956                           GlobalsFilterKind GFK)
957     : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, GFK),
958       Ex(ex), Count(count), LCtx(lctx), IS(is), ConstIS(inConstIS), Regions(r){}
959 
960   /// \param IsConst Specifies if the region we are invalidating is constant.
961   /// If it is, we invalidate all subregions, but not the base region itself.
962   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C,
963                     bool IsConst);
964   void VisitBinding(SVal V);
965 };
966 }
967 
VisitBinding(SVal V)968 void invalidateRegionsWorker::VisitBinding(SVal V) {
969   // A symbol?  Mark it touched by the invalidation.
970   if (SymbolRef Sym = V.getAsSymbol())
971     IS.insert(Sym);
972 
973   if (const MemRegion *R = V.getAsRegion()) {
974     AddToWorkList(R);
975     return;
976   }
977 
978   // Is it a LazyCompoundVal?  All references get invalidated as well.
979   if (Optional<nonloc::LazyCompoundVal> LCS =
980           V.getAs<nonloc::LazyCompoundVal>()) {
981 
982     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
983 
984     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
985                                                         E = Vals.end();
986          I != E; ++I)
987       VisitBinding(*I);
988 
989     return;
990   }
991 }
992 
VisitCluster(const MemRegion * baseR,const ClusterBindings * C,bool IsConst)993 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
994                                            const ClusterBindings *C,
995                                            bool IsConst) {
996   if (C) {
997     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
998       VisitBinding(I.getData());
999 
1000     // Invalidate the contents of a non-const base region.
1001     if (!IsConst)
1002       B = B.remove(baseR);
1003   }
1004 
1005   // BlockDataRegion?  If so, invalidate captured variables that are passed
1006   // by reference.
1007   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1008     for (BlockDataRegion::referenced_vars_iterator
1009          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1010          BI != BE; ++BI) {
1011       const VarRegion *VR = BI.getCapturedRegion();
1012       const VarDecl *VD = VR->getDecl();
1013       if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1014         AddToWorkList(VR);
1015       }
1016       else if (Loc::isLocType(VR->getValueType())) {
1017         // Map the current bindings to a Store to retrieve the value
1018         // of the binding.  If that binding itself is a region, we should
1019         // invalidate that region.  This is because a block may capture
1020         // a pointer value, but the thing pointed by that pointer may
1021         // get invalidated.
1022         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1023         if (Optional<Loc> L = V.getAs<Loc>()) {
1024           if (const MemRegion *LR = L->getAsRegion())
1025             AddToWorkList(LR);
1026         }
1027       }
1028     }
1029     return;
1030   }
1031 
1032   // Symbolic region?
1033   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1034     SymbolRef RegionSym = SR->getSymbol();
1035 
1036     // Mark that symbol touched by the invalidation.
1037     if (IsConst)
1038       ConstIS.insert(RegionSym);
1039     else
1040       IS.insert(RegionSym);
1041   }
1042 
1043   // Nothing else should be done for a const region.
1044   if (IsConst)
1045     return;
1046 
1047   // Otherwise, we have a normal data region. Record that we touched the region.
1048   if (Regions)
1049     Regions->push_back(baseR);
1050 
1051   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1052     // Invalidate the region by setting its default value to
1053     // conjured symbol. The type of the symbol is irrelavant.
1054     DefinedOrUnknownSVal V =
1055       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1056     B = B.addBinding(baseR, BindingKey::Default, V);
1057     return;
1058   }
1059 
1060   if (!baseR->isBoundable())
1061     return;
1062 
1063   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1064   QualType T = TR->getValueType();
1065 
1066   if (isInitiallyIncludedGlobalRegion(baseR)) {
1067     // If the region is a global and we are invalidating all globals,
1068     // erasing the entry is good enough.  This causes all globals to be lazily
1069     // symbolicated from the same base symbol.
1070     return;
1071   }
1072 
1073   if (T->isStructureOrClassType()) {
1074     // Invalidate the region by setting its default value to
1075     // conjured symbol. The type of the symbol is irrelavant.
1076     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1077                                                           Ctx.IntTy, Count);
1078     B = B.addBinding(baseR, BindingKey::Default, V);
1079     return;
1080   }
1081 
1082   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1083       // Set the default value of the array to conjured symbol.
1084     DefinedOrUnknownSVal V =
1085     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1086                                      AT->getElementType(), Count);
1087     B = B.addBinding(baseR, BindingKey::Default, V);
1088     return;
1089   }
1090 
1091   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1092                                                         T,Count);
1093   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1094   B = B.addBinding(baseR, BindingKey::Direct, V);
1095 }
1096 
1097 RegionBindingsRef
invalidateGlobalRegion(MemRegion::Kind K,const Expr * Ex,unsigned Count,const LocationContext * LCtx,RegionBindingsRef B,InvalidatedRegions * Invalidated)1098 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1099                                            const Expr *Ex,
1100                                            unsigned Count,
1101                                            const LocationContext *LCtx,
1102                                            RegionBindingsRef B,
1103                                            InvalidatedRegions *Invalidated) {
1104   // Bind the globals memory space to a new symbol that we will use to derive
1105   // the bindings for all globals.
1106   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1107   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1108                                         /* type does not matter */ Ctx.IntTy,
1109                                         Count);
1110 
1111   B = B.removeBinding(GS)
1112        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1113 
1114   // Even if there are no bindings in the global scope, we still need to
1115   // record that we touched it.
1116   if (Invalidated)
1117     Invalidated->push_back(GS);
1118 
1119   return B;
1120 }
1121 
populateWorkList(invalidateRegionsWorker & W,ArrayRef<SVal> Values,bool IsArrayOfConstRegions,InvalidatedRegions * TopLevelRegions)1122 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
1123                                           ArrayRef<SVal> Values,
1124                                           bool IsArrayOfConstRegions,
1125                                           InvalidatedRegions *TopLevelRegions) {
1126   for (ArrayRef<SVal>::iterator I = Values.begin(),
1127                                 E = Values.end(); I != E; ++I) {
1128     SVal V = *I;
1129     if (Optional<nonloc::LazyCompoundVal> LCS =
1130         V.getAs<nonloc::LazyCompoundVal>()) {
1131 
1132       const SValListTy &Vals = getInterestingValues(*LCS);
1133 
1134       for (SValListTy::const_iterator I = Vals.begin(),
1135                                       E = Vals.end(); I != E; ++I) {
1136         // Note: the last argument is false here because these are
1137         // non-top-level regions.
1138         if (const MemRegion *R = (*I).getAsRegion())
1139           W.AddToWorkList(R, /*IsConst=*/ false);
1140       }
1141       continue;
1142     }
1143 
1144     if (const MemRegion *R = V.getAsRegion()) {
1145       if (TopLevelRegions)
1146         TopLevelRegions->push_back(R);
1147       W.AddToWorkList(R, /*IsConst=*/ IsArrayOfConstRegions);
1148       continue;
1149     }
1150   }
1151 }
1152 
1153 StoreRef
invalidateRegions(Store store,ArrayRef<SVal> Values,ArrayRef<SVal> ConstValues,const Expr * Ex,unsigned Count,const LocationContext * LCtx,const CallEvent * Call,InvalidatedSymbols & IS,InvalidatedSymbols & ConstIS,InvalidatedRegions * TopLevelRegions,InvalidatedRegions * TopLevelConstRegions,InvalidatedRegions * Invalidated)1154 RegionStoreManager::invalidateRegions(Store store,
1155                                       ArrayRef<SVal> Values,
1156                                       ArrayRef<SVal> ConstValues,
1157                                       const Expr *Ex, unsigned Count,
1158                                       const LocationContext *LCtx,
1159                                       const CallEvent *Call,
1160                                       InvalidatedSymbols &IS,
1161                                       InvalidatedSymbols &ConstIS,
1162                                       InvalidatedRegions *TopLevelRegions,
1163                                       InvalidatedRegions *TopLevelConstRegions,
1164                                       InvalidatedRegions *Invalidated) {
1165   GlobalsFilterKind GlobalsFilter;
1166   if (Call) {
1167     if (Call->isInSystemHeader())
1168       GlobalsFilter = GFK_SystemOnly;
1169     else
1170       GlobalsFilter = GFK_All;
1171   } else {
1172     GlobalsFilter = GFK_None;
1173   }
1174 
1175   RegionBindingsRef B = getRegionBindings(store);
1176   invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ConstIS,
1177                             Invalidated, GlobalsFilter);
1178 
1179   // Scan the bindings and generate the clusters.
1180   W.GenerateClusters();
1181 
1182   // Add the regions to the worklist.
1183   populateWorkList(W, Values, /*IsArrayOfConstRegions*/ false,
1184                    TopLevelRegions);
1185   populateWorkList(W, ConstValues, /*IsArrayOfConstRegions*/ true,
1186                    TopLevelConstRegions);
1187 
1188   W.RunWorkList();
1189 
1190   // Return the new bindings.
1191   B = W.getRegionBindings();
1192 
1193   // For calls, determine which global regions should be invalidated and
1194   // invalidate them. (Note that function-static and immutable globals are never
1195   // invalidated by this.)
1196   // TODO: This could possibly be more precise with modules.
1197   switch (GlobalsFilter) {
1198   case GFK_All:
1199     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1200                                Ex, Count, LCtx, B, Invalidated);
1201     // FALLTHROUGH
1202   case GFK_SystemOnly:
1203     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1204                                Ex, Count, LCtx, B, Invalidated);
1205     // FALLTHROUGH
1206   case GFK_None:
1207     break;
1208   }
1209 
1210   return StoreRef(B.asStore(), *this);
1211 }
1212 
1213 //===----------------------------------------------------------------------===//
1214 // Extents for regions.
1215 //===----------------------------------------------------------------------===//
1216 
1217 DefinedOrUnknownSVal
getSizeInElements(ProgramStateRef state,const MemRegion * R,QualType EleTy)1218 RegionStoreManager::getSizeInElements(ProgramStateRef state,
1219                                       const MemRegion *R,
1220                                       QualType EleTy) {
1221   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1222   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1223   if (!SizeInt)
1224     return UnknownVal();
1225 
1226   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1227 
1228   if (Ctx.getAsVariableArrayType(EleTy)) {
1229     // FIXME: We need to track extra state to properly record the size
1230     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1231     // we don't have a divide-by-zero below.
1232     return UnknownVal();
1233   }
1234 
1235   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1236 
1237   // If a variable is reinterpreted as a type that doesn't fit into a larger
1238   // type evenly, round it down.
1239   // This is a signed value, since it's used in arithmetic with signed indices.
1240   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1241 }
1242 
1243 //===----------------------------------------------------------------------===//
1244 // Location and region casting.
1245 //===----------------------------------------------------------------------===//
1246 
1247 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1248 ///  type.  'Array' represents the lvalue of the array being decayed
1249 ///  to a pointer, and the returned SVal represents the decayed
1250 ///  version of that lvalue (i.e., a pointer to the first element of
1251 ///  the array).  This is called by ExprEngine when evaluating casts
1252 ///  from arrays to pointers.
ArrayToPointer(Loc Array,QualType T)1253 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1254   if (!Array.getAs<loc::MemRegionVal>())
1255     return UnknownVal();
1256 
1257   const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
1258   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1259   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1260 }
1261 
1262 //===----------------------------------------------------------------------===//
1263 // Loading values from regions.
1264 //===----------------------------------------------------------------------===//
1265 
getBinding(RegionBindingsConstRef B,Loc L,QualType T)1266 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1267   assert(!L.getAs<UnknownVal>() && "location unknown");
1268   assert(!L.getAs<UndefinedVal>() && "location undefined");
1269 
1270   // For access to concrete addresses, return UnknownVal.  Checks
1271   // for null dereferences (and similar errors) are done by checkers, not
1272   // the Store.
1273   // FIXME: We can consider lazily symbolicating such memory, but we really
1274   // should defer this when we can reason easily about symbolicating arrays
1275   // of bytes.
1276   if (L.getAs<loc::ConcreteInt>()) {
1277     return UnknownVal();
1278   }
1279   if (!L.getAs<loc::MemRegionVal>()) {
1280     return UnknownVal();
1281   }
1282 
1283   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1284 
1285   if (isa<AllocaRegion>(MR) ||
1286       isa<SymbolicRegion>(MR) ||
1287       isa<CodeTextRegion>(MR)) {
1288     if (T.isNull()) {
1289       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1290         T = TR->getLocationType();
1291       else {
1292         const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1293         T = SR->getSymbol()->getType();
1294       }
1295     }
1296     MR = GetElementZeroRegion(MR, T);
1297   }
1298 
1299   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1300   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1301   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1302   QualType RTy = R->getValueType();
1303 
1304   // FIXME: we do not yet model the parts of a complex type, so treat the
1305   // whole thing as "unknown".
1306   if (RTy->isAnyComplexType())
1307     return UnknownVal();
1308 
1309   // FIXME: We should eventually handle funny addressing.  e.g.:
1310   //
1311   //   int x = ...;
1312   //   int *p = &x;
1313   //   char *q = (char*) p;
1314   //   char c = *q;  // returns the first byte of 'x'.
1315   //
1316   // Such funny addressing will occur due to layering of regions.
1317   if (RTy->isStructureOrClassType())
1318     return getBindingForStruct(B, R);
1319 
1320   // FIXME: Handle unions.
1321   if (RTy->isUnionType())
1322     return UnknownVal();
1323 
1324   if (RTy->isArrayType()) {
1325     if (RTy->isConstantArrayType())
1326       return getBindingForArray(B, R);
1327     else
1328       return UnknownVal();
1329   }
1330 
1331   // FIXME: handle Vector types.
1332   if (RTy->isVectorType())
1333     return UnknownVal();
1334 
1335   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1336     return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1337 
1338   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1339     // FIXME: Here we actually perform an implicit conversion from the loaded
1340     // value to the element type.  Eventually we want to compose these values
1341     // more intelligently.  For example, an 'element' can encompass multiple
1342     // bound regions (e.g., several bound bytes), or could be a subset of
1343     // a larger value.
1344     return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1345   }
1346 
1347   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1348     // FIXME: Here we actually perform an implicit conversion from the loaded
1349     // value to the ivar type.  What we should model is stores to ivars
1350     // that blow past the extent of the ivar.  If the address of the ivar is
1351     // reinterpretted, it is possible we stored a different value that could
1352     // fit within the ivar.  Either we need to cast these when storing them
1353     // or reinterpret them lazily (as we do here).
1354     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1355   }
1356 
1357   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1358     // FIXME: Here we actually perform an implicit conversion from the loaded
1359     // value to the variable type.  What we should model is stores to variables
1360     // that blow past the extent of the variable.  If the address of the
1361     // variable is reinterpretted, it is possible we stored a different value
1362     // that could fit within the variable.  Either we need to cast these when
1363     // storing them or reinterpret them lazily (as we do here).
1364     return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1365   }
1366 
1367   const SVal *V = B.lookup(R, BindingKey::Direct);
1368 
1369   // Check if the region has a binding.
1370   if (V)
1371     return *V;
1372 
1373   // The location does not have a bound value.  This means that it has
1374   // the value it had upon its creation and/or entry to the analyzed
1375   // function/method.  These are either symbolic values or 'undefined'.
1376   if (R->hasStackNonParametersStorage()) {
1377     // All stack variables are considered to have undefined values
1378     // upon creation.  All heap allocated blocks are considered to
1379     // have undefined values as well unless they are explicitly bound
1380     // to specific values.
1381     return UndefinedVal();
1382   }
1383 
1384   // All other values are symbolic.
1385   return svalBuilder.getRegionValueSymbolVal(R);
1386 }
1387 
getUnderlyingType(const SubRegion * R)1388 static QualType getUnderlyingType(const SubRegion *R) {
1389   QualType RegionTy;
1390   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1391     RegionTy = TVR->getValueType();
1392 
1393   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1394     RegionTy = SR->getSymbol()->getType();
1395 
1396   return RegionTy;
1397 }
1398 
1399 /// Checks to see if store \p B has a lazy binding for region \p R.
1400 ///
1401 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1402 /// if there are additional bindings within \p R.
1403 ///
1404 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1405 /// for lazy bindings for super-regions of \p R.
1406 static Optional<nonloc::LazyCompoundVal>
getExistingLazyBinding(SValBuilder & SVB,RegionBindingsConstRef B,const SubRegion * R,bool AllowSubregionBindings)1407 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1408                        const SubRegion *R, bool AllowSubregionBindings) {
1409   Optional<SVal> V = B.getDefaultBinding(R);
1410   if (!V)
1411     return None;
1412 
1413   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1414   if (!LCV)
1415     return None;
1416 
1417   // If the LCV is for a subregion, the types might not match, and we shouldn't
1418   // reuse the binding.
1419   QualType RegionTy = getUnderlyingType(R);
1420   if (!RegionTy.isNull() &&
1421       !RegionTy->isVoidPointerType()) {
1422     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1423     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1424       return None;
1425   }
1426 
1427   if (!AllowSubregionBindings) {
1428     // If there are any other bindings within this region, we shouldn't reuse
1429     // the top-level binding.
1430     SmallVector<BindingPair, 16> Bindings;
1431     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1432                              /*IncludeAllDefaultBindings=*/true);
1433     if (Bindings.size() > 1)
1434       return None;
1435   }
1436 
1437   return *LCV;
1438 }
1439 
1440 
1441 std::pair<Store, const SubRegion *>
findLazyBinding(RegionBindingsConstRef B,const SubRegion * R,const SubRegion * originalRegion)1442 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1443                                    const SubRegion *R,
1444                                    const SubRegion *originalRegion) {
1445   if (originalRegion != R) {
1446     if (Optional<nonloc::LazyCompoundVal> V =
1447           getExistingLazyBinding(svalBuilder, B, R, true))
1448       return std::make_pair(V->getStore(), V->getRegion());
1449   }
1450 
1451   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1452   StoreRegionPair Result = StoreRegionPair();
1453 
1454   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1455     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1456                              originalRegion);
1457 
1458     if (Result.second)
1459       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1460 
1461   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1462     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1463                                        originalRegion);
1464 
1465     if (Result.second)
1466       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1467 
1468   } else if (const CXXBaseObjectRegion *BaseReg =
1469                dyn_cast<CXXBaseObjectRegion>(R)) {
1470     // C++ base object region is another kind of region that we should blast
1471     // through to look for lazy compound value. It is like a field region.
1472     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1473                              originalRegion);
1474 
1475     if (Result.second)
1476       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1477                                                             Result.second);
1478   }
1479 
1480   return Result;
1481 }
1482 
getBindingForElement(RegionBindingsConstRef B,const ElementRegion * R)1483 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1484                                               const ElementRegion* R) {
1485   // We do not currently model bindings of the CompoundLiteralregion.
1486   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1487     return UnknownVal();
1488 
1489   // Check if the region has a binding.
1490   if (const Optional<SVal> &V = B.getDirectBinding(R))
1491     return *V;
1492 
1493   const MemRegion* superR = R->getSuperRegion();
1494 
1495   // Check if the region is an element region of a string literal.
1496   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1497     // FIXME: Handle loads from strings where the literal is treated as
1498     // an integer, e.g., *((unsigned int*)"hello")
1499     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1500     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1501       return UnknownVal();
1502 
1503     const StringLiteral *Str = StrR->getStringLiteral();
1504     SVal Idx = R->getIndex();
1505     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1506       int64_t i = CI->getValue().getSExtValue();
1507       // Abort on string underrun.  This can be possible by arbitrary
1508       // clients of getBindingForElement().
1509       if (i < 0)
1510         return UndefinedVal();
1511       int64_t length = Str->getLength();
1512       // Technically, only i == length is guaranteed to be null.
1513       // However, such overflows should be caught before reaching this point;
1514       // the only time such an access would be made is if a string literal was
1515       // used to initialize a larger array.
1516       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1517       return svalBuilder.makeIntVal(c, T);
1518     }
1519   }
1520 
1521   // Check for loads from a code text region.  For such loads, just give up.
1522   if (isa<CodeTextRegion>(superR))
1523     return UnknownVal();
1524 
1525   // Handle the case where we are indexing into a larger scalar object.
1526   // For example, this handles:
1527   //   int x = ...
1528   //   char *y = &x;
1529   //   return *y;
1530   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1531   const RegionRawOffset &O = R->getAsArrayOffset();
1532 
1533   // If we cannot reason about the offset, return an unknown value.
1534   if (!O.getRegion())
1535     return UnknownVal();
1536 
1537   if (const TypedValueRegion *baseR =
1538         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1539     QualType baseT = baseR->getValueType();
1540     if (baseT->isScalarType()) {
1541       QualType elemT = R->getElementType();
1542       if (elemT->isScalarType()) {
1543         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1544           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1545             if (SymbolRef parentSym = V->getAsSymbol())
1546               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1547 
1548             if (V->isUnknownOrUndef())
1549               return *V;
1550             // Other cases: give up.  We are indexing into a larger object
1551             // that has some value, but we don't know how to handle that yet.
1552             return UnknownVal();
1553           }
1554         }
1555       }
1556     }
1557   }
1558   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1559 }
1560 
getBindingForField(RegionBindingsConstRef B,const FieldRegion * R)1561 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1562                                             const FieldRegion* R) {
1563 
1564   // Check if the region has a binding.
1565   if (const Optional<SVal> &V = B.getDirectBinding(R))
1566     return *V;
1567 
1568   QualType Ty = R->getValueType();
1569   return getBindingForFieldOrElementCommon(B, R, Ty);
1570 }
1571 
1572 Optional<SVal>
getBindingForDerivedDefaultValue(RegionBindingsConstRef B,const MemRegion * superR,const TypedValueRegion * R,QualType Ty)1573 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1574                                                      const MemRegion *superR,
1575                                                      const TypedValueRegion *R,
1576                                                      QualType Ty) {
1577 
1578   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1579     const SVal &val = D.getValue();
1580     if (SymbolRef parentSym = val.getAsSymbol())
1581       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1582 
1583     if (val.isZeroConstant())
1584       return svalBuilder.makeZeroVal(Ty);
1585 
1586     if (val.isUnknownOrUndef())
1587       return val;
1588 
1589     // Lazy bindings are usually handled through getExistingLazyBinding().
1590     // We should unify these two code paths at some point.
1591     if (val.getAs<nonloc::LazyCompoundVal>())
1592       return val;
1593 
1594     llvm_unreachable("Unknown default value");
1595   }
1596 
1597   return None;
1598 }
1599 
getLazyBinding(const SubRegion * LazyBindingRegion,RegionBindingsRef LazyBinding)1600 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1601                                         RegionBindingsRef LazyBinding) {
1602   SVal Result;
1603   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1604     Result = getBindingForElement(LazyBinding, ER);
1605   else
1606     Result = getBindingForField(LazyBinding,
1607                                 cast<FieldRegion>(LazyBindingRegion));
1608 
1609   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1610   // default value for /part/ of an aggregate from a default value for the
1611   // /entire/ aggregate. The most common case of this is when struct Outer
1612   // has as its first member a struct Inner, which is copied in from a stack
1613   // variable. In this case, even if the Outer's default value is symbolic, 0,
1614   // or unknown, it gets overridden by the Inner's default value of undefined.
1615   //
1616   // This is a general problem -- if the Inner is zero-initialized, the Outer
1617   // will now look zero-initialized. The proper way to solve this is with a
1618   // new version of RegionStore that tracks the extent of a binding as well
1619   // as the offset.
1620   //
1621   // This hack only takes care of the undefined case because that can very
1622   // quickly result in a warning.
1623   if (Result.isUndef())
1624     Result = UnknownVal();
1625 
1626   return Result;
1627 }
1628 
1629 SVal
getBindingForFieldOrElementCommon(RegionBindingsConstRef B,const TypedValueRegion * R,QualType Ty)1630 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1631                                                       const TypedValueRegion *R,
1632                                                       QualType Ty) {
1633 
1634   // At this point we have already checked in either getBindingForElement or
1635   // getBindingForField if 'R' has a direct binding.
1636 
1637   // Lazy binding?
1638   Store lazyBindingStore = NULL;
1639   const SubRegion *lazyBindingRegion = NULL;
1640   llvm::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1641   if (lazyBindingRegion)
1642     return getLazyBinding(lazyBindingRegion,
1643                           getRegionBindings(lazyBindingStore));
1644 
1645   // Record whether or not we see a symbolic index.  That can completely
1646   // be out of scope of our lookup.
1647   bool hasSymbolicIndex = false;
1648 
1649   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1650   // default value for /part/ of an aggregate from a default value for the
1651   // /entire/ aggregate. The most common case of this is when struct Outer
1652   // has as its first member a struct Inner, which is copied in from a stack
1653   // variable. In this case, even if the Outer's default value is symbolic, 0,
1654   // or unknown, it gets overridden by the Inner's default value of undefined.
1655   //
1656   // This is a general problem -- if the Inner is zero-initialized, the Outer
1657   // will now look zero-initialized. The proper way to solve this is with a
1658   // new version of RegionStore that tracks the extent of a binding as well
1659   // as the offset.
1660   //
1661   // This hack only takes care of the undefined case because that can very
1662   // quickly result in a warning.
1663   bool hasPartialLazyBinding = false;
1664 
1665   const SubRegion *SR = dyn_cast<SubRegion>(R);
1666   while (SR) {
1667     const MemRegion *Base = SR->getSuperRegion();
1668     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1669       if (D->getAs<nonloc::LazyCompoundVal>()) {
1670         hasPartialLazyBinding = true;
1671         break;
1672       }
1673 
1674       return *D;
1675     }
1676 
1677     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1678       NonLoc index = ER->getIndex();
1679       if (!index.isConstant())
1680         hasSymbolicIndex = true;
1681     }
1682 
1683     // If our super region is a field or element itself, walk up the region
1684     // hierarchy to see if there is a default value installed in an ancestor.
1685     SR = dyn_cast<SubRegion>(Base);
1686   }
1687 
1688   if (R->hasStackNonParametersStorage()) {
1689     if (isa<ElementRegion>(R)) {
1690       // Currently we don't reason specially about Clang-style vectors.  Check
1691       // if superR is a vector and if so return Unknown.
1692       if (const TypedValueRegion *typedSuperR =
1693             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1694         if (typedSuperR->getValueType()->isVectorType())
1695           return UnknownVal();
1696       }
1697     }
1698 
1699     // FIXME: We also need to take ElementRegions with symbolic indexes into
1700     // account.  This case handles both directly accessing an ElementRegion
1701     // with a symbolic offset, but also fields within an element with
1702     // a symbolic offset.
1703     if (hasSymbolicIndex)
1704       return UnknownVal();
1705 
1706     if (!hasPartialLazyBinding)
1707       return UndefinedVal();
1708   }
1709 
1710   // All other values are symbolic.
1711   return svalBuilder.getRegionValueSymbolVal(R);
1712 }
1713 
getBindingForObjCIvar(RegionBindingsConstRef B,const ObjCIvarRegion * R)1714 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1715                                                const ObjCIvarRegion* R) {
1716   // Check if the region has a binding.
1717   if (const Optional<SVal> &V = B.getDirectBinding(R))
1718     return *V;
1719 
1720   const MemRegion *superR = R->getSuperRegion();
1721 
1722   // Check if the super region has a default binding.
1723   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1724     if (SymbolRef parentSym = V->getAsSymbol())
1725       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1726 
1727     // Other cases: give up.
1728     return UnknownVal();
1729   }
1730 
1731   return getBindingForLazySymbol(R);
1732 }
1733 
getBindingForVar(RegionBindingsConstRef B,const VarRegion * R)1734 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1735                                           const VarRegion *R) {
1736 
1737   // Check if the region has a binding.
1738   if (const Optional<SVal> &V = B.getDirectBinding(R))
1739     return *V;
1740 
1741   // Lazily derive a value for the VarRegion.
1742   const VarDecl *VD = R->getDecl();
1743   const MemSpaceRegion *MS = R->getMemorySpace();
1744 
1745   // Arguments are always symbolic.
1746   if (isa<StackArgumentsSpaceRegion>(MS))
1747     return svalBuilder.getRegionValueSymbolVal(R);
1748 
1749   // Is 'VD' declared constant?  If so, retrieve the constant value.
1750   if (VD->getType().isConstQualified())
1751     if (const Expr *Init = VD->getInit())
1752       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1753         return *V;
1754 
1755   // This must come after the check for constants because closure-captured
1756   // constant variables may appear in UnknownSpaceRegion.
1757   if (isa<UnknownSpaceRegion>(MS))
1758     return svalBuilder.getRegionValueSymbolVal(R);
1759 
1760   if (isa<GlobalsSpaceRegion>(MS)) {
1761     QualType T = VD->getType();
1762 
1763     // Function-scoped static variables are default-initialized to 0; if they
1764     // have an initializer, it would have been processed by now.
1765     if (isa<StaticGlobalSpaceRegion>(MS))
1766       return svalBuilder.makeZeroVal(T);
1767 
1768     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1769       assert(!V->getAs<nonloc::LazyCompoundVal>());
1770       return V.getValue();
1771     }
1772 
1773     return svalBuilder.getRegionValueSymbolVal(R);
1774   }
1775 
1776   return UndefinedVal();
1777 }
1778 
getBindingForLazySymbol(const TypedValueRegion * R)1779 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1780   // All other values are symbolic.
1781   return svalBuilder.getRegionValueSymbolVal(R);
1782 }
1783 
1784 const RegionStoreManager::SValListTy &
getInterestingValues(nonloc::LazyCompoundVal LCV)1785 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1786   // First, check the cache.
1787   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1788   if (I != LazyBindingsMap.end())
1789     return I->second;
1790 
1791   // If we don't have a list of values cached, start constructing it.
1792   SValListTy List;
1793 
1794   const SubRegion *LazyR = LCV.getRegion();
1795   RegionBindingsRef B = getRegionBindings(LCV.getStore());
1796 
1797   // If this region had /no/ bindings at the time, there are no interesting
1798   // values to return.
1799   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
1800   if (!Cluster)
1801     return (LazyBindingsMap[LCV.getCVData()] = llvm_move(List));
1802 
1803   SmallVector<BindingPair, 32> Bindings;
1804   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
1805                            /*IncludeAllDefaultBindings=*/true);
1806   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
1807                                                     E = Bindings.end();
1808        I != E; ++I) {
1809     SVal V = I->second;
1810     if (V.isUnknownOrUndef() || V.isConstant())
1811       continue;
1812 
1813     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
1814             V.getAs<nonloc::LazyCompoundVal>()) {
1815       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
1816       List.insert(List.end(), InnerList.begin(), InnerList.end());
1817       continue;
1818     }
1819 
1820     List.push_back(V);
1821   }
1822 
1823   return (LazyBindingsMap[LCV.getCVData()] = llvm_move(List));
1824 }
1825 
createLazyBinding(RegionBindingsConstRef B,const TypedValueRegion * R)1826 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
1827                                              const TypedValueRegion *R) {
1828   if (Optional<nonloc::LazyCompoundVal> V =
1829         getExistingLazyBinding(svalBuilder, B, R, false))
1830     return *V;
1831 
1832   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1833 }
1834 
getBindingForStruct(RegionBindingsConstRef B,const TypedValueRegion * R)1835 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1836                                              const TypedValueRegion *R) {
1837   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1838   if (RD->field_empty())
1839     return UnknownVal();
1840 
1841   return createLazyBinding(B, R);
1842 }
1843 
getBindingForArray(RegionBindingsConstRef B,const TypedValueRegion * R)1844 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1845                                             const TypedValueRegion *R) {
1846   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
1847          "Only constant array types can have compound bindings.");
1848 
1849   return createLazyBinding(B, R);
1850 }
1851 
includedInBindings(Store store,const MemRegion * region) const1852 bool RegionStoreManager::includedInBindings(Store store,
1853                                             const MemRegion *region) const {
1854   RegionBindingsRef B = getRegionBindings(store);
1855   region = region->getBaseRegion();
1856 
1857   // Quick path: if the base is the head of a cluster, the region is live.
1858   if (B.lookup(region))
1859     return true;
1860 
1861   // Slow path: if the region is the VALUE of any binding, it is live.
1862   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1863     const ClusterBindings &Cluster = RI.getData();
1864     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1865          CI != CE; ++CI) {
1866       const SVal &D = CI.getData();
1867       if (const MemRegion *R = D.getAsRegion())
1868         if (R->getBaseRegion() == region)
1869           return true;
1870     }
1871   }
1872 
1873   return false;
1874 }
1875 
1876 //===----------------------------------------------------------------------===//
1877 // Binding values to regions.
1878 //===----------------------------------------------------------------------===//
1879 
killBinding(Store ST,Loc L)1880 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1881   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
1882     if (const MemRegion* R = LV->getRegion())
1883       return StoreRef(getRegionBindings(ST).removeBinding(R)
1884                                            .asImmutableMap()
1885                                            .getRootWithoutRetain(),
1886                       *this);
1887 
1888   return StoreRef(ST, *this);
1889 }
1890 
1891 RegionBindingsRef
bind(RegionBindingsConstRef B,Loc L,SVal V)1892 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
1893   if (L.getAs<loc::ConcreteInt>())
1894     return B;
1895 
1896   // If we get here, the location should be a region.
1897   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
1898 
1899   // Check if the region is a struct region.
1900   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1901     QualType Ty = TR->getValueType();
1902     if (Ty->isArrayType())
1903       return bindArray(B, TR, V);
1904     if (Ty->isStructureOrClassType())
1905       return bindStruct(B, TR, V);
1906     if (Ty->isVectorType())
1907       return bindVector(B, TR, V);
1908   }
1909 
1910   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1911     // Binding directly to a symbolic region should be treated as binding
1912     // to element 0.
1913     QualType T = SR->getSymbol()->getType();
1914     if (T->isAnyPointerType() || T->isReferenceType())
1915       T = T->getPointeeType();
1916 
1917     R = GetElementZeroRegion(SR, T);
1918   }
1919 
1920   // Clear out bindings that may overlap with this binding.
1921   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
1922   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
1923 }
1924 
1925 RegionBindingsRef
setImplicitDefaultValue(RegionBindingsConstRef B,const MemRegion * R,QualType T)1926 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
1927                                             const MemRegion *R,
1928                                             QualType T) {
1929   SVal V;
1930 
1931   if (Loc::isLocType(T))
1932     V = svalBuilder.makeNull();
1933   else if (T->isIntegralOrEnumerationType())
1934     V = svalBuilder.makeZeroVal(T);
1935   else if (T->isStructureOrClassType() || T->isArrayType()) {
1936     // Set the default value to a zero constant when it is a structure
1937     // or array.  The type doesn't really matter.
1938     V = svalBuilder.makeZeroVal(Ctx.IntTy);
1939   }
1940   else {
1941     // We can't represent values of this type, but we still need to set a value
1942     // to record that the region has been initialized.
1943     // If this assertion ever fires, a new case should be added above -- we
1944     // should know how to default-initialize any value we can symbolicate.
1945     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1946     V = UnknownVal();
1947   }
1948 
1949   return B.addBinding(R, BindingKey::Default, V);
1950 }
1951 
1952 RegionBindingsRef
bindArray(RegionBindingsConstRef B,const TypedValueRegion * R,SVal Init)1953 RegionStoreManager::bindArray(RegionBindingsConstRef B,
1954                               const TypedValueRegion* R,
1955                               SVal Init) {
1956 
1957   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1958   QualType ElementTy = AT->getElementType();
1959   Optional<uint64_t> Size;
1960 
1961   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1962     Size = CAT->getSize().getZExtValue();
1963 
1964   // Check if the init expr is a string literal.
1965   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
1966     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1967 
1968     // Treat the string as a lazy compound value.
1969     StoreRef store(B.asStore(), *this);
1970     nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
1971         .castAs<nonloc::LazyCompoundVal>();
1972     return bindAggregate(B, R, LCV);
1973   }
1974 
1975   // Handle lazy compound values.
1976   if (Init.getAs<nonloc::LazyCompoundVal>())
1977     return bindAggregate(B, R, Init);
1978 
1979   // Remaining case: explicit compound values.
1980 
1981   if (Init.isUnknown())
1982     return setImplicitDefaultValue(B, R, ElementTy);
1983 
1984   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
1985   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1986   uint64_t i = 0;
1987 
1988   RegionBindingsRef NewB(B);
1989 
1990   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1991     // The init list might be shorter than the array length.
1992     if (VI == VE)
1993       break;
1994 
1995     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1996     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1997 
1998     if (ElementTy->isStructureOrClassType())
1999       NewB = bindStruct(NewB, ER, *VI);
2000     else if (ElementTy->isArrayType())
2001       NewB = bindArray(NewB, ER, *VI);
2002     else
2003       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2004   }
2005 
2006   // If the init list is shorter than the array length, set the
2007   // array default value.
2008   if (Size.hasValue() && i < Size.getValue())
2009     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2010 
2011   return NewB;
2012 }
2013 
bindVector(RegionBindingsConstRef B,const TypedValueRegion * R,SVal V)2014 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2015                                                  const TypedValueRegion* R,
2016                                                  SVal V) {
2017   QualType T = R->getValueType();
2018   assert(T->isVectorType());
2019   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
2020 
2021   // Handle lazy compound values and symbolic values.
2022   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2023     return bindAggregate(B, R, V);
2024 
2025   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2026   // that we are binding symbolic struct value. Kill the field values, and if
2027   // the value is symbolic go and bind it as a "default" binding.
2028   if (!V.getAs<nonloc::CompoundVal>()) {
2029     return bindAggregate(B, R, UnknownVal());
2030   }
2031 
2032   QualType ElemType = VT->getElementType();
2033   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2034   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2035   unsigned index = 0, numElements = VT->getNumElements();
2036   RegionBindingsRef NewB(B);
2037 
2038   for ( ; index != numElements ; ++index) {
2039     if (VI == VE)
2040       break;
2041 
2042     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2043     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2044 
2045     if (ElemType->isArrayType())
2046       NewB = bindArray(NewB, ER, *VI);
2047     else if (ElemType->isStructureOrClassType())
2048       NewB = bindStruct(NewB, ER, *VI);
2049     else
2050       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2051   }
2052   return NewB;
2053 }
2054 
2055 Optional<RegionBindingsRef>
tryBindSmallStruct(RegionBindingsConstRef B,const TypedValueRegion * R,const RecordDecl * RD,nonloc::LazyCompoundVal LCV)2056 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2057                                        const TypedValueRegion *R,
2058                                        const RecordDecl *RD,
2059                                        nonloc::LazyCompoundVal LCV) {
2060   FieldVector Fields;
2061 
2062   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2063     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2064       return None;
2065 
2066   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
2067        I != E; ++I) {
2068     const FieldDecl *FD = *I;
2069     if (FD->isUnnamedBitfield())
2070       continue;
2071 
2072     // If there are too many fields, or if any of the fields are aggregates,
2073     // just use the LCV as a default binding.
2074     if (Fields.size() == SmallStructLimit)
2075       return None;
2076 
2077     QualType Ty = FD->getType();
2078     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2079       return None;
2080 
2081     Fields.push_back(*I);
2082   }
2083 
2084   RegionBindingsRef NewB = B;
2085 
2086   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2087     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2088     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2089 
2090     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2091     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2092   }
2093 
2094   return NewB;
2095 }
2096 
bindStruct(RegionBindingsConstRef B,const TypedValueRegion * R,SVal V)2097 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2098                                                  const TypedValueRegion* R,
2099                                                  SVal V) {
2100   if (!Features.supportsFields())
2101     return B;
2102 
2103   QualType T = R->getValueType();
2104   assert(T->isStructureOrClassType());
2105 
2106   const RecordType* RT = T->getAs<RecordType>();
2107   const RecordDecl *RD = RT->getDecl();
2108 
2109   if (!RD->isCompleteDefinition())
2110     return B;
2111 
2112   // Handle lazy compound values and symbolic values.
2113   if (Optional<nonloc::LazyCompoundVal> LCV =
2114         V.getAs<nonloc::LazyCompoundVal>()) {
2115     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2116       return *NewB;
2117     return bindAggregate(B, R, V);
2118   }
2119   if (V.getAs<nonloc::SymbolVal>())
2120     return bindAggregate(B, R, V);
2121 
2122   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2123   // that we are binding symbolic struct value. Kill the field values, and if
2124   // the value is symbolic go and bind it as a "default" binding.
2125   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2126     return bindAggregate(B, R, UnknownVal());
2127 
2128   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2129   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2130 
2131   RecordDecl::field_iterator FI, FE;
2132   RegionBindingsRef NewB(B);
2133 
2134   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2135 
2136     if (VI == VE)
2137       break;
2138 
2139     // Skip any unnamed bitfields to stay in sync with the initializers.
2140     if (FI->isUnnamedBitfield())
2141       continue;
2142 
2143     QualType FTy = FI->getType();
2144     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2145 
2146     if (FTy->isArrayType())
2147       NewB = bindArray(NewB, FR, *VI);
2148     else if (FTy->isStructureOrClassType())
2149       NewB = bindStruct(NewB, FR, *VI);
2150     else
2151       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2152     ++VI;
2153   }
2154 
2155   // There may be fewer values in the initialize list than the fields of struct.
2156   if (FI != FE) {
2157     NewB = NewB.addBinding(R, BindingKey::Default,
2158                            svalBuilder.makeIntVal(0, false));
2159   }
2160 
2161   return NewB;
2162 }
2163 
2164 RegionBindingsRef
bindAggregate(RegionBindingsConstRef B,const TypedRegion * R,SVal Val)2165 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2166                                   const TypedRegion *R,
2167                                   SVal Val) {
2168   // Remove the old bindings, using 'R' as the root of all regions
2169   // we will invalidate. Then add the new binding.
2170   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2171 }
2172 
2173 //===----------------------------------------------------------------------===//
2174 // State pruning.
2175 //===----------------------------------------------------------------------===//
2176 
2177 namespace {
2178 class removeDeadBindingsWorker :
2179   public ClusterAnalysis<removeDeadBindingsWorker> {
2180   SmallVector<const SymbolicRegion*, 12> Postponed;
2181   SymbolReaper &SymReaper;
2182   const StackFrameContext *CurrentLCtx;
2183 
2184 public:
removeDeadBindingsWorker(RegionStoreManager & rm,ProgramStateManager & stateMgr,RegionBindingsRef b,SymbolReaper & symReaper,const StackFrameContext * LCtx)2185   removeDeadBindingsWorker(RegionStoreManager &rm,
2186                            ProgramStateManager &stateMgr,
2187                            RegionBindingsRef b, SymbolReaper &symReaper,
2188                            const StackFrameContext *LCtx)
2189     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b, GFK_None),
2190       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2191 
2192   // Called by ClusterAnalysis.
2193   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2194   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2195   using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
2196 
2197   bool UpdatePostponed();
2198   void VisitBinding(SVal V);
2199 };
2200 }
2201 
VisitAddedToCluster(const MemRegion * baseR,const ClusterBindings & C)2202 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2203                                                    const ClusterBindings &C) {
2204 
2205   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2206     if (SymReaper.isLive(VR))
2207       AddToWorkList(baseR, &C);
2208 
2209     return;
2210   }
2211 
2212   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2213     if (SymReaper.isLive(SR->getSymbol()))
2214       AddToWorkList(SR, &C);
2215     else
2216       Postponed.push_back(SR);
2217 
2218     return;
2219   }
2220 
2221   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2222     AddToWorkList(baseR, &C);
2223     return;
2224   }
2225 
2226   // CXXThisRegion in the current or parent location context is live.
2227   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2228     const StackArgumentsSpaceRegion *StackReg =
2229       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2230     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2231     if (CurrentLCtx &&
2232         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2233       AddToWorkList(TR, &C);
2234   }
2235 }
2236 
VisitCluster(const MemRegion * baseR,const ClusterBindings * C)2237 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2238                                             const ClusterBindings *C) {
2239   if (!C)
2240     return;
2241 
2242   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2243   // This means we should continue to track that symbol.
2244   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2245     SymReaper.markLive(SymR->getSymbol());
2246 
2247   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
2248     VisitBinding(I.getData());
2249 }
2250 
VisitBinding(SVal V)2251 void removeDeadBindingsWorker::VisitBinding(SVal V) {
2252   // Is it a LazyCompoundVal?  All referenced regions are live as well.
2253   if (Optional<nonloc::LazyCompoundVal> LCS =
2254           V.getAs<nonloc::LazyCompoundVal>()) {
2255 
2256     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2257 
2258     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2259                                                         E = Vals.end();
2260          I != E; ++I)
2261       VisitBinding(*I);
2262 
2263     return;
2264   }
2265 
2266   // If V is a region, then add it to the worklist.
2267   if (const MemRegion *R = V.getAsRegion()) {
2268     AddToWorkList(R);
2269 
2270     // All regions captured by a block are also live.
2271     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2272       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2273                                                 E = BR->referenced_vars_end();
2274       for ( ; I != E; ++I)
2275         AddToWorkList(I.getCapturedRegion());
2276     }
2277   }
2278 
2279 
2280   // Update the set of live symbols.
2281   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
2282        SI!=SE; ++SI)
2283     SymReaper.markLive(*SI);
2284 }
2285 
UpdatePostponed()2286 bool removeDeadBindingsWorker::UpdatePostponed() {
2287   // See if any postponed SymbolicRegions are actually live now, after
2288   // having done a scan.
2289   bool changed = false;
2290 
2291   for (SmallVectorImpl<const SymbolicRegion*>::iterator
2292         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2293     if (const SymbolicRegion *SR = *I) {
2294       if (SymReaper.isLive(SR->getSymbol())) {
2295         changed |= AddToWorkList(SR);
2296         *I = NULL;
2297       }
2298     }
2299   }
2300 
2301   return changed;
2302 }
2303 
removeDeadBindings(Store store,const StackFrameContext * LCtx,SymbolReaper & SymReaper)2304 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2305                                                 const StackFrameContext *LCtx,
2306                                                 SymbolReaper& SymReaper) {
2307   RegionBindingsRef B = getRegionBindings(store);
2308   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2309   W.GenerateClusters();
2310 
2311   // Enqueue the region roots onto the worklist.
2312   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2313        E = SymReaper.region_end(); I != E; ++I) {
2314     W.AddToWorkList(*I);
2315   }
2316 
2317   do W.RunWorkList(); while (W.UpdatePostponed());
2318 
2319   // We have now scanned the store, marking reachable regions and symbols
2320   // as live.  We now remove all the regions that are dead from the store
2321   // as well as update DSymbols with the set symbols that are now dead.
2322   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2323     const MemRegion *Base = I.getKey();
2324 
2325     // If the cluster has been visited, we know the region has been marked.
2326     if (W.isVisited(Base))
2327       continue;
2328 
2329     // Remove the dead entry.
2330     B = B.remove(Base);
2331 
2332     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2333       SymReaper.maybeDead(SymR->getSymbol());
2334 
2335     // Mark all non-live symbols that this binding references as dead.
2336     const ClusterBindings &Cluster = I.getData();
2337     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2338          CI != CE; ++CI) {
2339       SVal X = CI.getData();
2340       SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2341       for (; SI != SE; ++SI)
2342         SymReaper.maybeDead(*SI);
2343     }
2344   }
2345 
2346   return StoreRef(B.asStore(), *this);
2347 }
2348 
2349 //===----------------------------------------------------------------------===//
2350 // Utility methods.
2351 //===----------------------------------------------------------------------===//
2352 
print(Store store,raw_ostream & OS,const char * nl,const char * sep)2353 void RegionStoreManager::print(Store store, raw_ostream &OS,
2354                                const char* nl, const char *sep) {
2355   RegionBindingsRef B = getRegionBindings(store);
2356   OS << "Store (direct and default bindings), "
2357      << B.asStore()
2358      << " :" << nl;
2359   B.dump(OS, nl);
2360 }
2361