1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/Analysis/Analyses/LiveVariables.h"
20 #include "clang/Analysis/AnalysisContext.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
28 #include "llvm/ADT/ImmutableList.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/Support/raw_ostream.h"
32
33 using namespace clang;
34 using namespace ento;
35
36 //===----------------------------------------------------------------------===//
37 // Representation of binding keys.
38 //===----------------------------------------------------------------------===//
39
40 namespace {
41 class BindingKey {
42 public:
43 enum Kind { Default = 0x0, Direct = 0x1 };
44 private:
45 enum { Symbolic = 0x2 };
46
47 llvm::PointerIntPair<const MemRegion *, 2> P;
48 uint64_t Data;
49
50 /// Create a key for a binding to region \p r, which has a symbolic offset
51 /// from region \p Base.
BindingKey(const SubRegion * r,const SubRegion * Base,Kind k)52 explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
53 : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
54 assert(r && Base && "Must have known regions.");
55 assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
56 }
57
58 /// Create a key for a binding at \p offset from base region \p r.
BindingKey(const MemRegion * r,uint64_t offset,Kind k)59 explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
60 : P(r, k), Data(offset) {
61 assert(r && "Must have known regions.");
62 assert(getOffset() == offset && "Failed to store offset");
63 assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
64 }
65 public:
66
isDirect() const67 bool isDirect() const { return P.getInt() & Direct; }
hasSymbolicOffset() const68 bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
69
getRegion() const70 const MemRegion *getRegion() const { return P.getPointer(); }
getOffset() const71 uint64_t getOffset() const {
72 assert(!hasSymbolicOffset());
73 return Data;
74 }
75
getConcreteOffsetRegion() const76 const SubRegion *getConcreteOffsetRegion() const {
77 assert(hasSymbolicOffset());
78 return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
79 }
80
getBaseRegion() const81 const MemRegion *getBaseRegion() const {
82 if (hasSymbolicOffset())
83 return getConcreteOffsetRegion()->getBaseRegion();
84 return getRegion()->getBaseRegion();
85 }
86
Profile(llvm::FoldingSetNodeID & ID) const87 void Profile(llvm::FoldingSetNodeID& ID) const {
88 ID.AddPointer(P.getOpaqueValue());
89 ID.AddInteger(Data);
90 }
91
92 static BindingKey Make(const MemRegion *R, Kind k);
93
operator <(const BindingKey & X) const94 bool operator<(const BindingKey &X) const {
95 if (P.getOpaqueValue() < X.P.getOpaqueValue())
96 return true;
97 if (P.getOpaqueValue() > X.P.getOpaqueValue())
98 return false;
99 return Data < X.Data;
100 }
101
operator ==(const BindingKey & X) const102 bool operator==(const BindingKey &X) const {
103 return P.getOpaqueValue() == X.P.getOpaqueValue() &&
104 Data == X.Data;
105 }
106
107 LLVM_ATTRIBUTE_USED void dump() const;
108 };
109 } // end anonymous namespace
110
Make(const MemRegion * R,Kind k)111 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
112 const RegionOffset &RO = R->getAsOffset();
113 if (RO.hasSymbolicOffset())
114 return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
115
116 return BindingKey(RO.getRegion(), RO.getOffset(), k);
117 }
118
119 namespace llvm {
120 static inline
operator <<(raw_ostream & os,BindingKey K)121 raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
122 os << '(' << K.getRegion();
123 if (!K.hasSymbolicOffset())
124 os << ',' << K.getOffset();
125 os << ',' << (K.isDirect() ? "direct" : "default")
126 << ')';
127 return os;
128 }
129
130 template <typename T> struct isPodLike;
131 template <> struct isPodLike<BindingKey> {
132 static const bool value = true;
133 };
134 } // end llvm namespace
135
dump() const136 void BindingKey::dump() const {
137 llvm::errs() << *this;
138 }
139
140 //===----------------------------------------------------------------------===//
141 // Actual Store type.
142 //===----------------------------------------------------------------------===//
143
144 typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings;
145 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
146 typedef std::pair<BindingKey, SVal> BindingPair;
147
148 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
149 RegionBindings;
150
151 namespace {
152 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
153 ClusterBindings> {
154 ClusterBindings::Factory &CBFactory;
155 public:
156 typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
157 ParentTy;
158
RegionBindingsRef(ClusterBindings::Factory & CBFactory,const RegionBindings::TreeTy * T,RegionBindings::TreeTy::Factory * F)159 RegionBindingsRef(ClusterBindings::Factory &CBFactory,
160 const RegionBindings::TreeTy *T,
161 RegionBindings::TreeTy::Factory *F)
162 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
163 CBFactory(CBFactory) {}
164
RegionBindingsRef(const ParentTy & P,ClusterBindings::Factory & CBFactory)165 RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
166 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
167 CBFactory(CBFactory) {}
168
add(key_type_ref K,data_type_ref D) const169 RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
170 return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
171 CBFactory);
172 }
173
remove(key_type_ref K) const174 RegionBindingsRef remove(key_type_ref K) const {
175 return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
176 CBFactory);
177 }
178
179 RegionBindingsRef addBinding(BindingKey K, SVal V) const;
180
181 RegionBindingsRef addBinding(const MemRegion *R,
182 BindingKey::Kind k, SVal V) const;
183
operator =(const RegionBindingsRef & X)184 RegionBindingsRef &operator=(const RegionBindingsRef &X) {
185 *static_cast<ParentTy*>(this) = X;
186 return *this;
187 }
188
189 const SVal *lookup(BindingKey K) const;
190 const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
lookup(const MemRegion * R) const191 const ClusterBindings *lookup(const MemRegion *R) const {
192 return static_cast<const ParentTy*>(this)->lookup(R);
193 }
194
195 RegionBindingsRef removeBinding(BindingKey K);
196
197 RegionBindingsRef removeBinding(const MemRegion *R,
198 BindingKey::Kind k);
199
removeBinding(const MemRegion * R)200 RegionBindingsRef removeBinding(const MemRegion *R) {
201 return removeBinding(R, BindingKey::Direct).
202 removeBinding(R, BindingKey::Default);
203 }
204
205 Optional<SVal> getDirectBinding(const MemRegion *R) const;
206
207 /// getDefaultBinding - Returns an SVal* representing an optional default
208 /// binding associated with a region and its subregions.
209 Optional<SVal> getDefaultBinding(const MemRegion *R) const;
210
211 /// Return the internal tree as a Store.
asStore() const212 Store asStore() const {
213 return asImmutableMap().getRootWithoutRetain();
214 }
215
dump(raw_ostream & OS,const char * nl) const216 void dump(raw_ostream &OS, const char *nl) const {
217 for (iterator I = begin(), E = end(); I != E; ++I) {
218 const ClusterBindings &Cluster = I.getData();
219 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
220 CI != CE; ++CI) {
221 OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
222 }
223 OS << nl;
224 }
225 }
226
dump() const227 LLVM_ATTRIBUTE_USED void dump() const {
228 dump(llvm::errs(), "\n");
229 }
230 };
231 } // end anonymous namespace
232
233 typedef const RegionBindingsRef& RegionBindingsConstRef;
234
getDirectBinding(const MemRegion * R) const235 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
236 return Optional<SVal>::create(lookup(R, BindingKey::Direct));
237 }
238
getDefaultBinding(const MemRegion * R) const239 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
240 if (R->isBoundable())
241 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
242 if (TR->getValueType()->isUnionType())
243 return UnknownVal();
244
245 return Optional<SVal>::create(lookup(R, BindingKey::Default));
246 }
247
addBinding(BindingKey K,SVal V) const248 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
249 const MemRegion *Base = K.getBaseRegion();
250
251 const ClusterBindings *ExistingCluster = lookup(Base);
252 ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
253 : CBFactory.getEmptyMap());
254
255 ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
256 return add(Base, NewCluster);
257 }
258
259
addBinding(const MemRegion * R,BindingKey::Kind k,SVal V) const260 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
261 BindingKey::Kind k,
262 SVal V) const {
263 return addBinding(BindingKey::Make(R, k), V);
264 }
265
lookup(BindingKey K) const266 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
267 const ClusterBindings *Cluster = lookup(K.getBaseRegion());
268 if (!Cluster)
269 return 0;
270 return Cluster->lookup(K);
271 }
272
lookup(const MemRegion * R,BindingKey::Kind k) const273 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
274 BindingKey::Kind k) const {
275 return lookup(BindingKey::Make(R, k));
276 }
277
removeBinding(BindingKey K)278 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
279 const MemRegion *Base = K.getBaseRegion();
280 const ClusterBindings *Cluster = lookup(Base);
281 if (!Cluster)
282 return *this;
283
284 ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
285 if (NewCluster.isEmpty())
286 return remove(Base);
287 return add(Base, NewCluster);
288 }
289
removeBinding(const MemRegion * R,BindingKey::Kind k)290 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
291 BindingKey::Kind k){
292 return removeBinding(BindingKey::Make(R, k));
293 }
294
295 //===----------------------------------------------------------------------===//
296 // Fine-grained control of RegionStoreManager.
297 //===----------------------------------------------------------------------===//
298
299 namespace {
300 struct minimal_features_tag {};
301 struct maximal_features_tag {};
302
303 class RegionStoreFeatures {
304 bool SupportsFields;
305 public:
RegionStoreFeatures(minimal_features_tag)306 RegionStoreFeatures(minimal_features_tag) :
307 SupportsFields(false) {}
308
RegionStoreFeatures(maximal_features_tag)309 RegionStoreFeatures(maximal_features_tag) :
310 SupportsFields(true) {}
311
enableFields(bool t)312 void enableFields(bool t) { SupportsFields = t; }
313
supportsFields() const314 bool supportsFields() const { return SupportsFields; }
315 };
316 }
317
318 //===----------------------------------------------------------------------===//
319 // Main RegionStore logic.
320 //===----------------------------------------------------------------------===//
321
322 namespace {
323 class invalidateRegionsWorker;
324
325 class RegionStoreManager : public StoreManager {
326 public:
327 const RegionStoreFeatures Features;
328
329 RegionBindings::Factory RBFactory;
330 mutable ClusterBindings::Factory CBFactory;
331
332 typedef std::vector<SVal> SValListTy;
333 private:
334 typedef llvm::DenseMap<const LazyCompoundValData *,
335 SValListTy> LazyBindingsMapTy;
336 LazyBindingsMapTy LazyBindingsMap;
337
338 /// The largest number of fields a struct can have and still be
339 /// considered "small".
340 ///
341 /// This is currently used to decide whether or not it is worth "forcing" a
342 /// LazyCompoundVal on bind.
343 ///
344 /// This is controlled by 'region-store-small-struct-limit' option.
345 /// To disable all small-struct-dependent behavior, set the option to "0".
346 unsigned SmallStructLimit;
347
348 /// \brief A helper used to populate the work list with the given set of
349 /// regions.
350 void populateWorkList(invalidateRegionsWorker &W,
351 ArrayRef<SVal> Values,
352 bool IsArrayOfConstRegions,
353 InvalidatedRegions *TopLevelRegions);
354
355 public:
RegionStoreManager(ProgramStateManager & mgr,const RegionStoreFeatures & f)356 RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
357 : StoreManager(mgr), Features(f),
358 RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
359 SmallStructLimit(0) {
360 if (SubEngine *Eng = StateMgr.getOwningEngine()) {
361 AnalyzerOptions &Options = Eng->getAnalysisManager().options;
362 SmallStructLimit =
363 Options.getOptionAsInteger("region-store-small-struct-limit", 2);
364 }
365 }
366
367
368 /// setImplicitDefaultValue - Set the default binding for the provided
369 /// MemRegion to the value implicitly defined for compound literals when
370 /// the value is not specified.
371 RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
372 const MemRegion *R, QualType T);
373
374 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
375 /// type. 'Array' represents the lvalue of the array being decayed
376 /// to a pointer, and the returned SVal represents the decayed
377 /// version of that lvalue (i.e., a pointer to the first element of
378 /// the array). This is called by ExprEngine when evaluating
379 /// casts from arrays to pointers.
380 SVal ArrayToPointer(Loc Array, QualType ElementTy);
381
getInitialStore(const LocationContext * InitLoc)382 StoreRef getInitialStore(const LocationContext *InitLoc) {
383 return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
384 }
385
386 //===-------------------------------------------------------------------===//
387 // Binding values to regions.
388 //===-------------------------------------------------------------------===//
389 RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
390 const Expr *Ex,
391 unsigned Count,
392 const LocationContext *LCtx,
393 RegionBindingsRef B,
394 InvalidatedRegions *Invalidated);
395
396 StoreRef invalidateRegions(Store store,
397 ArrayRef<SVal> Values,
398 ArrayRef<SVal> ConstValues,
399 const Expr *E, unsigned Count,
400 const LocationContext *LCtx,
401 const CallEvent *Call,
402 InvalidatedSymbols &IS,
403 InvalidatedSymbols &ConstIS,
404 InvalidatedRegions *Invalidated,
405 InvalidatedRegions *InvalidatedTopLevel,
406 InvalidatedRegions *InvalidatedTopLevelConst);
407
408 bool scanReachableSymbols(Store S, const MemRegion *R,
409 ScanReachableSymbols &Callbacks);
410
411 RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
412 const SubRegion *R);
413
414 public: // Part of public interface to class.
415
Bind(Store store,Loc LV,SVal V)416 virtual StoreRef Bind(Store store, Loc LV, SVal V) {
417 return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
418 }
419
420 RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
421
422 // BindDefault is only used to initialize a region with a default value.
BindDefault(Store store,const MemRegion * R,SVal V)423 StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
424 RegionBindingsRef B = getRegionBindings(store);
425 assert(!B.lookup(R, BindingKey::Default));
426 assert(!B.lookup(R, BindingKey::Direct));
427 return StoreRef(B.addBinding(R, BindingKey::Default, V)
428 .asImmutableMap()
429 .getRootWithoutRetain(), *this);
430 }
431
432 /// Attempt to extract the fields of \p LCV and bind them to the struct region
433 /// \p R.
434 ///
435 /// This path is used when it seems advantageous to "force" loading the values
436 /// within a LazyCompoundVal to bind memberwise to the struct region, rather
437 /// than using a Default binding at the base of the entire region. This is a
438 /// heuristic attempting to avoid building long chains of LazyCompoundVals.
439 ///
440 /// \returns The updated store bindings, or \c None if binding non-lazily
441 /// would be too expensive.
442 Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
443 const TypedValueRegion *R,
444 const RecordDecl *RD,
445 nonloc::LazyCompoundVal LCV);
446
447 /// BindStruct - Bind a compound value to a structure.
448 RegionBindingsRef bindStruct(RegionBindingsConstRef B,
449 const TypedValueRegion* R, SVal V);
450
451 /// BindVector - Bind a compound value to a vector.
452 RegionBindingsRef bindVector(RegionBindingsConstRef B,
453 const TypedValueRegion* R, SVal V);
454
455 RegionBindingsRef bindArray(RegionBindingsConstRef B,
456 const TypedValueRegion* R,
457 SVal V);
458
459 /// Clears out all bindings in the given region and assigns a new value
460 /// as a Default binding.
461 RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
462 const TypedRegion *R,
463 SVal DefaultVal);
464
465 /// \brief Create a new store with the specified binding removed.
466 /// \param ST the original store, that is the basis for the new store.
467 /// \param L the location whose binding should be removed.
468 virtual StoreRef killBinding(Store ST, Loc L);
469
incrementReferenceCount(Store store)470 void incrementReferenceCount(Store store) {
471 getRegionBindings(store).manualRetain();
472 }
473
474 /// If the StoreManager supports it, decrement the reference count of
475 /// the specified Store object. If the reference count hits 0, the memory
476 /// associated with the object is recycled.
decrementReferenceCount(Store store)477 void decrementReferenceCount(Store store) {
478 getRegionBindings(store).manualRelease();
479 }
480
481 bool includedInBindings(Store store, const MemRegion *region) const;
482
483 /// \brief Return the value bound to specified location in a given state.
484 ///
485 /// The high level logic for this method is this:
486 /// getBinding (L)
487 /// if L has binding
488 /// return L's binding
489 /// else if L is in killset
490 /// return unknown
491 /// else
492 /// if L is on stack or heap
493 /// return undefined
494 /// else
495 /// return symbolic
getBinding(Store S,Loc L,QualType T)496 virtual SVal getBinding(Store S, Loc L, QualType T) {
497 return getBinding(getRegionBindings(S), L, T);
498 }
499
500 SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
501
502 SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
503
504 SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
505
506 SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
507
508 SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
509
510 SVal getBindingForLazySymbol(const TypedValueRegion *R);
511
512 SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
513 const TypedValueRegion *R,
514 QualType Ty);
515
516 SVal getLazyBinding(const SubRegion *LazyBindingRegion,
517 RegionBindingsRef LazyBinding);
518
519 /// Get bindings for the values in a struct and return a CompoundVal, used
520 /// when doing struct copy:
521 /// struct s x, y;
522 /// x = y;
523 /// y's value is retrieved by this method.
524 SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
525 SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
526 NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
527
528 /// Used to lazily generate derived symbols for bindings that are defined
529 /// implicitly by default bindings in a super region.
530 ///
531 /// Note that callers may need to specially handle LazyCompoundVals, which
532 /// are returned as is in case the caller needs to treat them differently.
533 Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
534 const MemRegion *superR,
535 const TypedValueRegion *R,
536 QualType Ty);
537
538 /// Get the state and region whose binding this region \p R corresponds to.
539 ///
540 /// If there is no lazy binding for \p R, the returned value will have a null
541 /// \c second. Note that a null pointer can represents a valid Store.
542 std::pair<Store, const SubRegion *>
543 findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
544 const SubRegion *originalRegion);
545
546 /// Returns the cached set of interesting SVals contained within a lazy
547 /// binding.
548 ///
549 /// The precise value of "interesting" is determined for the purposes of
550 /// RegionStore's internal analysis. It must always contain all regions and
551 /// symbols, but may omit constants and other kinds of SVal.
552 const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
553
554 //===------------------------------------------------------------------===//
555 // State pruning.
556 //===------------------------------------------------------------------===//
557
558 /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
559 /// It returns a new Store with these values removed.
560 StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
561 SymbolReaper& SymReaper);
562
563 //===------------------------------------------------------------------===//
564 // Region "extents".
565 //===------------------------------------------------------------------===//
566
567 // FIXME: This method will soon be eliminated; see the note in Store.h.
568 DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
569 const MemRegion* R, QualType EleTy);
570
571 //===------------------------------------------------------------------===//
572 // Utility methods.
573 //===------------------------------------------------------------------===//
574
getRegionBindings(Store store) const575 RegionBindingsRef getRegionBindings(Store store) const {
576 return RegionBindingsRef(CBFactory,
577 static_cast<const RegionBindings::TreeTy*>(store),
578 RBFactory.getTreeFactory());
579 }
580
581 void print(Store store, raw_ostream &Out, const char* nl,
582 const char *sep);
583
iterBindings(Store store,BindingsHandler & f)584 void iterBindings(Store store, BindingsHandler& f) {
585 RegionBindingsRef B = getRegionBindings(store);
586 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
587 const ClusterBindings &Cluster = I.getData();
588 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
589 CI != CE; ++CI) {
590 const BindingKey &K = CI.getKey();
591 if (!K.isDirect())
592 continue;
593 if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
594 // FIXME: Possibly incorporate the offset?
595 if (!f.HandleBinding(*this, store, R, CI.getData()))
596 return;
597 }
598 }
599 }
600 }
601 };
602
603 } // end anonymous namespace
604
605 //===----------------------------------------------------------------------===//
606 // RegionStore creation.
607 //===----------------------------------------------------------------------===//
608
CreateRegionStoreManager(ProgramStateManager & StMgr)609 StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
610 RegionStoreFeatures F = maximal_features_tag();
611 return new RegionStoreManager(StMgr, F);
612 }
613
614 StoreManager *
CreateFieldsOnlyRegionStoreManager(ProgramStateManager & StMgr)615 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
616 RegionStoreFeatures F = minimal_features_tag();
617 F.enableFields(true);
618 return new RegionStoreManager(StMgr, F);
619 }
620
621
622 //===----------------------------------------------------------------------===//
623 // Region Cluster analysis.
624 //===----------------------------------------------------------------------===//
625
626 namespace {
627 /// Used to determine which global regions are automatically included in the
628 /// initial worklist of a ClusterAnalysis.
629 enum GlobalsFilterKind {
630 /// Don't include any global regions.
631 GFK_None,
632 /// Only include system globals.
633 GFK_SystemOnly,
634 /// Include all global regions.
635 GFK_All
636 };
637
638 template <typename DERIVED>
639 class ClusterAnalysis {
640 protected:
641 typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
642 typedef llvm::PointerIntPair<const MemRegion *, 1, bool> WorkListElement;
643 typedef SmallVector<WorkListElement, 10> WorkList;
644
645 llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
646
647 WorkList WL;
648
649 RegionStoreManager &RM;
650 ASTContext &Ctx;
651 SValBuilder &svalBuilder;
652
653 RegionBindingsRef B;
654
655 private:
656 GlobalsFilterKind GlobalsFilter;
657
658 protected:
getCluster(const MemRegion * R)659 const ClusterBindings *getCluster(const MemRegion *R) {
660 return B.lookup(R);
661 }
662
663 /// Returns true if the memory space of the given region is one of the global
664 /// regions specially included at the start of analysis.
isInitiallyIncludedGlobalRegion(const MemRegion * R)665 bool isInitiallyIncludedGlobalRegion(const MemRegion *R) {
666 switch (GlobalsFilter) {
667 case GFK_None:
668 return false;
669 case GFK_SystemOnly:
670 return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
671 case GFK_All:
672 return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
673 }
674
675 llvm_unreachable("unknown globals filter");
676 }
677
678 public:
ClusterAnalysis(RegionStoreManager & rm,ProgramStateManager & StateMgr,RegionBindingsRef b,GlobalsFilterKind GFK)679 ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
680 RegionBindingsRef b, GlobalsFilterKind GFK)
681 : RM(rm), Ctx(StateMgr.getContext()),
682 svalBuilder(StateMgr.getSValBuilder()),
683 B(b), GlobalsFilter(GFK) {}
684
getRegionBindings() const685 RegionBindingsRef getRegionBindings() const { return B; }
686
isVisited(const MemRegion * R)687 bool isVisited(const MemRegion *R) {
688 return Visited.count(getCluster(R));
689 }
690
GenerateClusters()691 void GenerateClusters() {
692 // Scan the entire set of bindings and record the region clusters.
693 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
694 RI != RE; ++RI){
695 const MemRegion *Base = RI.getKey();
696
697 const ClusterBindings &Cluster = RI.getData();
698 assert(!Cluster.isEmpty() && "Empty clusters should be removed");
699 static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
700
701 // If this is an interesting global region, add it the work list up front.
702 if (isInitiallyIncludedGlobalRegion(Base))
703 AddToWorkList(WorkListElement(Base), &Cluster);
704 }
705 }
706
AddToWorkList(WorkListElement E,const ClusterBindings * C)707 bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
708 if (C && !Visited.insert(C))
709 return false;
710 WL.push_back(E);
711 return true;
712 }
713
AddToWorkList(const MemRegion * R,bool Flag=false)714 bool AddToWorkList(const MemRegion *R, bool Flag = false) {
715 const MemRegion *BaseR = R->getBaseRegion();
716 return AddToWorkList(WorkListElement(BaseR, Flag), getCluster(BaseR));
717 }
718
RunWorkList()719 void RunWorkList() {
720 while (!WL.empty()) {
721 WorkListElement E = WL.pop_back_val();
722 const MemRegion *BaseR = E.getPointer();
723
724 static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR),
725 E.getInt());
726 }
727 }
728
VisitAddedToCluster(const MemRegion * baseR,const ClusterBindings & C)729 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
VisitCluster(const MemRegion * baseR,const ClusterBindings * C)730 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
731
VisitCluster(const MemRegion * BaseR,const ClusterBindings * C,bool Flag)732 void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
733 bool Flag) {
734 static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
735 }
736 };
737 }
738
739 //===----------------------------------------------------------------------===//
740 // Binding invalidation.
741 //===----------------------------------------------------------------------===//
742
scanReachableSymbols(Store S,const MemRegion * R,ScanReachableSymbols & Callbacks)743 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
744 ScanReachableSymbols &Callbacks) {
745 assert(R == R->getBaseRegion() && "Should only be called for base regions");
746 RegionBindingsRef B = getRegionBindings(S);
747 const ClusterBindings *Cluster = B.lookup(R);
748
749 if (!Cluster)
750 return true;
751
752 for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
753 RI != RE; ++RI) {
754 if (!Callbacks.scan(RI.getData()))
755 return false;
756 }
757
758 return true;
759 }
760
isUnionField(const FieldRegion * FR)761 static inline bool isUnionField(const FieldRegion *FR) {
762 return FR->getDecl()->getParent()->isUnion();
763 }
764
765 typedef SmallVector<const FieldDecl *, 8> FieldVector;
766
getSymbolicOffsetFields(BindingKey K,FieldVector & Fields)767 void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
768 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
769
770 const MemRegion *Base = K.getConcreteOffsetRegion();
771 const MemRegion *R = K.getRegion();
772
773 while (R != Base) {
774 if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
775 if (!isUnionField(FR))
776 Fields.push_back(FR->getDecl());
777
778 R = cast<SubRegion>(R)->getSuperRegion();
779 }
780 }
781
isCompatibleWithFields(BindingKey K,const FieldVector & Fields)782 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
783 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
784
785 if (Fields.empty())
786 return true;
787
788 FieldVector FieldsInBindingKey;
789 getSymbolicOffsetFields(K, FieldsInBindingKey);
790
791 ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
792 if (Delta >= 0)
793 return std::equal(FieldsInBindingKey.begin() + Delta,
794 FieldsInBindingKey.end(),
795 Fields.begin());
796 else
797 return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
798 Fields.begin() - Delta);
799 }
800
801 /// Collects all bindings in \p Cluster that may refer to bindings within
802 /// \p Top.
803 ///
804 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
805 /// \c second is the value (an SVal).
806 ///
807 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
808 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
809 /// an aggregate within a larger aggregate with a default binding.
810 static void
collectSubRegionBindings(SmallVectorImpl<BindingPair> & Bindings,SValBuilder & SVB,const ClusterBindings & Cluster,const SubRegion * Top,BindingKey TopKey,bool IncludeAllDefaultBindings)811 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
812 SValBuilder &SVB, const ClusterBindings &Cluster,
813 const SubRegion *Top, BindingKey TopKey,
814 bool IncludeAllDefaultBindings) {
815 FieldVector FieldsInSymbolicSubregions;
816 if (TopKey.hasSymbolicOffset()) {
817 getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
818 Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
819 TopKey = BindingKey::Make(Top, BindingKey::Default);
820 }
821
822 // Find the length (in bits) of the region being invalidated.
823 uint64_t Length = UINT64_MAX;
824 SVal Extent = Top->getExtent(SVB);
825 if (Optional<nonloc::ConcreteInt> ExtentCI =
826 Extent.getAs<nonloc::ConcreteInt>()) {
827 const llvm::APSInt &ExtentInt = ExtentCI->getValue();
828 assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
829 // Extents are in bytes but region offsets are in bits. Be careful!
830 Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
831 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
832 if (FR->getDecl()->isBitField())
833 Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
834 }
835
836 for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
837 I != E; ++I) {
838 BindingKey NextKey = I.getKey();
839 if (NextKey.getRegion() == TopKey.getRegion()) {
840 // FIXME: This doesn't catch the case where we're really invalidating a
841 // region with a symbolic offset. Example:
842 // R: points[i].y
843 // Next: points[0].x
844
845 if (NextKey.getOffset() > TopKey.getOffset() &&
846 NextKey.getOffset() - TopKey.getOffset() < Length) {
847 // Case 1: The next binding is inside the region we're invalidating.
848 // Include it.
849 Bindings.push_back(*I);
850
851 } else if (NextKey.getOffset() == TopKey.getOffset()) {
852 // Case 2: The next binding is at the same offset as the region we're
853 // invalidating. In this case, we need to leave default bindings alone,
854 // since they may be providing a default value for a regions beyond what
855 // we're invalidating.
856 // FIXME: This is probably incorrect; consider invalidating an outer
857 // struct whose first field is bound to a LazyCompoundVal.
858 if (IncludeAllDefaultBindings || NextKey.isDirect())
859 Bindings.push_back(*I);
860 }
861
862 } else if (NextKey.hasSymbolicOffset()) {
863 const MemRegion *Base = NextKey.getConcreteOffsetRegion();
864 if (Top->isSubRegionOf(Base)) {
865 // Case 3: The next key is symbolic and we just changed something within
866 // its concrete region. We don't know if the binding is still valid, so
867 // we'll be conservative and include it.
868 if (IncludeAllDefaultBindings || NextKey.isDirect())
869 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
870 Bindings.push_back(*I);
871 } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
872 // Case 4: The next key is symbolic, but we changed a known
873 // super-region. In this case the binding is certainly included.
874 if (Top == Base || BaseSR->isSubRegionOf(Top))
875 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
876 Bindings.push_back(*I);
877 }
878 }
879 }
880 }
881
882 static void
collectSubRegionBindings(SmallVectorImpl<BindingPair> & Bindings,SValBuilder & SVB,const ClusterBindings & Cluster,const SubRegion * Top,bool IncludeAllDefaultBindings)883 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
884 SValBuilder &SVB, const ClusterBindings &Cluster,
885 const SubRegion *Top, bool IncludeAllDefaultBindings) {
886 collectSubRegionBindings(Bindings, SVB, Cluster, Top,
887 BindingKey::Make(Top, BindingKey::Default),
888 IncludeAllDefaultBindings);
889 }
890
891 RegionBindingsRef
removeSubRegionBindings(RegionBindingsConstRef B,const SubRegion * Top)892 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
893 const SubRegion *Top) {
894 BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
895 const MemRegion *ClusterHead = TopKey.getBaseRegion();
896
897 if (Top == ClusterHead) {
898 // We can remove an entire cluster's bindings all in one go.
899 return B.remove(Top);
900 }
901
902 const ClusterBindings *Cluster = B.lookup(ClusterHead);
903 if (!Cluster) {
904 // If we're invalidating a region with a symbolic offset, we need to make
905 // sure we don't treat the base region as uninitialized anymore.
906 if (TopKey.hasSymbolicOffset()) {
907 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
908 return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
909 }
910 return B;
911 }
912
913 SmallVector<BindingPair, 32> Bindings;
914 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
915 /*IncludeAllDefaultBindings=*/false);
916
917 ClusterBindingsRef Result(*Cluster, CBFactory);
918 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
919 E = Bindings.end();
920 I != E; ++I)
921 Result = Result.remove(I->first);
922
923 // If we're invalidating a region with a symbolic offset, we need to make sure
924 // we don't treat the base region as uninitialized anymore.
925 // FIXME: This isn't very precise; see the example in
926 // collectSubRegionBindings.
927 if (TopKey.hasSymbolicOffset()) {
928 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
929 Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
930 UnknownVal());
931 }
932
933 if (Result.isEmpty())
934 return B.remove(ClusterHead);
935 return B.add(ClusterHead, Result.asImmutableMap());
936 }
937
938 namespace {
939 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
940 {
941 const Expr *Ex;
942 unsigned Count;
943 const LocationContext *LCtx;
944 InvalidatedSymbols &IS;
945 InvalidatedSymbols &ConstIS;
946 StoreManager::InvalidatedRegions *Regions;
947 public:
invalidateRegionsWorker(RegionStoreManager & rm,ProgramStateManager & stateMgr,RegionBindingsRef b,const Expr * ex,unsigned count,const LocationContext * lctx,InvalidatedSymbols & is,InvalidatedSymbols & inConstIS,StoreManager::InvalidatedRegions * r,GlobalsFilterKind GFK)948 invalidateRegionsWorker(RegionStoreManager &rm,
949 ProgramStateManager &stateMgr,
950 RegionBindingsRef b,
951 const Expr *ex, unsigned count,
952 const LocationContext *lctx,
953 InvalidatedSymbols &is,
954 InvalidatedSymbols &inConstIS,
955 StoreManager::InvalidatedRegions *r,
956 GlobalsFilterKind GFK)
957 : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, GFK),
958 Ex(ex), Count(count), LCtx(lctx), IS(is), ConstIS(inConstIS), Regions(r){}
959
960 /// \param IsConst Specifies if the region we are invalidating is constant.
961 /// If it is, we invalidate all subregions, but not the base region itself.
962 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C,
963 bool IsConst);
964 void VisitBinding(SVal V);
965 };
966 }
967
VisitBinding(SVal V)968 void invalidateRegionsWorker::VisitBinding(SVal V) {
969 // A symbol? Mark it touched by the invalidation.
970 if (SymbolRef Sym = V.getAsSymbol())
971 IS.insert(Sym);
972
973 if (const MemRegion *R = V.getAsRegion()) {
974 AddToWorkList(R);
975 return;
976 }
977
978 // Is it a LazyCompoundVal? All references get invalidated as well.
979 if (Optional<nonloc::LazyCompoundVal> LCS =
980 V.getAs<nonloc::LazyCompoundVal>()) {
981
982 const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
983
984 for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
985 E = Vals.end();
986 I != E; ++I)
987 VisitBinding(*I);
988
989 return;
990 }
991 }
992
VisitCluster(const MemRegion * baseR,const ClusterBindings * C,bool IsConst)993 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
994 const ClusterBindings *C,
995 bool IsConst) {
996 if (C) {
997 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
998 VisitBinding(I.getData());
999
1000 // Invalidate the contents of a non-const base region.
1001 if (!IsConst)
1002 B = B.remove(baseR);
1003 }
1004
1005 // BlockDataRegion? If so, invalidate captured variables that are passed
1006 // by reference.
1007 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1008 for (BlockDataRegion::referenced_vars_iterator
1009 BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1010 BI != BE; ++BI) {
1011 const VarRegion *VR = BI.getCapturedRegion();
1012 const VarDecl *VD = VR->getDecl();
1013 if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1014 AddToWorkList(VR);
1015 }
1016 else if (Loc::isLocType(VR->getValueType())) {
1017 // Map the current bindings to a Store to retrieve the value
1018 // of the binding. If that binding itself is a region, we should
1019 // invalidate that region. This is because a block may capture
1020 // a pointer value, but the thing pointed by that pointer may
1021 // get invalidated.
1022 SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1023 if (Optional<Loc> L = V.getAs<Loc>()) {
1024 if (const MemRegion *LR = L->getAsRegion())
1025 AddToWorkList(LR);
1026 }
1027 }
1028 }
1029 return;
1030 }
1031
1032 // Symbolic region?
1033 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1034 SymbolRef RegionSym = SR->getSymbol();
1035
1036 // Mark that symbol touched by the invalidation.
1037 if (IsConst)
1038 ConstIS.insert(RegionSym);
1039 else
1040 IS.insert(RegionSym);
1041 }
1042
1043 // Nothing else should be done for a const region.
1044 if (IsConst)
1045 return;
1046
1047 // Otherwise, we have a normal data region. Record that we touched the region.
1048 if (Regions)
1049 Regions->push_back(baseR);
1050
1051 if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1052 // Invalidate the region by setting its default value to
1053 // conjured symbol. The type of the symbol is irrelavant.
1054 DefinedOrUnknownSVal V =
1055 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1056 B = B.addBinding(baseR, BindingKey::Default, V);
1057 return;
1058 }
1059
1060 if (!baseR->isBoundable())
1061 return;
1062
1063 const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1064 QualType T = TR->getValueType();
1065
1066 if (isInitiallyIncludedGlobalRegion(baseR)) {
1067 // If the region is a global and we are invalidating all globals,
1068 // erasing the entry is good enough. This causes all globals to be lazily
1069 // symbolicated from the same base symbol.
1070 return;
1071 }
1072
1073 if (T->isStructureOrClassType()) {
1074 // Invalidate the region by setting its default value to
1075 // conjured symbol. The type of the symbol is irrelavant.
1076 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1077 Ctx.IntTy, Count);
1078 B = B.addBinding(baseR, BindingKey::Default, V);
1079 return;
1080 }
1081
1082 if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1083 // Set the default value of the array to conjured symbol.
1084 DefinedOrUnknownSVal V =
1085 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1086 AT->getElementType(), Count);
1087 B = B.addBinding(baseR, BindingKey::Default, V);
1088 return;
1089 }
1090
1091 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1092 T,Count);
1093 assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1094 B = B.addBinding(baseR, BindingKey::Direct, V);
1095 }
1096
1097 RegionBindingsRef
invalidateGlobalRegion(MemRegion::Kind K,const Expr * Ex,unsigned Count,const LocationContext * LCtx,RegionBindingsRef B,InvalidatedRegions * Invalidated)1098 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1099 const Expr *Ex,
1100 unsigned Count,
1101 const LocationContext *LCtx,
1102 RegionBindingsRef B,
1103 InvalidatedRegions *Invalidated) {
1104 // Bind the globals memory space to a new symbol that we will use to derive
1105 // the bindings for all globals.
1106 const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1107 SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1108 /* type does not matter */ Ctx.IntTy,
1109 Count);
1110
1111 B = B.removeBinding(GS)
1112 .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1113
1114 // Even if there are no bindings in the global scope, we still need to
1115 // record that we touched it.
1116 if (Invalidated)
1117 Invalidated->push_back(GS);
1118
1119 return B;
1120 }
1121
populateWorkList(invalidateRegionsWorker & W,ArrayRef<SVal> Values,bool IsArrayOfConstRegions,InvalidatedRegions * TopLevelRegions)1122 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
1123 ArrayRef<SVal> Values,
1124 bool IsArrayOfConstRegions,
1125 InvalidatedRegions *TopLevelRegions) {
1126 for (ArrayRef<SVal>::iterator I = Values.begin(),
1127 E = Values.end(); I != E; ++I) {
1128 SVal V = *I;
1129 if (Optional<nonloc::LazyCompoundVal> LCS =
1130 V.getAs<nonloc::LazyCompoundVal>()) {
1131
1132 const SValListTy &Vals = getInterestingValues(*LCS);
1133
1134 for (SValListTy::const_iterator I = Vals.begin(),
1135 E = Vals.end(); I != E; ++I) {
1136 // Note: the last argument is false here because these are
1137 // non-top-level regions.
1138 if (const MemRegion *R = (*I).getAsRegion())
1139 W.AddToWorkList(R, /*IsConst=*/ false);
1140 }
1141 continue;
1142 }
1143
1144 if (const MemRegion *R = V.getAsRegion()) {
1145 if (TopLevelRegions)
1146 TopLevelRegions->push_back(R);
1147 W.AddToWorkList(R, /*IsConst=*/ IsArrayOfConstRegions);
1148 continue;
1149 }
1150 }
1151 }
1152
1153 StoreRef
invalidateRegions(Store store,ArrayRef<SVal> Values,ArrayRef<SVal> ConstValues,const Expr * Ex,unsigned Count,const LocationContext * LCtx,const CallEvent * Call,InvalidatedSymbols & IS,InvalidatedSymbols & ConstIS,InvalidatedRegions * TopLevelRegions,InvalidatedRegions * TopLevelConstRegions,InvalidatedRegions * Invalidated)1154 RegionStoreManager::invalidateRegions(Store store,
1155 ArrayRef<SVal> Values,
1156 ArrayRef<SVal> ConstValues,
1157 const Expr *Ex, unsigned Count,
1158 const LocationContext *LCtx,
1159 const CallEvent *Call,
1160 InvalidatedSymbols &IS,
1161 InvalidatedSymbols &ConstIS,
1162 InvalidatedRegions *TopLevelRegions,
1163 InvalidatedRegions *TopLevelConstRegions,
1164 InvalidatedRegions *Invalidated) {
1165 GlobalsFilterKind GlobalsFilter;
1166 if (Call) {
1167 if (Call->isInSystemHeader())
1168 GlobalsFilter = GFK_SystemOnly;
1169 else
1170 GlobalsFilter = GFK_All;
1171 } else {
1172 GlobalsFilter = GFK_None;
1173 }
1174
1175 RegionBindingsRef B = getRegionBindings(store);
1176 invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ConstIS,
1177 Invalidated, GlobalsFilter);
1178
1179 // Scan the bindings and generate the clusters.
1180 W.GenerateClusters();
1181
1182 // Add the regions to the worklist.
1183 populateWorkList(W, Values, /*IsArrayOfConstRegions*/ false,
1184 TopLevelRegions);
1185 populateWorkList(W, ConstValues, /*IsArrayOfConstRegions*/ true,
1186 TopLevelConstRegions);
1187
1188 W.RunWorkList();
1189
1190 // Return the new bindings.
1191 B = W.getRegionBindings();
1192
1193 // For calls, determine which global regions should be invalidated and
1194 // invalidate them. (Note that function-static and immutable globals are never
1195 // invalidated by this.)
1196 // TODO: This could possibly be more precise with modules.
1197 switch (GlobalsFilter) {
1198 case GFK_All:
1199 B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1200 Ex, Count, LCtx, B, Invalidated);
1201 // FALLTHROUGH
1202 case GFK_SystemOnly:
1203 B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1204 Ex, Count, LCtx, B, Invalidated);
1205 // FALLTHROUGH
1206 case GFK_None:
1207 break;
1208 }
1209
1210 return StoreRef(B.asStore(), *this);
1211 }
1212
1213 //===----------------------------------------------------------------------===//
1214 // Extents for regions.
1215 //===----------------------------------------------------------------------===//
1216
1217 DefinedOrUnknownSVal
getSizeInElements(ProgramStateRef state,const MemRegion * R,QualType EleTy)1218 RegionStoreManager::getSizeInElements(ProgramStateRef state,
1219 const MemRegion *R,
1220 QualType EleTy) {
1221 SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1222 const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1223 if (!SizeInt)
1224 return UnknownVal();
1225
1226 CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1227
1228 if (Ctx.getAsVariableArrayType(EleTy)) {
1229 // FIXME: We need to track extra state to properly record the size
1230 // of VLAs. Returning UnknownVal here, however, is a stop-gap so that
1231 // we don't have a divide-by-zero below.
1232 return UnknownVal();
1233 }
1234
1235 CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1236
1237 // If a variable is reinterpreted as a type that doesn't fit into a larger
1238 // type evenly, round it down.
1239 // This is a signed value, since it's used in arithmetic with signed indices.
1240 return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1241 }
1242
1243 //===----------------------------------------------------------------------===//
1244 // Location and region casting.
1245 //===----------------------------------------------------------------------===//
1246
1247 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1248 /// type. 'Array' represents the lvalue of the array being decayed
1249 /// to a pointer, and the returned SVal represents the decayed
1250 /// version of that lvalue (i.e., a pointer to the first element of
1251 /// the array). This is called by ExprEngine when evaluating casts
1252 /// from arrays to pointers.
ArrayToPointer(Loc Array,QualType T)1253 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1254 if (!Array.getAs<loc::MemRegionVal>())
1255 return UnknownVal();
1256
1257 const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
1258 NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1259 return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1260 }
1261
1262 //===----------------------------------------------------------------------===//
1263 // Loading values from regions.
1264 //===----------------------------------------------------------------------===//
1265
getBinding(RegionBindingsConstRef B,Loc L,QualType T)1266 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1267 assert(!L.getAs<UnknownVal>() && "location unknown");
1268 assert(!L.getAs<UndefinedVal>() && "location undefined");
1269
1270 // For access to concrete addresses, return UnknownVal. Checks
1271 // for null dereferences (and similar errors) are done by checkers, not
1272 // the Store.
1273 // FIXME: We can consider lazily symbolicating such memory, but we really
1274 // should defer this when we can reason easily about symbolicating arrays
1275 // of bytes.
1276 if (L.getAs<loc::ConcreteInt>()) {
1277 return UnknownVal();
1278 }
1279 if (!L.getAs<loc::MemRegionVal>()) {
1280 return UnknownVal();
1281 }
1282
1283 const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1284
1285 if (isa<AllocaRegion>(MR) ||
1286 isa<SymbolicRegion>(MR) ||
1287 isa<CodeTextRegion>(MR)) {
1288 if (T.isNull()) {
1289 if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1290 T = TR->getLocationType();
1291 else {
1292 const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1293 T = SR->getSymbol()->getType();
1294 }
1295 }
1296 MR = GetElementZeroRegion(MR, T);
1297 }
1298
1299 // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1300 // instead of 'Loc', and have the other Loc cases handled at a higher level.
1301 const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1302 QualType RTy = R->getValueType();
1303
1304 // FIXME: we do not yet model the parts of a complex type, so treat the
1305 // whole thing as "unknown".
1306 if (RTy->isAnyComplexType())
1307 return UnknownVal();
1308
1309 // FIXME: We should eventually handle funny addressing. e.g.:
1310 //
1311 // int x = ...;
1312 // int *p = &x;
1313 // char *q = (char*) p;
1314 // char c = *q; // returns the first byte of 'x'.
1315 //
1316 // Such funny addressing will occur due to layering of regions.
1317 if (RTy->isStructureOrClassType())
1318 return getBindingForStruct(B, R);
1319
1320 // FIXME: Handle unions.
1321 if (RTy->isUnionType())
1322 return UnknownVal();
1323
1324 if (RTy->isArrayType()) {
1325 if (RTy->isConstantArrayType())
1326 return getBindingForArray(B, R);
1327 else
1328 return UnknownVal();
1329 }
1330
1331 // FIXME: handle Vector types.
1332 if (RTy->isVectorType())
1333 return UnknownVal();
1334
1335 if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1336 return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1337
1338 if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1339 // FIXME: Here we actually perform an implicit conversion from the loaded
1340 // value to the element type. Eventually we want to compose these values
1341 // more intelligently. For example, an 'element' can encompass multiple
1342 // bound regions (e.g., several bound bytes), or could be a subset of
1343 // a larger value.
1344 return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1345 }
1346
1347 if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1348 // FIXME: Here we actually perform an implicit conversion from the loaded
1349 // value to the ivar type. What we should model is stores to ivars
1350 // that blow past the extent of the ivar. If the address of the ivar is
1351 // reinterpretted, it is possible we stored a different value that could
1352 // fit within the ivar. Either we need to cast these when storing them
1353 // or reinterpret them lazily (as we do here).
1354 return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1355 }
1356
1357 if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1358 // FIXME: Here we actually perform an implicit conversion from the loaded
1359 // value to the variable type. What we should model is stores to variables
1360 // that blow past the extent of the variable. If the address of the
1361 // variable is reinterpretted, it is possible we stored a different value
1362 // that could fit within the variable. Either we need to cast these when
1363 // storing them or reinterpret them lazily (as we do here).
1364 return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1365 }
1366
1367 const SVal *V = B.lookup(R, BindingKey::Direct);
1368
1369 // Check if the region has a binding.
1370 if (V)
1371 return *V;
1372
1373 // The location does not have a bound value. This means that it has
1374 // the value it had upon its creation and/or entry to the analyzed
1375 // function/method. These are either symbolic values or 'undefined'.
1376 if (R->hasStackNonParametersStorage()) {
1377 // All stack variables are considered to have undefined values
1378 // upon creation. All heap allocated blocks are considered to
1379 // have undefined values as well unless they are explicitly bound
1380 // to specific values.
1381 return UndefinedVal();
1382 }
1383
1384 // All other values are symbolic.
1385 return svalBuilder.getRegionValueSymbolVal(R);
1386 }
1387
getUnderlyingType(const SubRegion * R)1388 static QualType getUnderlyingType(const SubRegion *R) {
1389 QualType RegionTy;
1390 if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1391 RegionTy = TVR->getValueType();
1392
1393 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1394 RegionTy = SR->getSymbol()->getType();
1395
1396 return RegionTy;
1397 }
1398
1399 /// Checks to see if store \p B has a lazy binding for region \p R.
1400 ///
1401 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1402 /// if there are additional bindings within \p R.
1403 ///
1404 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1405 /// for lazy bindings for super-regions of \p R.
1406 static Optional<nonloc::LazyCompoundVal>
getExistingLazyBinding(SValBuilder & SVB,RegionBindingsConstRef B,const SubRegion * R,bool AllowSubregionBindings)1407 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1408 const SubRegion *R, bool AllowSubregionBindings) {
1409 Optional<SVal> V = B.getDefaultBinding(R);
1410 if (!V)
1411 return None;
1412
1413 Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1414 if (!LCV)
1415 return None;
1416
1417 // If the LCV is for a subregion, the types might not match, and we shouldn't
1418 // reuse the binding.
1419 QualType RegionTy = getUnderlyingType(R);
1420 if (!RegionTy.isNull() &&
1421 !RegionTy->isVoidPointerType()) {
1422 QualType SourceRegionTy = LCV->getRegion()->getValueType();
1423 if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1424 return None;
1425 }
1426
1427 if (!AllowSubregionBindings) {
1428 // If there are any other bindings within this region, we shouldn't reuse
1429 // the top-level binding.
1430 SmallVector<BindingPair, 16> Bindings;
1431 collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1432 /*IncludeAllDefaultBindings=*/true);
1433 if (Bindings.size() > 1)
1434 return None;
1435 }
1436
1437 return *LCV;
1438 }
1439
1440
1441 std::pair<Store, const SubRegion *>
findLazyBinding(RegionBindingsConstRef B,const SubRegion * R,const SubRegion * originalRegion)1442 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1443 const SubRegion *R,
1444 const SubRegion *originalRegion) {
1445 if (originalRegion != R) {
1446 if (Optional<nonloc::LazyCompoundVal> V =
1447 getExistingLazyBinding(svalBuilder, B, R, true))
1448 return std::make_pair(V->getStore(), V->getRegion());
1449 }
1450
1451 typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1452 StoreRegionPair Result = StoreRegionPair();
1453
1454 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1455 Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1456 originalRegion);
1457
1458 if (Result.second)
1459 Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1460
1461 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1462 Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1463 originalRegion);
1464
1465 if (Result.second)
1466 Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1467
1468 } else if (const CXXBaseObjectRegion *BaseReg =
1469 dyn_cast<CXXBaseObjectRegion>(R)) {
1470 // C++ base object region is another kind of region that we should blast
1471 // through to look for lazy compound value. It is like a field region.
1472 Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1473 originalRegion);
1474
1475 if (Result.second)
1476 Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1477 Result.second);
1478 }
1479
1480 return Result;
1481 }
1482
getBindingForElement(RegionBindingsConstRef B,const ElementRegion * R)1483 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1484 const ElementRegion* R) {
1485 // We do not currently model bindings of the CompoundLiteralregion.
1486 if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1487 return UnknownVal();
1488
1489 // Check if the region has a binding.
1490 if (const Optional<SVal> &V = B.getDirectBinding(R))
1491 return *V;
1492
1493 const MemRegion* superR = R->getSuperRegion();
1494
1495 // Check if the region is an element region of a string literal.
1496 if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1497 // FIXME: Handle loads from strings where the literal is treated as
1498 // an integer, e.g., *((unsigned int*)"hello")
1499 QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1500 if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1501 return UnknownVal();
1502
1503 const StringLiteral *Str = StrR->getStringLiteral();
1504 SVal Idx = R->getIndex();
1505 if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1506 int64_t i = CI->getValue().getSExtValue();
1507 // Abort on string underrun. This can be possible by arbitrary
1508 // clients of getBindingForElement().
1509 if (i < 0)
1510 return UndefinedVal();
1511 int64_t length = Str->getLength();
1512 // Technically, only i == length is guaranteed to be null.
1513 // However, such overflows should be caught before reaching this point;
1514 // the only time such an access would be made is if a string literal was
1515 // used to initialize a larger array.
1516 char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1517 return svalBuilder.makeIntVal(c, T);
1518 }
1519 }
1520
1521 // Check for loads from a code text region. For such loads, just give up.
1522 if (isa<CodeTextRegion>(superR))
1523 return UnknownVal();
1524
1525 // Handle the case where we are indexing into a larger scalar object.
1526 // For example, this handles:
1527 // int x = ...
1528 // char *y = &x;
1529 // return *y;
1530 // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1531 const RegionRawOffset &O = R->getAsArrayOffset();
1532
1533 // If we cannot reason about the offset, return an unknown value.
1534 if (!O.getRegion())
1535 return UnknownVal();
1536
1537 if (const TypedValueRegion *baseR =
1538 dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1539 QualType baseT = baseR->getValueType();
1540 if (baseT->isScalarType()) {
1541 QualType elemT = R->getElementType();
1542 if (elemT->isScalarType()) {
1543 if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1544 if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1545 if (SymbolRef parentSym = V->getAsSymbol())
1546 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1547
1548 if (V->isUnknownOrUndef())
1549 return *V;
1550 // Other cases: give up. We are indexing into a larger object
1551 // that has some value, but we don't know how to handle that yet.
1552 return UnknownVal();
1553 }
1554 }
1555 }
1556 }
1557 }
1558 return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1559 }
1560
getBindingForField(RegionBindingsConstRef B,const FieldRegion * R)1561 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1562 const FieldRegion* R) {
1563
1564 // Check if the region has a binding.
1565 if (const Optional<SVal> &V = B.getDirectBinding(R))
1566 return *V;
1567
1568 QualType Ty = R->getValueType();
1569 return getBindingForFieldOrElementCommon(B, R, Ty);
1570 }
1571
1572 Optional<SVal>
getBindingForDerivedDefaultValue(RegionBindingsConstRef B,const MemRegion * superR,const TypedValueRegion * R,QualType Ty)1573 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1574 const MemRegion *superR,
1575 const TypedValueRegion *R,
1576 QualType Ty) {
1577
1578 if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1579 const SVal &val = D.getValue();
1580 if (SymbolRef parentSym = val.getAsSymbol())
1581 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1582
1583 if (val.isZeroConstant())
1584 return svalBuilder.makeZeroVal(Ty);
1585
1586 if (val.isUnknownOrUndef())
1587 return val;
1588
1589 // Lazy bindings are usually handled through getExistingLazyBinding().
1590 // We should unify these two code paths at some point.
1591 if (val.getAs<nonloc::LazyCompoundVal>())
1592 return val;
1593
1594 llvm_unreachable("Unknown default value");
1595 }
1596
1597 return None;
1598 }
1599
getLazyBinding(const SubRegion * LazyBindingRegion,RegionBindingsRef LazyBinding)1600 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1601 RegionBindingsRef LazyBinding) {
1602 SVal Result;
1603 if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1604 Result = getBindingForElement(LazyBinding, ER);
1605 else
1606 Result = getBindingForField(LazyBinding,
1607 cast<FieldRegion>(LazyBindingRegion));
1608
1609 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1610 // default value for /part/ of an aggregate from a default value for the
1611 // /entire/ aggregate. The most common case of this is when struct Outer
1612 // has as its first member a struct Inner, which is copied in from a stack
1613 // variable. In this case, even if the Outer's default value is symbolic, 0,
1614 // or unknown, it gets overridden by the Inner's default value of undefined.
1615 //
1616 // This is a general problem -- if the Inner is zero-initialized, the Outer
1617 // will now look zero-initialized. The proper way to solve this is with a
1618 // new version of RegionStore that tracks the extent of a binding as well
1619 // as the offset.
1620 //
1621 // This hack only takes care of the undefined case because that can very
1622 // quickly result in a warning.
1623 if (Result.isUndef())
1624 Result = UnknownVal();
1625
1626 return Result;
1627 }
1628
1629 SVal
getBindingForFieldOrElementCommon(RegionBindingsConstRef B,const TypedValueRegion * R,QualType Ty)1630 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1631 const TypedValueRegion *R,
1632 QualType Ty) {
1633
1634 // At this point we have already checked in either getBindingForElement or
1635 // getBindingForField if 'R' has a direct binding.
1636
1637 // Lazy binding?
1638 Store lazyBindingStore = NULL;
1639 const SubRegion *lazyBindingRegion = NULL;
1640 llvm::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1641 if (lazyBindingRegion)
1642 return getLazyBinding(lazyBindingRegion,
1643 getRegionBindings(lazyBindingStore));
1644
1645 // Record whether or not we see a symbolic index. That can completely
1646 // be out of scope of our lookup.
1647 bool hasSymbolicIndex = false;
1648
1649 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1650 // default value for /part/ of an aggregate from a default value for the
1651 // /entire/ aggregate. The most common case of this is when struct Outer
1652 // has as its first member a struct Inner, which is copied in from a stack
1653 // variable. In this case, even if the Outer's default value is symbolic, 0,
1654 // or unknown, it gets overridden by the Inner's default value of undefined.
1655 //
1656 // This is a general problem -- if the Inner is zero-initialized, the Outer
1657 // will now look zero-initialized. The proper way to solve this is with a
1658 // new version of RegionStore that tracks the extent of a binding as well
1659 // as the offset.
1660 //
1661 // This hack only takes care of the undefined case because that can very
1662 // quickly result in a warning.
1663 bool hasPartialLazyBinding = false;
1664
1665 const SubRegion *SR = dyn_cast<SubRegion>(R);
1666 while (SR) {
1667 const MemRegion *Base = SR->getSuperRegion();
1668 if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1669 if (D->getAs<nonloc::LazyCompoundVal>()) {
1670 hasPartialLazyBinding = true;
1671 break;
1672 }
1673
1674 return *D;
1675 }
1676
1677 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1678 NonLoc index = ER->getIndex();
1679 if (!index.isConstant())
1680 hasSymbolicIndex = true;
1681 }
1682
1683 // If our super region is a field or element itself, walk up the region
1684 // hierarchy to see if there is a default value installed in an ancestor.
1685 SR = dyn_cast<SubRegion>(Base);
1686 }
1687
1688 if (R->hasStackNonParametersStorage()) {
1689 if (isa<ElementRegion>(R)) {
1690 // Currently we don't reason specially about Clang-style vectors. Check
1691 // if superR is a vector and if so return Unknown.
1692 if (const TypedValueRegion *typedSuperR =
1693 dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1694 if (typedSuperR->getValueType()->isVectorType())
1695 return UnknownVal();
1696 }
1697 }
1698
1699 // FIXME: We also need to take ElementRegions with symbolic indexes into
1700 // account. This case handles both directly accessing an ElementRegion
1701 // with a symbolic offset, but also fields within an element with
1702 // a symbolic offset.
1703 if (hasSymbolicIndex)
1704 return UnknownVal();
1705
1706 if (!hasPartialLazyBinding)
1707 return UndefinedVal();
1708 }
1709
1710 // All other values are symbolic.
1711 return svalBuilder.getRegionValueSymbolVal(R);
1712 }
1713
getBindingForObjCIvar(RegionBindingsConstRef B,const ObjCIvarRegion * R)1714 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1715 const ObjCIvarRegion* R) {
1716 // Check if the region has a binding.
1717 if (const Optional<SVal> &V = B.getDirectBinding(R))
1718 return *V;
1719
1720 const MemRegion *superR = R->getSuperRegion();
1721
1722 // Check if the super region has a default binding.
1723 if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1724 if (SymbolRef parentSym = V->getAsSymbol())
1725 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1726
1727 // Other cases: give up.
1728 return UnknownVal();
1729 }
1730
1731 return getBindingForLazySymbol(R);
1732 }
1733
getBindingForVar(RegionBindingsConstRef B,const VarRegion * R)1734 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1735 const VarRegion *R) {
1736
1737 // Check if the region has a binding.
1738 if (const Optional<SVal> &V = B.getDirectBinding(R))
1739 return *V;
1740
1741 // Lazily derive a value for the VarRegion.
1742 const VarDecl *VD = R->getDecl();
1743 const MemSpaceRegion *MS = R->getMemorySpace();
1744
1745 // Arguments are always symbolic.
1746 if (isa<StackArgumentsSpaceRegion>(MS))
1747 return svalBuilder.getRegionValueSymbolVal(R);
1748
1749 // Is 'VD' declared constant? If so, retrieve the constant value.
1750 if (VD->getType().isConstQualified())
1751 if (const Expr *Init = VD->getInit())
1752 if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1753 return *V;
1754
1755 // This must come after the check for constants because closure-captured
1756 // constant variables may appear in UnknownSpaceRegion.
1757 if (isa<UnknownSpaceRegion>(MS))
1758 return svalBuilder.getRegionValueSymbolVal(R);
1759
1760 if (isa<GlobalsSpaceRegion>(MS)) {
1761 QualType T = VD->getType();
1762
1763 // Function-scoped static variables are default-initialized to 0; if they
1764 // have an initializer, it would have been processed by now.
1765 if (isa<StaticGlobalSpaceRegion>(MS))
1766 return svalBuilder.makeZeroVal(T);
1767
1768 if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1769 assert(!V->getAs<nonloc::LazyCompoundVal>());
1770 return V.getValue();
1771 }
1772
1773 return svalBuilder.getRegionValueSymbolVal(R);
1774 }
1775
1776 return UndefinedVal();
1777 }
1778
getBindingForLazySymbol(const TypedValueRegion * R)1779 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1780 // All other values are symbolic.
1781 return svalBuilder.getRegionValueSymbolVal(R);
1782 }
1783
1784 const RegionStoreManager::SValListTy &
getInterestingValues(nonloc::LazyCompoundVal LCV)1785 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1786 // First, check the cache.
1787 LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1788 if (I != LazyBindingsMap.end())
1789 return I->second;
1790
1791 // If we don't have a list of values cached, start constructing it.
1792 SValListTy List;
1793
1794 const SubRegion *LazyR = LCV.getRegion();
1795 RegionBindingsRef B = getRegionBindings(LCV.getStore());
1796
1797 // If this region had /no/ bindings at the time, there are no interesting
1798 // values to return.
1799 const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
1800 if (!Cluster)
1801 return (LazyBindingsMap[LCV.getCVData()] = llvm_move(List));
1802
1803 SmallVector<BindingPair, 32> Bindings;
1804 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
1805 /*IncludeAllDefaultBindings=*/true);
1806 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
1807 E = Bindings.end();
1808 I != E; ++I) {
1809 SVal V = I->second;
1810 if (V.isUnknownOrUndef() || V.isConstant())
1811 continue;
1812
1813 if (Optional<nonloc::LazyCompoundVal> InnerLCV =
1814 V.getAs<nonloc::LazyCompoundVal>()) {
1815 const SValListTy &InnerList = getInterestingValues(*InnerLCV);
1816 List.insert(List.end(), InnerList.begin(), InnerList.end());
1817 continue;
1818 }
1819
1820 List.push_back(V);
1821 }
1822
1823 return (LazyBindingsMap[LCV.getCVData()] = llvm_move(List));
1824 }
1825
createLazyBinding(RegionBindingsConstRef B,const TypedValueRegion * R)1826 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
1827 const TypedValueRegion *R) {
1828 if (Optional<nonloc::LazyCompoundVal> V =
1829 getExistingLazyBinding(svalBuilder, B, R, false))
1830 return *V;
1831
1832 return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1833 }
1834
getBindingForStruct(RegionBindingsConstRef B,const TypedValueRegion * R)1835 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1836 const TypedValueRegion *R) {
1837 const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1838 if (RD->field_empty())
1839 return UnknownVal();
1840
1841 return createLazyBinding(B, R);
1842 }
1843
getBindingForArray(RegionBindingsConstRef B,const TypedValueRegion * R)1844 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1845 const TypedValueRegion *R) {
1846 assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
1847 "Only constant array types can have compound bindings.");
1848
1849 return createLazyBinding(B, R);
1850 }
1851
includedInBindings(Store store,const MemRegion * region) const1852 bool RegionStoreManager::includedInBindings(Store store,
1853 const MemRegion *region) const {
1854 RegionBindingsRef B = getRegionBindings(store);
1855 region = region->getBaseRegion();
1856
1857 // Quick path: if the base is the head of a cluster, the region is live.
1858 if (B.lookup(region))
1859 return true;
1860
1861 // Slow path: if the region is the VALUE of any binding, it is live.
1862 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1863 const ClusterBindings &Cluster = RI.getData();
1864 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1865 CI != CE; ++CI) {
1866 const SVal &D = CI.getData();
1867 if (const MemRegion *R = D.getAsRegion())
1868 if (R->getBaseRegion() == region)
1869 return true;
1870 }
1871 }
1872
1873 return false;
1874 }
1875
1876 //===----------------------------------------------------------------------===//
1877 // Binding values to regions.
1878 //===----------------------------------------------------------------------===//
1879
killBinding(Store ST,Loc L)1880 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1881 if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
1882 if (const MemRegion* R = LV->getRegion())
1883 return StoreRef(getRegionBindings(ST).removeBinding(R)
1884 .asImmutableMap()
1885 .getRootWithoutRetain(),
1886 *this);
1887
1888 return StoreRef(ST, *this);
1889 }
1890
1891 RegionBindingsRef
bind(RegionBindingsConstRef B,Loc L,SVal V)1892 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
1893 if (L.getAs<loc::ConcreteInt>())
1894 return B;
1895
1896 // If we get here, the location should be a region.
1897 const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
1898
1899 // Check if the region is a struct region.
1900 if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1901 QualType Ty = TR->getValueType();
1902 if (Ty->isArrayType())
1903 return bindArray(B, TR, V);
1904 if (Ty->isStructureOrClassType())
1905 return bindStruct(B, TR, V);
1906 if (Ty->isVectorType())
1907 return bindVector(B, TR, V);
1908 }
1909
1910 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1911 // Binding directly to a symbolic region should be treated as binding
1912 // to element 0.
1913 QualType T = SR->getSymbol()->getType();
1914 if (T->isAnyPointerType() || T->isReferenceType())
1915 T = T->getPointeeType();
1916
1917 R = GetElementZeroRegion(SR, T);
1918 }
1919
1920 // Clear out bindings that may overlap with this binding.
1921 RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
1922 return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
1923 }
1924
1925 RegionBindingsRef
setImplicitDefaultValue(RegionBindingsConstRef B,const MemRegion * R,QualType T)1926 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
1927 const MemRegion *R,
1928 QualType T) {
1929 SVal V;
1930
1931 if (Loc::isLocType(T))
1932 V = svalBuilder.makeNull();
1933 else if (T->isIntegralOrEnumerationType())
1934 V = svalBuilder.makeZeroVal(T);
1935 else if (T->isStructureOrClassType() || T->isArrayType()) {
1936 // Set the default value to a zero constant when it is a structure
1937 // or array. The type doesn't really matter.
1938 V = svalBuilder.makeZeroVal(Ctx.IntTy);
1939 }
1940 else {
1941 // We can't represent values of this type, but we still need to set a value
1942 // to record that the region has been initialized.
1943 // If this assertion ever fires, a new case should be added above -- we
1944 // should know how to default-initialize any value we can symbolicate.
1945 assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1946 V = UnknownVal();
1947 }
1948
1949 return B.addBinding(R, BindingKey::Default, V);
1950 }
1951
1952 RegionBindingsRef
bindArray(RegionBindingsConstRef B,const TypedValueRegion * R,SVal Init)1953 RegionStoreManager::bindArray(RegionBindingsConstRef B,
1954 const TypedValueRegion* R,
1955 SVal Init) {
1956
1957 const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1958 QualType ElementTy = AT->getElementType();
1959 Optional<uint64_t> Size;
1960
1961 if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1962 Size = CAT->getSize().getZExtValue();
1963
1964 // Check if the init expr is a string literal.
1965 if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
1966 const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1967
1968 // Treat the string as a lazy compound value.
1969 StoreRef store(B.asStore(), *this);
1970 nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
1971 .castAs<nonloc::LazyCompoundVal>();
1972 return bindAggregate(B, R, LCV);
1973 }
1974
1975 // Handle lazy compound values.
1976 if (Init.getAs<nonloc::LazyCompoundVal>())
1977 return bindAggregate(B, R, Init);
1978
1979 // Remaining case: explicit compound values.
1980
1981 if (Init.isUnknown())
1982 return setImplicitDefaultValue(B, R, ElementTy);
1983
1984 const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
1985 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1986 uint64_t i = 0;
1987
1988 RegionBindingsRef NewB(B);
1989
1990 for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1991 // The init list might be shorter than the array length.
1992 if (VI == VE)
1993 break;
1994
1995 const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1996 const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1997
1998 if (ElementTy->isStructureOrClassType())
1999 NewB = bindStruct(NewB, ER, *VI);
2000 else if (ElementTy->isArrayType())
2001 NewB = bindArray(NewB, ER, *VI);
2002 else
2003 NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2004 }
2005
2006 // If the init list is shorter than the array length, set the
2007 // array default value.
2008 if (Size.hasValue() && i < Size.getValue())
2009 NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2010
2011 return NewB;
2012 }
2013
bindVector(RegionBindingsConstRef B,const TypedValueRegion * R,SVal V)2014 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2015 const TypedValueRegion* R,
2016 SVal V) {
2017 QualType T = R->getValueType();
2018 assert(T->isVectorType());
2019 const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
2020
2021 // Handle lazy compound values and symbolic values.
2022 if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2023 return bindAggregate(B, R, V);
2024
2025 // We may get non-CompoundVal accidentally due to imprecise cast logic or
2026 // that we are binding symbolic struct value. Kill the field values, and if
2027 // the value is symbolic go and bind it as a "default" binding.
2028 if (!V.getAs<nonloc::CompoundVal>()) {
2029 return bindAggregate(B, R, UnknownVal());
2030 }
2031
2032 QualType ElemType = VT->getElementType();
2033 nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2034 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2035 unsigned index = 0, numElements = VT->getNumElements();
2036 RegionBindingsRef NewB(B);
2037
2038 for ( ; index != numElements ; ++index) {
2039 if (VI == VE)
2040 break;
2041
2042 NonLoc Idx = svalBuilder.makeArrayIndex(index);
2043 const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2044
2045 if (ElemType->isArrayType())
2046 NewB = bindArray(NewB, ER, *VI);
2047 else if (ElemType->isStructureOrClassType())
2048 NewB = bindStruct(NewB, ER, *VI);
2049 else
2050 NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2051 }
2052 return NewB;
2053 }
2054
2055 Optional<RegionBindingsRef>
tryBindSmallStruct(RegionBindingsConstRef B,const TypedValueRegion * R,const RecordDecl * RD,nonloc::LazyCompoundVal LCV)2056 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2057 const TypedValueRegion *R,
2058 const RecordDecl *RD,
2059 nonloc::LazyCompoundVal LCV) {
2060 FieldVector Fields;
2061
2062 if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2063 if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2064 return None;
2065
2066 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
2067 I != E; ++I) {
2068 const FieldDecl *FD = *I;
2069 if (FD->isUnnamedBitfield())
2070 continue;
2071
2072 // If there are too many fields, or if any of the fields are aggregates,
2073 // just use the LCV as a default binding.
2074 if (Fields.size() == SmallStructLimit)
2075 return None;
2076
2077 QualType Ty = FD->getType();
2078 if (!(Ty->isScalarType() || Ty->isReferenceType()))
2079 return None;
2080
2081 Fields.push_back(*I);
2082 }
2083
2084 RegionBindingsRef NewB = B;
2085
2086 for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2087 const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2088 SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2089
2090 const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2091 NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2092 }
2093
2094 return NewB;
2095 }
2096
bindStruct(RegionBindingsConstRef B,const TypedValueRegion * R,SVal V)2097 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2098 const TypedValueRegion* R,
2099 SVal V) {
2100 if (!Features.supportsFields())
2101 return B;
2102
2103 QualType T = R->getValueType();
2104 assert(T->isStructureOrClassType());
2105
2106 const RecordType* RT = T->getAs<RecordType>();
2107 const RecordDecl *RD = RT->getDecl();
2108
2109 if (!RD->isCompleteDefinition())
2110 return B;
2111
2112 // Handle lazy compound values and symbolic values.
2113 if (Optional<nonloc::LazyCompoundVal> LCV =
2114 V.getAs<nonloc::LazyCompoundVal>()) {
2115 if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2116 return *NewB;
2117 return bindAggregate(B, R, V);
2118 }
2119 if (V.getAs<nonloc::SymbolVal>())
2120 return bindAggregate(B, R, V);
2121
2122 // We may get non-CompoundVal accidentally due to imprecise cast logic or
2123 // that we are binding symbolic struct value. Kill the field values, and if
2124 // the value is symbolic go and bind it as a "default" binding.
2125 if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2126 return bindAggregate(B, R, UnknownVal());
2127
2128 const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2129 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2130
2131 RecordDecl::field_iterator FI, FE;
2132 RegionBindingsRef NewB(B);
2133
2134 for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2135
2136 if (VI == VE)
2137 break;
2138
2139 // Skip any unnamed bitfields to stay in sync with the initializers.
2140 if (FI->isUnnamedBitfield())
2141 continue;
2142
2143 QualType FTy = FI->getType();
2144 const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2145
2146 if (FTy->isArrayType())
2147 NewB = bindArray(NewB, FR, *VI);
2148 else if (FTy->isStructureOrClassType())
2149 NewB = bindStruct(NewB, FR, *VI);
2150 else
2151 NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2152 ++VI;
2153 }
2154
2155 // There may be fewer values in the initialize list than the fields of struct.
2156 if (FI != FE) {
2157 NewB = NewB.addBinding(R, BindingKey::Default,
2158 svalBuilder.makeIntVal(0, false));
2159 }
2160
2161 return NewB;
2162 }
2163
2164 RegionBindingsRef
bindAggregate(RegionBindingsConstRef B,const TypedRegion * R,SVal Val)2165 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2166 const TypedRegion *R,
2167 SVal Val) {
2168 // Remove the old bindings, using 'R' as the root of all regions
2169 // we will invalidate. Then add the new binding.
2170 return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2171 }
2172
2173 //===----------------------------------------------------------------------===//
2174 // State pruning.
2175 //===----------------------------------------------------------------------===//
2176
2177 namespace {
2178 class removeDeadBindingsWorker :
2179 public ClusterAnalysis<removeDeadBindingsWorker> {
2180 SmallVector<const SymbolicRegion*, 12> Postponed;
2181 SymbolReaper &SymReaper;
2182 const StackFrameContext *CurrentLCtx;
2183
2184 public:
removeDeadBindingsWorker(RegionStoreManager & rm,ProgramStateManager & stateMgr,RegionBindingsRef b,SymbolReaper & symReaper,const StackFrameContext * LCtx)2185 removeDeadBindingsWorker(RegionStoreManager &rm,
2186 ProgramStateManager &stateMgr,
2187 RegionBindingsRef b, SymbolReaper &symReaper,
2188 const StackFrameContext *LCtx)
2189 : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b, GFK_None),
2190 SymReaper(symReaper), CurrentLCtx(LCtx) {}
2191
2192 // Called by ClusterAnalysis.
2193 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2194 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2195 using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
2196
2197 bool UpdatePostponed();
2198 void VisitBinding(SVal V);
2199 };
2200 }
2201
VisitAddedToCluster(const MemRegion * baseR,const ClusterBindings & C)2202 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2203 const ClusterBindings &C) {
2204
2205 if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2206 if (SymReaper.isLive(VR))
2207 AddToWorkList(baseR, &C);
2208
2209 return;
2210 }
2211
2212 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2213 if (SymReaper.isLive(SR->getSymbol()))
2214 AddToWorkList(SR, &C);
2215 else
2216 Postponed.push_back(SR);
2217
2218 return;
2219 }
2220
2221 if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2222 AddToWorkList(baseR, &C);
2223 return;
2224 }
2225
2226 // CXXThisRegion in the current or parent location context is live.
2227 if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2228 const StackArgumentsSpaceRegion *StackReg =
2229 cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2230 const StackFrameContext *RegCtx = StackReg->getStackFrame();
2231 if (CurrentLCtx &&
2232 (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2233 AddToWorkList(TR, &C);
2234 }
2235 }
2236
VisitCluster(const MemRegion * baseR,const ClusterBindings * C)2237 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2238 const ClusterBindings *C) {
2239 if (!C)
2240 return;
2241
2242 // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2243 // This means we should continue to track that symbol.
2244 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2245 SymReaper.markLive(SymR->getSymbol());
2246
2247 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
2248 VisitBinding(I.getData());
2249 }
2250
VisitBinding(SVal V)2251 void removeDeadBindingsWorker::VisitBinding(SVal V) {
2252 // Is it a LazyCompoundVal? All referenced regions are live as well.
2253 if (Optional<nonloc::LazyCompoundVal> LCS =
2254 V.getAs<nonloc::LazyCompoundVal>()) {
2255
2256 const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2257
2258 for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2259 E = Vals.end();
2260 I != E; ++I)
2261 VisitBinding(*I);
2262
2263 return;
2264 }
2265
2266 // If V is a region, then add it to the worklist.
2267 if (const MemRegion *R = V.getAsRegion()) {
2268 AddToWorkList(R);
2269
2270 // All regions captured by a block are also live.
2271 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2272 BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2273 E = BR->referenced_vars_end();
2274 for ( ; I != E; ++I)
2275 AddToWorkList(I.getCapturedRegion());
2276 }
2277 }
2278
2279
2280 // Update the set of live symbols.
2281 for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
2282 SI!=SE; ++SI)
2283 SymReaper.markLive(*SI);
2284 }
2285
UpdatePostponed()2286 bool removeDeadBindingsWorker::UpdatePostponed() {
2287 // See if any postponed SymbolicRegions are actually live now, after
2288 // having done a scan.
2289 bool changed = false;
2290
2291 for (SmallVectorImpl<const SymbolicRegion*>::iterator
2292 I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2293 if (const SymbolicRegion *SR = *I) {
2294 if (SymReaper.isLive(SR->getSymbol())) {
2295 changed |= AddToWorkList(SR);
2296 *I = NULL;
2297 }
2298 }
2299 }
2300
2301 return changed;
2302 }
2303
removeDeadBindings(Store store,const StackFrameContext * LCtx,SymbolReaper & SymReaper)2304 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2305 const StackFrameContext *LCtx,
2306 SymbolReaper& SymReaper) {
2307 RegionBindingsRef B = getRegionBindings(store);
2308 removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2309 W.GenerateClusters();
2310
2311 // Enqueue the region roots onto the worklist.
2312 for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2313 E = SymReaper.region_end(); I != E; ++I) {
2314 W.AddToWorkList(*I);
2315 }
2316
2317 do W.RunWorkList(); while (W.UpdatePostponed());
2318
2319 // We have now scanned the store, marking reachable regions and symbols
2320 // as live. We now remove all the regions that are dead from the store
2321 // as well as update DSymbols with the set symbols that are now dead.
2322 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2323 const MemRegion *Base = I.getKey();
2324
2325 // If the cluster has been visited, we know the region has been marked.
2326 if (W.isVisited(Base))
2327 continue;
2328
2329 // Remove the dead entry.
2330 B = B.remove(Base);
2331
2332 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2333 SymReaper.maybeDead(SymR->getSymbol());
2334
2335 // Mark all non-live symbols that this binding references as dead.
2336 const ClusterBindings &Cluster = I.getData();
2337 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2338 CI != CE; ++CI) {
2339 SVal X = CI.getData();
2340 SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2341 for (; SI != SE; ++SI)
2342 SymReaper.maybeDead(*SI);
2343 }
2344 }
2345
2346 return StoreRef(B.asStore(), *this);
2347 }
2348
2349 //===----------------------------------------------------------------------===//
2350 // Utility methods.
2351 //===----------------------------------------------------------------------===//
2352
print(Store store,raw_ostream & OS,const char * nl,const char * sep)2353 void RegionStoreManager::print(Store store, raw_ostream &OS,
2354 const char* nl, const char *sep) {
2355 RegionBindingsRef B = getRegionBindings(store);
2356 OS << "Store (direct and default bindings), "
2357 << B.asStore()
2358 << " :" << nl;
2359 B.dump(OS, nl);
2360 }
2361