1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "EffectReverb"
18 //#define LOG_NDEBUG 0
19 #include <cutils/log.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <stdbool.h>
23 #include "EffectReverb.h"
24 #include "EffectsMath.h"
25
26 // effect_handle_t interface implementation for reverb effect
27 const struct effect_interface_s gReverbInterface = {
28 Reverb_Process,
29 Reverb_Command,
30 Reverb_GetDescriptor,
31 NULL
32 };
33
34 // Google auxiliary environmental reverb UUID: 1f0ae2e0-4ef7-11df-bc09-0002a5d5c51b
35 static const effect_descriptor_t gAuxEnvReverbDescriptor = {
36 {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
37 {0x1f0ae2e0, 0x4ef7, 0x11df, 0xbc09, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
38 EFFECT_CONTROL_API_VERSION,
39 // flags other than EFFECT_FLAG_TYPE_AUXILIARY set for test purpose
40 EFFECT_FLAG_TYPE_AUXILIARY | EFFECT_FLAG_DEVICE_IND | EFFECT_FLAG_AUDIO_MODE_IND,
41 0, // TODO
42 33,
43 "Aux Environmental Reverb",
44 "The Android Open Source Project"
45 };
46
47 // Google insert environmental reverb UUID: aa476040-6342-11df-91a4-0002a5d5c51b
48 static const effect_descriptor_t gInsertEnvReverbDescriptor = {
49 {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
50 {0xaa476040, 0x6342, 0x11df, 0x91a4, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
51 EFFECT_CONTROL_API_VERSION,
52 EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
53 0, // TODO
54 33,
55 "Insert Environmental reverb",
56 "The Android Open Source Project"
57 };
58
59 // Google auxiliary preset reverb UUID: 63909320-53a6-11df-bdbd-0002a5d5c51b
60 static const effect_descriptor_t gAuxPresetReverbDescriptor = {
61 {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
62 {0x63909320, 0x53a6, 0x11df, 0xbdbd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
63 EFFECT_CONTROL_API_VERSION,
64 EFFECT_FLAG_TYPE_AUXILIARY,
65 0, // TODO
66 33,
67 "Aux Preset Reverb",
68 "The Android Open Source Project"
69 };
70
71 // Google insert preset reverb UUID: d93dc6a0-6342-11df-b128-0002a5d5c51b
72 static const effect_descriptor_t gInsertPresetReverbDescriptor = {
73 {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
74 {0xd93dc6a0, 0x6342, 0x11df, 0xb128, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
75 EFFECT_CONTROL_API_VERSION,
76 EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
77 0, // TODO
78 33,
79 "Insert Preset Reverb",
80 "The Android Open Source Project"
81 };
82
83 // gDescriptors contains pointers to all defined effect descriptor in this library
84 static const effect_descriptor_t * const gDescriptors[] = {
85 &gAuxEnvReverbDescriptor,
86 &gInsertEnvReverbDescriptor,
87 &gAuxPresetReverbDescriptor,
88 &gInsertPresetReverbDescriptor
89 };
90
91 /*----------------------------------------------------------------------------
92 * Effect API implementation
93 *--------------------------------------------------------------------------*/
94
95 /*--- Effect Library Interface Implementation ---*/
96
EffectCreate(const effect_uuid_t * uuid,int32_t sessionId,int32_t ioId,effect_handle_t * pHandle)97 int EffectCreate(const effect_uuid_t *uuid,
98 int32_t sessionId,
99 int32_t ioId,
100 effect_handle_t *pHandle) {
101 int ret;
102 int i;
103 reverb_module_t *module;
104 const effect_descriptor_t *desc;
105 int aux = 0;
106 int preset = 0;
107
108 ALOGV("EffectLibCreateEffect start");
109
110 if (pHandle == NULL || uuid == NULL) {
111 return -EINVAL;
112 }
113
114 for (i = 0; gDescriptors[i] != NULL; i++) {
115 desc = gDescriptors[i];
116 if (memcmp(uuid, &desc->uuid, sizeof(effect_uuid_t))
117 == 0) {
118 break;
119 }
120 }
121
122 if (gDescriptors[i] == NULL) {
123 return -ENOENT;
124 }
125
126 module = malloc(sizeof(reverb_module_t));
127
128 module->itfe = &gReverbInterface;
129
130 module->context.mState = REVERB_STATE_UNINITIALIZED;
131
132 if (memcmp(&desc->type, SL_IID_PRESETREVERB, sizeof(effect_uuid_t)) == 0) {
133 preset = 1;
134 }
135 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
136 aux = 1;
137 }
138 ret = Reverb_Init(module, aux, preset);
139 if (ret < 0) {
140 ALOGW("EffectLibCreateEffect() init failed");
141 free(module);
142 return ret;
143 }
144
145 *pHandle = (effect_handle_t) module;
146
147 module->context.mState = REVERB_STATE_INITIALIZED;
148
149 ALOGV("EffectLibCreateEffect %p ,size %d", module, sizeof(reverb_module_t));
150
151 return 0;
152 }
153
EffectRelease(effect_handle_t handle)154 int EffectRelease(effect_handle_t handle) {
155 reverb_module_t *pRvbModule = (reverb_module_t *)handle;
156
157 ALOGV("EffectLibReleaseEffect %p", handle);
158 if (handle == NULL) {
159 return -EINVAL;
160 }
161
162 pRvbModule->context.mState = REVERB_STATE_UNINITIALIZED;
163
164 free(pRvbModule);
165 return 0;
166 }
167
EffectGetDescriptor(const effect_uuid_t * uuid,effect_descriptor_t * pDescriptor)168 int EffectGetDescriptor(const effect_uuid_t *uuid,
169 effect_descriptor_t *pDescriptor) {
170 int i;
171 int length = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *);
172
173 if (pDescriptor == NULL || uuid == NULL){
174 ALOGV("EffectGetDescriptor() called with NULL pointer");
175 return -EINVAL;
176 }
177
178 for (i = 0; i < length; i++) {
179 if (memcmp(uuid, &gDescriptors[i]->uuid, sizeof(effect_uuid_t)) == 0) {
180 *pDescriptor = *gDescriptors[i];
181 ALOGV("EffectGetDescriptor - UUID matched Reverb type %d, UUID = %x",
182 i, gDescriptors[i]->uuid.timeLow);
183 return 0;
184 }
185 }
186
187 return -EINVAL;
188 } /* end EffectGetDescriptor */
189
190 /*--- Effect Control Interface Implementation ---*/
191
Reverb_Process(effect_handle_t self,audio_buffer_t * inBuffer,audio_buffer_t * outBuffer)192 static int Reverb_Process(effect_handle_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) {
193 reverb_object_t *pReverb;
194 int16_t *pSrc, *pDst;
195 reverb_module_t *pRvbModule = (reverb_module_t *)self;
196
197 if (pRvbModule == NULL) {
198 return -EINVAL;
199 }
200
201 if (inBuffer == NULL || inBuffer->raw == NULL ||
202 outBuffer == NULL || outBuffer->raw == NULL ||
203 inBuffer->frameCount != outBuffer->frameCount) {
204 return -EINVAL;
205 }
206
207 pReverb = (reverb_object_t*) &pRvbModule->context;
208
209 if (pReverb->mState == REVERB_STATE_UNINITIALIZED) {
210 return -EINVAL;
211 }
212 if (pReverb->mState == REVERB_STATE_INITIALIZED) {
213 return -ENODATA;
214 }
215
216 //if bypassed or the preset forces the signal to be completely dry
217 if (pReverb->m_bBypass != 0) {
218 if (inBuffer->raw != outBuffer->raw) {
219 int16_t smp;
220 pSrc = inBuffer->s16;
221 pDst = outBuffer->s16;
222 size_t count = inBuffer->frameCount;
223 if (pRvbModule->config.inputCfg.channels == pRvbModule->config.outputCfg.channels) {
224 count *= 2;
225 while (count--) {
226 *pDst++ = *pSrc++;
227 }
228 } else {
229 while (count--) {
230 smp = *pSrc++;
231 *pDst++ = smp;
232 *pDst++ = smp;
233 }
234 }
235 }
236 return 0;
237 }
238
239 if (pReverb->m_nNextRoom != pReverb->m_nCurrentRoom) {
240 ReverbUpdateRoom(pReverb, true);
241 }
242
243 pSrc = inBuffer->s16;
244 pDst = outBuffer->s16;
245 size_t numSamples = outBuffer->frameCount;
246 while (numSamples) {
247 uint32_t processedSamples;
248 if (numSamples > (uint32_t) pReverb->m_nUpdatePeriodInSamples) {
249 processedSamples = (uint32_t) pReverb->m_nUpdatePeriodInSamples;
250 } else {
251 processedSamples = numSamples;
252 }
253
254 /* increment update counter */
255 pReverb->m_nUpdateCounter += (int16_t) processedSamples;
256 /* check if update counter needs to be reset */
257 if (pReverb->m_nUpdateCounter >= pReverb->m_nUpdatePeriodInSamples) {
258 /* update interval has elapsed, so reset counter */
259 pReverb->m_nUpdateCounter -= pReverb->m_nUpdatePeriodInSamples;
260 ReverbUpdateXfade(pReverb, pReverb->m_nUpdatePeriodInSamples);
261
262 } /* end if m_nUpdateCounter >= update interval */
263
264 Reverb(pReverb, processedSamples, pDst, pSrc);
265
266 numSamples -= processedSamples;
267 if (pReverb->m_Aux) {
268 pSrc += processedSamples;
269 } else {
270 pSrc += processedSamples * NUM_OUTPUT_CHANNELS;
271 }
272 pDst += processedSamples * NUM_OUTPUT_CHANNELS;
273 }
274
275 return 0;
276 }
277
278
Reverb_Command(effect_handle_t self,uint32_t cmdCode,uint32_t cmdSize,void * pCmdData,uint32_t * replySize,void * pReplyData)279 static int Reverb_Command(effect_handle_t self, uint32_t cmdCode, uint32_t cmdSize,
280 void *pCmdData, uint32_t *replySize, void *pReplyData) {
281 reverb_module_t *pRvbModule = (reverb_module_t *) self;
282 reverb_object_t *pReverb;
283 int retsize;
284
285 if (pRvbModule == NULL ||
286 pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
287 return -EINVAL;
288 }
289
290 pReverb = (reverb_object_t*) &pRvbModule->context;
291
292 ALOGV("Reverb_Command command %d cmdSize %d",cmdCode, cmdSize);
293
294 switch (cmdCode) {
295 case EFFECT_CMD_INIT:
296 if (pReplyData == NULL || *replySize != sizeof(int)) {
297 return -EINVAL;
298 }
299 *(int *) pReplyData = Reverb_Init(pRvbModule, pReverb->m_Aux, pReverb->m_Preset);
300 if (*(int *) pReplyData == 0) {
301 pRvbModule->context.mState = REVERB_STATE_INITIALIZED;
302 }
303 break;
304 case EFFECT_CMD_SET_CONFIG:
305 if (pCmdData == NULL || cmdSize != sizeof(effect_config_t)
306 || pReplyData == NULL || *replySize != sizeof(int)) {
307 return -EINVAL;
308 }
309 *(int *) pReplyData = Reverb_setConfig(pRvbModule,
310 (effect_config_t *)pCmdData, false);
311 break;
312 case EFFECT_CMD_GET_CONFIG:
313 if (pReplyData == NULL || *replySize != sizeof(effect_config_t)) {
314 return -EINVAL;
315 }
316 Reverb_getConfig(pRvbModule, (effect_config_t *) pCmdData);
317 break;
318 case EFFECT_CMD_RESET:
319 Reverb_Reset(pReverb, false);
320 break;
321 case EFFECT_CMD_GET_PARAM:
322 ALOGV("Reverb_Command EFFECT_CMD_GET_PARAM pCmdData %p, *replySize %d, pReplyData: %p",pCmdData, *replySize, pReplyData);
323
324 if (pCmdData == NULL || cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)) ||
325 pReplyData == NULL || *replySize < (int) sizeof(effect_param_t)) {
326 return -EINVAL;
327 }
328 effect_param_t *rep = (effect_param_t *) pReplyData;
329 memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(int32_t));
330 ALOGV("Reverb_Command EFFECT_CMD_GET_PARAM param %d, replySize %d",*(int32_t *)rep->data, rep->vsize);
331 rep->status = Reverb_getParameter(pReverb, *(int32_t *)rep->data, &rep->vsize,
332 rep->data + sizeof(int32_t));
333 *replySize = sizeof(effect_param_t) + sizeof(int32_t) + rep->vsize;
334 break;
335 case EFFECT_CMD_SET_PARAM:
336 ALOGV("Reverb_Command EFFECT_CMD_SET_PARAM cmdSize %d pCmdData %p, *replySize %d, pReplyData %p",
337 cmdSize, pCmdData, *replySize, pReplyData);
338 if (pCmdData == NULL || (cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)))
339 || pReplyData == NULL || *replySize != (int)sizeof(int32_t)) {
340 return -EINVAL;
341 }
342 effect_param_t *cmd = (effect_param_t *) pCmdData;
343 *(int *)pReplyData = Reverb_setParameter(pReverb, *(int32_t *)cmd->data,
344 cmd->vsize, cmd->data + sizeof(int32_t));
345 break;
346 case EFFECT_CMD_ENABLE:
347 if (pReplyData == NULL || *replySize != sizeof(int)) {
348 return -EINVAL;
349 }
350 if (pReverb->mState != REVERB_STATE_INITIALIZED) {
351 return -ENOSYS;
352 }
353 pReverb->mState = REVERB_STATE_ACTIVE;
354 ALOGV("EFFECT_CMD_ENABLE() OK");
355 *(int *)pReplyData = 0;
356 break;
357 case EFFECT_CMD_DISABLE:
358 if (pReplyData == NULL || *replySize != sizeof(int)) {
359 return -EINVAL;
360 }
361 if (pReverb->mState != REVERB_STATE_ACTIVE) {
362 return -ENOSYS;
363 }
364 pReverb->mState = REVERB_STATE_INITIALIZED;
365 ALOGV("EFFECT_CMD_DISABLE() OK");
366 *(int *)pReplyData = 0;
367 break;
368 case EFFECT_CMD_SET_DEVICE:
369 if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
370 return -EINVAL;
371 }
372 ALOGV("Reverb_Command EFFECT_CMD_SET_DEVICE: 0x%08x", *(uint32_t *)pCmdData);
373 break;
374 case EFFECT_CMD_SET_VOLUME: {
375 // audio output is always stereo => 2 channel volumes
376 if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t) * 2) {
377 return -EINVAL;
378 }
379 float left = (float)(*(uint32_t *)pCmdData) / (1 << 24);
380 float right = (float)(*((uint32_t *)pCmdData + 1)) / (1 << 24);
381 ALOGV("Reverb_Command EFFECT_CMD_SET_VOLUME: left %f, right %f ", left, right);
382 break;
383 }
384 case EFFECT_CMD_SET_AUDIO_MODE:
385 if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
386 return -EINVAL;
387 }
388 ALOGV("Reverb_Command EFFECT_CMD_SET_AUDIO_MODE: %d", *(uint32_t *)pCmdData);
389 break;
390 default:
391 ALOGW("Reverb_Command invalid command %d",cmdCode);
392 return -EINVAL;
393 }
394
395 return 0;
396 }
397
Reverb_GetDescriptor(effect_handle_t self,effect_descriptor_t * pDescriptor)398 int Reverb_GetDescriptor(effect_handle_t self,
399 effect_descriptor_t *pDescriptor)
400 {
401 reverb_module_t *pRvbModule = (reverb_module_t *) self;
402 reverb_object_t *pReverb;
403 const effect_descriptor_t *desc;
404
405 if (pRvbModule == NULL ||
406 pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
407 return -EINVAL;
408 }
409
410 pReverb = (reverb_object_t*) &pRvbModule->context;
411
412 if (pReverb->m_Aux) {
413 if (pReverb->m_Preset) {
414 desc = &gAuxPresetReverbDescriptor;
415 } else {
416 desc = &gAuxEnvReverbDescriptor;
417 }
418 } else {
419 if (pReverb->m_Preset) {
420 desc = &gInsertPresetReverbDescriptor;
421 } else {
422 desc = &gInsertEnvReverbDescriptor;
423 }
424 }
425
426 *pDescriptor = *desc;
427
428 return 0;
429 } /* end Reverb_getDescriptor */
430
431 /*----------------------------------------------------------------------------
432 * Reverb internal functions
433 *--------------------------------------------------------------------------*/
434
435 /*----------------------------------------------------------------------------
436 * Reverb_Init()
437 *----------------------------------------------------------------------------
438 * Purpose:
439 * Initialize reverb context and apply default parameters
440 *
441 * Inputs:
442 * pRvbModule - pointer to reverb effect module
443 * aux - indicates if the reverb is used as auxiliary (1) or insert (0)
444 * preset - indicates if the reverb is used in preset (1) or environmental (0) mode
445 *
446 * Outputs:
447 *
448 * Side Effects:
449 *
450 *----------------------------------------------------------------------------
451 */
452
Reverb_Init(reverb_module_t * pRvbModule,int aux,int preset)453 int Reverb_Init(reverb_module_t *pRvbModule, int aux, int preset) {
454 int ret;
455
456 ALOGV("Reverb_Init module %p, aux: %d, preset: %d", pRvbModule,aux, preset);
457
458 memset(&pRvbModule->context, 0, sizeof(reverb_object_t));
459
460 pRvbModule->context.m_Aux = (uint16_t)aux;
461 pRvbModule->context.m_Preset = (uint16_t)preset;
462
463 pRvbModule->config.inputCfg.samplingRate = 44100;
464 if (aux) {
465 pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_MONO;
466 } else {
467 pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
468 }
469 pRvbModule->config.inputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
470 pRvbModule->config.inputCfg.bufferProvider.getBuffer = NULL;
471 pRvbModule->config.inputCfg.bufferProvider.releaseBuffer = NULL;
472 pRvbModule->config.inputCfg.bufferProvider.cookie = NULL;
473 pRvbModule->config.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
474 pRvbModule->config.inputCfg.mask = EFFECT_CONFIG_ALL;
475 pRvbModule->config.outputCfg.samplingRate = 44100;
476 pRvbModule->config.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
477 pRvbModule->config.outputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
478 pRvbModule->config.outputCfg.bufferProvider.getBuffer = NULL;
479 pRvbModule->config.outputCfg.bufferProvider.releaseBuffer = NULL;
480 pRvbModule->config.outputCfg.bufferProvider.cookie = NULL;
481 pRvbModule->config.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
482 pRvbModule->config.outputCfg.mask = EFFECT_CONFIG_ALL;
483
484 ret = Reverb_setConfig(pRvbModule, &pRvbModule->config, true);
485 if (ret < 0) {
486 ALOGV("Reverb_Init error %d on module %p", ret, pRvbModule);
487 }
488
489 return ret;
490 }
491
492 /*----------------------------------------------------------------------------
493 * Reverb_setConfig()
494 *----------------------------------------------------------------------------
495 * Purpose:
496 * Set input and output audio configuration.
497 *
498 * Inputs:
499 * pRvbModule - pointer to reverb effect module
500 * pConfig - pointer to effect_config_t structure containing input
501 * and output audio parameters configuration
502 * init - true if called from init function
503 * Outputs:
504 *
505 * Side Effects:
506 *
507 *----------------------------------------------------------------------------
508 */
509
Reverb_setConfig(reverb_module_t * pRvbModule,effect_config_t * pConfig,bool init)510 int Reverb_setConfig(reverb_module_t *pRvbModule, effect_config_t *pConfig,
511 bool init) {
512 reverb_object_t *pReverb = &pRvbModule->context;
513 int bufferSizeInSamples;
514 int updatePeriodInSamples;
515 int xfadePeriodInSamples;
516
517 // Check configuration compatibility with build options
518 if (pConfig->inputCfg.samplingRate
519 != pConfig->outputCfg.samplingRate
520 || pConfig->outputCfg.channels != OUTPUT_CHANNELS
521 || pConfig->inputCfg.format != AUDIO_FORMAT_PCM_16_BIT
522 || pConfig->outputCfg.format != AUDIO_FORMAT_PCM_16_BIT) {
523 ALOGV("Reverb_setConfig invalid config");
524 return -EINVAL;
525 }
526 if ((pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_MONO)) ||
527 (!pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_STEREO))) {
528 ALOGV("Reverb_setConfig invalid config");
529 return -EINVAL;
530 }
531
532 pRvbModule->config = *pConfig;
533
534 pReverb->m_nSamplingRate = pRvbModule->config.outputCfg.samplingRate;
535
536 switch (pReverb->m_nSamplingRate) {
537 case 8000:
538 pReverb->m_nUpdatePeriodInBits = 5;
539 bufferSizeInSamples = 4096;
540 pReverb->m_nCosWT_5KHz = -23170;
541 break;
542 case 16000:
543 pReverb->m_nUpdatePeriodInBits = 6;
544 bufferSizeInSamples = 8192;
545 pReverb->m_nCosWT_5KHz = -12540;
546 break;
547 case 22050:
548 pReverb->m_nUpdatePeriodInBits = 7;
549 bufferSizeInSamples = 8192;
550 pReverb->m_nCosWT_5KHz = 4768;
551 break;
552 case 32000:
553 pReverb->m_nUpdatePeriodInBits = 7;
554 bufferSizeInSamples = 16384;
555 pReverb->m_nCosWT_5KHz = 18205;
556 break;
557 case 44100:
558 pReverb->m_nUpdatePeriodInBits = 8;
559 bufferSizeInSamples = 16384;
560 pReverb->m_nCosWT_5KHz = 24799;
561 break;
562 case 48000:
563 pReverb->m_nUpdatePeriodInBits = 8;
564 bufferSizeInSamples = 16384;
565 pReverb->m_nCosWT_5KHz = 25997;
566 break;
567 default:
568 ALOGV("Reverb_setConfig invalid sampling rate %d", pReverb->m_nSamplingRate);
569 return -EINVAL;
570 }
571
572 // Define a mask for circular addressing, so that array index
573 // can wraparound and stay in array boundary of 0, 1, ..., (buffer size -1)
574 // The buffer size MUST be a power of two
575 pReverb->m_nBufferMask = (int32_t) (bufferSizeInSamples - 1);
576 /* reverb parameters are updated every 2^(pReverb->m_nUpdatePeriodInBits) samples */
577 updatePeriodInSamples = (int32_t) (0x1L << pReverb->m_nUpdatePeriodInBits);
578 /*
579 calculate the update counter by bitwise ANDING with this value to
580 generate a 2^n modulo value
581 */
582 pReverb->m_nUpdatePeriodInSamples = (int32_t) updatePeriodInSamples;
583
584 xfadePeriodInSamples = (int32_t) (REVERB_XFADE_PERIOD_IN_SECONDS
585 * (double) pReverb->m_nSamplingRate);
586
587 // set xfade parameters
588 pReverb->m_nPhaseIncrement
589 = (int16_t) (65536 / ((int16_t) xfadePeriodInSamples
590 / (int16_t) updatePeriodInSamples));
591
592 if (init) {
593 ReverbReadInPresets(pReverb);
594
595 // for debugging purposes, allow noise generator
596 pReverb->m_bUseNoise = true;
597
598 // for debugging purposes, allow bypass
599 pReverb->m_bBypass = 0;
600
601 pReverb->m_nNextRoom = 1;
602
603 pReverb->m_nNoise = (int16_t) 0xABCD;
604 }
605
606 Reverb_Reset(pReverb, init);
607
608 return 0;
609 }
610
611 /*----------------------------------------------------------------------------
612 * Reverb_getConfig()
613 *----------------------------------------------------------------------------
614 * Purpose:
615 * Get input and output audio configuration.
616 *
617 * Inputs:
618 * pRvbModule - pointer to reverb effect module
619 * pConfig - pointer to effect_config_t structure containing input
620 * and output audio parameters configuration
621 * Outputs:
622 *
623 * Side Effects:
624 *
625 *----------------------------------------------------------------------------
626 */
627
Reverb_getConfig(reverb_module_t * pRvbModule,effect_config_t * pConfig)628 void Reverb_getConfig(reverb_module_t *pRvbModule, effect_config_t *pConfig)
629 {
630 *pConfig = pRvbModule->config;
631 }
632
633 /*----------------------------------------------------------------------------
634 * Reverb_Reset()
635 *----------------------------------------------------------------------------
636 * Purpose:
637 * Reset internal states and clear delay lines.
638 *
639 * Inputs:
640 * pReverb - pointer to reverb context
641 * init - true if called from init function
642 *
643 * Outputs:
644 *
645 * Side Effects:
646 *
647 *----------------------------------------------------------------------------
648 */
649
Reverb_Reset(reverb_object_t * pReverb,bool init)650 void Reverb_Reset(reverb_object_t *pReverb, bool init) {
651 int bufferSizeInSamples = (int32_t) (pReverb->m_nBufferMask + 1);
652 int maxApSamples;
653 int maxDelaySamples;
654 int maxEarlySamples;
655 int ap1In;
656 int delay0In;
657 int delay1In;
658 int32_t i;
659 uint16_t nOffset;
660
661 maxApSamples = ((int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16);
662 maxDelaySamples = ((int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
663 >> 16);
664 maxEarlySamples = ((int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
665 >> 16);
666
667 ap1In = (AP0_IN + maxApSamples + GUARD);
668 delay0In = (ap1In + maxApSamples + GUARD);
669 delay1In = (delay0In + maxDelaySamples + GUARD);
670 // Define the max offsets for the end points of each section
671 // i.e., we don't expect a given section's taps to go beyond
672 // the following limits
673
674 pReverb->m_nEarly0in = (delay1In + maxDelaySamples + GUARD);
675 pReverb->m_nEarly1in = (pReverb->m_nEarly0in + maxEarlySamples + GUARD);
676
677 pReverb->m_sAp0.m_zApIn = AP0_IN;
678
679 pReverb->m_zD0In = delay0In;
680
681 pReverb->m_sAp1.m_zApIn = ap1In;
682
683 pReverb->m_zD1In = delay1In;
684
685 pReverb->m_zOutLpfL = 0;
686 pReverb->m_zOutLpfR = 0;
687
688 pReverb->m_nRevFbkR = 0;
689 pReverb->m_nRevFbkL = 0;
690
691 // set base index into circular buffer
692 pReverb->m_nBaseIndex = 0;
693
694 // clear the reverb delay line
695 for (i = 0; i < bufferSizeInSamples; i++) {
696 pReverb->m_nDelayLine[i] = 0;
697 }
698
699 ReverbUpdateRoom(pReverb, init);
700
701 pReverb->m_nUpdateCounter = 0;
702
703 pReverb->m_nPhase = -32768;
704
705 pReverb->m_nSin = 0;
706 pReverb->m_nCos = 0;
707 pReverb->m_nSinIncrement = 0;
708 pReverb->m_nCosIncrement = 0;
709
710 // set delay tap lengths
711 nOffset = ReverbCalculateNoise(pReverb);
712
713 pReverb->m_zD1Cross = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
714 + nOffset;
715
716 nOffset = ReverbCalculateNoise(pReverb);
717
718 pReverb->m_zD0Cross = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
719 - nOffset;
720
721 nOffset = ReverbCalculateNoise(pReverb);
722
723 pReverb->m_zD0Self = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
724 - nOffset;
725
726 nOffset = ReverbCalculateNoise(pReverb);
727
728 pReverb->m_zD1Self = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
729 + nOffset;
730 }
731
732 /*----------------------------------------------------------------------------
733 * Reverb_getParameter()
734 *----------------------------------------------------------------------------
735 * Purpose:
736 * Get a Reverb parameter
737 *
738 * Inputs:
739 * pReverb - handle to instance data
740 * param - parameter
741 * pValue - pointer to variable to hold retrieved value
742 * pSize - pointer to value size: maximum size as input
743 *
744 * Outputs:
745 * *pValue updated with parameter value
746 * *pSize updated with actual value size
747 *
748 *
749 * Side Effects:
750 *
751 *----------------------------------------------------------------------------
752 */
Reverb_getParameter(reverb_object_t * pReverb,int32_t param,size_t * pSize,void * pValue)753 int Reverb_getParameter(reverb_object_t *pReverb, int32_t param, size_t *pSize,
754 void *pValue) {
755 int32_t *pValue32;
756 int16_t *pValue16;
757 t_reverb_settings *pProperties;
758 int32_t i;
759 int32_t temp;
760 int32_t temp2;
761 size_t size;
762
763 if (pReverb->m_Preset) {
764 if (param != REVERB_PARAM_PRESET || *pSize < sizeof(int16_t)) {
765 return -EINVAL;
766 }
767 size = sizeof(int16_t);
768 pValue16 = (int16_t *)pValue;
769 // REVERB_PRESET_NONE is mapped to bypass
770 if (pReverb->m_bBypass != 0) {
771 *pValue16 = (int16_t)REVERB_PRESET_NONE;
772 } else {
773 *pValue16 = (int16_t)(pReverb->m_nNextRoom + 1);
774 }
775 ALOGV("get REVERB_PARAM_PRESET, preset %d", *pValue16);
776 } else {
777 switch (param) {
778 case REVERB_PARAM_ROOM_LEVEL:
779 case REVERB_PARAM_ROOM_HF_LEVEL:
780 case REVERB_PARAM_DECAY_HF_RATIO:
781 case REVERB_PARAM_REFLECTIONS_LEVEL:
782 case REVERB_PARAM_REVERB_LEVEL:
783 case REVERB_PARAM_DIFFUSION:
784 case REVERB_PARAM_DENSITY:
785 size = sizeof(int16_t);
786 break;
787
788 case REVERB_PARAM_BYPASS:
789 case REVERB_PARAM_DECAY_TIME:
790 case REVERB_PARAM_REFLECTIONS_DELAY:
791 case REVERB_PARAM_REVERB_DELAY:
792 size = sizeof(int32_t);
793 break;
794
795 case REVERB_PARAM_PROPERTIES:
796 size = sizeof(t_reverb_settings);
797 break;
798
799 default:
800 return -EINVAL;
801 }
802
803 if (*pSize < size) {
804 return -EINVAL;
805 }
806
807 pValue32 = (int32_t *) pValue;
808 pValue16 = (int16_t *) pValue;
809 pProperties = (t_reverb_settings *) pValue;
810
811 switch (param) {
812 case REVERB_PARAM_BYPASS:
813 *pValue32 = (int32_t) pReverb->m_bBypass;
814 break;
815
816 case REVERB_PARAM_PROPERTIES:
817 pValue16 = &pProperties->roomLevel;
818 /* FALL THROUGH */
819
820 case REVERB_PARAM_ROOM_LEVEL:
821 // Convert m_nRoomLpfFwd to millibels
822 temp = (pReverb->m_nRoomLpfFwd << 15)
823 / (32767 - pReverb->m_nRoomLpfFbk);
824 *pValue16 = Effects_Linear16ToMillibels(temp);
825
826 ALOGV("get REVERB_PARAM_ROOM_LEVEL %d, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", *pValue16, temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
827
828 if (param == REVERB_PARAM_ROOM_LEVEL) {
829 break;
830 }
831 pValue16 = &pProperties->roomHFLevel;
832 /* FALL THROUGH */
833
834 case REVERB_PARAM_ROOM_HF_LEVEL:
835 // The ratio between linear gain at 0Hz and at 5000Hz for the room low pass is:
836 // (1 + a1) / sqrt(a1^2 + 2*C*a1 + 1) where:
837 // - a1 is minus the LP feedback gain: -pReverb->m_nRoomLpfFbk
838 // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
839
840 temp = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFbk);
841 ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 %d", temp);
842 temp2 = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nCosWT_5KHz)
843 << 1;
844 ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, 2 Cos a1 %d", temp2);
845 temp = 32767 + temp - temp2;
846 ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 + 2 Cos a1 + 1 %d", temp);
847 temp = Effects_Sqrt(temp) * 181;
848 ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, SQRT(a1^2 + 2 Cos a1 + 1) %d", temp);
849 temp = ((32767 - pReverb->m_nRoomLpfFbk) << 15) / temp;
850
851 ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
852
853 *pValue16 = Effects_Linear16ToMillibels(temp);
854
855 if (param == REVERB_PARAM_ROOM_HF_LEVEL) {
856 break;
857 }
858 pValue32 = (int32_t *)&pProperties->decayTime;
859 /* FALL THROUGH */
860
861 case REVERB_PARAM_DECAY_TIME:
862 // Calculate reverb feedback path gain
863 temp = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
864 temp = Effects_Linear16ToMillibels(temp);
865
866 // Calculate decay time: g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
867 temp = (-6000 * pReverb->m_nLateDelay) / temp;
868
869 // Convert samples to ms
870 *pValue32 = (temp * 1000) / pReverb->m_nSamplingRate;
871
872 ALOGV("get REVERB_PARAM_DECAY_TIME, samples %d, ms %d", temp, *pValue32);
873
874 if (param == REVERB_PARAM_DECAY_TIME) {
875 break;
876 }
877 pValue16 = &pProperties->decayHFRatio;
878 /* FALL THROUGH */
879
880 case REVERB_PARAM_DECAY_HF_RATIO:
881 // If r is the decay HF ratio (r = REVERB_PARAM_DECAY_HF_RATIO/1000) we have:
882 // DT_5000Hz = DT_0Hz * r
883 // and G_5000Hz = -6000 * d / DT_5000Hz and G_0Hz = -6000 * d / DT_0Hz in millibels so :
884 // r = G_0Hz/G_5000Hz in millibels
885 // The linear gain at 5000Hz is b0 / sqrt(a1^2 + 2*C*a1 + 1) where:
886 // - a1 is minus the LP feedback gain: -pReverb->m_nRvbLpfFbk
887 // - b0 is the LP forward gain: pReverb->m_nRvbLpfFwd
888 // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
889 if (pReverb->m_nRvbLpfFbk == 0) {
890 *pValue16 = 1000;
891 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, pReverb->m_nRvbLpfFbk == 0, ratio %d", *pValue16);
892 } else {
893 temp = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFbk);
894 temp2 = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nCosWT_5KHz)
895 << 1;
896 temp = 32767 + temp - temp2;
897 temp = Effects_Sqrt(temp) * 181;
898 temp = (pReverb->m_nRvbLpfFwd << 15) / temp;
899 // The linear gain at 0Hz is b0 / (a1 + 1)
900 temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767
901 - pReverb->m_nRvbLpfFbk);
902
903 temp = Effects_Linear16ToMillibels(temp);
904 temp2 = Effects_Linear16ToMillibels(temp2);
905 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, gain 5KHz %d mB, gain DC %d mB", temp, temp2);
906
907 if (temp == 0)
908 temp = 1;
909 temp = (int16_t) ((1000 * temp2) / temp);
910 if (temp > 1000)
911 temp = 1000;
912
913 *pValue16 = temp;
914 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, ratio %d", *pValue16);
915 }
916
917 if (param == REVERB_PARAM_DECAY_HF_RATIO) {
918 break;
919 }
920 pValue16 = &pProperties->reflectionsLevel;
921 /* FALL THROUGH */
922
923 case REVERB_PARAM_REFLECTIONS_LEVEL:
924 *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nEarlyGain);
925
926 ALOGV("get REVERB_PARAM_REFLECTIONS_LEVEL, %d", *pValue16);
927 if (param == REVERB_PARAM_REFLECTIONS_LEVEL) {
928 break;
929 }
930 pValue32 = (int32_t *)&pProperties->reflectionsDelay;
931 /* FALL THROUGH */
932
933 case REVERB_PARAM_REFLECTIONS_DELAY:
934 // convert samples to ms
935 *pValue32 = (pReverb->m_nEarlyDelay * 1000) / pReverb->m_nSamplingRate;
936
937 ALOGV("get REVERB_PARAM_REFLECTIONS_DELAY, samples %d, ms %d", pReverb->m_nEarlyDelay, *pValue32);
938
939 if (param == REVERB_PARAM_REFLECTIONS_DELAY) {
940 break;
941 }
942 pValue16 = &pProperties->reverbLevel;
943 /* FALL THROUGH */
944
945 case REVERB_PARAM_REVERB_LEVEL:
946 // Convert linear gain to millibels
947 *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nLateGain << 2);
948
949 ALOGV("get REVERB_PARAM_REVERB_LEVEL %d", *pValue16);
950
951 if (param == REVERB_PARAM_REVERB_LEVEL) {
952 break;
953 }
954 pValue32 = (int32_t *)&pProperties->reverbDelay;
955 /* FALL THROUGH */
956
957 case REVERB_PARAM_REVERB_DELAY:
958 // convert samples to ms
959 *pValue32 = (pReverb->m_nLateDelay * 1000) / pReverb->m_nSamplingRate;
960
961 ALOGV("get REVERB_PARAM_REVERB_DELAY, samples %d, ms %d", pReverb->m_nLateDelay, *pValue32);
962
963 if (param == REVERB_PARAM_REVERB_DELAY) {
964 break;
965 }
966 pValue16 = &pProperties->diffusion;
967 /* FALL THROUGH */
968
969 case REVERB_PARAM_DIFFUSION:
970 temp = (int16_t) ((1000 * (pReverb->m_sAp0.m_nApGain - AP0_GAIN_BASE))
971 / AP0_GAIN_RANGE);
972
973 if (temp < 0)
974 temp = 0;
975 if (temp > 1000)
976 temp = 1000;
977
978 *pValue16 = temp;
979 ALOGV("get REVERB_PARAM_DIFFUSION, %d, AP0 gain %d", *pValue16, pReverb->m_sAp0.m_nApGain);
980
981 if (param == REVERB_PARAM_DIFFUSION) {
982 break;
983 }
984 pValue16 = &pProperties->density;
985 /* FALL THROUGH */
986
987 case REVERB_PARAM_DENSITY:
988 // Calculate AP delay in time units
989 temp = ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn) << 16)
990 / pReverb->m_nSamplingRate;
991
992 temp = (int16_t) ((1000 * (temp - AP0_TIME_BASE)) / AP0_TIME_RANGE);
993
994 if (temp < 0)
995 temp = 0;
996 if (temp > 1000)
997 temp = 1000;
998
999 *pValue16 = temp;
1000
1001 ALOGV("get REVERB_PARAM_DENSITY, %d, AP0 delay smps %d", *pValue16, pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn);
1002 break;
1003
1004 default:
1005 break;
1006 }
1007 }
1008
1009 *pSize = size;
1010
1011 ALOGV("Reverb_getParameter, context %p, param %d, value %d",
1012 pReverb, param, *(int *)pValue);
1013
1014 return 0;
1015 } /* end Reverb_getParameter */
1016
1017 /*----------------------------------------------------------------------------
1018 * Reverb_setParameter()
1019 *----------------------------------------------------------------------------
1020 * Purpose:
1021 * Set a Reverb parameter
1022 *
1023 * Inputs:
1024 * pReverb - handle to instance data
1025 * param - parameter
1026 * pValue - pointer to parameter value
1027 * size - value size
1028 *
1029 * Outputs:
1030 *
1031 *
1032 * Side Effects:
1033 *
1034 *----------------------------------------------------------------------------
1035 */
Reverb_setParameter(reverb_object_t * pReverb,int32_t param,size_t size,void * pValue)1036 int Reverb_setParameter(reverb_object_t *pReverb, int32_t param, size_t size,
1037 void *pValue) {
1038 int32_t value32;
1039 int16_t value16;
1040 t_reverb_settings *pProperties;
1041 int32_t i;
1042 int32_t temp;
1043 int32_t temp2;
1044 reverb_preset_t *pPreset;
1045 int maxSamples;
1046 int32_t averageDelay;
1047 size_t paramSize;
1048
1049 ALOGV("Reverb_setParameter, context %p, param %d, value16 %d, value32 %d",
1050 pReverb, param, *(int16_t *)pValue, *(int32_t *)pValue);
1051
1052 if (pReverb->m_Preset) {
1053 if (param != REVERB_PARAM_PRESET || size != sizeof(int16_t)) {
1054 return -EINVAL;
1055 }
1056 value16 = *(int16_t *)pValue;
1057 ALOGV("set REVERB_PARAM_PRESET, preset %d", value16);
1058 if (value16 < REVERB_PRESET_NONE || value16 > REVERB_PRESET_PLATE) {
1059 return -EINVAL;
1060 }
1061 // REVERB_PRESET_NONE is mapped to bypass
1062 if (value16 == REVERB_PRESET_NONE) {
1063 pReverb->m_bBypass = 1;
1064 } else {
1065 pReverb->m_bBypass = 0;
1066 pReverb->m_nNextRoom = value16 - 1;
1067 }
1068 } else {
1069 switch (param) {
1070 case REVERB_PARAM_ROOM_LEVEL:
1071 case REVERB_PARAM_ROOM_HF_LEVEL:
1072 case REVERB_PARAM_DECAY_HF_RATIO:
1073 case REVERB_PARAM_REFLECTIONS_LEVEL:
1074 case REVERB_PARAM_REVERB_LEVEL:
1075 case REVERB_PARAM_DIFFUSION:
1076 case REVERB_PARAM_DENSITY:
1077 paramSize = sizeof(int16_t);
1078 break;
1079
1080 case REVERB_PARAM_BYPASS:
1081 case REVERB_PARAM_DECAY_TIME:
1082 case REVERB_PARAM_REFLECTIONS_DELAY:
1083 case REVERB_PARAM_REVERB_DELAY:
1084 paramSize = sizeof(int32_t);
1085 break;
1086
1087 case REVERB_PARAM_PROPERTIES:
1088 paramSize = sizeof(t_reverb_settings);
1089 break;
1090
1091 default:
1092 return -EINVAL;
1093 }
1094
1095 if (size != paramSize) {
1096 return -EINVAL;
1097 }
1098
1099 if (paramSize == sizeof(int16_t)) {
1100 value16 = *(int16_t *) pValue;
1101 } else if (paramSize == sizeof(int32_t)) {
1102 value32 = *(int32_t *) pValue;
1103 } else {
1104 pProperties = (t_reverb_settings *) pValue;
1105 }
1106
1107 pPreset = &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1108
1109 switch (param) {
1110 case REVERB_PARAM_BYPASS:
1111 pReverb->m_bBypass = (uint16_t)value32;
1112 break;
1113
1114 case REVERB_PARAM_PROPERTIES:
1115 value16 = pProperties->roomLevel;
1116 /* FALL THROUGH */
1117
1118 case REVERB_PARAM_ROOM_LEVEL:
1119 // Convert millibels to linear 16 bit signed => m_nRoomLpfFwd
1120 if (value16 > 0)
1121 return -EINVAL;
1122
1123 temp = Effects_MillibelsToLinear16(value16);
1124
1125 pReverb->m_nRoomLpfFwd
1126 = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRoomLpfFbk));
1127
1128 ALOGV("REVERB_PARAM_ROOM_LEVEL, gain %d, new m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
1129 if (param == REVERB_PARAM_ROOM_LEVEL)
1130 break;
1131 value16 = pProperties->roomHFLevel;
1132 /* FALL THROUGH */
1133
1134 case REVERB_PARAM_ROOM_HF_LEVEL:
1135
1136 // Limit to 0 , -40dB range because of low pass implementation
1137 if (value16 > 0 || value16 < -4000)
1138 return -EINVAL;
1139 // Convert attenuation @ 5000H expressed in millibels to => m_nRoomLpfFbk
1140 // m_nRoomLpfFbk is -a1 where a1 is the solution of:
1141 // a1^2 + 2*(C-dG^2)/(1-dG^2)*a1 + 1 = 0 where:
1142 // - C is cos(2*pi*5000/Fs) (pReverb->m_nCosWT_5KHz)
1143 // - dG is G0/Gf (G0 is the linear gain at DC and Gf is the wanted gain at 5000Hz)
1144
1145 // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1146 // while changing HF level
1147 temp2 = (pReverb->m_nRoomLpfFwd << 15) / (32767
1148 - pReverb->m_nRoomLpfFbk);
1149 if (value16 == 0) {
1150 pReverb->m_nRoomLpfFbk = 0;
1151 } else {
1152 int32_t dG2, b, delta;
1153
1154 // dG^2
1155 temp = Effects_MillibelsToLinear16(value16);
1156 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, HF gain %d", temp);
1157 temp = (1 << 30) / temp;
1158 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain %d", temp);
1159 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1160 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain ^ 2 %d", dG2);
1161 // b = 2*(C-dG^2)/(1-dG^2)
1162 b = (int32_t) ((((int64_t) 1 << (15 + 1))
1163 * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1164 / ((int64_t) 32767 - (int64_t) dG2));
1165
1166 // delta = b^2 - 4
1167 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1168 + 2)));
1169
1170 ALOGV_IF(delta > (1<<30), " delta overflow %d", delta);
1171
1172 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, dG2 %d, b %d, delta %d, m_nCosWT_5KHz %d", dG2, b, delta, pReverb->m_nCosWT_5KHz);
1173 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1174 pReverb->m_nRoomLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1175 }
1176 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, olg DC gain %d new m_nRoomLpfFbk %d, old m_nRoomLpfFwd %d",
1177 temp2, pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFwd);
1178
1179 pReverb->m_nRoomLpfFwd
1180 = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRoomLpfFbk));
1181 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, new m_nRoomLpfFwd %d", pReverb->m_nRoomLpfFwd);
1182
1183 if (param == REVERB_PARAM_ROOM_HF_LEVEL)
1184 break;
1185 value32 = pProperties->decayTime;
1186 /* FALL THROUGH */
1187
1188 case REVERB_PARAM_DECAY_TIME:
1189
1190 // Convert milliseconds to => m_nRvbLpfFwd (function of m_nRvbLpfFbk)
1191 // convert ms to samples
1192 value32 = (value32 * pReverb->m_nSamplingRate) / 1000;
1193
1194 // calculate valid decay time range as a function of current reverb delay and
1195 // max feed back gain. Min value <=> -40dB in one pass, Max value <=> feedback gain = -1 dB
1196 // Calculate attenuation for each round in late reverb given a total attenuation of -6000 millibels.
1197 // g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
1198 averageDelay = pReverb->m_nLateDelay - pReverb->m_nMaxExcursion;
1199 averageDelay += ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn)
1200 + (pReverb->m_sAp1.m_zApOut - pReverb->m_sAp1.m_zApIn)) >> 1;
1201
1202 temp = (-6000 * averageDelay) / value32;
1203 ALOGV("REVERB_PARAM_DECAY_TIME, delay smps %d, DT smps %d, gain mB %d",averageDelay, value32, temp);
1204 if (temp < -4000 || temp > -100)
1205 return -EINVAL;
1206
1207 // calculate low pass gain by adding reverb input attenuation (pReverb->m_nLateGain) and substrating output
1208 // xfade and sum gain (max +9dB)
1209 temp -= Effects_Linear16ToMillibels(pReverb->m_nLateGain) + 900;
1210 temp = Effects_MillibelsToLinear16(temp);
1211
1212 // DC gain (temp) = b0 / (1 + a1) = pReverb->m_nRvbLpfFwd / (32767 - pReverb->m_nRvbLpfFbk)
1213 pReverb->m_nRvbLpfFwd
1214 = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRvbLpfFbk));
1215
1216 ALOGV("REVERB_PARAM_DECAY_TIME, gain %d, new m_nRvbLpfFwd %d, old m_nRvbLpfFbk %d, reverb gain %d", temp, pReverb->m_nRvbLpfFwd, pReverb->m_nRvbLpfFbk, Effects_Linear16ToMillibels(pReverb->m_nLateGain));
1217
1218 if (param == REVERB_PARAM_DECAY_TIME)
1219 break;
1220 value16 = pProperties->decayHFRatio;
1221 /* FALL THROUGH */
1222
1223 case REVERB_PARAM_DECAY_HF_RATIO:
1224
1225 // We limit max value to 1000 because reverb filter is lowpass only
1226 if (value16 < 100 || value16 > 1000)
1227 return -EINVAL;
1228 // Convert per mille to => m_nLpfFwd, m_nLpfFbk
1229
1230 // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1231 // while changing HF level
1232 temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
1233
1234 if (value16 == 1000) {
1235 pReverb->m_nRvbLpfFbk = 0;
1236 } else {
1237 int32_t dG2, b, delta;
1238
1239 temp = Effects_Linear16ToMillibels(temp2);
1240 // G_5000Hz = G_DC * (1000/REVERB_PARAM_DECAY_HF_RATIO) in millibels
1241
1242 value32 = ((int32_t) 1000 << 15) / (int32_t) value16;
1243 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, DC gain %d, DC gain mB %d, 1000/R %d", temp2, temp, value32);
1244
1245 temp = (int32_t) (((int64_t) temp * (int64_t) value32) >> 15);
1246
1247 if (temp < -4000) {
1248 ALOGV("REVERB_PARAM_DECAY_HF_RATIO HF gain overflow %d mB", temp);
1249 temp = -4000;
1250 }
1251
1252 temp = Effects_MillibelsToLinear16(temp);
1253 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, HF gain %d", temp);
1254 // dG^2
1255 temp = (temp2 << 15) / temp;
1256 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1257
1258 // b = 2*(C-dG^2)/(1-dG^2)
1259 b = (int32_t) ((((int64_t) 1 << (15 + 1))
1260 * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1261 / ((int64_t) 32767 - (int64_t) dG2));
1262
1263 // delta = b^2 - 4
1264 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1265 + 2)));
1266
1267 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1268 pReverb->m_nRvbLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1269
1270 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, dG2 %d, b %d, delta %d", dG2, b, delta);
1271
1272 }
1273
1274 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, gain %d, m_nRvbLpfFbk %d, m_nRvbLpfFwd %d", temp2, pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFwd);
1275
1276 pReverb->m_nRvbLpfFwd
1277 = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRvbLpfFbk));
1278
1279 if (param == REVERB_PARAM_DECAY_HF_RATIO)
1280 break;
1281 value16 = pProperties->reflectionsLevel;
1282 /* FALL THROUGH */
1283
1284 case REVERB_PARAM_REFLECTIONS_LEVEL:
1285 // We limit max value to 0 because gain is limited to 0dB
1286 if (value16 > 0 || value16 < -6000)
1287 return -EINVAL;
1288
1289 // Convert millibels to linear 16 bit signed and recompute m_sEarlyL.m_nGain[i] and m_sEarlyR.m_nGain[i].
1290 value16 = Effects_MillibelsToLinear16(value16);
1291 for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1292 pReverb->m_sEarlyL.m_nGain[i]
1293 = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],value16);
1294 pReverb->m_sEarlyR.m_nGain[i]
1295 = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],value16);
1296 }
1297 pReverb->m_nEarlyGain = value16;
1298 ALOGV("REVERB_PARAM_REFLECTIONS_LEVEL, m_nEarlyGain %d", pReverb->m_nEarlyGain);
1299
1300 if (param == REVERB_PARAM_REFLECTIONS_LEVEL)
1301 break;
1302 value32 = pProperties->reflectionsDelay;
1303 /* FALL THROUGH */
1304
1305 case REVERB_PARAM_REFLECTIONS_DELAY:
1306 // We limit max value MAX_EARLY_TIME
1307 // convert ms to time units
1308 temp = (value32 * 65536) / 1000;
1309 if (temp < 0 || temp > MAX_EARLY_TIME)
1310 return -EINVAL;
1311
1312 maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1313 >> 16;
1314 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1315 for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1316 temp2 = temp + (((int32_t) pPreset->m_sEarlyL.m_zDelay[i]
1317 * pReverb->m_nSamplingRate) >> 16);
1318 if (temp2 > maxSamples)
1319 temp2 = maxSamples;
1320 pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp2;
1321 temp2 = temp + (((int32_t) pPreset->m_sEarlyR.m_zDelay[i]
1322 * pReverb->m_nSamplingRate) >> 16);
1323 if (temp2 > maxSamples)
1324 temp2 = maxSamples;
1325 pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp2;
1326 }
1327 pReverb->m_nEarlyDelay = temp;
1328
1329 ALOGV("REVERB_PARAM_REFLECTIONS_DELAY, m_nEarlyDelay smps %d max smp delay %d", pReverb->m_nEarlyDelay, maxSamples);
1330
1331 // Convert milliseconds to sample count => m_nEarlyDelay
1332 if (param == REVERB_PARAM_REFLECTIONS_DELAY)
1333 break;
1334 value16 = pProperties->reverbLevel;
1335 /* FALL THROUGH */
1336
1337 case REVERB_PARAM_REVERB_LEVEL:
1338 // We limit max value to 0 because gain is limited to 0dB
1339 if (value16 > 0 || value16 < -6000)
1340 return -EINVAL;
1341 // Convert millibels to linear 16 bits (gange 0 - 8191) => m_nLateGain.
1342 pReverb->m_nLateGain = Effects_MillibelsToLinear16(value16) >> 2;
1343
1344 ALOGV("REVERB_PARAM_REVERB_LEVEL, m_nLateGain %d", pReverb->m_nLateGain);
1345
1346 if (param == REVERB_PARAM_REVERB_LEVEL)
1347 break;
1348 value32 = pProperties->reverbDelay;
1349 /* FALL THROUGH */
1350
1351 case REVERB_PARAM_REVERB_DELAY:
1352 // We limit max value to MAX_DELAY_TIME
1353 // convert ms to time units
1354 temp = (value32 * 65536) / 1000;
1355 if (temp < 0 || temp > MAX_DELAY_TIME)
1356 return -EINVAL;
1357
1358 maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1359 >> 16;
1360 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1361 if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1362 temp = maxSamples - pReverb->m_nMaxExcursion;
1363 }
1364 if (temp < pReverb->m_nMaxExcursion) {
1365 temp = pReverb->m_nMaxExcursion;
1366 }
1367
1368 temp -= pReverb->m_nLateDelay;
1369 pReverb->m_nDelay0Out += temp;
1370 pReverb->m_nDelay1Out += temp;
1371 pReverb->m_nLateDelay += temp;
1372
1373 ALOGV("REVERB_PARAM_REVERB_DELAY, m_nLateDelay smps %d max smp delay %d", pReverb->m_nLateDelay, maxSamples);
1374
1375 // Convert milliseconds to sample count => m_nDelay1Out + m_nMaxExcursion
1376 if (param == REVERB_PARAM_REVERB_DELAY)
1377 break;
1378
1379 value16 = pProperties->diffusion;
1380 /* FALL THROUGH */
1381
1382 case REVERB_PARAM_DIFFUSION:
1383 if (value16 < 0 || value16 > 1000)
1384 return -EINVAL;
1385
1386 // Convert per mille to m_sAp0.m_nApGain, m_sAp1.m_nApGain
1387 pReverb->m_sAp0.m_nApGain = AP0_GAIN_BASE + ((int32_t) value16
1388 * AP0_GAIN_RANGE) / 1000;
1389 pReverb->m_sAp1.m_nApGain = AP1_GAIN_BASE + ((int32_t) value16
1390 * AP1_GAIN_RANGE) / 1000;
1391
1392 ALOGV("REVERB_PARAM_DIFFUSION, m_sAp0.m_nApGain %d m_sAp1.m_nApGain %d", pReverb->m_sAp0.m_nApGain, pReverb->m_sAp1.m_nApGain);
1393
1394 if (param == REVERB_PARAM_DIFFUSION)
1395 break;
1396
1397 value16 = pProperties->density;
1398 /* FALL THROUGH */
1399
1400 case REVERB_PARAM_DENSITY:
1401 if (value16 < 0 || value16 > 1000)
1402 return -EINVAL;
1403
1404 // Convert per mille to m_sAp0.m_zApOut, m_sAp1.m_zApOut
1405 maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1406
1407 temp = AP0_TIME_BASE + ((int32_t) value16 * AP0_TIME_RANGE) / 1000;
1408 /*lint -e{702} shift for performance */
1409 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1410 if (temp > maxSamples)
1411 temp = maxSamples;
1412 pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1413
1414 ALOGV("REVERB_PARAM_DENSITY, Ap0 delay smps %d", temp);
1415
1416 temp = AP1_TIME_BASE + ((int32_t) value16 * AP1_TIME_RANGE) / 1000;
1417 /*lint -e{702} shift for performance */
1418 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1419 if (temp > maxSamples)
1420 temp = maxSamples;
1421 pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1422
1423 ALOGV("Ap1 delay smps %d", temp);
1424
1425 break;
1426
1427 default:
1428 break;
1429 }
1430 }
1431
1432 return 0;
1433 } /* end Reverb_setParameter */
1434
1435 /*----------------------------------------------------------------------------
1436 * ReverbUpdateXfade
1437 *----------------------------------------------------------------------------
1438 * Purpose:
1439 * Update the xfade parameters as required
1440 *
1441 * Inputs:
1442 * nNumSamplesToAdd - number of samples to write to buffer
1443 *
1444 * Outputs:
1445 *
1446 *
1447 * Side Effects:
1448 * - xfade parameters will be changed
1449 *
1450 *----------------------------------------------------------------------------
1451 */
ReverbUpdateXfade(reverb_object_t * pReverb,int nNumSamplesToAdd)1452 static int ReverbUpdateXfade(reverb_object_t *pReverb, int nNumSamplesToAdd) {
1453 uint16_t nOffset;
1454 int16_t tempCos;
1455 int16_t tempSin;
1456
1457 if (pReverb->m_nXfadeCounter >= pReverb->m_nXfadeInterval) {
1458 /* update interval has elapsed, so reset counter */
1459 pReverb->m_nXfadeCounter = 0;
1460
1461 // Pin the sin,cos values to min / max values to ensure that the
1462 // modulated taps' coefs are zero (thus no clicks)
1463 if (pReverb->m_nPhaseIncrement > 0) {
1464 // if phase increment > 0, then sin -> 1, cos -> 0
1465 pReverb->m_nSin = 32767;
1466 pReverb->m_nCos = 0;
1467
1468 // reset the phase to match the sin, cos values
1469 pReverb->m_nPhase = 32767;
1470
1471 // modulate the cross taps because their tap coefs are zero
1472 nOffset = ReverbCalculateNoise(pReverb);
1473
1474 pReverb->m_zD1Cross = pReverb->m_nDelay1Out
1475 - pReverb->m_nMaxExcursion + nOffset;
1476
1477 nOffset = ReverbCalculateNoise(pReverb);
1478
1479 pReverb->m_zD0Cross = pReverb->m_nDelay0Out
1480 - pReverb->m_nMaxExcursion - nOffset;
1481 } else {
1482 // if phase increment < 0, then sin -> 0, cos -> 1
1483 pReverb->m_nSin = 0;
1484 pReverb->m_nCos = 32767;
1485
1486 // reset the phase to match the sin, cos values
1487 pReverb->m_nPhase = -32768;
1488
1489 // modulate the self taps because their tap coefs are zero
1490 nOffset = ReverbCalculateNoise(pReverb);
1491
1492 pReverb->m_zD0Self = pReverb->m_nDelay0Out
1493 - pReverb->m_nMaxExcursion - nOffset;
1494
1495 nOffset = ReverbCalculateNoise(pReverb);
1496
1497 pReverb->m_zD1Self = pReverb->m_nDelay1Out
1498 - pReverb->m_nMaxExcursion + nOffset;
1499
1500 } // end if-else (pReverb->m_nPhaseIncrement > 0)
1501
1502 // Reverse the direction of the sin,cos so that the
1503 // tap whose coef was previously increasing now decreases
1504 // and vice versa
1505 pReverb->m_nPhaseIncrement = -pReverb->m_nPhaseIncrement;
1506
1507 } // end if counter >= update interval
1508
1509 //compute what phase will be next time
1510 pReverb->m_nPhase += pReverb->m_nPhaseIncrement;
1511
1512 //calculate what the new sin and cos need to reach by the next update
1513 ReverbCalculateSinCos(pReverb->m_nPhase, &tempSin, &tempCos);
1514
1515 //calculate the per-sample increment required to get there by the next update
1516 /*lint -e{702} shift for performance */
1517 pReverb->m_nSinIncrement = (tempSin - pReverb->m_nSin)
1518 >> pReverb->m_nUpdatePeriodInBits;
1519
1520 /*lint -e{702} shift for performance */
1521 pReverb->m_nCosIncrement = (tempCos - pReverb->m_nCos)
1522 >> pReverb->m_nUpdatePeriodInBits;
1523
1524 /* increment update counter */
1525 pReverb->m_nXfadeCounter += (uint16_t) nNumSamplesToAdd;
1526
1527 return 0;
1528
1529 } /* end ReverbUpdateXfade */
1530
1531 /*----------------------------------------------------------------------------
1532 * ReverbCalculateNoise
1533 *----------------------------------------------------------------------------
1534 * Purpose:
1535 * Calculate a noise sample and limit its value
1536 *
1537 * Inputs:
1538 * nMaxExcursion - noise value is limited to this value
1539 * pnNoise - return new noise sample in this (not limited)
1540 *
1541 * Outputs:
1542 * new limited noise value
1543 *
1544 * Side Effects:
1545 * - *pnNoise noise value is updated
1546 *
1547 *----------------------------------------------------------------------------
1548 */
ReverbCalculateNoise(reverb_object_t * pReverb)1549 static uint16_t ReverbCalculateNoise(reverb_object_t *pReverb) {
1550 int16_t nNoise = pReverb->m_nNoise;
1551
1552 // calculate new noise value
1553 if (pReverb->m_bUseNoise) {
1554 nNoise = (int16_t) (nNoise * 5 + 1);
1555 } else {
1556 nNoise = 0;
1557 }
1558
1559 pReverb->m_nNoise = nNoise;
1560 // return the limited noise value
1561 return (pReverb->m_nMaxExcursion & nNoise);
1562
1563 } /* end ReverbCalculateNoise */
1564
1565 /*----------------------------------------------------------------------------
1566 * ReverbCalculateSinCos
1567 *----------------------------------------------------------------------------
1568 * Purpose:
1569 * Calculate a new sin and cosine value based on the given phase
1570 *
1571 * Inputs:
1572 * nPhase - phase angle
1573 * pnSin - input old value, output new value
1574 * pnCos - input old value, output new value
1575 *
1576 * Outputs:
1577 *
1578 * Side Effects:
1579 * - *pnSin, *pnCos are updated
1580 *
1581 *----------------------------------------------------------------------------
1582 */
ReverbCalculateSinCos(int16_t nPhase,int16_t * pnSin,int16_t * pnCos)1583 static int ReverbCalculateSinCos(int16_t nPhase, int16_t *pnSin, int16_t *pnCos) {
1584 int32_t nTemp;
1585 int32_t nNetAngle;
1586
1587 // -1 <= nPhase < 1
1588 // However, for the calculation, we need a value
1589 // that ranges from -1/2 to +1/2, so divide the phase by 2
1590 /*lint -e{702} shift for performance */
1591 nNetAngle = nPhase >> 1;
1592
1593 /*
1594 Implement the following
1595 sin(x) = (2-4*c)*x^2 + c + x
1596 cos(x) = (2-4*c)*x^2 + c - x
1597
1598 where c = 1/sqrt(2)
1599 using the a0 + x*(a1 + x*a2) approach
1600 */
1601
1602 /* limit the input "angle" to be between -0.5 and +0.5 */
1603 if (nNetAngle > EG1_HALF) {
1604 nNetAngle = EG1_HALF;
1605 } else if (nNetAngle < EG1_MINUS_HALF) {
1606 nNetAngle = EG1_MINUS_HALF;
1607 }
1608
1609 /* calculate sin */
1610 nTemp = EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1611 nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1612 *pnSin = (int16_t) SATURATE_EG1(nTemp);
1613
1614 /* calculate cos */
1615 nTemp = -EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1616 nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1617 *pnCos = (int16_t) SATURATE_EG1(nTemp);
1618
1619 return 0;
1620 } /* end ReverbCalculateSinCos */
1621
1622 /*----------------------------------------------------------------------------
1623 * Reverb
1624 *----------------------------------------------------------------------------
1625 * Purpose:
1626 * apply reverb to the given signal
1627 *
1628 * Inputs:
1629 * nNu
1630 * pnSin - input old value, output new value
1631 * pnCos - input old value, output new value
1632 *
1633 * Outputs:
1634 * number of samples actually reverberated
1635 *
1636 * Side Effects:
1637 *
1638 *----------------------------------------------------------------------------
1639 */
Reverb(reverb_object_t * pReverb,int nNumSamplesToAdd,short * pOutputBuffer,short * pInputBuffer)1640 static int Reverb(reverb_object_t *pReverb, int nNumSamplesToAdd,
1641 short *pOutputBuffer, short *pInputBuffer) {
1642 int32_t i;
1643 int32_t nDelayOut0;
1644 int32_t nDelayOut1;
1645 uint16_t nBase;
1646
1647 uint32_t nAddr;
1648 int32_t nTemp1;
1649 int32_t nTemp2;
1650 int32_t nApIn;
1651 int32_t nApOut;
1652
1653 int32_t j;
1654 int32_t nEarlyOut;
1655
1656 int32_t tempValue;
1657
1658 // get the base address
1659 nBase = pReverb->m_nBaseIndex;
1660
1661 for (i = 0; i < nNumSamplesToAdd; i++) {
1662 // ********** Left Allpass - start
1663 nApIn = *pInputBuffer;
1664 if (!pReverb->m_Aux) {
1665 pInputBuffer++;
1666 }
1667 // store to early delay line
1668 nAddr = CIRCULAR(nBase, pReverb->m_nEarly0in, pReverb->m_nBufferMask);
1669 pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1670
1671 // left input = (left dry * m_nLateGain) + right feedback from previous period
1672
1673 nApIn = SATURATE(nApIn + pReverb->m_nRevFbkR);
1674 nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1675
1676 // fetch allpass delay line out
1677 //nAddr = CIRCULAR(nBase, psAp0->m_zApOut, pReverb->m_nBufferMask);
1678 nAddr
1679 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApOut, pReverb->m_nBufferMask);
1680 nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1681
1682 // calculate allpass feedforward; subtract the feedforward result
1683 nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp0.m_nApGain);
1684 nApOut = SATURATE(nDelayOut0 - nTemp1); // allpass output
1685
1686 // calculate allpass feedback; add the feedback result
1687 nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp0.m_nApGain);
1688 nTemp1 = SATURATE(nApIn + nTemp1);
1689
1690 // inject into allpass delay
1691 nAddr
1692 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApIn, pReverb->m_nBufferMask);
1693 pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1694
1695 // inject allpass output into delay line
1696 nAddr = CIRCULAR(nBase, pReverb->m_zD0In, pReverb->m_nBufferMask);
1697 pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1698
1699 // ********** Left Allpass - end
1700
1701 // ********** Right Allpass - start
1702 nApIn = (*pInputBuffer++);
1703 // store to early delay line
1704 nAddr = CIRCULAR(nBase, pReverb->m_nEarly1in, pReverb->m_nBufferMask);
1705 pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1706
1707 // right input = (right dry * m_nLateGain) + left feedback from previous period
1708 /*lint -e{702} use shift for performance */
1709 nApIn = SATURATE(nApIn + pReverb->m_nRevFbkL);
1710 nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1711
1712 // fetch allpass delay line out
1713 nAddr
1714 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApOut, pReverb->m_nBufferMask);
1715 nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1716
1717 // calculate allpass feedforward; subtract the feedforward result
1718 nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp1.m_nApGain);
1719 nApOut = SATURATE(nDelayOut1 - nTemp1); // allpass output
1720
1721 // calculate allpass feedback; add the feedback result
1722 nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp1.m_nApGain);
1723 nTemp1 = SATURATE(nApIn + nTemp1);
1724
1725 // inject into allpass delay
1726 nAddr
1727 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApIn, pReverb->m_nBufferMask);
1728 pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1729
1730 // inject allpass output into delay line
1731 nAddr = CIRCULAR(nBase, pReverb->m_zD1In, pReverb->m_nBufferMask);
1732 pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1733
1734 // ********** Right Allpass - end
1735
1736 // ********** D0 output - start
1737 // fetch delay line self out
1738 nAddr = CIRCULAR(nBase, pReverb->m_zD0Self, pReverb->m_nBufferMask);
1739 nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1740
1741 // calculate delay line self out
1742 nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nSin);
1743
1744 // fetch delay line cross out
1745 nAddr = CIRCULAR(nBase, pReverb->m_zD1Cross, pReverb->m_nBufferMask);
1746 nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1747
1748 // calculate delay line self out
1749 nTemp2 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nCos);
1750
1751 // calculate unfiltered delay out
1752 nDelayOut0 = SATURATE(nTemp1 + nTemp2);
1753
1754 // ********** D0 output - end
1755
1756 // ********** D1 output - start
1757 // fetch delay line self out
1758 nAddr = CIRCULAR(nBase, pReverb->m_zD1Self, pReverb->m_nBufferMask);
1759 nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1760
1761 // calculate delay line self out
1762 nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nSin);
1763
1764 // fetch delay line cross out
1765 nAddr = CIRCULAR(nBase, pReverb->m_zD0Cross, pReverb->m_nBufferMask);
1766 nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1767
1768 // calculate delay line self out
1769 nTemp2 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nCos);
1770
1771 // calculate unfiltered delay out
1772 nDelayOut1 = SATURATE(nTemp1 + nTemp2);
1773
1774 // ********** D1 output - end
1775
1776 // ********** mixer and feedback - start
1777 // sum is fedback to right input (R + L)
1778 nDelayOut0 = (short) SATURATE(nDelayOut0 + nDelayOut1);
1779
1780 // difference is feedback to left input (R - L)
1781 /*lint -e{685} lint complains that it can't saturate negative */
1782 nDelayOut1 = (short) SATURATE(nDelayOut1 - nDelayOut0);
1783
1784 // ********** mixer and feedback - end
1785
1786 // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1787 nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRvbLpfFwd);
1788
1789 nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkL, pReverb->m_nRvbLpfFbk);
1790
1791 // calculate filtered delay out and simultaneously update LPF state variable
1792 // filtered delay output is stored in m_nRevFbkL
1793 pReverb->m_nRevFbkL = (short) SATURATE(nTemp1 + nTemp2);
1794
1795 // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1796 nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRvbLpfFwd);
1797
1798 nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkR, pReverb->m_nRvbLpfFbk);
1799
1800 // calculate filtered delay out and simultaneously update LPF state variable
1801 // filtered delay output is stored in m_nRevFbkR
1802 pReverb->m_nRevFbkR = (short) SATURATE(nTemp1 + nTemp2);
1803
1804 // ********** start early reflection generator, left
1805 //psEarly = &(pReverb->m_sEarlyL);
1806
1807
1808 for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1809 // fetch delay line out
1810 //nAddr = CIRCULAR(nBase, psEarly->m_zDelay[j], pReverb->m_nBufferMask);
1811 nAddr
1812 = CIRCULAR(nBase, pReverb->m_sEarlyL.m_zDelay[j], pReverb->m_nBufferMask);
1813
1814 nTemp1 = pReverb->m_nDelayLine[nAddr];
1815
1816 // calculate reflection
1817 //nTemp1 = MULT_EG1_EG1(nDelayOut0, psEarly->m_nGain[j]);
1818 nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyL.m_nGain[j]);
1819
1820 nDelayOut0 = SATURATE(nDelayOut0 + nTemp1);
1821
1822 } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1823
1824 // apply lowpass to early reflections and reverb output
1825 //nTemp1 = MULT_EG1_EG1(nEarlyOut, psEarly->m_nRvbLpfFwd);
1826 nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRoomLpfFwd);
1827
1828 //nTemp2 = MULT_EG1_EG1(psEarly->m_zLpf, psEarly->m_nLpfFbk);
1829 nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfL, pReverb->m_nRoomLpfFbk);
1830
1831 // calculate filtered out and simultaneously update LPF state variable
1832 // filtered output is stored in m_zOutLpfL
1833 pReverb->m_zOutLpfL = (short) SATURATE(nTemp1 + nTemp2);
1834
1835 //sum with output buffer
1836 tempValue = *pOutputBuffer;
1837 *pOutputBuffer++ = (short) SATURATE(tempValue+pReverb->m_zOutLpfL);
1838
1839 // ********** end early reflection generator, left
1840
1841 // ********** start early reflection generator, right
1842 //psEarly = &(pReverb->m_sEarlyR);
1843
1844 for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1845 // fetch delay line out
1846 nAddr
1847 = CIRCULAR(nBase, pReverb->m_sEarlyR.m_zDelay[j], pReverb->m_nBufferMask);
1848 nTemp1 = pReverb->m_nDelayLine[nAddr];
1849
1850 // calculate reflection
1851 nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyR.m_nGain[j]);
1852
1853 nDelayOut1 = SATURATE(nDelayOut1 + nTemp1);
1854
1855 } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1856
1857 // apply lowpass to early reflections
1858 nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRoomLpfFwd);
1859
1860 nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfR, pReverb->m_nRoomLpfFbk);
1861
1862 // calculate filtered out and simultaneously update LPF state variable
1863 // filtered output is stored in m_zOutLpfR
1864 pReverb->m_zOutLpfR = (short) SATURATE(nTemp1 + nTemp2);
1865
1866 //sum with output buffer
1867 tempValue = *pOutputBuffer;
1868 *pOutputBuffer++ = (short) SATURATE(tempValue + pReverb->m_zOutLpfR);
1869
1870 // ********** end early reflection generator, right
1871
1872 // decrement base addr for next sample period
1873 nBase--;
1874
1875 pReverb->m_nSin += pReverb->m_nSinIncrement;
1876 pReverb->m_nCos += pReverb->m_nCosIncrement;
1877
1878 } // end for (i=0; i < nNumSamplesToAdd; i++)
1879
1880 // store the most up to date version
1881 pReverb->m_nBaseIndex = nBase;
1882
1883 return 0;
1884 } /* end Reverb */
1885
1886 /*----------------------------------------------------------------------------
1887 * ReverbUpdateRoom
1888 *----------------------------------------------------------------------------
1889 * Purpose:
1890 * Update the room's preset parameters as required
1891 *
1892 * Inputs:
1893 *
1894 * Outputs:
1895 *
1896 *
1897 * Side Effects:
1898 * - reverb paramters (fbk, fwd, etc) will be changed
1899 * - m_nCurrentRoom := m_nNextRoom
1900 *----------------------------------------------------------------------------
1901 */
ReverbUpdateRoom(reverb_object_t * pReverb,bool fullUpdate)1902 static int ReverbUpdateRoom(reverb_object_t *pReverb, bool fullUpdate) {
1903 int temp;
1904 int i;
1905 int maxSamples;
1906 int earlyDelay;
1907 int earlyGain;
1908
1909 reverb_preset_t *pPreset =
1910 &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1911
1912 if (fullUpdate) {
1913 pReverb->m_nRvbLpfFwd = pPreset->m_nRvbLpfFwd;
1914 pReverb->m_nRvbLpfFbk = pPreset->m_nRvbLpfFbk;
1915
1916 pReverb->m_nEarlyGain = pPreset->m_nEarlyGain;
1917 //stored as time based, convert to sample based
1918 pReverb->m_nLateGain = pPreset->m_nLateGain;
1919 pReverb->m_nRoomLpfFbk = pPreset->m_nRoomLpfFbk;
1920 pReverb->m_nRoomLpfFwd = pPreset->m_nRoomLpfFwd;
1921
1922 // set the early reflections gains
1923 earlyGain = pPreset->m_nEarlyGain;
1924 for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1925 pReverb->m_sEarlyL.m_nGain[i]
1926 = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],earlyGain);
1927 pReverb->m_sEarlyR.m_nGain[i]
1928 = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],earlyGain);
1929 }
1930
1931 pReverb->m_nMaxExcursion = pPreset->m_nMaxExcursion;
1932
1933 pReverb->m_sAp0.m_nApGain = pPreset->m_nAp0_ApGain;
1934 pReverb->m_sAp1.m_nApGain = pPreset->m_nAp1_ApGain;
1935
1936 // set the early reflections delay
1937 earlyDelay = ((int) pPreset->m_nEarlyDelay * pReverb->m_nSamplingRate)
1938 >> 16;
1939 pReverb->m_nEarlyDelay = earlyDelay;
1940 maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1941 >> 16;
1942 for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1943 //stored as time based, convert to sample based
1944 temp = earlyDelay + (((int) pPreset->m_sEarlyL.m_zDelay[i]
1945 * pReverb->m_nSamplingRate) >> 16);
1946 if (temp > maxSamples)
1947 temp = maxSamples;
1948 pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp;
1949 //stored as time based, convert to sample based
1950 temp = earlyDelay + (((int) pPreset->m_sEarlyR.m_zDelay[i]
1951 * pReverb->m_nSamplingRate) >> 16);
1952 if (temp > maxSamples)
1953 temp = maxSamples;
1954 pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp;
1955 }
1956
1957 maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1958 >> 16;
1959 //stored as time based, convert to sample based
1960 /*lint -e{702} shift for performance */
1961 temp = (pPreset->m_nLateDelay * pReverb->m_nSamplingRate) >> 16;
1962 if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1963 temp = maxSamples - pReverb->m_nMaxExcursion;
1964 }
1965 temp -= pReverb->m_nLateDelay;
1966 pReverb->m_nDelay0Out += temp;
1967 pReverb->m_nDelay1Out += temp;
1968 pReverb->m_nLateDelay += temp;
1969
1970 maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1971 //stored as time based, convert to absolute sample value
1972 temp = pPreset->m_nAp0_ApOut;
1973 /*lint -e{702} shift for performance */
1974 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1975 if (temp > maxSamples)
1976 temp = maxSamples;
1977 pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1978
1979 //stored as time based, convert to absolute sample value
1980 temp = pPreset->m_nAp1_ApOut;
1981 /*lint -e{702} shift for performance */
1982 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1983 if (temp > maxSamples)
1984 temp = maxSamples;
1985 pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1986 //gpsReverbObject->m_sAp1.m_zApOut = pPreset->m_nAp1_ApOut;
1987 }
1988
1989 //stored as time based, convert to sample based
1990 temp = pPreset->m_nXfadeInterval;
1991 /*lint -e{702} shift for performance */
1992 temp = (temp * pReverb->m_nSamplingRate) >> 16;
1993 pReverb->m_nXfadeInterval = (uint16_t) temp;
1994 //gsReverbObject.m_nXfadeInterval = pPreset->m_nXfadeInterval;
1995 pReverb->m_nXfadeCounter = pReverb->m_nXfadeInterval + 1; // force update on first iteration
1996
1997 pReverb->m_nCurrentRoom = pReverb->m_nNextRoom;
1998
1999 return 0;
2000
2001 } /* end ReverbUpdateRoom */
2002
2003 /*----------------------------------------------------------------------------
2004 * ReverbReadInPresets()
2005 *----------------------------------------------------------------------------
2006 * Purpose: sets global reverb preset bank to defaults
2007 *
2008 * Inputs:
2009 *
2010 * Outputs:
2011 *
2012 *----------------------------------------------------------------------------
2013 */
ReverbReadInPresets(reverb_object_t * pReverb)2014 static int ReverbReadInPresets(reverb_object_t *pReverb) {
2015
2016 int preset;
2017
2018 // this is for test only. OpenSL ES presets are mapped to 4 presets.
2019 // REVERB_PRESET_NONE is mapped to bypass
2020 for (preset = 0; preset < REVERB_NUM_PRESETS; preset++) {
2021 reverb_preset_t *pPreset = &pReverb->m_sPreset.m_sPreset[preset];
2022 switch (preset + 1) {
2023 case REVERB_PRESET_PLATE:
2024 case REVERB_PRESET_SMALLROOM:
2025 pPreset->m_nRvbLpfFbk = 5077;
2026 pPreset->m_nRvbLpfFwd = 11076;
2027 pPreset->m_nEarlyGain = 27690;
2028 pPreset->m_nEarlyDelay = 1311;
2029 pPreset->m_nLateGain = 8191;
2030 pPreset->m_nLateDelay = 3932;
2031 pPreset->m_nRoomLpfFbk = 3692;
2032 pPreset->m_nRoomLpfFwd = 20474;
2033 pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2034 pPreset->m_sEarlyL.m_nGain[0] = 22152;
2035 pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2036 pPreset->m_sEarlyL.m_nGain[1] = 17537;
2037 pPreset->m_sEarlyL.m_zDelay[2] = 0;
2038 pPreset->m_sEarlyL.m_nGain[2] = 14768;
2039 pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2040 pPreset->m_sEarlyL.m_nGain[3] = 14307;
2041 pPreset->m_sEarlyL.m_zDelay[4] = 0;
2042 pPreset->m_sEarlyL.m_nGain[4] = 13384;
2043 pPreset->m_sEarlyR.m_zDelay[0] = 721;
2044 pPreset->m_sEarlyR.m_nGain[0] = 20306;
2045 pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2046 pPreset->m_sEarlyR.m_nGain[1] = 17537;
2047 pPreset->m_sEarlyR.m_zDelay[2] = 0;
2048 pPreset->m_sEarlyR.m_nGain[2] = 14768;
2049 pPreset->m_sEarlyR.m_zDelay[3] = 0;
2050 pPreset->m_sEarlyR.m_nGain[3] = 16153;
2051 pPreset->m_sEarlyR.m_zDelay[4] = 0;
2052 pPreset->m_sEarlyR.m_nGain[4] = 13384;
2053 pPreset->m_nMaxExcursion = 127;
2054 pPreset->m_nXfadeInterval = 6470; //6483;
2055 pPreset->m_nAp0_ApGain = 14768;
2056 pPreset->m_nAp0_ApOut = 792;
2057 pPreset->m_nAp1_ApGain = 14777;
2058 pPreset->m_nAp1_ApOut = 1191;
2059 pPreset->m_rfu4 = 0;
2060 pPreset->m_rfu5 = 0;
2061 pPreset->m_rfu6 = 0;
2062 pPreset->m_rfu7 = 0;
2063 pPreset->m_rfu8 = 0;
2064 pPreset->m_rfu9 = 0;
2065 pPreset->m_rfu10 = 0;
2066 break;
2067 case REVERB_PRESET_MEDIUMROOM:
2068 case REVERB_PRESET_LARGEROOM:
2069 pPreset->m_nRvbLpfFbk = 5077;
2070 pPreset->m_nRvbLpfFwd = 12922;
2071 pPreset->m_nEarlyGain = 27690;
2072 pPreset->m_nEarlyDelay = 1311;
2073 pPreset->m_nLateGain = 8191;
2074 pPreset->m_nLateDelay = 3932;
2075 pPreset->m_nRoomLpfFbk = 3692;
2076 pPreset->m_nRoomLpfFwd = 21703;
2077 pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2078 pPreset->m_sEarlyL.m_nGain[0] = 22152;
2079 pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2080 pPreset->m_sEarlyL.m_nGain[1] = 17537;
2081 pPreset->m_sEarlyL.m_zDelay[2] = 0;
2082 pPreset->m_sEarlyL.m_nGain[2] = 14768;
2083 pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2084 pPreset->m_sEarlyL.m_nGain[3] = 14307;
2085 pPreset->m_sEarlyL.m_zDelay[4] = 0;
2086 pPreset->m_sEarlyL.m_nGain[4] = 13384;
2087 pPreset->m_sEarlyR.m_zDelay[0] = 721;
2088 pPreset->m_sEarlyR.m_nGain[0] = 20306;
2089 pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2090 pPreset->m_sEarlyR.m_nGain[1] = 17537;
2091 pPreset->m_sEarlyR.m_zDelay[2] = 0;
2092 pPreset->m_sEarlyR.m_nGain[2] = 14768;
2093 pPreset->m_sEarlyR.m_zDelay[3] = 0;
2094 pPreset->m_sEarlyR.m_nGain[3] = 16153;
2095 pPreset->m_sEarlyR.m_zDelay[4] = 0;
2096 pPreset->m_sEarlyR.m_nGain[4] = 13384;
2097 pPreset->m_nMaxExcursion = 127;
2098 pPreset->m_nXfadeInterval = 6449;
2099 pPreset->m_nAp0_ApGain = 15691;
2100 pPreset->m_nAp0_ApOut = 774;
2101 pPreset->m_nAp1_ApGain = 16317;
2102 pPreset->m_nAp1_ApOut = 1155;
2103 pPreset->m_rfu4 = 0;
2104 pPreset->m_rfu5 = 0;
2105 pPreset->m_rfu6 = 0;
2106 pPreset->m_rfu7 = 0;
2107 pPreset->m_rfu8 = 0;
2108 pPreset->m_rfu9 = 0;
2109 pPreset->m_rfu10 = 0;
2110 break;
2111 case REVERB_PRESET_MEDIUMHALL:
2112 pPreset->m_nRvbLpfFbk = 6461;
2113 pPreset->m_nRvbLpfFwd = 14307;
2114 pPreset->m_nEarlyGain = 27690;
2115 pPreset->m_nEarlyDelay = 1311;
2116 pPreset->m_nLateGain = 8191;
2117 pPreset->m_nLateDelay = 3932;
2118 pPreset->m_nRoomLpfFbk = 3692;
2119 pPreset->m_nRoomLpfFwd = 24569;
2120 pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2121 pPreset->m_sEarlyL.m_nGain[0] = 22152;
2122 pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2123 pPreset->m_sEarlyL.m_nGain[1] = 17537;
2124 pPreset->m_sEarlyL.m_zDelay[2] = 0;
2125 pPreset->m_sEarlyL.m_nGain[2] = 14768;
2126 pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2127 pPreset->m_sEarlyL.m_nGain[3] = 14307;
2128 pPreset->m_sEarlyL.m_zDelay[4] = 0;
2129 pPreset->m_sEarlyL.m_nGain[4] = 13384;
2130 pPreset->m_sEarlyR.m_zDelay[0] = 721;
2131 pPreset->m_sEarlyR.m_nGain[0] = 20306;
2132 pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2133 pPreset->m_sEarlyR.m_nGain[1] = 17537;
2134 pPreset->m_sEarlyR.m_zDelay[2] = 0;
2135 pPreset->m_sEarlyR.m_nGain[2] = 14768;
2136 pPreset->m_sEarlyR.m_zDelay[3] = 0;
2137 pPreset->m_sEarlyR.m_nGain[3] = 16153;
2138 pPreset->m_sEarlyR.m_zDelay[4] = 0;
2139 pPreset->m_sEarlyR.m_nGain[4] = 13384;
2140 pPreset->m_nMaxExcursion = 127;
2141 pPreset->m_nXfadeInterval = 6391;
2142 pPreset->m_nAp0_ApGain = 15230;
2143 pPreset->m_nAp0_ApOut = 708;
2144 pPreset->m_nAp1_ApGain = 15547;
2145 pPreset->m_nAp1_ApOut = 1023;
2146 pPreset->m_rfu4 = 0;
2147 pPreset->m_rfu5 = 0;
2148 pPreset->m_rfu6 = 0;
2149 pPreset->m_rfu7 = 0;
2150 pPreset->m_rfu8 = 0;
2151 pPreset->m_rfu9 = 0;
2152 pPreset->m_rfu10 = 0;
2153 break;
2154 case REVERB_PRESET_LARGEHALL:
2155 pPreset->m_nRvbLpfFbk = 8307;
2156 pPreset->m_nRvbLpfFwd = 14768;
2157 pPreset->m_nEarlyGain = 27690;
2158 pPreset->m_nEarlyDelay = 1311;
2159 pPreset->m_nLateGain = 8191;
2160 pPreset->m_nLateDelay = 3932;
2161 pPreset->m_nRoomLpfFbk = 3692;
2162 pPreset->m_nRoomLpfFwd = 24569;
2163 pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2164 pPreset->m_sEarlyL.m_nGain[0] = 22152;
2165 pPreset->m_sEarlyL.m_zDelay[1] = 2163;
2166 pPreset->m_sEarlyL.m_nGain[1] = 17537;
2167 pPreset->m_sEarlyL.m_zDelay[2] = 0;
2168 pPreset->m_sEarlyL.m_nGain[2] = 14768;
2169 pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2170 pPreset->m_sEarlyL.m_nGain[3] = 14307;
2171 pPreset->m_sEarlyL.m_zDelay[4] = 0;
2172 pPreset->m_sEarlyL.m_nGain[4] = 13384;
2173 pPreset->m_sEarlyR.m_zDelay[0] = 721;
2174 pPreset->m_sEarlyR.m_nGain[0] = 20306;
2175 pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2176 pPreset->m_sEarlyR.m_nGain[1] = 17537;
2177 pPreset->m_sEarlyR.m_zDelay[2] = 0;
2178 pPreset->m_sEarlyR.m_nGain[2] = 14768;
2179 pPreset->m_sEarlyR.m_zDelay[3] = 0;
2180 pPreset->m_sEarlyR.m_nGain[3] = 16153;
2181 pPreset->m_sEarlyR.m_zDelay[4] = 0;
2182 pPreset->m_sEarlyR.m_nGain[4] = 13384;
2183 pPreset->m_nMaxExcursion = 127;
2184 pPreset->m_nXfadeInterval = 6388;
2185 pPreset->m_nAp0_ApGain = 15691;
2186 pPreset->m_nAp0_ApOut = 711;
2187 pPreset->m_nAp1_ApGain = 16317;
2188 pPreset->m_nAp1_ApOut = 1029;
2189 pPreset->m_rfu4 = 0;
2190 pPreset->m_rfu5 = 0;
2191 pPreset->m_rfu6 = 0;
2192 pPreset->m_rfu7 = 0;
2193 pPreset->m_rfu8 = 0;
2194 pPreset->m_rfu9 = 0;
2195 pPreset->m_rfu10 = 0;
2196 break;
2197 }
2198 }
2199
2200 return 0;
2201 }
2202
2203 audio_effect_library_t AUDIO_EFFECT_LIBRARY_INFO_SYM = {
2204 .tag = AUDIO_EFFECT_LIBRARY_TAG,
2205 .version = EFFECT_LIBRARY_API_VERSION,
2206 .name = "Test Equalizer Library",
2207 .implementor = "The Android Open Source Project",
2208 .create_effect = EffectCreate,
2209 .release_effect = EffectRelease,
2210 .get_descriptor = EffectGetDescriptor,
2211 };
2212