1 /*
2 SDL - Simple DirectMedia Layer
3 Copyright (C) 1997-2012 Sam Lantinga
4
5 This library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 This library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with this library; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18
19 Sam Lantinga
20 slouken@libsdl.org
21 */
22 #include "SDL_config.h"
23
24 /*
25 * RLE encoding for software colorkey and alpha-channel acceleration
26 *
27 * Original version by Sam Lantinga
28 *
29 * Mattias Engdeg�rd (Yorick): Rewrite. New encoding format, encoder and
30 * decoder. Added per-surface alpha blitter. Added per-pixel alpha
31 * format, encoder and blitter.
32 *
33 * Many thanks to Xark and johns for hints, benchmarks and useful comments
34 * leading to this code.
35 *
36 * Welcome to Macro Mayhem.
37 */
38
39 /*
40 * The encoding translates the image data to a stream of segments of the form
41 *
42 * <skip> <run> <data>
43 *
44 * where <skip> is the number of transparent pixels to skip,
45 * <run> is the number of opaque pixels to blit,
46 * and <data> are the pixels themselves.
47 *
48 * This basic structure is used both for colorkeyed surfaces, used for simple
49 * binary transparency and for per-surface alpha blending, and for surfaces
50 * with per-pixel alpha. The details differ, however:
51 *
52 * Encoding of colorkeyed surfaces:
53 *
54 * Encoded pixels always have the same format as the target surface.
55 * <skip> and <run> are unsigned 8 bit integers, except for 32 bit depth
56 * where they are 16 bit. This makes the pixel data aligned at all times.
57 * Segments never wrap around from one scan line to the next.
58 *
59 * The end of the sequence is marked by a zero <skip>,<run> pair at the *
60 * beginning of a line.
61 *
62 * Encoding of surfaces with per-pixel alpha:
63 *
64 * The sequence begins with a struct RLEDestFormat describing the target
65 * pixel format, to provide reliable un-encoding.
66 *
67 * Each scan line is encoded twice: First all completely opaque pixels,
68 * encoded in the target format as described above, and then all
69 * partially transparent (translucent) pixels (where 1 <= alpha <= 254),
70 * in the following 32-bit format:
71 *
72 * For 32-bit targets, each pixel has the target RGB format but with
73 * the alpha value occupying the highest 8 bits. The <skip> and <run>
74 * counts are 16 bit.
75 *
76 * For 16-bit targets, each pixel has the target RGB format, but with
77 * the middle component (usually green) shifted 16 steps to the left,
78 * and the hole filled with the 5 most significant bits of the alpha value.
79 * i.e. if the target has the format rrrrrggggggbbbbb,
80 * the encoded pixel will be 00000gggggg00000rrrrr0aaaaabbbbb.
81 * The <skip> and <run> counts are 8 bit for the opaque lines, 16 bit
82 * for the translucent lines. Two padding bytes may be inserted
83 * before each translucent line to keep them 32-bit aligned.
84 *
85 * The end of the sequence is marked by a zero <skip>,<run> pair at the
86 * beginning of an opaque line.
87 */
88
89 #include "SDL_video.h"
90 #include "SDL_sysvideo.h"
91 #include "SDL_blit.h"
92 #include "SDL_RLEaccel_c.h"
93
94 /* Force MMX to 0; this blows up on almost every major compiler now. --ryan. */
95 #if 0 && defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && SDL_ASSEMBLY_ROUTINES
96 #define MMX_ASMBLIT
97 #endif
98
99 #ifdef MMX_ASMBLIT
100 #include "mmx.h"
101 #include "SDL_cpuinfo.h"
102 #endif
103
104 #ifndef MAX
105 #define MAX(a, b) ((a) > (b) ? (a) : (b))
106 #endif
107 #ifndef MIN
108 #define MIN(a, b) ((a) < (b) ? (a) : (b))
109 #endif
110
111 #define PIXEL_COPY(to, from, len, bpp) \
112 do { \
113 if(bpp == 4) { \
114 SDL_memcpy4(to, from, (size_t)(len)); \
115 } else { \
116 SDL_memcpy(to, from, (size_t)(len) * (bpp)); \
117 } \
118 } while(0)
119
120 /*
121 * Various colorkey blit methods, for opaque and per-surface alpha
122 */
123
124 #define OPAQUE_BLIT(to, from, length, bpp, alpha) \
125 PIXEL_COPY(to, from, length, bpp)
126
127 #ifdef MMX_ASMBLIT
128
129 #define ALPHA_BLIT32_888MMX(to, from, length, bpp, alpha) \
130 do { \
131 Uint32 *srcp = (Uint32 *)(from); \
132 Uint32 *dstp = (Uint32 *)(to); \
133 int i = 0x00FF00FF; \
134 movd_m2r(*(&i), mm3); \
135 punpckldq_r2r(mm3, mm3); \
136 i = 0xFF000000; \
137 movd_m2r(*(&i), mm7); \
138 punpckldq_r2r(mm7, mm7); \
139 i = alpha | alpha << 16; \
140 movd_m2r(*(&i), mm4); \
141 punpckldq_r2r(mm4, mm4); \
142 pcmpeqd_r2r(mm5,mm5); /* set mm5 to "1" */ \
143 pxor_r2r(mm7, mm5); /* make clear alpha mask */ \
144 i = length; \
145 if(i & 1) { \
146 movd_m2r((*srcp), mm1); /* src -> mm1 */ \
147 punpcklbw_r2r(mm1, mm1); \
148 pand_r2r(mm3, mm1); \
149 movd_m2r((*dstp), mm2); /* dst -> mm2 */ \
150 punpcklbw_r2r(mm2, mm2); \
151 pand_r2r(mm3, mm2); \
152 psubw_r2r(mm2, mm1); \
153 pmullw_r2r(mm4, mm1); \
154 psrlw_i2r(8, mm1); \
155 paddw_r2r(mm1, mm2); \
156 pand_r2r(mm3, mm2); \
157 packuswb_r2r(mm2, mm2); \
158 pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \
159 movd_r2m(mm2, *dstp); \
160 ++srcp; \
161 ++dstp; \
162 i--; \
163 } \
164 for(; i > 0; --i) { \
165 movq_m2r((*srcp), mm0); \
166 movq_r2r(mm0, mm1); \
167 punpcklbw_r2r(mm0, mm0); \
168 movq_m2r((*dstp), mm2); \
169 punpckhbw_r2r(mm1, mm1); \
170 movq_r2r(mm2, mm6); \
171 pand_r2r(mm3, mm0); \
172 punpcklbw_r2r(mm2, mm2); \
173 pand_r2r(mm3, mm1); \
174 punpckhbw_r2r(mm6, mm6); \
175 pand_r2r(mm3, mm2); \
176 psubw_r2r(mm2, mm0); \
177 pmullw_r2r(mm4, mm0); \
178 pand_r2r(mm3, mm6); \
179 psubw_r2r(mm6, mm1); \
180 pmullw_r2r(mm4, mm1); \
181 psrlw_i2r(8, mm0); \
182 paddw_r2r(mm0, mm2); \
183 psrlw_i2r(8, mm1); \
184 paddw_r2r(mm1, mm6); \
185 pand_r2r(mm3, mm2); \
186 pand_r2r(mm3, mm6); \
187 packuswb_r2r(mm2, mm2); \
188 packuswb_r2r(mm6, mm6); \
189 psrlq_i2r(32, mm2); \
190 psllq_i2r(32, mm6); \
191 por_r2r(mm6, mm2); \
192 pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \
193 movq_r2m(mm2, *dstp); \
194 srcp += 2; \
195 dstp += 2; \
196 i--; \
197 } \
198 emms(); \
199 } while(0)
200
201 #define ALPHA_BLIT16_565MMX(to, from, length, bpp, alpha) \
202 do { \
203 int i, n = 0; \
204 Uint16 *srcp = (Uint16 *)(from); \
205 Uint16 *dstp = (Uint16 *)(to); \
206 Uint32 ALPHA = 0xF800; \
207 movd_m2r(*(&ALPHA), mm1); \
208 punpcklwd_r2r(mm1, mm1); \
209 punpcklwd_r2r(mm1, mm1); \
210 ALPHA = 0x07E0; \
211 movd_m2r(*(&ALPHA), mm4); \
212 punpcklwd_r2r(mm4, mm4); \
213 punpcklwd_r2r(mm4, mm4); \
214 ALPHA = 0x001F; \
215 movd_m2r(*(&ALPHA), mm7); \
216 punpcklwd_r2r(mm7, mm7); \
217 punpcklwd_r2r(mm7, mm7); \
218 alpha &= ~(1+2+4); \
219 i = (Uint32)alpha | (Uint32)alpha << 16; \
220 movd_m2r(*(&i), mm0); \
221 punpckldq_r2r(mm0, mm0); \
222 ALPHA = alpha >> 3; \
223 i = ((int)(length) & 3); \
224 for(; i > 0; --i) { \
225 Uint32 s = *srcp++; \
226 Uint32 d = *dstp; \
227 s = (s | s << 16) & 0x07e0f81f; \
228 d = (d | d << 16) & 0x07e0f81f; \
229 d += (s - d) * ALPHA >> 5; \
230 d &= 0x07e0f81f; \
231 *dstp++ = d | d >> 16; \
232 n++; \
233 } \
234 i = (int)(length) - n; \
235 for(; i > 0; --i) { \
236 movq_m2r((*dstp), mm3); \
237 movq_m2r((*srcp), mm2); \
238 movq_r2r(mm2, mm5); \
239 pand_r2r(mm1 , mm5); \
240 psrlq_i2r(11, mm5); \
241 movq_r2r(mm3, mm6); \
242 pand_r2r(mm1 , mm6); \
243 psrlq_i2r(11, mm6); \
244 psubw_r2r(mm6, mm5); \
245 pmullw_r2r(mm0, mm5); \
246 psrlw_i2r(8, mm5); \
247 paddw_r2r(mm5, mm6); \
248 psllq_i2r(11, mm6); \
249 pand_r2r(mm1, mm6); \
250 movq_r2r(mm4, mm5); \
251 por_r2r(mm7, mm5); \
252 pand_r2r(mm5, mm3); \
253 por_r2r(mm6, mm3); \
254 movq_r2r(mm2, mm5); \
255 pand_r2r(mm4 , mm5); \
256 psrlq_i2r(5, mm5); \
257 movq_r2r(mm3, mm6); \
258 pand_r2r(mm4 , mm6); \
259 psrlq_i2r(5, mm6); \
260 psubw_r2r(mm6, mm5); \
261 pmullw_r2r(mm0, mm5); \
262 psrlw_i2r(8, mm5); \
263 paddw_r2r(mm5, mm6); \
264 psllq_i2r(5, mm6); \
265 pand_r2r(mm4, mm6); \
266 movq_r2r(mm1, mm5); \
267 por_r2r(mm7, mm5); \
268 pand_r2r(mm5, mm3); \
269 por_r2r(mm6, mm3); \
270 movq_r2r(mm2, mm5); \
271 pand_r2r(mm7 , mm5); \
272 movq_r2r(mm3, mm6); \
273 pand_r2r(mm7 , mm6); \
274 psubw_r2r(mm6, mm5); \
275 pmullw_r2r(mm0, mm5); \
276 psrlw_i2r(8, mm5); \
277 paddw_r2r(mm5, mm6); \
278 pand_r2r(mm7, mm6); \
279 movq_r2r(mm1, mm5); \
280 por_r2r(mm4, mm5); \
281 pand_r2r(mm5, mm3); \
282 por_r2r(mm6, mm3); \
283 movq_r2m(mm3, *dstp); \
284 srcp += 4; \
285 dstp += 4; \
286 i -= 3; \
287 } \
288 emms(); \
289 } while(0)
290
291 #define ALPHA_BLIT16_555MMX(to, from, length, bpp, alpha) \
292 do { \
293 int i, n = 0; \
294 Uint16 *srcp = (Uint16 *)(from); \
295 Uint16 *dstp = (Uint16 *)(to); \
296 Uint32 ALPHA = 0x7C00; \
297 movd_m2r(*(&ALPHA), mm1); \
298 punpcklwd_r2r(mm1, mm1); \
299 punpcklwd_r2r(mm1, mm1); \
300 ALPHA = 0x03E0; \
301 movd_m2r(*(&ALPHA), mm4); \
302 punpcklwd_r2r(mm4, mm4); \
303 punpcklwd_r2r(mm4, mm4); \
304 ALPHA = 0x001F; \
305 movd_m2r(*(&ALPHA), mm7); \
306 punpcklwd_r2r(mm7, mm7); \
307 punpcklwd_r2r(mm7, mm7); \
308 alpha &= ~(1+2+4); \
309 i = (Uint32)alpha | (Uint32)alpha << 16; \
310 movd_m2r(*(&i), mm0); \
311 punpckldq_r2r(mm0, mm0); \
312 i = ((int)(length) & 3); \
313 ALPHA = alpha >> 3; \
314 for(; i > 0; --i) { \
315 Uint32 s = *srcp++; \
316 Uint32 d = *dstp; \
317 s = (s | s << 16) & 0x03e07c1f; \
318 d = (d | d << 16) & 0x03e07c1f; \
319 d += (s - d) * ALPHA >> 5; \
320 d &= 0x03e07c1f; \
321 *dstp++ = d | d >> 16; \
322 n++; \
323 } \
324 i = (int)(length) - n; \
325 for(; i > 0; --i) { \
326 movq_m2r((*dstp), mm3); \
327 movq_m2r((*srcp), mm2); \
328 movq_r2r(mm2, mm5); \
329 pand_r2r(mm1 , mm5); \
330 psrlq_i2r(10, mm5); \
331 movq_r2r(mm3, mm6); \
332 pand_r2r(mm1 , mm6); \
333 psrlq_i2r(10, mm6); \
334 psubw_r2r(mm6, mm5); \
335 pmullw_r2r(mm0, mm5); \
336 psrlw_i2r(8, mm5); \
337 paddw_r2r(mm5, mm6); \
338 psllq_i2r(10, mm6); \
339 pand_r2r(mm1, mm6); \
340 movq_r2r(mm4, mm5); \
341 por_r2r(mm7, mm5); \
342 pand_r2r(mm5, mm3); \
343 por_r2r(mm6, mm3); \
344 movq_r2r(mm2, mm5); \
345 pand_r2r(mm4 , mm5); \
346 psrlq_i2r(5, mm5); \
347 movq_r2r(mm3, mm6); \
348 pand_r2r(mm4 , mm6); \
349 psrlq_i2r(5, mm6); \
350 psubw_r2r(mm6, mm5); \
351 pmullw_r2r(mm0, mm5); \
352 psrlw_i2r(8, mm5); \
353 paddw_r2r(mm5, mm6); \
354 psllq_i2r(5, mm6); \
355 pand_r2r(mm4, mm6); \
356 movq_r2r(mm1, mm5); \
357 por_r2r(mm7, mm5); \
358 pand_r2r(mm5, mm3); \
359 por_r2r(mm6, mm3); \
360 movq_r2r(mm2, mm5); \
361 pand_r2r(mm7 , mm5); \
362 movq_r2r(mm3, mm6); \
363 pand_r2r(mm7 , mm6); \
364 psubw_r2r(mm6, mm5); \
365 pmullw_r2r(mm0, mm5); \
366 psrlw_i2r(8, mm5); \
367 paddw_r2r(mm5, mm6); \
368 pand_r2r(mm7, mm6); \
369 movq_r2r(mm1, mm5); \
370 por_r2r(mm4, mm5); \
371 pand_r2r(mm5, mm3); \
372 por_r2r(mm6, mm3); \
373 movq_r2m(mm3, *dstp); \
374 srcp += 4; \
375 dstp += 4; \
376 i -= 3; \
377 } \
378 emms(); \
379 } while(0)
380
381 #endif
382
383 /*
384 * For 32bpp pixels on the form 0x00rrggbb:
385 * If we treat the middle component separately, we can process the two
386 * remaining in parallel. This is safe to do because of the gap to the left
387 * of each component, so the bits from the multiplication don't collide.
388 * This can be used for any RGB permutation of course.
389 */
390 #define ALPHA_BLIT32_888(to, from, length, bpp, alpha) \
391 do { \
392 int i; \
393 Uint32 *src = (Uint32 *)(from); \
394 Uint32 *dst = (Uint32 *)(to); \
395 for(i = 0; i < (int)(length); i++) { \
396 Uint32 s = *src++; \
397 Uint32 d = *dst; \
398 Uint32 s1 = s & 0xff00ff; \
399 Uint32 d1 = d & 0xff00ff; \
400 d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \
401 s &= 0xff00; \
402 d &= 0xff00; \
403 d = (d + ((s - d) * alpha >> 8)) & 0xff00; \
404 *dst++ = d1 | d; \
405 } \
406 } while(0)
407
408 /*
409 * For 16bpp pixels we can go a step further: put the middle component
410 * in the high 16 bits of a 32 bit word, and process all three RGB
411 * components at the same time. Since the smallest gap is here just
412 * 5 bits, we have to scale alpha down to 5 bits as well.
413 */
414 #define ALPHA_BLIT16_565(to, from, length, bpp, alpha) \
415 do { \
416 int i; \
417 Uint16 *src = (Uint16 *)(from); \
418 Uint16 *dst = (Uint16 *)(to); \
419 Uint32 ALPHA = alpha >> 3; \
420 for(i = 0; i < (int)(length); i++) { \
421 Uint32 s = *src++; \
422 Uint32 d = *dst; \
423 s = (s | s << 16) & 0x07e0f81f; \
424 d = (d | d << 16) & 0x07e0f81f; \
425 d += (s - d) * ALPHA >> 5; \
426 d &= 0x07e0f81f; \
427 *dst++ = (Uint16)(d | d >> 16); \
428 } \
429 } while(0)
430
431 #define ALPHA_BLIT16_555(to, from, length, bpp, alpha) \
432 do { \
433 int i; \
434 Uint16 *src = (Uint16 *)(from); \
435 Uint16 *dst = (Uint16 *)(to); \
436 Uint32 ALPHA = alpha >> 3; \
437 for(i = 0; i < (int)(length); i++) { \
438 Uint32 s = *src++; \
439 Uint32 d = *dst; \
440 s = (s | s << 16) & 0x03e07c1f; \
441 d = (d | d << 16) & 0x03e07c1f; \
442 d += (s - d) * ALPHA >> 5; \
443 d &= 0x03e07c1f; \
444 *dst++ = (Uint16)(d | d >> 16); \
445 } \
446 } while(0)
447
448 /*
449 * The general slow catch-all function, for remaining depths and formats
450 */
451 #define ALPHA_BLIT_ANY(to, from, length, bpp, alpha) \
452 do { \
453 int i; \
454 Uint8 *src = from; \
455 Uint8 *dst = to; \
456 for(i = 0; i < (int)(length); i++) { \
457 Uint32 s, d; \
458 unsigned rs, gs, bs, rd, gd, bd; \
459 switch(bpp) { \
460 case 2: \
461 s = *(Uint16 *)src; \
462 d = *(Uint16 *)dst; \
463 break; \
464 case 3: \
465 if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \
466 s = (src[0] << 16) | (src[1] << 8) | src[2]; \
467 d = (dst[0] << 16) | (dst[1] << 8) | dst[2]; \
468 } else { \
469 s = (src[2] << 16) | (src[1] << 8) | src[0]; \
470 d = (dst[2] << 16) | (dst[1] << 8) | dst[0]; \
471 } \
472 break; \
473 case 4: \
474 s = *(Uint32 *)src; \
475 d = *(Uint32 *)dst; \
476 break; \
477 } \
478 RGB_FROM_PIXEL(s, fmt, rs, gs, bs); \
479 RGB_FROM_PIXEL(d, fmt, rd, gd, bd); \
480 rd += (rs - rd) * alpha >> 8; \
481 gd += (gs - gd) * alpha >> 8; \
482 bd += (bs - bd) * alpha >> 8; \
483 PIXEL_FROM_RGB(d, fmt, rd, gd, bd); \
484 switch(bpp) { \
485 case 2: \
486 *(Uint16 *)dst = (Uint16)d; \
487 break; \
488 case 3: \
489 if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \
490 dst[0] = (Uint8)(d >> 16); \
491 dst[1] = (Uint8)(d >> 8); \
492 dst[2] = (Uint8)(d); \
493 } else { \
494 dst[0] = (Uint8)d; \
495 dst[1] = (Uint8)(d >> 8); \
496 dst[2] = (Uint8)(d >> 16); \
497 } \
498 break; \
499 case 4: \
500 *(Uint32 *)dst = d; \
501 break; \
502 } \
503 src += bpp; \
504 dst += bpp; \
505 } \
506 } while(0)
507
508 #ifdef MMX_ASMBLIT
509
510 #define ALPHA_BLIT32_888_50MMX(to, from, length, bpp, alpha) \
511 do { \
512 Uint32 *srcp = (Uint32 *)(from); \
513 Uint32 *dstp = (Uint32 *)(to); \
514 int i = 0x00fefefe; \
515 movd_m2r(*(&i), mm4); \
516 punpckldq_r2r(mm4, mm4); \
517 i = 0x00010101; \
518 movd_m2r(*(&i), mm3); \
519 punpckldq_r2r(mm3, mm3); \
520 i = (int)(length); \
521 if( i & 1 ) { \
522 Uint32 s = *srcp++; \
523 Uint32 d = *dstp; \
524 *dstp++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \
525 + (s & d & 0x00010101); \
526 i--; \
527 } \
528 for(; i > 0; --i) { \
529 movq_m2r((*dstp), mm2); /* dst -> mm2 */ \
530 movq_r2r(mm2, mm6); /* dst -> mm6 */ \
531 movq_m2r((*srcp), mm1); /* src -> mm1 */ \
532 movq_r2r(mm1, mm5); /* src -> mm5 */ \
533 pand_r2r(mm4, mm6); /* dst & 0x00fefefe -> mm6 */ \
534 pand_r2r(mm4, mm5); /* src & 0x00fefefe -> mm5 */ \
535 paddd_r2r(mm6, mm5); /* (dst & 0x00fefefe) + (dst & 0x00fefefe) -> mm5 */ \
536 psrld_i2r(1, mm5); \
537 pand_r2r(mm1, mm2); /* s & d -> mm2 */ \
538 pand_r2r(mm3, mm2); /* s & d & 0x00010101 -> mm2 */ \
539 paddd_r2r(mm5, mm2); \
540 movq_r2m(mm2, (*dstp)); \
541 dstp += 2; \
542 srcp += 2; \
543 i--; \
544 } \
545 emms(); \
546 } while(0)
547
548 #endif
549
550 /*
551 * Special case: 50% alpha (alpha=128)
552 * This is treated specially because it can be optimized very well, and
553 * since it is good for many cases of semi-translucency.
554 * The theory is to do all three components at the same time:
555 * First zero the lowest bit of each component, which gives us room to
556 * add them. Then shift right and add the sum of the lowest bits.
557 */
558 #define ALPHA_BLIT32_888_50(to, from, length, bpp, alpha) \
559 do { \
560 int i; \
561 Uint32 *src = (Uint32 *)(from); \
562 Uint32 *dst = (Uint32 *)(to); \
563 for(i = 0; i < (int)(length); i++) { \
564 Uint32 s = *src++; \
565 Uint32 d = *dst; \
566 *dst++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \
567 + (s & d & 0x00010101); \
568 } \
569 } while(0)
570
571 /*
572 * For 16bpp, we can actually blend two pixels in parallel, if we take
573 * care to shift before we add, not after.
574 */
575
576 /* helper: blend a single 16 bit pixel at 50% */
577 #define BLEND16_50(dst, src, mask) \
578 do { \
579 Uint32 s = *src++; \
580 Uint32 d = *dst; \
581 *dst++ = (Uint16)((((s & mask) + (d & mask)) >> 1) + \
582 (s & d & (~mask & 0xffff))); \
583 } while(0)
584
585 /* basic 16bpp blender. mask is the pixels to keep when adding. */
586 #define ALPHA_BLIT16_50(to, from, length, bpp, alpha, mask) \
587 do { \
588 unsigned n = (length); \
589 Uint16 *src = (Uint16 *)(from); \
590 Uint16 *dst = (Uint16 *)(to); \
591 if(((uintptr_t)src ^ (uintptr_t)dst) & 3) { \
592 /* source and destination not in phase, blit one by one */ \
593 while(n--) \
594 BLEND16_50(dst, src, mask); \
595 } else { \
596 if((uintptr_t)src & 3) { \
597 /* first odd pixel */ \
598 BLEND16_50(dst, src, mask); \
599 n--; \
600 } \
601 for(; n > 1; n -= 2) { \
602 Uint32 s = *(Uint32 *)src; \
603 Uint32 d = *(Uint32 *)dst; \
604 *(Uint32 *)dst = ((s & (mask | mask << 16)) >> 1) \
605 + ((d & (mask | mask << 16)) >> 1) \
606 + (s & d & (~(mask | mask << 16))); \
607 src += 2; \
608 dst += 2; \
609 } \
610 if(n) \
611 BLEND16_50(dst, src, mask); /* last odd pixel */ \
612 } \
613 } while(0)
614
615 #define ALPHA_BLIT16_565_50(to, from, length, bpp, alpha) \
616 ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xf7de)
617
618 #define ALPHA_BLIT16_555_50(to, from, length, bpp, alpha) \
619 ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xfbde)
620
621 #ifdef MMX_ASMBLIT
622
623 #define CHOOSE_BLIT(blitter, alpha, fmt) \
624 do { \
625 if(alpha == 255) { \
626 switch(fmt->BytesPerPixel) { \
627 case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \
628 case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \
629 case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \
630 case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \
631 } \
632 } else { \
633 switch(fmt->BytesPerPixel) { \
634 case 1: \
635 /* No 8bpp alpha blitting */ \
636 break; \
637 \
638 case 2: \
639 switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \
640 case 0xffff: \
641 if(fmt->Gmask == 0x07e0 \
642 || fmt->Rmask == 0x07e0 \
643 || fmt->Bmask == 0x07e0) { \
644 if(alpha == 128) \
645 blitter(2, Uint8, ALPHA_BLIT16_565_50); \
646 else { \
647 if(SDL_HasMMX()) \
648 blitter(2, Uint8, ALPHA_BLIT16_565MMX); \
649 else \
650 blitter(2, Uint8, ALPHA_BLIT16_565); \
651 } \
652 } else \
653 goto general16; \
654 break; \
655 \
656 case 0x7fff: \
657 if(fmt->Gmask == 0x03e0 \
658 || fmt->Rmask == 0x03e0 \
659 || fmt->Bmask == 0x03e0) { \
660 if(alpha == 128) \
661 blitter(2, Uint8, ALPHA_BLIT16_555_50); \
662 else { \
663 if(SDL_HasMMX()) \
664 blitter(2, Uint8, ALPHA_BLIT16_555MMX); \
665 else \
666 blitter(2, Uint8, ALPHA_BLIT16_555); \
667 } \
668 break; \
669 } \
670 /* fallthrough */ \
671 \
672 default: \
673 general16: \
674 blitter(2, Uint8, ALPHA_BLIT_ANY); \
675 } \
676 break; \
677 \
678 case 3: \
679 blitter(3, Uint8, ALPHA_BLIT_ANY); \
680 break; \
681 \
682 case 4: \
683 if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \
684 && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \
685 || fmt->Bmask == 0xff00)) { \
686 if(alpha == 128) \
687 { \
688 if(SDL_HasMMX()) \
689 blitter(4, Uint16, ALPHA_BLIT32_888_50MMX);\
690 else \
691 blitter(4, Uint16, ALPHA_BLIT32_888_50);\
692 } \
693 else \
694 { \
695 if(SDL_HasMMX()) \
696 blitter(4, Uint16, ALPHA_BLIT32_888MMX);\
697 else \
698 blitter(4, Uint16, ALPHA_BLIT32_888); \
699 } \
700 } else \
701 blitter(4, Uint16, ALPHA_BLIT_ANY); \
702 break; \
703 } \
704 } \
705 } while(0)
706
707 #else
708
709 #define CHOOSE_BLIT(blitter, alpha, fmt) \
710 do { \
711 if(alpha == 255) { \
712 switch(fmt->BytesPerPixel) { \
713 case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \
714 case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \
715 case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \
716 case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \
717 } \
718 } else { \
719 switch(fmt->BytesPerPixel) { \
720 case 1: \
721 /* No 8bpp alpha blitting */ \
722 break; \
723 \
724 case 2: \
725 switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \
726 case 0xffff: \
727 if(fmt->Gmask == 0x07e0 \
728 || fmt->Rmask == 0x07e0 \
729 || fmt->Bmask == 0x07e0) { \
730 if(alpha == 128) \
731 blitter(2, Uint8, ALPHA_BLIT16_565_50); \
732 else { \
733 blitter(2, Uint8, ALPHA_BLIT16_565); \
734 } \
735 } else \
736 goto general16; \
737 break; \
738 \
739 case 0x7fff: \
740 if(fmt->Gmask == 0x03e0 \
741 || fmt->Rmask == 0x03e0 \
742 || fmt->Bmask == 0x03e0) { \
743 if(alpha == 128) \
744 blitter(2, Uint8, ALPHA_BLIT16_555_50); \
745 else { \
746 blitter(2, Uint8, ALPHA_BLIT16_555); \
747 } \
748 break; \
749 } \
750 /* fallthrough */ \
751 \
752 default: \
753 general16: \
754 blitter(2, Uint8, ALPHA_BLIT_ANY); \
755 } \
756 break; \
757 \
758 case 3: \
759 blitter(3, Uint8, ALPHA_BLIT_ANY); \
760 break; \
761 \
762 case 4: \
763 if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \
764 && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \
765 || fmt->Bmask == 0xff00)) { \
766 if(alpha == 128) \
767 blitter(4, Uint16, ALPHA_BLIT32_888_50); \
768 else \
769 blitter(4, Uint16, ALPHA_BLIT32_888); \
770 } else \
771 blitter(4, Uint16, ALPHA_BLIT_ANY); \
772 break; \
773 } \
774 } \
775 } while(0)
776
777 #endif
778
779 /*
780 * This takes care of the case when the surface is clipped on the left and/or
781 * right. Top clipping has already been taken care of.
782 */
RLEClipBlit(int w,Uint8 * srcbuf,SDL_Surface * dst,Uint8 * dstbuf,SDL_Rect * srcrect,unsigned alpha)783 static void RLEClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst,
784 Uint8 *dstbuf, SDL_Rect *srcrect, unsigned alpha)
785 {
786 SDL_PixelFormat *fmt = dst->format;
787
788 #define RLECLIPBLIT(bpp, Type, do_blit) \
789 do { \
790 int linecount = srcrect->h; \
791 int ofs = 0; \
792 int left = srcrect->x; \
793 int right = left + srcrect->w; \
794 dstbuf -= left * bpp; \
795 for(;;) { \
796 int run; \
797 ofs += *(Type *)srcbuf; \
798 run = ((Type *)srcbuf)[1]; \
799 srcbuf += 2 * sizeof(Type); \
800 if(run) { \
801 /* clip to left and right borders */ \
802 if(ofs < right) { \
803 int start = 0; \
804 int len = run; \
805 int startcol; \
806 if(left - ofs > 0) { \
807 start = left - ofs; \
808 len -= start; \
809 if(len <= 0) \
810 goto nocopy ## bpp ## do_blit; \
811 } \
812 startcol = ofs + start; \
813 if(len > right - startcol) \
814 len = right - startcol; \
815 do_blit(dstbuf + startcol * bpp, srcbuf + start * bpp, \
816 len, bpp, alpha); \
817 } \
818 nocopy ## bpp ## do_blit: \
819 srcbuf += run * bpp; \
820 ofs += run; \
821 } else if(!ofs) \
822 break; \
823 if(ofs == w) { \
824 ofs = 0; \
825 dstbuf += dst->pitch; \
826 if(!--linecount) \
827 break; \
828 } \
829 } \
830 } while(0)
831
832 CHOOSE_BLIT(RLECLIPBLIT, alpha, fmt);
833
834 #undef RLECLIPBLIT
835
836 }
837
838
839 /* blit a colorkeyed RLE surface */
SDL_RLEBlit(SDL_Surface * src,SDL_Rect * srcrect,SDL_Surface * dst,SDL_Rect * dstrect)840 int SDL_RLEBlit(SDL_Surface *src, SDL_Rect *srcrect,
841 SDL_Surface *dst, SDL_Rect *dstrect)
842 {
843 Uint8 *dstbuf;
844 Uint8 *srcbuf;
845 int x, y;
846 int w = src->w;
847 unsigned alpha;
848
849 /* Lock the destination if necessary */
850 if ( SDL_MUSTLOCK(dst) ) {
851 if ( SDL_LockSurface(dst) < 0 ) {
852 return(-1);
853 }
854 }
855
856 /* Set up the source and destination pointers */
857 x = dstrect->x;
858 y = dstrect->y;
859 dstbuf = (Uint8 *)dst->pixels
860 + y * dst->pitch + x * src->format->BytesPerPixel;
861 srcbuf = (Uint8 *)src->map->sw_data->aux_data;
862
863 {
864 /* skip lines at the top if neccessary */
865 int vskip = srcrect->y;
866 int ofs = 0;
867 if(vskip) {
868
869 #define RLESKIP(bpp, Type) \
870 for(;;) { \
871 int run; \
872 ofs += *(Type *)srcbuf; \
873 run = ((Type *)srcbuf)[1]; \
874 srcbuf += sizeof(Type) * 2; \
875 if(run) { \
876 srcbuf += run * bpp; \
877 ofs += run; \
878 } else if(!ofs) \
879 goto done; \
880 if(ofs == w) { \
881 ofs = 0; \
882 if(!--vskip) \
883 break; \
884 } \
885 }
886
887 switch(src->format->BytesPerPixel) {
888 case 1: RLESKIP(1, Uint8); break;
889 case 2: RLESKIP(2, Uint8); break;
890 case 3: RLESKIP(3, Uint8); break;
891 case 4: RLESKIP(4, Uint16); break;
892 }
893
894 #undef RLESKIP
895
896 }
897 }
898
899 alpha = (src->flags & SDL_SRCALPHA) == SDL_SRCALPHA
900 ? src->format->alpha : 255;
901 /* if left or right edge clipping needed, call clip blit */
902 if ( srcrect->x || srcrect->w != src->w ) {
903 RLEClipBlit(w, srcbuf, dst, dstbuf, srcrect, alpha);
904 } else {
905 SDL_PixelFormat *fmt = src->format;
906
907 #define RLEBLIT(bpp, Type, do_blit) \
908 do { \
909 int linecount = srcrect->h; \
910 int ofs = 0; \
911 for(;;) { \
912 unsigned run; \
913 ofs += *(Type *)srcbuf; \
914 run = ((Type *)srcbuf)[1]; \
915 srcbuf += 2 * sizeof(Type); \
916 if(run) { \
917 do_blit(dstbuf + ofs * bpp, srcbuf, run, bpp, alpha); \
918 srcbuf += run * bpp; \
919 ofs += run; \
920 } else if(!ofs) \
921 break; \
922 if(ofs == w) { \
923 ofs = 0; \
924 dstbuf += dst->pitch; \
925 if(!--linecount) \
926 break; \
927 } \
928 } \
929 } while(0)
930
931 CHOOSE_BLIT(RLEBLIT, alpha, fmt);
932
933 #undef RLEBLIT
934 }
935
936 done:
937 /* Unlock the destination if necessary */
938 if ( SDL_MUSTLOCK(dst) ) {
939 SDL_UnlockSurface(dst);
940 }
941 return(0);
942 }
943
944 #undef OPAQUE_BLIT
945
946 /*
947 * Per-pixel blitting macros for translucent pixels:
948 * These use the same techniques as the per-surface blitting macros
949 */
950
951 /*
952 * For 32bpp pixels, we have made sure the alpha is stored in the top
953 * 8 bits, so proceed as usual
954 */
955 #define BLIT_TRANSL_888(src, dst) \
956 do { \
957 Uint32 s = src; \
958 Uint32 d = dst; \
959 unsigned alpha = s >> 24; \
960 Uint32 s1 = s & 0xff00ff; \
961 Uint32 d1 = d & 0xff00ff; \
962 d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \
963 s &= 0xff00; \
964 d &= 0xff00; \
965 d = (d + ((s - d) * alpha >> 8)) & 0xff00; \
966 dst = d1 | d; \
967 } while(0)
968
969 /*
970 * For 16bpp pixels, we have stored the 5 most significant alpha bits in
971 * bits 5-10. As before, we can process all 3 RGB components at the same time.
972 */
973 #define BLIT_TRANSL_565(src, dst) \
974 do { \
975 Uint32 s = src; \
976 Uint32 d = dst; \
977 unsigned alpha = (s & 0x3e0) >> 5; \
978 s &= 0x07e0f81f; \
979 d = (d | d << 16) & 0x07e0f81f; \
980 d += (s - d) * alpha >> 5; \
981 d &= 0x07e0f81f; \
982 dst = (Uint16)(d | d >> 16); \
983 } while(0)
984
985 #define BLIT_TRANSL_555(src, dst) \
986 do { \
987 Uint32 s = src; \
988 Uint32 d = dst; \
989 unsigned alpha = (s & 0x3e0) >> 5; \
990 s &= 0x03e07c1f; \
991 d = (d | d << 16) & 0x03e07c1f; \
992 d += (s - d) * alpha >> 5; \
993 d &= 0x03e07c1f; \
994 dst = (Uint16)(d | d >> 16); \
995 } while(0)
996
997 /* used to save the destination format in the encoding. Designed to be
998 macro-compatible with SDL_PixelFormat but without the unneeded fields */
999 typedef struct {
1000 Uint8 BytesPerPixel;
1001 Uint8 Rloss;
1002 Uint8 Gloss;
1003 Uint8 Bloss;
1004 Uint8 Rshift;
1005 Uint8 Gshift;
1006 Uint8 Bshift;
1007 Uint8 Ashift;
1008 Uint32 Rmask;
1009 Uint32 Gmask;
1010 Uint32 Bmask;
1011 Uint32 Amask;
1012 } RLEDestFormat;
1013
1014 /* blit a pixel-alpha RLE surface clipped at the right and/or left edges */
RLEAlphaClipBlit(int w,Uint8 * srcbuf,SDL_Surface * dst,Uint8 * dstbuf,SDL_Rect * srcrect)1015 static void RLEAlphaClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst,
1016 Uint8 *dstbuf, SDL_Rect *srcrect)
1017 {
1018 SDL_PixelFormat *df = dst->format;
1019 /*
1020 * clipped blitter: Ptype is the destination pixel type,
1021 * Ctype the translucent count type, and do_blend the macro
1022 * to blend one pixel.
1023 */
1024 #define RLEALPHACLIPBLIT(Ptype, Ctype, do_blend) \
1025 do { \
1026 int linecount = srcrect->h; \
1027 int left = srcrect->x; \
1028 int right = left + srcrect->w; \
1029 dstbuf -= left * sizeof(Ptype); \
1030 do { \
1031 int ofs = 0; \
1032 /* blit opaque pixels on one line */ \
1033 do { \
1034 unsigned run; \
1035 ofs += ((Ctype *)srcbuf)[0]; \
1036 run = ((Ctype *)srcbuf)[1]; \
1037 srcbuf += 2 * sizeof(Ctype); \
1038 if(run) { \
1039 /* clip to left and right borders */ \
1040 int cofs = ofs; \
1041 int crun = run; \
1042 if(left - cofs > 0) { \
1043 crun -= left - cofs; \
1044 cofs = left; \
1045 } \
1046 if(crun > right - cofs) \
1047 crun = right - cofs; \
1048 if(crun > 0) \
1049 PIXEL_COPY(dstbuf + cofs * sizeof(Ptype), \
1050 srcbuf + (cofs - ofs) * sizeof(Ptype), \
1051 (unsigned)crun, sizeof(Ptype)); \
1052 srcbuf += run * sizeof(Ptype); \
1053 ofs += run; \
1054 } else if(!ofs) \
1055 return; \
1056 } while(ofs < w); \
1057 /* skip padding if necessary */ \
1058 if(sizeof(Ptype) == 2) \
1059 srcbuf += (uintptr_t)srcbuf & 2; \
1060 /* blit translucent pixels on the same line */ \
1061 ofs = 0; \
1062 do { \
1063 unsigned run; \
1064 ofs += ((Uint16 *)srcbuf)[0]; \
1065 run = ((Uint16 *)srcbuf)[1]; \
1066 srcbuf += 4; \
1067 if(run) { \
1068 /* clip to left and right borders */ \
1069 int cofs = ofs; \
1070 int crun = run; \
1071 if(left - cofs > 0) { \
1072 crun -= left - cofs; \
1073 cofs = left; \
1074 } \
1075 if(crun > right - cofs) \
1076 crun = right - cofs; \
1077 if(crun > 0) { \
1078 Ptype *dst = (Ptype *)dstbuf + cofs; \
1079 Uint32 *src = (Uint32 *)srcbuf + (cofs - ofs); \
1080 int i; \
1081 for(i = 0; i < crun; i++) \
1082 do_blend(src[i], dst[i]); \
1083 } \
1084 srcbuf += run * 4; \
1085 ofs += run; \
1086 } \
1087 } while(ofs < w); \
1088 dstbuf += dst->pitch; \
1089 } while(--linecount); \
1090 } while(0)
1091
1092 switch(df->BytesPerPixel) {
1093 case 2:
1094 if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0
1095 || df->Bmask == 0x07e0)
1096 RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_565);
1097 else
1098 RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_555);
1099 break;
1100 case 4:
1101 RLEALPHACLIPBLIT(Uint32, Uint16, BLIT_TRANSL_888);
1102 break;
1103 }
1104 }
1105
1106 /* blit a pixel-alpha RLE surface */
SDL_RLEAlphaBlit(SDL_Surface * src,SDL_Rect * srcrect,SDL_Surface * dst,SDL_Rect * dstrect)1107 int SDL_RLEAlphaBlit(SDL_Surface *src, SDL_Rect *srcrect,
1108 SDL_Surface *dst, SDL_Rect *dstrect)
1109 {
1110 int x, y;
1111 int w = src->w;
1112 Uint8 *srcbuf, *dstbuf;
1113 SDL_PixelFormat *df = dst->format;
1114
1115 /* Lock the destination if necessary */
1116 if ( SDL_MUSTLOCK(dst) ) {
1117 if ( SDL_LockSurface(dst) < 0 ) {
1118 return -1;
1119 }
1120 }
1121
1122 x = dstrect->x;
1123 y = dstrect->y;
1124 dstbuf = (Uint8 *)dst->pixels
1125 + y * dst->pitch + x * df->BytesPerPixel;
1126 srcbuf = (Uint8 *)src->map->sw_data->aux_data + sizeof(RLEDestFormat);
1127
1128 {
1129 /* skip lines at the top if necessary */
1130 int vskip = srcrect->y;
1131 if(vskip) {
1132 int ofs;
1133 if(df->BytesPerPixel == 2) {
1134 /* the 16/32 interleaved format */
1135 do {
1136 /* skip opaque line */
1137 ofs = 0;
1138 do {
1139 int run;
1140 ofs += srcbuf[0];
1141 run = srcbuf[1];
1142 srcbuf += 2;
1143 if(run) {
1144 srcbuf += 2 * run;
1145 ofs += run;
1146 } else if(!ofs)
1147 goto done;
1148 } while(ofs < w);
1149
1150 /* skip padding */
1151 srcbuf += (uintptr_t)srcbuf & 2;
1152
1153 /* skip translucent line */
1154 ofs = 0;
1155 do {
1156 int run;
1157 ofs += ((Uint16 *)srcbuf)[0];
1158 run = ((Uint16 *)srcbuf)[1];
1159 srcbuf += 4 * (run + 1);
1160 ofs += run;
1161 } while(ofs < w);
1162 } while(--vskip);
1163 } else {
1164 /* the 32/32 interleaved format */
1165 vskip <<= 1; /* opaque and translucent have same format */
1166 do {
1167 ofs = 0;
1168 do {
1169 int run;
1170 ofs += ((Uint16 *)srcbuf)[0];
1171 run = ((Uint16 *)srcbuf)[1];
1172 srcbuf += 4;
1173 if(run) {
1174 srcbuf += 4 * run;
1175 ofs += run;
1176 } else if(!ofs)
1177 goto done;
1178 } while(ofs < w);
1179 } while(--vskip);
1180 }
1181 }
1182 }
1183
1184 /* if left or right edge clipping needed, call clip blit */
1185 if(srcrect->x || srcrect->w != src->w) {
1186 RLEAlphaClipBlit(w, srcbuf, dst, dstbuf, srcrect);
1187 } else {
1188
1189 /*
1190 * non-clipped blitter. Ptype is the destination pixel type,
1191 * Ctype the translucent count type, and do_blend the
1192 * macro to blend one pixel.
1193 */
1194 #define RLEALPHABLIT(Ptype, Ctype, do_blend) \
1195 do { \
1196 int linecount = srcrect->h; \
1197 do { \
1198 int ofs = 0; \
1199 /* blit opaque pixels on one line */ \
1200 do { \
1201 unsigned run; \
1202 ofs += ((Ctype *)srcbuf)[0]; \
1203 run = ((Ctype *)srcbuf)[1]; \
1204 srcbuf += 2 * sizeof(Ctype); \
1205 if(run) { \
1206 PIXEL_COPY(dstbuf + ofs * sizeof(Ptype), srcbuf, \
1207 run, sizeof(Ptype)); \
1208 srcbuf += run * sizeof(Ptype); \
1209 ofs += run; \
1210 } else if(!ofs) \
1211 goto done; \
1212 } while(ofs < w); \
1213 /* skip padding if necessary */ \
1214 if(sizeof(Ptype) == 2) \
1215 srcbuf += (uintptr_t)srcbuf & 2; \
1216 /* blit translucent pixels on the same line */ \
1217 ofs = 0; \
1218 do { \
1219 unsigned run; \
1220 ofs += ((Uint16 *)srcbuf)[0]; \
1221 run = ((Uint16 *)srcbuf)[1]; \
1222 srcbuf += 4; \
1223 if(run) { \
1224 Ptype *dst = (Ptype *)dstbuf + ofs; \
1225 unsigned i; \
1226 for(i = 0; i < run; i++) { \
1227 Uint32 src = *(Uint32 *)srcbuf; \
1228 do_blend(src, *dst); \
1229 srcbuf += 4; \
1230 dst++; \
1231 } \
1232 ofs += run; \
1233 } \
1234 } while(ofs < w); \
1235 dstbuf += dst->pitch; \
1236 } while(--linecount); \
1237 } while(0)
1238
1239 switch(df->BytesPerPixel) {
1240 case 2:
1241 if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0
1242 || df->Bmask == 0x07e0)
1243 RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_565);
1244 else
1245 RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_555);
1246 break;
1247 case 4:
1248 RLEALPHABLIT(Uint32, Uint16, BLIT_TRANSL_888);
1249 break;
1250 }
1251 }
1252
1253 done:
1254 /* Unlock the destination if necessary */
1255 if ( SDL_MUSTLOCK(dst) ) {
1256 SDL_UnlockSurface(dst);
1257 }
1258 return 0;
1259 }
1260
1261 /*
1262 * Auxiliary functions:
1263 * The encoding functions take 32bpp rgb + a, and
1264 * return the number of bytes copied to the destination.
1265 * The decoding functions copy to 32bpp rgb + a, and
1266 * return the number of bytes copied from the source.
1267 * These are only used in the encoder and un-RLE code and are therefore not
1268 * highly optimised.
1269 */
1270
1271 /* encode 32bpp rgb + a into 16bpp rgb, losing alpha */
copy_opaque_16(void * dst,Uint32 * src,int n,SDL_PixelFormat * sfmt,SDL_PixelFormat * dfmt)1272 static int copy_opaque_16(void *dst, Uint32 *src, int n,
1273 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
1274 {
1275 int i;
1276 Uint16 *d = dst;
1277 for(i = 0; i < n; i++) {
1278 unsigned r, g, b;
1279 RGB_FROM_PIXEL(*src, sfmt, r, g, b);
1280 PIXEL_FROM_RGB(*d, dfmt, r, g, b);
1281 src++;
1282 d++;
1283 }
1284 return n * 2;
1285 }
1286
1287 /* decode opaque pixels from 16bpp to 32bpp rgb + a */
uncopy_opaque_16(Uint32 * dst,void * src,int n,RLEDestFormat * sfmt,SDL_PixelFormat * dfmt)1288 static int uncopy_opaque_16(Uint32 *dst, void *src, int n,
1289 RLEDestFormat *sfmt, SDL_PixelFormat *dfmt)
1290 {
1291 int i;
1292 Uint16 *s = src;
1293 unsigned alpha = dfmt->Amask ? 255 : 0;
1294 for(i = 0; i < n; i++) {
1295 unsigned r, g, b;
1296 RGB_FROM_PIXEL(*s, sfmt, r, g, b);
1297 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, alpha);
1298 s++;
1299 dst++;
1300 }
1301 return n * 2;
1302 }
1303
1304
1305
1306 /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 565 */
copy_transl_565(void * dst,Uint32 * src,int n,SDL_PixelFormat * sfmt,SDL_PixelFormat * dfmt)1307 static int copy_transl_565(void *dst, Uint32 *src, int n,
1308 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
1309 {
1310 int i;
1311 Uint32 *d = dst;
1312 for(i = 0; i < n; i++) {
1313 unsigned r, g, b, a;
1314 Uint16 pix;
1315 RGBA_FROM_8888(*src, sfmt, r, g, b, a);
1316 PIXEL_FROM_RGB(pix, dfmt, r, g, b);
1317 *d = ((pix & 0x7e0) << 16) | (pix & 0xf81f) | ((a << 2) & 0x7e0);
1318 src++;
1319 d++;
1320 }
1321 return n * 4;
1322 }
1323
1324 /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 555 */
copy_transl_555(void * dst,Uint32 * src,int n,SDL_PixelFormat * sfmt,SDL_PixelFormat * dfmt)1325 static int copy_transl_555(void *dst, Uint32 *src, int n,
1326 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
1327 {
1328 int i;
1329 Uint32 *d = dst;
1330 for(i = 0; i < n; i++) {
1331 unsigned r, g, b, a;
1332 Uint16 pix;
1333 RGBA_FROM_8888(*src, sfmt, r, g, b, a);
1334 PIXEL_FROM_RGB(pix, dfmt, r, g, b);
1335 *d = ((pix & 0x3e0) << 16) | (pix & 0xfc1f) | ((a << 2) & 0x3e0);
1336 src++;
1337 d++;
1338 }
1339 return n * 4;
1340 }
1341
1342 /* decode translucent pixels from 32bpp GORAB to 32bpp rgb + a */
uncopy_transl_16(Uint32 * dst,void * src,int n,RLEDestFormat * sfmt,SDL_PixelFormat * dfmt)1343 static int uncopy_transl_16(Uint32 *dst, void *src, int n,
1344 RLEDestFormat *sfmt, SDL_PixelFormat *dfmt)
1345 {
1346 int i;
1347 Uint32 *s = src;
1348 for(i = 0; i < n; i++) {
1349 unsigned r, g, b, a;
1350 Uint32 pix = *s++;
1351 a = (pix & 0x3e0) >> 2;
1352 pix = (pix & ~0x3e0) | pix >> 16;
1353 RGB_FROM_PIXEL(pix, sfmt, r, g, b);
1354 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a);
1355 dst++;
1356 }
1357 return n * 4;
1358 }
1359
1360 /* encode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
copy_32(void * dst,Uint32 * src,int n,SDL_PixelFormat * sfmt,SDL_PixelFormat * dfmt)1361 static int copy_32(void *dst, Uint32 *src, int n,
1362 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
1363 {
1364 int i;
1365 Uint32 *d = dst;
1366 for(i = 0; i < n; i++) {
1367 unsigned r, g, b, a;
1368 Uint32 pixel;
1369 RGBA_FROM_8888(*src, sfmt, r, g, b, a);
1370 PIXEL_FROM_RGB(pixel, dfmt, r, g, b);
1371 *d++ = pixel | a << 24;
1372 src++;
1373 }
1374 return n * 4;
1375 }
1376
1377 /* decode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
uncopy_32(Uint32 * dst,void * src,int n,RLEDestFormat * sfmt,SDL_PixelFormat * dfmt)1378 static int uncopy_32(Uint32 *dst, void *src, int n,
1379 RLEDestFormat *sfmt, SDL_PixelFormat *dfmt)
1380 {
1381 int i;
1382 Uint32 *s = src;
1383 for(i = 0; i < n; i++) {
1384 unsigned r, g, b, a;
1385 Uint32 pixel = *s++;
1386 RGB_FROM_PIXEL(pixel, sfmt, r, g, b);
1387 a = pixel >> 24;
1388 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a);
1389 dst++;
1390 }
1391 return n * 4;
1392 }
1393
1394 #define ISOPAQUE(pixel, fmt) ((((pixel) & fmt->Amask) >> fmt->Ashift) == 255)
1395
1396 #define ISTRANSL(pixel, fmt) \
1397 ((unsigned)((((pixel) & fmt->Amask) >> fmt->Ashift) - 1U) < 254U)
1398
1399 /* convert surface to be quickly alpha-blittable onto dest, if possible */
RLEAlphaSurface(SDL_Surface * surface)1400 static int RLEAlphaSurface(SDL_Surface *surface)
1401 {
1402 SDL_Surface *dest;
1403 SDL_PixelFormat *df;
1404 int maxsize = 0;
1405 int max_opaque_run;
1406 int max_transl_run = 65535;
1407 unsigned masksum;
1408 Uint8 *rlebuf, *dst;
1409 int (*copy_opaque)(void *, Uint32 *, int,
1410 SDL_PixelFormat *, SDL_PixelFormat *);
1411 int (*copy_transl)(void *, Uint32 *, int,
1412 SDL_PixelFormat *, SDL_PixelFormat *);
1413
1414 dest = surface->map->dst;
1415 if(!dest)
1416 return -1;
1417 df = dest->format;
1418 if(surface->format->BitsPerPixel != 32)
1419 return -1; /* only 32bpp source supported */
1420
1421 /* find out whether the destination is one we support,
1422 and determine the max size of the encoded result */
1423 masksum = df->Rmask | df->Gmask | df->Bmask;
1424 switch(df->BytesPerPixel) {
1425 case 2:
1426 /* 16bpp: only support 565 and 555 formats */
1427 switch(masksum) {
1428 case 0xffff:
1429 if(df->Gmask == 0x07e0
1430 || df->Rmask == 0x07e0 || df->Bmask == 0x07e0) {
1431 copy_opaque = copy_opaque_16;
1432 copy_transl = copy_transl_565;
1433 } else
1434 return -1;
1435 break;
1436 case 0x7fff:
1437 if(df->Gmask == 0x03e0
1438 || df->Rmask == 0x03e0 || df->Bmask == 0x03e0) {
1439 copy_opaque = copy_opaque_16;
1440 copy_transl = copy_transl_555;
1441 } else
1442 return -1;
1443 break;
1444 default:
1445 return -1;
1446 }
1447 max_opaque_run = 255; /* runs stored as bytes */
1448
1449 /* worst case is alternating opaque and translucent pixels,
1450 with room for alignment padding between lines */
1451 maxsize = surface->h * (2 + (4 + 2) * (surface->w + 1)) + 2;
1452 break;
1453 case 4:
1454 if(masksum != 0x00ffffff)
1455 return -1; /* requires unused high byte */
1456 copy_opaque = copy_32;
1457 copy_transl = copy_32;
1458 max_opaque_run = 255; /* runs stored as short ints */
1459
1460 /* worst case is alternating opaque and translucent pixels */
1461 maxsize = surface->h * 2 * 4 * (surface->w + 1) + 4;
1462 break;
1463 default:
1464 return -1; /* anything else unsupported right now */
1465 }
1466
1467 maxsize += sizeof(RLEDestFormat);
1468 rlebuf = (Uint8 *)SDL_malloc(maxsize);
1469 if(!rlebuf) {
1470 SDL_OutOfMemory();
1471 return -1;
1472 }
1473 {
1474 /* save the destination format so we can undo the encoding later */
1475 RLEDestFormat *r = (RLEDestFormat *)rlebuf;
1476 r->BytesPerPixel = df->BytesPerPixel;
1477 r->Rloss = df->Rloss;
1478 r->Gloss = df->Gloss;
1479 r->Bloss = df->Bloss;
1480 r->Rshift = df->Rshift;
1481 r->Gshift = df->Gshift;
1482 r->Bshift = df->Bshift;
1483 r->Ashift = df->Ashift;
1484 r->Rmask = df->Rmask;
1485 r->Gmask = df->Gmask;
1486 r->Bmask = df->Bmask;
1487 r->Amask = df->Amask;
1488 }
1489 dst = rlebuf + sizeof(RLEDestFormat);
1490
1491 /* Do the actual encoding */
1492 {
1493 int x, y;
1494 int h = surface->h, w = surface->w;
1495 SDL_PixelFormat *sf = surface->format;
1496 Uint32 *src = (Uint32 *)surface->pixels;
1497 Uint8 *lastline = dst; /* end of last non-blank line */
1498
1499 /* opaque counts are 8 or 16 bits, depending on target depth */
1500 #define ADD_OPAQUE_COUNTS(n, m) \
1501 if(df->BytesPerPixel == 4) { \
1502 ((Uint16 *)dst)[0] = n; \
1503 ((Uint16 *)dst)[1] = m; \
1504 dst += 4; \
1505 } else { \
1506 dst[0] = n; \
1507 dst[1] = m; \
1508 dst += 2; \
1509 }
1510
1511 /* translucent counts are always 16 bit */
1512 #define ADD_TRANSL_COUNTS(n, m) \
1513 (((Uint16 *)dst)[0] = n, ((Uint16 *)dst)[1] = m, dst += 4)
1514
1515 for(y = 0; y < h; y++) {
1516 int runstart, skipstart;
1517 int blankline = 0;
1518 /* First encode all opaque pixels of a scan line */
1519 x = 0;
1520 do {
1521 int run, skip, len;
1522 skipstart = x;
1523 while(x < w && !ISOPAQUE(src[x], sf))
1524 x++;
1525 runstart = x;
1526 while(x < w && ISOPAQUE(src[x], sf))
1527 x++;
1528 skip = runstart - skipstart;
1529 if(skip == w)
1530 blankline = 1;
1531 run = x - runstart;
1532 while(skip > max_opaque_run) {
1533 ADD_OPAQUE_COUNTS(max_opaque_run, 0);
1534 skip -= max_opaque_run;
1535 }
1536 len = MIN(run, max_opaque_run);
1537 ADD_OPAQUE_COUNTS(skip, len);
1538 dst += copy_opaque(dst, src + runstart, len, sf, df);
1539 runstart += len;
1540 run -= len;
1541 while(run) {
1542 len = MIN(run, max_opaque_run);
1543 ADD_OPAQUE_COUNTS(0, len);
1544 dst += copy_opaque(dst, src + runstart, len, sf, df);
1545 runstart += len;
1546 run -= len;
1547 }
1548 } while(x < w);
1549
1550 /* Make sure the next output address is 32-bit aligned */
1551 dst += (uintptr_t)dst & 2;
1552
1553 /* Next, encode all translucent pixels of the same scan line */
1554 x = 0;
1555 do {
1556 int run, skip, len;
1557 skipstart = x;
1558 while(x < w && !ISTRANSL(src[x], sf))
1559 x++;
1560 runstart = x;
1561 while(x < w && ISTRANSL(src[x], sf))
1562 x++;
1563 skip = runstart - skipstart;
1564 blankline &= (skip == w);
1565 run = x - runstart;
1566 while(skip > max_transl_run) {
1567 ADD_TRANSL_COUNTS(max_transl_run, 0);
1568 skip -= max_transl_run;
1569 }
1570 len = MIN(run, max_transl_run);
1571 ADD_TRANSL_COUNTS(skip, len);
1572 dst += copy_transl(dst, src + runstart, len, sf, df);
1573 runstart += len;
1574 run -= len;
1575 while(run) {
1576 len = MIN(run, max_transl_run);
1577 ADD_TRANSL_COUNTS(0, len);
1578 dst += copy_transl(dst, src + runstart, len, sf, df);
1579 runstart += len;
1580 run -= len;
1581 }
1582 if(!blankline)
1583 lastline = dst;
1584 } while(x < w);
1585
1586 src += surface->pitch >> 2;
1587 }
1588 dst = lastline; /* back up past trailing blank lines */
1589 ADD_OPAQUE_COUNTS(0, 0);
1590 }
1591
1592 #undef ADD_OPAQUE_COUNTS
1593 #undef ADD_TRANSL_COUNTS
1594
1595 /* Now that we have it encoded, release the original pixels */
1596 if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC
1597 && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) {
1598 SDL_free( surface->pixels );
1599 surface->pixels = NULL;
1600 }
1601
1602 /* realloc the buffer to release unused memory */
1603 {
1604 Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf);
1605 if(!p)
1606 p = rlebuf;
1607 surface->map->sw_data->aux_data = p;
1608 }
1609
1610 return 0;
1611 }
1612
getpix_8(Uint8 * srcbuf)1613 static Uint32 getpix_8(Uint8 *srcbuf)
1614 {
1615 return *srcbuf;
1616 }
1617
getpix_16(Uint8 * srcbuf)1618 static Uint32 getpix_16(Uint8 *srcbuf)
1619 {
1620 return *(Uint16 *)srcbuf;
1621 }
1622
getpix_24(Uint8 * srcbuf)1623 static Uint32 getpix_24(Uint8 *srcbuf)
1624 {
1625 #if SDL_BYTEORDER == SDL_LIL_ENDIAN
1626 return srcbuf[0] + (srcbuf[1] << 8) + (srcbuf[2] << 16);
1627 #else
1628 return (srcbuf[0] << 16) + (srcbuf[1] << 8) + srcbuf[2];
1629 #endif
1630 }
1631
getpix_32(Uint8 * srcbuf)1632 static Uint32 getpix_32(Uint8 *srcbuf)
1633 {
1634 return *(Uint32 *)srcbuf;
1635 }
1636
1637 typedef Uint32 (*getpix_func)(Uint8 *);
1638
1639 static getpix_func getpixes[4] = {
1640 getpix_8, getpix_16, getpix_24, getpix_32
1641 };
1642
RLEColorkeySurface(SDL_Surface * surface)1643 static int RLEColorkeySurface(SDL_Surface *surface)
1644 {
1645 Uint8 *rlebuf, *dst;
1646 int maxn;
1647 int y;
1648 Uint8 *srcbuf, *lastline;
1649 int maxsize = 0;
1650 int bpp = surface->format->BytesPerPixel;
1651 getpix_func getpix;
1652 Uint32 ckey, rgbmask;
1653 int w, h;
1654
1655 /* calculate the worst case size for the compressed surface */
1656 switch(bpp) {
1657 case 1:
1658 /* worst case is alternating opaque and transparent pixels,
1659 starting with an opaque pixel */
1660 maxsize = surface->h * 3 * (surface->w / 2 + 1) + 2;
1661 break;
1662 case 2:
1663 case 3:
1664 /* worst case is solid runs, at most 255 pixels wide */
1665 maxsize = surface->h * (2 * (surface->w / 255 + 1)
1666 + surface->w * bpp) + 2;
1667 break;
1668 case 4:
1669 /* worst case is solid runs, at most 65535 pixels wide */
1670 maxsize = surface->h * (4 * (surface->w / 65535 + 1)
1671 + surface->w * 4) + 4;
1672 break;
1673 }
1674
1675 rlebuf = (Uint8 *)SDL_malloc(maxsize);
1676 if ( rlebuf == NULL ) {
1677 SDL_OutOfMemory();
1678 return(-1);
1679 }
1680
1681 /* Set up the conversion */
1682 srcbuf = (Uint8 *)surface->pixels;
1683 maxn = bpp == 4 ? 65535 : 255;
1684 dst = rlebuf;
1685 rgbmask = ~surface->format->Amask;
1686 ckey = surface->format->colorkey & rgbmask;
1687 lastline = dst;
1688 getpix = getpixes[bpp - 1];
1689 w = surface->w;
1690 h = surface->h;
1691
1692 #define ADD_COUNTS(n, m) \
1693 if(bpp == 4) { \
1694 ((Uint16 *)dst)[0] = n; \
1695 ((Uint16 *)dst)[1] = m; \
1696 dst += 4; \
1697 } else { \
1698 dst[0] = n; \
1699 dst[1] = m; \
1700 dst += 2; \
1701 }
1702
1703 for(y = 0; y < h; y++) {
1704 int x = 0;
1705 int blankline = 0;
1706 do {
1707 int run, skip, len;
1708 int runstart;
1709 int skipstart = x;
1710
1711 /* find run of transparent, then opaque pixels */
1712 while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) == ckey)
1713 x++;
1714 runstart = x;
1715 while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) != ckey)
1716 x++;
1717 skip = runstart - skipstart;
1718 if(skip == w)
1719 blankline = 1;
1720 run = x - runstart;
1721
1722 /* encode segment */
1723 while(skip > maxn) {
1724 ADD_COUNTS(maxn, 0);
1725 skip -= maxn;
1726 }
1727 len = MIN(run, maxn);
1728 ADD_COUNTS(skip, len);
1729 SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp);
1730 dst += len * bpp;
1731 run -= len;
1732 runstart += len;
1733 while(run) {
1734 len = MIN(run, maxn);
1735 ADD_COUNTS(0, len);
1736 SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp);
1737 dst += len * bpp;
1738 runstart += len;
1739 run -= len;
1740 }
1741 if(!blankline)
1742 lastline = dst;
1743 } while(x < w);
1744
1745 srcbuf += surface->pitch;
1746 }
1747 dst = lastline; /* back up bast trailing blank lines */
1748 ADD_COUNTS(0, 0);
1749
1750 #undef ADD_COUNTS
1751
1752 /* Now that we have it encoded, release the original pixels */
1753 if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC
1754 && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) {
1755 SDL_free( surface->pixels );
1756 surface->pixels = NULL;
1757 }
1758
1759 /* realloc the buffer to release unused memory */
1760 {
1761 /* If realloc returns NULL, the original block is left intact */
1762 Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf);
1763 if(!p)
1764 p = rlebuf;
1765 surface->map->sw_data->aux_data = p;
1766 }
1767
1768 return(0);
1769 }
1770
SDL_RLESurface(SDL_Surface * surface)1771 int SDL_RLESurface(SDL_Surface *surface)
1772 {
1773 int retcode;
1774
1775 /* Clear any previous RLE conversion */
1776 if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) {
1777 SDL_UnRLESurface(surface, 1);
1778 }
1779
1780 /* We don't support RLE encoding of bitmaps */
1781 if ( surface->format->BitsPerPixel < 8 ) {
1782 return(-1);
1783 }
1784
1785 /* Lock the surface if it's in hardware */
1786 if ( SDL_MUSTLOCK(surface) ) {
1787 if ( SDL_LockSurface(surface) < 0 ) {
1788 return(-1);
1789 }
1790 }
1791
1792 /* Encode */
1793 if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) {
1794 retcode = RLEColorkeySurface(surface);
1795 } else {
1796 if((surface->flags & SDL_SRCALPHA) == SDL_SRCALPHA
1797 && surface->format->Amask != 0)
1798 retcode = RLEAlphaSurface(surface);
1799 else
1800 retcode = -1; /* no RLE for per-surface alpha sans ckey */
1801 }
1802
1803 /* Unlock the surface if it's in hardware */
1804 if ( SDL_MUSTLOCK(surface) ) {
1805 SDL_UnlockSurface(surface);
1806 }
1807
1808 if(retcode < 0)
1809 return -1;
1810
1811 /* The surface is now accelerated */
1812 surface->flags |= SDL_RLEACCEL;
1813
1814 return(0);
1815 }
1816
1817 /*
1818 * Un-RLE a surface with pixel alpha
1819 * This may not give back exactly the image before RLE-encoding; all
1820 * completely transparent pixels will be lost, and colour and alpha depth
1821 * may have been reduced (when encoding for 16bpp targets).
1822 */
UnRLEAlpha(SDL_Surface * surface)1823 static SDL_bool UnRLEAlpha(SDL_Surface *surface)
1824 {
1825 Uint8 *srcbuf;
1826 Uint32 *dst;
1827 SDL_PixelFormat *sf = surface->format;
1828 RLEDestFormat *df = surface->map->sw_data->aux_data;
1829 int (*uncopy_opaque)(Uint32 *, void *, int,
1830 RLEDestFormat *, SDL_PixelFormat *);
1831 int (*uncopy_transl)(Uint32 *, void *, int,
1832 RLEDestFormat *, SDL_PixelFormat *);
1833 int w = surface->w;
1834 int bpp = df->BytesPerPixel;
1835
1836 if(bpp == 2) {
1837 uncopy_opaque = uncopy_opaque_16;
1838 uncopy_transl = uncopy_transl_16;
1839 } else {
1840 uncopy_opaque = uncopy_transl = uncopy_32;
1841 }
1842
1843 surface->pixels = SDL_malloc(surface->h * surface->pitch);
1844 if ( !surface->pixels ) {
1845 return(SDL_FALSE);
1846 }
1847 /* fill background with transparent pixels */
1848 SDL_memset(surface->pixels, 0, surface->h * surface->pitch);
1849
1850 dst = surface->pixels;
1851 srcbuf = (Uint8 *)(df + 1);
1852 for(;;) {
1853 /* copy opaque pixels */
1854 int ofs = 0;
1855 do {
1856 unsigned run;
1857 if(bpp == 2) {
1858 ofs += srcbuf[0];
1859 run = srcbuf[1];
1860 srcbuf += 2;
1861 } else {
1862 ofs += ((Uint16 *)srcbuf)[0];
1863 run = ((Uint16 *)srcbuf)[1];
1864 srcbuf += 4;
1865 }
1866 if(run) {
1867 srcbuf += uncopy_opaque(dst + ofs, srcbuf, run, df, sf);
1868 ofs += run;
1869 } else if(!ofs)
1870 return(SDL_TRUE);
1871 } while(ofs < w);
1872
1873 /* skip padding if needed */
1874 if(bpp == 2)
1875 srcbuf += (uintptr_t)srcbuf & 2;
1876
1877 /* copy translucent pixels */
1878 ofs = 0;
1879 do {
1880 unsigned run;
1881 ofs += ((Uint16 *)srcbuf)[0];
1882 run = ((Uint16 *)srcbuf)[1];
1883 srcbuf += 4;
1884 if(run) {
1885 srcbuf += uncopy_transl(dst + ofs, srcbuf, run, df, sf);
1886 ofs += run;
1887 }
1888 } while(ofs < w);
1889 dst += surface->pitch >> 2;
1890 }
1891 /* Make the compiler happy */
1892 return(SDL_TRUE);
1893 }
1894
SDL_UnRLESurface(SDL_Surface * surface,int recode)1895 void SDL_UnRLESurface(SDL_Surface *surface, int recode)
1896 {
1897 if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) {
1898 surface->flags &= ~SDL_RLEACCEL;
1899
1900 if(recode && (surface->flags & SDL_PREALLOC) != SDL_PREALLOC
1901 && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) {
1902 if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) {
1903 SDL_Rect full;
1904 unsigned alpha_flag;
1905
1906 /* re-create the original surface */
1907 surface->pixels = SDL_malloc(surface->h * surface->pitch);
1908 if ( !surface->pixels ) {
1909 /* Oh crap... */
1910 surface->flags |= SDL_RLEACCEL;
1911 return;
1912 }
1913
1914 /* fill it with the background colour */
1915 SDL_FillRect(surface, NULL, surface->format->colorkey);
1916
1917 /* now render the encoded surface */
1918 full.x = full.y = 0;
1919 full.w = surface->w;
1920 full.h = surface->h;
1921 alpha_flag = surface->flags & SDL_SRCALPHA;
1922 surface->flags &= ~SDL_SRCALPHA; /* opaque blit */
1923 SDL_RLEBlit(surface, &full, surface, &full);
1924 surface->flags |= alpha_flag;
1925 } else {
1926 if ( !UnRLEAlpha(surface) ) {
1927 /* Oh crap... */
1928 surface->flags |= SDL_RLEACCEL;
1929 return;
1930 }
1931 }
1932 }
1933
1934 if ( surface->map && surface->map->sw_data->aux_data ) {
1935 SDL_free(surface->map->sw_data->aux_data);
1936 surface->map->sw_data->aux_data = NULL;
1937 }
1938 }
1939 }
1940
1941
1942