1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #ifndef V8_PROPERTY_DETAILS_H_ 29 #define V8_PROPERTY_DETAILS_H_ 30 31 #include "../include/v8.h" 32 #include "allocation.h" 33 #include "utils.h" 34 35 // Ecma-262 3rd 8.6.1 36 enum PropertyAttributes { 37 NONE = v8::None, 38 READ_ONLY = v8::ReadOnly, 39 DONT_ENUM = v8::DontEnum, 40 DONT_DELETE = v8::DontDelete, 41 42 SEALED = DONT_DELETE, 43 FROZEN = SEALED | READ_ONLY, 44 45 SYMBOLIC = 8, // Used to filter symbol names 46 DONT_SHOW = DONT_ENUM | SYMBOLIC, 47 ABSENT = 16 // Used in runtime to indicate a property is absent. 48 // ABSENT can never be stored in or returned from a descriptor's attributes 49 // bitfield. It is only used as a return value meaning the attributes of 50 // a non-existent property. 51 }; 52 53 54 namespace v8 { 55 namespace internal { 56 57 class Smi; 58 class Type; 59 class TypeInfo; 60 61 // Type of properties. 62 // Order of properties is significant. 63 // Must fit in the BitField PropertyDetails::TypeField. 64 // A copy of this is in mirror-debugger.js. 65 enum PropertyType { 66 // Only in slow mode. 67 NORMAL = 0, 68 // Only in fast mode. 69 FIELD = 1, 70 CONSTANT = 2, 71 CALLBACKS = 3, 72 // Only in lookup results, not in descriptors. 73 HANDLER = 4, 74 INTERCEPTOR = 5, 75 TRANSITION = 6, 76 // Only used as a marker in LookupResult. 77 NONEXISTENT = 7 78 }; 79 80 81 class Representation { 82 public: 83 enum Kind { 84 kNone, 85 kInteger8, 86 kUInteger8, 87 kInteger16, 88 kUInteger16, 89 kSmi, 90 kInteger32, 91 kDouble, 92 kHeapObject, 93 kTagged, 94 kExternal, 95 kNumRepresentations 96 }; 97 Representation()98 Representation() : kind_(kNone) { } 99 None()100 static Representation None() { return Representation(kNone); } Tagged()101 static Representation Tagged() { return Representation(kTagged); } Integer8()102 static Representation Integer8() { return Representation(kInteger8); } UInteger8()103 static Representation UInteger8() { return Representation(kUInteger8); } Integer16()104 static Representation Integer16() { return Representation(kInteger16); } UInteger16()105 static Representation UInteger16() { 106 return Representation(kUInteger16); 107 } Smi()108 static Representation Smi() { return Representation(kSmi); } Integer32()109 static Representation Integer32() { return Representation(kInteger32); } Double()110 static Representation Double() { return Representation(kDouble); } HeapObject()111 static Representation HeapObject() { return Representation(kHeapObject); } External()112 static Representation External() { return Representation(kExternal); } 113 FromKind(Kind kind)114 static Representation FromKind(Kind kind) { return Representation(kind); } 115 116 // TODO(rossberg): this should die eventually. 117 static Representation FromType(TypeInfo info); 118 static Representation FromType(Handle<Type> type); 119 Equals(const Representation & other)120 bool Equals(const Representation& other) const { 121 return kind_ == other.kind_; 122 } 123 IsCompatibleForLoad(const Representation & other)124 bool IsCompatibleForLoad(const Representation& other) const { 125 return (IsDouble() && other.IsDouble()) || 126 (!IsDouble() && !other.IsDouble()); 127 } 128 IsCompatibleForStore(const Representation & other)129 bool IsCompatibleForStore(const Representation& other) const { 130 return Equals(other); 131 } 132 is_more_general_than(const Representation & other)133 bool is_more_general_than(const Representation& other) const { 134 if (kind_ == kExternal && other.kind_ == kNone) return true; 135 if (kind_ == kExternal && other.kind_ == kExternal) return false; 136 if (kind_ == kNone && other.kind_ == kExternal) return false; 137 138 ASSERT(kind_ != kExternal); 139 ASSERT(other.kind_ != kExternal); 140 if (IsHeapObject()) return other.IsNone(); 141 if (kind_ == kUInteger8 && other.kind_ == kInteger8) return false; 142 if (kind_ == kUInteger16 && other.kind_ == kInteger16) return false; 143 return kind_ > other.kind_; 144 } 145 fits_into(const Representation & other)146 bool fits_into(const Representation& other) const { 147 return other.is_more_general_than(*this) || other.Equals(*this); 148 } 149 generalize(Representation other)150 Representation generalize(Representation other) { 151 if (other.fits_into(*this)) return *this; 152 if (other.is_more_general_than(*this)) return other; 153 return Representation::Tagged(); 154 } 155 size()156 int size() const { 157 ASSERT(!IsNone()); 158 if (IsInteger8() || IsUInteger8()) { 159 return sizeof(uint8_t); 160 } 161 if (IsInteger16() || IsUInteger16()) { 162 return sizeof(uint16_t); 163 } 164 if (IsInteger32()) { 165 return sizeof(uint32_t); 166 } 167 return kPointerSize; 168 } 169 kind()170 Kind kind() const { return static_cast<Kind>(kind_); } IsNone()171 bool IsNone() const { return kind_ == kNone; } IsInteger8()172 bool IsInteger8() const { return kind_ == kInteger8; } IsUInteger8()173 bool IsUInteger8() const { return kind_ == kUInteger8; } IsInteger16()174 bool IsInteger16() const { return kind_ == kInteger16; } IsUInteger16()175 bool IsUInteger16() const { return kind_ == kUInteger16; } IsTagged()176 bool IsTagged() const { return kind_ == kTagged; } IsSmi()177 bool IsSmi() const { return kind_ == kSmi; } IsSmiOrTagged()178 bool IsSmiOrTagged() const { return IsSmi() || IsTagged(); } IsInteger32()179 bool IsInteger32() const { return kind_ == kInteger32; } IsSmiOrInteger32()180 bool IsSmiOrInteger32() const { return IsSmi() || IsInteger32(); } IsDouble()181 bool IsDouble() const { return kind_ == kDouble; } IsHeapObject()182 bool IsHeapObject() const { return kind_ == kHeapObject; } IsExternal()183 bool IsExternal() const { return kind_ == kExternal; } IsSpecialization()184 bool IsSpecialization() const { 185 return IsInteger8() || IsUInteger8() || 186 IsInteger16() || IsUInteger16() || 187 IsSmi() || IsInteger32() || IsDouble(); 188 } 189 const char* Mnemonic() const; 190 191 private: Representation(Kind k)192 explicit Representation(Kind k) : kind_(k) { } 193 194 // Make sure kind fits in int8. 195 STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte)); 196 197 int8_t kind_; 198 }; 199 200 201 static const int kDescriptorIndexBitCount = 10; 202 // The maximum number of descriptors we want in a descriptor array (should 203 // fit in a page). 204 static const int kMaxNumberOfDescriptors = 205 (1 << kDescriptorIndexBitCount) - 2; 206 static const int kInvalidEnumCacheSentinel = 207 (1 << kDescriptorIndexBitCount) - 1; 208 209 210 // PropertyDetails captures type and attributes for a property. 211 // They are used both in property dictionaries and instance descriptors. 212 class PropertyDetails BASE_EMBEDDED { 213 public: PropertyDetails(PropertyAttributes attributes,PropertyType type,int index)214 PropertyDetails(PropertyAttributes attributes, 215 PropertyType type, 216 int index) { 217 value_ = TypeField::encode(type) 218 | AttributesField::encode(attributes) 219 | DictionaryStorageField::encode(index); 220 221 ASSERT(type == this->type()); 222 ASSERT(attributes == this->attributes()); 223 } 224 225 PropertyDetails(PropertyAttributes attributes, 226 PropertyType type, 227 Representation representation, 228 int field_index = 0) { 229 value_ = TypeField::encode(type) 230 | AttributesField::encode(attributes) 231 | RepresentationField::encode(EncodeRepresentation(representation)) 232 | FieldIndexField::encode(field_index); 233 } 234 pointer()235 int pointer() { return DescriptorPointer::decode(value_); } 236 set_pointer(int i)237 PropertyDetails set_pointer(int i) { return PropertyDetails(value_, i); } 238 CopyWithRepresentation(Representation representation)239 PropertyDetails CopyWithRepresentation(Representation representation) { 240 return PropertyDetails(value_, representation); 241 } CopyAddAttributes(PropertyAttributes new_attributes)242 PropertyDetails CopyAddAttributes(PropertyAttributes new_attributes) { 243 new_attributes = 244 static_cast<PropertyAttributes>(attributes() | new_attributes); 245 return PropertyDetails(value_, new_attributes); 246 } 247 248 // Conversion for storing details as Object*. 249 explicit inline PropertyDetails(Smi* smi); 250 inline Smi* AsSmi(); 251 EncodeRepresentation(Representation representation)252 static uint8_t EncodeRepresentation(Representation representation) { 253 return representation.kind(); 254 } 255 DecodeRepresentation(uint32_t bits)256 static Representation DecodeRepresentation(uint32_t bits) { 257 return Representation::FromKind(static_cast<Representation::Kind>(bits)); 258 } 259 type()260 PropertyType type() { return TypeField::decode(value_); } 261 attributes()262 PropertyAttributes attributes() const { 263 return AttributesField::decode(value_); 264 } 265 dictionary_index()266 int dictionary_index() { 267 return DictionaryStorageField::decode(value_); 268 } 269 representation()270 Representation representation() { 271 ASSERT(type() != NORMAL); 272 return DecodeRepresentation(RepresentationField::decode(value_)); 273 } 274 field_index()275 int field_index() { 276 return FieldIndexField::decode(value_); 277 } 278 279 inline PropertyDetails AsDeleted(); 280 IsValidIndex(int index)281 static bool IsValidIndex(int index) { 282 return DictionaryStorageField::is_valid(index); 283 } 284 IsReadOnly()285 bool IsReadOnly() const { return (attributes() & READ_ONLY) != 0; } IsDontDelete()286 bool IsDontDelete() const { return (attributes() & DONT_DELETE) != 0; } IsDontEnum()287 bool IsDontEnum() const { return (attributes() & DONT_ENUM) != 0; } IsDeleted()288 bool IsDeleted() const { return DeletedField::decode(value_) != 0;} 289 290 // Bit fields in value_ (type, shift, size). Must be public so the 291 // constants can be embedded in generated code. 292 class TypeField: public BitField<PropertyType, 0, 3> {}; 293 class AttributesField: public BitField<PropertyAttributes, 3, 3> {}; 294 295 // Bit fields for normalized objects. 296 class DeletedField: public BitField<uint32_t, 6, 1> {}; 297 class DictionaryStorageField: public BitField<uint32_t, 7, 24> {}; 298 299 // Bit fields for fast objects. 300 class RepresentationField: public BitField<uint32_t, 6, 4> {}; 301 class DescriptorPointer: public BitField<uint32_t, 10, 302 kDescriptorIndexBitCount> {}; // NOLINT 303 class FieldIndexField: public BitField<uint32_t, 304 10 + kDescriptorIndexBitCount, 305 kDescriptorIndexBitCount> {}; // NOLINT 306 // All bits for fast objects must fix in a smi. 307 STATIC_ASSERT(10 + kDescriptorIndexBitCount + kDescriptorIndexBitCount <= 31); 308 309 static const int kInitialIndex = 1; 310 311 private: PropertyDetails(int value,int pointer)312 PropertyDetails(int value, int pointer) { 313 value_ = DescriptorPointer::update(value, pointer); 314 } PropertyDetails(int value,Representation representation)315 PropertyDetails(int value, Representation representation) { 316 value_ = RepresentationField::update( 317 value, EncodeRepresentation(representation)); 318 } PropertyDetails(int value,PropertyAttributes attributes)319 PropertyDetails(int value, PropertyAttributes attributes) { 320 value_ = AttributesField::update(value, attributes); 321 } 322 323 uint32_t value_; 324 }; 325 326 } } // namespace v8::internal 327 328 #endif // V8_PROPERTY_DETAILS_H_ 329