• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <sys/stat.h>
18 #include <string.h>
19 #include <stdio.h>
20 
21 #ifdef HAVE_ANDROID_OS
22 #include <linux/capability.h>
23 #else
24 #include <private/android_filesystem_capability.h>
25 #endif
26 
27 #define XATTR_SELINUX_SUFFIX "selinux"
28 #define XATTR_CAPS_SUFFIX "capability"
29 
30 #include "ext4_utils.h"
31 #include "ext4.h"
32 #include "make_ext4fs.h"
33 #include "allocate.h"
34 #include "contents.h"
35 #include "extent.h"
36 #include "indirect.h"
37 #include "xattr.h"
38 
39 #ifdef USE_MINGW
40 #define S_IFLNK 0  /* used by make_link, not needed under mingw */
41 #endif
42 
dentry_size(u32 entries,struct dentry * dentries)43 static u32 dentry_size(u32 entries, struct dentry *dentries)
44 {
45 	u32 len = 24;
46 	unsigned int i;
47 	unsigned int dentry_len;
48 
49 	for (i = 0; i < entries; i++) {
50 		dentry_len = 8 + ALIGN(strlen(dentries[i].filename), 4);
51 		if (len % info.block_size + dentry_len > info.block_size)
52 			len += info.block_size - (len % info.block_size);
53 		len += dentry_len;
54 	}
55 
56 	return len;
57 }
58 
add_dentry(u8 * data,u32 * offset,struct ext4_dir_entry_2 * prev,u32 inode,const char * name,u8 file_type)59 static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset,
60 		struct ext4_dir_entry_2 *prev, u32 inode, const char *name,
61 		u8 file_type)
62 {
63 	u8 name_len = strlen(name);
64 	u16 rec_len = 8 + ALIGN(name_len, 4);
65 	struct ext4_dir_entry_2 *dentry;
66 
67 	u32 start_block = *offset / info.block_size;
68 	u32 end_block = (*offset + rec_len - 1) / info.block_size;
69 	if (start_block != end_block) {
70 		/* Adding this dentry will cross a block boundary, so pad the previous
71 		   dentry to the block boundary */
72 		if (!prev)
73 			critical_error("no prev");
74 		prev->rec_len += end_block * info.block_size - *offset;
75 		*offset = end_block * info.block_size;
76 	}
77 
78 	dentry = (struct ext4_dir_entry_2 *)(data + *offset);
79 	dentry->inode = inode;
80 	dentry->rec_len = rec_len;
81 	dentry->name_len = name_len;
82 	dentry->file_type = file_type;
83 	memcpy(dentry->name, name, name_len);
84 
85 	*offset += rec_len;
86 	return dentry;
87 }
88 
89 /* Creates a directory structure for an array of directory entries, dentries,
90    and stores the location of the structure in an inode.  The new inode's
91    .. link is set to dir_inode_num.  Stores the location of the inode number
92    of each directory entry into dentries[i].inode, to be filled in later
93    when the inode for the entry is allocated.  Returns the inode number of the
94    new directory */
make_directory(u32 dir_inode_num,u32 entries,struct dentry * dentries,u32 dirs)95 u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries,
96 	u32 dirs)
97 {
98 	struct ext4_inode *inode;
99 	u32 blocks;
100 	u32 len;
101 	u32 offset = 0;
102 	u32 inode_num;
103 	u8 *data;
104 	unsigned int i;
105 	struct ext4_dir_entry_2 *dentry;
106 
107 	blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size);
108 	len = blocks * info.block_size;
109 
110 	if (dir_inode_num) {
111 		inode_num = allocate_inode(info);
112 	} else {
113 		dir_inode_num = EXT4_ROOT_INO;
114 		inode_num = EXT4_ROOT_INO;
115 	}
116 
117 	if (inode_num == EXT4_ALLOCATE_FAILED) {
118 		error("failed to allocate inode\n");
119 		return EXT4_ALLOCATE_FAILED;
120 	}
121 
122 	add_directory(inode_num);
123 
124 	inode = get_inode(inode_num);
125 	if (inode == NULL) {
126 		error("failed to get inode %u", inode_num);
127 		return EXT4_ALLOCATE_FAILED;
128 	}
129 
130 	data = inode_allocate_data_extents(inode, len, len);
131 	if (data == NULL) {
132 		error("failed to allocate %u extents", len);
133 		return EXT4_ALLOCATE_FAILED;
134 	}
135 
136 	inode->i_mode = S_IFDIR;
137 	inode->i_links_count = dirs + 2;
138 	inode->i_flags |= aux_info.default_i_flags;
139 
140 	dentry = NULL;
141 
142 	dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR);
143 	if (!dentry) {
144 		error("failed to add . directory");
145 		return EXT4_ALLOCATE_FAILED;
146 	}
147 
148 	dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR);
149 	if (!dentry) {
150 		error("failed to add .. directory");
151 		return EXT4_ALLOCATE_FAILED;
152 	}
153 
154 	for (i = 0; i < entries; i++) {
155 		dentry = add_dentry(data, &offset, dentry, 0,
156 				dentries[i].filename, dentries[i].file_type);
157 		if (offset > len || (offset == len && i != entries - 1))
158 			critical_error("internal error: dentry for %s ends at %d, past %d\n",
159 				dentries[i].filename, offset, len);
160 		dentries[i].inode = &dentry->inode;
161 		if (!dentry) {
162 			error("failed to add directory");
163 			return EXT4_ALLOCATE_FAILED;
164 		}
165 	}
166 
167 	/* pad the last dentry out to the end of the block */
168 	dentry->rec_len += len - offset;
169 
170 	return inode_num;
171 }
172 
173 /* Creates a file on disk.  Returns the inode number of the new file */
make_file(const char * filename,u64 len)174 u32 make_file(const char *filename, u64 len)
175 {
176 	struct ext4_inode *inode;
177 	u32 inode_num;
178 
179 	inode_num = allocate_inode(info);
180 	if (inode_num == EXT4_ALLOCATE_FAILED) {
181 		error("failed to allocate inode\n");
182 		return EXT4_ALLOCATE_FAILED;
183 	}
184 
185 	inode = get_inode(inode_num);
186 	if (inode == NULL) {
187 		error("failed to get inode %u", inode_num);
188 		return EXT4_ALLOCATE_FAILED;
189 	}
190 
191 	if (len > 0)
192 		inode_allocate_file_extents(inode, len, filename);
193 
194 	inode->i_mode = S_IFREG;
195 	inode->i_links_count = 1;
196 	inode->i_flags |= aux_info.default_i_flags;
197 
198 	return inode_num;
199 }
200 
201 /* Creates a file on disk.  Returns the inode number of the new file */
make_link(const char * link)202 u32 make_link(const char *link)
203 {
204 	struct ext4_inode *inode;
205 	u32 inode_num;
206 	u32 len = strlen(link);
207 
208 	inode_num = allocate_inode(info);
209 	if (inode_num == EXT4_ALLOCATE_FAILED) {
210 		error("failed to allocate inode\n");
211 		return EXT4_ALLOCATE_FAILED;
212 	}
213 
214 	inode = get_inode(inode_num);
215 	if (inode == NULL) {
216 		error("failed to get inode %u", inode_num);
217 		return EXT4_ALLOCATE_FAILED;
218 	}
219 
220 	inode->i_mode = S_IFLNK;
221 	inode->i_links_count = 1;
222 	inode->i_flags |= aux_info.default_i_flags;
223 	inode->i_size_lo = len;
224 
225 	if (len + 1 <= sizeof(inode->i_block)) {
226 		/* Fast symlink */
227 		memcpy((char*)inode->i_block, link, len);
228 	} else {
229 		u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size);
230 		memcpy(data, link, len);
231 		inode->i_blocks_lo = info.block_size / 512;
232 	}
233 
234 	return inode_num;
235 }
236 
inode_set_permissions(u32 inode_num,u16 mode,u16 uid,u16 gid,u32 mtime)237 int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime)
238 {
239 	struct ext4_inode *inode = get_inode(inode_num);
240 
241 	if (!inode)
242 		return -1;
243 
244 	inode->i_mode |= mode;
245 	inode->i_uid = uid;
246 	inode->i_gid = gid;
247 	inode->i_mtime = mtime;
248 	inode->i_atime = mtime;
249 	inode->i_ctime = mtime;
250 
251 	return 0;
252 }
253 
254 /*
255  * Returns the amount of free space available in the specified
256  * xattr region
257  */
xattr_free_space(struct ext4_xattr_entry * entry,char * end)258 static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end)
259 {
260 	while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) {
261 		end   -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
262 		entry  = EXT4_XATTR_NEXT(entry);
263 	}
264 
265 	if (((char *) entry) > end) {
266 		error("unexpected read beyond end of xattr space");
267 		return 0;
268 	}
269 
270 	return end - ((char *) entry);
271 }
272 
273 /*
274  * Returns a pointer to the free space immediately after the
275  * last xattr element
276  */
xattr_get_last(struct ext4_xattr_entry * entry)277 static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry)
278 {
279 	for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
280 		// skip entry
281 	}
282 	return entry;
283 }
284 
285 /*
286  * assert that the elements in the ext4 xattr section are in sorted order
287  *
288  * The ext4 filesystem requires extended attributes to be sorted when
289  * they're not stored in the inode. The kernel ext4 code uses the following
290  * sorting algorithm:
291  *
292  * 1) First sort extended attributes by their name_index. For example,
293  *    EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6).
294  * 2) If the name_indexes are equal, then sorting is based on the length
295  *    of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before
296  *    XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability"
297  * 3) If the name_index and name_length are equal, then memcmp() is used to determine
298  *    which name comes first. For example, "selinux" would come before "yelinux".
299  *
300  * This method is intended to implement the sorting function defined in
301  * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry().
302  */
xattr_assert_sane(struct ext4_xattr_entry * entry)303 static void xattr_assert_sane(struct ext4_xattr_entry *entry)
304 {
305 	for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
306 		struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry);
307 		if (IS_LAST_ENTRY(next)) {
308 			return;
309 		}
310 
311 		int cmp = next->e_name_index - entry->e_name_index;
312 		if (cmp == 0)
313 			cmp = next->e_name_len - entry->e_name_len;
314 		if (cmp == 0)
315 			cmp = memcmp(next->e_name, entry->e_name, next->e_name_len);
316 		if (cmp < 0) {
317 			error("BUG: extended attributes are not sorted\n");
318 			return;
319 		}
320 		if (cmp == 0) {
321 			error("BUG: duplicate extended attributes detected\n");
322 			return;
323 		}
324 	}
325 }
326 
327 #define NAME_HASH_SHIFT 5
328 #define VALUE_HASH_SHIFT 16
329 
ext4_xattr_hash_entry(struct ext4_xattr_header * header,struct ext4_xattr_entry * entry)330 static void ext4_xattr_hash_entry(struct ext4_xattr_header *header,
331 		struct ext4_xattr_entry *entry)
332 {
333 	__u32 hash = 0;
334 	char *name = entry->e_name;
335 	int n;
336 
337 	for (n = 0; n < entry->e_name_len; n++) {
338 		hash = (hash << NAME_HASH_SHIFT) ^
339 			(hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
340 			*name++;
341 	}
342 
343 	if (entry->e_value_block == 0 && entry->e_value_size != 0) {
344 		__le32 *value = (__le32 *)((char *)header +
345 			le16_to_cpu(entry->e_value_offs));
346 		for (n = (le32_to_cpu(entry->e_value_size) +
347 			EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) {
348 			hash = (hash << VALUE_HASH_SHIFT) ^
349 				(hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
350 				le32_to_cpu(*value++);
351 		}
352 	}
353 	entry->e_hash = cpu_to_le32(hash);
354 }
355 
356 #undef NAME_HASH_SHIFT
357 #undef VALUE_HASH_SHIFT
358 
xattr_addto_range(void * block_start,void * block_end,struct ext4_xattr_entry * first,int name_index,const char * name,const void * value,size_t value_len)359 static struct ext4_xattr_entry* xattr_addto_range(
360 		void *block_start,
361 		void *block_end,
362 		struct ext4_xattr_entry *first,
363 		int name_index,
364 		const char *name,
365 		const void *value,
366 		size_t value_len)
367 {
368 	size_t name_len = strlen(name);
369 	if (name_len > 255)
370 		return NULL;
371 
372 	size_t available_size = xattr_free_space(first, block_end);
373 	size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len);
374 
375 	if (needed_size > available_size)
376 		return NULL;
377 
378 	struct ext4_xattr_entry *new_entry = xattr_get_last(first);
379 	memset(new_entry, 0, EXT4_XATTR_LEN(name_len));
380 
381 	new_entry->e_name_len = name_len;
382 	new_entry->e_name_index = name_index;
383 	memcpy(new_entry->e_name, name, name_len);
384 	new_entry->e_value_block = 0;
385 	new_entry->e_value_size = cpu_to_le32(value_len);
386 
387 	char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len);
388 	size_t e_value_offs = val - (char *) block_start;
389 
390 	new_entry->e_value_offs = cpu_to_le16(e_value_offs);
391 	memset(val, 0, EXT4_XATTR_SIZE(value_len));
392 	memcpy(val, value, value_len);
393 
394 	xattr_assert_sane(first);
395 	return new_entry;
396 }
397 
xattr_addto_inode(struct ext4_inode * inode,int name_index,const char * name,const void * value,size_t value_len)398 static int xattr_addto_inode(struct ext4_inode *inode, int name_index,
399 		const char *name, const void *value, size_t value_len)
400 {
401 	struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1);
402 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1);
403 	char *block_end = ((char *) inode) + info.inode_size;
404 
405 	struct ext4_xattr_entry *result =
406 		xattr_addto_range(first, block_end, first, name_index, name, value, value_len);
407 
408 	if (result == NULL)
409 		return -1;
410 
411 	hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC);
412 	inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE);
413 
414 	return 0;
415 }
416 
xattr_addto_block(struct ext4_inode * inode,int name_index,const char * name,const void * value,size_t value_len)417 static int xattr_addto_block(struct ext4_inode *inode, int name_index,
418 		const char *name, const void *value, size_t value_len)
419 {
420 	struct ext4_xattr_header *header = get_xattr_block_for_inode(inode);
421 	if (!header)
422 		return -1;
423 
424 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1);
425 	char *block_end = ((char *) header) + info.block_size;
426 
427 	struct ext4_xattr_entry *result =
428 		xattr_addto_range(header, block_end, first, name_index, name, value, value_len);
429 
430 	if (result == NULL)
431 		return -1;
432 
433 	ext4_xattr_hash_entry(header, result);
434 	return 0;
435 }
436 
437 
xattr_add(u32 inode_num,int name_index,const char * name,const void * value,size_t value_len)438 static int xattr_add(u32 inode_num, int name_index, const char *name,
439 		const void *value, size_t value_len)
440 {
441 	if (!value)
442 		return 0;
443 
444 	struct ext4_inode *inode = get_inode(inode_num);
445 
446 	if (!inode)
447 		return -1;
448 
449 	int result = xattr_addto_inode(inode, name_index, name, value, value_len);
450 	if (result != 0) {
451 		result = xattr_addto_block(inode, name_index, name, value, value_len);
452 	}
453 	return result;
454 }
455 
inode_set_selinux(u32 inode_num,const char * secon)456 int inode_set_selinux(u32 inode_num, const char *secon)
457 {
458 	if (!secon)
459 		return 0;
460 
461 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
462 		XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1);
463 }
464 
inode_set_capabilities(u32 inode_num,uint64_t capabilities)465 int inode_set_capabilities(u32 inode_num, uint64_t capabilities) {
466 	if (capabilities == 0)
467 		return 0;
468 
469 	struct vfs_cap_data cap_data;
470 	memset(&cap_data, 0, sizeof(cap_data));
471 
472 	cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
473 	cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff);
474 	cap_data.data[0].inheritable = 0;
475 	cap_data.data[1].permitted = (uint32_t) (capabilities >> 32);
476 	cap_data.data[1].inheritable = 0;
477 
478 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
479 		XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data));
480 }
481 
482