1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <sys/stat.h>
18 #include <string.h>
19 #include <stdio.h>
20
21 #ifdef HAVE_ANDROID_OS
22 #include <linux/capability.h>
23 #else
24 #include <private/android_filesystem_capability.h>
25 #endif
26
27 #define XATTR_SELINUX_SUFFIX "selinux"
28 #define XATTR_CAPS_SUFFIX "capability"
29
30 #include "ext4_utils.h"
31 #include "ext4.h"
32 #include "make_ext4fs.h"
33 #include "allocate.h"
34 #include "contents.h"
35 #include "extent.h"
36 #include "indirect.h"
37 #include "xattr.h"
38
39 #ifdef USE_MINGW
40 #define S_IFLNK 0 /* used by make_link, not needed under mingw */
41 #endif
42
dentry_size(u32 entries,struct dentry * dentries)43 static u32 dentry_size(u32 entries, struct dentry *dentries)
44 {
45 u32 len = 24;
46 unsigned int i;
47 unsigned int dentry_len;
48
49 for (i = 0; i < entries; i++) {
50 dentry_len = 8 + ALIGN(strlen(dentries[i].filename), 4);
51 if (len % info.block_size + dentry_len > info.block_size)
52 len += info.block_size - (len % info.block_size);
53 len += dentry_len;
54 }
55
56 return len;
57 }
58
add_dentry(u8 * data,u32 * offset,struct ext4_dir_entry_2 * prev,u32 inode,const char * name,u8 file_type)59 static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset,
60 struct ext4_dir_entry_2 *prev, u32 inode, const char *name,
61 u8 file_type)
62 {
63 u8 name_len = strlen(name);
64 u16 rec_len = 8 + ALIGN(name_len, 4);
65 struct ext4_dir_entry_2 *dentry;
66
67 u32 start_block = *offset / info.block_size;
68 u32 end_block = (*offset + rec_len - 1) / info.block_size;
69 if (start_block != end_block) {
70 /* Adding this dentry will cross a block boundary, so pad the previous
71 dentry to the block boundary */
72 if (!prev)
73 critical_error("no prev");
74 prev->rec_len += end_block * info.block_size - *offset;
75 *offset = end_block * info.block_size;
76 }
77
78 dentry = (struct ext4_dir_entry_2 *)(data + *offset);
79 dentry->inode = inode;
80 dentry->rec_len = rec_len;
81 dentry->name_len = name_len;
82 dentry->file_type = file_type;
83 memcpy(dentry->name, name, name_len);
84
85 *offset += rec_len;
86 return dentry;
87 }
88
89 /* Creates a directory structure for an array of directory entries, dentries,
90 and stores the location of the structure in an inode. The new inode's
91 .. link is set to dir_inode_num. Stores the location of the inode number
92 of each directory entry into dentries[i].inode, to be filled in later
93 when the inode for the entry is allocated. Returns the inode number of the
94 new directory */
make_directory(u32 dir_inode_num,u32 entries,struct dentry * dentries,u32 dirs)95 u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries,
96 u32 dirs)
97 {
98 struct ext4_inode *inode;
99 u32 blocks;
100 u32 len;
101 u32 offset = 0;
102 u32 inode_num;
103 u8 *data;
104 unsigned int i;
105 struct ext4_dir_entry_2 *dentry;
106
107 blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size);
108 len = blocks * info.block_size;
109
110 if (dir_inode_num) {
111 inode_num = allocate_inode(info);
112 } else {
113 dir_inode_num = EXT4_ROOT_INO;
114 inode_num = EXT4_ROOT_INO;
115 }
116
117 if (inode_num == EXT4_ALLOCATE_FAILED) {
118 error("failed to allocate inode\n");
119 return EXT4_ALLOCATE_FAILED;
120 }
121
122 add_directory(inode_num);
123
124 inode = get_inode(inode_num);
125 if (inode == NULL) {
126 error("failed to get inode %u", inode_num);
127 return EXT4_ALLOCATE_FAILED;
128 }
129
130 data = inode_allocate_data_extents(inode, len, len);
131 if (data == NULL) {
132 error("failed to allocate %u extents", len);
133 return EXT4_ALLOCATE_FAILED;
134 }
135
136 inode->i_mode = S_IFDIR;
137 inode->i_links_count = dirs + 2;
138 inode->i_flags |= aux_info.default_i_flags;
139
140 dentry = NULL;
141
142 dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR);
143 if (!dentry) {
144 error("failed to add . directory");
145 return EXT4_ALLOCATE_FAILED;
146 }
147
148 dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR);
149 if (!dentry) {
150 error("failed to add .. directory");
151 return EXT4_ALLOCATE_FAILED;
152 }
153
154 for (i = 0; i < entries; i++) {
155 dentry = add_dentry(data, &offset, dentry, 0,
156 dentries[i].filename, dentries[i].file_type);
157 if (offset > len || (offset == len && i != entries - 1))
158 critical_error("internal error: dentry for %s ends at %d, past %d\n",
159 dentries[i].filename, offset, len);
160 dentries[i].inode = &dentry->inode;
161 if (!dentry) {
162 error("failed to add directory");
163 return EXT4_ALLOCATE_FAILED;
164 }
165 }
166
167 /* pad the last dentry out to the end of the block */
168 dentry->rec_len += len - offset;
169
170 return inode_num;
171 }
172
173 /* Creates a file on disk. Returns the inode number of the new file */
make_file(const char * filename,u64 len)174 u32 make_file(const char *filename, u64 len)
175 {
176 struct ext4_inode *inode;
177 u32 inode_num;
178
179 inode_num = allocate_inode(info);
180 if (inode_num == EXT4_ALLOCATE_FAILED) {
181 error("failed to allocate inode\n");
182 return EXT4_ALLOCATE_FAILED;
183 }
184
185 inode = get_inode(inode_num);
186 if (inode == NULL) {
187 error("failed to get inode %u", inode_num);
188 return EXT4_ALLOCATE_FAILED;
189 }
190
191 if (len > 0)
192 inode_allocate_file_extents(inode, len, filename);
193
194 inode->i_mode = S_IFREG;
195 inode->i_links_count = 1;
196 inode->i_flags |= aux_info.default_i_flags;
197
198 return inode_num;
199 }
200
201 /* Creates a file on disk. Returns the inode number of the new file */
make_link(const char * link)202 u32 make_link(const char *link)
203 {
204 struct ext4_inode *inode;
205 u32 inode_num;
206 u32 len = strlen(link);
207
208 inode_num = allocate_inode(info);
209 if (inode_num == EXT4_ALLOCATE_FAILED) {
210 error("failed to allocate inode\n");
211 return EXT4_ALLOCATE_FAILED;
212 }
213
214 inode = get_inode(inode_num);
215 if (inode == NULL) {
216 error("failed to get inode %u", inode_num);
217 return EXT4_ALLOCATE_FAILED;
218 }
219
220 inode->i_mode = S_IFLNK;
221 inode->i_links_count = 1;
222 inode->i_flags |= aux_info.default_i_flags;
223 inode->i_size_lo = len;
224
225 if (len + 1 <= sizeof(inode->i_block)) {
226 /* Fast symlink */
227 memcpy((char*)inode->i_block, link, len);
228 } else {
229 u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size);
230 memcpy(data, link, len);
231 inode->i_blocks_lo = info.block_size / 512;
232 }
233
234 return inode_num;
235 }
236
inode_set_permissions(u32 inode_num,u16 mode,u16 uid,u16 gid,u32 mtime)237 int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime)
238 {
239 struct ext4_inode *inode = get_inode(inode_num);
240
241 if (!inode)
242 return -1;
243
244 inode->i_mode |= mode;
245 inode->i_uid = uid;
246 inode->i_gid = gid;
247 inode->i_mtime = mtime;
248 inode->i_atime = mtime;
249 inode->i_ctime = mtime;
250
251 return 0;
252 }
253
254 /*
255 * Returns the amount of free space available in the specified
256 * xattr region
257 */
xattr_free_space(struct ext4_xattr_entry * entry,char * end)258 static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end)
259 {
260 while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) {
261 end -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
262 entry = EXT4_XATTR_NEXT(entry);
263 }
264
265 if (((char *) entry) > end) {
266 error("unexpected read beyond end of xattr space");
267 return 0;
268 }
269
270 return end - ((char *) entry);
271 }
272
273 /*
274 * Returns a pointer to the free space immediately after the
275 * last xattr element
276 */
xattr_get_last(struct ext4_xattr_entry * entry)277 static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry)
278 {
279 for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
280 // skip entry
281 }
282 return entry;
283 }
284
285 /*
286 * assert that the elements in the ext4 xattr section are in sorted order
287 *
288 * The ext4 filesystem requires extended attributes to be sorted when
289 * they're not stored in the inode. The kernel ext4 code uses the following
290 * sorting algorithm:
291 *
292 * 1) First sort extended attributes by their name_index. For example,
293 * EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6).
294 * 2) If the name_indexes are equal, then sorting is based on the length
295 * of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before
296 * XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability"
297 * 3) If the name_index and name_length are equal, then memcmp() is used to determine
298 * which name comes first. For example, "selinux" would come before "yelinux".
299 *
300 * This method is intended to implement the sorting function defined in
301 * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry().
302 */
xattr_assert_sane(struct ext4_xattr_entry * entry)303 static void xattr_assert_sane(struct ext4_xattr_entry *entry)
304 {
305 for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
306 struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry);
307 if (IS_LAST_ENTRY(next)) {
308 return;
309 }
310
311 int cmp = next->e_name_index - entry->e_name_index;
312 if (cmp == 0)
313 cmp = next->e_name_len - entry->e_name_len;
314 if (cmp == 0)
315 cmp = memcmp(next->e_name, entry->e_name, next->e_name_len);
316 if (cmp < 0) {
317 error("BUG: extended attributes are not sorted\n");
318 return;
319 }
320 if (cmp == 0) {
321 error("BUG: duplicate extended attributes detected\n");
322 return;
323 }
324 }
325 }
326
327 #define NAME_HASH_SHIFT 5
328 #define VALUE_HASH_SHIFT 16
329
ext4_xattr_hash_entry(struct ext4_xattr_header * header,struct ext4_xattr_entry * entry)330 static void ext4_xattr_hash_entry(struct ext4_xattr_header *header,
331 struct ext4_xattr_entry *entry)
332 {
333 __u32 hash = 0;
334 char *name = entry->e_name;
335 int n;
336
337 for (n = 0; n < entry->e_name_len; n++) {
338 hash = (hash << NAME_HASH_SHIFT) ^
339 (hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
340 *name++;
341 }
342
343 if (entry->e_value_block == 0 && entry->e_value_size != 0) {
344 __le32 *value = (__le32 *)((char *)header +
345 le16_to_cpu(entry->e_value_offs));
346 for (n = (le32_to_cpu(entry->e_value_size) +
347 EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) {
348 hash = (hash << VALUE_HASH_SHIFT) ^
349 (hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
350 le32_to_cpu(*value++);
351 }
352 }
353 entry->e_hash = cpu_to_le32(hash);
354 }
355
356 #undef NAME_HASH_SHIFT
357 #undef VALUE_HASH_SHIFT
358
xattr_addto_range(void * block_start,void * block_end,struct ext4_xattr_entry * first,int name_index,const char * name,const void * value,size_t value_len)359 static struct ext4_xattr_entry* xattr_addto_range(
360 void *block_start,
361 void *block_end,
362 struct ext4_xattr_entry *first,
363 int name_index,
364 const char *name,
365 const void *value,
366 size_t value_len)
367 {
368 size_t name_len = strlen(name);
369 if (name_len > 255)
370 return NULL;
371
372 size_t available_size = xattr_free_space(first, block_end);
373 size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len);
374
375 if (needed_size > available_size)
376 return NULL;
377
378 struct ext4_xattr_entry *new_entry = xattr_get_last(first);
379 memset(new_entry, 0, EXT4_XATTR_LEN(name_len));
380
381 new_entry->e_name_len = name_len;
382 new_entry->e_name_index = name_index;
383 memcpy(new_entry->e_name, name, name_len);
384 new_entry->e_value_block = 0;
385 new_entry->e_value_size = cpu_to_le32(value_len);
386
387 char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len);
388 size_t e_value_offs = val - (char *) block_start;
389
390 new_entry->e_value_offs = cpu_to_le16(e_value_offs);
391 memset(val, 0, EXT4_XATTR_SIZE(value_len));
392 memcpy(val, value, value_len);
393
394 xattr_assert_sane(first);
395 return new_entry;
396 }
397
xattr_addto_inode(struct ext4_inode * inode,int name_index,const char * name,const void * value,size_t value_len)398 static int xattr_addto_inode(struct ext4_inode *inode, int name_index,
399 const char *name, const void *value, size_t value_len)
400 {
401 struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1);
402 struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1);
403 char *block_end = ((char *) inode) + info.inode_size;
404
405 struct ext4_xattr_entry *result =
406 xattr_addto_range(first, block_end, first, name_index, name, value, value_len);
407
408 if (result == NULL)
409 return -1;
410
411 hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC);
412 inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE);
413
414 return 0;
415 }
416
xattr_addto_block(struct ext4_inode * inode,int name_index,const char * name,const void * value,size_t value_len)417 static int xattr_addto_block(struct ext4_inode *inode, int name_index,
418 const char *name, const void *value, size_t value_len)
419 {
420 struct ext4_xattr_header *header = get_xattr_block_for_inode(inode);
421 if (!header)
422 return -1;
423
424 struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1);
425 char *block_end = ((char *) header) + info.block_size;
426
427 struct ext4_xattr_entry *result =
428 xattr_addto_range(header, block_end, first, name_index, name, value, value_len);
429
430 if (result == NULL)
431 return -1;
432
433 ext4_xattr_hash_entry(header, result);
434 return 0;
435 }
436
437
xattr_add(u32 inode_num,int name_index,const char * name,const void * value,size_t value_len)438 static int xattr_add(u32 inode_num, int name_index, const char *name,
439 const void *value, size_t value_len)
440 {
441 if (!value)
442 return 0;
443
444 struct ext4_inode *inode = get_inode(inode_num);
445
446 if (!inode)
447 return -1;
448
449 int result = xattr_addto_inode(inode, name_index, name, value, value_len);
450 if (result != 0) {
451 result = xattr_addto_block(inode, name_index, name, value, value_len);
452 }
453 return result;
454 }
455
inode_set_selinux(u32 inode_num,const char * secon)456 int inode_set_selinux(u32 inode_num, const char *secon)
457 {
458 if (!secon)
459 return 0;
460
461 return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
462 XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1);
463 }
464
inode_set_capabilities(u32 inode_num,uint64_t capabilities)465 int inode_set_capabilities(u32 inode_num, uint64_t capabilities) {
466 if (capabilities == 0)
467 return 0;
468
469 struct vfs_cap_data cap_data;
470 memset(&cap_data, 0, sizeof(cap_data));
471
472 cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
473 cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff);
474 cap_data.data[0].inheritable = 0;
475 cap_data.data[1].permitted = (uint32_t) (capabilities >> 32);
476 cap_data.data[1].inheritable = 0;
477
478 return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
479 XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data));
480 }
481
482