• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #ifndef CERES_INTERNAL_SCHUR_COMPLEMENT_SOLVER_H_
32 #define CERES_INTERNAL_SCHUR_COMPLEMENT_SOLVER_H_
33 
34 #include <set>
35 #include <utility>
36 #include <vector>
37 
38 #include "ceres/block_random_access_matrix.h"
39 #include "ceres/block_sparse_matrix.h"
40 #include "ceres/block_structure.h"
41 #include "ceres/cxsparse.h"
42 #include "ceres/linear_solver.h"
43 #include "ceres/schur_eliminator.h"
44 #include "ceres/suitesparse.h"
45 #include "ceres/internal/scoped_ptr.h"
46 #include "ceres/types.h"
47 
48 namespace ceres {
49 namespace internal {
50 
51 class BlockSparseMatrix;
52 
53 // Base class for Schur complement based linear least squares
54 // solvers. It assumes that the input linear system Ax = b can be
55 // partitioned into
56 //
57 //  E y + F z = b
58 //
59 // Where x = [y;z] is a partition of the variables.  The paritioning
60 // of the variables is such that, E'E is a block diagonal
61 // matrix. Further, the rows of A are ordered so that for every
62 // variable block in y, all the rows containing that variable block
63 // occur as a vertically contiguous block. i.e the matrix A looks like
64 //
65 //              E                 F
66 //  A = [ y1   0   0   0 |  z1    0    0   0    z5]
67 //      [ y1   0   0   0 |  z1   z2    0   0     0]
68 //      [  0  y2   0   0 |   0    0   z3   0     0]
69 //      [  0   0  y3   0 |  z1   z2   z3  z4    z5]
70 //      [  0   0  y3   0 |  z1    0    0   0    z5]
71 //      [  0   0   0  y4 |   0    0    0   0    z5]
72 //      [  0   0   0  y4 |   0   z2    0   0     0]
73 //      [  0   0   0  y4 |   0    0    0   0     0]
74 //      [  0   0   0   0 |  z1    0    0   0     0]
75 //      [  0   0   0   0 |   0    0   z3  z4    z5]
76 //
77 // This structure should be reflected in the corresponding
78 // CompressedRowBlockStructure object associated with A. The linear
79 // system Ax = b should either be well posed or the array D below
80 // should be non-null and the diagonal matrix corresponding to it
81 // should be non-singular.
82 //
83 // SchurComplementSolver has two sub-classes.
84 //
85 // DenseSchurComplementSolver: For problems where the Schur complement
86 // matrix is small and dense, or if CHOLMOD/SuiteSparse is not
87 // installed. For structure from motion problems, this is solver can
88 // be used for problems with upto a few hundred cameras.
89 //
90 // SparseSchurComplementSolver: For problems where the Schur
91 // complement matrix is large and sparse. It requires that
92 // CHOLMOD/SuiteSparse be installed, as it uses CHOLMOD to find a
93 // sparse Cholesky factorization of the Schur complement. This solver
94 // can be used for solving structure from motion problems with tens of
95 // thousands of cameras, though depending on the exact sparsity
96 // structure, it maybe better to use an iterative solver.
97 //
98 // The two solvers can be instantiated by calling
99 // LinearSolver::CreateLinearSolver with LinearSolver::Options::type
100 // set to DENSE_SCHUR and SPARSE_SCHUR
101 // respectively. LinearSolver::Options::elimination_groups[0] should be
102 // at least 1.
103 class SchurComplementSolver : public BlockSparseMatrixSolver {
104  public:
SchurComplementSolver(const LinearSolver::Options & options)105   explicit SchurComplementSolver(const LinearSolver::Options& options)
106       : options_(options) {
107     CHECK_GT(options.elimination_groups.size(), 1);
108     CHECK_GT(options.elimination_groups[0], 0);
109   }
110 
111   // LinearSolver methods
~SchurComplementSolver()112   virtual ~SchurComplementSolver() {}
113   virtual LinearSolver::Summary SolveImpl(
114       BlockSparseMatrix* A,
115       const double* b,
116       const LinearSolver::PerSolveOptions& per_solve_options,
117       double* x);
118 
119  protected:
options()120   const LinearSolver::Options& options() const { return options_; }
121 
lhs()122   const BlockRandomAccessMatrix* lhs() const { return lhs_.get(); }
set_lhs(BlockRandomAccessMatrix * lhs)123   void set_lhs(BlockRandomAccessMatrix* lhs) { lhs_.reset(lhs); }
rhs()124   const double* rhs() const { return rhs_.get(); }
set_rhs(double * rhs)125   void set_rhs(double* rhs) { rhs_.reset(rhs); }
126 
127  private:
128   virtual void InitStorage(const CompressedRowBlockStructure* bs) = 0;
129   virtual bool SolveReducedLinearSystem(double* solution) = 0;
130 
131   LinearSolver::Options options_;
132 
133   scoped_ptr<SchurEliminatorBase> eliminator_;
134   scoped_ptr<BlockRandomAccessMatrix> lhs_;
135   scoped_array<double> rhs_;
136 
137   CERES_DISALLOW_COPY_AND_ASSIGN(SchurComplementSolver);
138 };
139 
140 // Dense Cholesky factorization based solver.
141 class DenseSchurComplementSolver : public SchurComplementSolver {
142  public:
DenseSchurComplementSolver(const LinearSolver::Options & options)143   explicit DenseSchurComplementSolver(const LinearSolver::Options& options)
144       : SchurComplementSolver(options) {}
~DenseSchurComplementSolver()145   virtual ~DenseSchurComplementSolver() {}
146 
147  private:
148   virtual void InitStorage(const CompressedRowBlockStructure* bs);
149   virtual bool SolveReducedLinearSystem(double* solution);
150 
151   CERES_DISALLOW_COPY_AND_ASSIGN(DenseSchurComplementSolver);
152 };
153 
154 #if !defined(CERES_NO_SUITESPARSE) || !defined(CERES_NO_CXSPARE)
155 // Sparse Cholesky factorization based solver.
156 class SparseSchurComplementSolver : public SchurComplementSolver {
157  public:
158   explicit SparseSchurComplementSolver(const LinearSolver::Options& options);
159   virtual ~SparseSchurComplementSolver();
160 
161  private:
162   virtual void InitStorage(const CompressedRowBlockStructure* bs);
163   virtual bool SolveReducedLinearSystem(double* solution);
164   bool SolveReducedLinearSystemUsingSuiteSparse(double* solution);
165   bool SolveReducedLinearSystemUsingCXSparse(double* solution);
166 
167   // Size of the blocks in the Schur complement.
168   vector<int> blocks_;
169 
170   SuiteSparse ss_;
171   // Symbolic factorization of the reduced linear system. Precomputed
172   // once and reused in subsequent calls.
173   cholmod_factor* factor_;
174 
175   CXSparse cxsparse_;
176   // Cached factorization
177   cs_dis* cxsparse_factor_;
178   CERES_DISALLOW_COPY_AND_ASSIGN(SparseSchurComplementSolver);
179 };
180 
181 #endif  // !defined(CERES_NO_SUITESPARSE) || !defined(CERES_NO_CXSPARE)
182 }  // namespace internal
183 }  // namespace ceres
184 
185 #endif  // CERES_INTERNAL_SCHUR_COMPLEMENT_SOLVER_H_
186