1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27
28 /// \brief Find the current instantiation that associated with the given type.
getCurrentInstantiationOf(QualType T,DeclContext * CurContext)29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30 DeclContext *CurContext) {
31 if (T.isNull())
32 return 0;
33
34 const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35 if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37 if (!Record->isDependentContext() ||
38 Record->isCurrentInstantiation(CurContext))
39 return Record;
40
41 return 0;
42 } else if (isa<InjectedClassNameType>(Ty))
43 return cast<InjectedClassNameType>(Ty)->getDecl();
44 else
45 return 0;
46 }
47
48 /// \brief Compute the DeclContext that is associated with the given type.
49 ///
50 /// \param T the type for which we are attempting to find a DeclContext.
51 ///
52 /// \returns the declaration context represented by the type T,
53 /// or NULL if the declaration context cannot be computed (e.g., because it is
54 /// dependent and not the current instantiation).
computeDeclContext(QualType T)55 DeclContext *Sema::computeDeclContext(QualType T) {
56 if (!T->isDependentType())
57 if (const TagType *Tag = T->getAs<TagType>())
58 return Tag->getDecl();
59
60 return ::getCurrentInstantiationOf(T, CurContext);
61 }
62
63 /// \brief Compute the DeclContext that is associated with the given
64 /// scope specifier.
65 ///
66 /// \param SS the C++ scope specifier as it appears in the source
67 ///
68 /// \param EnteringContext when true, we will be entering the context of
69 /// this scope specifier, so we can retrieve the declaration context of a
70 /// class template or class template partial specialization even if it is
71 /// not the current instantiation.
72 ///
73 /// \returns the declaration context represented by the scope specifier @p SS,
74 /// or NULL if the declaration context cannot be computed (e.g., because it is
75 /// dependent and not the current instantiation).
computeDeclContext(const CXXScopeSpec & SS,bool EnteringContext)76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77 bool EnteringContext) {
78 if (!SS.isSet() || SS.isInvalid())
79 return 0;
80
81 NestedNameSpecifier *NNS = SS.getScopeRep();
82 if (NNS->isDependent()) {
83 // If this nested-name-specifier refers to the current
84 // instantiation, return its DeclContext.
85 if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86 return Record;
87
88 if (EnteringContext) {
89 const Type *NNSType = NNS->getAsType();
90 if (!NNSType) {
91 return 0;
92 }
93
94 // Look through type alias templates, per C++0x [temp.dep.type]p1.
95 NNSType = Context.getCanonicalType(NNSType);
96 if (const TemplateSpecializationType *SpecType
97 = NNSType->getAs<TemplateSpecializationType>()) {
98 // We are entering the context of the nested name specifier, so try to
99 // match the nested name specifier to either a primary class template
100 // or a class template partial specialization.
101 if (ClassTemplateDecl *ClassTemplate
102 = dyn_cast_or_null<ClassTemplateDecl>(
103 SpecType->getTemplateName().getAsTemplateDecl())) {
104 QualType ContextType
105 = Context.getCanonicalType(QualType(SpecType, 0));
106
107 // If the type of the nested name specifier is the same as the
108 // injected class name of the named class template, we're entering
109 // into that class template definition.
110 QualType Injected
111 = ClassTemplate->getInjectedClassNameSpecialization();
112 if (Context.hasSameType(Injected, ContextType))
113 return ClassTemplate->getTemplatedDecl();
114
115 // If the type of the nested name specifier is the same as the
116 // type of one of the class template's class template partial
117 // specializations, we're entering into the definition of that
118 // class template partial specialization.
119 if (ClassTemplatePartialSpecializationDecl *PartialSpec
120 = ClassTemplate->findPartialSpecialization(ContextType))
121 return PartialSpec;
122 }
123 } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
124 // The nested name specifier refers to a member of a class template.
125 return RecordT->getDecl();
126 }
127 }
128
129 return 0;
130 }
131
132 switch (NNS->getKind()) {
133 case NestedNameSpecifier::Identifier:
134 llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
135
136 case NestedNameSpecifier::Namespace:
137 return NNS->getAsNamespace();
138
139 case NestedNameSpecifier::NamespaceAlias:
140 return NNS->getAsNamespaceAlias()->getNamespace();
141
142 case NestedNameSpecifier::TypeSpec:
143 case NestedNameSpecifier::TypeSpecWithTemplate: {
144 const TagType *Tag = NNS->getAsType()->getAs<TagType>();
145 assert(Tag && "Non-tag type in nested-name-specifier");
146 return Tag->getDecl();
147 }
148
149 case NestedNameSpecifier::Global:
150 return Context.getTranslationUnitDecl();
151 }
152
153 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
154 }
155
isDependentScopeSpecifier(const CXXScopeSpec & SS)156 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
157 if (!SS.isSet() || SS.isInvalid())
158 return false;
159
160 return SS.getScopeRep()->isDependent();
161 }
162
163 /// \brief If the given nested name specifier refers to the current
164 /// instantiation, return the declaration that corresponds to that
165 /// current instantiation (C++0x [temp.dep.type]p1).
166 ///
167 /// \param NNS a dependent nested name specifier.
getCurrentInstantiationOf(NestedNameSpecifier * NNS)168 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
169 assert(getLangOpts().CPlusPlus && "Only callable in C++");
170 assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
171
172 if (!NNS->getAsType())
173 return 0;
174
175 QualType T = QualType(NNS->getAsType(), 0);
176 return ::getCurrentInstantiationOf(T, CurContext);
177 }
178
179 /// \brief Require that the context specified by SS be complete.
180 ///
181 /// If SS refers to a type, this routine checks whether the type is
182 /// complete enough (or can be made complete enough) for name lookup
183 /// into the DeclContext. A type that is not yet completed can be
184 /// considered "complete enough" if it is a class/struct/union/enum
185 /// that is currently being defined. Or, if we have a type that names
186 /// a class template specialization that is not a complete type, we
187 /// will attempt to instantiate that class template.
RequireCompleteDeclContext(CXXScopeSpec & SS,DeclContext * DC)188 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
189 DeclContext *DC) {
190 assert(DC != 0 && "given null context");
191
192 TagDecl *tag = dyn_cast<TagDecl>(DC);
193
194 // If this is a dependent type, then we consider it complete.
195 if (!tag || tag->isDependentContext())
196 return false;
197
198 // If we're currently defining this type, then lookup into the
199 // type is okay: don't complain that it isn't complete yet.
200 QualType type = Context.getTypeDeclType(tag);
201 const TagType *tagType = type->getAs<TagType>();
202 if (tagType && tagType->isBeingDefined())
203 return false;
204
205 SourceLocation loc = SS.getLastQualifierNameLoc();
206 if (loc.isInvalid()) loc = SS.getRange().getBegin();
207
208 // The type must be complete.
209 if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
210 SS.getRange())) {
211 SS.SetInvalid(SS.getRange());
212 return true;
213 }
214
215 // Fixed enum types are complete, but they aren't valid as scopes
216 // until we see a definition, so awkwardly pull out this special
217 // case.
218 const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
219 if (!enumType || enumType->getDecl()->isCompleteDefinition())
220 return false;
221
222 // Try to instantiate the definition, if this is a specialization of an
223 // enumeration temploid.
224 EnumDecl *ED = enumType->getDecl();
225 if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
226 MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
227 if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
228 if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
229 TSK_ImplicitInstantiation)) {
230 SS.SetInvalid(SS.getRange());
231 return true;
232 }
233 return false;
234 }
235 }
236
237 Diag(loc, diag::err_incomplete_nested_name_spec)
238 << type << SS.getRange();
239 SS.SetInvalid(SS.getRange());
240 return true;
241 }
242
ActOnCXXGlobalScopeSpecifier(Scope * S,SourceLocation CCLoc,CXXScopeSpec & SS)243 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
244 CXXScopeSpec &SS) {
245 SS.MakeGlobal(Context, CCLoc);
246 return false;
247 }
248
249 /// \brief Determines whether the given declaration is an valid acceptable
250 /// result for name lookup of a nested-name-specifier.
isAcceptableNestedNameSpecifier(const NamedDecl * SD)251 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD) {
252 if (!SD)
253 return false;
254
255 // Namespace and namespace aliases are fine.
256 if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
257 return true;
258
259 if (!isa<TypeDecl>(SD))
260 return false;
261
262 // Determine whether we have a class (or, in C++11, an enum) or
263 // a typedef thereof. If so, build the nested-name-specifier.
264 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
265 if (T->isDependentType())
266 return true;
267 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
268 if (TD->getUnderlyingType()->isRecordType() ||
269 (Context.getLangOpts().CPlusPlus11 &&
270 TD->getUnderlyingType()->isEnumeralType()))
271 return true;
272 } else if (isa<RecordDecl>(SD) ||
273 (Context.getLangOpts().CPlusPlus11 && isa<EnumDecl>(SD)))
274 return true;
275
276 return false;
277 }
278
279 /// \brief If the given nested-name-specifier begins with a bare identifier
280 /// (e.g., Base::), perform name lookup for that identifier as a
281 /// nested-name-specifier within the given scope, and return the result of that
282 /// name lookup.
FindFirstQualifierInScope(Scope * S,NestedNameSpecifier * NNS)283 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
284 if (!S || !NNS)
285 return 0;
286
287 while (NNS->getPrefix())
288 NNS = NNS->getPrefix();
289
290 if (NNS->getKind() != NestedNameSpecifier::Identifier)
291 return 0;
292
293 LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
294 LookupNestedNameSpecifierName);
295 LookupName(Found, S);
296 assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
297
298 if (!Found.isSingleResult())
299 return 0;
300
301 NamedDecl *Result = Found.getFoundDecl();
302 if (isAcceptableNestedNameSpecifier(Result))
303 return Result;
304
305 return 0;
306 }
307
isNonTypeNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation IdLoc,IdentifierInfo & II,ParsedType ObjectTypePtr)308 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
309 SourceLocation IdLoc,
310 IdentifierInfo &II,
311 ParsedType ObjectTypePtr) {
312 QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
313 LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
314
315 // Determine where to perform name lookup
316 DeclContext *LookupCtx = 0;
317 bool isDependent = false;
318 if (!ObjectType.isNull()) {
319 // This nested-name-specifier occurs in a member access expression, e.g.,
320 // x->B::f, and we are looking into the type of the object.
321 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
322 LookupCtx = computeDeclContext(ObjectType);
323 isDependent = ObjectType->isDependentType();
324 } else if (SS.isSet()) {
325 // This nested-name-specifier occurs after another nested-name-specifier,
326 // so long into the context associated with the prior nested-name-specifier.
327 LookupCtx = computeDeclContext(SS, false);
328 isDependent = isDependentScopeSpecifier(SS);
329 Found.setContextRange(SS.getRange());
330 }
331
332 if (LookupCtx) {
333 // Perform "qualified" name lookup into the declaration context we
334 // computed, which is either the type of the base of a member access
335 // expression or the declaration context associated with a prior
336 // nested-name-specifier.
337
338 // The declaration context must be complete.
339 if (!LookupCtx->isDependentContext() &&
340 RequireCompleteDeclContext(SS, LookupCtx))
341 return false;
342
343 LookupQualifiedName(Found, LookupCtx);
344 } else if (isDependent) {
345 return false;
346 } else {
347 LookupName(Found, S);
348 }
349 Found.suppressDiagnostics();
350
351 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
352 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
353
354 return false;
355 }
356
357 namespace {
358
359 // Callback to only accept typo corrections that can be a valid C++ member
360 // intializer: either a non-static field member or a base class.
361 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
362 public:
NestedNameSpecifierValidatorCCC(Sema & SRef)363 explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
364 : SRef(SRef) {}
365
ValidateCandidate(const TypoCorrection & candidate)366 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
367 return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
368 }
369
370 private:
371 Sema &SRef;
372 };
373
374 }
375
376 /// \brief Build a new nested-name-specifier for "identifier::", as described
377 /// by ActOnCXXNestedNameSpecifier.
378 ///
379 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
380 /// that it contains an extra parameter \p ScopeLookupResult, which provides
381 /// the result of name lookup within the scope of the nested-name-specifier
382 /// that was computed at template definition time.
383 ///
384 /// If ErrorRecoveryLookup is true, then this call is used to improve error
385 /// recovery. This means that it should not emit diagnostics, it should
386 /// just return true on failure. It also means it should only return a valid
387 /// scope if it *knows* that the result is correct. It should not return in a
388 /// dependent context, for example. Nor will it extend \p SS with the scope
389 /// specifier.
BuildCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,QualType ObjectType,bool EnteringContext,CXXScopeSpec & SS,NamedDecl * ScopeLookupResult,bool ErrorRecoveryLookup)390 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
391 IdentifierInfo &Identifier,
392 SourceLocation IdentifierLoc,
393 SourceLocation CCLoc,
394 QualType ObjectType,
395 bool EnteringContext,
396 CXXScopeSpec &SS,
397 NamedDecl *ScopeLookupResult,
398 bool ErrorRecoveryLookup) {
399 LookupResult Found(*this, &Identifier, IdentifierLoc,
400 LookupNestedNameSpecifierName);
401
402 // Determine where to perform name lookup
403 DeclContext *LookupCtx = 0;
404 bool isDependent = false;
405 if (!ObjectType.isNull()) {
406 // This nested-name-specifier occurs in a member access expression, e.g.,
407 // x->B::f, and we are looking into the type of the object.
408 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
409 LookupCtx = computeDeclContext(ObjectType);
410 isDependent = ObjectType->isDependentType();
411 } else if (SS.isSet()) {
412 // This nested-name-specifier occurs after another nested-name-specifier,
413 // so look into the context associated with the prior nested-name-specifier.
414 LookupCtx = computeDeclContext(SS, EnteringContext);
415 isDependent = isDependentScopeSpecifier(SS);
416 Found.setContextRange(SS.getRange());
417 }
418
419
420 bool ObjectTypeSearchedInScope = false;
421 if (LookupCtx) {
422 // Perform "qualified" name lookup into the declaration context we
423 // computed, which is either the type of the base of a member access
424 // expression or the declaration context associated with a prior
425 // nested-name-specifier.
426
427 // The declaration context must be complete.
428 if (!LookupCtx->isDependentContext() &&
429 RequireCompleteDeclContext(SS, LookupCtx))
430 return true;
431
432 LookupQualifiedName(Found, LookupCtx);
433
434 if (!ObjectType.isNull() && Found.empty()) {
435 // C++ [basic.lookup.classref]p4:
436 // If the id-expression in a class member access is a qualified-id of
437 // the form
438 //
439 // class-name-or-namespace-name::...
440 //
441 // the class-name-or-namespace-name following the . or -> operator is
442 // looked up both in the context of the entire postfix-expression and in
443 // the scope of the class of the object expression. If the name is found
444 // only in the scope of the class of the object expression, the name
445 // shall refer to a class-name. If the name is found only in the
446 // context of the entire postfix-expression, the name shall refer to a
447 // class-name or namespace-name. [...]
448 //
449 // Qualified name lookup into a class will not find a namespace-name,
450 // so we do not need to diagnose that case specifically. However,
451 // this qualified name lookup may find nothing. In that case, perform
452 // unqualified name lookup in the given scope (if available) or
453 // reconstruct the result from when name lookup was performed at template
454 // definition time.
455 if (S)
456 LookupName(Found, S);
457 else if (ScopeLookupResult)
458 Found.addDecl(ScopeLookupResult);
459
460 ObjectTypeSearchedInScope = true;
461 }
462 } else if (!isDependent) {
463 // Perform unqualified name lookup in the current scope.
464 LookupName(Found, S);
465 }
466
467 // If we performed lookup into a dependent context and did not find anything,
468 // that's fine: just build a dependent nested-name-specifier.
469 if (Found.empty() && isDependent &&
470 !(LookupCtx && LookupCtx->isRecord() &&
471 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
472 !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
473 // Don't speculate if we're just trying to improve error recovery.
474 if (ErrorRecoveryLookup)
475 return true;
476
477 // We were not able to compute the declaration context for a dependent
478 // base object type or prior nested-name-specifier, so this
479 // nested-name-specifier refers to an unknown specialization. Just build
480 // a dependent nested-name-specifier.
481 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
482 return false;
483 }
484
485 // FIXME: Deal with ambiguities cleanly.
486
487 if (Found.empty() && !ErrorRecoveryLookup) {
488 // We haven't found anything, and we're not recovering from a
489 // different kind of error, so look for typos.
490 DeclarationName Name = Found.getLookupName();
491 NestedNameSpecifierValidatorCCC Validator(*this);
492 TypoCorrection Corrected;
493 Found.clear();
494 if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
495 Found.getLookupKind(), S, &SS, Validator,
496 LookupCtx, EnteringContext))) {
497 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
498 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
499 bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
500 Name.getAsString() == CorrectedStr;
501 if (LookupCtx)
502 Diag(Found.getNameLoc(), diag::err_no_member_suggest)
503 << Name << LookupCtx << droppedSpecifier << CorrectedQuotedStr
504 << SS.getRange()
505 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
506 CorrectedStr);
507 else
508 Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
509 << Name << CorrectedQuotedStr
510 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
511 CorrectedStr);
512
513 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
514 Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
515 Found.addDecl(ND);
516 }
517 Found.setLookupName(Corrected.getCorrection());
518 } else {
519 Found.setLookupName(&Identifier);
520 }
521 }
522
523 NamedDecl *SD = Found.getAsSingle<NamedDecl>();
524 if (isAcceptableNestedNameSpecifier(SD)) {
525 if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
526 !getLangOpts().CPlusPlus11) {
527 // C++03 [basic.lookup.classref]p4:
528 // [...] If the name is found in both contexts, the
529 // class-name-or-namespace-name shall refer to the same entity.
530 //
531 // We already found the name in the scope of the object. Now, look
532 // into the current scope (the scope of the postfix-expression) to
533 // see if we can find the same name there. As above, if there is no
534 // scope, reconstruct the result from the template instantiation itself.
535 //
536 // Note that C++11 does *not* perform this redundant lookup.
537 NamedDecl *OuterDecl;
538 if (S) {
539 LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
540 LookupNestedNameSpecifierName);
541 LookupName(FoundOuter, S);
542 OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
543 } else
544 OuterDecl = ScopeLookupResult;
545
546 if (isAcceptableNestedNameSpecifier(OuterDecl) &&
547 OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
548 (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
549 !Context.hasSameType(
550 Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
551 Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
552 if (ErrorRecoveryLookup)
553 return true;
554
555 Diag(IdentifierLoc,
556 diag::err_nested_name_member_ref_lookup_ambiguous)
557 << &Identifier;
558 Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
559 << ObjectType;
560 Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
561
562 // Fall through so that we'll pick the name we found in the object
563 // type, since that's probably what the user wanted anyway.
564 }
565 }
566
567 // If we're just performing this lookup for error-recovery purposes,
568 // don't extend the nested-name-specifier. Just return now.
569 if (ErrorRecoveryLookup)
570 return false;
571
572 if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
573 SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
574 return false;
575 }
576
577 if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
578 SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
579 return false;
580 }
581
582 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
583 TypeLocBuilder TLB;
584 if (isa<InjectedClassNameType>(T)) {
585 InjectedClassNameTypeLoc InjectedTL
586 = TLB.push<InjectedClassNameTypeLoc>(T);
587 InjectedTL.setNameLoc(IdentifierLoc);
588 } else if (isa<RecordType>(T)) {
589 RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
590 RecordTL.setNameLoc(IdentifierLoc);
591 } else if (isa<TypedefType>(T)) {
592 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
593 TypedefTL.setNameLoc(IdentifierLoc);
594 } else if (isa<EnumType>(T)) {
595 EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
596 EnumTL.setNameLoc(IdentifierLoc);
597 } else if (isa<TemplateTypeParmType>(T)) {
598 TemplateTypeParmTypeLoc TemplateTypeTL
599 = TLB.push<TemplateTypeParmTypeLoc>(T);
600 TemplateTypeTL.setNameLoc(IdentifierLoc);
601 } else if (isa<UnresolvedUsingType>(T)) {
602 UnresolvedUsingTypeLoc UnresolvedTL
603 = TLB.push<UnresolvedUsingTypeLoc>(T);
604 UnresolvedTL.setNameLoc(IdentifierLoc);
605 } else if (isa<SubstTemplateTypeParmType>(T)) {
606 SubstTemplateTypeParmTypeLoc TL
607 = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
608 TL.setNameLoc(IdentifierLoc);
609 } else if (isa<SubstTemplateTypeParmPackType>(T)) {
610 SubstTemplateTypeParmPackTypeLoc TL
611 = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
612 TL.setNameLoc(IdentifierLoc);
613 } else {
614 llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
615 }
616
617 if (T->isEnumeralType())
618 Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
619
620 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
621 CCLoc);
622 return false;
623 }
624
625 // Otherwise, we have an error case. If we don't want diagnostics, just
626 // return an error now.
627 if (ErrorRecoveryLookup)
628 return true;
629
630 // If we didn't find anything during our lookup, try again with
631 // ordinary name lookup, which can help us produce better error
632 // messages.
633 if (Found.empty()) {
634 Found.clear(LookupOrdinaryName);
635 LookupName(Found, S);
636 }
637
638 // In Microsoft mode, if we are within a templated function and we can't
639 // resolve Identifier, then extend the SS with Identifier. This will have
640 // the effect of resolving Identifier during template instantiation.
641 // The goal is to be able to resolve a function call whose
642 // nested-name-specifier is located inside a dependent base class.
643 // Example:
644 //
645 // class C {
646 // public:
647 // static void foo2() { }
648 // };
649 // template <class T> class A { public: typedef C D; };
650 //
651 // template <class T> class B : public A<T> {
652 // public:
653 // void foo() { D::foo2(); }
654 // };
655 if (getLangOpts().MicrosoftExt) {
656 DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
657 if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
658 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
659 return false;
660 }
661 }
662
663 unsigned DiagID;
664 if (!Found.empty())
665 DiagID = diag::err_expected_class_or_namespace;
666 else if (SS.isSet()) {
667 Diag(IdentifierLoc, diag::err_no_member)
668 << &Identifier << LookupCtx << SS.getRange();
669 return true;
670 } else
671 DiagID = diag::err_undeclared_var_use;
672
673 if (SS.isSet())
674 Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
675 else
676 Diag(IdentifierLoc, DiagID) << &Identifier;
677
678 return true;
679 }
680
ActOnCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,ParsedType ObjectType,bool EnteringContext,CXXScopeSpec & SS)681 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
682 IdentifierInfo &Identifier,
683 SourceLocation IdentifierLoc,
684 SourceLocation CCLoc,
685 ParsedType ObjectType,
686 bool EnteringContext,
687 CXXScopeSpec &SS) {
688 if (SS.isInvalid())
689 return true;
690
691 return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
692 GetTypeFromParser(ObjectType),
693 EnteringContext, SS,
694 /*ScopeLookupResult=*/0, false);
695 }
696
ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec & SS,const DeclSpec & DS,SourceLocation ColonColonLoc)697 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
698 const DeclSpec &DS,
699 SourceLocation ColonColonLoc) {
700 if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
701 return true;
702
703 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
704
705 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
706 if (!T->isDependentType() && !T->getAs<TagType>()) {
707 Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class)
708 << T << getLangOpts().CPlusPlus;
709 return true;
710 }
711
712 TypeLocBuilder TLB;
713 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
714 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
715 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
716 ColonColonLoc);
717 return false;
718 }
719
720 /// IsInvalidUnlessNestedName - This method is used for error recovery
721 /// purposes to determine whether the specified identifier is only valid as
722 /// a nested name specifier, for example a namespace name. It is
723 /// conservatively correct to always return false from this method.
724 ///
725 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
IsInvalidUnlessNestedName(Scope * S,CXXScopeSpec & SS,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation ColonLoc,ParsedType ObjectType,bool EnteringContext)726 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
727 IdentifierInfo &Identifier,
728 SourceLocation IdentifierLoc,
729 SourceLocation ColonLoc,
730 ParsedType ObjectType,
731 bool EnteringContext) {
732 if (SS.isInvalid())
733 return false;
734
735 return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
736 GetTypeFromParser(ObjectType),
737 EnteringContext, SS,
738 /*ScopeLookupResult=*/0, true);
739 }
740
ActOnCXXNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy Template,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,SourceLocation CCLoc,bool EnteringContext)741 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
742 CXXScopeSpec &SS,
743 SourceLocation TemplateKWLoc,
744 TemplateTy Template,
745 SourceLocation TemplateNameLoc,
746 SourceLocation LAngleLoc,
747 ASTTemplateArgsPtr TemplateArgsIn,
748 SourceLocation RAngleLoc,
749 SourceLocation CCLoc,
750 bool EnteringContext) {
751 if (SS.isInvalid())
752 return true;
753
754 // Translate the parser's template argument list in our AST format.
755 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
756 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
757
758 if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
759 // Handle a dependent template specialization for which we cannot resolve
760 // the template name.
761 assert(DTN->getQualifier() == SS.getScopeRep());
762 QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
763 DTN->getQualifier(),
764 DTN->getIdentifier(),
765 TemplateArgs);
766
767 // Create source-location information for this type.
768 TypeLocBuilder Builder;
769 DependentTemplateSpecializationTypeLoc SpecTL
770 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
771 SpecTL.setElaboratedKeywordLoc(SourceLocation());
772 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
773 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
774 SpecTL.setTemplateNameLoc(TemplateNameLoc);
775 SpecTL.setLAngleLoc(LAngleLoc);
776 SpecTL.setRAngleLoc(RAngleLoc);
777 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
778 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
779
780 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
781 CCLoc);
782 return false;
783 }
784
785
786 if (Template.get().getAsOverloadedTemplate() ||
787 isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
788 SourceRange R(TemplateNameLoc, RAngleLoc);
789 if (SS.getRange().isValid())
790 R.setBegin(SS.getRange().getBegin());
791
792 Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
793 << Template.get() << R;
794 NoteAllFoundTemplates(Template.get());
795 return true;
796 }
797
798 // We were able to resolve the template name to an actual template.
799 // Build an appropriate nested-name-specifier.
800 QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
801 TemplateArgs);
802 if (T.isNull())
803 return true;
804
805 // Alias template specializations can produce types which are not valid
806 // nested name specifiers.
807 if (!T->isDependentType() && !T->getAs<TagType>()) {
808 Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
809 NoteAllFoundTemplates(Template.get());
810 return true;
811 }
812
813 // Provide source-location information for the template specialization type.
814 TypeLocBuilder Builder;
815 TemplateSpecializationTypeLoc SpecTL
816 = Builder.push<TemplateSpecializationTypeLoc>(T);
817 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
818 SpecTL.setTemplateNameLoc(TemplateNameLoc);
819 SpecTL.setLAngleLoc(LAngleLoc);
820 SpecTL.setRAngleLoc(RAngleLoc);
821 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
822 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
823
824
825 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
826 CCLoc);
827 return false;
828 }
829
830 namespace {
831 /// \brief A structure that stores a nested-name-specifier annotation,
832 /// including both the nested-name-specifier
833 struct NestedNameSpecifierAnnotation {
834 NestedNameSpecifier *NNS;
835 };
836 }
837
SaveNestedNameSpecifierAnnotation(CXXScopeSpec & SS)838 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
839 if (SS.isEmpty() || SS.isInvalid())
840 return 0;
841
842 void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
843 SS.location_size()),
844 llvm::alignOf<NestedNameSpecifierAnnotation>());
845 NestedNameSpecifierAnnotation *Annotation
846 = new (Mem) NestedNameSpecifierAnnotation;
847 Annotation->NNS = SS.getScopeRep();
848 memcpy(Annotation + 1, SS.location_data(), SS.location_size());
849 return Annotation;
850 }
851
RestoreNestedNameSpecifierAnnotation(void * AnnotationPtr,SourceRange AnnotationRange,CXXScopeSpec & SS)852 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
853 SourceRange AnnotationRange,
854 CXXScopeSpec &SS) {
855 if (!AnnotationPtr) {
856 SS.SetInvalid(AnnotationRange);
857 return;
858 }
859
860 NestedNameSpecifierAnnotation *Annotation
861 = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
862 SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
863 }
864
ShouldEnterDeclaratorScope(Scope * S,const CXXScopeSpec & SS)865 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
866 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
867
868 NestedNameSpecifier *Qualifier = SS.getScopeRep();
869
870 // There are only two places a well-formed program may qualify a
871 // declarator: first, when defining a namespace or class member
872 // out-of-line, and second, when naming an explicitly-qualified
873 // friend function. The latter case is governed by
874 // C++03 [basic.lookup.unqual]p10:
875 // In a friend declaration naming a member function, a name used
876 // in the function declarator and not part of a template-argument
877 // in a template-id is first looked up in the scope of the member
878 // function's class. If it is not found, or if the name is part of
879 // a template-argument in a template-id, the look up is as
880 // described for unqualified names in the definition of the class
881 // granting friendship.
882 // i.e. we don't push a scope unless it's a class member.
883
884 switch (Qualifier->getKind()) {
885 case NestedNameSpecifier::Global:
886 case NestedNameSpecifier::Namespace:
887 case NestedNameSpecifier::NamespaceAlias:
888 // These are always namespace scopes. We never want to enter a
889 // namespace scope from anything but a file context.
890 return CurContext->getRedeclContext()->isFileContext();
891
892 case NestedNameSpecifier::Identifier:
893 case NestedNameSpecifier::TypeSpec:
894 case NestedNameSpecifier::TypeSpecWithTemplate:
895 // These are never namespace scopes.
896 return true;
897 }
898
899 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
900 }
901
902 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
903 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
904 /// After this method is called, according to [C++ 3.4.3p3], names should be
905 /// looked up in the declarator-id's scope, until the declarator is parsed and
906 /// ActOnCXXExitDeclaratorScope is called.
907 /// The 'SS' should be a non-empty valid CXXScopeSpec.
ActOnCXXEnterDeclaratorScope(Scope * S,CXXScopeSpec & SS)908 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
909 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
910
911 if (SS.isInvalid()) return true;
912
913 DeclContext *DC = computeDeclContext(SS, true);
914 if (!DC) return true;
915
916 // Before we enter a declarator's context, we need to make sure that
917 // it is a complete declaration context.
918 if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
919 return true;
920
921 EnterDeclaratorContext(S, DC);
922
923 // Rebuild the nested name specifier for the new scope.
924 if (DC->isDependentContext())
925 RebuildNestedNameSpecifierInCurrentInstantiation(SS);
926
927 return false;
928 }
929
930 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
931 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
932 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
933 /// Used to indicate that names should revert to being looked up in the
934 /// defining scope.
ActOnCXXExitDeclaratorScope(Scope * S,const CXXScopeSpec & SS)935 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
936 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
937 if (SS.isInvalid())
938 return;
939 assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
940 "exiting declarator scope we never really entered");
941 ExitDeclaratorContext(S);
942 }
943