• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27 
28 /// \brief Find the current instantiation that associated with the given type.
getCurrentInstantiationOf(QualType T,DeclContext * CurContext)29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30                                                 DeclContext *CurContext) {
31   if (T.isNull())
32     return 0;
33 
34   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37     if (!Record->isDependentContext() ||
38         Record->isCurrentInstantiation(CurContext))
39       return Record;
40 
41     return 0;
42   } else if (isa<InjectedClassNameType>(Ty))
43     return cast<InjectedClassNameType>(Ty)->getDecl();
44   else
45     return 0;
46 }
47 
48 /// \brief Compute the DeclContext that is associated with the given type.
49 ///
50 /// \param T the type for which we are attempting to find a DeclContext.
51 ///
52 /// \returns the declaration context represented by the type T,
53 /// or NULL if the declaration context cannot be computed (e.g., because it is
54 /// dependent and not the current instantiation).
computeDeclContext(QualType T)55 DeclContext *Sema::computeDeclContext(QualType T) {
56   if (!T->isDependentType())
57     if (const TagType *Tag = T->getAs<TagType>())
58       return Tag->getDecl();
59 
60   return ::getCurrentInstantiationOf(T, CurContext);
61 }
62 
63 /// \brief Compute the DeclContext that is associated with the given
64 /// scope specifier.
65 ///
66 /// \param SS the C++ scope specifier as it appears in the source
67 ///
68 /// \param EnteringContext when true, we will be entering the context of
69 /// this scope specifier, so we can retrieve the declaration context of a
70 /// class template or class template partial specialization even if it is
71 /// not the current instantiation.
72 ///
73 /// \returns the declaration context represented by the scope specifier @p SS,
74 /// or NULL if the declaration context cannot be computed (e.g., because it is
75 /// dependent and not the current instantiation).
computeDeclContext(const CXXScopeSpec & SS,bool EnteringContext)76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77                                       bool EnteringContext) {
78   if (!SS.isSet() || SS.isInvalid())
79     return 0;
80 
81   NestedNameSpecifier *NNS = SS.getScopeRep();
82   if (NNS->isDependent()) {
83     // If this nested-name-specifier refers to the current
84     // instantiation, return its DeclContext.
85     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86       return Record;
87 
88     if (EnteringContext) {
89       const Type *NNSType = NNS->getAsType();
90       if (!NNSType) {
91         return 0;
92       }
93 
94       // Look through type alias templates, per C++0x [temp.dep.type]p1.
95       NNSType = Context.getCanonicalType(NNSType);
96       if (const TemplateSpecializationType *SpecType
97             = NNSType->getAs<TemplateSpecializationType>()) {
98         // We are entering the context of the nested name specifier, so try to
99         // match the nested name specifier to either a primary class template
100         // or a class template partial specialization.
101         if (ClassTemplateDecl *ClassTemplate
102               = dyn_cast_or_null<ClassTemplateDecl>(
103                             SpecType->getTemplateName().getAsTemplateDecl())) {
104           QualType ContextType
105             = Context.getCanonicalType(QualType(SpecType, 0));
106 
107           // If the type of the nested name specifier is the same as the
108           // injected class name of the named class template, we're entering
109           // into that class template definition.
110           QualType Injected
111             = ClassTemplate->getInjectedClassNameSpecialization();
112           if (Context.hasSameType(Injected, ContextType))
113             return ClassTemplate->getTemplatedDecl();
114 
115           // If the type of the nested name specifier is the same as the
116           // type of one of the class template's class template partial
117           // specializations, we're entering into the definition of that
118           // class template partial specialization.
119           if (ClassTemplatePartialSpecializationDecl *PartialSpec
120                 = ClassTemplate->findPartialSpecialization(ContextType))
121             return PartialSpec;
122         }
123       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
124         // The nested name specifier refers to a member of a class template.
125         return RecordT->getDecl();
126       }
127     }
128 
129     return 0;
130   }
131 
132   switch (NNS->getKind()) {
133   case NestedNameSpecifier::Identifier:
134     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
135 
136   case NestedNameSpecifier::Namespace:
137     return NNS->getAsNamespace();
138 
139   case NestedNameSpecifier::NamespaceAlias:
140     return NNS->getAsNamespaceAlias()->getNamespace();
141 
142   case NestedNameSpecifier::TypeSpec:
143   case NestedNameSpecifier::TypeSpecWithTemplate: {
144     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
145     assert(Tag && "Non-tag type in nested-name-specifier");
146     return Tag->getDecl();
147   }
148 
149   case NestedNameSpecifier::Global:
150     return Context.getTranslationUnitDecl();
151   }
152 
153   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
154 }
155 
isDependentScopeSpecifier(const CXXScopeSpec & SS)156 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
157   if (!SS.isSet() || SS.isInvalid())
158     return false;
159 
160   return SS.getScopeRep()->isDependent();
161 }
162 
163 /// \brief If the given nested name specifier refers to the current
164 /// instantiation, return the declaration that corresponds to that
165 /// current instantiation (C++0x [temp.dep.type]p1).
166 ///
167 /// \param NNS a dependent nested name specifier.
getCurrentInstantiationOf(NestedNameSpecifier * NNS)168 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
169   assert(getLangOpts().CPlusPlus && "Only callable in C++");
170   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
171 
172   if (!NNS->getAsType())
173     return 0;
174 
175   QualType T = QualType(NNS->getAsType(), 0);
176   return ::getCurrentInstantiationOf(T, CurContext);
177 }
178 
179 /// \brief Require that the context specified by SS be complete.
180 ///
181 /// If SS refers to a type, this routine checks whether the type is
182 /// complete enough (or can be made complete enough) for name lookup
183 /// into the DeclContext. A type that is not yet completed can be
184 /// considered "complete enough" if it is a class/struct/union/enum
185 /// that is currently being defined. Or, if we have a type that names
186 /// a class template specialization that is not a complete type, we
187 /// will attempt to instantiate that class template.
RequireCompleteDeclContext(CXXScopeSpec & SS,DeclContext * DC)188 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
189                                       DeclContext *DC) {
190   assert(DC != 0 && "given null context");
191 
192   TagDecl *tag = dyn_cast<TagDecl>(DC);
193 
194   // If this is a dependent type, then we consider it complete.
195   if (!tag || tag->isDependentContext())
196     return false;
197 
198   // If we're currently defining this type, then lookup into the
199   // type is okay: don't complain that it isn't complete yet.
200   QualType type = Context.getTypeDeclType(tag);
201   const TagType *tagType = type->getAs<TagType>();
202   if (tagType && tagType->isBeingDefined())
203     return false;
204 
205   SourceLocation loc = SS.getLastQualifierNameLoc();
206   if (loc.isInvalid()) loc = SS.getRange().getBegin();
207 
208   // The type must be complete.
209   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
210                           SS.getRange())) {
211     SS.SetInvalid(SS.getRange());
212     return true;
213   }
214 
215   // Fixed enum types are complete, but they aren't valid as scopes
216   // until we see a definition, so awkwardly pull out this special
217   // case.
218   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
219   if (!enumType || enumType->getDecl()->isCompleteDefinition())
220     return false;
221 
222   // Try to instantiate the definition, if this is a specialization of an
223   // enumeration temploid.
224   EnumDecl *ED = enumType->getDecl();
225   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
226     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
227     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
228       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
229                           TSK_ImplicitInstantiation)) {
230         SS.SetInvalid(SS.getRange());
231         return true;
232       }
233       return false;
234     }
235   }
236 
237   Diag(loc, diag::err_incomplete_nested_name_spec)
238     << type << SS.getRange();
239   SS.SetInvalid(SS.getRange());
240   return true;
241 }
242 
ActOnCXXGlobalScopeSpecifier(Scope * S,SourceLocation CCLoc,CXXScopeSpec & SS)243 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
244                                         CXXScopeSpec &SS) {
245   SS.MakeGlobal(Context, CCLoc);
246   return false;
247 }
248 
249 /// \brief Determines whether the given declaration is an valid acceptable
250 /// result for name lookup of a nested-name-specifier.
isAcceptableNestedNameSpecifier(const NamedDecl * SD)251 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD) {
252   if (!SD)
253     return false;
254 
255   // Namespace and namespace aliases are fine.
256   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
257     return true;
258 
259   if (!isa<TypeDecl>(SD))
260     return false;
261 
262   // Determine whether we have a class (or, in C++11, an enum) or
263   // a typedef thereof. If so, build the nested-name-specifier.
264   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
265   if (T->isDependentType())
266     return true;
267   else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
268     if (TD->getUnderlyingType()->isRecordType() ||
269         (Context.getLangOpts().CPlusPlus11 &&
270          TD->getUnderlyingType()->isEnumeralType()))
271       return true;
272   } else if (isa<RecordDecl>(SD) ||
273              (Context.getLangOpts().CPlusPlus11 && isa<EnumDecl>(SD)))
274     return true;
275 
276   return false;
277 }
278 
279 /// \brief If the given nested-name-specifier begins with a bare identifier
280 /// (e.g., Base::), perform name lookup for that identifier as a
281 /// nested-name-specifier within the given scope, and return the result of that
282 /// name lookup.
FindFirstQualifierInScope(Scope * S,NestedNameSpecifier * NNS)283 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
284   if (!S || !NNS)
285     return 0;
286 
287   while (NNS->getPrefix())
288     NNS = NNS->getPrefix();
289 
290   if (NNS->getKind() != NestedNameSpecifier::Identifier)
291     return 0;
292 
293   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
294                      LookupNestedNameSpecifierName);
295   LookupName(Found, S);
296   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
297 
298   if (!Found.isSingleResult())
299     return 0;
300 
301   NamedDecl *Result = Found.getFoundDecl();
302   if (isAcceptableNestedNameSpecifier(Result))
303     return Result;
304 
305   return 0;
306 }
307 
isNonTypeNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation IdLoc,IdentifierInfo & II,ParsedType ObjectTypePtr)308 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
309                                         SourceLocation IdLoc,
310                                         IdentifierInfo &II,
311                                         ParsedType ObjectTypePtr) {
312   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
313   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
314 
315   // Determine where to perform name lookup
316   DeclContext *LookupCtx = 0;
317   bool isDependent = false;
318   if (!ObjectType.isNull()) {
319     // This nested-name-specifier occurs in a member access expression, e.g.,
320     // x->B::f, and we are looking into the type of the object.
321     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
322     LookupCtx = computeDeclContext(ObjectType);
323     isDependent = ObjectType->isDependentType();
324   } else if (SS.isSet()) {
325     // This nested-name-specifier occurs after another nested-name-specifier,
326     // so long into the context associated with the prior nested-name-specifier.
327     LookupCtx = computeDeclContext(SS, false);
328     isDependent = isDependentScopeSpecifier(SS);
329     Found.setContextRange(SS.getRange());
330   }
331 
332   if (LookupCtx) {
333     // Perform "qualified" name lookup into the declaration context we
334     // computed, which is either the type of the base of a member access
335     // expression or the declaration context associated with a prior
336     // nested-name-specifier.
337 
338     // The declaration context must be complete.
339     if (!LookupCtx->isDependentContext() &&
340         RequireCompleteDeclContext(SS, LookupCtx))
341       return false;
342 
343     LookupQualifiedName(Found, LookupCtx);
344   } else if (isDependent) {
345     return false;
346   } else {
347     LookupName(Found, S);
348   }
349   Found.suppressDiagnostics();
350 
351   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
352     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
353 
354   return false;
355 }
356 
357 namespace {
358 
359 // Callback to only accept typo corrections that can be a valid C++ member
360 // intializer: either a non-static field member or a base class.
361 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
362  public:
NestedNameSpecifierValidatorCCC(Sema & SRef)363   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
364       : SRef(SRef) {}
365 
ValidateCandidate(const TypoCorrection & candidate)366   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
367     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
368   }
369 
370  private:
371   Sema &SRef;
372 };
373 
374 }
375 
376 /// \brief Build a new nested-name-specifier for "identifier::", as described
377 /// by ActOnCXXNestedNameSpecifier.
378 ///
379 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
380 /// that it contains an extra parameter \p ScopeLookupResult, which provides
381 /// the result of name lookup within the scope of the nested-name-specifier
382 /// that was computed at template definition time.
383 ///
384 /// If ErrorRecoveryLookup is true, then this call is used to improve error
385 /// recovery.  This means that it should not emit diagnostics, it should
386 /// just return true on failure.  It also means it should only return a valid
387 /// scope if it *knows* that the result is correct.  It should not return in a
388 /// dependent context, for example. Nor will it extend \p SS with the scope
389 /// specifier.
BuildCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,QualType ObjectType,bool EnteringContext,CXXScopeSpec & SS,NamedDecl * ScopeLookupResult,bool ErrorRecoveryLookup)390 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
391                                        IdentifierInfo &Identifier,
392                                        SourceLocation IdentifierLoc,
393                                        SourceLocation CCLoc,
394                                        QualType ObjectType,
395                                        bool EnteringContext,
396                                        CXXScopeSpec &SS,
397                                        NamedDecl *ScopeLookupResult,
398                                        bool ErrorRecoveryLookup) {
399   LookupResult Found(*this, &Identifier, IdentifierLoc,
400                      LookupNestedNameSpecifierName);
401 
402   // Determine where to perform name lookup
403   DeclContext *LookupCtx = 0;
404   bool isDependent = false;
405   if (!ObjectType.isNull()) {
406     // This nested-name-specifier occurs in a member access expression, e.g.,
407     // x->B::f, and we are looking into the type of the object.
408     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
409     LookupCtx = computeDeclContext(ObjectType);
410     isDependent = ObjectType->isDependentType();
411   } else if (SS.isSet()) {
412     // This nested-name-specifier occurs after another nested-name-specifier,
413     // so look into the context associated with the prior nested-name-specifier.
414     LookupCtx = computeDeclContext(SS, EnteringContext);
415     isDependent = isDependentScopeSpecifier(SS);
416     Found.setContextRange(SS.getRange());
417   }
418 
419 
420   bool ObjectTypeSearchedInScope = false;
421   if (LookupCtx) {
422     // Perform "qualified" name lookup into the declaration context we
423     // computed, which is either the type of the base of a member access
424     // expression or the declaration context associated with a prior
425     // nested-name-specifier.
426 
427     // The declaration context must be complete.
428     if (!LookupCtx->isDependentContext() &&
429         RequireCompleteDeclContext(SS, LookupCtx))
430       return true;
431 
432     LookupQualifiedName(Found, LookupCtx);
433 
434     if (!ObjectType.isNull() && Found.empty()) {
435       // C++ [basic.lookup.classref]p4:
436       //   If the id-expression in a class member access is a qualified-id of
437       //   the form
438       //
439       //        class-name-or-namespace-name::...
440       //
441       //   the class-name-or-namespace-name following the . or -> operator is
442       //   looked up both in the context of the entire postfix-expression and in
443       //   the scope of the class of the object expression. If the name is found
444       //   only in the scope of the class of the object expression, the name
445       //   shall refer to a class-name. If the name is found only in the
446       //   context of the entire postfix-expression, the name shall refer to a
447       //   class-name or namespace-name. [...]
448       //
449       // Qualified name lookup into a class will not find a namespace-name,
450       // so we do not need to diagnose that case specifically. However,
451       // this qualified name lookup may find nothing. In that case, perform
452       // unqualified name lookup in the given scope (if available) or
453       // reconstruct the result from when name lookup was performed at template
454       // definition time.
455       if (S)
456         LookupName(Found, S);
457       else if (ScopeLookupResult)
458         Found.addDecl(ScopeLookupResult);
459 
460       ObjectTypeSearchedInScope = true;
461     }
462   } else if (!isDependent) {
463     // Perform unqualified name lookup in the current scope.
464     LookupName(Found, S);
465   }
466 
467   // If we performed lookup into a dependent context and did not find anything,
468   // that's fine: just build a dependent nested-name-specifier.
469   if (Found.empty() && isDependent &&
470       !(LookupCtx && LookupCtx->isRecord() &&
471         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
472          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
473     // Don't speculate if we're just trying to improve error recovery.
474     if (ErrorRecoveryLookup)
475       return true;
476 
477     // We were not able to compute the declaration context for a dependent
478     // base object type or prior nested-name-specifier, so this
479     // nested-name-specifier refers to an unknown specialization. Just build
480     // a dependent nested-name-specifier.
481     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
482     return false;
483   }
484 
485   // FIXME: Deal with ambiguities cleanly.
486 
487   if (Found.empty() && !ErrorRecoveryLookup) {
488     // We haven't found anything, and we're not recovering from a
489     // different kind of error, so look for typos.
490     DeclarationName Name = Found.getLookupName();
491     NestedNameSpecifierValidatorCCC Validator(*this);
492     TypoCorrection Corrected;
493     Found.clear();
494     if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
495                                  Found.getLookupKind(), S, &SS, Validator,
496                                  LookupCtx, EnteringContext))) {
497       std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
498       std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
499       bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
500                               Name.getAsString() == CorrectedStr;
501       if (LookupCtx)
502         Diag(Found.getNameLoc(), diag::err_no_member_suggest)
503           << Name << LookupCtx << droppedSpecifier << CorrectedQuotedStr
504           << SS.getRange()
505           << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
506                                           CorrectedStr);
507       else
508         Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
509           << Name << CorrectedQuotedStr
510           << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
511                                           CorrectedStr);
512 
513       if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
514         Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
515         Found.addDecl(ND);
516       }
517       Found.setLookupName(Corrected.getCorrection());
518     } else {
519       Found.setLookupName(&Identifier);
520     }
521   }
522 
523   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
524   if (isAcceptableNestedNameSpecifier(SD)) {
525     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
526         !getLangOpts().CPlusPlus11) {
527       // C++03 [basic.lookup.classref]p4:
528       //   [...] If the name is found in both contexts, the
529       //   class-name-or-namespace-name shall refer to the same entity.
530       //
531       // We already found the name in the scope of the object. Now, look
532       // into the current scope (the scope of the postfix-expression) to
533       // see if we can find the same name there. As above, if there is no
534       // scope, reconstruct the result from the template instantiation itself.
535       //
536       // Note that C++11 does *not* perform this redundant lookup.
537       NamedDecl *OuterDecl;
538       if (S) {
539         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
540                                 LookupNestedNameSpecifierName);
541         LookupName(FoundOuter, S);
542         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
543       } else
544         OuterDecl = ScopeLookupResult;
545 
546       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
547           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
548           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
549            !Context.hasSameType(
550                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
551                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
552          if (ErrorRecoveryLookup)
553            return true;
554 
555          Diag(IdentifierLoc,
556               diag::err_nested_name_member_ref_lookup_ambiguous)
557            << &Identifier;
558          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
559            << ObjectType;
560          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
561 
562          // Fall through so that we'll pick the name we found in the object
563          // type, since that's probably what the user wanted anyway.
564        }
565     }
566 
567     // If we're just performing this lookup for error-recovery purposes,
568     // don't extend the nested-name-specifier. Just return now.
569     if (ErrorRecoveryLookup)
570       return false;
571 
572     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
573       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
574       return false;
575     }
576 
577     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
578       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
579       return false;
580     }
581 
582     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
583     TypeLocBuilder TLB;
584     if (isa<InjectedClassNameType>(T)) {
585       InjectedClassNameTypeLoc InjectedTL
586         = TLB.push<InjectedClassNameTypeLoc>(T);
587       InjectedTL.setNameLoc(IdentifierLoc);
588     } else if (isa<RecordType>(T)) {
589       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
590       RecordTL.setNameLoc(IdentifierLoc);
591     } else if (isa<TypedefType>(T)) {
592       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
593       TypedefTL.setNameLoc(IdentifierLoc);
594     } else if (isa<EnumType>(T)) {
595       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
596       EnumTL.setNameLoc(IdentifierLoc);
597     } else if (isa<TemplateTypeParmType>(T)) {
598       TemplateTypeParmTypeLoc TemplateTypeTL
599         = TLB.push<TemplateTypeParmTypeLoc>(T);
600       TemplateTypeTL.setNameLoc(IdentifierLoc);
601     } else if (isa<UnresolvedUsingType>(T)) {
602       UnresolvedUsingTypeLoc UnresolvedTL
603         = TLB.push<UnresolvedUsingTypeLoc>(T);
604       UnresolvedTL.setNameLoc(IdentifierLoc);
605     } else if (isa<SubstTemplateTypeParmType>(T)) {
606       SubstTemplateTypeParmTypeLoc TL
607         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
608       TL.setNameLoc(IdentifierLoc);
609     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
610       SubstTemplateTypeParmPackTypeLoc TL
611         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
612       TL.setNameLoc(IdentifierLoc);
613     } else {
614       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
615     }
616 
617     if (T->isEnumeralType())
618       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
619 
620     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
621               CCLoc);
622     return false;
623   }
624 
625   // Otherwise, we have an error case.  If we don't want diagnostics, just
626   // return an error now.
627   if (ErrorRecoveryLookup)
628     return true;
629 
630   // If we didn't find anything during our lookup, try again with
631   // ordinary name lookup, which can help us produce better error
632   // messages.
633   if (Found.empty()) {
634     Found.clear(LookupOrdinaryName);
635     LookupName(Found, S);
636   }
637 
638   // In Microsoft mode, if we are within a templated function and we can't
639   // resolve Identifier, then extend the SS with Identifier. This will have
640   // the effect of resolving Identifier during template instantiation.
641   // The goal is to be able to resolve a function call whose
642   // nested-name-specifier is located inside a dependent base class.
643   // Example:
644   //
645   // class C {
646   // public:
647   //    static void foo2() {  }
648   // };
649   // template <class T> class A { public: typedef C D; };
650   //
651   // template <class T> class B : public A<T> {
652   // public:
653   //   void foo() { D::foo2(); }
654   // };
655   if (getLangOpts().MicrosoftExt) {
656     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
657     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
658       SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
659       return false;
660     }
661   }
662 
663   unsigned DiagID;
664   if (!Found.empty())
665     DiagID = diag::err_expected_class_or_namespace;
666   else if (SS.isSet()) {
667     Diag(IdentifierLoc, diag::err_no_member)
668       << &Identifier << LookupCtx << SS.getRange();
669     return true;
670   } else
671     DiagID = diag::err_undeclared_var_use;
672 
673   if (SS.isSet())
674     Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
675   else
676     Diag(IdentifierLoc, DiagID) << &Identifier;
677 
678   return true;
679 }
680 
ActOnCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,ParsedType ObjectType,bool EnteringContext,CXXScopeSpec & SS)681 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
682                                        IdentifierInfo &Identifier,
683                                        SourceLocation IdentifierLoc,
684                                        SourceLocation CCLoc,
685                                        ParsedType ObjectType,
686                                        bool EnteringContext,
687                                        CXXScopeSpec &SS) {
688   if (SS.isInvalid())
689     return true;
690 
691   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
692                                      GetTypeFromParser(ObjectType),
693                                      EnteringContext, SS,
694                                      /*ScopeLookupResult=*/0, false);
695 }
696 
ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec & SS,const DeclSpec & DS,SourceLocation ColonColonLoc)697 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
698                                                const DeclSpec &DS,
699                                                SourceLocation ColonColonLoc) {
700   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
701     return true;
702 
703   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
704 
705   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
706   if (!T->isDependentType() && !T->getAs<TagType>()) {
707     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class)
708       << T << getLangOpts().CPlusPlus;
709     return true;
710   }
711 
712   TypeLocBuilder TLB;
713   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
714   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
715   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
716             ColonColonLoc);
717   return false;
718 }
719 
720 /// IsInvalidUnlessNestedName - This method is used for error recovery
721 /// purposes to determine whether the specified identifier is only valid as
722 /// a nested name specifier, for example a namespace name.  It is
723 /// conservatively correct to always return false from this method.
724 ///
725 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
IsInvalidUnlessNestedName(Scope * S,CXXScopeSpec & SS,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation ColonLoc,ParsedType ObjectType,bool EnteringContext)726 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
727                                      IdentifierInfo &Identifier,
728                                      SourceLocation IdentifierLoc,
729                                      SourceLocation ColonLoc,
730                                      ParsedType ObjectType,
731                                      bool EnteringContext) {
732   if (SS.isInvalid())
733     return false;
734 
735   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
736                                       GetTypeFromParser(ObjectType),
737                                       EnteringContext, SS,
738                                       /*ScopeLookupResult=*/0, true);
739 }
740 
ActOnCXXNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy Template,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,SourceLocation CCLoc,bool EnteringContext)741 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
742                                        CXXScopeSpec &SS,
743                                        SourceLocation TemplateKWLoc,
744                                        TemplateTy Template,
745                                        SourceLocation TemplateNameLoc,
746                                        SourceLocation LAngleLoc,
747                                        ASTTemplateArgsPtr TemplateArgsIn,
748                                        SourceLocation RAngleLoc,
749                                        SourceLocation CCLoc,
750                                        bool EnteringContext) {
751   if (SS.isInvalid())
752     return true;
753 
754   // Translate the parser's template argument list in our AST format.
755   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
756   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
757 
758   if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
759     // Handle a dependent template specialization for which we cannot resolve
760     // the template name.
761     assert(DTN->getQualifier() == SS.getScopeRep());
762     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
763                                                           DTN->getQualifier(),
764                                                           DTN->getIdentifier(),
765                                                                 TemplateArgs);
766 
767     // Create source-location information for this type.
768     TypeLocBuilder Builder;
769     DependentTemplateSpecializationTypeLoc SpecTL
770       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
771     SpecTL.setElaboratedKeywordLoc(SourceLocation());
772     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
773     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
774     SpecTL.setTemplateNameLoc(TemplateNameLoc);
775     SpecTL.setLAngleLoc(LAngleLoc);
776     SpecTL.setRAngleLoc(RAngleLoc);
777     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
778       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
779 
780     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
781               CCLoc);
782     return false;
783   }
784 
785 
786   if (Template.get().getAsOverloadedTemplate() ||
787       isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
788     SourceRange R(TemplateNameLoc, RAngleLoc);
789     if (SS.getRange().isValid())
790       R.setBegin(SS.getRange().getBegin());
791 
792     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
793       << Template.get() << R;
794     NoteAllFoundTemplates(Template.get());
795     return true;
796   }
797 
798   // We were able to resolve the template name to an actual template.
799   // Build an appropriate nested-name-specifier.
800   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
801                                    TemplateArgs);
802   if (T.isNull())
803     return true;
804 
805   // Alias template specializations can produce types which are not valid
806   // nested name specifiers.
807   if (!T->isDependentType() && !T->getAs<TagType>()) {
808     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
809     NoteAllFoundTemplates(Template.get());
810     return true;
811   }
812 
813   // Provide source-location information for the template specialization type.
814   TypeLocBuilder Builder;
815   TemplateSpecializationTypeLoc SpecTL
816     = Builder.push<TemplateSpecializationTypeLoc>(T);
817   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
818   SpecTL.setTemplateNameLoc(TemplateNameLoc);
819   SpecTL.setLAngleLoc(LAngleLoc);
820   SpecTL.setRAngleLoc(RAngleLoc);
821   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
822     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
823 
824 
825   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
826             CCLoc);
827   return false;
828 }
829 
830 namespace {
831   /// \brief A structure that stores a nested-name-specifier annotation,
832   /// including both the nested-name-specifier
833   struct NestedNameSpecifierAnnotation {
834     NestedNameSpecifier *NNS;
835   };
836 }
837 
SaveNestedNameSpecifierAnnotation(CXXScopeSpec & SS)838 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
839   if (SS.isEmpty() || SS.isInvalid())
840     return 0;
841 
842   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
843                                                         SS.location_size()),
844                                llvm::alignOf<NestedNameSpecifierAnnotation>());
845   NestedNameSpecifierAnnotation *Annotation
846     = new (Mem) NestedNameSpecifierAnnotation;
847   Annotation->NNS = SS.getScopeRep();
848   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
849   return Annotation;
850 }
851 
RestoreNestedNameSpecifierAnnotation(void * AnnotationPtr,SourceRange AnnotationRange,CXXScopeSpec & SS)852 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
853                                                 SourceRange AnnotationRange,
854                                                 CXXScopeSpec &SS) {
855   if (!AnnotationPtr) {
856     SS.SetInvalid(AnnotationRange);
857     return;
858   }
859 
860   NestedNameSpecifierAnnotation *Annotation
861     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
862   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
863 }
864 
ShouldEnterDeclaratorScope(Scope * S,const CXXScopeSpec & SS)865 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
866   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
867 
868   NestedNameSpecifier *Qualifier = SS.getScopeRep();
869 
870   // There are only two places a well-formed program may qualify a
871   // declarator: first, when defining a namespace or class member
872   // out-of-line, and second, when naming an explicitly-qualified
873   // friend function.  The latter case is governed by
874   // C++03 [basic.lookup.unqual]p10:
875   //   In a friend declaration naming a member function, a name used
876   //   in the function declarator and not part of a template-argument
877   //   in a template-id is first looked up in the scope of the member
878   //   function's class. If it is not found, or if the name is part of
879   //   a template-argument in a template-id, the look up is as
880   //   described for unqualified names in the definition of the class
881   //   granting friendship.
882   // i.e. we don't push a scope unless it's a class member.
883 
884   switch (Qualifier->getKind()) {
885   case NestedNameSpecifier::Global:
886   case NestedNameSpecifier::Namespace:
887   case NestedNameSpecifier::NamespaceAlias:
888     // These are always namespace scopes.  We never want to enter a
889     // namespace scope from anything but a file context.
890     return CurContext->getRedeclContext()->isFileContext();
891 
892   case NestedNameSpecifier::Identifier:
893   case NestedNameSpecifier::TypeSpec:
894   case NestedNameSpecifier::TypeSpecWithTemplate:
895     // These are never namespace scopes.
896     return true;
897   }
898 
899   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
900 }
901 
902 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
903 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
904 /// After this method is called, according to [C++ 3.4.3p3], names should be
905 /// looked up in the declarator-id's scope, until the declarator is parsed and
906 /// ActOnCXXExitDeclaratorScope is called.
907 /// The 'SS' should be a non-empty valid CXXScopeSpec.
ActOnCXXEnterDeclaratorScope(Scope * S,CXXScopeSpec & SS)908 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
909   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
910 
911   if (SS.isInvalid()) return true;
912 
913   DeclContext *DC = computeDeclContext(SS, true);
914   if (!DC) return true;
915 
916   // Before we enter a declarator's context, we need to make sure that
917   // it is a complete declaration context.
918   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
919     return true;
920 
921   EnterDeclaratorContext(S, DC);
922 
923   // Rebuild the nested name specifier for the new scope.
924   if (DC->isDependentContext())
925     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
926 
927   return false;
928 }
929 
930 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
931 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
932 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
933 /// Used to indicate that names should revert to being looked up in the
934 /// defining scope.
ActOnCXXExitDeclaratorScope(Scope * S,const CXXScopeSpec & SS)935 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
936   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
937   if (SS.isInvalid())
938     return;
939   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
940          "exiting declarator scope we never really entered");
941   ExitDeclaratorContext(S);
942 }
943