• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Implements a custom word iterator used for our spellchecker.
6 
7 #include "chrome/renderer/spellchecker/spellcheck_worditerator.h"
8 
9 #include <map>
10 #include <string>
11 
12 #include "base/basictypes.h"
13 #include "base/logging.h"
14 #include "base/strings/stringprintf.h"
15 #include "base/strings/utf_string_conversions.h"
16 #include "chrome/renderer/spellchecker/spellcheck.h"
17 #include "third_party/icu/source/common/unicode/normlzr.h"
18 #include "third_party/icu/source/common/unicode/schriter.h"
19 #include "third_party/icu/source/common/unicode/uscript.h"
20 #include "third_party/icu/source/i18n/unicode/ulocdata.h"
21 
22 // SpellcheckCharAttribute implementation:
23 
SpellcheckCharAttribute()24 SpellcheckCharAttribute::SpellcheckCharAttribute()
25     : script_code_(USCRIPT_LATIN) {
26 }
27 
~SpellcheckCharAttribute()28 SpellcheckCharAttribute::~SpellcheckCharAttribute() {
29 }
30 
SetDefaultLanguage(const std::string & language)31 void SpellcheckCharAttribute::SetDefaultLanguage(const std::string& language) {
32   CreateRuleSets(language);
33 }
34 
GetRuleSet(bool allow_contraction) const35 base::string16 SpellcheckCharAttribute::GetRuleSet(
36     bool allow_contraction) const {
37   return allow_contraction ?
38       ruleset_allow_contraction_ : ruleset_disallow_contraction_;
39 }
40 
CreateRuleSets(const std::string & language)41 void SpellcheckCharAttribute::CreateRuleSets(const std::string& language) {
42   // The template for our custom rule sets, which is based on the word-break
43   // rules of ICU 4.0:
44   // <http://source.icu-project.org/repos/icu/icu/tags/release-4-0/source/data/brkitr/word.txt>.
45   // The major differences from the original one are listed below:
46   // * It discards comments in the original rules.
47   // * It discards characters not needed by our spellchecker (e.g. numbers,
48   //   punctuation characters, Hiraganas, Katakanas, CJK Ideographs, and so on).
49   // * It allows customization of the $ALetter value (i.e. word characters).
50   // * It allows customization of the $ALetterPlus value (i.e. whether or not to
51   //   use the dictionary data).
52   // * It allows choosing whether or not to split a text at contraction
53   //   characters.
54   // This template only changes the forward-iteration rules. So, calling
55   // ubrk_prev() returns the same results as the original template.
56   static const char kRuleTemplate[] =
57       "!!chain;"
58       "$CR           = [\\p{Word_Break = CR}];"
59       "$LF           = [\\p{Word_Break = LF}];"
60       "$Newline      = [\\p{Word_Break = Newline}];"
61       "$Extend       = [\\p{Word_Break = Extend}];"
62       "$Format       = [\\p{Word_Break = Format}];"
63       "$Katakana     = [\\p{Word_Break = Katakana}];"
64       // Not all the characters in a given script are ALetter.
65       // For instance, U+05F4 is MidLetter. So, this may be
66       // better, but it leads to an empty set error in Thai.
67       // "$ALetter   = [[\\p{script=%s}] & [\\p{Word_Break = ALetter}]];"
68       "$ALetter      = [\\p{script=%s}%s];"
69       "$MidNumLet    = [\\p{Word_Break = MidNumLet}];"
70       "$MidLetter    = [\\p{Word_Break = MidLetter}%s];"
71       "$MidNum       = [\\p{Word_Break = MidNum}];"
72       "$Numeric      = [\\p{Word_Break = Numeric}];"
73       "$ExtendNumLet = [\\p{Word_Break = ExtendNumLet}];"
74 
75       "$Control        = [\\p{Grapheme_Cluster_Break = Control}]; "
76       "%s"  // ALetterPlus
77 
78       "$KatakanaEx     = $Katakana     ($Extend |  $Format)*;"
79       "$ALetterEx      = $ALetterPlus  ($Extend |  $Format)*;"
80       "$MidNumLetEx    = $MidNumLet    ($Extend |  $Format)*;"
81       "$MidLetterEx    = $MidLetter    ($Extend |  $Format)*;"
82       "$MidNumEx       = $MidNum       ($Extend |  $Format)*;"
83       "$NumericEx      = $Numeric      ($Extend |  $Format)*;"
84       "$ExtendNumLetEx = $ExtendNumLet ($Extend |  $Format)*;"
85 
86       "$Hiragana       = [\\p{script=Hiragana}];"
87       "$Ideographic    = [\\p{Ideographic}];"
88       "$HiraganaEx     = $Hiragana     ($Extend |  $Format)*;"
89       "$IdeographicEx  = $Ideographic  ($Extend |  $Format)*;"
90 
91       "!!forward;"
92       "$CR $LF;"
93       "[^$CR $LF $Newline]? ($Extend |  $Format)+;"
94       "$ALetterEx {200};"
95       "$ALetterEx $ALetterEx {200};"
96       "%s"  // (Allow|Disallow) Contraction
97 
98       "!!reverse;"
99       "$BackALetterEx     = ($Format | $Extend)* $ALetterPlus;"
100       "$BackMidNumLetEx   = ($Format | $Extend)* $MidNumLet;"
101       "$BackNumericEx     = ($Format | $Extend)* $Numeric;"
102       "$BackMidNumEx      = ($Format | $Extend)* $MidNum;"
103       "$BackMidLetterEx   = ($Format | $Extend)* $MidLetter;"
104       "$BackKatakanaEx    = ($Format | $Extend)* $Katakana;"
105       "$BackExtendNumLetEx= ($Format | $Extend)* $ExtendNumLet;"
106       "$LF $CR;"
107       "($Format | $Extend)*  [^$CR $LF $Newline]?;"
108       "$BackALetterEx $BackALetterEx;"
109       "$BackALetterEx ($BackMidLetterEx | $BackMidNumLetEx) $BackALetterEx;"
110       "$BackNumericEx $BackNumericEx;"
111       "$BackNumericEx $BackALetterEx;"
112       "$BackALetterEx $BackNumericEx;"
113       "$BackNumericEx ($BackMidNumEx | $BackMidNumLetEx) $BackNumericEx;"
114       "$BackKatakanaEx $BackKatakanaEx;"
115       "$BackExtendNumLetEx ($BackALetterEx | $BackNumericEx |"
116       " $BackKatakanaEx | $BackExtendNumLetEx);"
117       "($BackALetterEx | $BackNumericEx | $BackKatakanaEx)"
118       " $BackExtendNumLetEx;"
119 
120       "!!safe_reverse;"
121       "($Extend | $Format)+ .?;"
122       "($MidLetter | $MidNumLet) $BackALetterEx;"
123       "($MidNum | $MidNumLet) $BackNumericEx;"
124 
125       "!!safe_forward;"
126       "($Extend | $Format)+ .?;"
127       "($MidLetterEx | $MidNumLetEx) $ALetterEx;"
128       "($MidNumEx | $MidNumLetEx) $NumericEx;";
129 
130   // Retrieve the script codes used by the given language from ICU. When the
131   // given language consists of two or more scripts, we just use the first
132   // script. The size of returned script codes is always < 8. Therefore, we use
133   // an array of size 8 so we can include all script codes without insufficient
134   // buffer errors.
135   UErrorCode error = U_ZERO_ERROR;
136   UScriptCode script_code[8];
137   int scripts = uscript_getCode(language.c_str(), script_code,
138                                 arraysize(script_code), &error);
139   if (U_SUCCESS(error) && scripts >= 1)
140     script_code_ = script_code[0];
141 
142   // Retrieve the values for $ALetter and $ALetterPlus. We use the dictionary
143   // only for the languages which need it (i.e. Korean and Thai) to prevent ICU
144   // from returning dictionary words (i.e. Korean or Thai words) for languages
145   // which don't need them.
146   const char* aletter = uscript_getName(script_code_);
147   if (!aletter)
148     aletter = "Latin";
149 
150   const char kWithDictionary[] =
151       "$dictionary   = [:LineBreak = Complex_Context:];"
152       "$ALetterPlus  = [$ALetter [$dictionary-$Extend-$Control]];";
153   const char kWithoutDictionary[] = "$ALetterPlus  = $ALetter;";
154   const char* aletter_plus = kWithoutDictionary;
155   if (script_code_ == USCRIPT_HANGUL || script_code_ == USCRIPT_THAI)
156     aletter_plus = kWithDictionary;
157 
158   // Treat numbers as word characters except for Arabic and Hebrew.
159   const char* aletter_extra = " [0123456789]";
160   if (script_code_ == USCRIPT_HEBREW || script_code_ == USCRIPT_ARABIC)
161     aletter_extra = "";
162 
163   const char kMidLetterExtra[] = "";
164   // For Hebrew, treat single/double quoation marks as MidLetter.
165   const char kMidLetterExtraHebrew[] = "\"'";
166   const char* midletter_extra = kMidLetterExtra;
167   if (script_code_ == USCRIPT_HEBREW)
168     midletter_extra = kMidLetterExtraHebrew;
169 
170   // Create two custom rule-sets: one allows contraction and the other does not.
171   // We save these strings in UTF-16 so we can use it without conversions. (ICU
172   // needs UTF-16 strings.)
173   const char kAllowContraction[] =
174       "$ALetterEx ($MidLetterEx | $MidNumLetEx) $ALetterEx {200};";
175   const char kDisallowContraction[] = "";
176 
177   ruleset_allow_contraction_ = ASCIIToUTF16(
178       base::StringPrintf(kRuleTemplate,
179                          aletter,
180                          aletter_extra,
181                          midletter_extra,
182                          aletter_plus,
183                          kAllowContraction));
184   ruleset_disallow_contraction_ = ASCIIToUTF16(
185       base::StringPrintf(kRuleTemplate,
186                          aletter,
187                          aletter_extra,
188                          midletter_extra,
189                          aletter_plus,
190                          kDisallowContraction));
191 }
192 
OutputChar(UChar c,base::string16 * output) const193 bool SpellcheckCharAttribute::OutputChar(UChar c,
194                                          base::string16* output) const {
195   // Call the language-specific function if necessary.
196   // Otherwise, we call the default one.
197   switch (script_code_) {
198     case USCRIPT_ARABIC:
199       return OutputArabic(c, output);
200 
201     case USCRIPT_HANGUL:
202       return OutputHangul(c, output);
203 
204     case USCRIPT_HEBREW:
205       return OutputHebrew(c, output);
206 
207     default:
208       return OutputDefault(c, output);
209   }
210 }
211 
OutputArabic(UChar c,base::string16 * output) const212 bool SpellcheckCharAttribute::OutputArabic(UChar c,
213                                            base::string16* output) const {
214   // Discard characters not from Arabic alphabets. We also discard vowel marks
215   // of Arabic (Damma, Fatha, Kasra, etc.) to prevent our Arabic dictionary from
216   // marking an Arabic word including vowel marks as misspelled. (We need to
217   // check these vowel marks manually and filter them out since their script
218   // codes are USCRIPT_ARABIC.)
219   if (0x0621 <= c && c <= 0x064D)
220     output->push_back(c);
221   return true;
222 }
223 
OutputHangul(UChar c,base::string16 * output) const224 bool SpellcheckCharAttribute::OutputHangul(UChar c,
225                                            base::string16* output) const {
226   // Decompose a Hangul character to a Hangul vowel and consonants used by our
227   // spellchecker. A Hangul character of Unicode is a ligature consisting of a
228   // Hangul vowel and consonants, e.g. U+AC01 "Gag" consists of U+1100 "G",
229   // U+1161 "a", and U+11A8 "g". That is, we can treat each Hangul character as
230   // a point of a cubic linear space consisting of (first consonant, vowel, last
231   // consonant). Therefore, we can compose a Hangul character from a vowel and
232   // two consonants with linear composition:
233   //   character =  0xAC00 +
234   //                (first consonant - 0x1100) * 28 * 21 +
235   //                (vowel           - 0x1161) * 28 +
236   //                (last consonant  - 0x11A7);
237   // We can also decompose a Hangul character with linear decomposition:
238   //   first consonant = (character - 0xAC00) / 28 / 21;
239   //   vowel           = (character - 0xAC00) / 28 % 21;
240   //   last consonant  = (character - 0xAC00) % 28;
241   // This code is copied from Unicode Standard Annex #15
242   // <http://unicode.org/reports/tr15> and added some comments.
243   const int kSBase = 0xAC00;  // U+AC00: the top of Hangul characters.
244   const int kLBase = 0x1100;  // U+1100: the top of Hangul first consonants.
245   const int kVBase = 0x1161;  // U+1161: the top of Hangul vowels.
246   const int kTBase = 0x11A7;  // U+11A7: the top of Hangul last consonants.
247   const int kLCount = 19;     // The number of Hangul first consonants.
248   const int kVCount = 21;     // The number of Hangul vowels.
249   const int kTCount = 28;     // The number of Hangul last consonants.
250   const int kNCount = kVCount * kTCount;
251   const int kSCount = kLCount * kNCount;
252 
253   int index = c - kSBase;
254   if (index < 0 || index >= kSBase + kSCount) {
255     // This is not a Hangul syllable. Call the default output function since we
256     // should output this character when it is a Hangul syllable.
257     return OutputDefault(c, output);
258   }
259 
260   // This is a Hangul character. Decompose this characters into Hangul vowels
261   // and consonants.
262   int l = kLBase + index / kNCount;
263   int v = kVBase + (index % kNCount) / kTCount;
264   int t = kTBase + index % kTCount;
265   output->push_back(l);
266   output->push_back(v);
267   if (t != kTBase)
268     output->push_back(t);
269   return true;
270 }
271 
OutputHebrew(UChar c,base::string16 * output) const272 bool SpellcheckCharAttribute::OutputHebrew(UChar c,
273                                            base::string16* output) const {
274   // Discard characters except Hebrew alphabets. We also discard Hebrew niqquds
275   // to prevent our Hebrew dictionary from marking a Hebrew word including
276   // niqquds as misspelled. (Same as Arabic vowel marks, we need to check
277   // niqquds manually and filter them out since their script codes are
278   // USCRIPT_HEBREW.)
279   // Pass through ASCII single/double quotation marks and Hebrew Geresh and
280   // Gershayim.
281   if ((0x05D0 <= c && c <= 0x05EA) || c == 0x22 || c == 0x27 ||
282       c == 0x05F4 || c == 0x05F3)
283     output->push_back(c);
284   return true;
285 }
286 
OutputDefault(UChar c,base::string16 * output) const287 bool SpellcheckCharAttribute::OutputDefault(UChar c,
288                                             base::string16* output) const {
289   // Check the script code of this character and output only if it is the one
290   // used by the spellchecker language.
291   UErrorCode status = U_ZERO_ERROR;
292   UScriptCode script_code = uscript_getScript(c, &status);
293   if (script_code == script_code_ || script_code == USCRIPT_COMMON)
294     output->push_back(c);
295   return true;
296 }
297 
298 // SpellcheckWordIterator implementation:
299 
SpellcheckWordIterator()300 SpellcheckWordIterator::SpellcheckWordIterator()
301     : text_(NULL),
302       length_(0),
303       position_(UBRK_DONE),
304       attribute_(NULL),
305       iterator_(NULL) {
306 }
307 
~SpellcheckWordIterator()308 SpellcheckWordIterator::~SpellcheckWordIterator() {
309   Reset();
310 }
311 
Initialize(const SpellcheckCharAttribute * attribute,bool allow_contraction)312 bool SpellcheckWordIterator::Initialize(
313     const SpellcheckCharAttribute* attribute,
314     bool allow_contraction) {
315   // Create a custom ICU break iterator with empty text used in this object. (We
316   // allow setting text later so we can re-use this iterator.)
317   DCHECK(attribute);
318   UErrorCode open_status = U_ZERO_ERROR;
319   UParseError parse_status;
320   base::string16 rule(attribute->GetRuleSet(allow_contraction));
321 
322   // If there is no rule set, the attributes were invalid.
323   if (rule.empty())
324     return false;
325 
326   iterator_ = ubrk_openRules(rule.c_str(), rule.length(), NULL, 0,
327                              &parse_status, &open_status);
328   if (U_FAILURE(open_status))
329     return false;
330 
331   // Set the character attributes so we can normalize the words extracted by
332   // this iterator.
333   attribute_ = attribute;
334   return true;
335 }
336 
IsInitialized() const337 bool SpellcheckWordIterator::IsInitialized() const {
338   // Return true if we have an ICU custom iterator.
339   return !!iterator_;
340 }
341 
SetText(const char16 * text,size_t length)342 bool SpellcheckWordIterator::SetText(const char16* text, size_t length) {
343   DCHECK(!!iterator_);
344 
345   // Set the text to be split by this iterator.
346   UErrorCode status = U_ZERO_ERROR;
347   ubrk_setText(iterator_, text, length, &status);
348   if (U_FAILURE(status))
349     return false;
350 
351   // Retrieve the position to the first word in this text. We return false if
352   // this text does not have any words. (For example, The input text consists
353   // only of Chinese characters while the spellchecker language is English.)
354   position_ = ubrk_first(iterator_);
355   if (position_ == UBRK_DONE)
356     return false;
357 
358   text_ = text;
359   length_ = static_cast<int>(length);
360   return true;
361 }
362 
GetNextWord(base::string16 * word_string,int * word_start,int * word_length)363 bool SpellcheckWordIterator::GetNextWord(base::string16* word_string,
364                                          int* word_start,
365                                          int* word_length) {
366   DCHECK(!!text_ && length_ > 0);
367 
368   word_string->clear();
369   *word_start = 0;
370   *word_length = 0;
371 
372   if (!text_ || position_ == UBRK_DONE)
373     return false;
374 
375   // Find a word that can be checked for spelling. Our rule sets filter out
376   // invalid words (e.g. numbers and characters not supported by the
377   // spellchecker language) so this ubrk_getRuleStatus() call returns
378   // UBRK_WORD_NONE when this iterator finds an invalid word. So, we skip such
379   // words until we can find a valid word or reach the end of the input string.
380   int next = ubrk_next(iterator_);
381   while (next != UBRK_DONE) {
382     if (ubrk_getRuleStatus(iterator_) != UBRK_WORD_NONE) {
383       if (Normalize(position_, next - position_, word_string)) {
384         *word_start = position_;
385         *word_length = next - position_;
386         position_ = next;
387         return true;
388       }
389     }
390     position_ = next;
391     next = ubrk_next(iterator_);
392   }
393 
394   // There aren't any more words in the given text. Set the position to
395   // UBRK_DONE to prevent from calling ubrk_next() next time when this function
396   // is called.
397   position_ = UBRK_DONE;
398   return false;
399 }
400 
Reset()401 void SpellcheckWordIterator::Reset() {
402   if (iterator_) {
403     ubrk_close(iterator_);
404     iterator_ = NULL;
405   }
406 }
407 
Normalize(int input_start,int input_length,base::string16 * output_string) const408 bool SpellcheckWordIterator::Normalize(int input_start,
409                                        int input_length,
410                                        base::string16* output_string) const {
411   // We use NFKC (Normalization Form, Compatible decomposition, followed by
412   // canonical Composition) defined in Unicode Standard Annex #15 to normalize
413   // this token because it it the most suitable normalization algorithm for our
414   // spellchecker. Nevertheless, it is not a perfect algorithm for our
415   // spellchecker and we need manual normalization as well. The normalized
416   // text does not have to be NUL-terminated since its characters are copied to
417   // string16, which adds a NUL character when we need.
418   icu::UnicodeString input(FALSE, &text_[input_start], input_length);
419   UErrorCode status = U_ZERO_ERROR;
420   icu::UnicodeString output;
421   icu::Normalizer::normalize(input, UNORM_NFKC, 0, output, status);
422   if (status != U_ZERO_ERROR && status != U_STRING_NOT_TERMINATED_WARNING)
423     return false;
424 
425   // Copy the normalized text to the output.
426   icu::StringCharacterIterator it(output);
427   for (UChar c = it.first(); c != icu::CharacterIterator::DONE; c = it.next())
428     attribute_->OutputChar(c, output_string);
429 
430   return !output_string->empty();
431 }
432