1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17
18 #define ATRACE_TAG ATRACE_TAG_DALVIK
19 #include <stdio.h>
20 #include <cutils/trace.h>
21
22 #include "timing_logger.h"
23
24 #include "base/logging.h"
25 #include "thread.h"
26 #include "base/stl_util.h"
27 #include "base/histogram-inl.h"
28
29 #include <cmath>
30 #include <iomanip>
31
32 namespace art {
33
CumulativeLogger(const std::string & name)34 CumulativeLogger::CumulativeLogger(const std::string& name)
35 : name_(name),
36 lock_name_("CumulativeLoggerLock" + name),
37 lock_(lock_name_.c_str(), kDefaultMutexLevel, true) {
38 Reset();
39 }
40
~CumulativeLogger()41 CumulativeLogger::~CumulativeLogger() {
42 STLDeleteValues(&histograms_);
43 }
44
SetName(const std::string & name)45 void CumulativeLogger::SetName(const std::string& name) {
46 name_.assign(name);
47 }
48
Start()49 void CumulativeLogger::Start() {
50 }
51
End()52 void CumulativeLogger::End() {
53 MutexLock mu(Thread::Current(), lock_);
54 iterations_++;
55 }
56
Reset()57 void CumulativeLogger::Reset() {
58 MutexLock mu(Thread::Current(), lock_);
59 iterations_ = 0;
60 STLDeleteValues(&histograms_);
61 }
62
GetTotalNs() const63 uint64_t CumulativeLogger::GetTotalNs() const {
64 return GetTotalTime() * kAdjust;
65 }
66
GetTotalTime() const67 uint64_t CumulativeLogger::GetTotalTime() const {
68 MutexLock mu(Thread::Current(), lock_);
69 uint64_t total = 0;
70 for (CumulativeLogger::HistogramsIterator it = histograms_.begin(), end = histograms_.end();
71 it != end; ++it) {
72 total += it->second->Sum();
73 }
74 return total;
75 }
76
AddLogger(const base::TimingLogger & logger)77 void CumulativeLogger::AddLogger(const base::TimingLogger &logger) {
78 MutexLock mu(Thread::Current(), lock_);
79 const base::TimingLogger::SplitTimings& splits = logger.GetSplits();
80 for (base::TimingLogger::SplitTimingsIterator it = splits.begin(), end = splits.end();
81 it != end; ++it) {
82 base::TimingLogger::SplitTiming split = *it;
83 uint64_t split_time = split.first;
84 const char* split_name = split.second;
85 AddPair(split_name, split_time);
86 }
87 }
88
Dump(std::ostream & os)89 void CumulativeLogger::Dump(std::ostream &os) {
90 MutexLock mu(Thread::Current(), lock_);
91 DumpHistogram(os);
92 }
93
AddPair(const std::string & label,uint64_t delta_time)94 void CumulativeLogger::AddPair(const std::string &label, uint64_t delta_time) {
95 // Convert delta time to microseconds so that we don't overflow our counters.
96 delta_time /= kAdjust;
97
98 if (histograms_.find(label) == histograms_.end()) {
99 // TODO: Shoud this be a defined constant so we we know out of which orifice 16 and 100 were picked?
100 const size_t max_buckets = Runtime::Current()->GetHeap()->IsLowMemoryMode() ? 16 : 100;
101 // TODO: Should this be a defined constant so we know 50 of WTF?
102 histograms_[label] = new Histogram<uint64_t>(label.c_str(), 50, max_buckets);
103 }
104 histograms_[label]->AddValue(delta_time);
105 }
106
DumpHistogram(std::ostream & os)107 void CumulativeLogger::DumpHistogram(std::ostream &os) {
108 os << "Start Dumping histograms for " << iterations_ << " iterations"
109 << " for " << name_ << "\n";
110 for (CumulativeLogger::HistogramsIterator it = histograms_.begin(), end = histograms_.end();
111 it != end; ++it) {
112 Histogram<uint64_t>::CumulativeData cumulative_data;
113 it->second->CreateHistogram(cumulative_data);
114 it->second->PrintConfidenceIntervals(os, 0.99, cumulative_data);
115 // Reset cumulative values to save memory. We don't expect DumpHistogram to be called often, so
116 // it is not performance critical.
117 }
118 os << "Done Dumping histograms \n";
119 }
120
121
122 namespace base {
123
TimingLogger(const char * name,bool precise,bool verbose)124 TimingLogger::TimingLogger(const char* name, bool precise, bool verbose)
125 : name_(name), precise_(precise), verbose_(verbose), current_split_(NULL) {
126 }
127
Reset()128 void TimingLogger::Reset() {
129 current_split_ = NULL;
130 splits_.clear();
131 }
132
StartSplit(const char * new_split_label)133 void TimingLogger::StartSplit(const char* new_split_label) {
134 DCHECK(new_split_label != NULL) << "Starting split (" << new_split_label << ") with null label.";
135 TimingLogger::ScopedSplit* explicit_scoped_split = new TimingLogger::ScopedSplit(new_split_label, this);
136 explicit_scoped_split->explicit_ = true;
137 }
138
EndSplit()139 void TimingLogger::EndSplit() {
140 CHECK(current_split_ != NULL) << "Ending a non-existent split.";
141 DCHECK(current_split_->label_ != NULL);
142 DCHECK(current_split_->explicit_ == true) << "Explicitly ending scoped split: " << current_split_->label_;
143
144 delete current_split_;
145 }
146
147 // Ends the current split and starts the one given by the label.
NewSplit(const char * new_split_label)148 void TimingLogger::NewSplit(const char* new_split_label) {
149 CHECK(current_split_ != NULL) << "Inserting a new split (" << new_split_label
150 << ") into a non-existent split.";
151 DCHECK(new_split_label != NULL) << "New split (" << new_split_label << ") with null label.";
152
153 current_split_->TailInsertSplit(new_split_label);
154 }
155
GetTotalNs() const156 uint64_t TimingLogger::GetTotalNs() const {
157 uint64_t total_ns = 0;
158 for (base::TimingLogger::SplitTimingsIterator it = splits_.begin(), end = splits_.end();
159 it != end; ++it) {
160 base::TimingLogger::SplitTiming split = *it;
161 total_ns += split.first;
162 }
163 return total_ns;
164 }
165
Dump(std::ostream & os) const166 void TimingLogger::Dump(std::ostream &os) const {
167 uint64_t longest_split = 0;
168 uint64_t total_ns = 0;
169 for (base::TimingLogger::SplitTimingsIterator it = splits_.begin(), end = splits_.end();
170 it != end; ++it) {
171 base::TimingLogger::SplitTiming split = *it;
172 uint64_t split_time = split.first;
173 longest_split = std::max(longest_split, split_time);
174 total_ns += split_time;
175 }
176 // Compute which type of unit we will use for printing the timings.
177 TimeUnit tu = GetAppropriateTimeUnit(longest_split);
178 uint64_t divisor = GetNsToTimeUnitDivisor(tu);
179 // Print formatted splits.
180 for (base::TimingLogger::SplitTimingsIterator it = splits_.begin(), end = splits_.end();
181 it != end; ++it) {
182 base::TimingLogger::SplitTiming split = *it;
183 uint64_t split_time = split.first;
184 if (!precise_ && divisor >= 1000) {
185 // Make the fractional part 0.
186 split_time -= split_time % (divisor / 1000);
187 }
188 os << name_ << ": " << std::setw(8) << FormatDuration(split_time, tu) << " "
189 << split.second << "\n";
190 }
191 os << name_ << ": end, " << NsToMs(total_ns) << " ms\n";
192 }
193
194
ScopedSplit(const char * label,TimingLogger * timing_logger)195 TimingLogger::ScopedSplit::ScopedSplit(const char* label, TimingLogger* timing_logger) {
196 DCHECK(label != NULL) << "New scoped split (" << label << ") with null label.";
197 CHECK(timing_logger != NULL) << "New scoped split (" << label << ") without TimingLogger.";
198 timing_logger_ = timing_logger;
199 label_ = label;
200 running_ns_ = 0;
201 explicit_ = false;
202
203 // Stash away the current split and pause it.
204 enclosing_split_ = timing_logger->current_split_;
205 if (enclosing_split_ != NULL) {
206 enclosing_split_->Pause();
207 }
208
209 timing_logger_->current_split_ = this;
210
211 ATRACE_BEGIN(label_);
212
213 start_ns_ = NanoTime();
214 if (timing_logger_->verbose_) {
215 LOG(INFO) << "Begin: " << label_;
216 }
217 }
218
~ScopedSplit()219 TimingLogger::ScopedSplit::~ScopedSplit() {
220 uint64_t current_time = NanoTime();
221 uint64_t split_time = current_time - start_ns_;
222 running_ns_ += split_time;
223 ATRACE_END();
224
225 if (timing_logger_->verbose_) {
226 LOG(INFO) << "End: " << label_ << " " << PrettyDuration(split_time);
227 }
228
229 // If one or more enclosed explcitly started splits are not terminated we can
230 // either fail or "unwind" the stack of splits in the timing logger to 'this'
231 // (by deleting the intervening scoped splits). This implements the latter.
232 TimingLogger::ScopedSplit* current = timing_logger_->current_split_;
233 while ((current != NULL) && (current != this)) {
234 delete current;
235 current = timing_logger_->current_split_;
236 }
237
238 CHECK(current != NULL) << "Missing scoped split (" << this->label_
239 << ") in timing logger (" << timing_logger_->name_ << ").";
240 CHECK(timing_logger_->current_split_ == this);
241
242 timing_logger_->splits_.push_back(SplitTiming(running_ns_, label_));
243
244 timing_logger_->current_split_ = enclosing_split_;
245 if (enclosing_split_ != NULL) {
246 enclosing_split_->Resume();
247 }
248 }
249
250
TailInsertSplit(const char * label)251 void TimingLogger::ScopedSplit::TailInsertSplit(const char* label) {
252 // Sleight of hand here: Rather than embedding a new scoped split, we're updating the current
253 // scoped split in place. Basically, it's one way to make explicit and scoped splits compose
254 // well while maintaining the current semantics of NewSplit. An alternative is to push a new split
255 // since we unwind the stack of scoped splits in the scoped split destructor. However, this implies
256 // that the current split is not ended by NewSplit (which calls TailInsertSplit), which would
257 // be different from what we had before.
258
259 uint64_t current_time = NanoTime();
260 uint64_t split_time = current_time - start_ns_;
261 ATRACE_END();
262 timing_logger_->splits_.push_back(std::pair<uint64_t, const char*>(split_time, label_));
263
264 if (timing_logger_->verbose_) {
265 LOG(INFO) << "End: " << label_ << " " << PrettyDuration(split_time) << "\n"
266 << "Begin: " << label;
267 }
268
269 label_ = label;
270 start_ns_ = current_time;
271 running_ns_ = 0;
272
273 ATRACE_BEGIN(label);
274 }
275
Pause()276 void TimingLogger::ScopedSplit::Pause() {
277 uint64_t current_time = NanoTime();
278 uint64_t split_time = current_time - start_ns_;
279 running_ns_ += split_time;
280 ATRACE_END();
281 }
282
283
Resume()284 void TimingLogger::ScopedSplit::Resume() {
285 uint64_t current_time = NanoTime();
286
287 start_ns_ = current_time;
288 ATRACE_BEGIN(label_);
289 }
290
291 } // namespace base
292 } // namespace art
293