• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- tsan_rtl_thread.cc ------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_placement_new.h"
15 #include "tsan_rtl.h"
16 #include "tsan_mman.h"
17 #include "tsan_platform.h"
18 #include "tsan_report.h"
19 #include "tsan_sync.h"
20 
21 namespace __tsan {
22 
23 // ThreadContext implementation.
24 
ThreadContext(int tid)25 ThreadContext::ThreadContext(int tid)
26   : ThreadContextBase(tid)
27   , thr()
28   , sync()
29   , epoch0()
30   , epoch1() {
31 }
32 
33 #ifndef TSAN_GO
~ThreadContext()34 ThreadContext::~ThreadContext() {
35 }
36 #endif
37 
OnDead()38 void ThreadContext::OnDead() {
39   sync.Reset();
40 }
41 
OnJoined(void * arg)42 void ThreadContext::OnJoined(void *arg) {
43   ThreadState *caller_thr = static_cast<ThreadState *>(arg);
44   caller_thr->clock.acquire(&sync);
45   StatInc(caller_thr, StatSyncAcquire);
46   sync.Reset();
47 }
48 
49 struct OnCreatedArgs {
50   ThreadState *thr;
51   uptr pc;
52 };
53 
OnCreated(void * arg)54 void ThreadContext::OnCreated(void *arg) {
55   thr = 0;
56   if (tid == 0)
57     return;
58   OnCreatedArgs *args = static_cast<OnCreatedArgs *>(arg);
59   args->thr->fast_state.IncrementEpoch();
60   // Can't increment epoch w/o writing to the trace as well.
61   TraceAddEvent(args->thr, args->thr->fast_state, EventTypeMop, 0);
62   args->thr->clock.set(args->thr->tid, args->thr->fast_state.epoch());
63   args->thr->fast_synch_epoch = args->thr->fast_state.epoch();
64   args->thr->clock.release(&sync);
65   StatInc(args->thr, StatSyncRelease);
66 #ifdef TSAN_GO
67   creation_stack.ObtainCurrent(args->thr, args->pc);
68 #else
69   creation_stack_id = CurrentStackId(args->thr, args->pc);
70 #endif
71   if (reuse_count == 0)
72     StatInc(args->thr, StatThreadMaxTid);
73 }
74 
OnReset()75 void ThreadContext::OnReset() {
76   sync.Reset();
77   FlushUnneededShadowMemory(GetThreadTrace(tid), TraceSize() * sizeof(Event));
78   //!!! FlushUnneededShadowMemory(GetThreadTraceHeader(tid), sizeof(Trace));
79 }
80 
81 struct OnStartedArgs {
82   ThreadState *thr;
83   uptr stk_addr;
84   uptr stk_size;
85   uptr tls_addr;
86   uptr tls_size;
87 };
88 
OnStarted(void * arg)89 void ThreadContext::OnStarted(void *arg) {
90   OnStartedArgs *args = static_cast<OnStartedArgs*>(arg);
91   thr = args->thr;
92   // RoundUp so that one trace part does not contain events
93   // from different threads.
94   epoch0 = RoundUp(epoch1 + 1, kTracePartSize);
95   epoch1 = (u64)-1;
96   new(thr) ThreadState(CTX(), tid, unique_id,
97       epoch0, args->stk_addr, args->stk_size, args->tls_addr, args->tls_size);
98 #ifdef TSAN_GO
99   // Setup dynamic shadow stack.
100   const int kInitStackSize = 8;
101   args->thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
102       kInitStackSize * sizeof(uptr));
103   args->thr->shadow_stack_pos = thr->shadow_stack;
104   args->thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
105 #endif
106 #ifndef TSAN_GO
107   AllocatorThreadStart(args->thr);
108 #endif
109   thr = args->thr;
110   thr->fast_synch_epoch = epoch0;
111   thr->clock.set(tid, epoch0);
112   thr->clock.acquire(&sync);
113   thr->fast_state.SetHistorySize(flags()->history_size);
114   const uptr trace = (epoch0 / kTracePartSize) % TraceParts();
115   Trace *thr_trace = ThreadTrace(thr->tid);
116   thr_trace->headers[trace].epoch0 = epoch0;
117   StatInc(thr, StatSyncAcquire);
118   sync.Reset();
119   DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
120           "tls_addr=%zx tls_size=%zx\n",
121           tid, (uptr)epoch0, args->stk_addr, args->stk_size,
122           args->tls_addr, args->tls_size);
123   thr->is_alive = true;
124 }
125 
OnFinished()126 void ThreadContext::OnFinished() {
127   if (!detached) {
128     thr->fast_state.IncrementEpoch();
129     // Can't increment epoch w/o writing to the trace as well.
130     TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
131     thr->clock.set(thr->tid, thr->fast_state.epoch());
132     thr->fast_synch_epoch = thr->fast_state.epoch();
133     thr->clock.release(&sync);
134     StatInc(thr, StatSyncRelease);
135   }
136   epoch1 = thr->fast_state.epoch();
137 
138 #ifndef TSAN_GO
139   AllocatorThreadFinish(thr);
140 #endif
141   thr->~ThreadState();
142   StatAggregate(CTX()->stat, thr->stat);
143   thr = 0;
144 }
145 
146 #ifndef TSAN_GO
147 struct ThreadLeak {
148   ThreadContext *tctx;
149   int count;
150 };
151 
MaybeReportThreadLeak(ThreadContextBase * tctx_base,void * arg)152 static void MaybeReportThreadLeak(ThreadContextBase *tctx_base, void *arg) {
153   Vector<ThreadLeak> &leaks = *(Vector<ThreadLeak>*)arg;
154   ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base);
155   if (tctx->detached || tctx->status != ThreadStatusFinished)
156     return;
157   for (uptr i = 0; i < leaks.Size(); i++) {
158     if (leaks[i].tctx->creation_stack_id == tctx->creation_stack_id) {
159       leaks[i].count++;
160       return;
161     }
162   }
163   ThreadLeak leak = {tctx, 1};
164   leaks.PushBack(leak);
165 }
166 #endif
167 
ThreadCheckIgnore(ThreadState * thr)168 static void ThreadCheckIgnore(ThreadState *thr) {
169   if (thr->ignore_reads_and_writes) {
170     Printf("ThreadSanitizer: thread T%d finished with ignores enabled.\n",
171            thr->tid);
172   }
173 }
174 
ThreadFinalize(ThreadState * thr)175 void ThreadFinalize(ThreadState *thr) {
176   CHECK_GT(thr->in_rtl, 0);
177   ThreadCheckIgnore(thr);
178 #ifndef TSAN_GO
179   if (!flags()->report_thread_leaks)
180     return;
181   ThreadRegistryLock l(CTX()->thread_registry);
182   Vector<ThreadLeak> leaks(MBlockScopedBuf);
183   CTX()->thread_registry->RunCallbackForEachThreadLocked(
184       MaybeReportThreadLeak, &leaks);
185   for (uptr i = 0; i < leaks.Size(); i++) {
186     ScopedReport rep(ReportTypeThreadLeak);
187     rep.AddThread(leaks[i].tctx);
188     rep.SetCount(leaks[i].count);
189     OutputReport(CTX(), rep);
190   }
191 #endif
192 }
193 
ThreadCount(ThreadState * thr)194 int ThreadCount(ThreadState *thr) {
195   CHECK_GT(thr->in_rtl, 0);
196   Context *ctx = CTX();
197   uptr result;
198   ctx->thread_registry->GetNumberOfThreads(0, 0, &result);
199   return (int)result;
200 }
201 
ThreadCreate(ThreadState * thr,uptr pc,uptr uid,bool detached)202 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
203   CHECK_GT(thr->in_rtl, 0);
204   StatInc(thr, StatThreadCreate);
205   Context *ctx = CTX();
206   OnCreatedArgs args = { thr, pc };
207   int tid = ctx->thread_registry->CreateThread(uid, detached, thr->tid, &args);
208   DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid);
209   StatSet(thr, StatThreadMaxAlive, ctx->thread_registry->GetMaxAliveThreads());
210   return tid;
211 }
212 
ThreadStart(ThreadState * thr,int tid,uptr os_id)213 void ThreadStart(ThreadState *thr, int tid, uptr os_id) {
214   CHECK_GT(thr->in_rtl, 0);
215   uptr stk_addr = 0;
216   uptr stk_size = 0;
217   uptr tls_addr = 0;
218   uptr tls_size = 0;
219   GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
220 
221   if (tid) {
222     if (stk_addr && stk_size)
223       MemoryRangeImitateWrite(thr, /*pc=*/ 1, stk_addr, stk_size);
224 
225     if (tls_addr && tls_size) {
226       // Check that the thr object is in tls;
227       const uptr thr_beg = (uptr)thr;
228       const uptr thr_end = (uptr)thr + sizeof(*thr);
229       CHECK_GE(thr_beg, tls_addr);
230       CHECK_LE(thr_beg, tls_addr + tls_size);
231       CHECK_GE(thr_end, tls_addr);
232       CHECK_LE(thr_end, tls_addr + tls_size);
233       // Since the thr object is huge, skip it.
234       MemoryRangeImitateWrite(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
235       MemoryRangeImitateWrite(thr, /*pc=*/ 2,
236           thr_end, tls_addr + tls_size - thr_end);
237     }
238   }
239 
240   OnStartedArgs args = { thr, stk_addr, stk_size, tls_addr, tls_size };
241   CTX()->thread_registry->StartThread(tid, os_id, &args);
242 }
243 
ThreadFinish(ThreadState * thr)244 void ThreadFinish(ThreadState *thr) {
245   CHECK_GT(thr->in_rtl, 0);
246   ThreadCheckIgnore(thr);
247   StatInc(thr, StatThreadFinish);
248   if (thr->stk_addr && thr->stk_size)
249     DontNeedShadowFor(thr->stk_addr, thr->stk_size);
250   if (thr->tls_addr && thr->tls_size)
251     DontNeedShadowFor(thr->tls_addr, thr->tls_size);
252   thr->is_alive = false;
253   Context *ctx = CTX();
254   ctx->thread_registry->FinishThread(thr->tid);
255 }
256 
FindThreadByUid(ThreadContextBase * tctx,void * arg)257 static bool FindThreadByUid(ThreadContextBase *tctx, void *arg) {
258   uptr uid = (uptr)arg;
259   if (tctx->user_id == uid && tctx->status != ThreadStatusInvalid) {
260     tctx->user_id = 0;
261     return true;
262   }
263   return false;
264 }
265 
ThreadTid(ThreadState * thr,uptr pc,uptr uid)266 int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
267   CHECK_GT(thr->in_rtl, 0);
268   Context *ctx = CTX();
269   int res = ctx->thread_registry->FindThread(FindThreadByUid, (void*)uid);
270   DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
271   return res;
272 }
273 
ThreadJoin(ThreadState * thr,uptr pc,int tid)274 void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
275   CHECK_GT(thr->in_rtl, 0);
276   CHECK_GT(tid, 0);
277   CHECK_LT(tid, kMaxTid);
278   DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
279   Context *ctx = CTX();
280   ctx->thread_registry->JoinThread(tid, thr);
281 }
282 
ThreadDetach(ThreadState * thr,uptr pc,int tid)283 void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
284   CHECK_GT(thr->in_rtl, 0);
285   CHECK_GT(tid, 0);
286   CHECK_LT(tid, kMaxTid);
287   Context *ctx = CTX();
288   ctx->thread_registry->DetachThread(tid);
289 }
290 
ThreadSetName(ThreadState * thr,const char * name)291 void ThreadSetName(ThreadState *thr, const char *name) {
292   CHECK_GT(thr->in_rtl, 0);
293   CTX()->thread_registry->SetThreadName(thr->tid, name);
294 }
295 
MemoryAccessRange(ThreadState * thr,uptr pc,uptr addr,uptr size,bool is_write)296 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
297                        uptr size, bool is_write) {
298   if (size == 0)
299     return;
300 
301   u64 *shadow_mem = (u64*)MemToShadow(addr);
302   DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
303       thr->tid, (void*)pc, (void*)addr,
304       (int)size, is_write);
305 
306 #if TSAN_DEBUG
307   if (!IsAppMem(addr)) {
308     Printf("Access to non app mem %zx\n", addr);
309     DCHECK(IsAppMem(addr));
310   }
311   if (!IsAppMem(addr + size - 1)) {
312     Printf("Access to non app mem %zx\n", addr + size - 1);
313     DCHECK(IsAppMem(addr + size - 1));
314   }
315   if (!IsShadowMem((uptr)shadow_mem)) {
316     Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
317     DCHECK(IsShadowMem((uptr)shadow_mem));
318   }
319   if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
320     Printf("Bad shadow addr %p (%zx)\n",
321                shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
322     DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
323   }
324 #endif
325 
326   StatInc(thr, StatMopRange);
327 
328   if (*shadow_mem == kShadowRodata) {
329     // Access to .rodata section, no races here.
330     // Measurements show that it can be 10-20% of all memory accesses.
331     StatInc(thr, StatMopRangeRodata);
332     return;
333   }
334 
335   FastState fast_state = thr->fast_state;
336   if (fast_state.GetIgnoreBit())
337     return;
338 
339   fast_state.IncrementEpoch();
340   thr->fast_state = fast_state;
341   TraceAddEvent(thr, fast_state, EventTypeMop, pc);
342 
343   bool unaligned = (addr % kShadowCell) != 0;
344 
345   // Handle unaligned beginning, if any.
346   for (; addr % kShadowCell && size; addr++, size--) {
347     int const kAccessSizeLog = 0;
348     Shadow cur(fast_state);
349     cur.SetWrite(is_write);
350     cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
351     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
352         shadow_mem, cur);
353   }
354   if (unaligned)
355     shadow_mem += kShadowCnt;
356   // Handle middle part, if any.
357   for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
358     int const kAccessSizeLog = 3;
359     Shadow cur(fast_state);
360     cur.SetWrite(is_write);
361     cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
362     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
363         shadow_mem, cur);
364     shadow_mem += kShadowCnt;
365   }
366   // Handle ending, if any.
367   for (; size; addr++, size--) {
368     int const kAccessSizeLog = 0;
369     Shadow cur(fast_state);
370     cur.SetWrite(is_write);
371     cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
372     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
373         shadow_mem, cur);
374   }
375 }
376 
377 }  // namespace __tsan
378