1 //===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a semantic tree transformation that takes a given
10 // AST and rebuilds it, possibly transforming some nodes in the process.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_SEMA_TREETRANSFORM_H
15 #define LLVM_CLANG_SEMA_TREETRANSFORM_H
16
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/Stmt.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/AST/StmtOpenMP.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/Designator.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Ownership.h"
32 #include "clang/Sema/ParsedTemplate.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include <algorithm>
39
40 namespace clang {
41 using namespace sema;
42
43 /// \brief A semantic tree transformation that allows one to transform one
44 /// abstract syntax tree into another.
45 ///
46 /// A new tree transformation is defined by creating a new subclass \c X of
47 /// \c TreeTransform<X> and then overriding certain operations to provide
48 /// behavior specific to that transformation. For example, template
49 /// instantiation is implemented as a tree transformation where the
50 /// transformation of TemplateTypeParmType nodes involves substituting the
51 /// template arguments for their corresponding template parameters; a similar
52 /// transformation is performed for non-type template parameters and
53 /// template template parameters.
54 ///
55 /// This tree-transformation template uses static polymorphism to allow
56 /// subclasses to customize any of its operations. Thus, a subclass can
57 /// override any of the transformation or rebuild operators by providing an
58 /// operation with the same signature as the default implementation. The
59 /// overridding function should not be virtual.
60 ///
61 /// Semantic tree transformations are split into two stages, either of which
62 /// can be replaced by a subclass. The "transform" step transforms an AST node
63 /// or the parts of an AST node using the various transformation functions,
64 /// then passes the pieces on to the "rebuild" step, which constructs a new AST
65 /// node of the appropriate kind from the pieces. The default transformation
66 /// routines recursively transform the operands to composite AST nodes (e.g.,
67 /// the pointee type of a PointerType node) and, if any of those operand nodes
68 /// were changed by the transformation, invokes the rebuild operation to create
69 /// a new AST node.
70 ///
71 /// Subclasses can customize the transformation at various levels. The
72 /// most coarse-grained transformations involve replacing TransformType(),
73 /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(),
74 /// TransformTemplateName(), or TransformTemplateArgument() with entirely
75 /// new implementations.
76 ///
77 /// For more fine-grained transformations, subclasses can replace any of the
78 /// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
79 /// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
80 /// replacing TransformTemplateTypeParmType() allows template instantiation
81 /// to substitute template arguments for their corresponding template
82 /// parameters. Additionally, subclasses can override the \c RebuildXXX
83 /// functions to control how AST nodes are rebuilt when their operands change.
84 /// By default, \c TreeTransform will invoke semantic analysis to rebuild
85 /// AST nodes. However, certain other tree transformations (e.g, cloning) may
86 /// be able to use more efficient rebuild steps.
87 ///
88 /// There are a handful of other functions that can be overridden, allowing one
89 /// to avoid traversing nodes that don't need any transformation
90 /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
91 /// operands have not changed (\c AlwaysRebuild()), and customize the
92 /// default locations and entity names used for type-checking
93 /// (\c getBaseLocation(), \c getBaseEntity()).
94 template<typename Derived>
95 class TreeTransform {
96 /// \brief Private RAII object that helps us forget and then re-remember
97 /// the template argument corresponding to a partially-substituted parameter
98 /// pack.
99 class ForgetPartiallySubstitutedPackRAII {
100 Derived &Self;
101 TemplateArgument Old;
102
103 public:
ForgetPartiallySubstitutedPackRAII(Derived & Self)104 ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) {
105 Old = Self.ForgetPartiallySubstitutedPack();
106 }
107
~ForgetPartiallySubstitutedPackRAII()108 ~ForgetPartiallySubstitutedPackRAII() {
109 Self.RememberPartiallySubstitutedPack(Old);
110 }
111 };
112
113 protected:
114 Sema &SemaRef;
115
116 /// \brief The set of local declarations that have been transformed, for
117 /// cases where we are forced to build new declarations within the transformer
118 /// rather than in the subclass (e.g., lambda closure types).
119 llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls;
120
121 public:
122 /// \brief Initializes a new tree transformer.
TreeTransform(Sema & SemaRef)123 TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
124
125 /// \brief Retrieves a reference to the derived class.
getDerived()126 Derived &getDerived() { return static_cast<Derived&>(*this); }
127
128 /// \brief Retrieves a reference to the derived class.
getDerived()129 const Derived &getDerived() const {
130 return static_cast<const Derived&>(*this);
131 }
132
Owned(Expr * E)133 static inline ExprResult Owned(Expr *E) { return E; }
Owned(Stmt * S)134 static inline StmtResult Owned(Stmt *S) { return S; }
135
136 /// \brief Retrieves a reference to the semantic analysis object used for
137 /// this tree transform.
getSema()138 Sema &getSema() const { return SemaRef; }
139
140 /// \brief Whether the transformation should always rebuild AST nodes, even
141 /// if none of the children have changed.
142 ///
143 /// Subclasses may override this function to specify when the transformation
144 /// should rebuild all AST nodes.
AlwaysRebuild()145 bool AlwaysRebuild() { return false; }
146
147 /// \brief Returns the location of the entity being transformed, if that
148 /// information was not available elsewhere in the AST.
149 ///
150 /// By default, returns no source-location information. Subclasses can
151 /// provide an alternative implementation that provides better location
152 /// information.
getBaseLocation()153 SourceLocation getBaseLocation() { return SourceLocation(); }
154
155 /// \brief Returns the name of the entity being transformed, if that
156 /// information was not available elsewhere in the AST.
157 ///
158 /// By default, returns an empty name. Subclasses can provide an alternative
159 /// implementation with a more precise name.
getBaseEntity()160 DeclarationName getBaseEntity() { return DeclarationName(); }
161
162 /// \brief Sets the "base" location and entity when that
163 /// information is known based on another transformation.
164 ///
165 /// By default, the source location and entity are ignored. Subclasses can
166 /// override this function to provide a customized implementation.
setBase(SourceLocation Loc,DeclarationName Entity)167 void setBase(SourceLocation Loc, DeclarationName Entity) { }
168
169 /// \brief RAII object that temporarily sets the base location and entity
170 /// used for reporting diagnostics in types.
171 class TemporaryBase {
172 TreeTransform &Self;
173 SourceLocation OldLocation;
174 DeclarationName OldEntity;
175
176 public:
TemporaryBase(TreeTransform & Self,SourceLocation Location,DeclarationName Entity)177 TemporaryBase(TreeTransform &Self, SourceLocation Location,
178 DeclarationName Entity) : Self(Self) {
179 OldLocation = Self.getDerived().getBaseLocation();
180 OldEntity = Self.getDerived().getBaseEntity();
181
182 if (Location.isValid())
183 Self.getDerived().setBase(Location, Entity);
184 }
185
~TemporaryBase()186 ~TemporaryBase() {
187 Self.getDerived().setBase(OldLocation, OldEntity);
188 }
189 };
190
191 /// \brief Determine whether the given type \p T has already been
192 /// transformed.
193 ///
194 /// Subclasses can provide an alternative implementation of this routine
195 /// to short-circuit evaluation when it is known that a given type will
196 /// not change. For example, template instantiation need not traverse
197 /// non-dependent types.
AlreadyTransformed(QualType T)198 bool AlreadyTransformed(QualType T) {
199 return T.isNull();
200 }
201
202 /// \brief Determine whether the given call argument should be dropped, e.g.,
203 /// because it is a default argument.
204 ///
205 /// Subclasses can provide an alternative implementation of this routine to
206 /// determine which kinds of call arguments get dropped. By default,
207 /// CXXDefaultArgument nodes are dropped (prior to transformation).
DropCallArgument(Expr * E)208 bool DropCallArgument(Expr *E) {
209 return E->isDefaultArgument();
210 }
211
212 /// \brief Determine whether we should expand a pack expansion with the
213 /// given set of parameter packs into separate arguments by repeatedly
214 /// transforming the pattern.
215 ///
216 /// By default, the transformer never tries to expand pack expansions.
217 /// Subclasses can override this routine to provide different behavior.
218 ///
219 /// \param EllipsisLoc The location of the ellipsis that identifies the
220 /// pack expansion.
221 ///
222 /// \param PatternRange The source range that covers the entire pattern of
223 /// the pack expansion.
224 ///
225 /// \param Unexpanded The set of unexpanded parameter packs within the
226 /// pattern.
227 ///
228 /// \param ShouldExpand Will be set to \c true if the transformer should
229 /// expand the corresponding pack expansions into separate arguments. When
230 /// set, \c NumExpansions must also be set.
231 ///
232 /// \param RetainExpansion Whether the caller should add an unexpanded
233 /// pack expansion after all of the expanded arguments. This is used
234 /// when extending explicitly-specified template argument packs per
235 /// C++0x [temp.arg.explicit]p9.
236 ///
237 /// \param NumExpansions The number of separate arguments that will be in
238 /// the expanded form of the corresponding pack expansion. This is both an
239 /// input and an output parameter, which can be set by the caller if the
240 /// number of expansions is known a priori (e.g., due to a prior substitution)
241 /// and will be set by the callee when the number of expansions is known.
242 /// The callee must set this value when \c ShouldExpand is \c true; it may
243 /// set this value in other cases.
244 ///
245 /// \returns true if an error occurred (e.g., because the parameter packs
246 /// are to be instantiated with arguments of different lengths), false
247 /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
248 /// must be set.
TryExpandParameterPacks(SourceLocation EllipsisLoc,SourceRange PatternRange,ArrayRef<UnexpandedParameterPack> Unexpanded,bool & ShouldExpand,bool & RetainExpansion,Optional<unsigned> & NumExpansions)249 bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
250 SourceRange PatternRange,
251 ArrayRef<UnexpandedParameterPack> Unexpanded,
252 bool &ShouldExpand,
253 bool &RetainExpansion,
254 Optional<unsigned> &NumExpansions) {
255 ShouldExpand = false;
256 return false;
257 }
258
259 /// \brief "Forget" about the partially-substituted pack template argument,
260 /// when performing an instantiation that must preserve the parameter pack
261 /// use.
262 ///
263 /// This routine is meant to be overridden by the template instantiator.
ForgetPartiallySubstitutedPack()264 TemplateArgument ForgetPartiallySubstitutedPack() {
265 return TemplateArgument();
266 }
267
268 /// \brief "Remember" the partially-substituted pack template argument
269 /// after performing an instantiation that must preserve the parameter pack
270 /// use.
271 ///
272 /// This routine is meant to be overridden by the template instantiator.
RememberPartiallySubstitutedPack(TemplateArgument Arg)273 void RememberPartiallySubstitutedPack(TemplateArgument Arg) { }
274
275 /// \brief Note to the derived class when a function parameter pack is
276 /// being expanded.
ExpandingFunctionParameterPack(ParmVarDecl * Pack)277 void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { }
278
279 /// \brief Transforms the given type into another type.
280 ///
281 /// By default, this routine transforms a type by creating a
282 /// TypeSourceInfo for it and delegating to the appropriate
283 /// function. This is expensive, but we don't mind, because
284 /// this method is deprecated anyway; all users should be
285 /// switched to storing TypeSourceInfos.
286 ///
287 /// \returns the transformed type.
288 QualType TransformType(QualType T);
289
290 /// \brief Transforms the given type-with-location into a new
291 /// type-with-location.
292 ///
293 /// By default, this routine transforms a type by delegating to the
294 /// appropriate TransformXXXType to build a new type. Subclasses
295 /// may override this function (to take over all type
296 /// transformations) or some set of the TransformXXXType functions
297 /// to alter the transformation.
298 TypeSourceInfo *TransformType(TypeSourceInfo *DI);
299
300 /// \brief Transform the given type-with-location into a new
301 /// type, collecting location information in the given builder
302 /// as necessary.
303 ///
304 QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL);
305
306 /// \brief Transform the given statement.
307 ///
308 /// By default, this routine transforms a statement by delegating to the
309 /// appropriate TransformXXXStmt function to transform a specific kind of
310 /// statement or the TransformExpr() function to transform an expression.
311 /// Subclasses may override this function to transform statements using some
312 /// other mechanism.
313 ///
314 /// \returns the transformed statement.
315 StmtResult TransformStmt(Stmt *S);
316
317 /// \brief Transform the given statement.
318 ///
319 /// By default, this routine transforms a statement by delegating to the
320 /// appropriate TransformOMPXXXClause function to transform a specific kind
321 /// of clause. Subclasses may override this function to transform statements
322 /// using some other mechanism.
323 ///
324 /// \returns the transformed OpenMP clause.
325 OMPClause *TransformOMPClause(OMPClause *S);
326
327 /// \brief Transform the given expression.
328 ///
329 /// By default, this routine transforms an expression by delegating to the
330 /// appropriate TransformXXXExpr function to build a new expression.
331 /// Subclasses may override this function to transform expressions using some
332 /// other mechanism.
333 ///
334 /// \returns the transformed expression.
335 ExprResult TransformExpr(Expr *E);
336
337 /// \brief Transform the given initializer.
338 ///
339 /// By default, this routine transforms an initializer by stripping off the
340 /// semantic nodes added by initialization, then passing the result to
341 /// TransformExpr or TransformExprs.
342 ///
343 /// \returns the transformed initializer.
344 ExprResult TransformInitializer(Expr *Init, bool CXXDirectInit);
345
346 /// \brief Transform the given list of expressions.
347 ///
348 /// This routine transforms a list of expressions by invoking
349 /// \c TransformExpr() for each subexpression. However, it also provides
350 /// support for variadic templates by expanding any pack expansions (if the
351 /// derived class permits such expansion) along the way. When pack expansions
352 /// are present, the number of outputs may not equal the number of inputs.
353 ///
354 /// \param Inputs The set of expressions to be transformed.
355 ///
356 /// \param NumInputs The number of expressions in \c Inputs.
357 ///
358 /// \param IsCall If \c true, then this transform is being performed on
359 /// function-call arguments, and any arguments that should be dropped, will
360 /// be.
361 ///
362 /// \param Outputs The transformed input expressions will be added to this
363 /// vector.
364 ///
365 /// \param ArgChanged If non-NULL, will be set \c true if any argument changed
366 /// due to transformation.
367 ///
368 /// \returns true if an error occurred, false otherwise.
369 bool TransformExprs(Expr **Inputs, unsigned NumInputs, bool IsCall,
370 SmallVectorImpl<Expr *> &Outputs,
371 bool *ArgChanged = 0);
372
373 /// \brief Transform the given declaration, which is referenced from a type
374 /// or expression.
375 ///
376 /// By default, acts as the identity function on declarations, unless the
377 /// transformer has had to transform the declaration itself. Subclasses
378 /// may override this function to provide alternate behavior.
TransformDecl(SourceLocation Loc,Decl * D)379 Decl *TransformDecl(SourceLocation Loc, Decl *D) {
380 llvm::DenseMap<Decl *, Decl *>::iterator Known
381 = TransformedLocalDecls.find(D);
382 if (Known != TransformedLocalDecls.end())
383 return Known->second;
384
385 return D;
386 }
387
388 /// \brief Transform the attributes associated with the given declaration and
389 /// place them on the new declaration.
390 ///
391 /// By default, this operation does nothing. Subclasses may override this
392 /// behavior to transform attributes.
transformAttrs(Decl * Old,Decl * New)393 void transformAttrs(Decl *Old, Decl *New) { }
394
395 /// \brief Note that a local declaration has been transformed by this
396 /// transformer.
397 ///
398 /// Local declarations are typically transformed via a call to
399 /// TransformDefinition. However, in some cases (e.g., lambda expressions),
400 /// the transformer itself has to transform the declarations. This routine
401 /// can be overridden by a subclass that keeps track of such mappings.
transformedLocalDecl(Decl * Old,Decl * New)402 void transformedLocalDecl(Decl *Old, Decl *New) {
403 TransformedLocalDecls[Old] = New;
404 }
405
406 /// \brief Transform the definition of the given declaration.
407 ///
408 /// By default, invokes TransformDecl() to transform the declaration.
409 /// Subclasses may override this function to provide alternate behavior.
TransformDefinition(SourceLocation Loc,Decl * D)410 Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
411 return getDerived().TransformDecl(Loc, D);
412 }
413
414 /// \brief Transform the given declaration, which was the first part of a
415 /// nested-name-specifier in a member access expression.
416 ///
417 /// This specific declaration transformation only applies to the first
418 /// identifier in a nested-name-specifier of a member access expression, e.g.,
419 /// the \c T in \c x->T::member
420 ///
421 /// By default, invokes TransformDecl() to transform the declaration.
422 /// Subclasses may override this function to provide alternate behavior.
TransformFirstQualifierInScope(NamedDecl * D,SourceLocation Loc)423 NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
424 return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
425 }
426
427 /// \brief Transform the given nested-name-specifier with source-location
428 /// information.
429 ///
430 /// By default, transforms all of the types and declarations within the
431 /// nested-name-specifier. Subclasses may override this function to provide
432 /// alternate behavior.
433 NestedNameSpecifierLoc TransformNestedNameSpecifierLoc(
434 NestedNameSpecifierLoc NNS,
435 QualType ObjectType = QualType(),
436 NamedDecl *FirstQualifierInScope = 0);
437
438 /// \brief Transform the given declaration name.
439 ///
440 /// By default, transforms the types of conversion function, constructor,
441 /// and destructor names and then (if needed) rebuilds the declaration name.
442 /// Identifiers and selectors are returned unmodified. Sublcasses may
443 /// override this function to provide alternate behavior.
444 DeclarationNameInfo
445 TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo);
446
447 /// \brief Transform the given template name.
448 ///
449 /// \param SS The nested-name-specifier that qualifies the template
450 /// name. This nested-name-specifier must already have been transformed.
451 ///
452 /// \param Name The template name to transform.
453 ///
454 /// \param NameLoc The source location of the template name.
455 ///
456 /// \param ObjectType If we're translating a template name within a member
457 /// access expression, this is the type of the object whose member template
458 /// is being referenced.
459 ///
460 /// \param FirstQualifierInScope If the first part of a nested-name-specifier
461 /// also refers to a name within the current (lexical) scope, this is the
462 /// declaration it refers to.
463 ///
464 /// By default, transforms the template name by transforming the declarations
465 /// and nested-name-specifiers that occur within the template name.
466 /// Subclasses may override this function to provide alternate behavior.
467 TemplateName TransformTemplateName(CXXScopeSpec &SS,
468 TemplateName Name,
469 SourceLocation NameLoc,
470 QualType ObjectType = QualType(),
471 NamedDecl *FirstQualifierInScope = 0);
472
473 /// \brief Transform the given template argument.
474 ///
475 /// By default, this operation transforms the type, expression, or
476 /// declaration stored within the template argument and constructs a
477 /// new template argument from the transformed result. Subclasses may
478 /// override this function to provide alternate behavior.
479 ///
480 /// Returns true if there was an error.
481 bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
482 TemplateArgumentLoc &Output);
483
484 /// \brief Transform the given set of template arguments.
485 ///
486 /// By default, this operation transforms all of the template arguments
487 /// in the input set using \c TransformTemplateArgument(), and appends
488 /// the transformed arguments to the output list.
489 ///
490 /// Note that this overload of \c TransformTemplateArguments() is merely
491 /// a convenience function. Subclasses that wish to override this behavior
492 /// should override the iterator-based member template version.
493 ///
494 /// \param Inputs The set of template arguments to be transformed.
495 ///
496 /// \param NumInputs The number of template arguments in \p Inputs.
497 ///
498 /// \param Outputs The set of transformed template arguments output by this
499 /// routine.
500 ///
501 /// Returns true if an error occurred.
TransformTemplateArguments(const TemplateArgumentLoc * Inputs,unsigned NumInputs,TemplateArgumentListInfo & Outputs)502 bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs,
503 unsigned NumInputs,
504 TemplateArgumentListInfo &Outputs) {
505 return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs);
506 }
507
508 /// \brief Transform the given set of template arguments.
509 ///
510 /// By default, this operation transforms all of the template arguments
511 /// in the input set using \c TransformTemplateArgument(), and appends
512 /// the transformed arguments to the output list.
513 ///
514 /// \param First An iterator to the first template argument.
515 ///
516 /// \param Last An iterator one step past the last template argument.
517 ///
518 /// \param Outputs The set of transformed template arguments output by this
519 /// routine.
520 ///
521 /// Returns true if an error occurred.
522 template<typename InputIterator>
523 bool TransformTemplateArguments(InputIterator First,
524 InputIterator Last,
525 TemplateArgumentListInfo &Outputs);
526
527 /// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument.
528 void InventTemplateArgumentLoc(const TemplateArgument &Arg,
529 TemplateArgumentLoc &ArgLoc);
530
531 /// \brief Fakes up a TypeSourceInfo for a type.
InventTypeSourceInfo(QualType T)532 TypeSourceInfo *InventTypeSourceInfo(QualType T) {
533 return SemaRef.Context.getTrivialTypeSourceInfo(T,
534 getDerived().getBaseLocation());
535 }
536
537 #define ABSTRACT_TYPELOC(CLASS, PARENT)
538 #define TYPELOC(CLASS, PARENT) \
539 QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T);
540 #include "clang/AST/TypeLocNodes.def"
541
542 QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
543 FunctionProtoTypeLoc TL,
544 CXXRecordDecl *ThisContext,
545 unsigned ThisTypeQuals);
546
547 StmtResult
548 TransformSEHHandler(Stmt *Handler);
549
550 QualType
551 TransformTemplateSpecializationType(TypeLocBuilder &TLB,
552 TemplateSpecializationTypeLoc TL,
553 TemplateName Template);
554
555 QualType
556 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
557 DependentTemplateSpecializationTypeLoc TL,
558 TemplateName Template,
559 CXXScopeSpec &SS);
560
561 QualType
562 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
563 DependentTemplateSpecializationTypeLoc TL,
564 NestedNameSpecifierLoc QualifierLoc);
565
566 /// \brief Transforms the parameters of a function type into the
567 /// given vectors.
568 ///
569 /// The result vectors should be kept in sync; null entries in the
570 /// variables vector are acceptable.
571 ///
572 /// Return true on error.
573 bool TransformFunctionTypeParams(SourceLocation Loc,
574 ParmVarDecl **Params, unsigned NumParams,
575 const QualType *ParamTypes,
576 SmallVectorImpl<QualType> &PTypes,
577 SmallVectorImpl<ParmVarDecl*> *PVars);
578
579 /// \brief Transforms a single function-type parameter. Return null
580 /// on error.
581 ///
582 /// \param indexAdjustment - A number to add to the parameter's
583 /// scope index; can be negative
584 ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
585 int indexAdjustment,
586 Optional<unsigned> NumExpansions,
587 bool ExpectParameterPack);
588
589 QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL);
590
591 StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
592 ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E);
593
594 /// \brief Transform the captures and body of a lambda expression.
595 ExprResult TransformLambdaScope(LambdaExpr *E, CXXMethodDecl *CallOperator);
596
597 ExprResult TransformAddressOfOperand(Expr *E);
598 ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E,
599 bool IsAddressOfOperand);
600
601 #define STMT(Node, Parent) \
602 StmtResult Transform##Node(Node *S);
603 #define EXPR(Node, Parent) \
604 ExprResult Transform##Node(Node *E);
605 #define ABSTRACT_STMT(Stmt)
606 #include "clang/AST/StmtNodes.inc"
607
608 #define OPENMP_CLAUSE(Name, Class) \
609 OMPClause *Transform ## Class(Class *S);
610 #include "clang/Basic/OpenMPKinds.def"
611
612 /// \brief Build a new pointer type given its pointee type.
613 ///
614 /// By default, performs semantic analysis when building the pointer type.
615 /// Subclasses may override this routine to provide different behavior.
616 QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
617
618 /// \brief Build a new block pointer type given its pointee type.
619 ///
620 /// By default, performs semantic analysis when building the block pointer
621 /// type. Subclasses may override this routine to provide different behavior.
622 QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
623
624 /// \brief Build a new reference type given the type it references.
625 ///
626 /// By default, performs semantic analysis when building the
627 /// reference type. Subclasses may override this routine to provide
628 /// different behavior.
629 ///
630 /// \param LValue whether the type was written with an lvalue sigil
631 /// or an rvalue sigil.
632 QualType RebuildReferenceType(QualType ReferentType,
633 bool LValue,
634 SourceLocation Sigil);
635
636 /// \brief Build a new member pointer type given the pointee type and the
637 /// class type it refers into.
638 ///
639 /// By default, performs semantic analysis when building the member pointer
640 /// type. Subclasses may override this routine to provide different behavior.
641 QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType,
642 SourceLocation Sigil);
643
644 /// \brief Build a new array type given the element type, size
645 /// modifier, size of the array (if known), size expression, and index type
646 /// qualifiers.
647 ///
648 /// By default, performs semantic analysis when building the array type.
649 /// Subclasses may override this routine to provide different behavior.
650 /// Also by default, all of the other Rebuild*Array
651 QualType RebuildArrayType(QualType ElementType,
652 ArrayType::ArraySizeModifier SizeMod,
653 const llvm::APInt *Size,
654 Expr *SizeExpr,
655 unsigned IndexTypeQuals,
656 SourceRange BracketsRange);
657
658 /// \brief Build a new constant array type given the element type, size
659 /// modifier, (known) size of the array, and index type qualifiers.
660 ///
661 /// By default, performs semantic analysis when building the array type.
662 /// Subclasses may override this routine to provide different behavior.
663 QualType RebuildConstantArrayType(QualType ElementType,
664 ArrayType::ArraySizeModifier SizeMod,
665 const llvm::APInt &Size,
666 unsigned IndexTypeQuals,
667 SourceRange BracketsRange);
668
669 /// \brief Build a new incomplete array type given the element type, size
670 /// modifier, and index type qualifiers.
671 ///
672 /// By default, performs semantic analysis when building the array type.
673 /// Subclasses may override this routine to provide different behavior.
674 QualType RebuildIncompleteArrayType(QualType ElementType,
675 ArrayType::ArraySizeModifier SizeMod,
676 unsigned IndexTypeQuals,
677 SourceRange BracketsRange);
678
679 /// \brief Build a new variable-length array type given the element type,
680 /// size modifier, size expression, and index type qualifiers.
681 ///
682 /// By default, performs semantic analysis when building the array type.
683 /// Subclasses may override this routine to provide different behavior.
684 QualType RebuildVariableArrayType(QualType ElementType,
685 ArrayType::ArraySizeModifier SizeMod,
686 Expr *SizeExpr,
687 unsigned IndexTypeQuals,
688 SourceRange BracketsRange);
689
690 /// \brief Build a new dependent-sized array type given the element type,
691 /// size modifier, size expression, and index type qualifiers.
692 ///
693 /// By default, performs semantic analysis when building the array type.
694 /// Subclasses may override this routine to provide different behavior.
695 QualType RebuildDependentSizedArrayType(QualType ElementType,
696 ArrayType::ArraySizeModifier SizeMod,
697 Expr *SizeExpr,
698 unsigned IndexTypeQuals,
699 SourceRange BracketsRange);
700
701 /// \brief Build a new vector type given the element type and
702 /// number of elements.
703 ///
704 /// By default, performs semantic analysis when building the vector type.
705 /// Subclasses may override this routine to provide different behavior.
706 QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
707 VectorType::VectorKind VecKind);
708
709 /// \brief Build a new extended vector type given the element type and
710 /// number of elements.
711 ///
712 /// By default, performs semantic analysis when building the vector type.
713 /// Subclasses may override this routine to provide different behavior.
714 QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
715 SourceLocation AttributeLoc);
716
717 /// \brief Build a new potentially dependently-sized extended vector type
718 /// given the element type and number of elements.
719 ///
720 /// By default, performs semantic analysis when building the vector type.
721 /// Subclasses may override this routine to provide different behavior.
722 QualType RebuildDependentSizedExtVectorType(QualType ElementType,
723 Expr *SizeExpr,
724 SourceLocation AttributeLoc);
725
726 /// \brief Build a new function type.
727 ///
728 /// By default, performs semantic analysis when building the function type.
729 /// Subclasses may override this routine to provide different behavior.
730 QualType RebuildFunctionProtoType(QualType T,
731 llvm::MutableArrayRef<QualType> ParamTypes,
732 const FunctionProtoType::ExtProtoInfo &EPI);
733
734 /// \brief Build a new unprototyped function type.
735 QualType RebuildFunctionNoProtoType(QualType ResultType);
736
737 /// \brief Rebuild an unresolved typename type, given the decl that
738 /// the UnresolvedUsingTypenameDecl was transformed to.
739 QualType RebuildUnresolvedUsingType(Decl *D);
740
741 /// \brief Build a new typedef type.
RebuildTypedefType(TypedefNameDecl * Typedef)742 QualType RebuildTypedefType(TypedefNameDecl *Typedef) {
743 return SemaRef.Context.getTypeDeclType(Typedef);
744 }
745
746 /// \brief Build a new class/struct/union type.
RebuildRecordType(RecordDecl * Record)747 QualType RebuildRecordType(RecordDecl *Record) {
748 return SemaRef.Context.getTypeDeclType(Record);
749 }
750
751 /// \brief Build a new Enum type.
RebuildEnumType(EnumDecl * Enum)752 QualType RebuildEnumType(EnumDecl *Enum) {
753 return SemaRef.Context.getTypeDeclType(Enum);
754 }
755
756 /// \brief Build a new typeof(expr) type.
757 ///
758 /// By default, performs semantic analysis when building the typeof type.
759 /// Subclasses may override this routine to provide different behavior.
760 QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc);
761
762 /// \brief Build a new typeof(type) type.
763 ///
764 /// By default, builds a new TypeOfType with the given underlying type.
765 QualType RebuildTypeOfType(QualType Underlying);
766
767 /// \brief Build a new unary transform type.
768 QualType RebuildUnaryTransformType(QualType BaseType,
769 UnaryTransformType::UTTKind UKind,
770 SourceLocation Loc);
771
772 /// \brief Build a new C++11 decltype type.
773 ///
774 /// By default, performs semantic analysis when building the decltype type.
775 /// Subclasses may override this routine to provide different behavior.
776 QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc);
777
778 /// \brief Build a new C++11 auto type.
779 ///
780 /// By default, builds a new AutoType with the given deduced type.
RebuildAutoType(QualType Deduced,bool IsDecltypeAuto)781 QualType RebuildAutoType(QualType Deduced, bool IsDecltypeAuto) {
782 // Note, IsDependent is always false here: we implicitly convert an 'auto'
783 // which has been deduced to a dependent type into an undeduced 'auto', so
784 // that we'll retry deduction after the transformation.
785 return SemaRef.Context.getAutoType(Deduced, IsDecltypeAuto);
786 }
787
788 /// \brief Build a new template specialization type.
789 ///
790 /// By default, performs semantic analysis when building the template
791 /// specialization type. Subclasses may override this routine to provide
792 /// different behavior.
793 QualType RebuildTemplateSpecializationType(TemplateName Template,
794 SourceLocation TemplateLoc,
795 TemplateArgumentListInfo &Args);
796
797 /// \brief Build a new parenthesized type.
798 ///
799 /// By default, builds a new ParenType type from the inner type.
800 /// Subclasses may override this routine to provide different behavior.
RebuildParenType(QualType InnerType)801 QualType RebuildParenType(QualType InnerType) {
802 return SemaRef.Context.getParenType(InnerType);
803 }
804
805 /// \brief Build a new qualified name type.
806 ///
807 /// By default, builds a new ElaboratedType type from the keyword,
808 /// the nested-name-specifier and the named type.
809 /// Subclasses may override this routine to provide different behavior.
RebuildElaboratedType(SourceLocation KeywordLoc,ElaboratedTypeKeyword Keyword,NestedNameSpecifierLoc QualifierLoc,QualType Named)810 QualType RebuildElaboratedType(SourceLocation KeywordLoc,
811 ElaboratedTypeKeyword Keyword,
812 NestedNameSpecifierLoc QualifierLoc,
813 QualType Named) {
814 return SemaRef.Context.getElaboratedType(Keyword,
815 QualifierLoc.getNestedNameSpecifier(),
816 Named);
817 }
818
819 /// \brief Build a new typename type that refers to a template-id.
820 ///
821 /// By default, builds a new DependentNameType type from the
822 /// nested-name-specifier and the given type. Subclasses may override
823 /// this routine to provide different behavior.
RebuildDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo * Name,SourceLocation NameLoc,TemplateArgumentListInfo & Args)824 QualType RebuildDependentTemplateSpecializationType(
825 ElaboratedTypeKeyword Keyword,
826 NestedNameSpecifierLoc QualifierLoc,
827 const IdentifierInfo *Name,
828 SourceLocation NameLoc,
829 TemplateArgumentListInfo &Args) {
830 // Rebuild the template name.
831 // TODO: avoid TemplateName abstraction
832 CXXScopeSpec SS;
833 SS.Adopt(QualifierLoc);
834 TemplateName InstName
835 = getDerived().RebuildTemplateName(SS, *Name, NameLoc, QualType(), 0);
836
837 if (InstName.isNull())
838 return QualType();
839
840 // If it's still dependent, make a dependent specialization.
841 if (InstName.getAsDependentTemplateName())
842 return SemaRef.Context.getDependentTemplateSpecializationType(Keyword,
843 QualifierLoc.getNestedNameSpecifier(),
844 Name,
845 Args);
846
847 // Otherwise, make an elaborated type wrapping a non-dependent
848 // specialization.
849 QualType T =
850 getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args);
851 if (T.isNull()) return QualType();
852
853 if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == 0)
854 return T;
855
856 return SemaRef.Context.getElaboratedType(Keyword,
857 QualifierLoc.getNestedNameSpecifier(),
858 T);
859 }
860
861 /// \brief Build a new typename type that refers to an identifier.
862 ///
863 /// By default, performs semantic analysis when building the typename type
864 /// (or elaborated type). Subclasses may override this routine to provide
865 /// different behavior.
RebuildDependentNameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo * Id,SourceLocation IdLoc)866 QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword,
867 SourceLocation KeywordLoc,
868 NestedNameSpecifierLoc QualifierLoc,
869 const IdentifierInfo *Id,
870 SourceLocation IdLoc) {
871 CXXScopeSpec SS;
872 SS.Adopt(QualifierLoc);
873
874 if (QualifierLoc.getNestedNameSpecifier()->isDependent()) {
875 // If the name is still dependent, just build a new dependent name type.
876 if (!SemaRef.computeDeclContext(SS))
877 return SemaRef.Context.getDependentNameType(Keyword,
878 QualifierLoc.getNestedNameSpecifier(),
879 Id);
880 }
881
882 if (Keyword == ETK_None || Keyword == ETK_Typename)
883 return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc,
884 *Id, IdLoc);
885
886 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
887
888 // We had a dependent elaborated-type-specifier that has been transformed
889 // into a non-dependent elaborated-type-specifier. Find the tag we're
890 // referring to.
891 LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
892 DeclContext *DC = SemaRef.computeDeclContext(SS, false);
893 if (!DC)
894 return QualType();
895
896 if (SemaRef.RequireCompleteDeclContext(SS, DC))
897 return QualType();
898
899 TagDecl *Tag = 0;
900 SemaRef.LookupQualifiedName(Result, DC);
901 switch (Result.getResultKind()) {
902 case LookupResult::NotFound:
903 case LookupResult::NotFoundInCurrentInstantiation:
904 break;
905
906 case LookupResult::Found:
907 Tag = Result.getAsSingle<TagDecl>();
908 break;
909
910 case LookupResult::FoundOverloaded:
911 case LookupResult::FoundUnresolvedValue:
912 llvm_unreachable("Tag lookup cannot find non-tags");
913
914 case LookupResult::Ambiguous:
915 // Let the LookupResult structure handle ambiguities.
916 return QualType();
917 }
918
919 if (!Tag) {
920 // Check where the name exists but isn't a tag type and use that to emit
921 // better diagnostics.
922 LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
923 SemaRef.LookupQualifiedName(Result, DC);
924 switch (Result.getResultKind()) {
925 case LookupResult::Found:
926 case LookupResult::FoundOverloaded:
927 case LookupResult::FoundUnresolvedValue: {
928 NamedDecl *SomeDecl = Result.getRepresentativeDecl();
929 unsigned Kind = 0;
930 if (isa<TypedefDecl>(SomeDecl)) Kind = 1;
931 else if (isa<TypeAliasDecl>(SomeDecl)) Kind = 2;
932 else if (isa<ClassTemplateDecl>(SomeDecl)) Kind = 3;
933 SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << Kind;
934 SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at);
935 break;
936 }
937 default:
938 // FIXME: Would be nice to highlight just the source range.
939 SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope)
940 << Kind << Id << DC;
941 break;
942 }
943 return QualType();
944 }
945
946 if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false,
947 IdLoc, *Id)) {
948 SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id;
949 SemaRef.Diag(Tag->getLocation(), diag::note_previous_use);
950 return QualType();
951 }
952
953 // Build the elaborated-type-specifier type.
954 QualType T = SemaRef.Context.getTypeDeclType(Tag);
955 return SemaRef.Context.getElaboratedType(Keyword,
956 QualifierLoc.getNestedNameSpecifier(),
957 T);
958 }
959
960 /// \brief Build a new pack expansion type.
961 ///
962 /// By default, builds a new PackExpansionType type from the given pattern.
963 /// Subclasses may override this routine to provide different behavior.
RebuildPackExpansionType(QualType Pattern,SourceRange PatternRange,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)964 QualType RebuildPackExpansionType(QualType Pattern,
965 SourceRange PatternRange,
966 SourceLocation EllipsisLoc,
967 Optional<unsigned> NumExpansions) {
968 return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc,
969 NumExpansions);
970 }
971
972 /// \brief Build a new atomic type given its value type.
973 ///
974 /// By default, performs semantic analysis when building the atomic type.
975 /// Subclasses may override this routine to provide different behavior.
976 QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc);
977
978 /// \brief Build a new template name given a nested name specifier, a flag
979 /// indicating whether the "template" keyword was provided, and the template
980 /// that the template name refers to.
981 ///
982 /// By default, builds the new template name directly. Subclasses may override
983 /// this routine to provide different behavior.
984 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
985 bool TemplateKW,
986 TemplateDecl *Template);
987
988 /// \brief Build a new template name given a nested name specifier and the
989 /// name that is referred to as a template.
990 ///
991 /// By default, performs semantic analysis to determine whether the name can
992 /// be resolved to a specific template, then builds the appropriate kind of
993 /// template name. Subclasses may override this routine to provide different
994 /// behavior.
995 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
996 const IdentifierInfo &Name,
997 SourceLocation NameLoc,
998 QualType ObjectType,
999 NamedDecl *FirstQualifierInScope);
1000
1001 /// \brief Build a new template name given a nested name specifier and the
1002 /// overloaded operator name that is referred to as a template.
1003 ///
1004 /// By default, performs semantic analysis to determine whether the name can
1005 /// be resolved to a specific template, then builds the appropriate kind of
1006 /// template name. Subclasses may override this routine to provide different
1007 /// behavior.
1008 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1009 OverloadedOperatorKind Operator,
1010 SourceLocation NameLoc,
1011 QualType ObjectType);
1012
1013 /// \brief Build a new template name given a template template parameter pack
1014 /// and the
1015 ///
1016 /// By default, performs semantic analysis to determine whether the name can
1017 /// be resolved to a specific template, then builds the appropriate kind of
1018 /// template name. Subclasses may override this routine to provide different
1019 /// behavior.
RebuildTemplateName(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack)1020 TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param,
1021 const TemplateArgument &ArgPack) {
1022 return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
1023 }
1024
1025 /// \brief Build a new compound statement.
1026 ///
1027 /// By default, performs semantic analysis to build the new statement.
1028 /// Subclasses may override this routine to provide different behavior.
RebuildCompoundStmt(SourceLocation LBraceLoc,MultiStmtArg Statements,SourceLocation RBraceLoc,bool IsStmtExpr)1029 StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
1030 MultiStmtArg Statements,
1031 SourceLocation RBraceLoc,
1032 bool IsStmtExpr) {
1033 return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements,
1034 IsStmtExpr);
1035 }
1036
1037 /// \brief Build a new case statement.
1038 ///
1039 /// By default, performs semantic analysis to build the new statement.
1040 /// Subclasses may override this routine to provide different behavior.
RebuildCaseStmt(SourceLocation CaseLoc,Expr * LHS,SourceLocation EllipsisLoc,Expr * RHS,SourceLocation ColonLoc)1041 StmtResult RebuildCaseStmt(SourceLocation CaseLoc,
1042 Expr *LHS,
1043 SourceLocation EllipsisLoc,
1044 Expr *RHS,
1045 SourceLocation ColonLoc) {
1046 return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS,
1047 ColonLoc);
1048 }
1049
1050 /// \brief Attach the body to a new case statement.
1051 ///
1052 /// By default, performs semantic analysis to build the new statement.
1053 /// Subclasses may override this routine to provide different behavior.
RebuildCaseStmtBody(Stmt * S,Stmt * Body)1054 StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) {
1055 getSema().ActOnCaseStmtBody(S, Body);
1056 return S;
1057 }
1058
1059 /// \brief Build a new default statement.
1060 ///
1061 /// By default, performs semantic analysis to build the new statement.
1062 /// Subclasses may override this routine to provide different behavior.
RebuildDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt)1063 StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
1064 SourceLocation ColonLoc,
1065 Stmt *SubStmt) {
1066 return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt,
1067 /*CurScope=*/0);
1068 }
1069
1070 /// \brief Build a new label statement.
1071 ///
1072 /// By default, performs semantic analysis to build the new statement.
1073 /// Subclasses may override this routine to provide different behavior.
RebuildLabelStmt(SourceLocation IdentLoc,LabelDecl * L,SourceLocation ColonLoc,Stmt * SubStmt)1074 StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L,
1075 SourceLocation ColonLoc, Stmt *SubStmt) {
1076 return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt);
1077 }
1078
1079 /// \brief Build a new label statement.
1080 ///
1081 /// By default, performs semantic analysis to build the new statement.
1082 /// Subclasses may override this routine to provide different behavior.
RebuildAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)1083 StmtResult RebuildAttributedStmt(SourceLocation AttrLoc,
1084 ArrayRef<const Attr*> Attrs,
1085 Stmt *SubStmt) {
1086 return SemaRef.ActOnAttributedStmt(AttrLoc, Attrs, SubStmt);
1087 }
1088
1089 /// \brief Build a new "if" statement.
1090 ///
1091 /// By default, performs semantic analysis to build the new statement.
1092 /// Subclasses may override this routine to provide different behavior.
RebuildIfStmt(SourceLocation IfLoc,Sema::FullExprArg Cond,VarDecl * CondVar,Stmt * Then,SourceLocation ElseLoc,Stmt * Else)1093 StmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond,
1094 VarDecl *CondVar, Stmt *Then,
1095 SourceLocation ElseLoc, Stmt *Else) {
1096 return getSema().ActOnIfStmt(IfLoc, Cond, CondVar, Then, ElseLoc, Else);
1097 }
1098
1099 /// \brief Start building a new switch statement.
1100 ///
1101 /// By default, performs semantic analysis to build the new statement.
1102 /// Subclasses may override this routine to provide different behavior.
RebuildSwitchStmtStart(SourceLocation SwitchLoc,Expr * Cond,VarDecl * CondVar)1103 StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc,
1104 Expr *Cond, VarDecl *CondVar) {
1105 return getSema().ActOnStartOfSwitchStmt(SwitchLoc, Cond,
1106 CondVar);
1107 }
1108
1109 /// \brief Attach the body to the switch statement.
1110 ///
1111 /// By default, performs semantic analysis to build the new statement.
1112 /// Subclasses may override this routine to provide different behavior.
RebuildSwitchStmtBody(SourceLocation SwitchLoc,Stmt * Switch,Stmt * Body)1113 StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
1114 Stmt *Switch, Stmt *Body) {
1115 return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body);
1116 }
1117
1118 /// \brief Build a new while statement.
1119 ///
1120 /// By default, performs semantic analysis to build the new statement.
1121 /// Subclasses may override this routine to provide different behavior.
RebuildWhileStmt(SourceLocation WhileLoc,Sema::FullExprArg Cond,VarDecl * CondVar,Stmt * Body)1122 StmtResult RebuildWhileStmt(SourceLocation WhileLoc, Sema::FullExprArg Cond,
1123 VarDecl *CondVar, Stmt *Body) {
1124 return getSema().ActOnWhileStmt(WhileLoc, Cond, CondVar, Body);
1125 }
1126
1127 /// \brief Build a new do-while statement.
1128 ///
1129 /// By default, performs semantic analysis to build the new statement.
1130 /// Subclasses may override this routine to provide different behavior.
RebuildDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation LParenLoc,Expr * Cond,SourceLocation RParenLoc)1131 StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body,
1132 SourceLocation WhileLoc, SourceLocation LParenLoc,
1133 Expr *Cond, SourceLocation RParenLoc) {
1134 return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc,
1135 Cond, RParenLoc);
1136 }
1137
1138 /// \brief Build a new for statement.
1139 ///
1140 /// By default, performs semantic analysis to build the new statement.
1141 /// Subclasses may override this routine to provide different behavior.
RebuildForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * Init,Sema::FullExprArg Cond,VarDecl * CondVar,Sema::FullExprArg Inc,SourceLocation RParenLoc,Stmt * Body)1142 StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1143 Stmt *Init, Sema::FullExprArg Cond,
1144 VarDecl *CondVar, Sema::FullExprArg Inc,
1145 SourceLocation RParenLoc, Stmt *Body) {
1146 return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond,
1147 CondVar, Inc, RParenLoc, Body);
1148 }
1149
1150 /// \brief Build a new goto statement.
1151 ///
1152 /// By default, performs semantic analysis to build the new statement.
1153 /// Subclasses may override this routine to provide different behavior.
RebuildGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * Label)1154 StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
1155 LabelDecl *Label) {
1156 return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label);
1157 }
1158
1159 /// \brief Build a new indirect goto statement.
1160 ///
1161 /// By default, performs semantic analysis to build the new statement.
1162 /// Subclasses may override this routine to provide different behavior.
RebuildIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * Target)1163 StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
1164 SourceLocation StarLoc,
1165 Expr *Target) {
1166 return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target);
1167 }
1168
1169 /// \brief Build a new return statement.
1170 ///
1171 /// By default, performs semantic analysis to build the new statement.
1172 /// Subclasses may override this routine to provide different behavior.
RebuildReturnStmt(SourceLocation ReturnLoc,Expr * Result)1173 StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) {
1174 return getSema().ActOnReturnStmt(ReturnLoc, Result);
1175 }
1176
1177 /// \brief Build a new declaration statement.
1178 ///
1179 /// By default, performs semantic analysis to build the new statement.
1180 /// Subclasses may override this routine to provide different behavior.
RebuildDeclStmt(llvm::MutableArrayRef<Decl * > Decls,SourceLocation StartLoc,SourceLocation EndLoc)1181 StmtResult RebuildDeclStmt(llvm::MutableArrayRef<Decl *> Decls,
1182 SourceLocation StartLoc, SourceLocation EndLoc) {
1183 Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls);
1184 return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc);
1185 }
1186
1187 /// \brief Build a new inline asm statement.
1188 ///
1189 /// By default, performs semantic analysis to build the new statement.
1190 /// Subclasses may override this routine to provide different behavior.
RebuildGCCAsmStmt(SourceLocation AsmLoc,bool IsSimple,bool IsVolatile,unsigned NumOutputs,unsigned NumInputs,IdentifierInfo ** Names,MultiExprArg Constraints,MultiExprArg Exprs,Expr * AsmString,MultiExprArg Clobbers,SourceLocation RParenLoc)1191 StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
1192 bool IsVolatile, unsigned NumOutputs,
1193 unsigned NumInputs, IdentifierInfo **Names,
1194 MultiExprArg Constraints, MultiExprArg Exprs,
1195 Expr *AsmString, MultiExprArg Clobbers,
1196 SourceLocation RParenLoc) {
1197 return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
1198 NumInputs, Names, Constraints, Exprs,
1199 AsmString, Clobbers, RParenLoc);
1200 }
1201
1202 /// \brief Build a new MS style inline asm statement.
1203 ///
1204 /// By default, performs semantic analysis to build the new statement.
1205 /// Subclasses may override this routine to provide different behavior.
RebuildMSAsmStmt(SourceLocation AsmLoc,SourceLocation LBraceLoc,ArrayRef<Token> AsmToks,StringRef AsmString,unsigned NumOutputs,unsigned NumInputs,ArrayRef<StringRef> Constraints,ArrayRef<StringRef> Clobbers,ArrayRef<Expr * > Exprs,SourceLocation EndLoc)1206 StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
1207 ArrayRef<Token> AsmToks,
1208 StringRef AsmString,
1209 unsigned NumOutputs, unsigned NumInputs,
1210 ArrayRef<StringRef> Constraints,
1211 ArrayRef<StringRef> Clobbers,
1212 ArrayRef<Expr*> Exprs,
1213 SourceLocation EndLoc) {
1214 return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString,
1215 NumOutputs, NumInputs,
1216 Constraints, Clobbers, Exprs, EndLoc);
1217 }
1218
1219 /// \brief Build a new Objective-C \@try statement.
1220 ///
1221 /// By default, performs semantic analysis to build the new statement.
1222 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtTryStmt(SourceLocation AtLoc,Stmt * TryBody,MultiStmtArg CatchStmts,Stmt * Finally)1223 StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc,
1224 Stmt *TryBody,
1225 MultiStmtArg CatchStmts,
1226 Stmt *Finally) {
1227 return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts,
1228 Finally);
1229 }
1230
1231 /// \brief Rebuild an Objective-C exception declaration.
1232 ///
1233 /// By default, performs semantic analysis to build the new declaration.
1234 /// Subclasses may override this routine to provide different behavior.
RebuildObjCExceptionDecl(VarDecl * ExceptionDecl,TypeSourceInfo * TInfo,QualType T)1235 VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
1236 TypeSourceInfo *TInfo, QualType T) {
1237 return getSema().BuildObjCExceptionDecl(TInfo, T,
1238 ExceptionDecl->getInnerLocStart(),
1239 ExceptionDecl->getLocation(),
1240 ExceptionDecl->getIdentifier());
1241 }
1242
1243 /// \brief Build a new Objective-C \@catch statement.
1244 ///
1245 /// By default, performs semantic analysis to build the new statement.
1246 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParenLoc,VarDecl * Var,Stmt * Body)1247 StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc,
1248 SourceLocation RParenLoc,
1249 VarDecl *Var,
1250 Stmt *Body) {
1251 return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc,
1252 Var, Body);
1253 }
1254
1255 /// \brief Build a new Objective-C \@finally statement.
1256 ///
1257 /// By default, performs semantic analysis to build the new statement.
1258 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)1259 StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc,
1260 Stmt *Body) {
1261 return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body);
1262 }
1263
1264 /// \brief Build a new Objective-C \@throw statement.
1265 ///
1266 /// By default, performs semantic analysis to build the new statement.
1267 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Operand)1268 StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc,
1269 Expr *Operand) {
1270 return getSema().BuildObjCAtThrowStmt(AtLoc, Operand);
1271 }
1272
1273 /// \brief Build a new OpenMP parallel directive.
1274 ///
1275 /// By default, performs semantic analysis to build the new statement.
1276 /// Subclasses may override this routine to provide different behavior.
RebuildOMPParallelDirective(ArrayRef<OMPClause * > Clauses,Stmt * AStmt,SourceLocation StartLoc,SourceLocation EndLoc)1277 StmtResult RebuildOMPParallelDirective(ArrayRef<OMPClause *> Clauses,
1278 Stmt *AStmt,
1279 SourceLocation StartLoc,
1280 SourceLocation EndLoc) {
1281 return getSema().ActOnOpenMPParallelDirective(Clauses, AStmt,
1282 StartLoc, EndLoc);
1283 }
1284
1285 /// \brief Build a new OpenMP 'default' clause.
1286 ///
1287 /// By default, performs semantic analysis to build the new statement.
1288 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDefaultClause(OpenMPDefaultClauseKind Kind,SourceLocation KindKwLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1289 OMPClause *RebuildOMPDefaultClause(OpenMPDefaultClauseKind Kind,
1290 SourceLocation KindKwLoc,
1291 SourceLocation StartLoc,
1292 SourceLocation LParenLoc,
1293 SourceLocation EndLoc) {
1294 return getSema().ActOnOpenMPDefaultClause(Kind, KindKwLoc,
1295 StartLoc, LParenLoc, EndLoc);
1296 }
1297
1298 /// \brief Build a new OpenMP 'private' clause.
1299 ///
1300 /// By default, performs semantic analysis to build the new statement.
1301 /// Subclasses may override this routine to provide different behavior.
RebuildOMPPrivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1302 OMPClause *RebuildOMPPrivateClause(ArrayRef<Expr *> VarList,
1303 SourceLocation StartLoc,
1304 SourceLocation LParenLoc,
1305 SourceLocation EndLoc) {
1306 return getSema().ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc,
1307 EndLoc);
1308 }
1309
1310 /// \brief Rebuild the operand to an Objective-C \@synchronized statement.
1311 ///
1312 /// By default, performs semantic analysis to build the new statement.
1313 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * object)1314 ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,
1315 Expr *object) {
1316 return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object);
1317 }
1318
1319 /// \brief Build a new Objective-C \@synchronized statement.
1320 ///
1321 /// By default, performs semantic analysis to build the new statement.
1322 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * Object,Stmt * Body)1323 StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,
1324 Expr *Object, Stmt *Body) {
1325 return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body);
1326 }
1327
1328 /// \brief Build a new Objective-C \@autoreleasepool statement.
1329 ///
1330 /// By default, performs semantic analysis to build the new statement.
1331 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)1332 StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,
1333 Stmt *Body) {
1334 return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body);
1335 }
1336
1337 /// \brief Build a new Objective-C fast enumeration statement.
1338 ///
1339 /// By default, performs semantic analysis to build the new statement.
1340 /// Subclasses may override this routine to provide different behavior.
RebuildObjCForCollectionStmt(SourceLocation ForLoc,Stmt * Element,Expr * Collection,SourceLocation RParenLoc,Stmt * Body)1341 StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc,
1342 Stmt *Element,
1343 Expr *Collection,
1344 SourceLocation RParenLoc,
1345 Stmt *Body) {
1346 StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc,
1347 Element,
1348 Collection,
1349 RParenLoc);
1350 if (ForEachStmt.isInvalid())
1351 return StmtError();
1352
1353 return getSema().FinishObjCForCollectionStmt(ForEachStmt.take(), Body);
1354 }
1355
1356 /// \brief Build a new C++ exception declaration.
1357 ///
1358 /// By default, performs semantic analysis to build the new decaration.
1359 /// Subclasses may override this routine to provide different behavior.
RebuildExceptionDecl(VarDecl * ExceptionDecl,TypeSourceInfo * Declarator,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id)1360 VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
1361 TypeSourceInfo *Declarator,
1362 SourceLocation StartLoc,
1363 SourceLocation IdLoc,
1364 IdentifierInfo *Id) {
1365 VarDecl *Var = getSema().BuildExceptionDeclaration(0, Declarator,
1366 StartLoc, IdLoc, Id);
1367 if (Var)
1368 getSema().CurContext->addDecl(Var);
1369 return Var;
1370 }
1371
1372 /// \brief Build a new C++ catch statement.
1373 ///
1374 /// By default, performs semantic analysis to build the new statement.
1375 /// Subclasses may override this routine to provide different behavior.
RebuildCXXCatchStmt(SourceLocation CatchLoc,VarDecl * ExceptionDecl,Stmt * Handler)1376 StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
1377 VarDecl *ExceptionDecl,
1378 Stmt *Handler) {
1379 return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
1380 Handler));
1381 }
1382
1383 /// \brief Build a new C++ try statement.
1384 ///
1385 /// By default, performs semantic analysis to build the new statement.
1386 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTryStmt(SourceLocation TryLoc,Stmt * TryBlock,MultiStmtArg Handlers)1387 StmtResult RebuildCXXTryStmt(SourceLocation TryLoc,
1388 Stmt *TryBlock,
1389 MultiStmtArg Handlers) {
1390 return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers);
1391 }
1392
1393 /// \brief Build a new C++0x range-based for statement.
1394 ///
1395 /// By default, performs semantic analysis to build the new statement.
1396 /// Subclasses may override this routine to provide different behavior.
RebuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation ColonLoc,Stmt * Range,Stmt * BeginEnd,Expr * Cond,Expr * Inc,Stmt * LoopVar,SourceLocation RParenLoc)1397 StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc,
1398 SourceLocation ColonLoc,
1399 Stmt *Range, Stmt *BeginEnd,
1400 Expr *Cond, Expr *Inc,
1401 Stmt *LoopVar,
1402 SourceLocation RParenLoc) {
1403 // If we've just learned that the range is actually an Objective-C
1404 // collection, treat this as an Objective-C fast enumeration loop.
1405 if (DeclStmt *RangeStmt = dyn_cast<DeclStmt>(Range)) {
1406 if (RangeStmt->isSingleDecl()) {
1407 if (VarDecl *RangeVar = dyn_cast<VarDecl>(RangeStmt->getSingleDecl())) {
1408 if (RangeVar->isInvalidDecl())
1409 return StmtError();
1410
1411 Expr *RangeExpr = RangeVar->getInit();
1412 if (!RangeExpr->isTypeDependent() &&
1413 RangeExpr->getType()->isObjCObjectPointerType())
1414 return getSema().ActOnObjCForCollectionStmt(ForLoc, LoopVar, RangeExpr,
1415 RParenLoc);
1416 }
1417 }
1418 }
1419
1420 return getSema().BuildCXXForRangeStmt(ForLoc, ColonLoc, Range, BeginEnd,
1421 Cond, Inc, LoopVar, RParenLoc,
1422 Sema::BFRK_Rebuild);
1423 }
1424
1425 /// \brief Build a new C++0x range-based for statement.
1426 ///
1427 /// By default, performs semantic analysis to build the new statement.
1428 /// Subclasses may override this routine to provide different behavior.
RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)1429 StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,
1430 bool IsIfExists,
1431 NestedNameSpecifierLoc QualifierLoc,
1432 DeclarationNameInfo NameInfo,
1433 Stmt *Nested) {
1434 return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
1435 QualifierLoc, NameInfo, Nested);
1436 }
1437
1438 /// \brief Attach body to a C++0x range-based for statement.
1439 ///
1440 /// By default, performs semantic analysis to finish the new statement.
1441 /// Subclasses may override this routine to provide different behavior.
FinishCXXForRangeStmt(Stmt * ForRange,Stmt * Body)1442 StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) {
1443 return getSema().FinishCXXForRangeStmt(ForRange, Body);
1444 }
1445
RebuildSEHTryStmt(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)1446 StmtResult RebuildSEHTryStmt(bool IsCXXTry,
1447 SourceLocation TryLoc,
1448 Stmt *TryBlock,
1449 Stmt *Handler) {
1450 return getSema().ActOnSEHTryBlock(IsCXXTry,TryLoc,TryBlock,Handler);
1451 }
1452
RebuildSEHExceptStmt(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)1453 StmtResult RebuildSEHExceptStmt(SourceLocation Loc,
1454 Expr *FilterExpr,
1455 Stmt *Block) {
1456 return getSema().ActOnSEHExceptBlock(Loc,FilterExpr,Block);
1457 }
1458
RebuildSEHFinallyStmt(SourceLocation Loc,Stmt * Block)1459 StmtResult RebuildSEHFinallyStmt(SourceLocation Loc,
1460 Stmt *Block) {
1461 return getSema().ActOnSEHFinallyBlock(Loc,Block);
1462 }
1463
1464 /// \brief Build a new expression that references a declaration.
1465 ///
1466 /// By default, performs semantic analysis to build the new expression.
1467 /// Subclasses may override this routine to provide different behavior.
RebuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool RequiresADL)1468 ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
1469 LookupResult &R,
1470 bool RequiresADL) {
1471 return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
1472 }
1473
1474
1475 /// \brief Build a new expression that references a declaration.
1476 ///
1477 /// By default, performs semantic analysis to build the new expression.
1478 /// Subclasses may override this routine to provide different behavior.
RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,ValueDecl * VD,const DeclarationNameInfo & NameInfo,TemplateArgumentListInfo * TemplateArgs)1479 ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
1480 ValueDecl *VD,
1481 const DeclarationNameInfo &NameInfo,
1482 TemplateArgumentListInfo *TemplateArgs) {
1483 CXXScopeSpec SS;
1484 SS.Adopt(QualifierLoc);
1485
1486 // FIXME: loses template args.
1487
1488 return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD);
1489 }
1490
1491 /// \brief Build a new expression in parentheses.
1492 ///
1493 /// By default, performs semantic analysis to build the new expression.
1494 /// Subclasses may override this routine to provide different behavior.
RebuildParenExpr(Expr * SubExpr,SourceLocation LParen,SourceLocation RParen)1495 ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen,
1496 SourceLocation RParen) {
1497 return getSema().ActOnParenExpr(LParen, RParen, SubExpr);
1498 }
1499
1500 /// \brief Build a new pseudo-destructor expression.
1501 ///
1502 /// By default, performs semantic analysis to build the new expression.
1503 /// Subclasses may override this routine to provide different behavior.
1504 ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base,
1505 SourceLocation OperatorLoc,
1506 bool isArrow,
1507 CXXScopeSpec &SS,
1508 TypeSourceInfo *ScopeType,
1509 SourceLocation CCLoc,
1510 SourceLocation TildeLoc,
1511 PseudoDestructorTypeStorage Destroyed);
1512
1513 /// \brief Build a new unary operator expression.
1514 ///
1515 /// By default, performs semantic analysis to build the new expression.
1516 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryOperator(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * SubExpr)1517 ExprResult RebuildUnaryOperator(SourceLocation OpLoc,
1518 UnaryOperatorKind Opc,
1519 Expr *SubExpr) {
1520 return getSema().BuildUnaryOp(/*Scope=*/0, OpLoc, Opc, SubExpr);
1521 }
1522
1523 /// \brief Build a new builtin offsetof expression.
1524 ///
1525 /// By default, performs semantic analysis to build the new expression.
1526 /// Subclasses may override this routine to provide different behavior.
RebuildOffsetOfExpr(SourceLocation OperatorLoc,TypeSourceInfo * Type,Sema::OffsetOfComponent * Components,unsigned NumComponents,SourceLocation RParenLoc)1527 ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc,
1528 TypeSourceInfo *Type,
1529 Sema::OffsetOfComponent *Components,
1530 unsigned NumComponents,
1531 SourceLocation RParenLoc) {
1532 return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components,
1533 NumComponents, RParenLoc);
1534 }
1535
1536 /// \brief Build a new sizeof, alignof or vec_step expression with a
1537 /// type argument.
1538 ///
1539 /// By default, performs semantic analysis to build the new expression.
1540 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryExprOrTypeTrait(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)1541 ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo,
1542 SourceLocation OpLoc,
1543 UnaryExprOrTypeTrait ExprKind,
1544 SourceRange R) {
1545 return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R);
1546 }
1547
1548 /// \brief Build a new sizeof, alignof or vec step expression with an
1549 /// expression argument.
1550 ///
1551 /// By default, performs semantic analysis to build the new expression.
1552 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryExprOrTypeTrait(Expr * SubExpr,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)1553 ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc,
1554 UnaryExprOrTypeTrait ExprKind,
1555 SourceRange R) {
1556 ExprResult Result
1557 = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind);
1558 if (Result.isInvalid())
1559 return ExprError();
1560
1561 return Result;
1562 }
1563
1564 /// \brief Build a new array subscript expression.
1565 ///
1566 /// By default, performs semantic analysis to build the new expression.
1567 /// Subclasses may override this routine to provide different behavior.
RebuildArraySubscriptExpr(Expr * LHS,SourceLocation LBracketLoc,Expr * RHS,SourceLocation RBracketLoc)1568 ExprResult RebuildArraySubscriptExpr(Expr *LHS,
1569 SourceLocation LBracketLoc,
1570 Expr *RHS,
1571 SourceLocation RBracketLoc) {
1572 return getSema().ActOnArraySubscriptExpr(/*Scope=*/0, LHS,
1573 LBracketLoc, RHS,
1574 RBracketLoc);
1575 }
1576
1577 /// \brief Build a new call expression.
1578 ///
1579 /// By default, performs semantic analysis to build the new expression.
1580 /// Subclasses may override this routine to provide different behavior.
1581 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
1582 MultiExprArg Args,
1583 SourceLocation RParenLoc,
1584 Expr *ExecConfig = 0) {
1585 return getSema().ActOnCallExpr(/*Scope=*/0, Callee, LParenLoc,
1586 Args, RParenLoc, ExecConfig);
1587 }
1588
1589 /// \brief Build a new member access expression.
1590 ///
1591 /// By default, performs semantic analysis to build the new expression.
1592 /// Subclasses may override this routine to provide different behavior.
RebuildMemberExpr(Expr * Base,SourceLocation OpLoc,bool isArrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & MemberNameInfo,ValueDecl * Member,NamedDecl * FoundDecl,const TemplateArgumentListInfo * ExplicitTemplateArgs,NamedDecl * FirstQualifierInScope)1593 ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc,
1594 bool isArrow,
1595 NestedNameSpecifierLoc QualifierLoc,
1596 SourceLocation TemplateKWLoc,
1597 const DeclarationNameInfo &MemberNameInfo,
1598 ValueDecl *Member,
1599 NamedDecl *FoundDecl,
1600 const TemplateArgumentListInfo *ExplicitTemplateArgs,
1601 NamedDecl *FirstQualifierInScope) {
1602 ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base,
1603 isArrow);
1604 if (!Member->getDeclName()) {
1605 // We have a reference to an unnamed field. This is always the
1606 // base of an anonymous struct/union member access, i.e. the
1607 // field is always of record type.
1608 assert(!QualifierLoc && "Can't have an unnamed field with a qualifier!");
1609 assert(Member->getType()->isRecordType() &&
1610 "unnamed member not of record type?");
1611
1612 BaseResult =
1613 getSema().PerformObjectMemberConversion(BaseResult.take(),
1614 QualifierLoc.getNestedNameSpecifier(),
1615 FoundDecl, Member);
1616 if (BaseResult.isInvalid())
1617 return ExprError();
1618 Base = BaseResult.take();
1619 ExprValueKind VK = isArrow ? VK_LValue : Base->getValueKind();
1620 MemberExpr *ME =
1621 new (getSema().Context) MemberExpr(Base, isArrow,
1622 Member, MemberNameInfo,
1623 cast<FieldDecl>(Member)->getType(),
1624 VK, OK_Ordinary);
1625 return getSema().Owned(ME);
1626 }
1627
1628 CXXScopeSpec SS;
1629 SS.Adopt(QualifierLoc);
1630
1631 Base = BaseResult.take();
1632 QualType BaseType = Base->getType();
1633
1634 // FIXME: this involves duplicating earlier analysis in a lot of
1635 // cases; we should avoid this when possible.
1636 LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName);
1637 R.addDecl(FoundDecl);
1638 R.resolveKind();
1639
1640 return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow,
1641 SS, TemplateKWLoc,
1642 FirstQualifierInScope,
1643 R, ExplicitTemplateArgs);
1644 }
1645
1646 /// \brief Build a new binary operator expression.
1647 ///
1648 /// By default, performs semantic analysis to build the new expression.
1649 /// Subclasses may override this routine to provide different behavior.
RebuildBinaryOperator(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)1650 ExprResult RebuildBinaryOperator(SourceLocation OpLoc,
1651 BinaryOperatorKind Opc,
1652 Expr *LHS, Expr *RHS) {
1653 return getSema().BuildBinOp(/*Scope=*/0, OpLoc, Opc, LHS, RHS);
1654 }
1655
1656 /// \brief Build a new conditional operator expression.
1657 ///
1658 /// By default, performs semantic analysis to build the new expression.
1659 /// Subclasses may override this routine to provide different behavior.
RebuildConditionalOperator(Expr * Cond,SourceLocation QuestionLoc,Expr * LHS,SourceLocation ColonLoc,Expr * RHS)1660 ExprResult RebuildConditionalOperator(Expr *Cond,
1661 SourceLocation QuestionLoc,
1662 Expr *LHS,
1663 SourceLocation ColonLoc,
1664 Expr *RHS) {
1665 return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond,
1666 LHS, RHS);
1667 }
1668
1669 /// \brief Build a new C-style cast expression.
1670 ///
1671 /// By default, performs semantic analysis to build the new expression.
1672 /// Subclasses may override this routine to provide different behavior.
RebuildCStyleCastExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * SubExpr)1673 ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
1674 TypeSourceInfo *TInfo,
1675 SourceLocation RParenLoc,
1676 Expr *SubExpr) {
1677 return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
1678 SubExpr);
1679 }
1680
1681 /// \brief Build a new compound literal expression.
1682 ///
1683 /// By default, performs semantic analysis to build the new expression.
1684 /// Subclasses may override this routine to provide different behavior.
RebuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * Init)1685 ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
1686 TypeSourceInfo *TInfo,
1687 SourceLocation RParenLoc,
1688 Expr *Init) {
1689 return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
1690 Init);
1691 }
1692
1693 /// \brief Build a new extended vector element access expression.
1694 ///
1695 /// By default, performs semantic analysis to build the new expression.
1696 /// Subclasses may override this routine to provide different behavior.
RebuildExtVectorElementExpr(Expr * Base,SourceLocation OpLoc,SourceLocation AccessorLoc,IdentifierInfo & Accessor)1697 ExprResult RebuildExtVectorElementExpr(Expr *Base,
1698 SourceLocation OpLoc,
1699 SourceLocation AccessorLoc,
1700 IdentifierInfo &Accessor) {
1701
1702 CXXScopeSpec SS;
1703 DeclarationNameInfo NameInfo(&Accessor, AccessorLoc);
1704 return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
1705 OpLoc, /*IsArrow*/ false,
1706 SS, SourceLocation(),
1707 /*FirstQualifierInScope*/ 0,
1708 NameInfo,
1709 /* TemplateArgs */ 0);
1710 }
1711
1712 /// \brief Build a new initializer list expression.
1713 ///
1714 /// By default, performs semantic analysis to build the new expression.
1715 /// Subclasses may override this routine to provide different behavior.
RebuildInitList(SourceLocation LBraceLoc,MultiExprArg Inits,SourceLocation RBraceLoc,QualType ResultTy)1716 ExprResult RebuildInitList(SourceLocation LBraceLoc,
1717 MultiExprArg Inits,
1718 SourceLocation RBraceLoc,
1719 QualType ResultTy) {
1720 ExprResult Result
1721 = SemaRef.ActOnInitList(LBraceLoc, Inits, RBraceLoc);
1722 if (Result.isInvalid() || ResultTy->isDependentType())
1723 return Result;
1724
1725 // Patch in the result type we were given, which may have been computed
1726 // when the initial InitListExpr was built.
1727 InitListExpr *ILE = cast<InitListExpr>((Expr *)Result.get());
1728 ILE->setType(ResultTy);
1729 return Result;
1730 }
1731
1732 /// \brief Build a new designated initializer expression.
1733 ///
1734 /// By default, performs semantic analysis to build the new expression.
1735 /// Subclasses may override this routine to provide different behavior.
RebuildDesignatedInitExpr(Designation & Desig,MultiExprArg ArrayExprs,SourceLocation EqualOrColonLoc,bool GNUSyntax,Expr * Init)1736 ExprResult RebuildDesignatedInitExpr(Designation &Desig,
1737 MultiExprArg ArrayExprs,
1738 SourceLocation EqualOrColonLoc,
1739 bool GNUSyntax,
1740 Expr *Init) {
1741 ExprResult Result
1742 = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
1743 Init);
1744 if (Result.isInvalid())
1745 return ExprError();
1746
1747 return Result;
1748 }
1749
1750 /// \brief Build a new value-initialized expression.
1751 ///
1752 /// By default, builds the implicit value initialization without performing
1753 /// any semantic analysis. Subclasses may override this routine to provide
1754 /// different behavior.
RebuildImplicitValueInitExpr(QualType T)1755 ExprResult RebuildImplicitValueInitExpr(QualType T) {
1756 return SemaRef.Owned(new (SemaRef.Context) ImplicitValueInitExpr(T));
1757 }
1758
1759 /// \brief Build a new \c va_arg expression.
1760 ///
1761 /// By default, performs semantic analysis to build the new expression.
1762 /// Subclasses may override this routine to provide different behavior.
RebuildVAArgExpr(SourceLocation BuiltinLoc,Expr * SubExpr,TypeSourceInfo * TInfo,SourceLocation RParenLoc)1763 ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc,
1764 Expr *SubExpr, TypeSourceInfo *TInfo,
1765 SourceLocation RParenLoc) {
1766 return getSema().BuildVAArgExpr(BuiltinLoc,
1767 SubExpr, TInfo,
1768 RParenLoc);
1769 }
1770
1771 /// \brief Build a new expression list in parentheses.
1772 ///
1773 /// By default, performs semantic analysis to build the new expression.
1774 /// Subclasses may override this routine to provide different behavior.
RebuildParenListExpr(SourceLocation LParenLoc,MultiExprArg SubExprs,SourceLocation RParenLoc)1775 ExprResult RebuildParenListExpr(SourceLocation LParenLoc,
1776 MultiExprArg SubExprs,
1777 SourceLocation RParenLoc) {
1778 return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs);
1779 }
1780
1781 /// \brief Build a new address-of-label expression.
1782 ///
1783 /// By default, performs semantic analysis, using the name of the label
1784 /// rather than attempting to map the label statement itself.
1785 /// Subclasses may override this routine to provide different behavior.
RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,SourceLocation LabelLoc,LabelDecl * Label)1786 ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
1787 SourceLocation LabelLoc, LabelDecl *Label) {
1788 return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label);
1789 }
1790
1791 /// \brief Build a new GNU statement expression.
1792 ///
1793 /// By default, performs semantic analysis to build the new expression.
1794 /// Subclasses may override this routine to provide different behavior.
RebuildStmtExpr(SourceLocation LParenLoc,Stmt * SubStmt,SourceLocation RParenLoc)1795 ExprResult RebuildStmtExpr(SourceLocation LParenLoc,
1796 Stmt *SubStmt,
1797 SourceLocation RParenLoc) {
1798 return getSema().ActOnStmtExpr(LParenLoc, SubStmt, RParenLoc);
1799 }
1800
1801 /// \brief Build a new __builtin_choose_expr expression.
1802 ///
1803 /// By default, performs semantic analysis to build the new expression.
1804 /// Subclasses may override this routine to provide different behavior.
RebuildChooseExpr(SourceLocation BuiltinLoc,Expr * Cond,Expr * LHS,Expr * RHS,SourceLocation RParenLoc)1805 ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
1806 Expr *Cond, Expr *LHS, Expr *RHS,
1807 SourceLocation RParenLoc) {
1808 return SemaRef.ActOnChooseExpr(BuiltinLoc,
1809 Cond, LHS, RHS,
1810 RParenLoc);
1811 }
1812
1813 /// \brief Build a new generic selection expression.
1814 ///
1815 /// By default, performs semantic analysis to build the new expression.
1816 /// Subclasses may override this routine to provide different behavior.
RebuildGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > Types,ArrayRef<Expr * > Exprs)1817 ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc,
1818 SourceLocation DefaultLoc,
1819 SourceLocation RParenLoc,
1820 Expr *ControllingExpr,
1821 ArrayRef<TypeSourceInfo *> Types,
1822 ArrayRef<Expr *> Exprs) {
1823 return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1824 ControllingExpr, Types, Exprs);
1825 }
1826
1827 /// \brief Build a new overloaded operator call expression.
1828 ///
1829 /// By default, performs semantic analysis to build the new expression.
1830 /// The semantic analysis provides the behavior of template instantiation,
1831 /// copying with transformations that turn what looks like an overloaded
1832 /// operator call into a use of a builtin operator, performing
1833 /// argument-dependent lookup, etc. Subclasses may override this routine to
1834 /// provide different behavior.
1835 ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
1836 SourceLocation OpLoc,
1837 Expr *Callee,
1838 Expr *First,
1839 Expr *Second);
1840
1841 /// \brief Build a new C++ "named" cast expression, such as static_cast or
1842 /// reinterpret_cast.
1843 ///
1844 /// By default, this routine dispatches to one of the more-specific routines
1845 /// for a particular named case, e.g., RebuildCXXStaticCastExpr().
1846 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNamedCastExpr(SourceLocation OpLoc,Stmt::StmtClass Class,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)1847 ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
1848 Stmt::StmtClass Class,
1849 SourceLocation LAngleLoc,
1850 TypeSourceInfo *TInfo,
1851 SourceLocation RAngleLoc,
1852 SourceLocation LParenLoc,
1853 Expr *SubExpr,
1854 SourceLocation RParenLoc) {
1855 switch (Class) {
1856 case Stmt::CXXStaticCastExprClass:
1857 return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
1858 RAngleLoc, LParenLoc,
1859 SubExpr, RParenLoc);
1860
1861 case Stmt::CXXDynamicCastExprClass:
1862 return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
1863 RAngleLoc, LParenLoc,
1864 SubExpr, RParenLoc);
1865
1866 case Stmt::CXXReinterpretCastExprClass:
1867 return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
1868 RAngleLoc, LParenLoc,
1869 SubExpr,
1870 RParenLoc);
1871
1872 case Stmt::CXXConstCastExprClass:
1873 return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
1874 RAngleLoc, LParenLoc,
1875 SubExpr, RParenLoc);
1876
1877 default:
1878 llvm_unreachable("Invalid C++ named cast");
1879 }
1880 }
1881
1882 /// \brief Build a new C++ static_cast expression.
1883 ///
1884 /// By default, performs semantic analysis to build the new expression.
1885 /// Subclasses may override this routine to provide different behavior.
RebuildCXXStaticCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)1886 ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
1887 SourceLocation LAngleLoc,
1888 TypeSourceInfo *TInfo,
1889 SourceLocation RAngleLoc,
1890 SourceLocation LParenLoc,
1891 Expr *SubExpr,
1892 SourceLocation RParenLoc) {
1893 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
1894 TInfo, SubExpr,
1895 SourceRange(LAngleLoc, RAngleLoc),
1896 SourceRange(LParenLoc, RParenLoc));
1897 }
1898
1899 /// \brief Build a new C++ dynamic_cast expression.
1900 ///
1901 /// By default, performs semantic analysis to build the new expression.
1902 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDynamicCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)1903 ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
1904 SourceLocation LAngleLoc,
1905 TypeSourceInfo *TInfo,
1906 SourceLocation RAngleLoc,
1907 SourceLocation LParenLoc,
1908 Expr *SubExpr,
1909 SourceLocation RParenLoc) {
1910 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
1911 TInfo, SubExpr,
1912 SourceRange(LAngleLoc, RAngleLoc),
1913 SourceRange(LParenLoc, RParenLoc));
1914 }
1915
1916 /// \brief Build a new C++ reinterpret_cast expression.
1917 ///
1918 /// By default, performs semantic analysis to build the new expression.
1919 /// Subclasses may override this routine to provide different behavior.
RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)1920 ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
1921 SourceLocation LAngleLoc,
1922 TypeSourceInfo *TInfo,
1923 SourceLocation RAngleLoc,
1924 SourceLocation LParenLoc,
1925 Expr *SubExpr,
1926 SourceLocation RParenLoc) {
1927 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
1928 TInfo, SubExpr,
1929 SourceRange(LAngleLoc, RAngleLoc),
1930 SourceRange(LParenLoc, RParenLoc));
1931 }
1932
1933 /// \brief Build a new C++ const_cast expression.
1934 ///
1935 /// By default, performs semantic analysis to build the new expression.
1936 /// Subclasses may override this routine to provide different behavior.
RebuildCXXConstCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)1937 ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
1938 SourceLocation LAngleLoc,
1939 TypeSourceInfo *TInfo,
1940 SourceLocation RAngleLoc,
1941 SourceLocation LParenLoc,
1942 Expr *SubExpr,
1943 SourceLocation RParenLoc) {
1944 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
1945 TInfo, SubExpr,
1946 SourceRange(LAngleLoc, RAngleLoc),
1947 SourceRange(LParenLoc, RParenLoc));
1948 }
1949
1950 /// \brief Build a new C++ functional-style cast expression.
1951 ///
1952 /// By default, performs semantic analysis to build the new expression.
1953 /// Subclasses may override this routine to provide different behavior.
RebuildCXXFunctionalCastExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,Expr * Sub,SourceLocation RParenLoc)1954 ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
1955 SourceLocation LParenLoc,
1956 Expr *Sub,
1957 SourceLocation RParenLoc) {
1958 return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc,
1959 MultiExprArg(&Sub, 1),
1960 RParenLoc);
1961 }
1962
1963 /// \brief Build a new C++ typeid(type) expression.
1964 ///
1965 /// By default, performs semantic analysis to build the new expression.
1966 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTypeidExpr(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)1967 ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
1968 SourceLocation TypeidLoc,
1969 TypeSourceInfo *Operand,
1970 SourceLocation RParenLoc) {
1971 return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
1972 RParenLoc);
1973 }
1974
1975
1976 /// \brief Build a new C++ typeid(expr) expression.
1977 ///
1978 /// By default, performs semantic analysis to build the new expression.
1979 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTypeidExpr(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * Operand,SourceLocation RParenLoc)1980 ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
1981 SourceLocation TypeidLoc,
1982 Expr *Operand,
1983 SourceLocation RParenLoc) {
1984 return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
1985 RParenLoc);
1986 }
1987
1988 /// \brief Build a new C++ __uuidof(type) expression.
1989 ///
1990 /// By default, performs semantic analysis to build the new expression.
1991 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUuidofExpr(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)1992 ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
1993 SourceLocation TypeidLoc,
1994 TypeSourceInfo *Operand,
1995 SourceLocation RParenLoc) {
1996 return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
1997 RParenLoc);
1998 }
1999
2000 /// \brief Build a new C++ __uuidof(expr) expression.
2001 ///
2002 /// By default, performs semantic analysis to build the new expression.
2003 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUuidofExpr(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * Operand,SourceLocation RParenLoc)2004 ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
2005 SourceLocation TypeidLoc,
2006 Expr *Operand,
2007 SourceLocation RParenLoc) {
2008 return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
2009 RParenLoc);
2010 }
2011
2012 /// \brief Build a new C++ "this" expression.
2013 ///
2014 /// By default, builds a new "this" expression without performing any
2015 /// semantic analysis. Subclasses may override this routine to provide
2016 /// different behavior.
RebuildCXXThisExpr(SourceLocation ThisLoc,QualType ThisType,bool isImplicit)2017 ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
2018 QualType ThisType,
2019 bool isImplicit) {
2020 getSema().CheckCXXThisCapture(ThisLoc);
2021 return getSema().Owned(
2022 new (getSema().Context) CXXThisExpr(ThisLoc, ThisType,
2023 isImplicit));
2024 }
2025
2026 /// \brief Build a new C++ throw expression.
2027 ///
2028 /// By default, performs semantic analysis to build the new expression.
2029 /// Subclasses may override this routine to provide different behavior.
RebuildCXXThrowExpr(SourceLocation ThrowLoc,Expr * Sub,bool IsThrownVariableInScope)2030 ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub,
2031 bool IsThrownVariableInScope) {
2032 return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope);
2033 }
2034
2035 /// \brief Build a new C++ default-argument expression.
2036 ///
2037 /// By default, builds a new default-argument expression, which does not
2038 /// require any semantic analysis. Subclasses may override this routine to
2039 /// provide different behavior.
RebuildCXXDefaultArgExpr(SourceLocation Loc,ParmVarDecl * Param)2040 ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc,
2041 ParmVarDecl *Param) {
2042 return getSema().Owned(CXXDefaultArgExpr::Create(getSema().Context, Loc,
2043 Param));
2044 }
2045
2046 /// \brief Build a new C++11 default-initialization expression.
2047 ///
2048 /// By default, builds a new default field initialization expression, which
2049 /// does not require any semantic analysis. Subclasses may override this
2050 /// routine to provide different behavior.
RebuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)2051 ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc,
2052 FieldDecl *Field) {
2053 return getSema().Owned(CXXDefaultInitExpr::Create(getSema().Context, Loc,
2054 Field));
2055 }
2056
2057 /// \brief Build a new C++ zero-initialization expression.
2058 ///
2059 /// By default, performs semantic analysis to build the new expression.
2060 /// Subclasses may override this routine to provide different behavior.
RebuildCXXScalarValueInitExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,SourceLocation RParenLoc)2061 ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo,
2062 SourceLocation LParenLoc,
2063 SourceLocation RParenLoc) {
2064 return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc,
2065 None, RParenLoc);
2066 }
2067
2068 /// \brief Build a new C++ "new" expression.
2069 ///
2070 /// By default, performs semantic analysis to build the new expression.
2071 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNewExpr(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocatedType,TypeSourceInfo * AllocatedTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer)2072 ExprResult RebuildCXXNewExpr(SourceLocation StartLoc,
2073 bool UseGlobal,
2074 SourceLocation PlacementLParen,
2075 MultiExprArg PlacementArgs,
2076 SourceLocation PlacementRParen,
2077 SourceRange TypeIdParens,
2078 QualType AllocatedType,
2079 TypeSourceInfo *AllocatedTypeInfo,
2080 Expr *ArraySize,
2081 SourceRange DirectInitRange,
2082 Expr *Initializer) {
2083 return getSema().BuildCXXNew(StartLoc, UseGlobal,
2084 PlacementLParen,
2085 PlacementArgs,
2086 PlacementRParen,
2087 TypeIdParens,
2088 AllocatedType,
2089 AllocatedTypeInfo,
2090 ArraySize,
2091 DirectInitRange,
2092 Initializer);
2093 }
2094
2095 /// \brief Build a new C++ "delete" expression.
2096 ///
2097 /// By default, performs semantic analysis to build the new expression.
2098 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDeleteExpr(SourceLocation StartLoc,bool IsGlobalDelete,bool IsArrayForm,Expr * Operand)2099 ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
2100 bool IsGlobalDelete,
2101 bool IsArrayForm,
2102 Expr *Operand) {
2103 return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
2104 Operand);
2105 }
2106
2107 /// \brief Build a new unary type trait expression.
2108 ///
2109 /// By default, performs semantic analysis to build the new expression.
2110 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryTypeTrait(UnaryTypeTrait Trait,SourceLocation StartLoc,TypeSourceInfo * T,SourceLocation RParenLoc)2111 ExprResult RebuildUnaryTypeTrait(UnaryTypeTrait Trait,
2112 SourceLocation StartLoc,
2113 TypeSourceInfo *T,
2114 SourceLocation RParenLoc) {
2115 return getSema().BuildUnaryTypeTrait(Trait, StartLoc, T, RParenLoc);
2116 }
2117
2118 /// \brief Build a new binary type trait expression.
2119 ///
2120 /// By default, performs semantic analysis to build the new expression.
2121 /// Subclasses may override this routine to provide different behavior.
RebuildBinaryTypeTrait(BinaryTypeTrait Trait,SourceLocation StartLoc,TypeSourceInfo * LhsT,TypeSourceInfo * RhsT,SourceLocation RParenLoc)2122 ExprResult RebuildBinaryTypeTrait(BinaryTypeTrait Trait,
2123 SourceLocation StartLoc,
2124 TypeSourceInfo *LhsT,
2125 TypeSourceInfo *RhsT,
2126 SourceLocation RParenLoc) {
2127 return getSema().BuildBinaryTypeTrait(Trait, StartLoc, LhsT, RhsT, RParenLoc);
2128 }
2129
2130 /// \brief Build a new type trait expression.
2131 ///
2132 /// By default, performs semantic analysis to build the new expression.
2133 /// Subclasses may override this routine to provide different behavior.
RebuildTypeTrait(TypeTrait Trait,SourceLocation StartLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)2134 ExprResult RebuildTypeTrait(TypeTrait Trait,
2135 SourceLocation StartLoc,
2136 ArrayRef<TypeSourceInfo *> Args,
2137 SourceLocation RParenLoc) {
2138 return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc);
2139 }
2140
2141 /// \brief Build a new array type trait expression.
2142 ///
2143 /// By default, performs semantic analysis to build the new expression.
2144 /// Subclasses may override this routine to provide different behavior.
RebuildArrayTypeTrait(ArrayTypeTrait Trait,SourceLocation StartLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParenLoc)2145 ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait,
2146 SourceLocation StartLoc,
2147 TypeSourceInfo *TSInfo,
2148 Expr *DimExpr,
2149 SourceLocation RParenLoc) {
2150 return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc);
2151 }
2152
2153 /// \brief Build a new expression trait expression.
2154 ///
2155 /// By default, performs semantic analysis to build the new expression.
2156 /// Subclasses may override this routine to provide different behavior.
RebuildExpressionTrait(ExpressionTrait Trait,SourceLocation StartLoc,Expr * Queried,SourceLocation RParenLoc)2157 ExprResult RebuildExpressionTrait(ExpressionTrait Trait,
2158 SourceLocation StartLoc,
2159 Expr *Queried,
2160 SourceLocation RParenLoc) {
2161 return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc);
2162 }
2163
2164 /// \brief Build a new (previously unresolved) declaration reference
2165 /// expression.
2166 ///
2167 /// By default, performs semantic analysis to build the new expression.
2168 /// Subclasses may override this routine to provide different behavior.
RebuildDependentScopeDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs,bool IsAddressOfOperand)2169 ExprResult RebuildDependentScopeDeclRefExpr(
2170 NestedNameSpecifierLoc QualifierLoc,
2171 SourceLocation TemplateKWLoc,
2172 const DeclarationNameInfo &NameInfo,
2173 const TemplateArgumentListInfo *TemplateArgs,
2174 bool IsAddressOfOperand) {
2175 CXXScopeSpec SS;
2176 SS.Adopt(QualifierLoc);
2177
2178 if (TemplateArgs || TemplateKWLoc.isValid())
2179 return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc,
2180 NameInfo, TemplateArgs);
2181
2182 return getSema().BuildQualifiedDeclarationNameExpr(SS, NameInfo,
2183 IsAddressOfOperand);
2184 }
2185
2186 /// \brief Build a new template-id expression.
2187 ///
2188 /// By default, performs semantic analysis to build the new expression.
2189 /// Subclasses may override this routine to provide different behavior.
RebuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2190 ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
2191 SourceLocation TemplateKWLoc,
2192 LookupResult &R,
2193 bool RequiresADL,
2194 const TemplateArgumentListInfo *TemplateArgs) {
2195 return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL,
2196 TemplateArgs);
2197 }
2198
2199 /// \brief Build a new object-construction expression.
2200 ///
2201 /// By default, performs semantic analysis to build the new expression.
2202 /// Subclasses may override this routine to provide different behavior.
RebuildCXXConstructExpr(QualType T,SourceLocation Loc,CXXConstructorDecl * Constructor,bool IsElidable,MultiExprArg Args,bool HadMultipleCandidates,bool ListInitialization,bool RequiresZeroInit,CXXConstructExpr::ConstructionKind ConstructKind,SourceRange ParenRange)2203 ExprResult RebuildCXXConstructExpr(QualType T,
2204 SourceLocation Loc,
2205 CXXConstructorDecl *Constructor,
2206 bool IsElidable,
2207 MultiExprArg Args,
2208 bool HadMultipleCandidates,
2209 bool ListInitialization,
2210 bool RequiresZeroInit,
2211 CXXConstructExpr::ConstructionKind ConstructKind,
2212 SourceRange ParenRange) {
2213 SmallVector<Expr*, 8> ConvertedArgs;
2214 if (getSema().CompleteConstructorCall(Constructor, Args, Loc,
2215 ConvertedArgs))
2216 return ExprError();
2217
2218 return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable,
2219 ConvertedArgs,
2220 HadMultipleCandidates,
2221 ListInitialization,
2222 RequiresZeroInit, ConstructKind,
2223 ParenRange);
2224 }
2225
2226 /// \brief Build a new object-construction expression.
2227 ///
2228 /// By default, performs semantic analysis to build the new expression.
2229 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTemporaryObjectExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)2230 ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo,
2231 SourceLocation LParenLoc,
2232 MultiExprArg Args,
2233 SourceLocation RParenLoc) {
2234 return getSema().BuildCXXTypeConstructExpr(TSInfo,
2235 LParenLoc,
2236 Args,
2237 RParenLoc);
2238 }
2239
2240 /// \brief Build a new object-construction expression.
2241 ///
2242 /// By default, performs semantic analysis to build the new expression.
2243 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUnresolvedConstructExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)2244 ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo,
2245 SourceLocation LParenLoc,
2246 MultiExprArg Args,
2247 SourceLocation RParenLoc) {
2248 return getSema().BuildCXXTypeConstructExpr(TSInfo,
2249 LParenLoc,
2250 Args,
2251 RParenLoc);
2252 }
2253
2254 /// \brief Build a new member reference expression.
2255 ///
2256 /// By default, performs semantic analysis to build the new expression.
2257 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDependentScopeMemberExpr(Expr * BaseE,QualType BaseType,bool IsArrow,SourceLocation OperatorLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & MemberNameInfo,const TemplateArgumentListInfo * TemplateArgs)2258 ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE,
2259 QualType BaseType,
2260 bool IsArrow,
2261 SourceLocation OperatorLoc,
2262 NestedNameSpecifierLoc QualifierLoc,
2263 SourceLocation TemplateKWLoc,
2264 NamedDecl *FirstQualifierInScope,
2265 const DeclarationNameInfo &MemberNameInfo,
2266 const TemplateArgumentListInfo *TemplateArgs) {
2267 CXXScopeSpec SS;
2268 SS.Adopt(QualifierLoc);
2269
2270 return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
2271 OperatorLoc, IsArrow,
2272 SS, TemplateKWLoc,
2273 FirstQualifierInScope,
2274 MemberNameInfo,
2275 TemplateArgs);
2276 }
2277
2278 /// \brief Build a new member reference expression.
2279 ///
2280 /// By default, performs semantic analysis to build the new expression.
2281 /// Subclasses may override this routine to provide different behavior.
RebuildUnresolvedMemberExpr(Expr * BaseE,QualType BaseType,SourceLocation OperatorLoc,bool IsArrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs)2282 ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType,
2283 SourceLocation OperatorLoc,
2284 bool IsArrow,
2285 NestedNameSpecifierLoc QualifierLoc,
2286 SourceLocation TemplateKWLoc,
2287 NamedDecl *FirstQualifierInScope,
2288 LookupResult &R,
2289 const TemplateArgumentListInfo *TemplateArgs) {
2290 CXXScopeSpec SS;
2291 SS.Adopt(QualifierLoc);
2292
2293 return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
2294 OperatorLoc, IsArrow,
2295 SS, TemplateKWLoc,
2296 FirstQualifierInScope,
2297 R, TemplateArgs);
2298 }
2299
2300 /// \brief Build a new noexcept expression.
2301 ///
2302 /// By default, performs semantic analysis to build the new expression.
2303 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNoexceptExpr(SourceRange Range,Expr * Arg)2304 ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) {
2305 return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd());
2306 }
2307
2308 /// \brief Build a new expression to compute the length of a parameter pack.
RebuildSizeOfPackExpr(SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc,Optional<unsigned> Length)2309 ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack,
2310 SourceLocation PackLoc,
2311 SourceLocation RParenLoc,
2312 Optional<unsigned> Length) {
2313 if (Length)
2314 return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
2315 OperatorLoc, Pack, PackLoc,
2316 RParenLoc, *Length);
2317
2318 return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
2319 OperatorLoc, Pack, PackLoc,
2320 RParenLoc);
2321 }
2322
2323 /// \brief Build a new Objective-C boxed expression.
2324 ///
2325 /// By default, performs semantic analysis to build the new expression.
2326 /// Subclasses may override this routine to provide different behavior.
RebuildObjCBoxedExpr(SourceRange SR,Expr * ValueExpr)2327 ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
2328 return getSema().BuildObjCBoxedExpr(SR, ValueExpr);
2329 }
2330
2331 /// \brief Build a new Objective-C array literal.
2332 ///
2333 /// By default, performs semantic analysis to build the new expression.
2334 /// Subclasses may override this routine to provide different behavior.
RebuildObjCArrayLiteral(SourceRange Range,Expr ** Elements,unsigned NumElements)2335 ExprResult RebuildObjCArrayLiteral(SourceRange Range,
2336 Expr **Elements, unsigned NumElements) {
2337 return getSema().BuildObjCArrayLiteral(Range,
2338 MultiExprArg(Elements, NumElements));
2339 }
2340
RebuildObjCSubscriptRefExpr(SourceLocation RB,Expr * Base,Expr * Key,ObjCMethodDecl * getterMethod,ObjCMethodDecl * setterMethod)2341 ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB,
2342 Expr *Base, Expr *Key,
2343 ObjCMethodDecl *getterMethod,
2344 ObjCMethodDecl *setterMethod) {
2345 return getSema().BuildObjCSubscriptExpression(RB, Base, Key,
2346 getterMethod, setterMethod);
2347 }
2348
2349 /// \brief Build a new Objective-C dictionary literal.
2350 ///
2351 /// By default, performs semantic analysis to build the new expression.
2352 /// Subclasses may override this routine to provide different behavior.
RebuildObjCDictionaryLiteral(SourceRange Range,ObjCDictionaryElement * Elements,unsigned NumElements)2353 ExprResult RebuildObjCDictionaryLiteral(SourceRange Range,
2354 ObjCDictionaryElement *Elements,
2355 unsigned NumElements) {
2356 return getSema().BuildObjCDictionaryLiteral(Range, Elements, NumElements);
2357 }
2358
2359 /// \brief Build a new Objective-C \@encode expression.
2360 ///
2361 /// By default, performs semantic analysis to build the new expression.
2362 /// Subclasses may override this routine to provide different behavior.
RebuildObjCEncodeExpr(SourceLocation AtLoc,TypeSourceInfo * EncodeTypeInfo,SourceLocation RParenLoc)2363 ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
2364 TypeSourceInfo *EncodeTypeInfo,
2365 SourceLocation RParenLoc) {
2366 return SemaRef.Owned(SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo,
2367 RParenLoc));
2368 }
2369
2370 /// \brief Build a new Objective-C class message.
RebuildObjCMessageExpr(TypeSourceInfo * ReceiverTypeInfo,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)2371 ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo,
2372 Selector Sel,
2373 ArrayRef<SourceLocation> SelectorLocs,
2374 ObjCMethodDecl *Method,
2375 SourceLocation LBracLoc,
2376 MultiExprArg Args,
2377 SourceLocation RBracLoc) {
2378 return SemaRef.BuildClassMessage(ReceiverTypeInfo,
2379 ReceiverTypeInfo->getType(),
2380 /*SuperLoc=*/SourceLocation(),
2381 Sel, Method, LBracLoc, SelectorLocs,
2382 RBracLoc, Args);
2383 }
2384
2385 /// \brief Build a new Objective-C instance message.
RebuildObjCMessageExpr(Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)2386 ExprResult RebuildObjCMessageExpr(Expr *Receiver,
2387 Selector Sel,
2388 ArrayRef<SourceLocation> SelectorLocs,
2389 ObjCMethodDecl *Method,
2390 SourceLocation LBracLoc,
2391 MultiExprArg Args,
2392 SourceLocation RBracLoc) {
2393 return SemaRef.BuildInstanceMessage(Receiver,
2394 Receiver->getType(),
2395 /*SuperLoc=*/SourceLocation(),
2396 Sel, Method, LBracLoc, SelectorLocs,
2397 RBracLoc, Args);
2398 }
2399
2400 /// \brief Build a new Objective-C ivar reference expression.
2401 ///
2402 /// By default, performs semantic analysis to build the new expression.
2403 /// Subclasses may override this routine to provide different behavior.
RebuildObjCIvarRefExpr(Expr * BaseArg,ObjCIvarDecl * Ivar,SourceLocation IvarLoc,bool IsArrow,bool IsFreeIvar)2404 ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar,
2405 SourceLocation IvarLoc,
2406 bool IsArrow, bool IsFreeIvar) {
2407 // FIXME: We lose track of the IsFreeIvar bit.
2408 CXXScopeSpec SS;
2409 ExprResult Base = getSema().Owned(BaseArg);
2410 LookupResult R(getSema(), Ivar->getDeclName(), IvarLoc,
2411 Sema::LookupMemberName);
2412 ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
2413 /*FIME:*/IvarLoc,
2414 SS, 0,
2415 false);
2416 if (Result.isInvalid() || Base.isInvalid())
2417 return ExprError();
2418
2419 if (Result.get())
2420 return Result;
2421
2422 return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(),
2423 /*FIXME:*/IvarLoc, IsArrow,
2424 SS, SourceLocation(),
2425 /*FirstQualifierInScope=*/0,
2426 R,
2427 /*TemplateArgs=*/0);
2428 }
2429
2430 /// \brief Build a new Objective-C property reference expression.
2431 ///
2432 /// By default, performs semantic analysis to build the new expression.
2433 /// Subclasses may override this routine to provide different behavior.
RebuildObjCPropertyRefExpr(Expr * BaseArg,ObjCPropertyDecl * Property,SourceLocation PropertyLoc)2434 ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg,
2435 ObjCPropertyDecl *Property,
2436 SourceLocation PropertyLoc) {
2437 CXXScopeSpec SS;
2438 ExprResult Base = getSema().Owned(BaseArg);
2439 LookupResult R(getSema(), Property->getDeclName(), PropertyLoc,
2440 Sema::LookupMemberName);
2441 bool IsArrow = false;
2442 ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
2443 /*FIME:*/PropertyLoc,
2444 SS, 0, false);
2445 if (Result.isInvalid() || Base.isInvalid())
2446 return ExprError();
2447
2448 if (Result.get())
2449 return Result;
2450
2451 return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(),
2452 /*FIXME:*/PropertyLoc, IsArrow,
2453 SS, SourceLocation(),
2454 /*FirstQualifierInScope=*/0,
2455 R,
2456 /*TemplateArgs=*/0);
2457 }
2458
2459 /// \brief Build a new Objective-C property reference expression.
2460 ///
2461 /// By default, performs semantic analysis to build the new expression.
2462 /// Subclasses may override this routine to provide different behavior.
RebuildObjCPropertyRefExpr(Expr * Base,QualType T,ObjCMethodDecl * Getter,ObjCMethodDecl * Setter,SourceLocation PropertyLoc)2463 ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T,
2464 ObjCMethodDecl *Getter,
2465 ObjCMethodDecl *Setter,
2466 SourceLocation PropertyLoc) {
2467 // Since these expressions can only be value-dependent, we do not
2468 // need to perform semantic analysis again.
2469 return Owned(
2470 new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T,
2471 VK_LValue, OK_ObjCProperty,
2472 PropertyLoc, Base));
2473 }
2474
2475 /// \brief Build a new Objective-C "isa" expression.
2476 ///
2477 /// By default, performs semantic analysis to build the new expression.
2478 /// Subclasses may override this routine to provide different behavior.
RebuildObjCIsaExpr(Expr * BaseArg,SourceLocation IsaLoc,SourceLocation OpLoc,bool IsArrow)2479 ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc,
2480 SourceLocation OpLoc,
2481 bool IsArrow) {
2482 CXXScopeSpec SS;
2483 ExprResult Base = getSema().Owned(BaseArg);
2484 LookupResult R(getSema(), &getSema().Context.Idents.get("isa"), IsaLoc,
2485 Sema::LookupMemberName);
2486 ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
2487 OpLoc,
2488 SS, 0, false);
2489 if (Result.isInvalid() || Base.isInvalid())
2490 return ExprError();
2491
2492 if (Result.get())
2493 return Result;
2494
2495 return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(),
2496 OpLoc, IsArrow,
2497 SS, SourceLocation(),
2498 /*FirstQualifierInScope=*/0,
2499 R,
2500 /*TemplateArgs=*/0);
2501 }
2502
2503 /// \brief Build a new shuffle vector expression.
2504 ///
2505 /// By default, performs semantic analysis to build the new expression.
2506 /// Subclasses may override this routine to provide different behavior.
RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,MultiExprArg SubExprs,SourceLocation RParenLoc)2507 ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
2508 MultiExprArg SubExprs,
2509 SourceLocation RParenLoc) {
2510 // Find the declaration for __builtin_shufflevector
2511 const IdentifierInfo &Name
2512 = SemaRef.Context.Idents.get("__builtin_shufflevector");
2513 TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
2514 DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
2515 assert(!Lookup.empty() && "No __builtin_shufflevector?");
2516
2517 // Build a reference to the __builtin_shufflevector builtin
2518 FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front());
2519 Expr *Callee = new (SemaRef.Context) DeclRefExpr(Builtin, false,
2520 SemaRef.Context.BuiltinFnTy,
2521 VK_RValue, BuiltinLoc);
2522 QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType());
2523 Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy,
2524 CK_BuiltinFnToFnPtr).take();
2525
2526 // Build the CallExpr
2527 ExprResult TheCall = SemaRef.Owned(
2528 new (SemaRef.Context) CallExpr(SemaRef.Context, Callee, SubExprs,
2529 Builtin->getCallResultType(),
2530 Expr::getValueKindForType(Builtin->getResultType()),
2531 RParenLoc));
2532
2533 // Type-check the __builtin_shufflevector expression.
2534 return SemaRef.SemaBuiltinShuffleVector(cast<CallExpr>(TheCall.take()));
2535 }
2536
2537 /// \brief Build a new template argument pack expansion.
2538 ///
2539 /// By default, performs semantic analysis to build a new pack expansion
2540 /// for a template argument. Subclasses may override this routine to provide
2541 /// different behavior.
RebuildPackExpansion(TemplateArgumentLoc Pattern,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)2542 TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern,
2543 SourceLocation EllipsisLoc,
2544 Optional<unsigned> NumExpansions) {
2545 switch (Pattern.getArgument().getKind()) {
2546 case TemplateArgument::Expression: {
2547 ExprResult Result
2548 = getSema().CheckPackExpansion(Pattern.getSourceExpression(),
2549 EllipsisLoc, NumExpansions);
2550 if (Result.isInvalid())
2551 return TemplateArgumentLoc();
2552
2553 return TemplateArgumentLoc(Result.get(), Result.get());
2554 }
2555
2556 case TemplateArgument::Template:
2557 return TemplateArgumentLoc(TemplateArgument(
2558 Pattern.getArgument().getAsTemplate(),
2559 NumExpansions),
2560 Pattern.getTemplateQualifierLoc(),
2561 Pattern.getTemplateNameLoc(),
2562 EllipsisLoc);
2563
2564 case TemplateArgument::Null:
2565 case TemplateArgument::Integral:
2566 case TemplateArgument::Declaration:
2567 case TemplateArgument::Pack:
2568 case TemplateArgument::TemplateExpansion:
2569 case TemplateArgument::NullPtr:
2570 llvm_unreachable("Pack expansion pattern has no parameter packs");
2571
2572 case TemplateArgument::Type:
2573 if (TypeSourceInfo *Expansion
2574 = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(),
2575 EllipsisLoc,
2576 NumExpansions))
2577 return TemplateArgumentLoc(TemplateArgument(Expansion->getType()),
2578 Expansion);
2579 break;
2580 }
2581
2582 return TemplateArgumentLoc();
2583 }
2584
2585 /// \brief Build a new expression pack expansion.
2586 ///
2587 /// By default, performs semantic analysis to build a new pack expansion
2588 /// for an expression. Subclasses may override this routine to provide
2589 /// different behavior.
RebuildPackExpansion(Expr * Pattern,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)2590 ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
2591 Optional<unsigned> NumExpansions) {
2592 return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions);
2593 }
2594
2595 /// \brief Build a new atomic operation expression.
2596 ///
2597 /// By default, performs semantic analysis to build the new expression.
2598 /// Subclasses may override this routine to provide different behavior.
RebuildAtomicExpr(SourceLocation BuiltinLoc,MultiExprArg SubExprs,QualType RetTy,AtomicExpr::AtomicOp Op,SourceLocation RParenLoc)2599 ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc,
2600 MultiExprArg SubExprs,
2601 QualType RetTy,
2602 AtomicExpr::AtomicOp Op,
2603 SourceLocation RParenLoc) {
2604 // Just create the expression; there is not any interesting semantic
2605 // analysis here because we can't actually build an AtomicExpr until
2606 // we are sure it is semantically sound.
2607 return new (SemaRef.Context) AtomicExpr(BuiltinLoc, SubExprs, RetTy, Op,
2608 RParenLoc);
2609 }
2610
2611 private:
2612 TypeLoc TransformTypeInObjectScope(TypeLoc TL,
2613 QualType ObjectType,
2614 NamedDecl *FirstQualifierInScope,
2615 CXXScopeSpec &SS);
2616
2617 TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
2618 QualType ObjectType,
2619 NamedDecl *FirstQualifierInScope,
2620 CXXScopeSpec &SS);
2621 };
2622
2623 template<typename Derived>
TransformStmt(Stmt * S)2624 StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S) {
2625 if (!S)
2626 return SemaRef.Owned(S);
2627
2628 switch (S->getStmtClass()) {
2629 case Stmt::NoStmtClass: break;
2630
2631 // Transform individual statement nodes
2632 #define STMT(Node, Parent) \
2633 case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
2634 #define ABSTRACT_STMT(Node)
2635 #define EXPR(Node, Parent)
2636 #include "clang/AST/StmtNodes.inc"
2637
2638 // Transform expressions by calling TransformExpr.
2639 #define STMT(Node, Parent)
2640 #define ABSTRACT_STMT(Stmt)
2641 #define EXPR(Node, Parent) case Stmt::Node##Class:
2642 #include "clang/AST/StmtNodes.inc"
2643 {
2644 ExprResult E = getDerived().TransformExpr(cast<Expr>(S));
2645 if (E.isInvalid())
2646 return StmtError();
2647
2648 return getSema().ActOnExprStmt(E);
2649 }
2650 }
2651
2652 return SemaRef.Owned(S);
2653 }
2654
2655 template<typename Derived>
TransformOMPClause(OMPClause * S)2656 OMPClause *TreeTransform<Derived>::TransformOMPClause(OMPClause *S) {
2657 if (!S)
2658 return S;
2659
2660 switch (S->getClauseKind()) {
2661 default: break;
2662 // Transform individual clause nodes
2663 #define OPENMP_CLAUSE(Name, Class) \
2664 case OMPC_ ## Name : \
2665 return getDerived().Transform ## Class(cast<Class>(S));
2666 #include "clang/Basic/OpenMPKinds.def"
2667 }
2668
2669 return S;
2670 }
2671
2672
2673 template<typename Derived>
TransformExpr(Expr * E)2674 ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
2675 if (!E)
2676 return SemaRef.Owned(E);
2677
2678 switch (E->getStmtClass()) {
2679 case Stmt::NoStmtClass: break;
2680 #define STMT(Node, Parent) case Stmt::Node##Class: break;
2681 #define ABSTRACT_STMT(Stmt)
2682 #define EXPR(Node, Parent) \
2683 case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
2684 #include "clang/AST/StmtNodes.inc"
2685 }
2686
2687 return SemaRef.Owned(E);
2688 }
2689
2690 template<typename Derived>
TransformInitializer(Expr * Init,bool CXXDirectInit)2691 ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init,
2692 bool CXXDirectInit) {
2693 // Initializers are instantiated like expressions, except that various outer
2694 // layers are stripped.
2695 if (!Init)
2696 return SemaRef.Owned(Init);
2697
2698 if (ExprWithCleanups *ExprTemp = dyn_cast<ExprWithCleanups>(Init))
2699 Init = ExprTemp->getSubExpr();
2700
2701 if (MaterializeTemporaryExpr *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
2702 Init = MTE->GetTemporaryExpr();
2703
2704 while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init))
2705 Init = Binder->getSubExpr();
2706
2707 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init))
2708 Init = ICE->getSubExprAsWritten();
2709
2710 if (CXXStdInitializerListExpr *ILE =
2711 dyn_cast<CXXStdInitializerListExpr>(Init))
2712 return TransformInitializer(ILE->getSubExpr(), CXXDirectInit);
2713
2714 // If this is not a direct-initializer, we only need to reconstruct
2715 // InitListExprs. Other forms of copy-initialization will be a no-op if
2716 // the initializer is already the right type.
2717 CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init);
2718 if (!CXXDirectInit && !(Construct && Construct->isListInitialization()))
2719 return getDerived().TransformExpr(Init);
2720
2721 // Revert value-initialization back to empty parens.
2722 if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) {
2723 SourceRange Parens = VIE->getSourceRange();
2724 return getDerived().RebuildParenListExpr(Parens.getBegin(), None,
2725 Parens.getEnd());
2726 }
2727
2728 // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization.
2729 if (isa<ImplicitValueInitExpr>(Init))
2730 return getDerived().RebuildParenListExpr(SourceLocation(), None,
2731 SourceLocation());
2732
2733 // Revert initialization by constructor back to a parenthesized or braced list
2734 // of expressions. Any other form of initializer can just be reused directly.
2735 if (!Construct || isa<CXXTemporaryObjectExpr>(Construct))
2736 return getDerived().TransformExpr(Init);
2737
2738 SmallVector<Expr*, 8> NewArgs;
2739 bool ArgChanged = false;
2740 if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(),
2741 /*IsCall*/true, NewArgs, &ArgChanged))
2742 return ExprError();
2743
2744 // If this was list initialization, revert to list form.
2745 if (Construct->isListInitialization())
2746 return getDerived().RebuildInitList(Construct->getLocStart(), NewArgs,
2747 Construct->getLocEnd(),
2748 Construct->getType());
2749
2750 // Build a ParenListExpr to represent anything else.
2751 SourceRange Parens = Construct->getParenRange();
2752 return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs,
2753 Parens.getEnd());
2754 }
2755
2756 template<typename Derived>
TransformExprs(Expr ** Inputs,unsigned NumInputs,bool IsCall,SmallVectorImpl<Expr * > & Outputs,bool * ArgChanged)2757 bool TreeTransform<Derived>::TransformExprs(Expr **Inputs,
2758 unsigned NumInputs,
2759 bool IsCall,
2760 SmallVectorImpl<Expr *> &Outputs,
2761 bool *ArgChanged) {
2762 for (unsigned I = 0; I != NumInputs; ++I) {
2763 // If requested, drop call arguments that need to be dropped.
2764 if (IsCall && getDerived().DropCallArgument(Inputs[I])) {
2765 if (ArgChanged)
2766 *ArgChanged = true;
2767
2768 break;
2769 }
2770
2771 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) {
2772 Expr *Pattern = Expansion->getPattern();
2773
2774 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2775 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
2776 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
2777
2778 // Determine whether the set of unexpanded parameter packs can and should
2779 // be expanded.
2780 bool Expand = true;
2781 bool RetainExpansion = false;
2782 Optional<unsigned> OrigNumExpansions = Expansion->getNumExpansions();
2783 Optional<unsigned> NumExpansions = OrigNumExpansions;
2784 if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(),
2785 Pattern->getSourceRange(),
2786 Unexpanded,
2787 Expand, RetainExpansion,
2788 NumExpansions))
2789 return true;
2790
2791 if (!Expand) {
2792 // The transform has determined that we should perform a simple
2793 // transformation on the pack expansion, producing another pack
2794 // expansion.
2795 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
2796 ExprResult OutPattern = getDerived().TransformExpr(Pattern);
2797 if (OutPattern.isInvalid())
2798 return true;
2799
2800 ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(),
2801 Expansion->getEllipsisLoc(),
2802 NumExpansions);
2803 if (Out.isInvalid())
2804 return true;
2805
2806 if (ArgChanged)
2807 *ArgChanged = true;
2808 Outputs.push_back(Out.get());
2809 continue;
2810 }
2811
2812 // Record right away that the argument was changed. This needs
2813 // to happen even if the array expands to nothing.
2814 if (ArgChanged) *ArgChanged = true;
2815
2816 // The transform has determined that we should perform an elementwise
2817 // expansion of the pattern. Do so.
2818 for (unsigned I = 0; I != *NumExpansions; ++I) {
2819 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
2820 ExprResult Out = getDerived().TransformExpr(Pattern);
2821 if (Out.isInvalid())
2822 return true;
2823
2824 if (Out.get()->containsUnexpandedParameterPack()) {
2825 Out = RebuildPackExpansion(Out.get(), Expansion->getEllipsisLoc(),
2826 OrigNumExpansions);
2827 if (Out.isInvalid())
2828 return true;
2829 }
2830
2831 Outputs.push_back(Out.get());
2832 }
2833
2834 continue;
2835 }
2836
2837 ExprResult Result =
2838 IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false)
2839 : getDerived().TransformExpr(Inputs[I]);
2840 if (Result.isInvalid())
2841 return true;
2842
2843 if (Result.get() != Inputs[I] && ArgChanged)
2844 *ArgChanged = true;
2845
2846 Outputs.push_back(Result.get());
2847 }
2848
2849 return false;
2850 }
2851
2852 template<typename Derived>
2853 NestedNameSpecifierLoc
TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,QualType ObjectType,NamedDecl * FirstQualifierInScope)2854 TreeTransform<Derived>::TransformNestedNameSpecifierLoc(
2855 NestedNameSpecifierLoc NNS,
2856 QualType ObjectType,
2857 NamedDecl *FirstQualifierInScope) {
2858 SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
2859 for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier;
2860 Qualifier = Qualifier.getPrefix())
2861 Qualifiers.push_back(Qualifier);
2862
2863 CXXScopeSpec SS;
2864 while (!Qualifiers.empty()) {
2865 NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
2866 NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier();
2867
2868 switch (QNNS->getKind()) {
2869 case NestedNameSpecifier::Identifier:
2870 if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/0,
2871 *QNNS->getAsIdentifier(),
2872 Q.getLocalBeginLoc(),
2873 Q.getLocalEndLoc(),
2874 ObjectType, false, SS,
2875 FirstQualifierInScope, false))
2876 return NestedNameSpecifierLoc();
2877
2878 break;
2879
2880 case NestedNameSpecifier::Namespace: {
2881 NamespaceDecl *NS
2882 = cast_or_null<NamespaceDecl>(
2883 getDerived().TransformDecl(
2884 Q.getLocalBeginLoc(),
2885 QNNS->getAsNamespace()));
2886 SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc());
2887 break;
2888 }
2889
2890 case NestedNameSpecifier::NamespaceAlias: {
2891 NamespaceAliasDecl *Alias
2892 = cast_or_null<NamespaceAliasDecl>(
2893 getDerived().TransformDecl(Q.getLocalBeginLoc(),
2894 QNNS->getAsNamespaceAlias()));
2895 SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(),
2896 Q.getLocalEndLoc());
2897 break;
2898 }
2899
2900 case NestedNameSpecifier::Global:
2901 // There is no meaningful transformation that one could perform on the
2902 // global scope.
2903 SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc());
2904 break;
2905
2906 case NestedNameSpecifier::TypeSpecWithTemplate:
2907 case NestedNameSpecifier::TypeSpec: {
2908 TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType,
2909 FirstQualifierInScope, SS);
2910
2911 if (!TL)
2912 return NestedNameSpecifierLoc();
2913
2914 if (TL.getType()->isDependentType() || TL.getType()->isRecordType() ||
2915 (SemaRef.getLangOpts().CPlusPlus11 &&
2916 TL.getType()->isEnumeralType())) {
2917 assert(!TL.getType().hasLocalQualifiers() &&
2918 "Can't get cv-qualifiers here");
2919 if (TL.getType()->isEnumeralType())
2920 SemaRef.Diag(TL.getBeginLoc(),
2921 diag::warn_cxx98_compat_enum_nested_name_spec);
2922 SS.Extend(SemaRef.Context, /*FIXME:*/SourceLocation(), TL,
2923 Q.getLocalEndLoc());
2924 break;
2925 }
2926 // If the nested-name-specifier is an invalid type def, don't emit an
2927 // error because a previous error should have already been emitted.
2928 TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>();
2929 if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) {
2930 SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag)
2931 << TL.getType() << SS.getRange();
2932 }
2933 return NestedNameSpecifierLoc();
2934 }
2935 }
2936
2937 // The qualifier-in-scope and object type only apply to the leftmost entity.
2938 FirstQualifierInScope = 0;
2939 ObjectType = QualType();
2940 }
2941
2942 // Don't rebuild the nested-name-specifier if we don't have to.
2943 if (SS.getScopeRep() == NNS.getNestedNameSpecifier() &&
2944 !getDerived().AlwaysRebuild())
2945 return NNS;
2946
2947 // If we can re-use the source-location data from the original
2948 // nested-name-specifier, do so.
2949 if (SS.location_size() == NNS.getDataLength() &&
2950 memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0)
2951 return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData());
2952
2953 // Allocate new nested-name-specifier location information.
2954 return SS.getWithLocInContext(SemaRef.Context);
2955 }
2956
2957 template<typename Derived>
2958 DeclarationNameInfo
2959 TreeTransform<Derived>
TransformDeclarationNameInfo(const DeclarationNameInfo & NameInfo)2960 ::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) {
2961 DeclarationName Name = NameInfo.getName();
2962 if (!Name)
2963 return DeclarationNameInfo();
2964
2965 switch (Name.getNameKind()) {
2966 case DeclarationName::Identifier:
2967 case DeclarationName::ObjCZeroArgSelector:
2968 case DeclarationName::ObjCOneArgSelector:
2969 case DeclarationName::ObjCMultiArgSelector:
2970 case DeclarationName::CXXOperatorName:
2971 case DeclarationName::CXXLiteralOperatorName:
2972 case DeclarationName::CXXUsingDirective:
2973 return NameInfo;
2974
2975 case DeclarationName::CXXConstructorName:
2976 case DeclarationName::CXXDestructorName:
2977 case DeclarationName::CXXConversionFunctionName: {
2978 TypeSourceInfo *NewTInfo;
2979 CanQualType NewCanTy;
2980 if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) {
2981 NewTInfo = getDerived().TransformType(OldTInfo);
2982 if (!NewTInfo)
2983 return DeclarationNameInfo();
2984 NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType());
2985 }
2986 else {
2987 NewTInfo = 0;
2988 TemporaryBase Rebase(*this, NameInfo.getLoc(), Name);
2989 QualType NewT = getDerived().TransformType(Name.getCXXNameType());
2990 if (NewT.isNull())
2991 return DeclarationNameInfo();
2992 NewCanTy = SemaRef.Context.getCanonicalType(NewT);
2993 }
2994
2995 DeclarationName NewName
2996 = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(),
2997 NewCanTy);
2998 DeclarationNameInfo NewNameInfo(NameInfo);
2999 NewNameInfo.setName(NewName);
3000 NewNameInfo.setNamedTypeInfo(NewTInfo);
3001 return NewNameInfo;
3002 }
3003 }
3004
3005 llvm_unreachable("Unknown name kind.");
3006 }
3007
3008 template<typename Derived>
3009 TemplateName
TransformTemplateName(CXXScopeSpec & SS,TemplateName Name,SourceLocation NameLoc,QualType ObjectType,NamedDecl * FirstQualifierInScope)3010 TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS,
3011 TemplateName Name,
3012 SourceLocation NameLoc,
3013 QualType ObjectType,
3014 NamedDecl *FirstQualifierInScope) {
3015 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
3016 TemplateDecl *Template = QTN->getTemplateDecl();
3017 assert(Template && "qualified template name must refer to a template");
3018
3019 TemplateDecl *TransTemplate
3020 = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
3021 Template));
3022 if (!TransTemplate)
3023 return TemplateName();
3024
3025 if (!getDerived().AlwaysRebuild() &&
3026 SS.getScopeRep() == QTN->getQualifier() &&
3027 TransTemplate == Template)
3028 return Name;
3029
3030 return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(),
3031 TransTemplate);
3032 }
3033
3034 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
3035 if (SS.getScopeRep()) {
3036 // These apply to the scope specifier, not the template.
3037 ObjectType = QualType();
3038 FirstQualifierInScope = 0;
3039 }
3040
3041 if (!getDerived().AlwaysRebuild() &&
3042 SS.getScopeRep() == DTN->getQualifier() &&
3043 ObjectType.isNull())
3044 return Name;
3045
3046 if (DTN->isIdentifier()) {
3047 return getDerived().RebuildTemplateName(SS,
3048 *DTN->getIdentifier(),
3049 NameLoc,
3050 ObjectType,
3051 FirstQualifierInScope);
3052 }
3053
3054 return getDerived().RebuildTemplateName(SS, DTN->getOperator(), NameLoc,
3055 ObjectType);
3056 }
3057
3058 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3059 TemplateDecl *TransTemplate
3060 = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
3061 Template));
3062 if (!TransTemplate)
3063 return TemplateName();
3064
3065 if (!getDerived().AlwaysRebuild() &&
3066 TransTemplate == Template)
3067 return Name;
3068
3069 return TemplateName(TransTemplate);
3070 }
3071
3072 if (SubstTemplateTemplateParmPackStorage *SubstPack
3073 = Name.getAsSubstTemplateTemplateParmPack()) {
3074 TemplateTemplateParmDecl *TransParam
3075 = cast_or_null<TemplateTemplateParmDecl>(
3076 getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack()));
3077 if (!TransParam)
3078 return TemplateName();
3079
3080 if (!getDerived().AlwaysRebuild() &&
3081 TransParam == SubstPack->getParameterPack())
3082 return Name;
3083
3084 return getDerived().RebuildTemplateName(TransParam,
3085 SubstPack->getArgumentPack());
3086 }
3087
3088 // These should be getting filtered out before they reach the AST.
3089 llvm_unreachable("overloaded function decl survived to here");
3090 }
3091
3092 template<typename Derived>
InventTemplateArgumentLoc(const TemplateArgument & Arg,TemplateArgumentLoc & Output)3093 void TreeTransform<Derived>::InventTemplateArgumentLoc(
3094 const TemplateArgument &Arg,
3095 TemplateArgumentLoc &Output) {
3096 SourceLocation Loc = getDerived().getBaseLocation();
3097 switch (Arg.getKind()) {
3098 case TemplateArgument::Null:
3099 llvm_unreachable("null template argument in TreeTransform");
3100 break;
3101
3102 case TemplateArgument::Type:
3103 Output = TemplateArgumentLoc(Arg,
3104 SemaRef.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
3105
3106 break;
3107
3108 case TemplateArgument::Template:
3109 case TemplateArgument::TemplateExpansion: {
3110 NestedNameSpecifierLocBuilder Builder;
3111 TemplateName Template = Arg.getAsTemplate();
3112 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
3113 Builder.MakeTrivial(SemaRef.Context, DTN->getQualifier(), Loc);
3114 else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3115 Builder.MakeTrivial(SemaRef.Context, QTN->getQualifier(), Loc);
3116
3117 if (Arg.getKind() == TemplateArgument::Template)
3118 Output = TemplateArgumentLoc(Arg,
3119 Builder.getWithLocInContext(SemaRef.Context),
3120 Loc);
3121 else
3122 Output = TemplateArgumentLoc(Arg,
3123 Builder.getWithLocInContext(SemaRef.Context),
3124 Loc, Loc);
3125
3126 break;
3127 }
3128
3129 case TemplateArgument::Expression:
3130 Output = TemplateArgumentLoc(Arg, Arg.getAsExpr());
3131 break;
3132
3133 case TemplateArgument::Declaration:
3134 case TemplateArgument::Integral:
3135 case TemplateArgument::Pack:
3136 case TemplateArgument::NullPtr:
3137 Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
3138 break;
3139 }
3140 }
3141
3142 template<typename Derived>
TransformTemplateArgument(const TemplateArgumentLoc & Input,TemplateArgumentLoc & Output)3143 bool TreeTransform<Derived>::TransformTemplateArgument(
3144 const TemplateArgumentLoc &Input,
3145 TemplateArgumentLoc &Output) {
3146 const TemplateArgument &Arg = Input.getArgument();
3147 switch (Arg.getKind()) {
3148 case TemplateArgument::Null:
3149 case TemplateArgument::Integral:
3150 case TemplateArgument::Pack:
3151 case TemplateArgument::Declaration:
3152 case TemplateArgument::NullPtr:
3153 llvm_unreachable("Unexpected TemplateArgument");
3154
3155 case TemplateArgument::Type: {
3156 TypeSourceInfo *DI = Input.getTypeSourceInfo();
3157 if (DI == NULL)
3158 DI = InventTypeSourceInfo(Input.getArgument().getAsType());
3159
3160 DI = getDerived().TransformType(DI);
3161 if (!DI) return true;
3162
3163 Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3164 return false;
3165 }
3166
3167 case TemplateArgument::Template: {
3168 NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc();
3169 if (QualifierLoc) {
3170 QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc);
3171 if (!QualifierLoc)
3172 return true;
3173 }
3174
3175 CXXScopeSpec SS;
3176 SS.Adopt(QualifierLoc);
3177 TemplateName Template
3178 = getDerived().TransformTemplateName(SS, Arg.getAsTemplate(),
3179 Input.getTemplateNameLoc());
3180 if (Template.isNull())
3181 return true;
3182
3183 Output = TemplateArgumentLoc(TemplateArgument(Template), QualifierLoc,
3184 Input.getTemplateNameLoc());
3185 return false;
3186 }
3187
3188 case TemplateArgument::TemplateExpansion:
3189 llvm_unreachable("Caller should expand pack expansions");
3190
3191 case TemplateArgument::Expression: {
3192 // Template argument expressions are constant expressions.
3193 EnterExpressionEvaluationContext Unevaluated(getSema(),
3194 Sema::ConstantEvaluated);
3195
3196 Expr *InputExpr = Input.getSourceExpression();
3197 if (!InputExpr) InputExpr = Input.getArgument().getAsExpr();
3198
3199 ExprResult E = getDerived().TransformExpr(InputExpr);
3200 E = SemaRef.ActOnConstantExpression(E);
3201 if (E.isInvalid()) return true;
3202 Output = TemplateArgumentLoc(TemplateArgument(E.take()), E.take());
3203 return false;
3204 }
3205 }
3206
3207 // Work around bogus GCC warning
3208 return true;
3209 }
3210
3211 /// \brief Iterator adaptor that invents template argument location information
3212 /// for each of the template arguments in its underlying iterator.
3213 template<typename Derived, typename InputIterator>
3214 class TemplateArgumentLocInventIterator {
3215 TreeTransform<Derived> &Self;
3216 InputIterator Iter;
3217
3218 public:
3219 typedef TemplateArgumentLoc value_type;
3220 typedef TemplateArgumentLoc reference;
3221 typedef typename std::iterator_traits<InputIterator>::difference_type
3222 difference_type;
3223 typedef std::input_iterator_tag iterator_category;
3224
3225 class pointer {
3226 TemplateArgumentLoc Arg;
3227
3228 public:
pointer(TemplateArgumentLoc Arg)3229 explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
3230
3231 const TemplateArgumentLoc *operator->() const { return &Arg; }
3232 };
3233
TemplateArgumentLocInventIterator()3234 TemplateArgumentLocInventIterator() { }
3235
TemplateArgumentLocInventIterator(TreeTransform<Derived> & Self,InputIterator Iter)3236 explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self,
3237 InputIterator Iter)
3238 : Self(Self), Iter(Iter) { }
3239
3240 TemplateArgumentLocInventIterator &operator++() {
3241 ++Iter;
3242 return *this;
3243 }
3244
3245 TemplateArgumentLocInventIterator operator++(int) {
3246 TemplateArgumentLocInventIterator Old(*this);
3247 ++(*this);
3248 return Old;
3249 }
3250
3251 reference operator*() const {
3252 TemplateArgumentLoc Result;
3253 Self.InventTemplateArgumentLoc(*Iter, Result);
3254 return Result;
3255 }
3256
3257 pointer operator->() const { return pointer(**this); }
3258
3259 friend bool operator==(const TemplateArgumentLocInventIterator &X,
3260 const TemplateArgumentLocInventIterator &Y) {
3261 return X.Iter == Y.Iter;
3262 }
3263
3264 friend bool operator!=(const TemplateArgumentLocInventIterator &X,
3265 const TemplateArgumentLocInventIterator &Y) {
3266 return X.Iter != Y.Iter;
3267 }
3268 };
3269
3270 template<typename Derived>
3271 template<typename InputIterator>
TransformTemplateArguments(InputIterator First,InputIterator Last,TemplateArgumentListInfo & Outputs)3272 bool TreeTransform<Derived>::TransformTemplateArguments(InputIterator First,
3273 InputIterator Last,
3274 TemplateArgumentListInfo &Outputs) {
3275 for (; First != Last; ++First) {
3276 TemplateArgumentLoc Out;
3277 TemplateArgumentLoc In = *First;
3278
3279 if (In.getArgument().getKind() == TemplateArgument::Pack) {
3280 // Unpack argument packs, which we translate them into separate
3281 // arguments.
3282 // FIXME: We could do much better if we could guarantee that the
3283 // TemplateArgumentLocInfo for the pack expansion would be usable for
3284 // all of the template arguments in the argument pack.
3285 typedef TemplateArgumentLocInventIterator<Derived,
3286 TemplateArgument::pack_iterator>
3287 PackLocIterator;
3288 if (TransformTemplateArguments(PackLocIterator(*this,
3289 In.getArgument().pack_begin()),
3290 PackLocIterator(*this,
3291 In.getArgument().pack_end()),
3292 Outputs))
3293 return true;
3294
3295 continue;
3296 }
3297
3298 if (In.getArgument().isPackExpansion()) {
3299 // We have a pack expansion, for which we will be substituting into
3300 // the pattern.
3301 SourceLocation Ellipsis;
3302 Optional<unsigned> OrigNumExpansions;
3303 TemplateArgumentLoc Pattern
3304 = getSema().getTemplateArgumentPackExpansionPattern(
3305 In, Ellipsis, OrigNumExpansions);
3306
3307 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3308 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
3309 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
3310
3311 // Determine whether the set of unexpanded parameter packs can and should
3312 // be expanded.
3313 bool Expand = true;
3314 bool RetainExpansion = false;
3315 Optional<unsigned> NumExpansions = OrigNumExpansions;
3316 if (getDerived().TryExpandParameterPacks(Ellipsis,
3317 Pattern.getSourceRange(),
3318 Unexpanded,
3319 Expand,
3320 RetainExpansion,
3321 NumExpansions))
3322 return true;
3323
3324 if (!Expand) {
3325 // The transform has determined that we should perform a simple
3326 // transformation on the pack expansion, producing another pack
3327 // expansion.
3328 TemplateArgumentLoc OutPattern;
3329 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
3330 if (getDerived().TransformTemplateArgument(Pattern, OutPattern))
3331 return true;
3332
3333 Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis,
3334 NumExpansions);
3335 if (Out.getArgument().isNull())
3336 return true;
3337
3338 Outputs.addArgument(Out);
3339 continue;
3340 }
3341
3342 // The transform has determined that we should perform an elementwise
3343 // expansion of the pattern. Do so.
3344 for (unsigned I = 0; I != *NumExpansions; ++I) {
3345 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
3346
3347 if (getDerived().TransformTemplateArgument(Pattern, Out))
3348 return true;
3349
3350 if (Out.getArgument().containsUnexpandedParameterPack()) {
3351 Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
3352 OrigNumExpansions);
3353 if (Out.getArgument().isNull())
3354 return true;
3355 }
3356
3357 Outputs.addArgument(Out);
3358 }
3359
3360 // If we're supposed to retain a pack expansion, do so by temporarily
3361 // forgetting the partially-substituted parameter pack.
3362 if (RetainExpansion) {
3363 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
3364
3365 if (getDerived().TransformTemplateArgument(Pattern, Out))
3366 return true;
3367
3368 Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
3369 OrigNumExpansions);
3370 if (Out.getArgument().isNull())
3371 return true;
3372
3373 Outputs.addArgument(Out);
3374 }
3375
3376 continue;
3377 }
3378
3379 // The simple case:
3380 if (getDerived().TransformTemplateArgument(In, Out))
3381 return true;
3382
3383 Outputs.addArgument(Out);
3384 }
3385
3386 return false;
3387
3388 }
3389
3390 //===----------------------------------------------------------------------===//
3391 // Type transformation
3392 //===----------------------------------------------------------------------===//
3393
3394 template<typename Derived>
TransformType(QualType T)3395 QualType TreeTransform<Derived>::TransformType(QualType T) {
3396 if (getDerived().AlreadyTransformed(T))
3397 return T;
3398
3399 // Temporary workaround. All of these transformations should
3400 // eventually turn into transformations on TypeLocs.
3401 TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
3402 getDerived().getBaseLocation());
3403
3404 TypeSourceInfo *NewDI = getDerived().TransformType(DI);
3405
3406 if (!NewDI)
3407 return QualType();
3408
3409 return NewDI->getType();
3410 }
3411
3412 template<typename Derived>
TransformType(TypeSourceInfo * DI)3413 TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) {
3414 // Refine the base location to the type's location.
3415 TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
3416 getDerived().getBaseEntity());
3417 if (getDerived().AlreadyTransformed(DI->getType()))
3418 return DI;
3419
3420 TypeLocBuilder TLB;
3421
3422 TypeLoc TL = DI->getTypeLoc();
3423 TLB.reserve(TL.getFullDataSize());
3424
3425 QualType Result = getDerived().TransformType(TLB, TL);
3426 if (Result.isNull())
3427 return 0;
3428
3429 return TLB.getTypeSourceInfo(SemaRef.Context, Result);
3430 }
3431
3432 template<typename Derived>
3433 QualType
TransformType(TypeLocBuilder & TLB,TypeLoc T)3434 TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) {
3435 switch (T.getTypeLocClass()) {
3436 #define ABSTRACT_TYPELOC(CLASS, PARENT)
3437 #define TYPELOC(CLASS, PARENT) \
3438 case TypeLoc::CLASS: \
3439 return getDerived().Transform##CLASS##Type(TLB, \
3440 T.castAs<CLASS##TypeLoc>());
3441 #include "clang/AST/TypeLocNodes.def"
3442 }
3443
3444 llvm_unreachable("unhandled type loc!");
3445 }
3446
3447 /// FIXME: By default, this routine adds type qualifiers only to types
3448 /// that can have qualifiers, and silently suppresses those qualifiers
3449 /// that are not permitted (e.g., qualifiers on reference or function
3450 /// types). This is the right thing for template instantiation, but
3451 /// probably not for other clients.
3452 template<typename Derived>
3453 QualType
TransformQualifiedType(TypeLocBuilder & TLB,QualifiedTypeLoc T)3454 TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
3455 QualifiedTypeLoc T) {
3456 Qualifiers Quals = T.getType().getLocalQualifiers();
3457
3458 QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc());
3459 if (Result.isNull())
3460 return QualType();
3461
3462 // Silently suppress qualifiers if the result type can't be qualified.
3463 // FIXME: this is the right thing for template instantiation, but
3464 // probably not for other clients.
3465 if (Result->isFunctionType() || Result->isReferenceType())
3466 return Result;
3467
3468 // Suppress Objective-C lifetime qualifiers if they don't make sense for the
3469 // resulting type.
3470 if (Quals.hasObjCLifetime()) {
3471 if (!Result->isObjCLifetimeType() && !Result->isDependentType())
3472 Quals.removeObjCLifetime();
3473 else if (Result.getObjCLifetime()) {
3474 // Objective-C ARC:
3475 // A lifetime qualifier applied to a substituted template parameter
3476 // overrides the lifetime qualifier from the template argument.
3477 const AutoType *AutoTy;
3478 if (const SubstTemplateTypeParmType *SubstTypeParam
3479 = dyn_cast<SubstTemplateTypeParmType>(Result)) {
3480 QualType Replacement = SubstTypeParam->getReplacementType();
3481 Qualifiers Qs = Replacement.getQualifiers();
3482 Qs.removeObjCLifetime();
3483 Replacement
3484 = SemaRef.Context.getQualifiedType(Replacement.getUnqualifiedType(),
3485 Qs);
3486 Result = SemaRef.Context.getSubstTemplateTypeParmType(
3487 SubstTypeParam->getReplacedParameter(),
3488 Replacement);
3489 TLB.TypeWasModifiedSafely(Result);
3490 } else if ((AutoTy = dyn_cast<AutoType>(Result)) && AutoTy->isDeduced()) {
3491 // 'auto' types behave the same way as template parameters.
3492 QualType Deduced = AutoTy->getDeducedType();
3493 Qualifiers Qs = Deduced.getQualifiers();
3494 Qs.removeObjCLifetime();
3495 Deduced = SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(),
3496 Qs);
3497 Result = SemaRef.Context.getAutoType(Deduced, AutoTy->isDecltypeAuto());
3498 TLB.TypeWasModifiedSafely(Result);
3499 } else {
3500 // Otherwise, complain about the addition of a qualifier to an
3501 // already-qualified type.
3502 SourceRange R = T.getUnqualifiedLoc().getSourceRange();
3503 SemaRef.Diag(R.getBegin(), diag::err_attr_objc_ownership_redundant)
3504 << Result << R;
3505
3506 Quals.removeObjCLifetime();
3507 }
3508 }
3509 }
3510 if (!Quals.empty()) {
3511 Result = SemaRef.BuildQualifiedType(Result, T.getBeginLoc(), Quals);
3512 // BuildQualifiedType might not add qualifiers if they are invalid.
3513 if (Result.hasLocalQualifiers())
3514 TLB.push<QualifiedTypeLoc>(Result);
3515 // No location information to preserve.
3516 }
3517
3518 return Result;
3519 }
3520
3521 template<typename Derived>
3522 TypeLoc
TransformTypeInObjectScope(TypeLoc TL,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)3523 TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL,
3524 QualType ObjectType,
3525 NamedDecl *UnqualLookup,
3526 CXXScopeSpec &SS) {
3527 QualType T = TL.getType();
3528 if (getDerived().AlreadyTransformed(T))
3529 return TL;
3530
3531 TypeLocBuilder TLB;
3532 QualType Result;
3533
3534 if (isa<TemplateSpecializationType>(T)) {
3535 TemplateSpecializationTypeLoc SpecTL =
3536 TL.castAs<TemplateSpecializationTypeLoc>();
3537
3538 TemplateName Template =
3539 getDerived().TransformTemplateName(SS,
3540 SpecTL.getTypePtr()->getTemplateName(),
3541 SpecTL.getTemplateNameLoc(),
3542 ObjectType, UnqualLookup);
3543 if (Template.isNull())
3544 return TypeLoc();
3545
3546 Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
3547 Template);
3548 } else if (isa<DependentTemplateSpecializationType>(T)) {
3549 DependentTemplateSpecializationTypeLoc SpecTL =
3550 TL.castAs<DependentTemplateSpecializationTypeLoc>();
3551
3552 TemplateName Template
3553 = getDerived().RebuildTemplateName(SS,
3554 *SpecTL.getTypePtr()->getIdentifier(),
3555 SpecTL.getTemplateNameLoc(),
3556 ObjectType, UnqualLookup);
3557 if (Template.isNull())
3558 return TypeLoc();
3559
3560 Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
3561 SpecTL,
3562 Template,
3563 SS);
3564 } else {
3565 // Nothing special needs to be done for these.
3566 Result = getDerived().TransformType(TLB, TL);
3567 }
3568
3569 if (Result.isNull())
3570 return TypeLoc();
3571
3572 return TLB.getTypeSourceInfo(SemaRef.Context, Result)->getTypeLoc();
3573 }
3574
3575 template<typename Derived>
3576 TypeSourceInfo *
TransformTypeInObjectScope(TypeSourceInfo * TSInfo,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)3577 TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
3578 QualType ObjectType,
3579 NamedDecl *UnqualLookup,
3580 CXXScopeSpec &SS) {
3581 // FIXME: Painfully copy-paste from the above!
3582
3583 QualType T = TSInfo->getType();
3584 if (getDerived().AlreadyTransformed(T))
3585 return TSInfo;
3586
3587 TypeLocBuilder TLB;
3588 QualType Result;
3589
3590 TypeLoc TL = TSInfo->getTypeLoc();
3591 if (isa<TemplateSpecializationType>(T)) {
3592 TemplateSpecializationTypeLoc SpecTL =
3593 TL.castAs<TemplateSpecializationTypeLoc>();
3594
3595 TemplateName Template
3596 = getDerived().TransformTemplateName(SS,
3597 SpecTL.getTypePtr()->getTemplateName(),
3598 SpecTL.getTemplateNameLoc(),
3599 ObjectType, UnqualLookup);
3600 if (Template.isNull())
3601 return 0;
3602
3603 Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
3604 Template);
3605 } else if (isa<DependentTemplateSpecializationType>(T)) {
3606 DependentTemplateSpecializationTypeLoc SpecTL =
3607 TL.castAs<DependentTemplateSpecializationTypeLoc>();
3608
3609 TemplateName Template
3610 = getDerived().RebuildTemplateName(SS,
3611 *SpecTL.getTypePtr()->getIdentifier(),
3612 SpecTL.getTemplateNameLoc(),
3613 ObjectType, UnqualLookup);
3614 if (Template.isNull())
3615 return 0;
3616
3617 Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
3618 SpecTL,
3619 Template,
3620 SS);
3621 } else {
3622 // Nothing special needs to be done for these.
3623 Result = getDerived().TransformType(TLB, TL);
3624 }
3625
3626 if (Result.isNull())
3627 return 0;
3628
3629 return TLB.getTypeSourceInfo(SemaRef.Context, Result);
3630 }
3631
3632 template <class TyLoc> static inline
TransformTypeSpecType(TypeLocBuilder & TLB,TyLoc T)3633 QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
3634 TyLoc NewT = TLB.push<TyLoc>(T.getType());
3635 NewT.setNameLoc(T.getNameLoc());
3636 return T.getType();
3637 }
3638
3639 template<typename Derived>
TransformBuiltinType(TypeLocBuilder & TLB,BuiltinTypeLoc T)3640 QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
3641 BuiltinTypeLoc T) {
3642 BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
3643 NewT.setBuiltinLoc(T.getBuiltinLoc());
3644 if (T.needsExtraLocalData())
3645 NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
3646 return T.getType();
3647 }
3648
3649 template<typename Derived>
TransformComplexType(TypeLocBuilder & TLB,ComplexTypeLoc T)3650 QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
3651 ComplexTypeLoc T) {
3652 // FIXME: recurse?
3653 return TransformTypeSpecType(TLB, T);
3654 }
3655
3656 template<typename Derived>
TransformDecayedType(TypeLocBuilder & TLB,DecayedTypeLoc TL)3657 QualType TreeTransform<Derived>::TransformDecayedType(TypeLocBuilder &TLB,
3658 DecayedTypeLoc TL) {
3659 QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc());
3660 if (OriginalType.isNull())
3661 return QualType();
3662
3663 QualType Result = TL.getType();
3664 if (getDerived().AlwaysRebuild() ||
3665 OriginalType != TL.getOriginalLoc().getType())
3666 Result = SemaRef.Context.getDecayedType(OriginalType);
3667 TLB.push<DecayedTypeLoc>(Result);
3668 // Nothing to set for DecayedTypeLoc.
3669 return Result;
3670 }
3671
3672 template<typename Derived>
TransformPointerType(TypeLocBuilder & TLB,PointerTypeLoc TL)3673 QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
3674 PointerTypeLoc TL) {
3675 QualType PointeeType
3676 = getDerived().TransformType(TLB, TL.getPointeeLoc());
3677 if (PointeeType.isNull())
3678 return QualType();
3679
3680 QualType Result = TL.getType();
3681 if (PointeeType->getAs<ObjCObjectType>()) {
3682 // A dependent pointer type 'T *' has is being transformed such
3683 // that an Objective-C class type is being replaced for 'T'. The
3684 // resulting pointer type is an ObjCObjectPointerType, not a
3685 // PointerType.
3686 Result = SemaRef.Context.getObjCObjectPointerType(PointeeType);
3687
3688 ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
3689 NewT.setStarLoc(TL.getStarLoc());
3690 return Result;
3691 }
3692
3693 if (getDerived().AlwaysRebuild() ||
3694 PointeeType != TL.getPointeeLoc().getType()) {
3695 Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc());
3696 if (Result.isNull())
3697 return QualType();
3698 }
3699
3700 // Objective-C ARC can add lifetime qualifiers to the type that we're
3701 // pointing to.
3702 TLB.TypeWasModifiedSafely(Result->getPointeeType());
3703
3704 PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result);
3705 NewT.setSigilLoc(TL.getSigilLoc());
3706 return Result;
3707 }
3708
3709 template<typename Derived>
3710 QualType
TransformBlockPointerType(TypeLocBuilder & TLB,BlockPointerTypeLoc TL)3711 TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
3712 BlockPointerTypeLoc TL) {
3713 QualType PointeeType
3714 = getDerived().TransformType(TLB, TL.getPointeeLoc());
3715 if (PointeeType.isNull())
3716 return QualType();
3717
3718 QualType Result = TL.getType();
3719 if (getDerived().AlwaysRebuild() ||
3720 PointeeType != TL.getPointeeLoc().getType()) {
3721 Result = getDerived().RebuildBlockPointerType(PointeeType,
3722 TL.getSigilLoc());
3723 if (Result.isNull())
3724 return QualType();
3725 }
3726
3727 BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result);
3728 NewT.setSigilLoc(TL.getSigilLoc());
3729 return Result;
3730 }
3731
3732 /// Transforms a reference type. Note that somewhat paradoxically we
3733 /// don't care whether the type itself is an l-value type or an r-value
3734 /// type; we only care if the type was *written* as an l-value type
3735 /// or an r-value type.
3736 template<typename Derived>
3737 QualType
TransformReferenceType(TypeLocBuilder & TLB,ReferenceTypeLoc TL)3738 TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
3739 ReferenceTypeLoc TL) {
3740 const ReferenceType *T = TL.getTypePtr();
3741
3742 // Note that this works with the pointee-as-written.
3743 QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
3744 if (PointeeType.isNull())
3745 return QualType();
3746
3747 QualType Result = TL.getType();
3748 if (getDerived().AlwaysRebuild() ||
3749 PointeeType != T->getPointeeTypeAsWritten()) {
3750 Result = getDerived().RebuildReferenceType(PointeeType,
3751 T->isSpelledAsLValue(),
3752 TL.getSigilLoc());
3753 if (Result.isNull())
3754 return QualType();
3755 }
3756
3757 // Objective-C ARC can add lifetime qualifiers to the type that we're
3758 // referring to.
3759 TLB.TypeWasModifiedSafely(
3760 Result->getAs<ReferenceType>()->getPointeeTypeAsWritten());
3761
3762 // r-value references can be rebuilt as l-value references.
3763 ReferenceTypeLoc NewTL;
3764 if (isa<LValueReferenceType>(Result))
3765 NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
3766 else
3767 NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
3768 NewTL.setSigilLoc(TL.getSigilLoc());
3769
3770 return Result;
3771 }
3772
3773 template<typename Derived>
3774 QualType
TransformLValueReferenceType(TypeLocBuilder & TLB,LValueReferenceTypeLoc TL)3775 TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
3776 LValueReferenceTypeLoc TL) {
3777 return TransformReferenceType(TLB, TL);
3778 }
3779
3780 template<typename Derived>
3781 QualType
TransformRValueReferenceType(TypeLocBuilder & TLB,RValueReferenceTypeLoc TL)3782 TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
3783 RValueReferenceTypeLoc TL) {
3784 return TransformReferenceType(TLB, TL);
3785 }
3786
3787 template<typename Derived>
3788 QualType
TransformMemberPointerType(TypeLocBuilder & TLB,MemberPointerTypeLoc TL)3789 TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
3790 MemberPointerTypeLoc TL) {
3791 QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
3792 if (PointeeType.isNull())
3793 return QualType();
3794
3795 TypeSourceInfo* OldClsTInfo = TL.getClassTInfo();
3796 TypeSourceInfo* NewClsTInfo = 0;
3797 if (OldClsTInfo) {
3798 NewClsTInfo = getDerived().TransformType(OldClsTInfo);
3799 if (!NewClsTInfo)
3800 return QualType();
3801 }
3802
3803 const MemberPointerType *T = TL.getTypePtr();
3804 QualType OldClsType = QualType(T->getClass(), 0);
3805 QualType NewClsType;
3806 if (NewClsTInfo)
3807 NewClsType = NewClsTInfo->getType();
3808 else {
3809 NewClsType = getDerived().TransformType(OldClsType);
3810 if (NewClsType.isNull())
3811 return QualType();
3812 }
3813
3814 QualType Result = TL.getType();
3815 if (getDerived().AlwaysRebuild() ||
3816 PointeeType != T->getPointeeType() ||
3817 NewClsType != OldClsType) {
3818 Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType,
3819 TL.getStarLoc());
3820 if (Result.isNull())
3821 return QualType();
3822 }
3823
3824 MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
3825 NewTL.setSigilLoc(TL.getSigilLoc());
3826 NewTL.setClassTInfo(NewClsTInfo);
3827
3828 return Result;
3829 }
3830
3831 template<typename Derived>
3832 QualType
TransformConstantArrayType(TypeLocBuilder & TLB,ConstantArrayTypeLoc TL)3833 TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
3834 ConstantArrayTypeLoc TL) {
3835 const ConstantArrayType *T = TL.getTypePtr();
3836 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
3837 if (ElementType.isNull())
3838 return QualType();
3839
3840 QualType Result = TL.getType();
3841 if (getDerived().AlwaysRebuild() ||
3842 ElementType != T->getElementType()) {
3843 Result = getDerived().RebuildConstantArrayType(ElementType,
3844 T->getSizeModifier(),
3845 T->getSize(),
3846 T->getIndexTypeCVRQualifiers(),
3847 TL.getBracketsRange());
3848 if (Result.isNull())
3849 return QualType();
3850 }
3851
3852 // We might have either a ConstantArrayType or a VariableArrayType now:
3853 // a ConstantArrayType is allowed to have an element type which is a
3854 // VariableArrayType if the type is dependent. Fortunately, all array
3855 // types have the same location layout.
3856 ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
3857 NewTL.setLBracketLoc(TL.getLBracketLoc());
3858 NewTL.setRBracketLoc(TL.getRBracketLoc());
3859
3860 Expr *Size = TL.getSizeExpr();
3861 if (Size) {
3862 EnterExpressionEvaluationContext Unevaluated(SemaRef,
3863 Sema::ConstantEvaluated);
3864 Size = getDerived().TransformExpr(Size).template takeAs<Expr>();
3865 Size = SemaRef.ActOnConstantExpression(Size).take();
3866 }
3867 NewTL.setSizeExpr(Size);
3868
3869 return Result;
3870 }
3871
3872 template<typename Derived>
TransformIncompleteArrayType(TypeLocBuilder & TLB,IncompleteArrayTypeLoc TL)3873 QualType TreeTransform<Derived>::TransformIncompleteArrayType(
3874 TypeLocBuilder &TLB,
3875 IncompleteArrayTypeLoc TL) {
3876 const IncompleteArrayType *T = TL.getTypePtr();
3877 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
3878 if (ElementType.isNull())
3879 return QualType();
3880
3881 QualType Result = TL.getType();
3882 if (getDerived().AlwaysRebuild() ||
3883 ElementType != T->getElementType()) {
3884 Result = getDerived().RebuildIncompleteArrayType(ElementType,
3885 T->getSizeModifier(),
3886 T->getIndexTypeCVRQualifiers(),
3887 TL.getBracketsRange());
3888 if (Result.isNull())
3889 return QualType();
3890 }
3891
3892 IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
3893 NewTL.setLBracketLoc(TL.getLBracketLoc());
3894 NewTL.setRBracketLoc(TL.getRBracketLoc());
3895 NewTL.setSizeExpr(0);
3896
3897 return Result;
3898 }
3899
3900 template<typename Derived>
3901 QualType
TransformVariableArrayType(TypeLocBuilder & TLB,VariableArrayTypeLoc TL)3902 TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
3903 VariableArrayTypeLoc TL) {
3904 const VariableArrayType *T = TL.getTypePtr();
3905 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
3906 if (ElementType.isNull())
3907 return QualType();
3908
3909 ExprResult SizeResult
3910 = getDerived().TransformExpr(T->getSizeExpr());
3911 if (SizeResult.isInvalid())
3912 return QualType();
3913
3914 Expr *Size = SizeResult.take();
3915
3916 QualType Result = TL.getType();
3917 if (getDerived().AlwaysRebuild() ||
3918 ElementType != T->getElementType() ||
3919 Size != T->getSizeExpr()) {
3920 Result = getDerived().RebuildVariableArrayType(ElementType,
3921 T->getSizeModifier(),
3922 Size,
3923 T->getIndexTypeCVRQualifiers(),
3924 TL.getBracketsRange());
3925 if (Result.isNull())
3926 return QualType();
3927 }
3928
3929 VariableArrayTypeLoc NewTL = TLB.push<VariableArrayTypeLoc>(Result);
3930 NewTL.setLBracketLoc(TL.getLBracketLoc());
3931 NewTL.setRBracketLoc(TL.getRBracketLoc());
3932 NewTL.setSizeExpr(Size);
3933
3934 return Result;
3935 }
3936
3937 template<typename Derived>
3938 QualType
TransformDependentSizedArrayType(TypeLocBuilder & TLB,DependentSizedArrayTypeLoc TL)3939 TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
3940 DependentSizedArrayTypeLoc TL) {
3941 const DependentSizedArrayType *T = TL.getTypePtr();
3942 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
3943 if (ElementType.isNull())
3944 return QualType();
3945
3946 // Array bounds are constant expressions.
3947 EnterExpressionEvaluationContext Unevaluated(SemaRef,
3948 Sema::ConstantEvaluated);
3949
3950 // Prefer the expression from the TypeLoc; the other may have been uniqued.
3951 Expr *origSize = TL.getSizeExpr();
3952 if (!origSize) origSize = T->getSizeExpr();
3953
3954 ExprResult sizeResult
3955 = getDerived().TransformExpr(origSize);
3956 sizeResult = SemaRef.ActOnConstantExpression(sizeResult);
3957 if (sizeResult.isInvalid())
3958 return QualType();
3959
3960 Expr *size = sizeResult.get();
3961
3962 QualType Result = TL.getType();
3963 if (getDerived().AlwaysRebuild() ||
3964 ElementType != T->getElementType() ||
3965 size != origSize) {
3966 Result = getDerived().RebuildDependentSizedArrayType(ElementType,
3967 T->getSizeModifier(),
3968 size,
3969 T->getIndexTypeCVRQualifiers(),
3970 TL.getBracketsRange());
3971 if (Result.isNull())
3972 return QualType();
3973 }
3974
3975 // We might have any sort of array type now, but fortunately they
3976 // all have the same location layout.
3977 ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
3978 NewTL.setLBracketLoc(TL.getLBracketLoc());
3979 NewTL.setRBracketLoc(TL.getRBracketLoc());
3980 NewTL.setSizeExpr(size);
3981
3982 return Result;
3983 }
3984
3985 template<typename Derived>
TransformDependentSizedExtVectorType(TypeLocBuilder & TLB,DependentSizedExtVectorTypeLoc TL)3986 QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
3987 TypeLocBuilder &TLB,
3988 DependentSizedExtVectorTypeLoc TL) {
3989 const DependentSizedExtVectorType *T = TL.getTypePtr();
3990
3991 // FIXME: ext vector locs should be nested
3992 QualType ElementType = getDerived().TransformType(T->getElementType());
3993 if (ElementType.isNull())
3994 return QualType();
3995
3996 // Vector sizes are constant expressions.
3997 EnterExpressionEvaluationContext Unevaluated(SemaRef,
3998 Sema::ConstantEvaluated);
3999
4000 ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
4001 Size = SemaRef.ActOnConstantExpression(Size);
4002 if (Size.isInvalid())
4003 return QualType();
4004
4005 QualType Result = TL.getType();
4006 if (getDerived().AlwaysRebuild() ||
4007 ElementType != T->getElementType() ||
4008 Size.get() != T->getSizeExpr()) {
4009 Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
4010 Size.take(),
4011 T->getAttributeLoc());
4012 if (Result.isNull())
4013 return QualType();
4014 }
4015
4016 // Result might be dependent or not.
4017 if (isa<DependentSizedExtVectorType>(Result)) {
4018 DependentSizedExtVectorTypeLoc NewTL
4019 = TLB.push<DependentSizedExtVectorTypeLoc>(Result);
4020 NewTL.setNameLoc(TL.getNameLoc());
4021 } else {
4022 ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
4023 NewTL.setNameLoc(TL.getNameLoc());
4024 }
4025
4026 return Result;
4027 }
4028
4029 template<typename Derived>
TransformVectorType(TypeLocBuilder & TLB,VectorTypeLoc TL)4030 QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
4031 VectorTypeLoc TL) {
4032 const VectorType *T = TL.getTypePtr();
4033 QualType ElementType = getDerived().TransformType(T->getElementType());
4034 if (ElementType.isNull())
4035 return QualType();
4036
4037 QualType Result = TL.getType();
4038 if (getDerived().AlwaysRebuild() ||
4039 ElementType != T->getElementType()) {
4040 Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
4041 T->getVectorKind());
4042 if (Result.isNull())
4043 return QualType();
4044 }
4045
4046 VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
4047 NewTL.setNameLoc(TL.getNameLoc());
4048
4049 return Result;
4050 }
4051
4052 template<typename Derived>
TransformExtVectorType(TypeLocBuilder & TLB,ExtVectorTypeLoc TL)4053 QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
4054 ExtVectorTypeLoc TL) {
4055 const VectorType *T = TL.getTypePtr();
4056 QualType ElementType = getDerived().TransformType(T->getElementType());
4057 if (ElementType.isNull())
4058 return QualType();
4059
4060 QualType Result = TL.getType();
4061 if (getDerived().AlwaysRebuild() ||
4062 ElementType != T->getElementType()) {
4063 Result = getDerived().RebuildExtVectorType(ElementType,
4064 T->getNumElements(),
4065 /*FIXME*/ SourceLocation());
4066 if (Result.isNull())
4067 return QualType();
4068 }
4069
4070 ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
4071 NewTL.setNameLoc(TL.getNameLoc());
4072
4073 return Result;
4074 }
4075
4076 template <typename Derived>
TransformFunctionTypeParam(ParmVarDecl * OldParm,int indexAdjustment,Optional<unsigned> NumExpansions,bool ExpectParameterPack)4077 ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam(
4078 ParmVarDecl *OldParm, int indexAdjustment, Optional<unsigned> NumExpansions,
4079 bool ExpectParameterPack) {
4080 TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
4081 TypeSourceInfo *NewDI = 0;
4082
4083 if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) {
4084 // If we're substituting into a pack expansion type and we know the
4085 // length we want to expand to, just substitute for the pattern.
4086 TypeLoc OldTL = OldDI->getTypeLoc();
4087 PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>();
4088
4089 TypeLocBuilder TLB;
4090 TypeLoc NewTL = OldDI->getTypeLoc();
4091 TLB.reserve(NewTL.getFullDataSize());
4092
4093 QualType Result = getDerived().TransformType(TLB,
4094 OldExpansionTL.getPatternLoc());
4095 if (Result.isNull())
4096 return 0;
4097
4098 Result = RebuildPackExpansionType(Result,
4099 OldExpansionTL.getPatternLoc().getSourceRange(),
4100 OldExpansionTL.getEllipsisLoc(),
4101 NumExpansions);
4102 if (Result.isNull())
4103 return 0;
4104
4105 PackExpansionTypeLoc NewExpansionTL
4106 = TLB.push<PackExpansionTypeLoc>(Result);
4107 NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc());
4108 NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result);
4109 } else
4110 NewDI = getDerived().TransformType(OldDI);
4111 if (!NewDI)
4112 return 0;
4113
4114 if (NewDI == OldDI && indexAdjustment == 0)
4115 return OldParm;
4116
4117 ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context,
4118 OldParm->getDeclContext(),
4119 OldParm->getInnerLocStart(),
4120 OldParm->getLocation(),
4121 OldParm->getIdentifier(),
4122 NewDI->getType(),
4123 NewDI,
4124 OldParm->getStorageClass(),
4125 /* DefArg */ NULL);
4126 newParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
4127 OldParm->getFunctionScopeIndex() + indexAdjustment);
4128 return newParm;
4129 }
4130
4131 template<typename Derived>
4132 bool TreeTransform<Derived>::
TransformFunctionTypeParams(SourceLocation Loc,ParmVarDecl ** Params,unsigned NumParams,const QualType * ParamTypes,SmallVectorImpl<QualType> & OutParamTypes,SmallVectorImpl<ParmVarDecl * > * PVars)4133 TransformFunctionTypeParams(SourceLocation Loc,
4134 ParmVarDecl **Params, unsigned NumParams,
4135 const QualType *ParamTypes,
4136 SmallVectorImpl<QualType> &OutParamTypes,
4137 SmallVectorImpl<ParmVarDecl*> *PVars) {
4138 int indexAdjustment = 0;
4139
4140 for (unsigned i = 0; i != NumParams; ++i) {
4141 if (ParmVarDecl *OldParm = Params[i]) {
4142 assert(OldParm->getFunctionScopeIndex() == i);
4143
4144 Optional<unsigned> NumExpansions;
4145 ParmVarDecl *NewParm = 0;
4146 if (OldParm->isParameterPack()) {
4147 // We have a function parameter pack that may need to be expanded.
4148 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
4149
4150 // Find the parameter packs that could be expanded.
4151 TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc();
4152 PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>();
4153 TypeLoc Pattern = ExpansionTL.getPatternLoc();
4154 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
4155 assert(Unexpanded.size() > 0 && "Could not find parameter packs!");
4156
4157 // Determine whether we should expand the parameter packs.
4158 bool ShouldExpand = false;
4159 bool RetainExpansion = false;
4160 Optional<unsigned> OrigNumExpansions =
4161 ExpansionTL.getTypePtr()->getNumExpansions();
4162 NumExpansions = OrigNumExpansions;
4163 if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
4164 Pattern.getSourceRange(),
4165 Unexpanded,
4166 ShouldExpand,
4167 RetainExpansion,
4168 NumExpansions)) {
4169 return true;
4170 }
4171
4172 if (ShouldExpand) {
4173 // Expand the function parameter pack into multiple, separate
4174 // parameters.
4175 getDerived().ExpandingFunctionParameterPack(OldParm);
4176 for (unsigned I = 0; I != *NumExpansions; ++I) {
4177 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
4178 ParmVarDecl *NewParm
4179 = getDerived().TransformFunctionTypeParam(OldParm,
4180 indexAdjustment++,
4181 OrigNumExpansions,
4182 /*ExpectParameterPack=*/false);
4183 if (!NewParm)
4184 return true;
4185
4186 OutParamTypes.push_back(NewParm->getType());
4187 if (PVars)
4188 PVars->push_back(NewParm);
4189 }
4190
4191 // If we're supposed to retain a pack expansion, do so by temporarily
4192 // forgetting the partially-substituted parameter pack.
4193 if (RetainExpansion) {
4194 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
4195 ParmVarDecl *NewParm
4196 = getDerived().TransformFunctionTypeParam(OldParm,
4197 indexAdjustment++,
4198 OrigNumExpansions,
4199 /*ExpectParameterPack=*/false);
4200 if (!NewParm)
4201 return true;
4202
4203 OutParamTypes.push_back(NewParm->getType());
4204 if (PVars)
4205 PVars->push_back(NewParm);
4206 }
4207
4208 // The next parameter should have the same adjustment as the
4209 // last thing we pushed, but we post-incremented indexAdjustment
4210 // on every push. Also, if we push nothing, the adjustment should
4211 // go down by one.
4212 indexAdjustment--;
4213
4214 // We're done with the pack expansion.
4215 continue;
4216 }
4217
4218 // We'll substitute the parameter now without expanding the pack
4219 // expansion.
4220 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
4221 NewParm = getDerived().TransformFunctionTypeParam(OldParm,
4222 indexAdjustment,
4223 NumExpansions,
4224 /*ExpectParameterPack=*/true);
4225 } else {
4226 NewParm = getDerived().TransformFunctionTypeParam(
4227 OldParm, indexAdjustment, None, /*ExpectParameterPack=*/ false);
4228 }
4229
4230 if (!NewParm)
4231 return true;
4232
4233 OutParamTypes.push_back(NewParm->getType());
4234 if (PVars)
4235 PVars->push_back(NewParm);
4236 continue;
4237 }
4238
4239 // Deal with the possibility that we don't have a parameter
4240 // declaration for this parameter.
4241 QualType OldType = ParamTypes[i];
4242 bool IsPackExpansion = false;
4243 Optional<unsigned> NumExpansions;
4244 QualType NewType;
4245 if (const PackExpansionType *Expansion
4246 = dyn_cast<PackExpansionType>(OldType)) {
4247 // We have a function parameter pack that may need to be expanded.
4248 QualType Pattern = Expansion->getPattern();
4249 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
4250 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
4251
4252 // Determine whether we should expand the parameter packs.
4253 bool ShouldExpand = false;
4254 bool RetainExpansion = false;
4255 if (getDerived().TryExpandParameterPacks(Loc, SourceRange(),
4256 Unexpanded,
4257 ShouldExpand,
4258 RetainExpansion,
4259 NumExpansions)) {
4260 return true;
4261 }
4262
4263 if (ShouldExpand) {
4264 // Expand the function parameter pack into multiple, separate
4265 // parameters.
4266 for (unsigned I = 0; I != *NumExpansions; ++I) {
4267 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
4268 QualType NewType = getDerived().TransformType(Pattern);
4269 if (NewType.isNull())
4270 return true;
4271
4272 OutParamTypes.push_back(NewType);
4273 if (PVars)
4274 PVars->push_back(0);
4275 }
4276
4277 // We're done with the pack expansion.
4278 continue;
4279 }
4280
4281 // If we're supposed to retain a pack expansion, do so by temporarily
4282 // forgetting the partially-substituted parameter pack.
4283 if (RetainExpansion) {
4284 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
4285 QualType NewType = getDerived().TransformType(Pattern);
4286 if (NewType.isNull())
4287 return true;
4288
4289 OutParamTypes.push_back(NewType);
4290 if (PVars)
4291 PVars->push_back(0);
4292 }
4293
4294 // We'll substitute the parameter now without expanding the pack
4295 // expansion.
4296 OldType = Expansion->getPattern();
4297 IsPackExpansion = true;
4298 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
4299 NewType = getDerived().TransformType(OldType);
4300 } else {
4301 NewType = getDerived().TransformType(OldType);
4302 }
4303
4304 if (NewType.isNull())
4305 return true;
4306
4307 if (IsPackExpansion)
4308 NewType = getSema().Context.getPackExpansionType(NewType,
4309 NumExpansions);
4310
4311 OutParamTypes.push_back(NewType);
4312 if (PVars)
4313 PVars->push_back(0);
4314 }
4315
4316 #ifndef NDEBUG
4317 if (PVars) {
4318 for (unsigned i = 0, e = PVars->size(); i != e; ++i)
4319 if (ParmVarDecl *parm = (*PVars)[i])
4320 assert(parm->getFunctionScopeIndex() == i);
4321 }
4322 #endif
4323
4324 return false;
4325 }
4326
4327 template<typename Derived>
4328 QualType
TransformFunctionProtoType(TypeLocBuilder & TLB,FunctionProtoTypeLoc TL)4329 TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
4330 FunctionProtoTypeLoc TL) {
4331 return getDerived().TransformFunctionProtoType(TLB, TL, 0, 0);
4332 }
4333
4334 template<typename Derived>
4335 QualType
TransformFunctionProtoType(TypeLocBuilder & TLB,FunctionProtoTypeLoc TL,CXXRecordDecl * ThisContext,unsigned ThisTypeQuals)4336 TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
4337 FunctionProtoTypeLoc TL,
4338 CXXRecordDecl *ThisContext,
4339 unsigned ThisTypeQuals) {
4340 // Transform the parameters and return type.
4341 //
4342 // We are required to instantiate the params and return type in source order.
4343 // When the function has a trailing return type, we instantiate the
4344 // parameters before the return type, since the return type can then refer
4345 // to the parameters themselves (via decltype, sizeof, etc.).
4346 //
4347 SmallVector<QualType, 4> ParamTypes;
4348 SmallVector<ParmVarDecl*, 4> ParamDecls;
4349 const FunctionProtoType *T = TL.getTypePtr();
4350
4351 QualType ResultType;
4352
4353 if (T->hasTrailingReturn()) {
4354 if (getDerived().TransformFunctionTypeParams(TL.getBeginLoc(),
4355 TL.getParmArray(),
4356 TL.getNumArgs(),
4357 TL.getTypePtr()->arg_type_begin(),
4358 ParamTypes, &ParamDecls))
4359 return QualType();
4360
4361 {
4362 // C++11 [expr.prim.general]p3:
4363 // If a declaration declares a member function or member function
4364 // template of a class X, the expression this is a prvalue of type
4365 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
4366 // and the end of the function-definition, member-declarator, or
4367 // declarator.
4368 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals);
4369
4370 ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
4371 if (ResultType.isNull())
4372 return QualType();
4373 }
4374 }
4375 else {
4376 ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
4377 if (ResultType.isNull())
4378 return QualType();
4379
4380 if (getDerived().TransformFunctionTypeParams(TL.getBeginLoc(),
4381 TL.getParmArray(),
4382 TL.getNumArgs(),
4383 TL.getTypePtr()->arg_type_begin(),
4384 ParamTypes, &ParamDecls))
4385 return QualType();
4386 }
4387
4388 // FIXME: Need to transform the exception-specification too.
4389
4390 QualType Result = TL.getType();
4391 if (getDerived().AlwaysRebuild() ||
4392 ResultType != T->getResultType() ||
4393 T->getNumArgs() != ParamTypes.size() ||
4394 !std::equal(T->arg_type_begin(), T->arg_type_end(), ParamTypes.begin())) {
4395 Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes,
4396 T->getExtProtoInfo());
4397 if (Result.isNull())
4398 return QualType();
4399 }
4400
4401 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
4402 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
4403 NewTL.setLParenLoc(TL.getLParenLoc());
4404 NewTL.setRParenLoc(TL.getRParenLoc());
4405 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
4406 for (unsigned i = 0, e = NewTL.getNumArgs(); i != e; ++i)
4407 NewTL.setArg(i, ParamDecls[i]);
4408
4409 return Result;
4410 }
4411
4412 template<typename Derived>
TransformFunctionNoProtoType(TypeLocBuilder & TLB,FunctionNoProtoTypeLoc TL)4413 QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
4414 TypeLocBuilder &TLB,
4415 FunctionNoProtoTypeLoc TL) {
4416 const FunctionNoProtoType *T = TL.getTypePtr();
4417 QualType ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
4418 if (ResultType.isNull())
4419 return QualType();
4420
4421 QualType Result = TL.getType();
4422 if (getDerived().AlwaysRebuild() ||
4423 ResultType != T->getResultType())
4424 Result = getDerived().RebuildFunctionNoProtoType(ResultType);
4425
4426 FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
4427 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
4428 NewTL.setLParenLoc(TL.getLParenLoc());
4429 NewTL.setRParenLoc(TL.getRParenLoc());
4430 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
4431
4432 return Result;
4433 }
4434
4435 template<typename Derived> QualType
TransformUnresolvedUsingType(TypeLocBuilder & TLB,UnresolvedUsingTypeLoc TL)4436 TreeTransform<Derived>::TransformUnresolvedUsingType(TypeLocBuilder &TLB,
4437 UnresolvedUsingTypeLoc TL) {
4438 const UnresolvedUsingType *T = TL.getTypePtr();
4439 Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
4440 if (!D)
4441 return QualType();
4442
4443 QualType Result = TL.getType();
4444 if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
4445 Result = getDerived().RebuildUnresolvedUsingType(D);
4446 if (Result.isNull())
4447 return QualType();
4448 }
4449
4450 // We might get an arbitrary type spec type back. We should at
4451 // least always get a type spec type, though.
4452 TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
4453 NewTL.setNameLoc(TL.getNameLoc());
4454
4455 return Result;
4456 }
4457
4458 template<typename Derived>
TransformTypedefType(TypeLocBuilder & TLB,TypedefTypeLoc TL)4459 QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
4460 TypedefTypeLoc TL) {
4461 const TypedefType *T = TL.getTypePtr();
4462 TypedefNameDecl *Typedef
4463 = cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(),
4464 T->getDecl()));
4465 if (!Typedef)
4466 return QualType();
4467
4468 QualType Result = TL.getType();
4469 if (getDerived().AlwaysRebuild() ||
4470 Typedef != T->getDecl()) {
4471 Result = getDerived().RebuildTypedefType(Typedef);
4472 if (Result.isNull())
4473 return QualType();
4474 }
4475
4476 TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
4477 NewTL.setNameLoc(TL.getNameLoc());
4478
4479 return Result;
4480 }
4481
4482 template<typename Derived>
TransformTypeOfExprType(TypeLocBuilder & TLB,TypeOfExprTypeLoc TL)4483 QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
4484 TypeOfExprTypeLoc TL) {
4485 // typeof expressions are not potentially evaluated contexts
4486 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
4487 Sema::ReuseLambdaContextDecl);
4488
4489 ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
4490 if (E.isInvalid())
4491 return QualType();
4492
4493 E = SemaRef.HandleExprEvaluationContextForTypeof(E.get());
4494 if (E.isInvalid())
4495 return QualType();
4496
4497 QualType Result = TL.getType();
4498 if (getDerived().AlwaysRebuild() ||
4499 E.get() != TL.getUnderlyingExpr()) {
4500 Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc());
4501 if (Result.isNull())
4502 return QualType();
4503 }
4504 else E.take();
4505
4506 TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
4507 NewTL.setTypeofLoc(TL.getTypeofLoc());
4508 NewTL.setLParenLoc(TL.getLParenLoc());
4509 NewTL.setRParenLoc(TL.getRParenLoc());
4510
4511 return Result;
4512 }
4513
4514 template<typename Derived>
TransformTypeOfType(TypeLocBuilder & TLB,TypeOfTypeLoc TL)4515 QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
4516 TypeOfTypeLoc TL) {
4517 TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo();
4518 TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
4519 if (!New_Under_TI)
4520 return QualType();
4521
4522 QualType Result = TL.getType();
4523 if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
4524 Result = getDerived().RebuildTypeOfType(New_Under_TI->getType());
4525 if (Result.isNull())
4526 return QualType();
4527 }
4528
4529 TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
4530 NewTL.setTypeofLoc(TL.getTypeofLoc());
4531 NewTL.setLParenLoc(TL.getLParenLoc());
4532 NewTL.setRParenLoc(TL.getRParenLoc());
4533 NewTL.setUnderlyingTInfo(New_Under_TI);
4534
4535 return Result;
4536 }
4537
4538 template<typename Derived>
TransformDecltypeType(TypeLocBuilder & TLB,DecltypeTypeLoc TL)4539 QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
4540 DecltypeTypeLoc TL) {
4541 const DecltypeType *T = TL.getTypePtr();
4542
4543 // decltype expressions are not potentially evaluated contexts
4544 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, 0,
4545 /*IsDecltype=*/ true);
4546
4547 ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
4548 if (E.isInvalid())
4549 return QualType();
4550
4551 E = getSema().ActOnDecltypeExpression(E.take());
4552 if (E.isInvalid())
4553 return QualType();
4554
4555 QualType Result = TL.getType();
4556 if (getDerived().AlwaysRebuild() ||
4557 E.get() != T->getUnderlyingExpr()) {
4558 Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc());
4559 if (Result.isNull())
4560 return QualType();
4561 }
4562 else E.take();
4563
4564 DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
4565 NewTL.setNameLoc(TL.getNameLoc());
4566
4567 return Result;
4568 }
4569
4570 template<typename Derived>
TransformUnaryTransformType(TypeLocBuilder & TLB,UnaryTransformTypeLoc TL)4571 QualType TreeTransform<Derived>::TransformUnaryTransformType(
4572 TypeLocBuilder &TLB,
4573 UnaryTransformTypeLoc TL) {
4574 QualType Result = TL.getType();
4575 if (Result->isDependentType()) {
4576 const UnaryTransformType *T = TL.getTypePtr();
4577 QualType NewBase =
4578 getDerived().TransformType(TL.getUnderlyingTInfo())->getType();
4579 Result = getDerived().RebuildUnaryTransformType(NewBase,
4580 T->getUTTKind(),
4581 TL.getKWLoc());
4582 if (Result.isNull())
4583 return QualType();
4584 }
4585
4586 UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result);
4587 NewTL.setKWLoc(TL.getKWLoc());
4588 NewTL.setParensRange(TL.getParensRange());
4589 NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo());
4590 return Result;
4591 }
4592
4593 template<typename Derived>
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)4594 QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
4595 AutoTypeLoc TL) {
4596 const AutoType *T = TL.getTypePtr();
4597 QualType OldDeduced = T->getDeducedType();
4598 QualType NewDeduced;
4599 if (!OldDeduced.isNull()) {
4600 NewDeduced = getDerived().TransformType(OldDeduced);
4601 if (NewDeduced.isNull())
4602 return QualType();
4603 }
4604
4605 QualType Result = TL.getType();
4606 if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced ||
4607 T->isDependentType()) {
4608 Result = getDerived().RebuildAutoType(NewDeduced, T->isDecltypeAuto());
4609 if (Result.isNull())
4610 return QualType();
4611 }
4612
4613 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
4614 NewTL.setNameLoc(TL.getNameLoc());
4615
4616 return Result;
4617 }
4618
4619 template<typename Derived>
TransformRecordType(TypeLocBuilder & TLB,RecordTypeLoc TL)4620 QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
4621 RecordTypeLoc TL) {
4622 const RecordType *T = TL.getTypePtr();
4623 RecordDecl *Record
4624 = cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
4625 T->getDecl()));
4626 if (!Record)
4627 return QualType();
4628
4629 QualType Result = TL.getType();
4630 if (getDerived().AlwaysRebuild() ||
4631 Record != T->getDecl()) {
4632 Result = getDerived().RebuildRecordType(Record);
4633 if (Result.isNull())
4634 return QualType();
4635 }
4636
4637 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
4638 NewTL.setNameLoc(TL.getNameLoc());
4639
4640 return Result;
4641 }
4642
4643 template<typename Derived>
TransformEnumType(TypeLocBuilder & TLB,EnumTypeLoc TL)4644 QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
4645 EnumTypeLoc TL) {
4646 const EnumType *T = TL.getTypePtr();
4647 EnumDecl *Enum
4648 = cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
4649 T->getDecl()));
4650 if (!Enum)
4651 return QualType();
4652
4653 QualType Result = TL.getType();
4654 if (getDerived().AlwaysRebuild() ||
4655 Enum != T->getDecl()) {
4656 Result = getDerived().RebuildEnumType(Enum);
4657 if (Result.isNull())
4658 return QualType();
4659 }
4660
4661 EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
4662 NewTL.setNameLoc(TL.getNameLoc());
4663
4664 return Result;
4665 }
4666
4667 template<typename Derived>
TransformInjectedClassNameType(TypeLocBuilder & TLB,InjectedClassNameTypeLoc TL)4668 QualType TreeTransform<Derived>::TransformInjectedClassNameType(
4669 TypeLocBuilder &TLB,
4670 InjectedClassNameTypeLoc TL) {
4671 Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
4672 TL.getTypePtr()->getDecl());
4673 if (!D) return QualType();
4674
4675 QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
4676 TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
4677 return T;
4678 }
4679
4680 template<typename Derived>
TransformTemplateTypeParmType(TypeLocBuilder & TLB,TemplateTypeParmTypeLoc TL)4681 QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
4682 TypeLocBuilder &TLB,
4683 TemplateTypeParmTypeLoc TL) {
4684 return TransformTypeSpecType(TLB, TL);
4685 }
4686
4687 template<typename Derived>
TransformSubstTemplateTypeParmType(TypeLocBuilder & TLB,SubstTemplateTypeParmTypeLoc TL)4688 QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
4689 TypeLocBuilder &TLB,
4690 SubstTemplateTypeParmTypeLoc TL) {
4691 const SubstTemplateTypeParmType *T = TL.getTypePtr();
4692
4693 // Substitute into the replacement type, which itself might involve something
4694 // that needs to be transformed. This only tends to occur with default
4695 // template arguments of template template parameters.
4696 TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName());
4697 QualType Replacement = getDerived().TransformType(T->getReplacementType());
4698 if (Replacement.isNull())
4699 return QualType();
4700
4701 // Always canonicalize the replacement type.
4702 Replacement = SemaRef.Context.getCanonicalType(Replacement);
4703 QualType Result
4704 = SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(),
4705 Replacement);
4706
4707 // Propagate type-source information.
4708 SubstTemplateTypeParmTypeLoc NewTL
4709 = TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
4710 NewTL.setNameLoc(TL.getNameLoc());
4711 return Result;
4712
4713 }
4714
4715 template<typename Derived>
TransformSubstTemplateTypeParmPackType(TypeLocBuilder & TLB,SubstTemplateTypeParmPackTypeLoc TL)4716 QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType(
4717 TypeLocBuilder &TLB,
4718 SubstTemplateTypeParmPackTypeLoc TL) {
4719 return TransformTypeSpecType(TLB, TL);
4720 }
4721
4722 template<typename Derived>
TransformTemplateSpecializationType(TypeLocBuilder & TLB,TemplateSpecializationTypeLoc TL)4723 QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
4724 TypeLocBuilder &TLB,
4725 TemplateSpecializationTypeLoc TL) {
4726 const TemplateSpecializationType *T = TL.getTypePtr();
4727
4728 // The nested-name-specifier never matters in a TemplateSpecializationType,
4729 // because we can't have a dependent nested-name-specifier anyway.
4730 CXXScopeSpec SS;
4731 TemplateName Template
4732 = getDerived().TransformTemplateName(SS, T->getTemplateName(),
4733 TL.getTemplateNameLoc());
4734 if (Template.isNull())
4735 return QualType();
4736
4737 return getDerived().TransformTemplateSpecializationType(TLB, TL, Template);
4738 }
4739
4740 template<typename Derived>
TransformAtomicType(TypeLocBuilder & TLB,AtomicTypeLoc TL)4741 QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB,
4742 AtomicTypeLoc TL) {
4743 QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
4744 if (ValueType.isNull())
4745 return QualType();
4746
4747 QualType Result = TL.getType();
4748 if (getDerived().AlwaysRebuild() ||
4749 ValueType != TL.getValueLoc().getType()) {
4750 Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc());
4751 if (Result.isNull())
4752 return QualType();
4753 }
4754
4755 AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result);
4756 NewTL.setKWLoc(TL.getKWLoc());
4757 NewTL.setLParenLoc(TL.getLParenLoc());
4758 NewTL.setRParenLoc(TL.getRParenLoc());
4759
4760 return Result;
4761 }
4762
4763 /// \brief Simple iterator that traverses the template arguments in a
4764 /// container that provides a \c getArgLoc() member function.
4765 ///
4766 /// This iterator is intended to be used with the iterator form of
4767 /// \c TreeTransform<Derived>::TransformTemplateArguments().
4768 template<typename ArgLocContainer>
4769 class TemplateArgumentLocContainerIterator {
4770 ArgLocContainer *Container;
4771 unsigned Index;
4772
4773 public:
4774 typedef TemplateArgumentLoc value_type;
4775 typedef TemplateArgumentLoc reference;
4776 typedef int difference_type;
4777 typedef std::input_iterator_tag iterator_category;
4778
4779 class pointer {
4780 TemplateArgumentLoc Arg;
4781
4782 public:
pointer(TemplateArgumentLoc Arg)4783 explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
4784
4785 const TemplateArgumentLoc *operator->() const {
4786 return &Arg;
4787 }
4788 };
4789
4790
TemplateArgumentLocContainerIterator()4791 TemplateArgumentLocContainerIterator() {}
4792
TemplateArgumentLocContainerIterator(ArgLocContainer & Container,unsigned Index)4793 TemplateArgumentLocContainerIterator(ArgLocContainer &Container,
4794 unsigned Index)
4795 : Container(&Container), Index(Index) { }
4796
4797 TemplateArgumentLocContainerIterator &operator++() {
4798 ++Index;
4799 return *this;
4800 }
4801
4802 TemplateArgumentLocContainerIterator operator++(int) {
4803 TemplateArgumentLocContainerIterator Old(*this);
4804 ++(*this);
4805 return Old;
4806 }
4807
4808 TemplateArgumentLoc operator*() const {
4809 return Container->getArgLoc(Index);
4810 }
4811
4812 pointer operator->() const {
4813 return pointer(Container->getArgLoc(Index));
4814 }
4815
4816 friend bool operator==(const TemplateArgumentLocContainerIterator &X,
4817 const TemplateArgumentLocContainerIterator &Y) {
4818 return X.Container == Y.Container && X.Index == Y.Index;
4819 }
4820
4821 friend bool operator!=(const TemplateArgumentLocContainerIterator &X,
4822 const TemplateArgumentLocContainerIterator &Y) {
4823 return !(X == Y);
4824 }
4825 };
4826
4827
4828 template <typename Derived>
TransformTemplateSpecializationType(TypeLocBuilder & TLB,TemplateSpecializationTypeLoc TL,TemplateName Template)4829 QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
4830 TypeLocBuilder &TLB,
4831 TemplateSpecializationTypeLoc TL,
4832 TemplateName Template) {
4833 TemplateArgumentListInfo NewTemplateArgs;
4834 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
4835 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
4836 typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc>
4837 ArgIterator;
4838 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
4839 ArgIterator(TL, TL.getNumArgs()),
4840 NewTemplateArgs))
4841 return QualType();
4842
4843 // FIXME: maybe don't rebuild if all the template arguments are the same.
4844
4845 QualType Result =
4846 getDerived().RebuildTemplateSpecializationType(Template,
4847 TL.getTemplateNameLoc(),
4848 NewTemplateArgs);
4849
4850 if (!Result.isNull()) {
4851 // Specializations of template template parameters are represented as
4852 // TemplateSpecializationTypes, and substitution of type alias templates
4853 // within a dependent context can transform them into
4854 // DependentTemplateSpecializationTypes.
4855 if (isa<DependentTemplateSpecializationType>(Result)) {
4856 DependentTemplateSpecializationTypeLoc NewTL
4857 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
4858 NewTL.setElaboratedKeywordLoc(SourceLocation());
4859 NewTL.setQualifierLoc(NestedNameSpecifierLoc());
4860 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
4861 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
4862 NewTL.setLAngleLoc(TL.getLAngleLoc());
4863 NewTL.setRAngleLoc(TL.getRAngleLoc());
4864 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
4865 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
4866 return Result;
4867 }
4868
4869 TemplateSpecializationTypeLoc NewTL
4870 = TLB.push<TemplateSpecializationTypeLoc>(Result);
4871 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
4872 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
4873 NewTL.setLAngleLoc(TL.getLAngleLoc());
4874 NewTL.setRAngleLoc(TL.getRAngleLoc());
4875 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
4876 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
4877 }
4878
4879 return Result;
4880 }
4881
4882 template <typename Derived>
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL,TemplateName Template,CXXScopeSpec & SS)4883 QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType(
4884 TypeLocBuilder &TLB,
4885 DependentTemplateSpecializationTypeLoc TL,
4886 TemplateName Template,
4887 CXXScopeSpec &SS) {
4888 TemplateArgumentListInfo NewTemplateArgs;
4889 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
4890 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
4891 typedef TemplateArgumentLocContainerIterator<
4892 DependentTemplateSpecializationTypeLoc> ArgIterator;
4893 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
4894 ArgIterator(TL, TL.getNumArgs()),
4895 NewTemplateArgs))
4896 return QualType();
4897
4898 // FIXME: maybe don't rebuild if all the template arguments are the same.
4899
4900 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4901 QualType Result
4902 = getSema().Context.getDependentTemplateSpecializationType(
4903 TL.getTypePtr()->getKeyword(),
4904 DTN->getQualifier(),
4905 DTN->getIdentifier(),
4906 NewTemplateArgs);
4907
4908 DependentTemplateSpecializationTypeLoc NewTL
4909 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
4910 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
4911 NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context));
4912 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
4913 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
4914 NewTL.setLAngleLoc(TL.getLAngleLoc());
4915 NewTL.setRAngleLoc(TL.getRAngleLoc());
4916 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
4917 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
4918 return Result;
4919 }
4920
4921 QualType Result
4922 = getDerived().RebuildTemplateSpecializationType(Template,
4923 TL.getTemplateNameLoc(),
4924 NewTemplateArgs);
4925
4926 if (!Result.isNull()) {
4927 /// FIXME: Wrap this in an elaborated-type-specifier?
4928 TemplateSpecializationTypeLoc NewTL
4929 = TLB.push<TemplateSpecializationTypeLoc>(Result);
4930 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
4931 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
4932 NewTL.setLAngleLoc(TL.getLAngleLoc());
4933 NewTL.setRAngleLoc(TL.getRAngleLoc());
4934 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
4935 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
4936 }
4937
4938 return Result;
4939 }
4940
4941 template<typename Derived>
4942 QualType
TransformElaboratedType(TypeLocBuilder & TLB,ElaboratedTypeLoc TL)4943 TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
4944 ElaboratedTypeLoc TL) {
4945 const ElaboratedType *T = TL.getTypePtr();
4946
4947 NestedNameSpecifierLoc QualifierLoc;
4948 // NOTE: the qualifier in an ElaboratedType is optional.
4949 if (TL.getQualifierLoc()) {
4950 QualifierLoc
4951 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
4952 if (!QualifierLoc)
4953 return QualType();
4954 }
4955
4956 QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc());
4957 if (NamedT.isNull())
4958 return QualType();
4959
4960 // C++0x [dcl.type.elab]p2:
4961 // If the identifier resolves to a typedef-name or the simple-template-id
4962 // resolves to an alias template specialization, the
4963 // elaborated-type-specifier is ill-formed.
4964 if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) {
4965 if (const TemplateSpecializationType *TST =
4966 NamedT->getAs<TemplateSpecializationType>()) {
4967 TemplateName Template = TST->getTemplateName();
4968 if (TypeAliasTemplateDecl *TAT =
4969 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4970 SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(),
4971 diag::err_tag_reference_non_tag) << 4;
4972 SemaRef.Diag(TAT->getLocation(), diag::note_declared_at);
4973 }
4974 }
4975 }
4976
4977 QualType Result = TL.getType();
4978 if (getDerived().AlwaysRebuild() ||
4979 QualifierLoc != TL.getQualifierLoc() ||
4980 NamedT != T->getNamedType()) {
4981 Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(),
4982 T->getKeyword(),
4983 QualifierLoc, NamedT);
4984 if (Result.isNull())
4985 return QualType();
4986 }
4987
4988 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
4989 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
4990 NewTL.setQualifierLoc(QualifierLoc);
4991 return Result;
4992 }
4993
4994 template<typename Derived>
TransformAttributedType(TypeLocBuilder & TLB,AttributedTypeLoc TL)4995 QualType TreeTransform<Derived>::TransformAttributedType(
4996 TypeLocBuilder &TLB,
4997 AttributedTypeLoc TL) {
4998 const AttributedType *oldType = TL.getTypePtr();
4999 QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc());
5000 if (modifiedType.isNull())
5001 return QualType();
5002
5003 QualType result = TL.getType();
5004
5005 // FIXME: dependent operand expressions?
5006 if (getDerived().AlwaysRebuild() ||
5007 modifiedType != oldType->getModifiedType()) {
5008 // TODO: this is really lame; we should really be rebuilding the
5009 // equivalent type from first principles.
5010 QualType equivalentType
5011 = getDerived().TransformType(oldType->getEquivalentType());
5012 if (equivalentType.isNull())
5013 return QualType();
5014 result = SemaRef.Context.getAttributedType(oldType->getAttrKind(),
5015 modifiedType,
5016 equivalentType);
5017 }
5018
5019 AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result);
5020 newTL.setAttrNameLoc(TL.getAttrNameLoc());
5021 if (TL.hasAttrOperand())
5022 newTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
5023 if (TL.hasAttrExprOperand())
5024 newTL.setAttrExprOperand(TL.getAttrExprOperand());
5025 else if (TL.hasAttrEnumOperand())
5026 newTL.setAttrEnumOperandLoc(TL.getAttrEnumOperandLoc());
5027
5028 return result;
5029 }
5030
5031 template<typename Derived>
5032 QualType
TransformParenType(TypeLocBuilder & TLB,ParenTypeLoc TL)5033 TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB,
5034 ParenTypeLoc TL) {
5035 QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
5036 if (Inner.isNull())
5037 return QualType();
5038
5039 QualType Result = TL.getType();
5040 if (getDerived().AlwaysRebuild() ||
5041 Inner != TL.getInnerLoc().getType()) {
5042 Result = getDerived().RebuildParenType(Inner);
5043 if (Result.isNull())
5044 return QualType();
5045 }
5046
5047 ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result);
5048 NewTL.setLParenLoc(TL.getLParenLoc());
5049 NewTL.setRParenLoc(TL.getRParenLoc());
5050 return Result;
5051 }
5052
5053 template<typename Derived>
TransformDependentNameType(TypeLocBuilder & TLB,DependentNameTypeLoc TL)5054 QualType TreeTransform<Derived>::TransformDependentNameType(TypeLocBuilder &TLB,
5055 DependentNameTypeLoc TL) {
5056 const DependentNameType *T = TL.getTypePtr();
5057
5058 NestedNameSpecifierLoc QualifierLoc
5059 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
5060 if (!QualifierLoc)
5061 return QualType();
5062
5063 QualType Result
5064 = getDerived().RebuildDependentNameType(T->getKeyword(),
5065 TL.getElaboratedKeywordLoc(),
5066 QualifierLoc,
5067 T->getIdentifier(),
5068 TL.getNameLoc());
5069 if (Result.isNull())
5070 return QualType();
5071
5072 if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
5073 QualType NamedT = ElabT->getNamedType();
5074 TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
5075
5076 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
5077 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
5078 NewTL.setQualifierLoc(QualifierLoc);
5079 } else {
5080 DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
5081 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
5082 NewTL.setQualifierLoc(QualifierLoc);
5083 NewTL.setNameLoc(TL.getNameLoc());
5084 }
5085 return Result;
5086 }
5087
5088 template<typename Derived>
5089 QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL)5090 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
5091 DependentTemplateSpecializationTypeLoc TL) {
5092 NestedNameSpecifierLoc QualifierLoc;
5093 if (TL.getQualifierLoc()) {
5094 QualifierLoc
5095 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
5096 if (!QualifierLoc)
5097 return QualType();
5098 }
5099
5100 return getDerived()
5101 .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc);
5102 }
5103
5104 template<typename Derived>
5105 QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL,NestedNameSpecifierLoc QualifierLoc)5106 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
5107 DependentTemplateSpecializationTypeLoc TL,
5108 NestedNameSpecifierLoc QualifierLoc) {
5109 const DependentTemplateSpecializationType *T = TL.getTypePtr();
5110
5111 TemplateArgumentListInfo NewTemplateArgs;
5112 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
5113 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
5114
5115 typedef TemplateArgumentLocContainerIterator<
5116 DependentTemplateSpecializationTypeLoc> ArgIterator;
5117 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
5118 ArgIterator(TL, TL.getNumArgs()),
5119 NewTemplateArgs))
5120 return QualType();
5121
5122 QualType Result
5123 = getDerived().RebuildDependentTemplateSpecializationType(T->getKeyword(),
5124 QualifierLoc,
5125 T->getIdentifier(),
5126 TL.getTemplateNameLoc(),
5127 NewTemplateArgs);
5128 if (Result.isNull())
5129 return QualType();
5130
5131 if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) {
5132 QualType NamedT = ElabT->getNamedType();
5133
5134 // Copy information relevant to the template specialization.
5135 TemplateSpecializationTypeLoc NamedTL
5136 = TLB.push<TemplateSpecializationTypeLoc>(NamedT);
5137 NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
5138 NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc());
5139 NamedTL.setLAngleLoc(TL.getLAngleLoc());
5140 NamedTL.setRAngleLoc(TL.getRAngleLoc());
5141 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
5142 NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
5143
5144 // Copy information relevant to the elaborated type.
5145 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
5146 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
5147 NewTL.setQualifierLoc(QualifierLoc);
5148 } else if (isa<DependentTemplateSpecializationType>(Result)) {
5149 DependentTemplateSpecializationTypeLoc SpecTL
5150 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
5151 SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
5152 SpecTL.setQualifierLoc(QualifierLoc);
5153 SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
5154 SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
5155 SpecTL.setLAngleLoc(TL.getLAngleLoc());
5156 SpecTL.setRAngleLoc(TL.getRAngleLoc());
5157 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
5158 SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
5159 } else {
5160 TemplateSpecializationTypeLoc SpecTL
5161 = TLB.push<TemplateSpecializationTypeLoc>(Result);
5162 SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
5163 SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
5164 SpecTL.setLAngleLoc(TL.getLAngleLoc());
5165 SpecTL.setRAngleLoc(TL.getRAngleLoc());
5166 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
5167 SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
5168 }
5169 return Result;
5170 }
5171
5172 template<typename Derived>
TransformPackExpansionType(TypeLocBuilder & TLB,PackExpansionTypeLoc TL)5173 QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB,
5174 PackExpansionTypeLoc TL) {
5175 QualType Pattern
5176 = getDerived().TransformType(TLB, TL.getPatternLoc());
5177 if (Pattern.isNull())
5178 return QualType();
5179
5180 QualType Result = TL.getType();
5181 if (getDerived().AlwaysRebuild() ||
5182 Pattern != TL.getPatternLoc().getType()) {
5183 Result = getDerived().RebuildPackExpansionType(Pattern,
5184 TL.getPatternLoc().getSourceRange(),
5185 TL.getEllipsisLoc(),
5186 TL.getTypePtr()->getNumExpansions());
5187 if (Result.isNull())
5188 return QualType();
5189 }
5190
5191 PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result);
5192 NewT.setEllipsisLoc(TL.getEllipsisLoc());
5193 return Result;
5194 }
5195
5196 template<typename Derived>
5197 QualType
TransformObjCInterfaceType(TypeLocBuilder & TLB,ObjCInterfaceTypeLoc TL)5198 TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
5199 ObjCInterfaceTypeLoc TL) {
5200 // ObjCInterfaceType is never dependent.
5201 TLB.pushFullCopy(TL);
5202 return TL.getType();
5203 }
5204
5205 template<typename Derived>
5206 QualType
TransformObjCObjectType(TypeLocBuilder & TLB,ObjCObjectTypeLoc TL)5207 TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB,
5208 ObjCObjectTypeLoc TL) {
5209 // ObjCObjectType is never dependent.
5210 TLB.pushFullCopy(TL);
5211 return TL.getType();
5212 }
5213
5214 template<typename Derived>
5215 QualType
TransformObjCObjectPointerType(TypeLocBuilder & TLB,ObjCObjectPointerTypeLoc TL)5216 TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
5217 ObjCObjectPointerTypeLoc TL) {
5218 // ObjCObjectPointerType is never dependent.
5219 TLB.pushFullCopy(TL);
5220 return TL.getType();
5221 }
5222
5223 //===----------------------------------------------------------------------===//
5224 // Statement transformation
5225 //===----------------------------------------------------------------------===//
5226 template<typename Derived>
5227 StmtResult
TransformNullStmt(NullStmt * S)5228 TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
5229 return SemaRef.Owned(S);
5230 }
5231
5232 template<typename Derived>
5233 StmtResult
TransformCompoundStmt(CompoundStmt * S)5234 TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
5235 return getDerived().TransformCompoundStmt(S, false);
5236 }
5237
5238 template<typename Derived>
5239 StmtResult
TransformCompoundStmt(CompoundStmt * S,bool IsStmtExpr)5240 TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
5241 bool IsStmtExpr) {
5242 Sema::CompoundScopeRAII CompoundScope(getSema());
5243
5244 bool SubStmtInvalid = false;
5245 bool SubStmtChanged = false;
5246 SmallVector<Stmt*, 8> Statements;
5247 for (CompoundStmt::body_iterator B = S->body_begin(), BEnd = S->body_end();
5248 B != BEnd; ++B) {
5249 StmtResult Result = getDerived().TransformStmt(*B);
5250 if (Result.isInvalid()) {
5251 // Immediately fail if this was a DeclStmt, since it's very
5252 // likely that this will cause problems for future statements.
5253 if (isa<DeclStmt>(*B))
5254 return StmtError();
5255
5256 // Otherwise, just keep processing substatements and fail later.
5257 SubStmtInvalid = true;
5258 continue;
5259 }
5260
5261 SubStmtChanged = SubStmtChanged || Result.get() != *B;
5262 Statements.push_back(Result.takeAs<Stmt>());
5263 }
5264
5265 if (SubStmtInvalid)
5266 return StmtError();
5267
5268 if (!getDerived().AlwaysRebuild() &&
5269 !SubStmtChanged)
5270 return SemaRef.Owned(S);
5271
5272 return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
5273 Statements,
5274 S->getRBracLoc(),
5275 IsStmtExpr);
5276 }
5277
5278 template<typename Derived>
5279 StmtResult
TransformCaseStmt(CaseStmt * S)5280 TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
5281 ExprResult LHS, RHS;
5282 {
5283 EnterExpressionEvaluationContext Unevaluated(SemaRef,
5284 Sema::ConstantEvaluated);
5285
5286 // Transform the left-hand case value.
5287 LHS = getDerived().TransformExpr(S->getLHS());
5288 LHS = SemaRef.ActOnConstantExpression(LHS);
5289 if (LHS.isInvalid())
5290 return StmtError();
5291
5292 // Transform the right-hand case value (for the GNU case-range extension).
5293 RHS = getDerived().TransformExpr(S->getRHS());
5294 RHS = SemaRef.ActOnConstantExpression(RHS);
5295 if (RHS.isInvalid())
5296 return StmtError();
5297 }
5298
5299 // Build the case statement.
5300 // Case statements are always rebuilt so that they will attached to their
5301 // transformed switch statement.
5302 StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
5303 LHS.get(),
5304 S->getEllipsisLoc(),
5305 RHS.get(),
5306 S->getColonLoc());
5307 if (Case.isInvalid())
5308 return StmtError();
5309
5310 // Transform the statement following the case
5311 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
5312 if (SubStmt.isInvalid())
5313 return StmtError();
5314
5315 // Attach the body to the case statement
5316 return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get());
5317 }
5318
5319 template<typename Derived>
5320 StmtResult
TransformDefaultStmt(DefaultStmt * S)5321 TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
5322 // Transform the statement following the default case
5323 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
5324 if (SubStmt.isInvalid())
5325 return StmtError();
5326
5327 // Default statements are always rebuilt
5328 return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
5329 SubStmt.get());
5330 }
5331
5332 template<typename Derived>
5333 StmtResult
TransformLabelStmt(LabelStmt * S)5334 TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S) {
5335 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
5336 if (SubStmt.isInvalid())
5337 return StmtError();
5338
5339 Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(),
5340 S->getDecl());
5341 if (!LD)
5342 return StmtError();
5343
5344
5345 // FIXME: Pass the real colon location in.
5346 return getDerived().RebuildLabelStmt(S->getIdentLoc(),
5347 cast<LabelDecl>(LD), SourceLocation(),
5348 SubStmt.get());
5349 }
5350
5351 template<typename Derived>
5352 StmtResult
TransformAttributedStmt(AttributedStmt * S)5353 TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S) {
5354 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
5355 if (SubStmt.isInvalid())
5356 return StmtError();
5357
5358 // TODO: transform attributes
5359 if (SubStmt.get() == S->getSubStmt() /* && attrs are the same */)
5360 return S;
5361
5362 return getDerived().RebuildAttributedStmt(S->getAttrLoc(),
5363 S->getAttrs(),
5364 SubStmt.get());
5365 }
5366
5367 template<typename Derived>
5368 StmtResult
TransformIfStmt(IfStmt * S)5369 TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
5370 // Transform the condition
5371 ExprResult Cond;
5372 VarDecl *ConditionVar = 0;
5373 if (S->getConditionVariable()) {
5374 ConditionVar
5375 = cast_or_null<VarDecl>(
5376 getDerived().TransformDefinition(
5377 S->getConditionVariable()->getLocation(),
5378 S->getConditionVariable()));
5379 if (!ConditionVar)
5380 return StmtError();
5381 } else {
5382 Cond = getDerived().TransformExpr(S->getCond());
5383
5384 if (Cond.isInvalid())
5385 return StmtError();
5386
5387 // Convert the condition to a boolean value.
5388 if (S->getCond()) {
5389 ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getIfLoc(),
5390 Cond.get());
5391 if (CondE.isInvalid())
5392 return StmtError();
5393
5394 Cond = CondE.get();
5395 }
5396 }
5397
5398 Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
5399 if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
5400 return StmtError();
5401
5402 // Transform the "then" branch.
5403 StmtResult Then = getDerived().TransformStmt(S->getThen());
5404 if (Then.isInvalid())
5405 return StmtError();
5406
5407 // Transform the "else" branch.
5408 StmtResult Else = getDerived().TransformStmt(S->getElse());
5409 if (Else.isInvalid())
5410 return StmtError();
5411
5412 if (!getDerived().AlwaysRebuild() &&
5413 FullCond.get() == S->getCond() &&
5414 ConditionVar == S->getConditionVariable() &&
5415 Then.get() == S->getThen() &&
5416 Else.get() == S->getElse())
5417 return SemaRef.Owned(S);
5418
5419 return getDerived().RebuildIfStmt(S->getIfLoc(), FullCond, ConditionVar,
5420 Then.get(),
5421 S->getElseLoc(), Else.get());
5422 }
5423
5424 template<typename Derived>
5425 StmtResult
TransformSwitchStmt(SwitchStmt * S)5426 TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
5427 // Transform the condition.
5428 ExprResult Cond;
5429 VarDecl *ConditionVar = 0;
5430 if (S->getConditionVariable()) {
5431 ConditionVar
5432 = cast_or_null<VarDecl>(
5433 getDerived().TransformDefinition(
5434 S->getConditionVariable()->getLocation(),
5435 S->getConditionVariable()));
5436 if (!ConditionVar)
5437 return StmtError();
5438 } else {
5439 Cond = getDerived().TransformExpr(S->getCond());
5440
5441 if (Cond.isInvalid())
5442 return StmtError();
5443 }
5444
5445 // Rebuild the switch statement.
5446 StmtResult Switch
5447 = getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), Cond.get(),
5448 ConditionVar);
5449 if (Switch.isInvalid())
5450 return StmtError();
5451
5452 // Transform the body of the switch statement.
5453 StmtResult Body = getDerived().TransformStmt(S->getBody());
5454 if (Body.isInvalid())
5455 return StmtError();
5456
5457 // Complete the switch statement.
5458 return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(),
5459 Body.get());
5460 }
5461
5462 template<typename Derived>
5463 StmtResult
TransformWhileStmt(WhileStmt * S)5464 TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
5465 // Transform the condition
5466 ExprResult Cond;
5467 VarDecl *ConditionVar = 0;
5468 if (S->getConditionVariable()) {
5469 ConditionVar
5470 = cast_or_null<VarDecl>(
5471 getDerived().TransformDefinition(
5472 S->getConditionVariable()->getLocation(),
5473 S->getConditionVariable()));
5474 if (!ConditionVar)
5475 return StmtError();
5476 } else {
5477 Cond = getDerived().TransformExpr(S->getCond());
5478
5479 if (Cond.isInvalid())
5480 return StmtError();
5481
5482 if (S->getCond()) {
5483 // Convert the condition to a boolean value.
5484 ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getWhileLoc(),
5485 Cond.get());
5486 if (CondE.isInvalid())
5487 return StmtError();
5488 Cond = CondE;
5489 }
5490 }
5491
5492 Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
5493 if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
5494 return StmtError();
5495
5496 // Transform the body
5497 StmtResult Body = getDerived().TransformStmt(S->getBody());
5498 if (Body.isInvalid())
5499 return StmtError();
5500
5501 if (!getDerived().AlwaysRebuild() &&
5502 FullCond.get() == S->getCond() &&
5503 ConditionVar == S->getConditionVariable() &&
5504 Body.get() == S->getBody())
5505 return Owned(S);
5506
5507 return getDerived().RebuildWhileStmt(S->getWhileLoc(), FullCond,
5508 ConditionVar, Body.get());
5509 }
5510
5511 template<typename Derived>
5512 StmtResult
TransformDoStmt(DoStmt * S)5513 TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
5514 // Transform the body
5515 StmtResult Body = getDerived().TransformStmt(S->getBody());
5516 if (Body.isInvalid())
5517 return StmtError();
5518
5519 // Transform the condition
5520 ExprResult Cond = getDerived().TransformExpr(S->getCond());
5521 if (Cond.isInvalid())
5522 return StmtError();
5523
5524 if (!getDerived().AlwaysRebuild() &&
5525 Cond.get() == S->getCond() &&
5526 Body.get() == S->getBody())
5527 return SemaRef.Owned(S);
5528
5529 return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(),
5530 /*FIXME:*/S->getWhileLoc(), Cond.get(),
5531 S->getRParenLoc());
5532 }
5533
5534 template<typename Derived>
5535 StmtResult
TransformForStmt(ForStmt * S)5536 TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
5537 // Transform the initialization statement
5538 StmtResult Init = getDerived().TransformStmt(S->getInit());
5539 if (Init.isInvalid())
5540 return StmtError();
5541
5542 // Transform the condition
5543 ExprResult Cond;
5544 VarDecl *ConditionVar = 0;
5545 if (S->getConditionVariable()) {
5546 ConditionVar
5547 = cast_or_null<VarDecl>(
5548 getDerived().TransformDefinition(
5549 S->getConditionVariable()->getLocation(),
5550 S->getConditionVariable()));
5551 if (!ConditionVar)
5552 return StmtError();
5553 } else {
5554 Cond = getDerived().TransformExpr(S->getCond());
5555
5556 if (Cond.isInvalid())
5557 return StmtError();
5558
5559 if (S->getCond()) {
5560 // Convert the condition to a boolean value.
5561 ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getForLoc(),
5562 Cond.get());
5563 if (CondE.isInvalid())
5564 return StmtError();
5565
5566 Cond = CondE.get();
5567 }
5568 }
5569
5570 Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
5571 if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
5572 return StmtError();
5573
5574 // Transform the increment
5575 ExprResult Inc = getDerived().TransformExpr(S->getInc());
5576 if (Inc.isInvalid())
5577 return StmtError();
5578
5579 Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get()));
5580 if (S->getInc() && !FullInc.get())
5581 return StmtError();
5582
5583 // Transform the body
5584 StmtResult Body = getDerived().TransformStmt(S->getBody());
5585 if (Body.isInvalid())
5586 return StmtError();
5587
5588 if (!getDerived().AlwaysRebuild() &&
5589 Init.get() == S->getInit() &&
5590 FullCond.get() == S->getCond() &&
5591 Inc.get() == S->getInc() &&
5592 Body.get() == S->getBody())
5593 return SemaRef.Owned(S);
5594
5595 return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
5596 Init.get(), FullCond, ConditionVar,
5597 FullInc, S->getRParenLoc(), Body.get());
5598 }
5599
5600 template<typename Derived>
5601 StmtResult
TransformGotoStmt(GotoStmt * S)5602 TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
5603 Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(),
5604 S->getLabel());
5605 if (!LD)
5606 return StmtError();
5607
5608 // Goto statements must always be rebuilt, to resolve the label.
5609 return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
5610 cast<LabelDecl>(LD));
5611 }
5612
5613 template<typename Derived>
5614 StmtResult
TransformIndirectGotoStmt(IndirectGotoStmt * S)5615 TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
5616 ExprResult Target = getDerived().TransformExpr(S->getTarget());
5617 if (Target.isInvalid())
5618 return StmtError();
5619 Target = SemaRef.MaybeCreateExprWithCleanups(Target.take());
5620
5621 if (!getDerived().AlwaysRebuild() &&
5622 Target.get() == S->getTarget())
5623 return SemaRef.Owned(S);
5624
5625 return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
5626 Target.get());
5627 }
5628
5629 template<typename Derived>
5630 StmtResult
TransformContinueStmt(ContinueStmt * S)5631 TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
5632 return SemaRef.Owned(S);
5633 }
5634
5635 template<typename Derived>
5636 StmtResult
TransformBreakStmt(BreakStmt * S)5637 TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
5638 return SemaRef.Owned(S);
5639 }
5640
5641 template<typename Derived>
5642 StmtResult
TransformReturnStmt(ReturnStmt * S)5643 TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
5644 ExprResult Result = getDerived().TransformExpr(S->getRetValue());
5645 if (Result.isInvalid())
5646 return StmtError();
5647
5648 // FIXME: We always rebuild the return statement because there is no way
5649 // to tell whether the return type of the function has changed.
5650 return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get());
5651 }
5652
5653 template<typename Derived>
5654 StmtResult
TransformDeclStmt(DeclStmt * S)5655 TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
5656 bool DeclChanged = false;
5657 SmallVector<Decl *, 4> Decls;
5658 for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
5659 D != DEnd; ++D) {
5660 Decl *Transformed = getDerived().TransformDefinition((*D)->getLocation(),
5661 *D);
5662 if (!Transformed)
5663 return StmtError();
5664
5665 if (Transformed != *D)
5666 DeclChanged = true;
5667
5668 Decls.push_back(Transformed);
5669 }
5670
5671 if (!getDerived().AlwaysRebuild() && !DeclChanged)
5672 return SemaRef.Owned(S);
5673
5674 return getDerived().RebuildDeclStmt(Decls, S->getStartLoc(), S->getEndLoc());
5675 }
5676
5677 template<typename Derived>
5678 StmtResult
TransformGCCAsmStmt(GCCAsmStmt * S)5679 TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) {
5680
5681 SmallVector<Expr*, 8> Constraints;
5682 SmallVector<Expr*, 8> Exprs;
5683 SmallVector<IdentifierInfo *, 4> Names;
5684
5685 ExprResult AsmString;
5686 SmallVector<Expr*, 8> Clobbers;
5687
5688 bool ExprsChanged = false;
5689
5690 // Go through the outputs.
5691 for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
5692 Names.push_back(S->getOutputIdentifier(I));
5693
5694 // No need to transform the constraint literal.
5695 Constraints.push_back(S->getOutputConstraintLiteral(I));
5696
5697 // Transform the output expr.
5698 Expr *OutputExpr = S->getOutputExpr(I);
5699 ExprResult Result = getDerived().TransformExpr(OutputExpr);
5700 if (Result.isInvalid())
5701 return StmtError();
5702
5703 ExprsChanged |= Result.get() != OutputExpr;
5704
5705 Exprs.push_back(Result.get());
5706 }
5707
5708 // Go through the inputs.
5709 for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
5710 Names.push_back(S->getInputIdentifier(I));
5711
5712 // No need to transform the constraint literal.
5713 Constraints.push_back(S->getInputConstraintLiteral(I));
5714
5715 // Transform the input expr.
5716 Expr *InputExpr = S->getInputExpr(I);
5717 ExprResult Result = getDerived().TransformExpr(InputExpr);
5718 if (Result.isInvalid())
5719 return StmtError();
5720
5721 ExprsChanged |= Result.get() != InputExpr;
5722
5723 Exprs.push_back(Result.get());
5724 }
5725
5726 if (!getDerived().AlwaysRebuild() && !ExprsChanged)
5727 return SemaRef.Owned(S);
5728
5729 // Go through the clobbers.
5730 for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I)
5731 Clobbers.push_back(S->getClobberStringLiteral(I));
5732
5733 // No need to transform the asm string literal.
5734 AsmString = SemaRef.Owned(S->getAsmString());
5735 return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(),
5736 S->isVolatile(), S->getNumOutputs(),
5737 S->getNumInputs(), Names.data(),
5738 Constraints, Exprs, AsmString.get(),
5739 Clobbers, S->getRParenLoc());
5740 }
5741
5742 template<typename Derived>
5743 StmtResult
TransformMSAsmStmt(MSAsmStmt * S)5744 TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) {
5745 ArrayRef<Token> AsmToks =
5746 llvm::makeArrayRef(S->getAsmToks(), S->getNumAsmToks());
5747
5748 bool HadError = false, HadChange = false;
5749
5750 ArrayRef<Expr*> SrcExprs = S->getAllExprs();
5751 SmallVector<Expr*, 8> TransformedExprs;
5752 TransformedExprs.reserve(SrcExprs.size());
5753 for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) {
5754 ExprResult Result = getDerived().TransformExpr(SrcExprs[i]);
5755 if (!Result.isUsable()) {
5756 HadError = true;
5757 } else {
5758 HadChange |= (Result.get() != SrcExprs[i]);
5759 TransformedExprs.push_back(Result.take());
5760 }
5761 }
5762
5763 if (HadError) return StmtError();
5764 if (!HadChange && !getDerived().AlwaysRebuild())
5765 return Owned(S);
5766
5767 return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(),
5768 AsmToks, S->getAsmString(),
5769 S->getNumOutputs(), S->getNumInputs(),
5770 S->getAllConstraints(), S->getClobbers(),
5771 TransformedExprs, S->getEndLoc());
5772 }
5773
5774 template<typename Derived>
5775 StmtResult
TransformObjCAtTryStmt(ObjCAtTryStmt * S)5776 TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
5777 // Transform the body of the @try.
5778 StmtResult TryBody = getDerived().TransformStmt(S->getTryBody());
5779 if (TryBody.isInvalid())
5780 return StmtError();
5781
5782 // Transform the @catch statements (if present).
5783 bool AnyCatchChanged = false;
5784 SmallVector<Stmt*, 8> CatchStmts;
5785 for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
5786 StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I));
5787 if (Catch.isInvalid())
5788 return StmtError();
5789 if (Catch.get() != S->getCatchStmt(I))
5790 AnyCatchChanged = true;
5791 CatchStmts.push_back(Catch.release());
5792 }
5793
5794 // Transform the @finally statement (if present).
5795 StmtResult Finally;
5796 if (S->getFinallyStmt()) {
5797 Finally = getDerived().TransformStmt(S->getFinallyStmt());
5798 if (Finally.isInvalid())
5799 return StmtError();
5800 }
5801
5802 // If nothing changed, just retain this statement.
5803 if (!getDerived().AlwaysRebuild() &&
5804 TryBody.get() == S->getTryBody() &&
5805 !AnyCatchChanged &&
5806 Finally.get() == S->getFinallyStmt())
5807 return SemaRef.Owned(S);
5808
5809 // Build a new statement.
5810 return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(),
5811 CatchStmts, Finally.get());
5812 }
5813
5814 template<typename Derived>
5815 StmtResult
TransformObjCAtCatchStmt(ObjCAtCatchStmt * S)5816 TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
5817 // Transform the @catch parameter, if there is one.
5818 VarDecl *Var = 0;
5819 if (VarDecl *FromVar = S->getCatchParamDecl()) {
5820 TypeSourceInfo *TSInfo = 0;
5821 if (FromVar->getTypeSourceInfo()) {
5822 TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo());
5823 if (!TSInfo)
5824 return StmtError();
5825 }
5826
5827 QualType T;
5828 if (TSInfo)
5829 T = TSInfo->getType();
5830 else {
5831 T = getDerived().TransformType(FromVar->getType());
5832 if (T.isNull())
5833 return StmtError();
5834 }
5835
5836 Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T);
5837 if (!Var)
5838 return StmtError();
5839 }
5840
5841 StmtResult Body = getDerived().TransformStmt(S->getCatchBody());
5842 if (Body.isInvalid())
5843 return StmtError();
5844
5845 return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(),
5846 S->getRParenLoc(),
5847 Var, Body.get());
5848 }
5849
5850 template<typename Derived>
5851 StmtResult
TransformObjCAtFinallyStmt(ObjCAtFinallyStmt * S)5852 TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
5853 // Transform the body.
5854 StmtResult Body = getDerived().TransformStmt(S->getFinallyBody());
5855 if (Body.isInvalid())
5856 return StmtError();
5857
5858 // If nothing changed, just retain this statement.
5859 if (!getDerived().AlwaysRebuild() &&
5860 Body.get() == S->getFinallyBody())
5861 return SemaRef.Owned(S);
5862
5863 // Build a new statement.
5864 return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(),
5865 Body.get());
5866 }
5867
5868 template<typename Derived>
5869 StmtResult
TransformObjCAtThrowStmt(ObjCAtThrowStmt * S)5870 TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
5871 ExprResult Operand;
5872 if (S->getThrowExpr()) {
5873 Operand = getDerived().TransformExpr(S->getThrowExpr());
5874 if (Operand.isInvalid())
5875 return StmtError();
5876 }
5877
5878 if (!getDerived().AlwaysRebuild() &&
5879 Operand.get() == S->getThrowExpr())
5880 return getSema().Owned(S);
5881
5882 return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get());
5883 }
5884
5885 template<typename Derived>
5886 StmtResult
TransformObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt * S)5887 TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
5888 ObjCAtSynchronizedStmt *S) {
5889 // Transform the object we are locking.
5890 ExprResult Object = getDerived().TransformExpr(S->getSynchExpr());
5891 if (Object.isInvalid())
5892 return StmtError();
5893 Object =
5894 getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(),
5895 Object.get());
5896 if (Object.isInvalid())
5897 return StmtError();
5898
5899 // Transform the body.
5900 StmtResult Body = getDerived().TransformStmt(S->getSynchBody());
5901 if (Body.isInvalid())
5902 return StmtError();
5903
5904 // If nothing change, just retain the current statement.
5905 if (!getDerived().AlwaysRebuild() &&
5906 Object.get() == S->getSynchExpr() &&
5907 Body.get() == S->getSynchBody())
5908 return SemaRef.Owned(S);
5909
5910 // Build a new statement.
5911 return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(),
5912 Object.get(), Body.get());
5913 }
5914
5915 template<typename Derived>
5916 StmtResult
TransformObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt * S)5917 TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt(
5918 ObjCAutoreleasePoolStmt *S) {
5919 // Transform the body.
5920 StmtResult Body = getDerived().TransformStmt(S->getSubStmt());
5921 if (Body.isInvalid())
5922 return StmtError();
5923
5924 // If nothing changed, just retain this statement.
5925 if (!getDerived().AlwaysRebuild() &&
5926 Body.get() == S->getSubStmt())
5927 return SemaRef.Owned(S);
5928
5929 // Build a new statement.
5930 return getDerived().RebuildObjCAutoreleasePoolStmt(
5931 S->getAtLoc(), Body.get());
5932 }
5933
5934 template<typename Derived>
5935 StmtResult
TransformObjCForCollectionStmt(ObjCForCollectionStmt * S)5936 TreeTransform<Derived>::TransformObjCForCollectionStmt(
5937 ObjCForCollectionStmt *S) {
5938 // Transform the element statement.
5939 StmtResult Element = getDerived().TransformStmt(S->getElement());
5940 if (Element.isInvalid())
5941 return StmtError();
5942
5943 // Transform the collection expression.
5944 ExprResult Collection = getDerived().TransformExpr(S->getCollection());
5945 if (Collection.isInvalid())
5946 return StmtError();
5947
5948 // Transform the body.
5949 StmtResult Body = getDerived().TransformStmt(S->getBody());
5950 if (Body.isInvalid())
5951 return StmtError();
5952
5953 // If nothing changed, just retain this statement.
5954 if (!getDerived().AlwaysRebuild() &&
5955 Element.get() == S->getElement() &&
5956 Collection.get() == S->getCollection() &&
5957 Body.get() == S->getBody())
5958 return SemaRef.Owned(S);
5959
5960 // Build a new statement.
5961 return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(),
5962 Element.get(),
5963 Collection.get(),
5964 S->getRParenLoc(),
5965 Body.get());
5966 }
5967
5968
5969 template<typename Derived>
5970 StmtResult
TransformCXXCatchStmt(CXXCatchStmt * S)5971 TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
5972 // Transform the exception declaration, if any.
5973 VarDecl *Var = 0;
5974 if (S->getExceptionDecl()) {
5975 VarDecl *ExceptionDecl = S->getExceptionDecl();
5976 TypeSourceInfo *T = getDerived().TransformType(
5977 ExceptionDecl->getTypeSourceInfo());
5978 if (!T)
5979 return StmtError();
5980
5981 Var = getDerived().RebuildExceptionDecl(ExceptionDecl, T,
5982 ExceptionDecl->getInnerLocStart(),
5983 ExceptionDecl->getLocation(),
5984 ExceptionDecl->getIdentifier());
5985 if (!Var || Var->isInvalidDecl())
5986 return StmtError();
5987 }
5988
5989 // Transform the actual exception handler.
5990 StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
5991 if (Handler.isInvalid())
5992 return StmtError();
5993
5994 if (!getDerived().AlwaysRebuild() &&
5995 !Var &&
5996 Handler.get() == S->getHandlerBlock())
5997 return SemaRef.Owned(S);
5998
5999 return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(),
6000 Var,
6001 Handler.get());
6002 }
6003
6004 template<typename Derived>
6005 StmtResult
TransformCXXTryStmt(CXXTryStmt * S)6006 TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
6007 // Transform the try block itself.
6008 StmtResult TryBlock
6009 = getDerived().TransformCompoundStmt(S->getTryBlock());
6010 if (TryBlock.isInvalid())
6011 return StmtError();
6012
6013 // Transform the handlers.
6014 bool HandlerChanged = false;
6015 SmallVector<Stmt*, 8> Handlers;
6016 for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
6017 StmtResult Handler
6018 = getDerived().TransformCXXCatchStmt(S->getHandler(I));
6019 if (Handler.isInvalid())
6020 return StmtError();
6021
6022 HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
6023 Handlers.push_back(Handler.takeAs<Stmt>());
6024 }
6025
6026 if (!getDerived().AlwaysRebuild() &&
6027 TryBlock.get() == S->getTryBlock() &&
6028 !HandlerChanged)
6029 return SemaRef.Owned(S);
6030
6031 return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(),
6032 Handlers);
6033 }
6034
6035 template<typename Derived>
6036 StmtResult
TransformCXXForRangeStmt(CXXForRangeStmt * S)6037 TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) {
6038 StmtResult Range = getDerived().TransformStmt(S->getRangeStmt());
6039 if (Range.isInvalid())
6040 return StmtError();
6041
6042 StmtResult BeginEnd = getDerived().TransformStmt(S->getBeginEndStmt());
6043 if (BeginEnd.isInvalid())
6044 return StmtError();
6045
6046 ExprResult Cond = getDerived().TransformExpr(S->getCond());
6047 if (Cond.isInvalid())
6048 return StmtError();
6049 if (Cond.get())
6050 Cond = SemaRef.CheckBooleanCondition(Cond.take(), S->getColonLoc());
6051 if (Cond.isInvalid())
6052 return StmtError();
6053 if (Cond.get())
6054 Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.take());
6055
6056 ExprResult Inc = getDerived().TransformExpr(S->getInc());
6057 if (Inc.isInvalid())
6058 return StmtError();
6059 if (Inc.get())
6060 Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.take());
6061
6062 StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt());
6063 if (LoopVar.isInvalid())
6064 return StmtError();
6065
6066 StmtResult NewStmt = S;
6067 if (getDerived().AlwaysRebuild() ||
6068 Range.get() != S->getRangeStmt() ||
6069 BeginEnd.get() != S->getBeginEndStmt() ||
6070 Cond.get() != S->getCond() ||
6071 Inc.get() != S->getInc() ||
6072 LoopVar.get() != S->getLoopVarStmt()) {
6073 NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
6074 S->getColonLoc(), Range.get(),
6075 BeginEnd.get(), Cond.get(),
6076 Inc.get(), LoopVar.get(),
6077 S->getRParenLoc());
6078 if (NewStmt.isInvalid())
6079 return StmtError();
6080 }
6081
6082 StmtResult Body = getDerived().TransformStmt(S->getBody());
6083 if (Body.isInvalid())
6084 return StmtError();
6085
6086 // Body has changed but we didn't rebuild the for-range statement. Rebuild
6087 // it now so we have a new statement to attach the body to.
6088 if (Body.get() != S->getBody() && NewStmt.get() == S) {
6089 NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
6090 S->getColonLoc(), Range.get(),
6091 BeginEnd.get(), Cond.get(),
6092 Inc.get(), LoopVar.get(),
6093 S->getRParenLoc());
6094 if (NewStmt.isInvalid())
6095 return StmtError();
6096 }
6097
6098 if (NewStmt.get() == S)
6099 return SemaRef.Owned(S);
6100
6101 return FinishCXXForRangeStmt(NewStmt.get(), Body.get());
6102 }
6103
6104 template<typename Derived>
6105 StmtResult
TransformMSDependentExistsStmt(MSDependentExistsStmt * S)6106 TreeTransform<Derived>::TransformMSDependentExistsStmt(
6107 MSDependentExistsStmt *S) {
6108 // Transform the nested-name-specifier, if any.
6109 NestedNameSpecifierLoc QualifierLoc;
6110 if (S->getQualifierLoc()) {
6111 QualifierLoc
6112 = getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc());
6113 if (!QualifierLoc)
6114 return StmtError();
6115 }
6116
6117 // Transform the declaration name.
6118 DeclarationNameInfo NameInfo = S->getNameInfo();
6119 if (NameInfo.getName()) {
6120 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
6121 if (!NameInfo.getName())
6122 return StmtError();
6123 }
6124
6125 // Check whether anything changed.
6126 if (!getDerived().AlwaysRebuild() &&
6127 QualifierLoc == S->getQualifierLoc() &&
6128 NameInfo.getName() == S->getNameInfo().getName())
6129 return S;
6130
6131 // Determine whether this name exists, if we can.
6132 CXXScopeSpec SS;
6133 SS.Adopt(QualifierLoc);
6134 bool Dependent = false;
6135 switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/0, SS, NameInfo)) {
6136 case Sema::IER_Exists:
6137 if (S->isIfExists())
6138 break;
6139
6140 return new (getSema().Context) NullStmt(S->getKeywordLoc());
6141
6142 case Sema::IER_DoesNotExist:
6143 if (S->isIfNotExists())
6144 break;
6145
6146 return new (getSema().Context) NullStmt(S->getKeywordLoc());
6147
6148 case Sema::IER_Dependent:
6149 Dependent = true;
6150 break;
6151
6152 case Sema::IER_Error:
6153 return StmtError();
6154 }
6155
6156 // We need to continue with the instantiation, so do so now.
6157 StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt());
6158 if (SubStmt.isInvalid())
6159 return StmtError();
6160
6161 // If we have resolved the name, just transform to the substatement.
6162 if (!Dependent)
6163 return SubStmt;
6164
6165 // The name is still dependent, so build a dependent expression again.
6166 return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(),
6167 S->isIfExists(),
6168 QualifierLoc,
6169 NameInfo,
6170 SubStmt.get());
6171 }
6172
6173 template<typename Derived>
6174 ExprResult
TransformMSPropertyRefExpr(MSPropertyRefExpr * E)6175 TreeTransform<Derived>::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) {
6176 NestedNameSpecifierLoc QualifierLoc;
6177 if (E->getQualifierLoc()) {
6178 QualifierLoc
6179 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
6180 if (!QualifierLoc)
6181 return ExprError();
6182 }
6183
6184 MSPropertyDecl *PD = cast_or_null<MSPropertyDecl>(
6185 getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl()));
6186 if (!PD)
6187 return ExprError();
6188
6189 ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
6190 if (Base.isInvalid())
6191 return ExprError();
6192
6193 return new (SemaRef.getASTContext())
6194 MSPropertyRefExpr(Base.get(), PD, E->isArrow(),
6195 SemaRef.getASTContext().PseudoObjectTy, VK_LValue,
6196 QualifierLoc, E->getMemberLoc());
6197 }
6198
6199 template<typename Derived>
6200 StmtResult
TransformSEHTryStmt(SEHTryStmt * S)6201 TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) {
6202 StmtResult TryBlock; // = getDerived().TransformCompoundStmt(S->getTryBlock());
6203 if(TryBlock.isInvalid()) return StmtError();
6204
6205 StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler());
6206 if(!getDerived().AlwaysRebuild() &&
6207 TryBlock.get() == S->getTryBlock() &&
6208 Handler.get() == S->getHandler())
6209 return SemaRef.Owned(S);
6210
6211 return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(),
6212 S->getTryLoc(),
6213 TryBlock.take(),
6214 Handler.take());
6215 }
6216
6217 template<typename Derived>
6218 StmtResult
TransformSEHFinallyStmt(SEHFinallyStmt * S)6219 TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) {
6220 StmtResult Block; // = getDerived().TransformCompoundStatement(S->getBlock());
6221 if(Block.isInvalid()) return StmtError();
6222
6223 return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(),
6224 Block.take());
6225 }
6226
6227 template<typename Derived>
6228 StmtResult
TransformSEHExceptStmt(SEHExceptStmt * S)6229 TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) {
6230 ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr());
6231 if(FilterExpr.isInvalid()) return StmtError();
6232
6233 StmtResult Block; // = getDerived().TransformCompoundStatement(S->getBlock());
6234 if(Block.isInvalid()) return StmtError();
6235
6236 return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(),
6237 FilterExpr.take(),
6238 Block.take());
6239 }
6240
6241 template<typename Derived>
6242 StmtResult
TransformSEHHandler(Stmt * Handler)6243 TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) {
6244 if(isa<SEHFinallyStmt>(Handler))
6245 return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler));
6246 else
6247 return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler));
6248 }
6249
6250 template<typename Derived>
6251 StmtResult
TransformOMPParallelDirective(OMPParallelDirective * D)6252 TreeTransform<Derived>::TransformOMPParallelDirective(OMPParallelDirective *D) {
6253 // Transform the clauses
6254 llvm::SmallVector<OMPClause *, 5> TClauses;
6255 ArrayRef<OMPClause *> Clauses = D->clauses();
6256 TClauses.reserve(Clauses.size());
6257 for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
6258 I != E; ++I) {
6259 if (*I) {
6260 OMPClause *Clause = getDerived().TransformOMPClause(*I);
6261 if (!Clause)
6262 return StmtError();
6263 TClauses.push_back(Clause);
6264 }
6265 else {
6266 TClauses.push_back(0);
6267 }
6268 }
6269 if (!D->getAssociatedStmt())
6270 return StmtError();
6271 StmtResult AssociatedStmt =
6272 getDerived().TransformStmt(D->getAssociatedStmt());
6273 if (AssociatedStmt.isInvalid())
6274 return StmtError();
6275
6276 return getDerived().RebuildOMPParallelDirective(TClauses,
6277 AssociatedStmt.take(),
6278 D->getLocStart(),
6279 D->getLocEnd());
6280 }
6281
6282 template<typename Derived>
6283 OMPClause *
TransformOMPDefaultClause(OMPDefaultClause * C)6284 TreeTransform<Derived>::TransformOMPDefaultClause(OMPDefaultClause *C) {
6285 return getDerived().RebuildOMPDefaultClause(C->getDefaultKind(),
6286 C->getDefaultKindKwLoc(),
6287 C->getLocStart(),
6288 C->getLParenLoc(),
6289 C->getLocEnd());
6290 }
6291
6292 template<typename Derived>
6293 OMPClause *
TransformOMPPrivateClause(OMPPrivateClause * C)6294 TreeTransform<Derived>::TransformOMPPrivateClause(OMPPrivateClause *C) {
6295 llvm::SmallVector<Expr *, 5> Vars;
6296 Vars.reserve(C->varlist_size());
6297 for (OMPVarList<OMPPrivateClause>::varlist_iterator I = C->varlist_begin(),
6298 E = C->varlist_end();
6299 I != E; ++I) {
6300 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(*I));
6301 if (EVar.isInvalid())
6302 return 0;
6303 Vars.push_back(EVar.take());
6304 }
6305 return getDerived().RebuildOMPPrivateClause(Vars,
6306 C->getLocStart(),
6307 C->getLParenLoc(),
6308 C->getLocEnd());
6309 }
6310
6311 //===----------------------------------------------------------------------===//
6312 // Expression transformation
6313 //===----------------------------------------------------------------------===//
6314 template<typename Derived>
6315 ExprResult
TransformPredefinedExpr(PredefinedExpr * E)6316 TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
6317 return SemaRef.Owned(E);
6318 }
6319
6320 template<typename Derived>
6321 ExprResult
TransformDeclRefExpr(DeclRefExpr * E)6322 TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
6323 NestedNameSpecifierLoc QualifierLoc;
6324 if (E->getQualifierLoc()) {
6325 QualifierLoc
6326 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
6327 if (!QualifierLoc)
6328 return ExprError();
6329 }
6330
6331 ValueDecl *ND
6332 = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
6333 E->getDecl()));
6334 if (!ND)
6335 return ExprError();
6336
6337 DeclarationNameInfo NameInfo = E->getNameInfo();
6338 if (NameInfo.getName()) {
6339 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
6340 if (!NameInfo.getName())
6341 return ExprError();
6342 }
6343
6344 if (!getDerived().AlwaysRebuild() &&
6345 QualifierLoc == E->getQualifierLoc() &&
6346 ND == E->getDecl() &&
6347 NameInfo.getName() == E->getDecl()->getDeclName() &&
6348 !E->hasExplicitTemplateArgs()) {
6349
6350 // Mark it referenced in the new context regardless.
6351 // FIXME: this is a bit instantiation-specific.
6352 SemaRef.MarkDeclRefReferenced(E);
6353
6354 return SemaRef.Owned(E);
6355 }
6356
6357 TemplateArgumentListInfo TransArgs, *TemplateArgs = 0;
6358 if (E->hasExplicitTemplateArgs()) {
6359 TemplateArgs = &TransArgs;
6360 TransArgs.setLAngleLoc(E->getLAngleLoc());
6361 TransArgs.setRAngleLoc(E->getRAngleLoc());
6362 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
6363 E->getNumTemplateArgs(),
6364 TransArgs))
6365 return ExprError();
6366 }
6367
6368 return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo,
6369 TemplateArgs);
6370 }
6371
6372 template<typename Derived>
6373 ExprResult
TransformIntegerLiteral(IntegerLiteral * E)6374 TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
6375 return SemaRef.Owned(E);
6376 }
6377
6378 template<typename Derived>
6379 ExprResult
TransformFloatingLiteral(FloatingLiteral * E)6380 TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
6381 return SemaRef.Owned(E);
6382 }
6383
6384 template<typename Derived>
6385 ExprResult
TransformImaginaryLiteral(ImaginaryLiteral * E)6386 TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
6387 return SemaRef.Owned(E);
6388 }
6389
6390 template<typename Derived>
6391 ExprResult
TransformStringLiteral(StringLiteral * E)6392 TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
6393 return SemaRef.Owned(E);
6394 }
6395
6396 template<typename Derived>
6397 ExprResult
TransformCharacterLiteral(CharacterLiteral * E)6398 TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
6399 return SemaRef.Owned(E);
6400 }
6401
6402 template<typename Derived>
6403 ExprResult
TransformUserDefinedLiteral(UserDefinedLiteral * E)6404 TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) {
6405 if (FunctionDecl *FD = E->getDirectCallee())
6406 SemaRef.MarkFunctionReferenced(E->getLocStart(), FD);
6407 return SemaRef.MaybeBindToTemporary(E);
6408 }
6409
6410 template<typename Derived>
6411 ExprResult
TransformGenericSelectionExpr(GenericSelectionExpr * E)6412 TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) {
6413 ExprResult ControllingExpr =
6414 getDerived().TransformExpr(E->getControllingExpr());
6415 if (ControllingExpr.isInvalid())
6416 return ExprError();
6417
6418 SmallVector<Expr *, 4> AssocExprs;
6419 SmallVector<TypeSourceInfo *, 4> AssocTypes;
6420 for (unsigned i = 0; i != E->getNumAssocs(); ++i) {
6421 TypeSourceInfo *TS = E->getAssocTypeSourceInfo(i);
6422 if (TS) {
6423 TypeSourceInfo *AssocType = getDerived().TransformType(TS);
6424 if (!AssocType)
6425 return ExprError();
6426 AssocTypes.push_back(AssocType);
6427 } else {
6428 AssocTypes.push_back(0);
6429 }
6430
6431 ExprResult AssocExpr = getDerived().TransformExpr(E->getAssocExpr(i));
6432 if (AssocExpr.isInvalid())
6433 return ExprError();
6434 AssocExprs.push_back(AssocExpr.release());
6435 }
6436
6437 return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(),
6438 E->getDefaultLoc(),
6439 E->getRParenLoc(),
6440 ControllingExpr.release(),
6441 AssocTypes,
6442 AssocExprs);
6443 }
6444
6445 template<typename Derived>
6446 ExprResult
TransformParenExpr(ParenExpr * E)6447 TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
6448 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
6449 if (SubExpr.isInvalid())
6450 return ExprError();
6451
6452 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
6453 return SemaRef.Owned(E);
6454
6455 return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(),
6456 E->getRParen());
6457 }
6458
6459 /// \brief The operand of a unary address-of operator has special rules: it's
6460 /// allowed to refer to a non-static member of a class even if there's no 'this'
6461 /// object available.
6462 template<typename Derived>
6463 ExprResult
TransformAddressOfOperand(Expr * E)6464 TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) {
6465 if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E))
6466 return getDerived().TransformDependentScopeDeclRefExpr(DRE, true);
6467 else
6468 return getDerived().TransformExpr(E);
6469 }
6470
6471 template<typename Derived>
6472 ExprResult
TransformUnaryOperator(UnaryOperator * E)6473 TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
6474 ExprResult SubExpr;
6475 if (E->getOpcode() == UO_AddrOf)
6476 SubExpr = TransformAddressOfOperand(E->getSubExpr());
6477 else
6478 SubExpr = TransformExpr(E->getSubExpr());
6479 if (SubExpr.isInvalid())
6480 return ExprError();
6481
6482 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
6483 return SemaRef.Owned(E);
6484
6485 return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
6486 E->getOpcode(),
6487 SubExpr.get());
6488 }
6489
6490 template<typename Derived>
6491 ExprResult
TransformOffsetOfExpr(OffsetOfExpr * E)6492 TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) {
6493 // Transform the type.
6494 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
6495 if (!Type)
6496 return ExprError();
6497
6498 // Transform all of the components into components similar to what the
6499 // parser uses.
6500 // FIXME: It would be slightly more efficient in the non-dependent case to
6501 // just map FieldDecls, rather than requiring the rebuilder to look for
6502 // the fields again. However, __builtin_offsetof is rare enough in
6503 // template code that we don't care.
6504 bool ExprChanged = false;
6505 typedef Sema::OffsetOfComponent Component;
6506 typedef OffsetOfExpr::OffsetOfNode Node;
6507 SmallVector<Component, 4> Components;
6508 for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
6509 const Node &ON = E->getComponent(I);
6510 Component Comp;
6511 Comp.isBrackets = true;
6512 Comp.LocStart = ON.getSourceRange().getBegin();
6513 Comp.LocEnd = ON.getSourceRange().getEnd();
6514 switch (ON.getKind()) {
6515 case Node::Array: {
6516 Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex());
6517 ExprResult Index = getDerived().TransformExpr(FromIndex);
6518 if (Index.isInvalid())
6519 return ExprError();
6520
6521 ExprChanged = ExprChanged || Index.get() != FromIndex;
6522 Comp.isBrackets = true;
6523 Comp.U.E = Index.get();
6524 break;
6525 }
6526
6527 case Node::Field:
6528 case Node::Identifier:
6529 Comp.isBrackets = false;
6530 Comp.U.IdentInfo = ON.getFieldName();
6531 if (!Comp.U.IdentInfo)
6532 continue;
6533
6534 break;
6535
6536 case Node::Base:
6537 // Will be recomputed during the rebuild.
6538 continue;
6539 }
6540
6541 Components.push_back(Comp);
6542 }
6543
6544 // If nothing changed, retain the existing expression.
6545 if (!getDerived().AlwaysRebuild() &&
6546 Type == E->getTypeSourceInfo() &&
6547 !ExprChanged)
6548 return SemaRef.Owned(E);
6549
6550 // Build a new offsetof expression.
6551 return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type,
6552 Components.data(), Components.size(),
6553 E->getRParenLoc());
6554 }
6555
6556 template<typename Derived>
6557 ExprResult
TransformOpaqueValueExpr(OpaqueValueExpr * E)6558 TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) {
6559 assert(getDerived().AlreadyTransformed(E->getType()) &&
6560 "opaque value expression requires transformation");
6561 return SemaRef.Owned(E);
6562 }
6563
6564 template<typename Derived>
6565 ExprResult
TransformPseudoObjectExpr(PseudoObjectExpr * E)6566 TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) {
6567 // Rebuild the syntactic form. The original syntactic form has
6568 // opaque-value expressions in it, so strip those away and rebuild
6569 // the result. This is a really awful way of doing this, but the
6570 // better solution (rebuilding the semantic expressions and
6571 // rebinding OVEs as necessary) doesn't work; we'd need
6572 // TreeTransform to not strip away implicit conversions.
6573 Expr *newSyntacticForm = SemaRef.recreateSyntacticForm(E);
6574 ExprResult result = getDerived().TransformExpr(newSyntacticForm);
6575 if (result.isInvalid()) return ExprError();
6576
6577 // If that gives us a pseudo-object result back, the pseudo-object
6578 // expression must have been an lvalue-to-rvalue conversion which we
6579 // should reapply.
6580 if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject))
6581 result = SemaRef.checkPseudoObjectRValue(result.take());
6582
6583 return result;
6584 }
6585
6586 template<typename Derived>
6587 ExprResult
TransformUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr * E)6588 TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr(
6589 UnaryExprOrTypeTraitExpr *E) {
6590 if (E->isArgumentType()) {
6591 TypeSourceInfo *OldT = E->getArgumentTypeInfo();
6592
6593 TypeSourceInfo *NewT = getDerived().TransformType(OldT);
6594 if (!NewT)
6595 return ExprError();
6596
6597 if (!getDerived().AlwaysRebuild() && OldT == NewT)
6598 return SemaRef.Owned(E);
6599
6600 return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(),
6601 E->getKind(),
6602 E->getSourceRange());
6603 }
6604
6605 // C++0x [expr.sizeof]p1:
6606 // The operand is either an expression, which is an unevaluated operand
6607 // [...]
6608 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
6609 Sema::ReuseLambdaContextDecl);
6610
6611 ExprResult SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
6612 if (SubExpr.isInvalid())
6613 return ExprError();
6614
6615 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
6616 return SemaRef.Owned(E);
6617
6618 return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(),
6619 E->getOperatorLoc(),
6620 E->getKind(),
6621 E->getSourceRange());
6622 }
6623
6624 template<typename Derived>
6625 ExprResult
TransformArraySubscriptExpr(ArraySubscriptExpr * E)6626 TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
6627 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
6628 if (LHS.isInvalid())
6629 return ExprError();
6630
6631 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
6632 if (RHS.isInvalid())
6633 return ExprError();
6634
6635
6636 if (!getDerived().AlwaysRebuild() &&
6637 LHS.get() == E->getLHS() &&
6638 RHS.get() == E->getRHS())
6639 return SemaRef.Owned(E);
6640
6641 return getDerived().RebuildArraySubscriptExpr(LHS.get(),
6642 /*FIXME:*/E->getLHS()->getLocStart(),
6643 RHS.get(),
6644 E->getRBracketLoc());
6645 }
6646
6647 template<typename Derived>
6648 ExprResult
TransformCallExpr(CallExpr * E)6649 TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
6650 // Transform the callee.
6651 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
6652 if (Callee.isInvalid())
6653 return ExprError();
6654
6655 // Transform arguments.
6656 bool ArgChanged = false;
6657 SmallVector<Expr*, 8> Args;
6658 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
6659 &ArgChanged))
6660 return ExprError();
6661
6662 if (!getDerived().AlwaysRebuild() &&
6663 Callee.get() == E->getCallee() &&
6664 !ArgChanged)
6665 return SemaRef.MaybeBindToTemporary(E);
6666
6667 // FIXME: Wrong source location information for the '('.
6668 SourceLocation FakeLParenLoc
6669 = ((Expr *)Callee.get())->getSourceRange().getBegin();
6670 return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
6671 Args,
6672 E->getRParenLoc());
6673 }
6674
6675 template<typename Derived>
6676 ExprResult
TransformMemberExpr(MemberExpr * E)6677 TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
6678 ExprResult Base = getDerived().TransformExpr(E->getBase());
6679 if (Base.isInvalid())
6680 return ExprError();
6681
6682 NestedNameSpecifierLoc QualifierLoc;
6683 if (E->hasQualifier()) {
6684 QualifierLoc
6685 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
6686
6687 if (!QualifierLoc)
6688 return ExprError();
6689 }
6690 SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
6691
6692 ValueDecl *Member
6693 = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
6694 E->getMemberDecl()));
6695 if (!Member)
6696 return ExprError();
6697
6698 NamedDecl *FoundDecl = E->getFoundDecl();
6699 if (FoundDecl == E->getMemberDecl()) {
6700 FoundDecl = Member;
6701 } else {
6702 FoundDecl = cast_or_null<NamedDecl>(
6703 getDerived().TransformDecl(E->getMemberLoc(), FoundDecl));
6704 if (!FoundDecl)
6705 return ExprError();
6706 }
6707
6708 if (!getDerived().AlwaysRebuild() &&
6709 Base.get() == E->getBase() &&
6710 QualifierLoc == E->getQualifierLoc() &&
6711 Member == E->getMemberDecl() &&
6712 FoundDecl == E->getFoundDecl() &&
6713 !E->hasExplicitTemplateArgs()) {
6714
6715 // Mark it referenced in the new context regardless.
6716 // FIXME: this is a bit instantiation-specific.
6717 SemaRef.MarkMemberReferenced(E);
6718
6719 return SemaRef.Owned(E);
6720 }
6721
6722 TemplateArgumentListInfo TransArgs;
6723 if (E->hasExplicitTemplateArgs()) {
6724 TransArgs.setLAngleLoc(E->getLAngleLoc());
6725 TransArgs.setRAngleLoc(E->getRAngleLoc());
6726 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
6727 E->getNumTemplateArgs(),
6728 TransArgs))
6729 return ExprError();
6730 }
6731
6732 // FIXME: Bogus source location for the operator
6733 SourceLocation FakeOperatorLoc
6734 = SemaRef.PP.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
6735
6736 // FIXME: to do this check properly, we will need to preserve the
6737 // first-qualifier-in-scope here, just in case we had a dependent
6738 // base (and therefore couldn't do the check) and a
6739 // nested-name-qualifier (and therefore could do the lookup).
6740 NamedDecl *FirstQualifierInScope = 0;
6741
6742 return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc,
6743 E->isArrow(),
6744 QualifierLoc,
6745 TemplateKWLoc,
6746 E->getMemberNameInfo(),
6747 Member,
6748 FoundDecl,
6749 (E->hasExplicitTemplateArgs()
6750 ? &TransArgs : 0),
6751 FirstQualifierInScope);
6752 }
6753
6754 template<typename Derived>
6755 ExprResult
TransformBinaryOperator(BinaryOperator * E)6756 TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
6757 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
6758 if (LHS.isInvalid())
6759 return ExprError();
6760
6761 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
6762 if (RHS.isInvalid())
6763 return ExprError();
6764
6765 if (!getDerived().AlwaysRebuild() &&
6766 LHS.get() == E->getLHS() &&
6767 RHS.get() == E->getRHS())
6768 return SemaRef.Owned(E);
6769
6770 Sema::FPContractStateRAII FPContractState(getSema());
6771 getSema().FPFeatures.fp_contract = E->isFPContractable();
6772
6773 return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
6774 LHS.get(), RHS.get());
6775 }
6776
6777 template<typename Derived>
6778 ExprResult
TransformCompoundAssignOperator(CompoundAssignOperator * E)6779 TreeTransform<Derived>::TransformCompoundAssignOperator(
6780 CompoundAssignOperator *E) {
6781 return getDerived().TransformBinaryOperator(E);
6782 }
6783
6784 template<typename Derived>
6785 ExprResult TreeTransform<Derived>::
TransformBinaryConditionalOperator(BinaryConditionalOperator * e)6786 TransformBinaryConditionalOperator(BinaryConditionalOperator *e) {
6787 // Just rebuild the common and RHS expressions and see whether we
6788 // get any changes.
6789
6790 ExprResult commonExpr = getDerived().TransformExpr(e->getCommon());
6791 if (commonExpr.isInvalid())
6792 return ExprError();
6793
6794 ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr());
6795 if (rhs.isInvalid())
6796 return ExprError();
6797
6798 if (!getDerived().AlwaysRebuild() &&
6799 commonExpr.get() == e->getCommon() &&
6800 rhs.get() == e->getFalseExpr())
6801 return SemaRef.Owned(e);
6802
6803 return getDerived().RebuildConditionalOperator(commonExpr.take(),
6804 e->getQuestionLoc(),
6805 0,
6806 e->getColonLoc(),
6807 rhs.get());
6808 }
6809
6810 template<typename Derived>
6811 ExprResult
TransformConditionalOperator(ConditionalOperator * E)6812 TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
6813 ExprResult Cond = getDerived().TransformExpr(E->getCond());
6814 if (Cond.isInvalid())
6815 return ExprError();
6816
6817 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
6818 if (LHS.isInvalid())
6819 return ExprError();
6820
6821 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
6822 if (RHS.isInvalid())
6823 return ExprError();
6824
6825 if (!getDerived().AlwaysRebuild() &&
6826 Cond.get() == E->getCond() &&
6827 LHS.get() == E->getLHS() &&
6828 RHS.get() == E->getRHS())
6829 return SemaRef.Owned(E);
6830
6831 return getDerived().RebuildConditionalOperator(Cond.get(),
6832 E->getQuestionLoc(),
6833 LHS.get(),
6834 E->getColonLoc(),
6835 RHS.get());
6836 }
6837
6838 template<typename Derived>
6839 ExprResult
TransformImplicitCastExpr(ImplicitCastExpr * E)6840 TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
6841 // Implicit casts are eliminated during transformation, since they
6842 // will be recomputed by semantic analysis after transformation.
6843 return getDerived().TransformExpr(E->getSubExprAsWritten());
6844 }
6845
6846 template<typename Derived>
6847 ExprResult
TransformCStyleCastExpr(CStyleCastExpr * E)6848 TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
6849 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
6850 if (!Type)
6851 return ExprError();
6852
6853 ExprResult SubExpr
6854 = getDerived().TransformExpr(E->getSubExprAsWritten());
6855 if (SubExpr.isInvalid())
6856 return ExprError();
6857
6858 if (!getDerived().AlwaysRebuild() &&
6859 Type == E->getTypeInfoAsWritten() &&
6860 SubExpr.get() == E->getSubExpr())
6861 return SemaRef.Owned(E);
6862
6863 return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
6864 Type,
6865 E->getRParenLoc(),
6866 SubExpr.get());
6867 }
6868
6869 template<typename Derived>
6870 ExprResult
TransformCompoundLiteralExpr(CompoundLiteralExpr * E)6871 TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
6872 TypeSourceInfo *OldT = E->getTypeSourceInfo();
6873 TypeSourceInfo *NewT = getDerived().TransformType(OldT);
6874 if (!NewT)
6875 return ExprError();
6876
6877 ExprResult Init = getDerived().TransformExpr(E->getInitializer());
6878 if (Init.isInvalid())
6879 return ExprError();
6880
6881 if (!getDerived().AlwaysRebuild() &&
6882 OldT == NewT &&
6883 Init.get() == E->getInitializer())
6884 return SemaRef.MaybeBindToTemporary(E);
6885
6886 // Note: the expression type doesn't necessarily match the
6887 // type-as-written, but that's okay, because it should always be
6888 // derivable from the initializer.
6889
6890 return getDerived().RebuildCompoundLiteralExpr(E->getLParenLoc(), NewT,
6891 /*FIXME:*/E->getInitializer()->getLocEnd(),
6892 Init.get());
6893 }
6894
6895 template<typename Derived>
6896 ExprResult
TransformExtVectorElementExpr(ExtVectorElementExpr * E)6897 TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
6898 ExprResult Base = getDerived().TransformExpr(E->getBase());
6899 if (Base.isInvalid())
6900 return ExprError();
6901
6902 if (!getDerived().AlwaysRebuild() &&
6903 Base.get() == E->getBase())
6904 return SemaRef.Owned(E);
6905
6906 // FIXME: Bad source location
6907 SourceLocation FakeOperatorLoc
6908 = SemaRef.PP.getLocForEndOfToken(E->getBase()->getLocEnd());
6909 return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc,
6910 E->getAccessorLoc(),
6911 E->getAccessor());
6912 }
6913
6914 template<typename Derived>
6915 ExprResult
TransformInitListExpr(InitListExpr * E)6916 TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
6917 bool InitChanged = false;
6918
6919 SmallVector<Expr*, 4> Inits;
6920 if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false,
6921 Inits, &InitChanged))
6922 return ExprError();
6923
6924 if (!getDerived().AlwaysRebuild() && !InitChanged)
6925 return SemaRef.Owned(E);
6926
6927 return getDerived().RebuildInitList(E->getLBraceLoc(), Inits,
6928 E->getRBraceLoc(), E->getType());
6929 }
6930
6931 template<typename Derived>
6932 ExprResult
TransformDesignatedInitExpr(DesignatedInitExpr * E)6933 TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
6934 Designation Desig;
6935
6936 // transform the initializer value
6937 ExprResult Init = getDerived().TransformExpr(E->getInit());
6938 if (Init.isInvalid())
6939 return ExprError();
6940
6941 // transform the designators.
6942 SmallVector<Expr*, 4> ArrayExprs;
6943 bool ExprChanged = false;
6944 for (DesignatedInitExpr::designators_iterator D = E->designators_begin(),
6945 DEnd = E->designators_end();
6946 D != DEnd; ++D) {
6947 if (D->isFieldDesignator()) {
6948 Desig.AddDesignator(Designator::getField(D->getFieldName(),
6949 D->getDotLoc(),
6950 D->getFieldLoc()));
6951 continue;
6952 }
6953
6954 if (D->isArrayDesignator()) {
6955 ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(*D));
6956 if (Index.isInvalid())
6957 return ExprError();
6958
6959 Desig.AddDesignator(Designator::getArray(Index.get(),
6960 D->getLBracketLoc()));
6961
6962 ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(*D);
6963 ArrayExprs.push_back(Index.release());
6964 continue;
6965 }
6966
6967 assert(D->isArrayRangeDesignator() && "New kind of designator?");
6968 ExprResult Start
6969 = getDerived().TransformExpr(E->getArrayRangeStart(*D));
6970 if (Start.isInvalid())
6971 return ExprError();
6972
6973 ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(*D));
6974 if (End.isInvalid())
6975 return ExprError();
6976
6977 Desig.AddDesignator(Designator::getArrayRange(Start.get(),
6978 End.get(),
6979 D->getLBracketLoc(),
6980 D->getEllipsisLoc()));
6981
6982 ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(*D) ||
6983 End.get() != E->getArrayRangeEnd(*D);
6984
6985 ArrayExprs.push_back(Start.release());
6986 ArrayExprs.push_back(End.release());
6987 }
6988
6989 if (!getDerived().AlwaysRebuild() &&
6990 Init.get() == E->getInit() &&
6991 !ExprChanged)
6992 return SemaRef.Owned(E);
6993
6994 return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs,
6995 E->getEqualOrColonLoc(),
6996 E->usesGNUSyntax(), Init.get());
6997 }
6998
6999 template<typename Derived>
7000 ExprResult
TransformImplicitValueInitExpr(ImplicitValueInitExpr * E)7001 TreeTransform<Derived>::TransformImplicitValueInitExpr(
7002 ImplicitValueInitExpr *E) {
7003 TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName());
7004
7005 // FIXME: Will we ever have proper type location here? Will we actually
7006 // need to transform the type?
7007 QualType T = getDerived().TransformType(E->getType());
7008 if (T.isNull())
7009 return ExprError();
7010
7011 if (!getDerived().AlwaysRebuild() &&
7012 T == E->getType())
7013 return SemaRef.Owned(E);
7014
7015 return getDerived().RebuildImplicitValueInitExpr(T);
7016 }
7017
7018 template<typename Derived>
7019 ExprResult
TransformVAArgExpr(VAArgExpr * E)7020 TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
7021 TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo());
7022 if (!TInfo)
7023 return ExprError();
7024
7025 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
7026 if (SubExpr.isInvalid())
7027 return ExprError();
7028
7029 if (!getDerived().AlwaysRebuild() &&
7030 TInfo == E->getWrittenTypeInfo() &&
7031 SubExpr.get() == E->getSubExpr())
7032 return SemaRef.Owned(E);
7033
7034 return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(),
7035 TInfo, E->getRParenLoc());
7036 }
7037
7038 template<typename Derived>
7039 ExprResult
TransformParenListExpr(ParenListExpr * E)7040 TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
7041 bool ArgumentChanged = false;
7042 SmallVector<Expr*, 4> Inits;
7043 if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits,
7044 &ArgumentChanged))
7045 return ExprError();
7046
7047 return getDerived().RebuildParenListExpr(E->getLParenLoc(),
7048 Inits,
7049 E->getRParenLoc());
7050 }
7051
7052 /// \brief Transform an address-of-label expression.
7053 ///
7054 /// By default, the transformation of an address-of-label expression always
7055 /// rebuilds the expression, so that the label identifier can be resolved to
7056 /// the corresponding label statement by semantic analysis.
7057 template<typename Derived>
7058 ExprResult
TransformAddrLabelExpr(AddrLabelExpr * E)7059 TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
7060 Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(),
7061 E->getLabel());
7062 if (!LD)
7063 return ExprError();
7064
7065 return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
7066 cast<LabelDecl>(LD));
7067 }
7068
7069 template<typename Derived>
7070 ExprResult
TransformStmtExpr(StmtExpr * E)7071 TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
7072 SemaRef.ActOnStartStmtExpr();
7073 StmtResult SubStmt
7074 = getDerived().TransformCompoundStmt(E->getSubStmt(), true);
7075 if (SubStmt.isInvalid()) {
7076 SemaRef.ActOnStmtExprError();
7077 return ExprError();
7078 }
7079
7080 if (!getDerived().AlwaysRebuild() &&
7081 SubStmt.get() == E->getSubStmt()) {
7082 // Calling this an 'error' is unintuitive, but it does the right thing.
7083 SemaRef.ActOnStmtExprError();
7084 return SemaRef.MaybeBindToTemporary(E);
7085 }
7086
7087 return getDerived().RebuildStmtExpr(E->getLParenLoc(),
7088 SubStmt.get(),
7089 E->getRParenLoc());
7090 }
7091
7092 template<typename Derived>
7093 ExprResult
TransformChooseExpr(ChooseExpr * E)7094 TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
7095 ExprResult Cond = getDerived().TransformExpr(E->getCond());
7096 if (Cond.isInvalid())
7097 return ExprError();
7098
7099 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
7100 if (LHS.isInvalid())
7101 return ExprError();
7102
7103 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
7104 if (RHS.isInvalid())
7105 return ExprError();
7106
7107 if (!getDerived().AlwaysRebuild() &&
7108 Cond.get() == E->getCond() &&
7109 LHS.get() == E->getLHS() &&
7110 RHS.get() == E->getRHS())
7111 return SemaRef.Owned(E);
7112
7113 return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
7114 Cond.get(), LHS.get(), RHS.get(),
7115 E->getRParenLoc());
7116 }
7117
7118 template<typename Derived>
7119 ExprResult
TransformGNUNullExpr(GNUNullExpr * E)7120 TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
7121 return SemaRef.Owned(E);
7122 }
7123
7124 template<typename Derived>
7125 ExprResult
TransformCXXOperatorCallExpr(CXXOperatorCallExpr * E)7126 TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7127 switch (E->getOperator()) {
7128 case OO_New:
7129 case OO_Delete:
7130 case OO_Array_New:
7131 case OO_Array_Delete:
7132 llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
7133
7134 case OO_Call: {
7135 // This is a call to an object's operator().
7136 assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
7137
7138 // Transform the object itself.
7139 ExprResult Object = getDerived().TransformExpr(E->getArg(0));
7140 if (Object.isInvalid())
7141 return ExprError();
7142
7143 // FIXME: Poor location information
7144 SourceLocation FakeLParenLoc
7145 = SemaRef.PP.getLocForEndOfToken(
7146 static_cast<Expr *>(Object.get())->getLocEnd());
7147
7148 // Transform the call arguments.
7149 SmallVector<Expr*, 8> Args;
7150 if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true,
7151 Args))
7152 return ExprError();
7153
7154 return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc,
7155 Args,
7156 E->getLocEnd());
7157 }
7158
7159 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7160 case OO_##Name:
7161 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
7162 #include "clang/Basic/OperatorKinds.def"
7163 case OO_Subscript:
7164 // Handled below.
7165 break;
7166
7167 case OO_Conditional:
7168 llvm_unreachable("conditional operator is not actually overloadable");
7169
7170 case OO_None:
7171 case NUM_OVERLOADED_OPERATORS:
7172 llvm_unreachable("not an overloaded operator?");
7173 }
7174
7175 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
7176 if (Callee.isInvalid())
7177 return ExprError();
7178
7179 ExprResult First;
7180 if (E->getOperator() == OO_Amp)
7181 First = getDerived().TransformAddressOfOperand(E->getArg(0));
7182 else
7183 First = getDerived().TransformExpr(E->getArg(0));
7184 if (First.isInvalid())
7185 return ExprError();
7186
7187 ExprResult Second;
7188 if (E->getNumArgs() == 2) {
7189 Second = getDerived().TransformExpr(E->getArg(1));
7190 if (Second.isInvalid())
7191 return ExprError();
7192 }
7193
7194 if (!getDerived().AlwaysRebuild() &&
7195 Callee.get() == E->getCallee() &&
7196 First.get() == E->getArg(0) &&
7197 (E->getNumArgs() != 2 || Second.get() == E->getArg(1)))
7198 return SemaRef.MaybeBindToTemporary(E);
7199
7200 Sema::FPContractStateRAII FPContractState(getSema());
7201 getSema().FPFeatures.fp_contract = E->isFPContractable();
7202
7203 return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(),
7204 E->getOperatorLoc(),
7205 Callee.get(),
7206 First.get(),
7207 Second.get());
7208 }
7209
7210 template<typename Derived>
7211 ExprResult
TransformCXXMemberCallExpr(CXXMemberCallExpr * E)7212 TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
7213 return getDerived().TransformCallExpr(E);
7214 }
7215
7216 template<typename Derived>
7217 ExprResult
TransformCUDAKernelCallExpr(CUDAKernelCallExpr * E)7218 TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
7219 // Transform the callee.
7220 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
7221 if (Callee.isInvalid())
7222 return ExprError();
7223
7224 // Transform exec config.
7225 ExprResult EC = getDerived().TransformCallExpr(E->getConfig());
7226 if (EC.isInvalid())
7227 return ExprError();
7228
7229 // Transform arguments.
7230 bool ArgChanged = false;
7231 SmallVector<Expr*, 8> Args;
7232 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
7233 &ArgChanged))
7234 return ExprError();
7235
7236 if (!getDerived().AlwaysRebuild() &&
7237 Callee.get() == E->getCallee() &&
7238 !ArgChanged)
7239 return SemaRef.MaybeBindToTemporary(E);
7240
7241 // FIXME: Wrong source location information for the '('.
7242 SourceLocation FakeLParenLoc
7243 = ((Expr *)Callee.get())->getSourceRange().getBegin();
7244 return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
7245 Args,
7246 E->getRParenLoc(), EC.get());
7247 }
7248
7249 template<typename Derived>
7250 ExprResult
TransformCXXNamedCastExpr(CXXNamedCastExpr * E)7251 TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
7252 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
7253 if (!Type)
7254 return ExprError();
7255
7256 ExprResult SubExpr
7257 = getDerived().TransformExpr(E->getSubExprAsWritten());
7258 if (SubExpr.isInvalid())
7259 return ExprError();
7260
7261 if (!getDerived().AlwaysRebuild() &&
7262 Type == E->getTypeInfoAsWritten() &&
7263 SubExpr.get() == E->getSubExpr())
7264 return SemaRef.Owned(E);
7265 return getDerived().RebuildCXXNamedCastExpr(E->getOperatorLoc(),
7266 E->getStmtClass(),
7267 E->getAngleBrackets().getBegin(),
7268 Type,
7269 E->getAngleBrackets().getEnd(),
7270 // FIXME. this should be '(' location
7271 E->getAngleBrackets().getEnd(),
7272 SubExpr.get(),
7273 E->getRParenLoc());
7274 }
7275
7276 template<typename Derived>
7277 ExprResult
TransformCXXStaticCastExpr(CXXStaticCastExpr * E)7278 TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
7279 return getDerived().TransformCXXNamedCastExpr(E);
7280 }
7281
7282 template<typename Derived>
7283 ExprResult
TransformCXXDynamicCastExpr(CXXDynamicCastExpr * E)7284 TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
7285 return getDerived().TransformCXXNamedCastExpr(E);
7286 }
7287
7288 template<typename Derived>
7289 ExprResult
TransformCXXReinterpretCastExpr(CXXReinterpretCastExpr * E)7290 TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
7291 CXXReinterpretCastExpr *E) {
7292 return getDerived().TransformCXXNamedCastExpr(E);
7293 }
7294
7295 template<typename Derived>
7296 ExprResult
TransformCXXConstCastExpr(CXXConstCastExpr * E)7297 TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
7298 return getDerived().TransformCXXNamedCastExpr(E);
7299 }
7300
7301 template<typename Derived>
7302 ExprResult
TransformCXXFunctionalCastExpr(CXXFunctionalCastExpr * E)7303 TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
7304 CXXFunctionalCastExpr *E) {
7305 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
7306 if (!Type)
7307 return ExprError();
7308
7309 ExprResult SubExpr
7310 = getDerived().TransformExpr(E->getSubExprAsWritten());
7311 if (SubExpr.isInvalid())
7312 return ExprError();
7313
7314 if (!getDerived().AlwaysRebuild() &&
7315 Type == E->getTypeInfoAsWritten() &&
7316 SubExpr.get() == E->getSubExpr())
7317 return SemaRef.Owned(E);
7318
7319 return getDerived().RebuildCXXFunctionalCastExpr(Type,
7320 /*FIXME:*/E->getSubExpr()->getLocStart(),
7321 SubExpr.get(),
7322 E->getRParenLoc());
7323 }
7324
7325 template<typename Derived>
7326 ExprResult
TransformCXXTypeidExpr(CXXTypeidExpr * E)7327 TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
7328 if (E->isTypeOperand()) {
7329 TypeSourceInfo *TInfo
7330 = getDerived().TransformType(E->getTypeOperandSourceInfo());
7331 if (!TInfo)
7332 return ExprError();
7333
7334 if (!getDerived().AlwaysRebuild() &&
7335 TInfo == E->getTypeOperandSourceInfo())
7336 return SemaRef.Owned(E);
7337
7338 return getDerived().RebuildCXXTypeidExpr(E->getType(),
7339 E->getLocStart(),
7340 TInfo,
7341 E->getLocEnd());
7342 }
7343
7344 // We don't know whether the subexpression is potentially evaluated until
7345 // after we perform semantic analysis. We speculatively assume it is
7346 // unevaluated; it will get fixed later if the subexpression is in fact
7347 // potentially evaluated.
7348 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
7349 Sema::ReuseLambdaContextDecl);
7350
7351 ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
7352 if (SubExpr.isInvalid())
7353 return ExprError();
7354
7355 if (!getDerived().AlwaysRebuild() &&
7356 SubExpr.get() == E->getExprOperand())
7357 return SemaRef.Owned(E);
7358
7359 return getDerived().RebuildCXXTypeidExpr(E->getType(),
7360 E->getLocStart(),
7361 SubExpr.get(),
7362 E->getLocEnd());
7363 }
7364
7365 template<typename Derived>
7366 ExprResult
TransformCXXUuidofExpr(CXXUuidofExpr * E)7367 TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) {
7368 if (E->isTypeOperand()) {
7369 TypeSourceInfo *TInfo
7370 = getDerived().TransformType(E->getTypeOperandSourceInfo());
7371 if (!TInfo)
7372 return ExprError();
7373
7374 if (!getDerived().AlwaysRebuild() &&
7375 TInfo == E->getTypeOperandSourceInfo())
7376 return SemaRef.Owned(E);
7377
7378 return getDerived().RebuildCXXUuidofExpr(E->getType(),
7379 E->getLocStart(),
7380 TInfo,
7381 E->getLocEnd());
7382 }
7383
7384 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
7385
7386 ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
7387 if (SubExpr.isInvalid())
7388 return ExprError();
7389
7390 if (!getDerived().AlwaysRebuild() &&
7391 SubExpr.get() == E->getExprOperand())
7392 return SemaRef.Owned(E);
7393
7394 return getDerived().RebuildCXXUuidofExpr(E->getType(),
7395 E->getLocStart(),
7396 SubExpr.get(),
7397 E->getLocEnd());
7398 }
7399
7400 template<typename Derived>
7401 ExprResult
TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)7402 TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
7403 return SemaRef.Owned(E);
7404 }
7405
7406 template<typename Derived>
7407 ExprResult
TransformCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr * E)7408 TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
7409 CXXNullPtrLiteralExpr *E) {
7410 return SemaRef.Owned(E);
7411 }
7412
7413 template<typename Derived>
7414 ExprResult
TransformCXXThisExpr(CXXThisExpr * E)7415 TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
7416 QualType T = getSema().getCurrentThisType();
7417
7418 if (!getDerived().AlwaysRebuild() && T == E->getType()) {
7419 // Make sure that we capture 'this'.
7420 getSema().CheckCXXThisCapture(E->getLocStart());
7421 return SemaRef.Owned(E);
7422 }
7423
7424 return getDerived().RebuildCXXThisExpr(E->getLocStart(), T, E->isImplicit());
7425 }
7426
7427 template<typename Derived>
7428 ExprResult
TransformCXXThrowExpr(CXXThrowExpr * E)7429 TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
7430 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
7431 if (SubExpr.isInvalid())
7432 return ExprError();
7433
7434 if (!getDerived().AlwaysRebuild() &&
7435 SubExpr.get() == E->getSubExpr())
7436 return SemaRef.Owned(E);
7437
7438 return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(),
7439 E->isThrownVariableInScope());
7440 }
7441
7442 template<typename Derived>
7443 ExprResult
TransformCXXDefaultArgExpr(CXXDefaultArgExpr * E)7444 TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
7445 ParmVarDecl *Param
7446 = cast_or_null<ParmVarDecl>(getDerived().TransformDecl(E->getLocStart(),
7447 E->getParam()));
7448 if (!Param)
7449 return ExprError();
7450
7451 if (!getDerived().AlwaysRebuild() &&
7452 Param == E->getParam())
7453 return SemaRef.Owned(E);
7454
7455 return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param);
7456 }
7457
7458 template<typename Derived>
7459 ExprResult
TransformCXXDefaultInitExpr(CXXDefaultInitExpr * E)7460 TreeTransform<Derived>::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
7461 FieldDecl *Field
7462 = cast_or_null<FieldDecl>(getDerived().TransformDecl(E->getLocStart(),
7463 E->getField()));
7464 if (!Field)
7465 return ExprError();
7466
7467 if (!getDerived().AlwaysRebuild() && Field == E->getField())
7468 return SemaRef.Owned(E);
7469
7470 return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field);
7471 }
7472
7473 template<typename Derived>
7474 ExprResult
TransformCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)7475 TreeTransform<Derived>::TransformCXXScalarValueInitExpr(
7476 CXXScalarValueInitExpr *E) {
7477 TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
7478 if (!T)
7479 return ExprError();
7480
7481 if (!getDerived().AlwaysRebuild() &&
7482 T == E->getTypeSourceInfo())
7483 return SemaRef.Owned(E);
7484
7485 return getDerived().RebuildCXXScalarValueInitExpr(T,
7486 /*FIXME:*/T->getTypeLoc().getEndLoc(),
7487 E->getRParenLoc());
7488 }
7489
7490 template<typename Derived>
7491 ExprResult
TransformCXXNewExpr(CXXNewExpr * E)7492 TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
7493 // Transform the type that we're allocating
7494 TypeSourceInfo *AllocTypeInfo
7495 = getDerived().TransformType(E->getAllocatedTypeSourceInfo());
7496 if (!AllocTypeInfo)
7497 return ExprError();
7498
7499 // Transform the size of the array we're allocating (if any).
7500 ExprResult ArraySize = getDerived().TransformExpr(E->getArraySize());
7501 if (ArraySize.isInvalid())
7502 return ExprError();
7503
7504 // Transform the placement arguments (if any).
7505 bool ArgumentChanged = false;
7506 SmallVector<Expr*, 8> PlacementArgs;
7507 if (getDerived().TransformExprs(E->getPlacementArgs(),
7508 E->getNumPlacementArgs(), true,
7509 PlacementArgs, &ArgumentChanged))
7510 return ExprError();
7511
7512 // Transform the initializer (if any).
7513 Expr *OldInit = E->getInitializer();
7514 ExprResult NewInit;
7515 if (OldInit)
7516 NewInit = getDerived().TransformExpr(OldInit);
7517 if (NewInit.isInvalid())
7518 return ExprError();
7519
7520 // Transform new operator and delete operator.
7521 FunctionDecl *OperatorNew = 0;
7522 if (E->getOperatorNew()) {
7523 OperatorNew = cast_or_null<FunctionDecl>(
7524 getDerived().TransformDecl(E->getLocStart(),
7525 E->getOperatorNew()));
7526 if (!OperatorNew)
7527 return ExprError();
7528 }
7529
7530 FunctionDecl *OperatorDelete = 0;
7531 if (E->getOperatorDelete()) {
7532 OperatorDelete = cast_or_null<FunctionDecl>(
7533 getDerived().TransformDecl(E->getLocStart(),
7534 E->getOperatorDelete()));
7535 if (!OperatorDelete)
7536 return ExprError();
7537 }
7538
7539 if (!getDerived().AlwaysRebuild() &&
7540 AllocTypeInfo == E->getAllocatedTypeSourceInfo() &&
7541 ArraySize.get() == E->getArraySize() &&
7542 NewInit.get() == OldInit &&
7543 OperatorNew == E->getOperatorNew() &&
7544 OperatorDelete == E->getOperatorDelete() &&
7545 !ArgumentChanged) {
7546 // Mark any declarations we need as referenced.
7547 // FIXME: instantiation-specific.
7548 if (OperatorNew)
7549 SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorNew);
7550 if (OperatorDelete)
7551 SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete);
7552
7553 if (E->isArray() && !E->getAllocatedType()->isDependentType()) {
7554 QualType ElementType
7555 = SemaRef.Context.getBaseElementType(E->getAllocatedType());
7556 if (const RecordType *RecordT = ElementType->getAs<RecordType>()) {
7557 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl());
7558 if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) {
7559 SemaRef.MarkFunctionReferenced(E->getLocStart(), Destructor);
7560 }
7561 }
7562 }
7563
7564 return SemaRef.Owned(E);
7565 }
7566
7567 QualType AllocType = AllocTypeInfo->getType();
7568 if (!ArraySize.get()) {
7569 // If no array size was specified, but the new expression was
7570 // instantiated with an array type (e.g., "new T" where T is
7571 // instantiated with "int[4]"), extract the outer bound from the
7572 // array type as our array size. We do this with constant and
7573 // dependently-sized array types.
7574 const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
7575 if (!ArrayT) {
7576 // Do nothing
7577 } else if (const ConstantArrayType *ConsArrayT
7578 = dyn_cast<ConstantArrayType>(ArrayT)) {
7579 ArraySize
7580 = SemaRef.Owned(IntegerLiteral::Create(SemaRef.Context,
7581 ConsArrayT->getSize(),
7582 SemaRef.Context.getSizeType(),
7583 /*FIXME:*/E->getLocStart()));
7584 AllocType = ConsArrayT->getElementType();
7585 } else if (const DependentSizedArrayType *DepArrayT
7586 = dyn_cast<DependentSizedArrayType>(ArrayT)) {
7587 if (DepArrayT->getSizeExpr()) {
7588 ArraySize = SemaRef.Owned(DepArrayT->getSizeExpr());
7589 AllocType = DepArrayT->getElementType();
7590 }
7591 }
7592 }
7593
7594 return getDerived().RebuildCXXNewExpr(E->getLocStart(),
7595 E->isGlobalNew(),
7596 /*FIXME:*/E->getLocStart(),
7597 PlacementArgs,
7598 /*FIXME:*/E->getLocStart(),
7599 E->getTypeIdParens(),
7600 AllocType,
7601 AllocTypeInfo,
7602 ArraySize.get(),
7603 E->getDirectInitRange(),
7604 NewInit.take());
7605 }
7606
7607 template<typename Derived>
7608 ExprResult
TransformCXXDeleteExpr(CXXDeleteExpr * E)7609 TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
7610 ExprResult Operand = getDerived().TransformExpr(E->getArgument());
7611 if (Operand.isInvalid())
7612 return ExprError();
7613
7614 // Transform the delete operator, if known.
7615 FunctionDecl *OperatorDelete = 0;
7616 if (E->getOperatorDelete()) {
7617 OperatorDelete = cast_or_null<FunctionDecl>(
7618 getDerived().TransformDecl(E->getLocStart(),
7619 E->getOperatorDelete()));
7620 if (!OperatorDelete)
7621 return ExprError();
7622 }
7623
7624 if (!getDerived().AlwaysRebuild() &&
7625 Operand.get() == E->getArgument() &&
7626 OperatorDelete == E->getOperatorDelete()) {
7627 // Mark any declarations we need as referenced.
7628 // FIXME: instantiation-specific.
7629 if (OperatorDelete)
7630 SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete);
7631
7632 if (!E->getArgument()->isTypeDependent()) {
7633 QualType Destroyed = SemaRef.Context.getBaseElementType(
7634 E->getDestroyedType());
7635 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
7636 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
7637 SemaRef.MarkFunctionReferenced(E->getLocStart(),
7638 SemaRef.LookupDestructor(Record));
7639 }
7640 }
7641
7642 return SemaRef.Owned(E);
7643 }
7644
7645 return getDerived().RebuildCXXDeleteExpr(E->getLocStart(),
7646 E->isGlobalDelete(),
7647 E->isArrayForm(),
7648 Operand.get());
7649 }
7650
7651 template<typename Derived>
7652 ExprResult
TransformCXXPseudoDestructorExpr(CXXPseudoDestructorExpr * E)7653 TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
7654 CXXPseudoDestructorExpr *E) {
7655 ExprResult Base = getDerived().TransformExpr(E->getBase());
7656 if (Base.isInvalid())
7657 return ExprError();
7658
7659 ParsedType ObjectTypePtr;
7660 bool MayBePseudoDestructor = false;
7661 Base = SemaRef.ActOnStartCXXMemberReference(0, Base.get(),
7662 E->getOperatorLoc(),
7663 E->isArrow()? tok::arrow : tok::period,
7664 ObjectTypePtr,
7665 MayBePseudoDestructor);
7666 if (Base.isInvalid())
7667 return ExprError();
7668
7669 QualType ObjectType = ObjectTypePtr.get();
7670 NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc();
7671 if (QualifierLoc) {
7672 QualifierLoc
7673 = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType);
7674 if (!QualifierLoc)
7675 return ExprError();
7676 }
7677 CXXScopeSpec SS;
7678 SS.Adopt(QualifierLoc);
7679
7680 PseudoDestructorTypeStorage Destroyed;
7681 if (E->getDestroyedTypeInfo()) {
7682 TypeSourceInfo *DestroyedTypeInfo
7683 = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(),
7684 ObjectType, 0, SS);
7685 if (!DestroyedTypeInfo)
7686 return ExprError();
7687 Destroyed = DestroyedTypeInfo;
7688 } else if (!ObjectType.isNull() && ObjectType->isDependentType()) {
7689 // We aren't likely to be able to resolve the identifier down to a type
7690 // now anyway, so just retain the identifier.
7691 Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
7692 E->getDestroyedTypeLoc());
7693 } else {
7694 // Look for a destructor known with the given name.
7695 ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(),
7696 *E->getDestroyedTypeIdentifier(),
7697 E->getDestroyedTypeLoc(),
7698 /*Scope=*/0,
7699 SS, ObjectTypePtr,
7700 false);
7701 if (!T)
7702 return ExprError();
7703
7704 Destroyed
7705 = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
7706 E->getDestroyedTypeLoc());
7707 }
7708
7709 TypeSourceInfo *ScopeTypeInfo = 0;
7710 if (E->getScopeTypeInfo()) {
7711 CXXScopeSpec EmptySS;
7712 ScopeTypeInfo = getDerived().TransformTypeInObjectScope(
7713 E->getScopeTypeInfo(), ObjectType, 0, EmptySS);
7714 if (!ScopeTypeInfo)
7715 return ExprError();
7716 }
7717
7718 return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(),
7719 E->getOperatorLoc(),
7720 E->isArrow(),
7721 SS,
7722 ScopeTypeInfo,
7723 E->getColonColonLoc(),
7724 E->getTildeLoc(),
7725 Destroyed);
7726 }
7727
7728 template<typename Derived>
7729 ExprResult
TransformUnresolvedLookupExpr(UnresolvedLookupExpr * Old)7730 TreeTransform<Derived>::TransformUnresolvedLookupExpr(
7731 UnresolvedLookupExpr *Old) {
7732 LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
7733 Sema::LookupOrdinaryName);
7734
7735 // Transform all the decls.
7736 for (UnresolvedLookupExpr::decls_iterator I = Old->decls_begin(),
7737 E = Old->decls_end(); I != E; ++I) {
7738 NamedDecl *InstD = static_cast<NamedDecl*>(
7739 getDerived().TransformDecl(Old->getNameLoc(),
7740 *I));
7741 if (!InstD) {
7742 // Silently ignore these if a UsingShadowDecl instantiated to nothing.
7743 // This can happen because of dependent hiding.
7744 if (isa<UsingShadowDecl>(*I))
7745 continue;
7746 else
7747 return ExprError();
7748 }
7749
7750 // Expand using declarations.
7751 if (isa<UsingDecl>(InstD)) {
7752 UsingDecl *UD = cast<UsingDecl>(InstD);
7753 for (UsingDecl::shadow_iterator I = UD->shadow_begin(),
7754 E = UD->shadow_end(); I != E; ++I)
7755 R.addDecl(*I);
7756 continue;
7757 }
7758
7759 R.addDecl(InstD);
7760 }
7761
7762 // Resolve a kind, but don't do any further analysis. If it's
7763 // ambiguous, the callee needs to deal with it.
7764 R.resolveKind();
7765
7766 // Rebuild the nested-name qualifier, if present.
7767 CXXScopeSpec SS;
7768 if (Old->getQualifierLoc()) {
7769 NestedNameSpecifierLoc QualifierLoc
7770 = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
7771 if (!QualifierLoc)
7772 return ExprError();
7773
7774 SS.Adopt(QualifierLoc);
7775 }
7776
7777 if (Old->getNamingClass()) {
7778 CXXRecordDecl *NamingClass
7779 = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
7780 Old->getNameLoc(),
7781 Old->getNamingClass()));
7782 if (!NamingClass)
7783 return ExprError();
7784
7785 R.setNamingClass(NamingClass);
7786 }
7787
7788 SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
7789
7790 // If we have neither explicit template arguments, nor the template keyword,
7791 // it's a normal declaration name.
7792 if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid())
7793 return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
7794
7795 // If we have template arguments, rebuild them, then rebuild the
7796 // templateid expression.
7797 TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
7798 if (Old->hasExplicitTemplateArgs() &&
7799 getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
7800 Old->getNumTemplateArgs(),
7801 TransArgs))
7802 return ExprError();
7803
7804 return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R,
7805 Old->requiresADL(), &TransArgs);
7806 }
7807
7808 template<typename Derived>
7809 ExprResult
TransformUnaryTypeTraitExpr(UnaryTypeTraitExpr * E)7810 TreeTransform<Derived>::TransformUnaryTypeTraitExpr(UnaryTypeTraitExpr *E) {
7811 TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
7812 if (!T)
7813 return ExprError();
7814
7815 if (!getDerived().AlwaysRebuild() &&
7816 T == E->getQueriedTypeSourceInfo())
7817 return SemaRef.Owned(E);
7818
7819 return getDerived().RebuildUnaryTypeTrait(E->getTrait(),
7820 E->getLocStart(),
7821 T,
7822 E->getLocEnd());
7823 }
7824
7825 template<typename Derived>
7826 ExprResult
TransformBinaryTypeTraitExpr(BinaryTypeTraitExpr * E)7827 TreeTransform<Derived>::TransformBinaryTypeTraitExpr(BinaryTypeTraitExpr *E) {
7828 TypeSourceInfo *LhsT = getDerived().TransformType(E->getLhsTypeSourceInfo());
7829 if (!LhsT)
7830 return ExprError();
7831
7832 TypeSourceInfo *RhsT = getDerived().TransformType(E->getRhsTypeSourceInfo());
7833 if (!RhsT)
7834 return ExprError();
7835
7836 if (!getDerived().AlwaysRebuild() &&
7837 LhsT == E->getLhsTypeSourceInfo() && RhsT == E->getRhsTypeSourceInfo())
7838 return SemaRef.Owned(E);
7839
7840 return getDerived().RebuildBinaryTypeTrait(E->getTrait(),
7841 E->getLocStart(),
7842 LhsT, RhsT,
7843 E->getLocEnd());
7844 }
7845
7846 template<typename Derived>
7847 ExprResult
TransformTypeTraitExpr(TypeTraitExpr * E)7848 TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) {
7849 bool ArgChanged = false;
7850 SmallVector<TypeSourceInfo *, 4> Args;
7851 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
7852 TypeSourceInfo *From = E->getArg(I);
7853 TypeLoc FromTL = From->getTypeLoc();
7854 if (!FromTL.getAs<PackExpansionTypeLoc>()) {
7855 TypeLocBuilder TLB;
7856 TLB.reserve(FromTL.getFullDataSize());
7857 QualType To = getDerived().TransformType(TLB, FromTL);
7858 if (To.isNull())
7859 return ExprError();
7860
7861 if (To == From->getType())
7862 Args.push_back(From);
7863 else {
7864 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
7865 ArgChanged = true;
7866 }
7867 continue;
7868 }
7869
7870 ArgChanged = true;
7871
7872 // We have a pack expansion. Instantiate it.
7873 PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>();
7874 TypeLoc PatternTL = ExpansionTL.getPatternLoc();
7875 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
7876 SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded);
7877
7878 // Determine whether the set of unexpanded parameter packs can and should
7879 // be expanded.
7880 bool Expand = true;
7881 bool RetainExpansion = false;
7882 Optional<unsigned> OrigNumExpansions =
7883 ExpansionTL.getTypePtr()->getNumExpansions();
7884 Optional<unsigned> NumExpansions = OrigNumExpansions;
7885 if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
7886 PatternTL.getSourceRange(),
7887 Unexpanded,
7888 Expand, RetainExpansion,
7889 NumExpansions))
7890 return ExprError();
7891
7892 if (!Expand) {
7893 // The transform has determined that we should perform a simple
7894 // transformation on the pack expansion, producing another pack
7895 // expansion.
7896 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
7897
7898 TypeLocBuilder TLB;
7899 TLB.reserve(From->getTypeLoc().getFullDataSize());
7900
7901 QualType To = getDerived().TransformType(TLB, PatternTL);
7902 if (To.isNull())
7903 return ExprError();
7904
7905 To = getDerived().RebuildPackExpansionType(To,
7906 PatternTL.getSourceRange(),
7907 ExpansionTL.getEllipsisLoc(),
7908 NumExpansions);
7909 if (To.isNull())
7910 return ExprError();
7911
7912 PackExpansionTypeLoc ToExpansionTL
7913 = TLB.push<PackExpansionTypeLoc>(To);
7914 ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
7915 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
7916 continue;
7917 }
7918
7919 // Expand the pack expansion by substituting for each argument in the
7920 // pack(s).
7921 for (unsigned I = 0; I != *NumExpansions; ++I) {
7922 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
7923 TypeLocBuilder TLB;
7924 TLB.reserve(PatternTL.getFullDataSize());
7925 QualType To = getDerived().TransformType(TLB, PatternTL);
7926 if (To.isNull())
7927 return ExprError();
7928
7929 if (To->containsUnexpandedParameterPack()) {
7930 To = getDerived().RebuildPackExpansionType(To,
7931 PatternTL.getSourceRange(),
7932 ExpansionTL.getEllipsisLoc(),
7933 NumExpansions);
7934 if (To.isNull())
7935 return ExprError();
7936
7937 PackExpansionTypeLoc ToExpansionTL
7938 = TLB.push<PackExpansionTypeLoc>(To);
7939 ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
7940 }
7941
7942 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
7943 }
7944
7945 if (!RetainExpansion)
7946 continue;
7947
7948 // If we're supposed to retain a pack expansion, do so by temporarily
7949 // forgetting the partially-substituted parameter pack.
7950 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
7951
7952 TypeLocBuilder TLB;
7953 TLB.reserve(From->getTypeLoc().getFullDataSize());
7954
7955 QualType To = getDerived().TransformType(TLB, PatternTL);
7956 if (To.isNull())
7957 return ExprError();
7958
7959 To = getDerived().RebuildPackExpansionType(To,
7960 PatternTL.getSourceRange(),
7961 ExpansionTL.getEllipsisLoc(),
7962 NumExpansions);
7963 if (To.isNull())
7964 return ExprError();
7965
7966 PackExpansionTypeLoc ToExpansionTL
7967 = TLB.push<PackExpansionTypeLoc>(To);
7968 ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
7969 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
7970 }
7971
7972 if (!getDerived().AlwaysRebuild() && !ArgChanged)
7973 return SemaRef.Owned(E);
7974
7975 return getDerived().RebuildTypeTrait(E->getTrait(),
7976 E->getLocStart(),
7977 Args,
7978 E->getLocEnd());
7979 }
7980
7981 template<typename Derived>
7982 ExprResult
TransformArrayTypeTraitExpr(ArrayTypeTraitExpr * E)7983 TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
7984 TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
7985 if (!T)
7986 return ExprError();
7987
7988 if (!getDerived().AlwaysRebuild() &&
7989 T == E->getQueriedTypeSourceInfo())
7990 return SemaRef.Owned(E);
7991
7992 ExprResult SubExpr;
7993 {
7994 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
7995 SubExpr = getDerived().TransformExpr(E->getDimensionExpression());
7996 if (SubExpr.isInvalid())
7997 return ExprError();
7998
7999 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression())
8000 return SemaRef.Owned(E);
8001 }
8002
8003 return getDerived().RebuildArrayTypeTrait(E->getTrait(),
8004 E->getLocStart(),
8005 T,
8006 SubExpr.get(),
8007 E->getLocEnd());
8008 }
8009
8010 template<typename Derived>
8011 ExprResult
TransformExpressionTraitExpr(ExpressionTraitExpr * E)8012 TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) {
8013 ExprResult SubExpr;
8014 {
8015 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
8016 SubExpr = getDerived().TransformExpr(E->getQueriedExpression());
8017 if (SubExpr.isInvalid())
8018 return ExprError();
8019
8020 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression())
8021 return SemaRef.Owned(E);
8022 }
8023
8024 return getDerived().RebuildExpressionTrait(
8025 E->getTrait(), E->getLocStart(), SubExpr.get(), E->getLocEnd());
8026 }
8027
8028 template<typename Derived>
8029 ExprResult
TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * E)8030 TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
8031 DependentScopeDeclRefExpr *E) {
8032 return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand*/false);
8033 }
8034
8035 template<typename Derived>
8036 ExprResult
TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * E,bool IsAddressOfOperand)8037 TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
8038 DependentScopeDeclRefExpr *E,
8039 bool IsAddressOfOperand) {
8040 NestedNameSpecifierLoc QualifierLoc
8041 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
8042 if (!QualifierLoc)
8043 return ExprError();
8044 SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
8045
8046 // TODO: If this is a conversion-function-id, verify that the
8047 // destination type name (if present) resolves the same way after
8048 // instantiation as it did in the local scope.
8049
8050 DeclarationNameInfo NameInfo
8051 = getDerived().TransformDeclarationNameInfo(E->getNameInfo());
8052 if (!NameInfo.getName())
8053 return ExprError();
8054
8055 if (!E->hasExplicitTemplateArgs()) {
8056 if (!getDerived().AlwaysRebuild() &&
8057 QualifierLoc == E->getQualifierLoc() &&
8058 // Note: it is sufficient to compare the Name component of NameInfo:
8059 // if name has not changed, DNLoc has not changed either.
8060 NameInfo.getName() == E->getDeclName())
8061 return SemaRef.Owned(E);
8062
8063 return getDerived().RebuildDependentScopeDeclRefExpr(QualifierLoc,
8064 TemplateKWLoc,
8065 NameInfo,
8066 /*TemplateArgs*/ 0,
8067 IsAddressOfOperand);
8068 }
8069
8070 TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
8071 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
8072 E->getNumTemplateArgs(),
8073 TransArgs))
8074 return ExprError();
8075
8076 return getDerived().RebuildDependentScopeDeclRefExpr(QualifierLoc,
8077 TemplateKWLoc,
8078 NameInfo,
8079 &TransArgs,
8080 IsAddressOfOperand);
8081 }
8082
8083 template<typename Derived>
8084 ExprResult
TransformCXXConstructExpr(CXXConstructExpr * E)8085 TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
8086 // CXXConstructExprs other than for list-initialization and
8087 // CXXTemporaryObjectExpr are always implicit, so when we have
8088 // a 1-argument construction we just transform that argument.
8089 if ((E->getNumArgs() == 1 ||
8090 (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) &&
8091 (!getDerived().DropCallArgument(E->getArg(0))) &&
8092 !E->isListInitialization())
8093 return getDerived().TransformExpr(E->getArg(0));
8094
8095 TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName());
8096
8097 QualType T = getDerived().TransformType(E->getType());
8098 if (T.isNull())
8099 return ExprError();
8100
8101 CXXConstructorDecl *Constructor
8102 = cast_or_null<CXXConstructorDecl>(
8103 getDerived().TransformDecl(E->getLocStart(),
8104 E->getConstructor()));
8105 if (!Constructor)
8106 return ExprError();
8107
8108 bool ArgumentChanged = false;
8109 SmallVector<Expr*, 8> Args;
8110 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
8111 &ArgumentChanged))
8112 return ExprError();
8113
8114 if (!getDerived().AlwaysRebuild() &&
8115 T == E->getType() &&
8116 Constructor == E->getConstructor() &&
8117 !ArgumentChanged) {
8118 // Mark the constructor as referenced.
8119 // FIXME: Instantiation-specific
8120 SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor);
8121 return SemaRef.Owned(E);
8122 }
8123
8124 return getDerived().RebuildCXXConstructExpr(T, /*FIXME:*/E->getLocStart(),
8125 Constructor, E->isElidable(),
8126 Args,
8127 E->hadMultipleCandidates(),
8128 E->isListInitialization(),
8129 E->requiresZeroInitialization(),
8130 E->getConstructionKind(),
8131 E->getParenRange());
8132 }
8133
8134 /// \brief Transform a C++ temporary-binding expression.
8135 ///
8136 /// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
8137 /// transform the subexpression and return that.
8138 template<typename Derived>
8139 ExprResult
TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)8140 TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
8141 return getDerived().TransformExpr(E->getSubExpr());
8142 }
8143
8144 /// \brief Transform a C++ expression that contains cleanups that should
8145 /// be run after the expression is evaluated.
8146 ///
8147 /// Since ExprWithCleanups nodes are implicitly generated, we
8148 /// just transform the subexpression and return that.
8149 template<typename Derived>
8150 ExprResult
TransformExprWithCleanups(ExprWithCleanups * E)8151 TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) {
8152 return getDerived().TransformExpr(E->getSubExpr());
8153 }
8154
8155 template<typename Derived>
8156 ExprResult
TransformCXXTemporaryObjectExpr(CXXTemporaryObjectExpr * E)8157 TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
8158 CXXTemporaryObjectExpr *E) {
8159 TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
8160 if (!T)
8161 return ExprError();
8162
8163 CXXConstructorDecl *Constructor
8164 = cast_or_null<CXXConstructorDecl>(
8165 getDerived().TransformDecl(E->getLocStart(),
8166 E->getConstructor()));
8167 if (!Constructor)
8168 return ExprError();
8169
8170 bool ArgumentChanged = false;
8171 SmallVector<Expr*, 8> Args;
8172 Args.reserve(E->getNumArgs());
8173 if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
8174 &ArgumentChanged))
8175 return ExprError();
8176
8177 if (!getDerived().AlwaysRebuild() &&
8178 T == E->getTypeSourceInfo() &&
8179 Constructor == E->getConstructor() &&
8180 !ArgumentChanged) {
8181 // FIXME: Instantiation-specific
8182 SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor);
8183 return SemaRef.MaybeBindToTemporary(E);
8184 }
8185
8186 // FIXME: Pass in E->isListInitialization().
8187 return getDerived().RebuildCXXTemporaryObjectExpr(T,
8188 /*FIXME:*/T->getTypeLoc().getEndLoc(),
8189 Args,
8190 E->getLocEnd());
8191 }
8192
8193 template<typename Derived>
8194 ExprResult
TransformLambdaExpr(LambdaExpr * E)8195 TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
8196 // Transform the type of the lambda parameters and start the definition of
8197 // the lambda itself.
8198 TypeSourceInfo *MethodTy
8199 = TransformType(E->getCallOperator()->getTypeSourceInfo());
8200 if (!MethodTy)
8201 return ExprError();
8202
8203 // Create the local class that will describe the lambda.
8204 CXXRecordDecl *Class
8205 = getSema().createLambdaClosureType(E->getIntroducerRange(),
8206 MethodTy,
8207 /*KnownDependent=*/false);
8208 getDerived().transformedLocalDecl(E->getLambdaClass(), Class);
8209
8210 // Transform lambda parameters.
8211 SmallVector<QualType, 4> ParamTypes;
8212 SmallVector<ParmVarDecl *, 4> Params;
8213 if (getDerived().TransformFunctionTypeParams(E->getLocStart(),
8214 E->getCallOperator()->param_begin(),
8215 E->getCallOperator()->param_size(),
8216 0, ParamTypes, &Params))
8217 return ExprError();
8218
8219 // Build the call operator.
8220 CXXMethodDecl *CallOperator
8221 = getSema().startLambdaDefinition(Class, E->getIntroducerRange(),
8222 MethodTy,
8223 E->getCallOperator()->getLocEnd(),
8224 Params);
8225 getDerived().transformAttrs(E->getCallOperator(), CallOperator);
8226
8227 return getDerived().TransformLambdaScope(E, CallOperator);
8228 }
8229
8230 template<typename Derived>
8231 ExprResult
TransformLambdaScope(LambdaExpr * E,CXXMethodDecl * CallOperator)8232 TreeTransform<Derived>::TransformLambdaScope(LambdaExpr *E,
8233 CXXMethodDecl *CallOperator) {
8234 bool Invalid = false;
8235
8236 // Transform any init-capture expressions before entering the scope of the
8237 // lambda.
8238 llvm::SmallVector<ExprResult, 8> InitCaptureExprs;
8239 InitCaptureExprs.resize(E->explicit_capture_end() -
8240 E->explicit_capture_begin());
8241 for (LambdaExpr::capture_iterator C = E->capture_begin(),
8242 CEnd = E->capture_end();
8243 C != CEnd; ++C) {
8244 if (!C->isInitCapture())
8245 continue;
8246 InitCaptureExprs[C - E->capture_begin()] =
8247 getDerived().TransformExpr(E->getInitCaptureInit(C));
8248 }
8249
8250 // Introduce the context of the call operator.
8251 Sema::ContextRAII SavedContext(getSema(), CallOperator);
8252
8253 // Enter the scope of the lambda.
8254 sema::LambdaScopeInfo *LSI
8255 = getSema().enterLambdaScope(CallOperator, E->getIntroducerRange(),
8256 E->getCaptureDefault(),
8257 E->hasExplicitParameters(),
8258 E->hasExplicitResultType(),
8259 E->isMutable());
8260
8261 // Transform captures.
8262 bool FinishedExplicitCaptures = false;
8263 for (LambdaExpr::capture_iterator C = E->capture_begin(),
8264 CEnd = E->capture_end();
8265 C != CEnd; ++C) {
8266 // When we hit the first implicit capture, tell Sema that we've finished
8267 // the list of explicit captures.
8268 if (!FinishedExplicitCaptures && C->isImplicit()) {
8269 getSema().finishLambdaExplicitCaptures(LSI);
8270 FinishedExplicitCaptures = true;
8271 }
8272
8273 // Capturing 'this' is trivial.
8274 if (C->capturesThis()) {
8275 getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit());
8276 continue;
8277 }
8278
8279 // Rebuild init-captures, including the implied field declaration.
8280 if (C->isInitCapture()) {
8281 ExprResult Init = InitCaptureExprs[C - E->capture_begin()];
8282 if (Init.isInvalid()) {
8283 Invalid = true;
8284 continue;
8285 }
8286 FieldDecl *OldFD = C->getInitCaptureField();
8287 FieldDecl *NewFD = getSema().checkInitCapture(
8288 C->getLocation(), OldFD->getType()->isReferenceType(),
8289 OldFD->getIdentifier(), Init.take());
8290 if (!NewFD)
8291 Invalid = true;
8292 else
8293 getDerived().transformedLocalDecl(OldFD, NewFD);
8294 continue;
8295 }
8296
8297 assert(C->capturesVariable() && "unexpected kind of lambda capture");
8298
8299 // Determine the capture kind for Sema.
8300 Sema::TryCaptureKind Kind
8301 = C->isImplicit()? Sema::TryCapture_Implicit
8302 : C->getCaptureKind() == LCK_ByCopy
8303 ? Sema::TryCapture_ExplicitByVal
8304 : Sema::TryCapture_ExplicitByRef;
8305 SourceLocation EllipsisLoc;
8306 if (C->isPackExpansion()) {
8307 UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation());
8308 bool ShouldExpand = false;
8309 bool RetainExpansion = false;
8310 Optional<unsigned> NumExpansions;
8311 if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(),
8312 C->getLocation(),
8313 Unexpanded,
8314 ShouldExpand, RetainExpansion,
8315 NumExpansions)) {
8316 Invalid = true;
8317 continue;
8318 }
8319
8320 if (ShouldExpand) {
8321 // The transform has determined that we should perform an expansion;
8322 // transform and capture each of the arguments.
8323 // expansion of the pattern. Do so.
8324 VarDecl *Pack = C->getCapturedVar();
8325 for (unsigned I = 0; I != *NumExpansions; ++I) {
8326 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
8327 VarDecl *CapturedVar
8328 = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
8329 Pack));
8330 if (!CapturedVar) {
8331 Invalid = true;
8332 continue;
8333 }
8334
8335 // Capture the transformed variable.
8336 getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
8337 }
8338 continue;
8339 }
8340
8341 EllipsisLoc = C->getEllipsisLoc();
8342 }
8343
8344 // Transform the captured variable.
8345 VarDecl *CapturedVar
8346 = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
8347 C->getCapturedVar()));
8348 if (!CapturedVar) {
8349 Invalid = true;
8350 continue;
8351 }
8352
8353 // Capture the transformed variable.
8354 getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
8355 }
8356 if (!FinishedExplicitCaptures)
8357 getSema().finishLambdaExplicitCaptures(LSI);
8358
8359
8360 // Enter a new evaluation context to insulate the lambda from any
8361 // cleanups from the enclosing full-expression.
8362 getSema().PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
8363
8364 if (Invalid) {
8365 getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/0,
8366 /*IsInstantiation=*/true);
8367 return ExprError();
8368 }
8369
8370 // Instantiate the body of the lambda expression.
8371 StmtResult Body = getDerived().TransformStmt(E->getBody());
8372 if (Body.isInvalid()) {
8373 getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/0,
8374 /*IsInstantiation=*/true);
8375 return ExprError();
8376 }
8377
8378 return getSema().ActOnLambdaExpr(E->getLocStart(), Body.take(),
8379 /*CurScope=*/0, /*IsInstantiation=*/true);
8380 }
8381
8382 template<typename Derived>
8383 ExprResult
TransformCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr * E)8384 TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
8385 CXXUnresolvedConstructExpr *E) {
8386 TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
8387 if (!T)
8388 return ExprError();
8389
8390 bool ArgumentChanged = false;
8391 SmallVector<Expr*, 8> Args;
8392 Args.reserve(E->arg_size());
8393 if (getDerived().TransformExprs(E->arg_begin(), E->arg_size(), true, Args,
8394 &ArgumentChanged))
8395 return ExprError();
8396
8397 if (!getDerived().AlwaysRebuild() &&
8398 T == E->getTypeSourceInfo() &&
8399 !ArgumentChanged)
8400 return SemaRef.Owned(E);
8401
8402 // FIXME: we're faking the locations of the commas
8403 return getDerived().RebuildCXXUnresolvedConstructExpr(T,
8404 E->getLParenLoc(),
8405 Args,
8406 E->getRParenLoc());
8407 }
8408
8409 template<typename Derived>
8410 ExprResult
TransformCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr * E)8411 TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
8412 CXXDependentScopeMemberExpr *E) {
8413 // Transform the base of the expression.
8414 ExprResult Base((Expr*) 0);
8415 Expr *OldBase;
8416 QualType BaseType;
8417 QualType ObjectType;
8418 if (!E->isImplicitAccess()) {
8419 OldBase = E->getBase();
8420 Base = getDerived().TransformExpr(OldBase);
8421 if (Base.isInvalid())
8422 return ExprError();
8423
8424 // Start the member reference and compute the object's type.
8425 ParsedType ObjectTy;
8426 bool MayBePseudoDestructor = false;
8427 Base = SemaRef.ActOnStartCXXMemberReference(0, Base.get(),
8428 E->getOperatorLoc(),
8429 E->isArrow()? tok::arrow : tok::period,
8430 ObjectTy,
8431 MayBePseudoDestructor);
8432 if (Base.isInvalid())
8433 return ExprError();
8434
8435 ObjectType = ObjectTy.get();
8436 BaseType = ((Expr*) Base.get())->getType();
8437 } else {
8438 OldBase = 0;
8439 BaseType = getDerived().TransformType(E->getBaseType());
8440 ObjectType = BaseType->getAs<PointerType>()->getPointeeType();
8441 }
8442
8443 // Transform the first part of the nested-name-specifier that qualifies
8444 // the member name.
8445 NamedDecl *FirstQualifierInScope
8446 = getDerived().TransformFirstQualifierInScope(
8447 E->getFirstQualifierFoundInScope(),
8448 E->getQualifierLoc().getBeginLoc());
8449
8450 NestedNameSpecifierLoc QualifierLoc;
8451 if (E->getQualifier()) {
8452 QualifierLoc
8453 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(),
8454 ObjectType,
8455 FirstQualifierInScope);
8456 if (!QualifierLoc)
8457 return ExprError();
8458 }
8459
8460 SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
8461
8462 // TODO: If this is a conversion-function-id, verify that the
8463 // destination type name (if present) resolves the same way after
8464 // instantiation as it did in the local scope.
8465
8466 DeclarationNameInfo NameInfo
8467 = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo());
8468 if (!NameInfo.getName())
8469 return ExprError();
8470
8471 if (!E->hasExplicitTemplateArgs()) {
8472 // This is a reference to a member without an explicitly-specified
8473 // template argument list. Optimize for this common case.
8474 if (!getDerived().AlwaysRebuild() &&
8475 Base.get() == OldBase &&
8476 BaseType == E->getBaseType() &&
8477 QualifierLoc == E->getQualifierLoc() &&
8478 NameInfo.getName() == E->getMember() &&
8479 FirstQualifierInScope == E->getFirstQualifierFoundInScope())
8480 return SemaRef.Owned(E);
8481
8482 return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
8483 BaseType,
8484 E->isArrow(),
8485 E->getOperatorLoc(),
8486 QualifierLoc,
8487 TemplateKWLoc,
8488 FirstQualifierInScope,
8489 NameInfo,
8490 /*TemplateArgs*/ 0);
8491 }
8492
8493 TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
8494 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
8495 E->getNumTemplateArgs(),
8496 TransArgs))
8497 return ExprError();
8498
8499 return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
8500 BaseType,
8501 E->isArrow(),
8502 E->getOperatorLoc(),
8503 QualifierLoc,
8504 TemplateKWLoc,
8505 FirstQualifierInScope,
8506 NameInfo,
8507 &TransArgs);
8508 }
8509
8510 template<typename Derived>
8511 ExprResult
TransformUnresolvedMemberExpr(UnresolvedMemberExpr * Old)8512 TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) {
8513 // Transform the base of the expression.
8514 ExprResult Base((Expr*) 0);
8515 QualType BaseType;
8516 if (!Old->isImplicitAccess()) {
8517 Base = getDerived().TransformExpr(Old->getBase());
8518 if (Base.isInvalid())
8519 return ExprError();
8520 Base = getSema().PerformMemberExprBaseConversion(Base.take(),
8521 Old->isArrow());
8522 if (Base.isInvalid())
8523 return ExprError();
8524 BaseType = Base.get()->getType();
8525 } else {
8526 BaseType = getDerived().TransformType(Old->getBaseType());
8527 }
8528
8529 NestedNameSpecifierLoc QualifierLoc;
8530 if (Old->getQualifierLoc()) {
8531 QualifierLoc
8532 = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
8533 if (!QualifierLoc)
8534 return ExprError();
8535 }
8536
8537 SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
8538
8539 LookupResult R(SemaRef, Old->getMemberNameInfo(),
8540 Sema::LookupOrdinaryName);
8541
8542 // Transform all the decls.
8543 for (UnresolvedMemberExpr::decls_iterator I = Old->decls_begin(),
8544 E = Old->decls_end(); I != E; ++I) {
8545 NamedDecl *InstD = static_cast<NamedDecl*>(
8546 getDerived().TransformDecl(Old->getMemberLoc(),
8547 *I));
8548 if (!InstD) {
8549 // Silently ignore these if a UsingShadowDecl instantiated to nothing.
8550 // This can happen because of dependent hiding.
8551 if (isa<UsingShadowDecl>(*I))
8552 continue;
8553 else {
8554 R.clear();
8555 return ExprError();
8556 }
8557 }
8558
8559 // Expand using declarations.
8560 if (isa<UsingDecl>(InstD)) {
8561 UsingDecl *UD = cast<UsingDecl>(InstD);
8562 for (UsingDecl::shadow_iterator I = UD->shadow_begin(),
8563 E = UD->shadow_end(); I != E; ++I)
8564 R.addDecl(*I);
8565 continue;
8566 }
8567
8568 R.addDecl(InstD);
8569 }
8570
8571 R.resolveKind();
8572
8573 // Determine the naming class.
8574 if (Old->getNamingClass()) {
8575 CXXRecordDecl *NamingClass
8576 = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
8577 Old->getMemberLoc(),
8578 Old->getNamingClass()));
8579 if (!NamingClass)
8580 return ExprError();
8581
8582 R.setNamingClass(NamingClass);
8583 }
8584
8585 TemplateArgumentListInfo TransArgs;
8586 if (Old->hasExplicitTemplateArgs()) {
8587 TransArgs.setLAngleLoc(Old->getLAngleLoc());
8588 TransArgs.setRAngleLoc(Old->getRAngleLoc());
8589 if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
8590 Old->getNumTemplateArgs(),
8591 TransArgs))
8592 return ExprError();
8593 }
8594
8595 // FIXME: to do this check properly, we will need to preserve the
8596 // first-qualifier-in-scope here, just in case we had a dependent
8597 // base (and therefore couldn't do the check) and a
8598 // nested-name-qualifier (and therefore could do the lookup).
8599 NamedDecl *FirstQualifierInScope = 0;
8600
8601 return getDerived().RebuildUnresolvedMemberExpr(Base.get(),
8602 BaseType,
8603 Old->getOperatorLoc(),
8604 Old->isArrow(),
8605 QualifierLoc,
8606 TemplateKWLoc,
8607 FirstQualifierInScope,
8608 R,
8609 (Old->hasExplicitTemplateArgs()
8610 ? &TransArgs : 0));
8611 }
8612
8613 template<typename Derived>
8614 ExprResult
TransformCXXNoexceptExpr(CXXNoexceptExpr * E)8615 TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) {
8616 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
8617 ExprResult SubExpr = getDerived().TransformExpr(E->getOperand());
8618 if (SubExpr.isInvalid())
8619 return ExprError();
8620
8621 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand())
8622 return SemaRef.Owned(E);
8623
8624 return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get());
8625 }
8626
8627 template<typename Derived>
8628 ExprResult
TransformPackExpansionExpr(PackExpansionExpr * E)8629 TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) {
8630 ExprResult Pattern = getDerived().TransformExpr(E->getPattern());
8631 if (Pattern.isInvalid())
8632 return ExprError();
8633
8634 if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern())
8635 return SemaRef.Owned(E);
8636
8637 return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(),
8638 E->getNumExpansions());
8639 }
8640
8641 template<typename Derived>
8642 ExprResult
TransformSizeOfPackExpr(SizeOfPackExpr * E)8643 TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) {
8644 // If E is not value-dependent, then nothing will change when we transform it.
8645 // Note: This is an instantiation-centric view.
8646 if (!E->isValueDependent())
8647 return SemaRef.Owned(E);
8648
8649 // Note: None of the implementations of TryExpandParameterPacks can ever
8650 // produce a diagnostic when given only a single unexpanded parameter pack,
8651 // so
8652 UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc());
8653 bool ShouldExpand = false;
8654 bool RetainExpansion = false;
8655 Optional<unsigned> NumExpansions;
8656 if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(),
8657 Unexpanded,
8658 ShouldExpand, RetainExpansion,
8659 NumExpansions))
8660 return ExprError();
8661
8662 if (RetainExpansion)
8663 return SemaRef.Owned(E);
8664
8665 NamedDecl *Pack = E->getPack();
8666 if (!ShouldExpand) {
8667 Pack = cast_or_null<NamedDecl>(getDerived().TransformDecl(E->getPackLoc(),
8668 Pack));
8669 if (!Pack)
8670 return ExprError();
8671 }
8672
8673
8674 // We now know the length of the parameter pack, so build a new expression
8675 // that stores that length.
8676 return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), Pack,
8677 E->getPackLoc(), E->getRParenLoc(),
8678 NumExpansions);
8679 }
8680
8681 template<typename Derived>
8682 ExprResult
TransformSubstNonTypeTemplateParmPackExpr(SubstNonTypeTemplateParmPackExpr * E)8683 TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr(
8684 SubstNonTypeTemplateParmPackExpr *E) {
8685 // Default behavior is to do nothing with this transformation.
8686 return SemaRef.Owned(E);
8687 }
8688
8689 template<typename Derived>
8690 ExprResult
TransformSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)8691 TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr(
8692 SubstNonTypeTemplateParmExpr *E) {
8693 // Default behavior is to do nothing with this transformation.
8694 return SemaRef.Owned(E);
8695 }
8696
8697 template<typename Derived>
8698 ExprResult
TransformFunctionParmPackExpr(FunctionParmPackExpr * E)8699 TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) {
8700 // Default behavior is to do nothing with this transformation.
8701 return SemaRef.Owned(E);
8702 }
8703
8704 template<typename Derived>
8705 ExprResult
TransformMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)8706 TreeTransform<Derived>::TransformMaterializeTemporaryExpr(
8707 MaterializeTemporaryExpr *E) {
8708 return getDerived().TransformExpr(E->GetTemporaryExpr());
8709 }
8710
8711 template<typename Derived>
8712 ExprResult
TransformCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)8713 TreeTransform<Derived>::TransformCXXStdInitializerListExpr(
8714 CXXStdInitializerListExpr *E) {
8715 return getDerived().TransformExpr(E->getSubExpr());
8716 }
8717
8718 template<typename Derived>
8719 ExprResult
TransformObjCStringLiteral(ObjCStringLiteral * E)8720 TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
8721 return SemaRef.MaybeBindToTemporary(E);
8722 }
8723
8724 template<typename Derived>
8725 ExprResult
TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr * E)8726 TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
8727 return SemaRef.Owned(E);
8728 }
8729
8730 template<typename Derived>
8731 ExprResult
TransformObjCBoxedExpr(ObjCBoxedExpr * E)8732 TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) {
8733 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
8734 if (SubExpr.isInvalid())
8735 return ExprError();
8736
8737 if (!getDerived().AlwaysRebuild() &&
8738 SubExpr.get() == E->getSubExpr())
8739 return SemaRef.Owned(E);
8740
8741 return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get());
8742 }
8743
8744 template<typename Derived>
8745 ExprResult
TransformObjCArrayLiteral(ObjCArrayLiteral * E)8746 TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) {
8747 // Transform each of the elements.
8748 SmallVector<Expr *, 8> Elements;
8749 bool ArgChanged = false;
8750 if (getDerived().TransformExprs(E->getElements(), E->getNumElements(),
8751 /*IsCall=*/false, Elements, &ArgChanged))
8752 return ExprError();
8753
8754 if (!getDerived().AlwaysRebuild() && !ArgChanged)
8755 return SemaRef.MaybeBindToTemporary(E);
8756
8757 return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(),
8758 Elements.data(),
8759 Elements.size());
8760 }
8761
8762 template<typename Derived>
8763 ExprResult
TransformObjCDictionaryLiteral(ObjCDictionaryLiteral * E)8764 TreeTransform<Derived>::TransformObjCDictionaryLiteral(
8765 ObjCDictionaryLiteral *E) {
8766 // Transform each of the elements.
8767 SmallVector<ObjCDictionaryElement, 8> Elements;
8768 bool ArgChanged = false;
8769 for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
8770 ObjCDictionaryElement OrigElement = E->getKeyValueElement(I);
8771
8772 if (OrigElement.isPackExpansion()) {
8773 // This key/value element is a pack expansion.
8774 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
8775 getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded);
8776 getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded);
8777 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
8778
8779 // Determine whether the set of unexpanded parameter packs can
8780 // and should be expanded.
8781 bool Expand = true;
8782 bool RetainExpansion = false;
8783 Optional<unsigned> OrigNumExpansions = OrigElement.NumExpansions;
8784 Optional<unsigned> NumExpansions = OrigNumExpansions;
8785 SourceRange PatternRange(OrigElement.Key->getLocStart(),
8786 OrigElement.Value->getLocEnd());
8787 if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc,
8788 PatternRange,
8789 Unexpanded,
8790 Expand, RetainExpansion,
8791 NumExpansions))
8792 return ExprError();
8793
8794 if (!Expand) {
8795 // The transform has determined that we should perform a simple
8796 // transformation on the pack expansion, producing another pack
8797 // expansion.
8798 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
8799 ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
8800 if (Key.isInvalid())
8801 return ExprError();
8802
8803 if (Key.get() != OrigElement.Key)
8804 ArgChanged = true;
8805
8806 ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
8807 if (Value.isInvalid())
8808 return ExprError();
8809
8810 if (Value.get() != OrigElement.Value)
8811 ArgChanged = true;
8812
8813 ObjCDictionaryElement Expansion = {
8814 Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions
8815 };
8816 Elements.push_back(Expansion);
8817 continue;
8818 }
8819
8820 // Record right away that the argument was changed. This needs
8821 // to happen even if the array expands to nothing.
8822 ArgChanged = true;
8823
8824 // The transform has determined that we should perform an elementwise
8825 // expansion of the pattern. Do so.
8826 for (unsigned I = 0; I != *NumExpansions; ++I) {
8827 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
8828 ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
8829 if (Key.isInvalid())
8830 return ExprError();
8831
8832 ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
8833 if (Value.isInvalid())
8834 return ExprError();
8835
8836 ObjCDictionaryElement Element = {
8837 Key.get(), Value.get(), SourceLocation(), NumExpansions
8838 };
8839
8840 // If any unexpanded parameter packs remain, we still have a
8841 // pack expansion.
8842 if (Key.get()->containsUnexpandedParameterPack() ||
8843 Value.get()->containsUnexpandedParameterPack())
8844 Element.EllipsisLoc = OrigElement.EllipsisLoc;
8845
8846 Elements.push_back(Element);
8847 }
8848
8849 // We've finished with this pack expansion.
8850 continue;
8851 }
8852
8853 // Transform and check key.
8854 ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
8855 if (Key.isInvalid())
8856 return ExprError();
8857
8858 if (Key.get() != OrigElement.Key)
8859 ArgChanged = true;
8860
8861 // Transform and check value.
8862 ExprResult Value
8863 = getDerived().TransformExpr(OrigElement.Value);
8864 if (Value.isInvalid())
8865 return ExprError();
8866
8867 if (Value.get() != OrigElement.Value)
8868 ArgChanged = true;
8869
8870 ObjCDictionaryElement Element = {
8871 Key.get(), Value.get(), SourceLocation(), None
8872 };
8873 Elements.push_back(Element);
8874 }
8875
8876 if (!getDerived().AlwaysRebuild() && !ArgChanged)
8877 return SemaRef.MaybeBindToTemporary(E);
8878
8879 return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(),
8880 Elements.data(),
8881 Elements.size());
8882 }
8883
8884 template<typename Derived>
8885 ExprResult
TransformObjCEncodeExpr(ObjCEncodeExpr * E)8886 TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
8887 TypeSourceInfo *EncodedTypeInfo
8888 = getDerived().TransformType(E->getEncodedTypeSourceInfo());
8889 if (!EncodedTypeInfo)
8890 return ExprError();
8891
8892 if (!getDerived().AlwaysRebuild() &&
8893 EncodedTypeInfo == E->getEncodedTypeSourceInfo())
8894 return SemaRef.Owned(E);
8895
8896 return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
8897 EncodedTypeInfo,
8898 E->getRParenLoc());
8899 }
8900
8901 template<typename Derived>
8902 ExprResult TreeTransform<Derived>::
TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr * E)8903 TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
8904 // This is a kind of implicit conversion, and it needs to get dropped
8905 // and recomputed for the same general reasons that ImplicitCastExprs
8906 // do, as well a more specific one: this expression is only valid when
8907 // it appears *immediately* as an argument expression.
8908 return getDerived().TransformExpr(E->getSubExpr());
8909 }
8910
8911 template<typename Derived>
8912 ExprResult TreeTransform<Derived>::
TransformObjCBridgedCastExpr(ObjCBridgedCastExpr * E)8913 TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
8914 TypeSourceInfo *TSInfo
8915 = getDerived().TransformType(E->getTypeInfoAsWritten());
8916 if (!TSInfo)
8917 return ExprError();
8918
8919 ExprResult Result = getDerived().TransformExpr(E->getSubExpr());
8920 if (Result.isInvalid())
8921 return ExprError();
8922
8923 if (!getDerived().AlwaysRebuild() &&
8924 TSInfo == E->getTypeInfoAsWritten() &&
8925 Result.get() == E->getSubExpr())
8926 return SemaRef.Owned(E);
8927
8928 return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(),
8929 E->getBridgeKeywordLoc(), TSInfo,
8930 Result.get());
8931 }
8932
8933 template<typename Derived>
8934 ExprResult
TransformObjCMessageExpr(ObjCMessageExpr * E)8935 TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
8936 // Transform arguments.
8937 bool ArgChanged = false;
8938 SmallVector<Expr*, 8> Args;
8939 Args.reserve(E->getNumArgs());
8940 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args,
8941 &ArgChanged))
8942 return ExprError();
8943
8944 if (E->getReceiverKind() == ObjCMessageExpr::Class) {
8945 // Class message: transform the receiver type.
8946 TypeSourceInfo *ReceiverTypeInfo
8947 = getDerived().TransformType(E->getClassReceiverTypeInfo());
8948 if (!ReceiverTypeInfo)
8949 return ExprError();
8950
8951 // If nothing changed, just retain the existing message send.
8952 if (!getDerived().AlwaysRebuild() &&
8953 ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged)
8954 return SemaRef.MaybeBindToTemporary(E);
8955
8956 // Build a new class message send.
8957 SmallVector<SourceLocation, 16> SelLocs;
8958 E->getSelectorLocs(SelLocs);
8959 return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo,
8960 E->getSelector(),
8961 SelLocs,
8962 E->getMethodDecl(),
8963 E->getLeftLoc(),
8964 Args,
8965 E->getRightLoc());
8966 }
8967
8968 // Instance message: transform the receiver
8969 assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&
8970 "Only class and instance messages may be instantiated");
8971 ExprResult Receiver
8972 = getDerived().TransformExpr(E->getInstanceReceiver());
8973 if (Receiver.isInvalid())
8974 return ExprError();
8975
8976 // If nothing changed, just retain the existing message send.
8977 if (!getDerived().AlwaysRebuild() &&
8978 Receiver.get() == E->getInstanceReceiver() && !ArgChanged)
8979 return SemaRef.MaybeBindToTemporary(E);
8980
8981 // Build a new instance message send.
8982 SmallVector<SourceLocation, 16> SelLocs;
8983 E->getSelectorLocs(SelLocs);
8984 return getDerived().RebuildObjCMessageExpr(Receiver.get(),
8985 E->getSelector(),
8986 SelLocs,
8987 E->getMethodDecl(),
8988 E->getLeftLoc(),
8989 Args,
8990 E->getRightLoc());
8991 }
8992
8993 template<typename Derived>
8994 ExprResult
TransformObjCSelectorExpr(ObjCSelectorExpr * E)8995 TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
8996 return SemaRef.Owned(E);
8997 }
8998
8999 template<typename Derived>
9000 ExprResult
TransformObjCProtocolExpr(ObjCProtocolExpr * E)9001 TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
9002 return SemaRef.Owned(E);
9003 }
9004
9005 template<typename Derived>
9006 ExprResult
TransformObjCIvarRefExpr(ObjCIvarRefExpr * E)9007 TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
9008 // Transform the base expression.
9009 ExprResult Base = getDerived().TransformExpr(E->getBase());
9010 if (Base.isInvalid())
9011 return ExprError();
9012
9013 // We don't need to transform the ivar; it will never change.
9014
9015 // If nothing changed, just retain the existing expression.
9016 if (!getDerived().AlwaysRebuild() &&
9017 Base.get() == E->getBase())
9018 return SemaRef.Owned(E);
9019
9020 return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(),
9021 E->getLocation(),
9022 E->isArrow(), E->isFreeIvar());
9023 }
9024
9025 template<typename Derived>
9026 ExprResult
TransformObjCPropertyRefExpr(ObjCPropertyRefExpr * E)9027 TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
9028 // 'super' and types never change. Property never changes. Just
9029 // retain the existing expression.
9030 if (!E->isObjectReceiver())
9031 return SemaRef.Owned(E);
9032
9033 // Transform the base expression.
9034 ExprResult Base = getDerived().TransformExpr(E->getBase());
9035 if (Base.isInvalid())
9036 return ExprError();
9037
9038 // We don't need to transform the property; it will never change.
9039
9040 // If nothing changed, just retain the existing expression.
9041 if (!getDerived().AlwaysRebuild() &&
9042 Base.get() == E->getBase())
9043 return SemaRef.Owned(E);
9044
9045 if (E->isExplicitProperty())
9046 return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
9047 E->getExplicitProperty(),
9048 E->getLocation());
9049
9050 return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
9051 SemaRef.Context.PseudoObjectTy,
9052 E->getImplicitPropertyGetter(),
9053 E->getImplicitPropertySetter(),
9054 E->getLocation());
9055 }
9056
9057 template<typename Derived>
9058 ExprResult
TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr * E)9059 TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
9060 // Transform the base expression.
9061 ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
9062 if (Base.isInvalid())
9063 return ExprError();
9064
9065 // Transform the key expression.
9066 ExprResult Key = getDerived().TransformExpr(E->getKeyExpr());
9067 if (Key.isInvalid())
9068 return ExprError();
9069
9070 // If nothing changed, just retain the existing expression.
9071 if (!getDerived().AlwaysRebuild() &&
9072 Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr())
9073 return SemaRef.Owned(E);
9074
9075 return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(),
9076 Base.get(), Key.get(),
9077 E->getAtIndexMethodDecl(),
9078 E->setAtIndexMethodDecl());
9079 }
9080
9081 template<typename Derived>
9082 ExprResult
TransformObjCIsaExpr(ObjCIsaExpr * E)9083 TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
9084 // Transform the base expression.
9085 ExprResult Base = getDerived().TransformExpr(E->getBase());
9086 if (Base.isInvalid())
9087 return ExprError();
9088
9089 // If nothing changed, just retain the existing expression.
9090 if (!getDerived().AlwaysRebuild() &&
9091 Base.get() == E->getBase())
9092 return SemaRef.Owned(E);
9093
9094 return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(),
9095 E->getOpLoc(),
9096 E->isArrow());
9097 }
9098
9099 template<typename Derived>
9100 ExprResult
TransformShuffleVectorExpr(ShuffleVectorExpr * E)9101 TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
9102 bool ArgumentChanged = false;
9103 SmallVector<Expr*, 8> SubExprs;
9104 SubExprs.reserve(E->getNumSubExprs());
9105 if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
9106 SubExprs, &ArgumentChanged))
9107 return ExprError();
9108
9109 if (!getDerived().AlwaysRebuild() &&
9110 !ArgumentChanged)
9111 return SemaRef.Owned(E);
9112
9113 return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
9114 SubExprs,
9115 E->getRParenLoc());
9116 }
9117
9118 template<typename Derived>
9119 ExprResult
TransformBlockExpr(BlockExpr * E)9120 TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
9121 BlockDecl *oldBlock = E->getBlockDecl();
9122
9123 SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/0);
9124 BlockScopeInfo *blockScope = SemaRef.getCurBlock();
9125
9126 blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic());
9127 blockScope->TheDecl->setBlockMissingReturnType(
9128 oldBlock->blockMissingReturnType());
9129
9130 SmallVector<ParmVarDecl*, 4> params;
9131 SmallVector<QualType, 4> paramTypes;
9132
9133 // Parameter substitution.
9134 if (getDerived().TransformFunctionTypeParams(E->getCaretLocation(),
9135 oldBlock->param_begin(),
9136 oldBlock->param_size(),
9137 0, paramTypes, ¶ms)) {
9138 getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/0);
9139 return ExprError();
9140 }
9141
9142 const FunctionProtoType *exprFunctionType = E->getFunctionType();
9143 QualType exprResultType =
9144 getDerived().TransformType(exprFunctionType->getResultType());
9145
9146 QualType functionType =
9147 getDerived().RebuildFunctionProtoType(exprResultType, paramTypes,
9148 exprFunctionType->getExtProtoInfo());
9149 blockScope->FunctionType = functionType;
9150
9151 // Set the parameters on the block decl.
9152 if (!params.empty())
9153 blockScope->TheDecl->setParams(params);
9154
9155 if (!oldBlock->blockMissingReturnType()) {
9156 blockScope->HasImplicitReturnType = false;
9157 blockScope->ReturnType = exprResultType;
9158 }
9159
9160 // Transform the body
9161 StmtResult body = getDerived().TransformStmt(E->getBody());
9162 if (body.isInvalid()) {
9163 getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/0);
9164 return ExprError();
9165 }
9166
9167 #ifndef NDEBUG
9168 // In builds with assertions, make sure that we captured everything we
9169 // captured before.
9170 if (!SemaRef.getDiagnostics().hasErrorOccurred()) {
9171 for (BlockDecl::capture_iterator i = oldBlock->capture_begin(),
9172 e = oldBlock->capture_end(); i != e; ++i) {
9173 VarDecl *oldCapture = i->getVariable();
9174
9175 // Ignore parameter packs.
9176 if (isa<ParmVarDecl>(oldCapture) &&
9177 cast<ParmVarDecl>(oldCapture)->isParameterPack())
9178 continue;
9179
9180 VarDecl *newCapture =
9181 cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(),
9182 oldCapture));
9183 assert(blockScope->CaptureMap.count(newCapture));
9184 }
9185 assert(oldBlock->capturesCXXThis() == blockScope->isCXXThisCaptured());
9186 }
9187 #endif
9188
9189 return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(),
9190 /*Scope=*/0);
9191 }
9192
9193 template<typename Derived>
9194 ExprResult
TransformAsTypeExpr(AsTypeExpr * E)9195 TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) {
9196 llvm_unreachable("Cannot transform asType expressions yet");
9197 }
9198
9199 template<typename Derived>
9200 ExprResult
TransformAtomicExpr(AtomicExpr * E)9201 TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) {
9202 QualType RetTy = getDerived().TransformType(E->getType());
9203 bool ArgumentChanged = false;
9204 SmallVector<Expr*, 8> SubExprs;
9205 SubExprs.reserve(E->getNumSubExprs());
9206 if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
9207 SubExprs, &ArgumentChanged))
9208 return ExprError();
9209
9210 if (!getDerived().AlwaysRebuild() &&
9211 !ArgumentChanged)
9212 return SemaRef.Owned(E);
9213
9214 return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs,
9215 RetTy, E->getOp(), E->getRParenLoc());
9216 }
9217
9218 //===----------------------------------------------------------------------===//
9219 // Type reconstruction
9220 //===----------------------------------------------------------------------===//
9221
9222 template<typename Derived>
RebuildPointerType(QualType PointeeType,SourceLocation Star)9223 QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
9224 SourceLocation Star) {
9225 return SemaRef.BuildPointerType(PointeeType, Star,
9226 getDerived().getBaseEntity());
9227 }
9228
9229 template<typename Derived>
RebuildBlockPointerType(QualType PointeeType,SourceLocation Star)9230 QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
9231 SourceLocation Star) {
9232 return SemaRef.BuildBlockPointerType(PointeeType, Star,
9233 getDerived().getBaseEntity());
9234 }
9235
9236 template<typename Derived>
9237 QualType
RebuildReferenceType(QualType ReferentType,bool WrittenAsLValue,SourceLocation Sigil)9238 TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
9239 bool WrittenAsLValue,
9240 SourceLocation Sigil) {
9241 return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue,
9242 Sigil, getDerived().getBaseEntity());
9243 }
9244
9245 template<typename Derived>
9246 QualType
RebuildMemberPointerType(QualType PointeeType,QualType ClassType,SourceLocation Sigil)9247 TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType,
9248 QualType ClassType,
9249 SourceLocation Sigil) {
9250 return SemaRef.BuildMemberPointerType(PointeeType, ClassType,
9251 Sigil, getDerived().getBaseEntity());
9252 }
9253
9254 template<typename Derived>
9255 QualType
RebuildArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,const llvm::APInt * Size,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)9256 TreeTransform<Derived>::RebuildArrayType(QualType ElementType,
9257 ArrayType::ArraySizeModifier SizeMod,
9258 const llvm::APInt *Size,
9259 Expr *SizeExpr,
9260 unsigned IndexTypeQuals,
9261 SourceRange BracketsRange) {
9262 if (SizeExpr || !Size)
9263 return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
9264 IndexTypeQuals, BracketsRange,
9265 getDerived().getBaseEntity());
9266
9267 QualType Types[] = {
9268 SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
9269 SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
9270 SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
9271 };
9272 const unsigned NumTypes = llvm::array_lengthof(Types);
9273 QualType SizeType;
9274 for (unsigned I = 0; I != NumTypes; ++I)
9275 if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
9276 SizeType = Types[I];
9277 break;
9278 }
9279
9280 // Note that we can return a VariableArrayType here in the case where
9281 // the element type was a dependent VariableArrayType.
9282 IntegerLiteral *ArraySize
9283 = IntegerLiteral::Create(SemaRef.Context, *Size, SizeType,
9284 /*FIXME*/BracketsRange.getBegin());
9285 return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize,
9286 IndexTypeQuals, BracketsRange,
9287 getDerived().getBaseEntity());
9288 }
9289
9290 template<typename Derived>
9291 QualType
RebuildConstantArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,const llvm::APInt & Size,unsigned IndexTypeQuals,SourceRange BracketsRange)9292 TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType,
9293 ArrayType::ArraySizeModifier SizeMod,
9294 const llvm::APInt &Size,
9295 unsigned IndexTypeQuals,
9296 SourceRange BracketsRange) {
9297 return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, 0,
9298 IndexTypeQuals, BracketsRange);
9299 }
9300
9301 template<typename Derived>
9302 QualType
RebuildIncompleteArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,unsigned IndexTypeQuals,SourceRange BracketsRange)9303 TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType,
9304 ArrayType::ArraySizeModifier SizeMod,
9305 unsigned IndexTypeQuals,
9306 SourceRange BracketsRange) {
9307 return getDerived().RebuildArrayType(ElementType, SizeMod, 0, 0,
9308 IndexTypeQuals, BracketsRange);
9309 }
9310
9311 template<typename Derived>
9312 QualType
RebuildVariableArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)9313 TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType,
9314 ArrayType::ArraySizeModifier SizeMod,
9315 Expr *SizeExpr,
9316 unsigned IndexTypeQuals,
9317 SourceRange BracketsRange) {
9318 return getDerived().RebuildArrayType(ElementType, SizeMod, 0,
9319 SizeExpr,
9320 IndexTypeQuals, BracketsRange);
9321 }
9322
9323 template<typename Derived>
9324 QualType
RebuildDependentSizedArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)9325 TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType,
9326 ArrayType::ArraySizeModifier SizeMod,
9327 Expr *SizeExpr,
9328 unsigned IndexTypeQuals,
9329 SourceRange BracketsRange) {
9330 return getDerived().RebuildArrayType(ElementType, SizeMod, 0,
9331 SizeExpr,
9332 IndexTypeQuals, BracketsRange);
9333 }
9334
9335 template<typename Derived>
RebuildVectorType(QualType ElementType,unsigned NumElements,VectorType::VectorKind VecKind)9336 QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
9337 unsigned NumElements,
9338 VectorType::VectorKind VecKind) {
9339 // FIXME: semantic checking!
9340 return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind);
9341 }
9342
9343 template<typename Derived>
RebuildExtVectorType(QualType ElementType,unsigned NumElements,SourceLocation AttributeLoc)9344 QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
9345 unsigned NumElements,
9346 SourceLocation AttributeLoc) {
9347 llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
9348 NumElements, true);
9349 IntegerLiteral *VectorSize
9350 = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy,
9351 AttributeLoc);
9352 return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc);
9353 }
9354
9355 template<typename Derived>
9356 QualType
RebuildDependentSizedExtVectorType(QualType ElementType,Expr * SizeExpr,SourceLocation AttributeLoc)9357 TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
9358 Expr *SizeExpr,
9359 SourceLocation AttributeLoc) {
9360 return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc);
9361 }
9362
9363 template<typename Derived>
RebuildFunctionProtoType(QualType T,llvm::MutableArrayRef<QualType> ParamTypes,const FunctionProtoType::ExtProtoInfo & EPI)9364 QualType TreeTransform<Derived>::RebuildFunctionProtoType(
9365 QualType T,
9366 llvm::MutableArrayRef<QualType> ParamTypes,
9367 const FunctionProtoType::ExtProtoInfo &EPI) {
9368 return SemaRef.BuildFunctionType(T, ParamTypes,
9369 getDerived().getBaseLocation(),
9370 getDerived().getBaseEntity(),
9371 EPI);
9372 }
9373
9374 template<typename Derived>
RebuildFunctionNoProtoType(QualType T)9375 QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
9376 return SemaRef.Context.getFunctionNoProtoType(T);
9377 }
9378
9379 template<typename Derived>
RebuildUnresolvedUsingType(Decl * D)9380 QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(Decl *D) {
9381 assert(D && "no decl found");
9382 if (D->isInvalidDecl()) return QualType();
9383
9384 // FIXME: Doesn't account for ObjCInterfaceDecl!
9385 TypeDecl *Ty;
9386 if (isa<UsingDecl>(D)) {
9387 UsingDecl *Using = cast<UsingDecl>(D);
9388 assert(Using->hasTypename() &&
9389 "UnresolvedUsingTypenameDecl transformed to non-typename using");
9390
9391 // A valid resolved using typename decl points to exactly one type decl.
9392 assert(++Using->shadow_begin() == Using->shadow_end());
9393 Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl());
9394
9395 } else {
9396 assert(isa<UnresolvedUsingTypenameDecl>(D) &&
9397 "UnresolvedUsingTypenameDecl transformed to non-using decl");
9398 Ty = cast<UnresolvedUsingTypenameDecl>(D);
9399 }
9400
9401 return SemaRef.Context.getTypeDeclType(Ty);
9402 }
9403
9404 template<typename Derived>
RebuildTypeOfExprType(Expr * E,SourceLocation Loc)9405 QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E,
9406 SourceLocation Loc) {
9407 return SemaRef.BuildTypeofExprType(E, Loc);
9408 }
9409
9410 template<typename Derived>
RebuildTypeOfType(QualType Underlying)9411 QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) {
9412 return SemaRef.Context.getTypeOfType(Underlying);
9413 }
9414
9415 template<typename Derived>
RebuildDecltypeType(Expr * E,SourceLocation Loc)9416 QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E,
9417 SourceLocation Loc) {
9418 return SemaRef.BuildDecltypeType(E, Loc);
9419 }
9420
9421 template<typename Derived>
RebuildUnaryTransformType(QualType BaseType,UnaryTransformType::UTTKind UKind,SourceLocation Loc)9422 QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType,
9423 UnaryTransformType::UTTKind UKind,
9424 SourceLocation Loc) {
9425 return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc);
9426 }
9427
9428 template<typename Derived>
RebuildTemplateSpecializationType(TemplateName Template,SourceLocation TemplateNameLoc,TemplateArgumentListInfo & TemplateArgs)9429 QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
9430 TemplateName Template,
9431 SourceLocation TemplateNameLoc,
9432 TemplateArgumentListInfo &TemplateArgs) {
9433 return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
9434 }
9435
9436 template<typename Derived>
RebuildAtomicType(QualType ValueType,SourceLocation KWLoc)9437 QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType,
9438 SourceLocation KWLoc) {
9439 return SemaRef.BuildAtomicType(ValueType, KWLoc);
9440 }
9441
9442 template<typename Derived>
9443 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,bool TemplateKW,TemplateDecl * Template)9444 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
9445 bool TemplateKW,
9446 TemplateDecl *Template) {
9447 return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW,
9448 Template);
9449 }
9450
9451 template<typename Derived>
9452 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,const IdentifierInfo & Name,SourceLocation NameLoc,QualType ObjectType,NamedDecl * FirstQualifierInScope)9453 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
9454 const IdentifierInfo &Name,
9455 SourceLocation NameLoc,
9456 QualType ObjectType,
9457 NamedDecl *FirstQualifierInScope) {
9458 UnqualifiedId TemplateName;
9459 TemplateName.setIdentifier(&Name, NameLoc);
9460 Sema::TemplateTy Template;
9461 SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
9462 getSema().ActOnDependentTemplateName(/*Scope=*/0,
9463 SS, TemplateKWLoc, TemplateName,
9464 ParsedType::make(ObjectType),
9465 /*EnteringContext=*/false,
9466 Template);
9467 return Template.get();
9468 }
9469
9470 template<typename Derived>
9471 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,OverloadedOperatorKind Operator,SourceLocation NameLoc,QualType ObjectType)9472 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
9473 OverloadedOperatorKind Operator,
9474 SourceLocation NameLoc,
9475 QualType ObjectType) {
9476 UnqualifiedId Name;
9477 // FIXME: Bogus location information.
9478 SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc };
9479 Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations);
9480 SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
9481 Sema::TemplateTy Template;
9482 getSema().ActOnDependentTemplateName(/*Scope=*/0,
9483 SS, TemplateKWLoc, Name,
9484 ParsedType::make(ObjectType),
9485 /*EnteringContext=*/false,
9486 Template);
9487 return Template.template getAsVal<TemplateName>();
9488 }
9489
9490 template<typename Derived>
9491 ExprResult
RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,SourceLocation OpLoc,Expr * OrigCallee,Expr * First,Expr * Second)9492 TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
9493 SourceLocation OpLoc,
9494 Expr *OrigCallee,
9495 Expr *First,
9496 Expr *Second) {
9497 Expr *Callee = OrigCallee->IgnoreParenCasts();
9498 bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus);
9499
9500 // Determine whether this should be a builtin operation.
9501 if (Op == OO_Subscript) {
9502 if (!First->getType()->isOverloadableType() &&
9503 !Second->getType()->isOverloadableType())
9504 return getSema().CreateBuiltinArraySubscriptExpr(First,
9505 Callee->getLocStart(),
9506 Second, OpLoc);
9507 } else if (Op == OO_Arrow) {
9508 // -> is never a builtin operation.
9509 return SemaRef.BuildOverloadedArrowExpr(0, First, OpLoc);
9510 } else if (Second == 0 || isPostIncDec) {
9511 if (!First->getType()->isOverloadableType()) {
9512 // The argument is not of overloadable type, so try to create a
9513 // built-in unary operation.
9514 UnaryOperatorKind Opc
9515 = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
9516
9517 return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First);
9518 }
9519 } else {
9520 if (!First->getType()->isOverloadableType() &&
9521 !Second->getType()->isOverloadableType()) {
9522 // Neither of the arguments is an overloadable type, so try to
9523 // create a built-in binary operation.
9524 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
9525 ExprResult Result
9526 = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second);
9527 if (Result.isInvalid())
9528 return ExprError();
9529
9530 return Result;
9531 }
9532 }
9533
9534 // Compute the transformed set of functions (and function templates) to be
9535 // used during overload resolution.
9536 UnresolvedSet<16> Functions;
9537
9538 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) {
9539 assert(ULE->requiresADL());
9540
9541 // FIXME: Do we have to check
9542 // IsAcceptableNonMemberOperatorCandidate for each of these?
9543 Functions.append(ULE->decls_begin(), ULE->decls_end());
9544 } else {
9545 // If we've resolved this to a particular non-member function, just call
9546 // that function. If we resolved it to a member function,
9547 // CreateOverloaded* will find that function for us.
9548 NamedDecl *ND = cast<DeclRefExpr>(Callee)->getDecl();
9549 if (!isa<CXXMethodDecl>(ND))
9550 Functions.addDecl(ND);
9551 }
9552
9553 // Add any functions found via argument-dependent lookup.
9554 Expr *Args[2] = { First, Second };
9555 unsigned NumArgs = 1 + (Second != 0);
9556
9557 // Create the overloaded operator invocation for unary operators.
9558 if (NumArgs == 1 || isPostIncDec) {
9559 UnaryOperatorKind Opc
9560 = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
9561 return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First);
9562 }
9563
9564 if (Op == OO_Subscript) {
9565 SourceLocation LBrace;
9566 SourceLocation RBrace;
9567
9568 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee)) {
9569 DeclarationNameLoc &NameLoc = DRE->getNameInfo().getInfo();
9570 LBrace = SourceLocation::getFromRawEncoding(
9571 NameLoc.CXXOperatorName.BeginOpNameLoc);
9572 RBrace = SourceLocation::getFromRawEncoding(
9573 NameLoc.CXXOperatorName.EndOpNameLoc);
9574 } else {
9575 LBrace = Callee->getLocStart();
9576 RBrace = OpLoc;
9577 }
9578
9579 return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace,
9580 First, Second);
9581 }
9582
9583 // Create the overloaded operator invocation for binary operators.
9584 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
9585 ExprResult Result
9586 = SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, Args[0], Args[1]);
9587 if (Result.isInvalid())
9588 return ExprError();
9589
9590 return Result;
9591 }
9592
9593 template<typename Derived>
9594 ExprResult
RebuildCXXPseudoDestructorExpr(Expr * Base,SourceLocation OperatorLoc,bool isArrow,CXXScopeSpec & SS,TypeSourceInfo * ScopeType,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destroyed)9595 TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base,
9596 SourceLocation OperatorLoc,
9597 bool isArrow,
9598 CXXScopeSpec &SS,
9599 TypeSourceInfo *ScopeType,
9600 SourceLocation CCLoc,
9601 SourceLocation TildeLoc,
9602 PseudoDestructorTypeStorage Destroyed) {
9603 QualType BaseType = Base->getType();
9604 if (Base->isTypeDependent() || Destroyed.getIdentifier() ||
9605 (!isArrow && !BaseType->getAs<RecordType>()) ||
9606 (isArrow && BaseType->getAs<PointerType>() &&
9607 !BaseType->getAs<PointerType>()->getPointeeType()
9608 ->template getAs<RecordType>())){
9609 // This pseudo-destructor expression is still a pseudo-destructor.
9610 return SemaRef.BuildPseudoDestructorExpr(Base, OperatorLoc,
9611 isArrow? tok::arrow : tok::period,
9612 SS, ScopeType, CCLoc, TildeLoc,
9613 Destroyed,
9614 /*FIXME?*/true);
9615 }
9616
9617 TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
9618 DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName(
9619 SemaRef.Context.getCanonicalType(DestroyedType->getType())));
9620 DeclarationNameInfo NameInfo(Name, Destroyed.getLocation());
9621 NameInfo.setNamedTypeInfo(DestroyedType);
9622
9623 // The scope type is now known to be a valid nested name specifier
9624 // component. Tack it on to the end of the nested name specifier.
9625 if (ScopeType)
9626 SS.Extend(SemaRef.Context, SourceLocation(),
9627 ScopeType->getTypeLoc(), CCLoc);
9628
9629 SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
9630 return getSema().BuildMemberReferenceExpr(Base, BaseType,
9631 OperatorLoc, isArrow,
9632 SS, TemplateKWLoc,
9633 /*FIXME: FirstQualifier*/ 0,
9634 NameInfo,
9635 /*TemplateArgs*/ 0);
9636 }
9637
9638 template<typename Derived>
9639 StmtResult
TransformCapturedStmt(CapturedStmt * S)9640 TreeTransform<Derived>::TransformCapturedStmt(CapturedStmt *S) {
9641 SourceLocation Loc = S->getLocStart();
9642 unsigned NumParams = S->getCapturedDecl()->getNumParams();
9643 getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/0,
9644 S->getCapturedRegionKind(), NumParams);
9645 StmtResult Body = getDerived().TransformStmt(S->getCapturedStmt());
9646
9647 if (Body.isInvalid()) {
9648 getSema().ActOnCapturedRegionError();
9649 return StmtError();
9650 }
9651
9652 return getSema().ActOnCapturedRegionEnd(Body.take());
9653 }
9654
9655 } // end namespace clang
9656
9657 #endif // LLVM_CLANG_SEMA_TREETRANSFORM_H
9658