• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef CODEGEN_DAGPATTERNS_H
16 #define CODEGEN_DAGPATTERNS_H
17 
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenTarget.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include <algorithm>
24 #include <map>
25 #include <set>
26 #include <vector>
27 
28 namespace llvm {
29   class Record;
30   class Init;
31   class ListInit;
32   class DagInit;
33   class SDNodeInfo;
34   class TreePattern;
35   class TreePatternNode;
36   class CodeGenDAGPatterns;
37   class ComplexPattern;
38 
39 /// EEVT::DAGISelGenValueType - These are some extended forms of
40 /// MVT::SimpleValueType that we use as lattice values during type inference.
41 /// The existing MVT iAny, fAny and vAny types suffice to represent
42 /// arbitrary integer, floating-point, and vector types, so only an unknown
43 /// value is needed.
44 namespace EEVT {
45   /// TypeSet - This is either empty if it's completely unknown, or holds a set
46   /// of types.  It is used during type inference because register classes can
47   /// have multiple possible types and we don't know which one they get until
48   /// type inference is complete.
49   ///
50   /// TypeSet can have three states:
51   ///    Vector is empty: The type is completely unknown, it can be any valid
52   ///       target type.
53   ///    Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one
54   ///       of those types only.
55   ///    Vector has one concrete type: The type is completely known.
56   ///
57   class TypeSet {
58     SmallVector<MVT::SimpleValueType, 4> TypeVec;
59   public:
TypeSet()60     TypeSet() {}
61     TypeSet(MVT::SimpleValueType VT, TreePattern &TP);
62     TypeSet(ArrayRef<MVT::SimpleValueType> VTList);
63 
isCompletelyUnknown()64     bool isCompletelyUnknown() const { return TypeVec.empty(); }
65 
isConcrete()66     bool isConcrete() const {
67       if (TypeVec.size() != 1) return false;
68       unsigned char T = TypeVec[0]; (void)T;
69       assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny);
70       return true;
71     }
72 
getConcrete()73     MVT::SimpleValueType getConcrete() const {
74       assert(isConcrete() && "Type isn't concrete yet");
75       return (MVT::SimpleValueType)TypeVec[0];
76     }
77 
isDynamicallyResolved()78     bool isDynamicallyResolved() const {
79       return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny;
80     }
81 
getTypeList()82     const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const {
83       assert(!TypeVec.empty() && "Not a type list!");
84       return TypeVec;
85     }
86 
isVoid()87     bool isVoid() const {
88       return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid;
89     }
90 
91     /// hasIntegerTypes - Return true if this TypeSet contains any integer value
92     /// types.
93     bool hasIntegerTypes() const;
94 
95     /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
96     /// a floating point value type.
97     bool hasFloatingPointTypes() const;
98 
99     /// hasVectorTypes - Return true if this TypeSet contains a vector value
100     /// type.
101     bool hasVectorTypes() const;
102 
103     /// getName() - Return this TypeSet as a string.
104     std::string getName() const;
105 
106     /// MergeInTypeInfo - This merges in type information from the specified
107     /// argument.  If 'this' changes, it returns true.  If the two types are
108     /// contradictory (e.g. merge f32 into i32) then this flags an error.
109     bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP);
110 
MergeInTypeInfo(MVT::SimpleValueType InVT,TreePattern & TP)111     bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) {
112       return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP);
113     }
114 
115     /// Force this type list to only contain integer types.
116     bool EnforceInteger(TreePattern &TP);
117 
118     /// Force this type list to only contain floating point types.
119     bool EnforceFloatingPoint(TreePattern &TP);
120 
121     /// EnforceScalar - Remove all vector types from this type list.
122     bool EnforceScalar(TreePattern &TP);
123 
124     /// EnforceVector - Remove all non-vector types from this type list.
125     bool EnforceVector(TreePattern &TP);
126 
127     /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
128     /// this an other based on this information.
129     bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP);
130 
131     /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
132     /// whose element is VT.
133     bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
134 
135     /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to
136     /// be a vector type VT.
137     bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
138 
139     bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; }
140     bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; }
141 
142   private:
143     /// FillWithPossibleTypes - Set to all legal types and return true, only
144     /// valid on completely unknown type sets.  If Pred is non-null, only MVTs
145     /// that pass the predicate are added.
146     bool FillWithPossibleTypes(TreePattern &TP,
147                                bool (*Pred)(MVT::SimpleValueType) = 0,
148                                const char *PredicateName = 0);
149   };
150 }
151 
152 /// Set type used to track multiply used variables in patterns
153 typedef std::set<std::string> MultipleUseVarSet;
154 
155 /// SDTypeConstraint - This is a discriminated union of constraints,
156 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
157 struct SDTypeConstraint {
158   SDTypeConstraint(Record *R);
159 
160   unsigned OperandNo;   // The operand # this constraint applies to.
161   enum {
162     SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
163     SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
164     SDTCisSubVecOfVec
165   } ConstraintType;
166 
167   union {   // The discriminated union.
168     struct {
169       MVT::SimpleValueType VT;
170     } SDTCisVT_Info;
171     struct {
172       unsigned OtherOperandNum;
173     } SDTCisSameAs_Info;
174     struct {
175       unsigned OtherOperandNum;
176     } SDTCisVTSmallerThanOp_Info;
177     struct {
178       unsigned BigOperandNum;
179     } SDTCisOpSmallerThanOp_Info;
180     struct {
181       unsigned OtherOperandNum;
182     } SDTCisEltOfVec_Info;
183     struct {
184       unsigned OtherOperandNum;
185     } SDTCisSubVecOfVec_Info;
186   } x;
187 
188   /// ApplyTypeConstraint - Given a node in a pattern, apply this type
189   /// constraint to the nodes operands.  This returns true if it makes a
190   /// change, false otherwise.  If a type contradiction is found, an error
191   /// is flagged.
192   bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
193                            TreePattern &TP) const;
194 };
195 
196 /// SDNodeInfo - One of these records is created for each SDNode instance in
197 /// the target .td file.  This represents the various dag nodes we will be
198 /// processing.
199 class SDNodeInfo {
200   Record *Def;
201   std::string EnumName;
202   std::string SDClassName;
203   unsigned Properties;
204   unsigned NumResults;
205   int NumOperands;
206   std::vector<SDTypeConstraint> TypeConstraints;
207 public:
208   SDNodeInfo(Record *R);  // Parse the specified record.
209 
getNumResults()210   unsigned getNumResults() const { return NumResults; }
211 
212   /// getNumOperands - This is the number of operands required or -1 if
213   /// variadic.
getNumOperands()214   int getNumOperands() const { return NumOperands; }
getRecord()215   Record *getRecord() const { return Def; }
getEnumName()216   const std::string &getEnumName() const { return EnumName; }
getSDClassName()217   const std::string &getSDClassName() const { return SDClassName; }
218 
getTypeConstraints()219   const std::vector<SDTypeConstraint> &getTypeConstraints() const {
220     return TypeConstraints;
221   }
222 
223   /// getKnownType - If the type constraints on this node imply a fixed type
224   /// (e.g. all stores return void, etc), then return it as an
225   /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
226   MVT::SimpleValueType getKnownType(unsigned ResNo) const;
227 
228   /// hasProperty - Return true if this node has the specified property.
229   ///
hasProperty(enum SDNP Prop)230   bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
231 
232   /// ApplyTypeConstraints - Given a node in a pattern, apply the type
233   /// constraints for this node to the operands of the node.  This returns
234   /// true if it makes a change, false otherwise.  If a type contradiction is
235   /// found, an error is flagged.
ApplyTypeConstraints(TreePatternNode * N,TreePattern & TP)236   bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
237     bool MadeChange = false;
238     for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
239       MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
240     return MadeChange;
241   }
242 };
243 
244 /// TreePredicateFn - This is an abstraction that represents the predicates on
245 /// a PatFrag node.  This is a simple one-word wrapper around a pointer to
246 /// provide nice accessors.
247 class TreePredicateFn {
248   /// PatFragRec - This is the TreePattern for the PatFrag that we
249   /// originally came from.
250   TreePattern *PatFragRec;
251 public:
252   /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
253   TreePredicateFn(TreePattern *N);
254 
255 
getOrigPatFragRecord()256   TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
257 
258   /// isAlwaysTrue - Return true if this is a noop predicate.
259   bool isAlwaysTrue() const;
260 
isImmediatePattern()261   bool isImmediatePattern() const { return !getImmCode().empty(); }
262 
263   /// getImmediatePredicateCode - Return the code that evaluates this pattern if
264   /// this is an immediate predicate.  It is an error to call this on a
265   /// non-immediate pattern.
getImmediatePredicateCode()266   std::string getImmediatePredicateCode() const {
267     std::string Result = getImmCode();
268     assert(!Result.empty() && "Isn't an immediate pattern!");
269     return Result;
270   }
271 
272 
273   bool operator==(const TreePredicateFn &RHS) const {
274     return PatFragRec == RHS.PatFragRec;
275   }
276 
277   bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
278 
279   /// Return the name to use in the generated code to reference this, this is
280   /// "Predicate_foo" if from a pattern fragment "foo".
281   std::string getFnName() const;
282 
283   /// getCodeToRunOnSDNode - Return the code for the function body that
284   /// evaluates this predicate.  The argument is expected to be in "Node",
285   /// not N.  This handles casting and conversion to a concrete node type as
286   /// appropriate.
287   std::string getCodeToRunOnSDNode() const;
288 
289 private:
290   std::string getPredCode() const;
291   std::string getImmCode() const;
292 };
293 
294 
295 /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
296 /// patterns), and as such should be ref counted.  We currently just leak all
297 /// TreePatternNode objects!
298 class TreePatternNode {
299   /// The type of each node result.  Before and during type inference, each
300   /// result may be a set of possible types.  After (successful) type inference,
301   /// each is a single concrete type.
302   SmallVector<EEVT::TypeSet, 1> Types;
303 
304   /// Operator - The Record for the operator if this is an interior node (not
305   /// a leaf).
306   Record *Operator;
307 
308   /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
309   ///
310   Init *Val;
311 
312   /// Name - The name given to this node with the :$foo notation.
313   ///
314   std::string Name;
315 
316   /// PredicateFns - The predicate functions to execute on this node to check
317   /// for a match.  If this list is empty, no predicate is involved.
318   std::vector<TreePredicateFn> PredicateFns;
319 
320   /// TransformFn - The transformation function to execute on this node before
321   /// it can be substituted into the resulting instruction on a pattern match.
322   Record *TransformFn;
323 
324   std::vector<TreePatternNode*> Children;
325 public:
TreePatternNode(Record * Op,const std::vector<TreePatternNode * > & Ch,unsigned NumResults)326   TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
327                   unsigned NumResults)
328     : Operator(Op), Val(0), TransformFn(0), Children(Ch) {
329     Types.resize(NumResults);
330   }
TreePatternNode(Init * val,unsigned NumResults)331   TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
332     : Operator(0), Val(val), TransformFn(0) {
333     Types.resize(NumResults);
334   }
335   ~TreePatternNode();
336 
hasName()337   bool hasName() const { return !Name.empty(); }
getName()338   const std::string &getName() const { return Name; }
setName(StringRef N)339   void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
340 
isLeaf()341   bool isLeaf() const { return Val != 0; }
342 
343   // Type accessors.
getNumTypes()344   unsigned getNumTypes() const { return Types.size(); }
getType(unsigned ResNo)345   MVT::SimpleValueType getType(unsigned ResNo) const {
346     return Types[ResNo].getConcrete();
347   }
getExtTypes()348   const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
getExtType(unsigned ResNo)349   const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
getExtType(unsigned ResNo)350   EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
setType(unsigned ResNo,const EEVT::TypeSet & T)351   void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }
352 
hasTypeSet(unsigned ResNo)353   bool hasTypeSet(unsigned ResNo) const {
354     return Types[ResNo].isConcrete();
355   }
isTypeCompletelyUnknown(unsigned ResNo)356   bool isTypeCompletelyUnknown(unsigned ResNo) const {
357     return Types[ResNo].isCompletelyUnknown();
358   }
isTypeDynamicallyResolved(unsigned ResNo)359   bool isTypeDynamicallyResolved(unsigned ResNo) const {
360     return Types[ResNo].isDynamicallyResolved();
361   }
362 
getLeafValue()363   Init *getLeafValue() const { assert(isLeaf()); return Val; }
getOperator()364   Record *getOperator() const { assert(!isLeaf()); return Operator; }
365 
getNumChildren()366   unsigned getNumChildren() const { return Children.size(); }
getChild(unsigned N)367   TreePatternNode *getChild(unsigned N) const { return Children[N]; }
setChild(unsigned i,TreePatternNode * N)368   void setChild(unsigned i, TreePatternNode *N) {
369     Children[i] = N;
370   }
371 
372   /// hasChild - Return true if N is any of our children.
hasChild(const TreePatternNode * N)373   bool hasChild(const TreePatternNode *N) const {
374     for (unsigned i = 0, e = Children.size(); i != e; ++i)
375       if (Children[i] == N) return true;
376     return false;
377   }
378 
hasAnyPredicate()379   bool hasAnyPredicate() const { return !PredicateFns.empty(); }
380 
getPredicateFns()381   const std::vector<TreePredicateFn> &getPredicateFns() const {
382     return PredicateFns;
383   }
clearPredicateFns()384   void clearPredicateFns() { PredicateFns.clear(); }
setPredicateFns(const std::vector<TreePredicateFn> & Fns)385   void setPredicateFns(const std::vector<TreePredicateFn> &Fns) {
386     assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
387     PredicateFns = Fns;
388   }
addPredicateFn(const TreePredicateFn & Fn)389   void addPredicateFn(const TreePredicateFn &Fn) {
390     assert(!Fn.isAlwaysTrue() && "Empty predicate string!");
391     if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) ==
392           PredicateFns.end())
393       PredicateFns.push_back(Fn);
394   }
395 
getTransformFn()396   Record *getTransformFn() const { return TransformFn; }
setTransformFn(Record * Fn)397   void setTransformFn(Record *Fn) { TransformFn = Fn; }
398 
399   /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
400   /// CodeGenIntrinsic information for it, otherwise return a null pointer.
401   const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
402 
403   /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
404   /// return the ComplexPattern information, otherwise return null.
405   const ComplexPattern *
406   getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
407 
408   /// NodeHasProperty - Return true if this node has the specified property.
409   bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
410 
411   /// TreeHasProperty - Return true if any node in this tree has the specified
412   /// property.
413   bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
414 
415   /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
416   /// marked isCommutative.
417   bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
418 
419   void print(raw_ostream &OS) const;
420   void dump() const;
421 
422 public:   // Higher level manipulation routines.
423 
424   /// clone - Return a new copy of this tree.
425   ///
426   TreePatternNode *clone() const;
427 
428   /// RemoveAllTypes - Recursively strip all the types of this tree.
429   void RemoveAllTypes();
430 
431   /// isIsomorphicTo - Return true if this node is recursively isomorphic to
432   /// the specified node.  For this comparison, all of the state of the node
433   /// is considered, except for the assigned name.  Nodes with differing names
434   /// that are otherwise identical are considered isomorphic.
435   bool isIsomorphicTo(const TreePatternNode *N,
436                       const MultipleUseVarSet &DepVars) const;
437 
438   /// SubstituteFormalArguments - Replace the formal arguments in this tree
439   /// with actual values specified by ArgMap.
440   void SubstituteFormalArguments(std::map<std::string,
441                                           TreePatternNode*> &ArgMap);
442 
443   /// InlinePatternFragments - If this pattern refers to any pattern
444   /// fragments, inline them into place, giving us a pattern without any
445   /// PatFrag references.
446   TreePatternNode *InlinePatternFragments(TreePattern &TP);
447 
448   /// ApplyTypeConstraints - Apply all of the type constraints relevant to
449   /// this node and its children in the tree.  This returns true if it makes a
450   /// change, false otherwise.  If a type contradiction is found, flag an error.
451   bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
452 
453   /// UpdateNodeType - Set the node type of N to VT if VT contains
454   /// information.  If N already contains a conflicting type, then flag an
455   /// error.  This returns true if any information was updated.
456   ///
UpdateNodeType(unsigned ResNo,const EEVT::TypeSet & InTy,TreePattern & TP)457   bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
458                       TreePattern &TP) {
459     return Types[ResNo].MergeInTypeInfo(InTy, TP);
460   }
461 
UpdateNodeType(unsigned ResNo,MVT::SimpleValueType InTy,TreePattern & TP)462   bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
463                       TreePattern &TP) {
464     return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
465   }
466 
467   // Update node type with types inferred from an instruction operand or result
468   // def from the ins/outs lists.
469   // Return true if the type changed.
470   bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
471 
472   /// ContainsUnresolvedType - Return true if this tree contains any
473   /// unresolved types.
ContainsUnresolvedType()474   bool ContainsUnresolvedType() const {
475     for (unsigned i = 0, e = Types.size(); i != e; ++i)
476       if (!Types[i].isConcrete()) return true;
477 
478     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
479       if (getChild(i)->ContainsUnresolvedType()) return true;
480     return false;
481   }
482 
483   /// canPatternMatch - If it is impossible for this pattern to match on this
484   /// target, fill in Reason and return false.  Otherwise, return true.
485   bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
486 };
487 
488 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
489   TPN.print(OS);
490   return OS;
491 }
492 
493 
494 /// TreePattern - Represent a pattern, used for instructions, pattern
495 /// fragments, etc.
496 ///
497 class TreePattern {
498   /// Trees - The list of pattern trees which corresponds to this pattern.
499   /// Note that PatFrag's only have a single tree.
500   ///
501   std::vector<TreePatternNode*> Trees;
502 
503   /// NamedNodes - This is all of the nodes that have names in the trees in this
504   /// pattern.
505   StringMap<SmallVector<TreePatternNode*,1> > NamedNodes;
506 
507   /// TheRecord - The actual TableGen record corresponding to this pattern.
508   ///
509   Record *TheRecord;
510 
511   /// Args - This is a list of all of the arguments to this pattern (for
512   /// PatFrag patterns), which are the 'node' markers in this pattern.
513   std::vector<std::string> Args;
514 
515   /// CDP - the top-level object coordinating this madness.
516   ///
517   CodeGenDAGPatterns &CDP;
518 
519   /// isInputPattern - True if this is an input pattern, something to match.
520   /// False if this is an output pattern, something to emit.
521   bool isInputPattern;
522 
523   /// hasError - True if the currently processed nodes have unresolvable types
524   /// or other non-fatal errors
525   bool HasError;
526 public:
527 
528   /// TreePattern constructor - Parse the specified DagInits into the
529   /// current record.
530   TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
531               CodeGenDAGPatterns &ise);
532   TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
533               CodeGenDAGPatterns &ise);
534   TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
535               CodeGenDAGPatterns &ise);
536 
537   /// getTrees - Return the tree patterns which corresponds to this pattern.
538   ///
getTrees()539   const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
getNumTrees()540   unsigned getNumTrees() const { return Trees.size(); }
getTree(unsigned i)541   TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
getOnlyTree()542   TreePatternNode *getOnlyTree() const {
543     assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
544     return Trees[0];
545   }
546 
getNamedNodesMap()547   const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() {
548     if (NamedNodes.empty())
549       ComputeNamedNodes();
550     return NamedNodes;
551   }
552 
553   /// getRecord - Return the actual TableGen record corresponding to this
554   /// pattern.
555   ///
getRecord()556   Record *getRecord() const { return TheRecord; }
557 
getNumArgs()558   unsigned getNumArgs() const { return Args.size(); }
getArgName(unsigned i)559   const std::string &getArgName(unsigned i) const {
560     assert(i < Args.size() && "Argument reference out of range!");
561     return Args[i];
562   }
getArgList()563   std::vector<std::string> &getArgList() { return Args; }
564 
getDAGPatterns()565   CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
566 
567   /// InlinePatternFragments - If this pattern refers to any pattern
568   /// fragments, inline them into place, giving us a pattern without any
569   /// PatFrag references.
InlinePatternFragments()570   void InlinePatternFragments() {
571     for (unsigned i = 0, e = Trees.size(); i != e; ++i)
572       Trees[i] = Trees[i]->InlinePatternFragments(*this);
573   }
574 
575   /// InferAllTypes - Infer/propagate as many types throughout the expression
576   /// patterns as possible.  Return true if all types are inferred, false
577   /// otherwise.  Bail out if a type contradiction is found.
578   bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> >
579                           *NamedTypes=0);
580 
581   /// error - If this is the first error in the current resolution step,
582   /// print it and set the error flag.  Otherwise, continue silently.
583   void error(const std::string &Msg);
hasError()584   bool hasError() const {
585     return HasError;
586   }
resetError()587   void resetError() {
588     HasError = false;
589   }
590 
591   void print(raw_ostream &OS) const;
592   void dump() const;
593 
594 private:
595   TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName);
596   void ComputeNamedNodes();
597   void ComputeNamedNodes(TreePatternNode *N);
598 };
599 
600 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
601 /// that has a set ExecuteAlways / DefaultOps field.
602 struct DAGDefaultOperand {
603   std::vector<TreePatternNode*> DefaultOps;
604 };
605 
606 class DAGInstruction {
607   TreePattern *Pattern;
608   std::vector<Record*> Results;
609   std::vector<Record*> Operands;
610   std::vector<Record*> ImpResults;
611   TreePatternNode *ResultPattern;
612 public:
DAGInstruction(TreePattern * TP,const std::vector<Record * > & results,const std::vector<Record * > & operands,const std::vector<Record * > & impresults)613   DAGInstruction(TreePattern *TP,
614                  const std::vector<Record*> &results,
615                  const std::vector<Record*> &operands,
616                  const std::vector<Record*> &impresults)
617     : Pattern(TP), Results(results), Operands(operands),
618       ImpResults(impresults), ResultPattern(0) {}
619 
getPattern()620   TreePattern *getPattern() const { return Pattern; }
getNumResults()621   unsigned getNumResults() const { return Results.size(); }
getNumOperands()622   unsigned getNumOperands() const { return Operands.size(); }
getNumImpResults()623   unsigned getNumImpResults() const { return ImpResults.size(); }
getImpResults()624   const std::vector<Record*>& getImpResults() const { return ImpResults; }
625 
setResultPattern(TreePatternNode * R)626   void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
627 
getResult(unsigned RN)628   Record *getResult(unsigned RN) const {
629     assert(RN < Results.size());
630     return Results[RN];
631   }
632 
getOperand(unsigned ON)633   Record *getOperand(unsigned ON) const {
634     assert(ON < Operands.size());
635     return Operands[ON];
636   }
637 
getImpResult(unsigned RN)638   Record *getImpResult(unsigned RN) const {
639     assert(RN < ImpResults.size());
640     return ImpResults[RN];
641   }
642 
getResultPattern()643   TreePatternNode *getResultPattern() const { return ResultPattern; }
644 };
645 
646 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
647 /// processed to produce isel.
648 class PatternToMatch {
649 public:
PatternToMatch(Record * srcrecord,ListInit * preds,TreePatternNode * src,TreePatternNode * dst,const std::vector<Record * > & dstregs,unsigned complexity,unsigned uid)650   PatternToMatch(Record *srcrecord, ListInit *preds,
651                  TreePatternNode *src, TreePatternNode *dst,
652                  const std::vector<Record*> &dstregs,
653                  unsigned complexity, unsigned uid)
654     : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst),
655       Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {}
656 
657   Record          *SrcRecord;   // Originating Record for the pattern.
658   ListInit        *Predicates;  // Top level predicate conditions to match.
659   TreePatternNode *SrcPattern;  // Source pattern to match.
660   TreePatternNode *DstPattern;  // Resulting pattern.
661   std::vector<Record*> Dstregs; // Physical register defs being matched.
662   unsigned         AddedComplexity; // Add to matching pattern complexity.
663   unsigned         ID;          // Unique ID for the record.
664 
getSrcRecord()665   Record          *getSrcRecord()  const { return SrcRecord; }
getPredicates()666   ListInit        *getPredicates() const { return Predicates; }
getSrcPattern()667   TreePatternNode *getSrcPattern() const { return SrcPattern; }
getDstPattern()668   TreePatternNode *getDstPattern() const { return DstPattern; }
getDstRegs()669   const std::vector<Record*> &getDstRegs() const { return Dstregs; }
getAddedComplexity()670   unsigned         getAddedComplexity() const { return AddedComplexity; }
671 
672   std::string getPredicateCheck() const;
673 
674   /// Compute the complexity metric for the input pattern.  This roughly
675   /// corresponds to the number of nodes that are covered.
676   unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
677 };
678 
679 class CodeGenDAGPatterns {
680   RecordKeeper &Records;
681   CodeGenTarget Target;
682   std::vector<CodeGenIntrinsic> Intrinsics;
683   std::vector<CodeGenIntrinsic> TgtIntrinsics;
684 
685   std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
686   std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> SDNodeXForms;
687   std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
688   std::map<Record*, TreePattern*, LessRecordByID> PatternFragments;
689   std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
690   std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
691 
692   // Specific SDNode definitions:
693   Record *intrinsic_void_sdnode;
694   Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
695 
696   /// PatternsToMatch - All of the things we are matching on the DAG.  The first
697   /// value is the pattern to match, the second pattern is the result to
698   /// emit.
699   std::vector<PatternToMatch> PatternsToMatch;
700 public:
701   CodeGenDAGPatterns(RecordKeeper &R);
702   ~CodeGenDAGPatterns();
703 
getTargetInfo()704   CodeGenTarget &getTargetInfo() { return Target; }
getTargetInfo()705   const CodeGenTarget &getTargetInfo() const { return Target; }
706 
707   Record *getSDNodeNamed(const std::string &Name) const;
708 
getSDNodeInfo(Record * R)709   const SDNodeInfo &getSDNodeInfo(Record *R) const {
710     assert(SDNodes.count(R) && "Unknown node!");
711     return SDNodes.find(R)->second;
712   }
713 
714   // Node transformation lookups.
715   typedef std::pair<Record*, std::string> NodeXForm;
getSDNodeTransform(Record * R)716   const NodeXForm &getSDNodeTransform(Record *R) const {
717     assert(SDNodeXForms.count(R) && "Invalid transform!");
718     return SDNodeXForms.find(R)->second;
719   }
720 
721   typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator
722           nx_iterator;
nx_begin()723   nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
nx_end()724   nx_iterator nx_end() const { return SDNodeXForms.end(); }
725 
726 
getComplexPattern(Record * R)727   const ComplexPattern &getComplexPattern(Record *R) const {
728     assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
729     return ComplexPatterns.find(R)->second;
730   }
731 
getIntrinsic(Record * R)732   const CodeGenIntrinsic &getIntrinsic(Record *R) const {
733     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
734       if (Intrinsics[i].TheDef == R) return Intrinsics[i];
735     for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
736       if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
737     llvm_unreachable("Unknown intrinsic!");
738   }
739 
getIntrinsicInfo(unsigned IID)740   const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
741     if (IID-1 < Intrinsics.size())
742       return Intrinsics[IID-1];
743     if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
744       return TgtIntrinsics[IID-Intrinsics.size()-1];
745     llvm_unreachable("Bad intrinsic ID!");
746   }
747 
getIntrinsicID(Record * R)748   unsigned getIntrinsicID(Record *R) const {
749     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
750       if (Intrinsics[i].TheDef == R) return i;
751     for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
752       if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
753     llvm_unreachable("Unknown intrinsic!");
754   }
755 
getDefaultOperand(Record * R)756   const DAGDefaultOperand &getDefaultOperand(Record *R) const {
757     assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
758     return DefaultOperands.find(R)->second;
759   }
760 
761   // Pattern Fragment information.
getPatternFragment(Record * R)762   TreePattern *getPatternFragment(Record *R) const {
763     assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
764     return PatternFragments.find(R)->second;
765   }
getPatternFragmentIfRead(Record * R)766   TreePattern *getPatternFragmentIfRead(Record *R) const {
767     if (!PatternFragments.count(R)) return 0;
768     return PatternFragments.find(R)->second;
769   }
770 
771   typedef std::map<Record*, TreePattern*, LessRecordByID>::const_iterator
772           pf_iterator;
pf_begin()773   pf_iterator pf_begin() const { return PatternFragments.begin(); }
pf_end()774   pf_iterator pf_end() const { return PatternFragments.end(); }
775 
776   // Patterns to match information.
777   typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
ptm_begin()778   ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
ptm_end()779   ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
780 
781 
782 
getInstruction(Record * R)783   const DAGInstruction &getInstruction(Record *R) const {
784     assert(Instructions.count(R) && "Unknown instruction!");
785     return Instructions.find(R)->second;
786   }
787 
get_intrinsic_void_sdnode()788   Record *get_intrinsic_void_sdnode() const {
789     return intrinsic_void_sdnode;
790   }
get_intrinsic_w_chain_sdnode()791   Record *get_intrinsic_w_chain_sdnode() const {
792     return intrinsic_w_chain_sdnode;
793   }
get_intrinsic_wo_chain_sdnode()794   Record *get_intrinsic_wo_chain_sdnode() const {
795     return intrinsic_wo_chain_sdnode;
796   }
797 
hasTargetIntrinsics()798   bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
799 
800 private:
801   void ParseNodeInfo();
802   void ParseNodeTransforms();
803   void ParseComplexPatterns();
804   void ParsePatternFragments();
805   void ParseDefaultOperands();
806   void ParseInstructions();
807   void ParsePatterns();
808   void InferInstructionFlags();
809   void GenerateVariants();
810   void VerifyInstructionFlags();
811 
812   void AddPatternToMatch(TreePattern *Pattern, const PatternToMatch &PTM);
813   void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
814                                    std::map<std::string,
815                                    TreePatternNode*> &InstInputs,
816                                    std::map<std::string,
817                                    TreePatternNode*> &InstResults,
818                                    std::vector<Record*> &InstImpResults);
819 };
820 } // end namespace llvm
821 
822 #endif
823