• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 
6 // Windows Timer Primer
7 //
8 // A good article:  http://www.ddj.com/windows/184416651
9 // A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
10 //
11 // The default windows timer, GetSystemTimeAsFileTime is not very precise.
12 // It is only good to ~15.5ms.
13 //
14 // QueryPerformanceCounter is the logical choice for a high-precision timer.
15 // However, it is known to be buggy on some hardware.  Specifically, it can
16 // sometimes "jump".  On laptops, QPC can also be very expensive to call.
17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
18 // on laptops.  A unittest exists which will show the relative cost of various
19 // timers on any system.
20 //
21 // The next logical choice is timeGetTime().  timeGetTime has a precision of
22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
23 // applications on the system.  By default, precision is only 15.5ms.
24 // Unfortunately, we don't want to call timeBeginPeriod because we don't
25 // want to affect other applications.  Further, on mobile platforms, use of
26 // faster multimedia timers can hurt battery life.  See the intel
27 // article about this here:
28 // http://softwarecommunity.intel.com/articles/eng/1086.htm
29 //
30 // To work around all this, we're going to generally use timeGetTime().  We
31 // will only increase the system-wide timer if we're not running on battery
32 // power.  Using timeBeginPeriod(1) is a requirement in order to make our
33 // message loop waits have the same resolution that our time measurements
34 // do.  Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
35 // there is nothing else to waken the Wait.
36 
37 #include "base/time/time.h"
38 
39 #pragma comment(lib, "winmm.lib")
40 #include <windows.h>
41 #include <mmsystem.h>
42 
43 #include "base/basictypes.h"
44 #include "base/cpu.h"
45 #include "base/logging.h"
46 #include "base/memory/singleton.h"
47 #include "base/synchronization/lock.h"
48 
49 using base::Time;
50 using base::TimeDelta;
51 using base::TimeTicks;
52 
53 namespace {
54 
55 // From MSDN, FILETIME "Contains a 64-bit value representing the number of
56 // 100-nanosecond intervals since January 1, 1601 (UTC)."
FileTimeToMicroseconds(const FILETIME & ft)57 int64 FileTimeToMicroseconds(const FILETIME& ft) {
58   // Need to bit_cast to fix alignment, then divide by 10 to convert
59   // 100-nanoseconds to milliseconds. This only works on little-endian
60   // machines.
61   return bit_cast<int64, FILETIME>(ft) / 10;
62 }
63 
MicrosecondsToFileTime(int64 us,FILETIME * ft)64 void MicrosecondsToFileTime(int64 us, FILETIME* ft) {
65   DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not "
66       "representable in FILETIME";
67 
68   // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will
69   // handle alignment problems. This only works on little-endian machines.
70   *ft = bit_cast<FILETIME, int64>(us * 10);
71 }
72 
CurrentWallclockMicroseconds()73 int64 CurrentWallclockMicroseconds() {
74   FILETIME ft;
75   ::GetSystemTimeAsFileTime(&ft);
76   return FileTimeToMicroseconds(ft);
77 }
78 
79 // Time between resampling the un-granular clock for this API.  60 seconds.
80 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
81 
82 int64 initial_time = 0;
83 TimeTicks initial_ticks;
84 
InitializeClock()85 void InitializeClock() {
86   initial_ticks = TimeTicks::Now();
87   initial_time = CurrentWallclockMicroseconds();
88 }
89 
90 }  // namespace
91 
92 // Time -----------------------------------------------------------------------
93 
94 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
95 // 00:00:00 UTC.  ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
96 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
97 // 1700, 1800, and 1900.
98 // static
99 const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);
100 
101 bool Time::high_resolution_timer_enabled_ = false;
102 int Time::high_resolution_timer_activated_ = 0;
103 
104 // static
Now()105 Time Time::Now() {
106   if (initial_time == 0)
107     InitializeClock();
108 
109   // We implement time using the high-resolution timers so that we can get
110   // timeouts which are smaller than 10-15ms.  If we just used
111   // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
112   //
113   // To make this work, we initialize the clock (initial_time) and the
114   // counter (initial_ctr).  To compute the initial time, we can check
115   // the number of ticks that have elapsed, and compute the delta.
116   //
117   // To avoid any drift, we periodically resync the counters to the system
118   // clock.
119   while (true) {
120     TimeTicks ticks = TimeTicks::Now();
121 
122     // Calculate the time elapsed since we started our timer
123     TimeDelta elapsed = ticks - initial_ticks;
124 
125     // Check if enough time has elapsed that we need to resync the clock.
126     if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
127       InitializeClock();
128       continue;
129     }
130 
131     return Time(elapsed + Time(initial_time));
132   }
133 }
134 
135 // static
NowFromSystemTime()136 Time Time::NowFromSystemTime() {
137   // Force resync.
138   InitializeClock();
139   return Time(initial_time);
140 }
141 
142 // static
FromFileTime(FILETIME ft)143 Time Time::FromFileTime(FILETIME ft) {
144   if (bit_cast<int64, FILETIME>(ft) == 0)
145     return Time();
146   if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() &&
147       ft.dwLowDateTime == std::numeric_limits<DWORD>::max())
148     return Max();
149   return Time(FileTimeToMicroseconds(ft));
150 }
151 
ToFileTime() const152 FILETIME Time::ToFileTime() const {
153   if (is_null())
154     return bit_cast<FILETIME, int64>(0);
155   if (is_max()) {
156     FILETIME result;
157     result.dwHighDateTime = std::numeric_limits<DWORD>::max();
158     result.dwLowDateTime = std::numeric_limits<DWORD>::max();
159     return result;
160   }
161   FILETIME utc_ft;
162   MicrosecondsToFileTime(us_, &utc_ft);
163   return utc_ft;
164 }
165 
166 // static
EnableHighResolutionTimer(bool enable)167 void Time::EnableHighResolutionTimer(bool enable) {
168   // Test for single-threaded access.
169   static PlatformThreadId my_thread = PlatformThread::CurrentId();
170   DCHECK(PlatformThread::CurrentId() == my_thread);
171 
172   if (high_resolution_timer_enabled_ == enable)
173     return;
174 
175   high_resolution_timer_enabled_ = enable;
176 }
177 
178 // static
ActivateHighResolutionTimer(bool activating)179 bool Time::ActivateHighResolutionTimer(bool activating) {
180   if (!high_resolution_timer_enabled_ && activating)
181     return false;
182 
183   // Using anything other than 1ms makes timers granular
184   // to that interval.
185   const int kMinTimerIntervalMs = 1;
186   MMRESULT result;
187   if (activating) {
188     result = timeBeginPeriod(kMinTimerIntervalMs);
189     high_resolution_timer_activated_++;
190   } else {
191     result = timeEndPeriod(kMinTimerIntervalMs);
192     high_resolution_timer_activated_--;
193   }
194   return result == TIMERR_NOERROR;
195 }
196 
197 // static
IsHighResolutionTimerInUse()198 bool Time::IsHighResolutionTimerInUse() {
199   // Note:  we should track the high_resolution_timer_activated_ value
200   // under a lock if we want it to be accurate in a system with multiple
201   // message loops.  We don't do that - because we don't want to take the
202   // expense of a lock for this.  We *only* track this value so that unit
203   // tests can see if the high resolution timer is on or off.
204   return high_resolution_timer_enabled_ &&
205       high_resolution_timer_activated_ > 0;
206 }
207 
208 // static
FromExploded(bool is_local,const Exploded & exploded)209 Time Time::FromExploded(bool is_local, const Exploded& exploded) {
210   // Create the system struct representing our exploded time. It will either be
211   // in local time or UTC.
212   SYSTEMTIME st;
213   st.wYear = exploded.year;
214   st.wMonth = exploded.month;
215   st.wDayOfWeek = exploded.day_of_week;
216   st.wDay = exploded.day_of_month;
217   st.wHour = exploded.hour;
218   st.wMinute = exploded.minute;
219   st.wSecond = exploded.second;
220   st.wMilliseconds = exploded.millisecond;
221 
222   FILETIME ft;
223   bool success = true;
224   // Ensure that it's in UTC.
225   if (is_local) {
226     SYSTEMTIME utc_st;
227     success = TzSpecificLocalTimeToSystemTime(NULL, &st, &utc_st) &&
228               SystemTimeToFileTime(&utc_st, &ft);
229   } else {
230     success = !!SystemTimeToFileTime(&st, &ft);
231   }
232 
233   if (!success) {
234     NOTREACHED() << "Unable to convert time";
235     return Time(0);
236   }
237   return Time(FileTimeToMicroseconds(ft));
238 }
239 
Explode(bool is_local,Exploded * exploded) const240 void Time::Explode(bool is_local, Exploded* exploded) const {
241   if (us_ < 0LL) {
242     // We are not able to convert it to FILETIME.
243     ZeroMemory(exploded, sizeof(*exploded));
244     return;
245   }
246 
247   // FILETIME in UTC.
248   FILETIME utc_ft;
249   MicrosecondsToFileTime(us_, &utc_ft);
250 
251   // FILETIME in local time if necessary.
252   bool success = true;
253   // FILETIME in SYSTEMTIME (exploded).
254   SYSTEMTIME st;
255   if (is_local) {
256     SYSTEMTIME utc_st;
257     // We don't use FileTimeToLocalFileTime here, since it uses the current
258     // settings for the time zone and daylight saving time. Therefore, if it is
259     // daylight saving time, it will take daylight saving time into account,
260     // even if the time you are converting is in standard time.
261     success = FileTimeToSystemTime(&utc_ft, &utc_st) &&
262               SystemTimeToTzSpecificLocalTime(NULL, &utc_st, &st);
263   } else {
264     success = !!FileTimeToSystemTime(&utc_ft, &st);
265   }
266 
267   if (!success) {
268     NOTREACHED() << "Unable to convert time, don't know why";
269     ZeroMemory(exploded, sizeof(*exploded));
270     return;
271   }
272 
273   exploded->year = st.wYear;
274   exploded->month = st.wMonth;
275   exploded->day_of_week = st.wDayOfWeek;
276   exploded->day_of_month = st.wDay;
277   exploded->hour = st.wHour;
278   exploded->minute = st.wMinute;
279   exploded->second = st.wSecond;
280   exploded->millisecond = st.wMilliseconds;
281 }
282 
283 // TimeTicks ------------------------------------------------------------------
284 namespace {
285 
286 // We define a wrapper to adapt between the __stdcall and __cdecl call of the
287 // mock function, and to avoid a static constructor.  Assigning an import to a
288 // function pointer directly would require setup code to fetch from the IAT.
timeGetTimeWrapper()289 DWORD timeGetTimeWrapper() {
290   return timeGetTime();
291 }
292 
293 DWORD (*tick_function)(void) = &timeGetTimeWrapper;
294 
295 // Accumulation of time lost due to rollover (in milliseconds).
296 int64 rollover_ms = 0;
297 
298 // The last timeGetTime value we saw, to detect rollover.
299 DWORD last_seen_now = 0;
300 
301 // Lock protecting rollover_ms and last_seen_now.
302 // Note: this is a global object, and we usually avoid these. However, the time
303 // code is low-level, and we don't want to use Singletons here (it would be too
304 // easy to use a Singleton without even knowing it, and that may lead to many
305 // gotchas). Its impact on startup time should be negligible due to low-level
306 // nature of time code.
307 base::Lock rollover_lock;
308 
309 // We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
310 // because it returns the number of milliseconds since Windows has started,
311 // which will roll over the 32-bit value every ~49 days.  We try to track
312 // rollover ourselves, which works if TimeTicks::Now() is called at least every
313 // 49 days.
RolloverProtectedNow()314 TimeDelta RolloverProtectedNow() {
315   base::AutoLock locked(rollover_lock);
316   // We should hold the lock while calling tick_function to make sure that
317   // we keep last_seen_now stay correctly in sync.
318   DWORD now = tick_function();
319   if (now < last_seen_now)
320     rollover_ms += 0x100000000I64;  // ~49.7 days.
321   last_seen_now = now;
322   return TimeDelta::FromMilliseconds(now + rollover_ms);
323 }
324 
IsBuggyAthlon(const base::CPU & cpu)325 bool IsBuggyAthlon(const base::CPU& cpu) {
326   // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
327   // unreliable.  Fallback to low-res clock.
328   return cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15;
329 }
330 
331 // Overview of time counters:
332 // (1) CPU cycle counter. (Retrieved via RDTSC)
333 // The CPU counter provides the highest resolution time stamp and is the least
334 // expensive to retrieve. However, the CPU counter is unreliable and should not
335 // be used in production. Its biggest issue is that it is per processor and it
336 // is not synchronized between processors. Also, on some computers, the counters
337 // will change frequency due to thermal and power changes, and stop in some
338 // states.
339 //
340 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
341 // resolution (100 nanoseconds) time stamp but is comparatively more expensive
342 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
343 // (with some help from ACPI).
344 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
345 // in the worst case, it gets the counter from the rollover interrupt on the
346 // programmable interrupt timer. In best cases, the HAL may conclude that the
347 // RDTSC counter runs at a constant frequency, then it uses that instead. On
348 // multiprocessor machines, it will try to verify the values returned from
349 // RDTSC on each processor are consistent with each other, and apply a handful
350 // of workarounds for known buggy hardware. In other words, QPC is supposed to
351 // give consistent result on a multiprocessor computer, but it is unreliable in
352 // reality due to bugs in BIOS or HAL on some, especially old computers.
353 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but
354 // it should be used with caution.
355 //
356 // (3) System time. The system time provides a low-resolution (typically 10ms
357 // to 55 milliseconds) time stamp but is comparatively less expensive to
358 // retrieve and more reliable.
359 class HighResNowSingleton {
360  public:
GetInstance()361   static HighResNowSingleton* GetInstance() {
362     return Singleton<HighResNowSingleton>::get();
363   }
364 
IsUsingHighResClock()365   bool IsUsingHighResClock() {
366     return ticks_per_second_ != 0.0;
367   }
368 
DisableHighResClock()369   void DisableHighResClock() {
370     ticks_per_second_ = 0.0;
371   }
372 
Now()373   TimeDelta Now() {
374     if (IsUsingHighResClock())
375       return TimeDelta::FromMicroseconds(UnreliableNow());
376 
377     // Just fallback to the slower clock.
378     return RolloverProtectedNow();
379   }
380 
GetQPCDriftMicroseconds()381   int64 GetQPCDriftMicroseconds() {
382     if (!IsUsingHighResClock())
383       return 0;
384     return abs((UnreliableNow() - ReliableNow()) - skew_);
385   }
386 
QPCValueToMicroseconds(LONGLONG qpc_value)387   int64 QPCValueToMicroseconds(LONGLONG qpc_value) {
388     if (!ticks_per_second_)
389       return 0;
390 
391     // Intentionally calculate microseconds in a round about manner to avoid
392     // overflow and precision issues. Think twice before simplifying!
393     int64 whole_seconds = qpc_value / ticks_per_second_;
394     int64 leftover_ticks = qpc_value % ticks_per_second_;
395     int64 microseconds = (whole_seconds * Time::kMicrosecondsPerSecond) +
396                          ((leftover_ticks * Time::kMicrosecondsPerSecond) /
397                           ticks_per_second_);
398     return microseconds;
399   }
400 
401  private:
HighResNowSingleton()402   HighResNowSingleton()
403     : ticks_per_second_(0),
404       skew_(0) {
405     InitializeClock();
406 
407     base::CPU cpu;
408     if (IsBuggyAthlon(cpu))
409       DisableHighResClock();
410   }
411 
412   // Synchronize the QPC clock with GetSystemTimeAsFileTime.
InitializeClock()413   void InitializeClock() {
414     LARGE_INTEGER ticks_per_sec = {0};
415     if (!QueryPerformanceFrequency(&ticks_per_sec))
416       return;  // Broken, we don't guarantee this function works.
417     ticks_per_second_ = ticks_per_sec.QuadPart;
418 
419     skew_ = UnreliableNow() - ReliableNow();
420   }
421 
422   // Get the number of microseconds since boot in an unreliable fashion.
UnreliableNow()423   int64 UnreliableNow() {
424     LARGE_INTEGER now;
425     QueryPerformanceCounter(&now);
426     return QPCValueToMicroseconds(now.QuadPart);
427   }
428 
429   // Get the number of microseconds since boot in a reliable fashion.
ReliableNow()430   int64 ReliableNow() {
431     return RolloverProtectedNow().InMicroseconds();
432   }
433 
434   int64 ticks_per_second_;  // 0 indicates QPF failed and we're broken.
435   int64 skew_;  // Skew between lo-res and hi-res clocks (for debugging).
436 
437   friend struct DefaultSingletonTraits<HighResNowSingleton>;
438 };
439 
HighResNowWrapper()440 TimeDelta HighResNowWrapper() {
441   return HighResNowSingleton::GetInstance()->Now();
442 }
443 
444 typedef TimeDelta (*NowFunction)(void);
445 NowFunction now_function = RolloverProtectedNow;
446 
CPUReliablySupportsHighResTime()447 bool CPUReliablySupportsHighResTime() {
448   base::CPU cpu;
449   if (!cpu.has_non_stop_time_stamp_counter())
450     return false;
451 
452   if (IsBuggyAthlon(cpu))
453     return false;
454 
455   return true;
456 }
457 
458 }  // namespace
459 
460 // static
SetMockTickFunction(TickFunctionType ticker)461 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
462     TickFunctionType ticker) {
463   base::AutoLock locked(rollover_lock);
464   TickFunctionType old = tick_function;
465   tick_function = ticker;
466   rollover_ms = 0;
467   last_seen_now = 0;
468   return old;
469 }
470 
471 // static
SetNowIsHighResNowIfSupported()472 bool TimeTicks::SetNowIsHighResNowIfSupported() {
473   if (!CPUReliablySupportsHighResTime()) {
474     return false;
475   }
476 
477   now_function = HighResNowWrapper;
478   return true;
479 }
480 
481 // static
Now()482 TimeTicks TimeTicks::Now() {
483   return TimeTicks() + now_function();
484 }
485 
486 // static
HighResNow()487 TimeTicks TimeTicks::HighResNow() {
488   return TimeTicks() + HighResNowSingleton::GetInstance()->Now();
489 }
490 
491 // static
IsHighResNowFastAndReliable()492 bool TimeTicks::IsHighResNowFastAndReliable() {
493   return CPUReliablySupportsHighResTime();
494 }
495 
496 // static
ThreadNow()497 TimeTicks TimeTicks::ThreadNow() {
498   NOTREACHED();
499   return TimeTicks();
500 }
501 
502 // static
NowFromSystemTraceTime()503 TimeTicks TimeTicks::NowFromSystemTraceTime() {
504   return HighResNow();
505 }
506 
507 // static
GetQPCDriftMicroseconds()508 int64 TimeTicks::GetQPCDriftMicroseconds() {
509   return HighResNowSingleton::GetInstance()->GetQPCDriftMicroseconds();
510 }
511 
512 // static
FromQPCValue(LONGLONG qpc_value)513 TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) {
514   return TimeTicks(
515       HighResNowSingleton::GetInstance()->QPCValueToMicroseconds(qpc_value));
516 }
517 
518 // static
IsHighResClockWorking()519 bool TimeTicks::IsHighResClockWorking() {
520   return HighResNowSingleton::GetInstance()->IsUsingHighResClock();
521 }
522 
UnprotectedNow()523 TimeTicks TimeTicks::UnprotectedNow() {
524   if (now_function == HighResNowWrapper) {
525     return Now();
526   } else {
527     return TimeTicks() + TimeDelta::FromMilliseconds(timeGetTime());
528   }
529 }
530 
531 // TimeDelta ------------------------------------------------------------------
532 
533 // static
FromQPCValue(LONGLONG qpc_value)534 TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) {
535   return TimeDelta(
536       HighResNowSingleton::GetInstance()->QPCValueToMicroseconds(qpc_value));
537 }
538