• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "net/quic/congestion_control/inter_arrival_bitrate_ramp_up.h"
6 
7 #include <algorithm>
8 
9 #include "base/basictypes.h"
10 #include "base/logging.h"
11 #include "net/quic/congestion_control/cube_root.h"
12 #include "net/quic/quic_protocol.h"
13 
14 namespace {
15 // The following constants are in 2^10 fractions of a second instead of ms to
16 // allow a 10 shift right to divide.
17 const int kCubeScale = 40;  // 1024*1024^3 (first 1024 is from 0.100^3)
18                             // where 0.100 is 100 ms which is the scaling
19                             // round trip time.
20 // TODO(pwestin): Tuning parameter, currently close to TCP cubic at 100ms RTT.
21 const int kPacedCubeScale = 6000;
22 const uint64 kCubeFactor = (GG_UINT64_C(1) << kCubeScale) / kPacedCubeScale;
23 }  // namespace
24 
25 namespace net {
26 
InterArrivalBitrateRampUp(const QuicClock * clock)27 InterArrivalBitrateRampUp::InterArrivalBitrateRampUp(const QuicClock* clock)
28     : clock_(clock),
29       current_rate_(QuicBandwidth::Zero()),
30       channel_estimate_(QuicBandwidth::Zero()),
31       available_channel_estimate_(QuicBandwidth::Zero()),
32       halfway_point_(QuicBandwidth::Zero()),
33       epoch_(QuicTime::Zero()),
34       last_update_time_(QuicTime::Zero()) {
35 }
36 
Reset(QuicBandwidth new_rate,QuicBandwidth available_channel_estimate,QuicBandwidth channel_estimate)37 void InterArrivalBitrateRampUp::Reset(QuicBandwidth new_rate,
38                                       QuicBandwidth available_channel_estimate,
39                                       QuicBandwidth channel_estimate) {
40   epoch_ = clock_->ApproximateNow();
41   last_update_time_ = epoch_;
42   available_channel_estimate_ = std::max(new_rate, available_channel_estimate);
43   channel_estimate_ = std::max(channel_estimate, available_channel_estimate_);
44 
45   halfway_point_ = available_channel_estimate_.Add(
46       (channel_estimate_.Subtract(available_channel_estimate_)).Scale(0.5f));
47 
48   if (new_rate < available_channel_estimate_) {
49     time_to_origin_point_ = CalcuateTimeToOriginPoint(
50         available_channel_estimate_.Subtract(new_rate));
51   } else if (new_rate >= channel_estimate_) {
52     time_to_origin_point_ = 0;
53   } else if (new_rate >= halfway_point_) {
54     time_to_origin_point_ =
55         CalcuateTimeToOriginPoint(channel_estimate_.Subtract(new_rate));
56   } else {
57     time_to_origin_point_ = CalcuateTimeToOriginPoint(
58         new_rate.Subtract(available_channel_estimate_));
59   }
60   current_rate_ = new_rate;
61   DVLOG(1) << "Reset; time to origin point:" << time_to_origin_point_;
62 }
63 
UpdateChannelEstimate(QuicBandwidth channel_estimate)64 void InterArrivalBitrateRampUp::UpdateChannelEstimate(
65     QuicBandwidth channel_estimate) {
66   if (available_channel_estimate_ > channel_estimate ||
67       current_rate_ > channel_estimate ||
68       channel_estimate_ == channel_estimate) {
69     // Ignore, because one of the following reasons:
70     // 1) channel estimate is bellow our current available estimate which we
71     //    value higher that this estimate.
72     // 2) channel estimate is bellow our current send rate.
73     // 3) channel estimate has not changed.
74     return;
75   }
76   if (available_channel_estimate_ == halfway_point_ &&
77       channel_estimate_  == halfway_point_) {
78     // First time we get a usable channel estimate.
79     channel_estimate_ = channel_estimate;
80     halfway_point_ = available_channel_estimate_.Add(
81         (channel_estimate_.Subtract(available_channel_estimate_).Scale(0.5f)));
82     DVLOG(1) << "UpdateChannelEstimate; first usable value:"
83                << channel_estimate.ToKBitsPerSecond() << " Kbits/s";
84     return;
85   }
86   if (current_rate_ < halfway_point_) {
87     // Update channel estimate without recalculating if we are bellow the
88     // halfway point.
89     channel_estimate_ = channel_estimate;
90     return;
91   }
92   // We are between halfway point and our channel_estimate.
93   epoch_ = clock_->ApproximateNow();
94   last_update_time_ = epoch_;
95   channel_estimate_ = channel_estimate;
96 
97   time_to_origin_point_ =
98       CalcuateTimeToOriginPoint(channel_estimate_.Subtract(current_rate_));
99 
100   DVLOG(1) << "UpdateChannelEstimate; time to origin point:"
101              << time_to_origin_point_;
102 }
103 
GetNewBitrate(QuicBandwidth sent_bitrate)104 QuicBandwidth InterArrivalBitrateRampUp::GetNewBitrate(
105     QuicBandwidth sent_bitrate) {
106   DCHECK(epoch_.IsInitialized());
107   QuicTime current_time = clock_->ApproximateNow();
108   // Cubic is "independent" of RTT, the update is limited by the time elapsed.
109   if (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval()) {
110     return current_rate_;
111   }
112   QuicTime::Delta time_from_last_update =
113       current_time.Subtract(last_update_time_);
114 
115   last_update_time_ = current_time;
116 
117   if (!sent_bitrate.IsZero() &&
118       sent_bitrate.Add(sent_bitrate) < current_rate_) {
119     // Don't go up in bitrate when we are not sending.
120     // We need to update the epoch to reflect this state.
121     epoch_ = epoch_.Add(time_from_last_update);
122     DVLOG(1) << "Don't increase; our sent bitrate is:"
123                << sent_bitrate.ToKBitsPerSecond() << " Kbits/s"
124                << " current target rate is:"
125                << current_rate_.ToKBitsPerSecond() << " Kbits/s";
126     return current_rate_;
127   }
128   QuicTime::Delta time_from_epoch = current_time.Subtract(epoch_);
129 
130   // Change the time unit from microseconds to 2^10 fractions per second. This
131   // is done to allow us to use shift as a divide operator.
132   int64 elapsed_time = (time_from_epoch.ToMicroseconds() << 10) /
133       kNumMicrosPerSecond;
134 
135   int64 offset = time_to_origin_point_ - elapsed_time;
136   // Note: using int64 since QuicBandwidth can't be negative
137   int64 delta_pace_kbps = (kPacedCubeScale * offset * offset * offset) >>
138         kCubeScale;
139 
140   bool start_bellow_halfway_point = false;
141   if (current_rate_ < halfway_point_) {
142     start_bellow_halfway_point = true;
143 
144     // available_channel_estimate_ is the orgin of the cubic function.
145     QuicBandwidth current_rate = QuicBandwidth::FromBytesPerSecond(
146         available_channel_estimate_.ToBytesPerSecond() -
147             (delta_pace_kbps << 10));
148 
149     if (start_bellow_halfway_point && current_rate >= halfway_point_) {
150       // We passed the halfway point, recalculate with new orgin.
151       epoch_ = clock_->ApproximateNow();
152       // channel_estimate_ is the new orgin of the cubic function.
153       if (current_rate >= channel_estimate_) {
154         time_to_origin_point_ = 0;
155       } else {
156         time_to_origin_point_ =
157             CalcuateTimeToOriginPoint(channel_estimate_.Subtract(current_rate));
158       }
159       DVLOG(1) << "Passed the halfway point; time to origin point:"
160                  << time_to_origin_point_;
161     }
162     current_rate_ = current_rate;
163   } else {
164     // channel_estimate_ is the orgin of the cubic function.
165     current_rate_ = QuicBandwidth::FromBytesPerSecond(
166         channel_estimate_.ToBytesPerSecond() - (delta_pace_kbps << 10));
167   }
168   return current_rate_;
169 }
170 
CalcuateTimeToOriginPoint(QuicBandwidth rate_difference) const171 uint32 InterArrivalBitrateRampUp::CalcuateTimeToOriginPoint(
172     QuicBandwidth rate_difference) const {
173   return CubeRoot::Root(kCubeFactor * rate_difference.ToKBytesPerSecond());
174 }
175 
176 }  // namespace net
177