1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines analysis_warnings::[Policy,Executor].
11 // Together they are used by Sema to issue warnings based on inexpensive
12 // static analysis algorithms in libAnalysis.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "clang/Sema/AnalysisBasedWarnings.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
28 #include "clang/Analysis/Analyses/ReachableCode.h"
29 #include "clang/Analysis/Analyses/ThreadSafety.h"
30 #include "clang/Analysis/Analyses/UninitializedValues.h"
31 #include "clang/Analysis/AnalysisContext.h"
32 #include "clang/Analysis/CFG.h"
33 #include "clang/Analysis/CFGStmtMap.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Lex/Lexer.h"
37 #include "clang/Lex/Preprocessor.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/BitVector.h"
42 #include "llvm/ADT/FoldingSet.h"
43 #include "llvm/ADT/ImmutableMap.h"
44 #include "llvm/ADT/MapVector.h"
45 #include "llvm/ADT/PostOrderIterator.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Support/Casting.h"
50 #include <algorithm>
51 #include <deque>
52 #include <iterator>
53 #include <vector>
54
55 using namespace clang;
56
57 //===----------------------------------------------------------------------===//
58 // Unreachable code analysis.
59 //===----------------------------------------------------------------------===//
60
61 namespace {
62 class UnreachableCodeHandler : public reachable_code::Callback {
63 Sema &S;
64 public:
UnreachableCodeHandler(Sema & s)65 UnreachableCodeHandler(Sema &s) : S(s) {}
66
HandleUnreachable(SourceLocation L,SourceRange R1,SourceRange R2)67 void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
68 S.Diag(L, diag::warn_unreachable) << R1 << R2;
69 }
70 };
71 }
72
73 /// CheckUnreachable - Check for unreachable code.
CheckUnreachable(Sema & S,AnalysisDeclContext & AC)74 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
75 UnreachableCodeHandler UC(S);
76 reachable_code::FindUnreachableCode(AC, UC);
77 }
78
79 //===----------------------------------------------------------------------===//
80 // Check for missing return value.
81 //===----------------------------------------------------------------------===//
82
83 enum ControlFlowKind {
84 UnknownFallThrough,
85 NeverFallThrough,
86 MaybeFallThrough,
87 AlwaysFallThrough,
88 NeverFallThroughOrReturn
89 };
90
91 /// CheckFallThrough - Check that we don't fall off the end of a
92 /// Statement that should return a value.
93 ///
94 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
95 /// MaybeFallThrough iff we might or might not fall off the end,
96 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
97 /// return. We assume NeverFallThrough iff we never fall off the end of the
98 /// statement but we may return. We assume that functions not marked noreturn
99 /// will return.
CheckFallThrough(AnalysisDeclContext & AC)100 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
101 CFG *cfg = AC.getCFG();
102 if (cfg == 0) return UnknownFallThrough;
103
104 // The CFG leaves in dead things, and we don't want the dead code paths to
105 // confuse us, so we mark all live things first.
106 llvm::BitVector live(cfg->getNumBlockIDs());
107 unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
108 live);
109
110 bool AddEHEdges = AC.getAddEHEdges();
111 if (!AddEHEdges && count != cfg->getNumBlockIDs())
112 // When there are things remaining dead, and we didn't add EH edges
113 // from CallExprs to the catch clauses, we have to go back and
114 // mark them as live.
115 for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
116 CFGBlock &b = **I;
117 if (!live[b.getBlockID()]) {
118 if (b.pred_begin() == b.pred_end()) {
119 if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
120 // When not adding EH edges from calls, catch clauses
121 // can otherwise seem dead. Avoid noting them as dead.
122 count += reachable_code::ScanReachableFromBlock(&b, live);
123 continue;
124 }
125 }
126 }
127
128 // Now we know what is live, we check the live precessors of the exit block
129 // and look for fall through paths, being careful to ignore normal returns,
130 // and exceptional paths.
131 bool HasLiveReturn = false;
132 bool HasFakeEdge = false;
133 bool HasPlainEdge = false;
134 bool HasAbnormalEdge = false;
135
136 // Ignore default cases that aren't likely to be reachable because all
137 // enums in a switch(X) have explicit case statements.
138 CFGBlock::FilterOptions FO;
139 FO.IgnoreDefaultsWithCoveredEnums = 1;
140
141 for (CFGBlock::filtered_pred_iterator
142 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
143 const CFGBlock& B = **I;
144 if (!live[B.getBlockID()])
145 continue;
146
147 // Skip blocks which contain an element marked as no-return. They don't
148 // represent actually viable edges into the exit block, so mark them as
149 // abnormal.
150 if (B.hasNoReturnElement()) {
151 HasAbnormalEdge = true;
152 continue;
153 }
154
155 // Destructors can appear after the 'return' in the CFG. This is
156 // normal. We need to look pass the destructors for the return
157 // statement (if it exists).
158 CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
159
160 for ( ; ri != re ; ++ri)
161 if (ri->getAs<CFGStmt>())
162 break;
163
164 // No more CFGElements in the block?
165 if (ri == re) {
166 if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
167 HasAbnormalEdge = true;
168 continue;
169 }
170 // A labeled empty statement, or the entry block...
171 HasPlainEdge = true;
172 continue;
173 }
174
175 CFGStmt CS = ri->castAs<CFGStmt>();
176 const Stmt *S = CS.getStmt();
177 if (isa<ReturnStmt>(S)) {
178 HasLiveReturn = true;
179 continue;
180 }
181 if (isa<ObjCAtThrowStmt>(S)) {
182 HasFakeEdge = true;
183 continue;
184 }
185 if (isa<CXXThrowExpr>(S)) {
186 HasFakeEdge = true;
187 continue;
188 }
189 if (isa<MSAsmStmt>(S)) {
190 // TODO: Verify this is correct.
191 HasFakeEdge = true;
192 HasLiveReturn = true;
193 continue;
194 }
195 if (isa<CXXTryStmt>(S)) {
196 HasAbnormalEdge = true;
197 continue;
198 }
199 if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
200 == B.succ_end()) {
201 HasAbnormalEdge = true;
202 continue;
203 }
204
205 HasPlainEdge = true;
206 }
207 if (!HasPlainEdge) {
208 if (HasLiveReturn)
209 return NeverFallThrough;
210 return NeverFallThroughOrReturn;
211 }
212 if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
213 return MaybeFallThrough;
214 // This says AlwaysFallThrough for calls to functions that are not marked
215 // noreturn, that don't return. If people would like this warning to be more
216 // accurate, such functions should be marked as noreturn.
217 return AlwaysFallThrough;
218 }
219
220 namespace {
221
222 struct CheckFallThroughDiagnostics {
223 unsigned diag_MaybeFallThrough_HasNoReturn;
224 unsigned diag_MaybeFallThrough_ReturnsNonVoid;
225 unsigned diag_AlwaysFallThrough_HasNoReturn;
226 unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
227 unsigned diag_NeverFallThroughOrReturn;
228 enum { Function, Block, Lambda } funMode;
229 SourceLocation FuncLoc;
230
MakeForFunction__anon8cca75670211::CheckFallThroughDiagnostics231 static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
232 CheckFallThroughDiagnostics D;
233 D.FuncLoc = Func->getLocation();
234 D.diag_MaybeFallThrough_HasNoReturn =
235 diag::warn_falloff_noreturn_function;
236 D.diag_MaybeFallThrough_ReturnsNonVoid =
237 diag::warn_maybe_falloff_nonvoid_function;
238 D.diag_AlwaysFallThrough_HasNoReturn =
239 diag::warn_falloff_noreturn_function;
240 D.diag_AlwaysFallThrough_ReturnsNonVoid =
241 diag::warn_falloff_nonvoid_function;
242
243 // Don't suggest that virtual functions be marked "noreturn", since they
244 // might be overridden by non-noreturn functions.
245 bool isVirtualMethod = false;
246 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
247 isVirtualMethod = Method->isVirtual();
248
249 // Don't suggest that template instantiations be marked "noreturn"
250 bool isTemplateInstantiation = false;
251 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
252 isTemplateInstantiation = Function->isTemplateInstantiation();
253
254 if (!isVirtualMethod && !isTemplateInstantiation)
255 D.diag_NeverFallThroughOrReturn =
256 diag::warn_suggest_noreturn_function;
257 else
258 D.diag_NeverFallThroughOrReturn = 0;
259
260 D.funMode = Function;
261 return D;
262 }
263
MakeForBlock__anon8cca75670211::CheckFallThroughDiagnostics264 static CheckFallThroughDiagnostics MakeForBlock() {
265 CheckFallThroughDiagnostics D;
266 D.diag_MaybeFallThrough_HasNoReturn =
267 diag::err_noreturn_block_has_return_expr;
268 D.diag_MaybeFallThrough_ReturnsNonVoid =
269 diag::err_maybe_falloff_nonvoid_block;
270 D.diag_AlwaysFallThrough_HasNoReturn =
271 diag::err_noreturn_block_has_return_expr;
272 D.diag_AlwaysFallThrough_ReturnsNonVoid =
273 diag::err_falloff_nonvoid_block;
274 D.diag_NeverFallThroughOrReturn =
275 diag::warn_suggest_noreturn_block;
276 D.funMode = Block;
277 return D;
278 }
279
MakeForLambda__anon8cca75670211::CheckFallThroughDiagnostics280 static CheckFallThroughDiagnostics MakeForLambda() {
281 CheckFallThroughDiagnostics D;
282 D.diag_MaybeFallThrough_HasNoReturn =
283 diag::err_noreturn_lambda_has_return_expr;
284 D.diag_MaybeFallThrough_ReturnsNonVoid =
285 diag::warn_maybe_falloff_nonvoid_lambda;
286 D.diag_AlwaysFallThrough_HasNoReturn =
287 diag::err_noreturn_lambda_has_return_expr;
288 D.diag_AlwaysFallThrough_ReturnsNonVoid =
289 diag::warn_falloff_nonvoid_lambda;
290 D.diag_NeverFallThroughOrReturn = 0;
291 D.funMode = Lambda;
292 return D;
293 }
294
checkDiagnostics__anon8cca75670211::CheckFallThroughDiagnostics295 bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
296 bool HasNoReturn) const {
297 if (funMode == Function) {
298 return (ReturnsVoid ||
299 D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
300 FuncLoc) == DiagnosticsEngine::Ignored)
301 && (!HasNoReturn ||
302 D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
303 FuncLoc) == DiagnosticsEngine::Ignored)
304 && (!ReturnsVoid ||
305 D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
306 == DiagnosticsEngine::Ignored);
307 }
308
309 // For blocks / lambdas.
310 return ReturnsVoid && !HasNoReturn
311 && ((funMode == Lambda) ||
312 D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
313 == DiagnosticsEngine::Ignored);
314 }
315 };
316
317 }
318
319 /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
320 /// function that should return a value. Check that we don't fall off the end
321 /// of a noreturn function. We assume that functions and blocks not marked
322 /// noreturn will return.
CheckFallThroughForBody(Sema & S,const Decl * D,const Stmt * Body,const BlockExpr * blkExpr,const CheckFallThroughDiagnostics & CD,AnalysisDeclContext & AC)323 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
324 const BlockExpr *blkExpr,
325 const CheckFallThroughDiagnostics& CD,
326 AnalysisDeclContext &AC) {
327
328 bool ReturnsVoid = false;
329 bool HasNoReturn = false;
330
331 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
332 ReturnsVoid = FD->getResultType()->isVoidType();
333 HasNoReturn = FD->isNoReturn();
334 }
335 else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
336 ReturnsVoid = MD->getResultType()->isVoidType();
337 HasNoReturn = MD->hasAttr<NoReturnAttr>();
338 }
339 else if (isa<BlockDecl>(D)) {
340 QualType BlockTy = blkExpr->getType();
341 if (const FunctionType *FT =
342 BlockTy->getPointeeType()->getAs<FunctionType>()) {
343 if (FT->getResultType()->isVoidType())
344 ReturnsVoid = true;
345 if (FT->getNoReturnAttr())
346 HasNoReturn = true;
347 }
348 }
349
350 DiagnosticsEngine &Diags = S.getDiagnostics();
351
352 // Short circuit for compilation speed.
353 if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
354 return;
355
356 // FIXME: Function try block
357 if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
358 switch (CheckFallThrough(AC)) {
359 case UnknownFallThrough:
360 break;
361
362 case MaybeFallThrough:
363 if (HasNoReturn)
364 S.Diag(Compound->getRBracLoc(),
365 CD.diag_MaybeFallThrough_HasNoReturn);
366 else if (!ReturnsVoid)
367 S.Diag(Compound->getRBracLoc(),
368 CD.diag_MaybeFallThrough_ReturnsNonVoid);
369 break;
370 case AlwaysFallThrough:
371 if (HasNoReturn)
372 S.Diag(Compound->getRBracLoc(),
373 CD.diag_AlwaysFallThrough_HasNoReturn);
374 else if (!ReturnsVoid)
375 S.Diag(Compound->getRBracLoc(),
376 CD.diag_AlwaysFallThrough_ReturnsNonVoid);
377 break;
378 case NeverFallThroughOrReturn:
379 if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
380 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
381 S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
382 << 0 << FD;
383 } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
384 S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
385 << 1 << MD;
386 } else {
387 S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
388 }
389 }
390 break;
391 case NeverFallThrough:
392 break;
393 }
394 }
395 }
396
397 //===----------------------------------------------------------------------===//
398 // -Wuninitialized
399 //===----------------------------------------------------------------------===//
400
401 namespace {
402 /// ContainsReference - A visitor class to search for references to
403 /// a particular declaration (the needle) within any evaluated component of an
404 /// expression (recursively).
405 class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
406 bool FoundReference;
407 const DeclRefExpr *Needle;
408
409 public:
ContainsReference(ASTContext & Context,const DeclRefExpr * Needle)410 ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
411 : EvaluatedExprVisitor<ContainsReference>(Context),
412 FoundReference(false), Needle(Needle) {}
413
VisitExpr(Expr * E)414 void VisitExpr(Expr *E) {
415 // Stop evaluating if we already have a reference.
416 if (FoundReference)
417 return;
418
419 EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
420 }
421
VisitDeclRefExpr(DeclRefExpr * E)422 void VisitDeclRefExpr(DeclRefExpr *E) {
423 if (E == Needle)
424 FoundReference = true;
425 else
426 EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
427 }
428
doesContainReference() const429 bool doesContainReference() const { return FoundReference; }
430 };
431 }
432
SuggestInitializationFixit(Sema & S,const VarDecl * VD)433 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
434 QualType VariableTy = VD->getType().getCanonicalType();
435 if (VariableTy->isBlockPointerType() &&
436 !VD->hasAttr<BlocksAttr>()) {
437 S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization) << VD->getDeclName()
438 << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
439 return true;
440 }
441
442 // Don't issue a fixit if there is already an initializer.
443 if (VD->getInit())
444 return false;
445
446 // Suggest possible initialization (if any).
447 std::string Init = S.getFixItZeroInitializerForType(VariableTy);
448 if (Init.empty())
449 return false;
450
451 // Don't suggest a fixit inside macros.
452 if (VD->getLocEnd().isMacroID())
453 return false;
454
455 SourceLocation Loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
456
457 S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
458 << FixItHint::CreateInsertion(Loc, Init);
459 return true;
460 }
461
462 /// Create a fixit to remove an if-like statement, on the assumption that its
463 /// condition is CondVal.
CreateIfFixit(Sema & S,const Stmt * If,const Stmt * Then,const Stmt * Else,bool CondVal,FixItHint & Fixit1,FixItHint & Fixit2)464 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
465 const Stmt *Else, bool CondVal,
466 FixItHint &Fixit1, FixItHint &Fixit2) {
467 if (CondVal) {
468 // If condition is always true, remove all but the 'then'.
469 Fixit1 = FixItHint::CreateRemoval(
470 CharSourceRange::getCharRange(If->getLocStart(),
471 Then->getLocStart()));
472 if (Else) {
473 SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken(
474 Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts());
475 Fixit2 = FixItHint::CreateRemoval(
476 SourceRange(ElseKwLoc, Else->getLocEnd()));
477 }
478 } else {
479 // If condition is always false, remove all but the 'else'.
480 if (Else)
481 Fixit1 = FixItHint::CreateRemoval(
482 CharSourceRange::getCharRange(If->getLocStart(),
483 Else->getLocStart()));
484 else
485 Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
486 }
487 }
488
489 /// DiagUninitUse -- Helper function to produce a diagnostic for an
490 /// uninitialized use of a variable.
DiagUninitUse(Sema & S,const VarDecl * VD,const UninitUse & Use,bool IsCapturedByBlock)491 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
492 bool IsCapturedByBlock) {
493 bool Diagnosed = false;
494
495 // Diagnose each branch which leads to a sometimes-uninitialized use.
496 for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
497 I != E; ++I) {
498 assert(Use.getKind() == UninitUse::Sometimes);
499
500 const Expr *User = Use.getUser();
501 const Stmt *Term = I->Terminator;
502
503 // Information used when building the diagnostic.
504 unsigned DiagKind;
505 StringRef Str;
506 SourceRange Range;
507
508 // FixIts to suppress the diagnostic by removing the dead condition.
509 // For all binary terminators, branch 0 is taken if the condition is true,
510 // and branch 1 is taken if the condition is false.
511 int RemoveDiagKind = -1;
512 const char *FixitStr =
513 S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
514 : (I->Output ? "1" : "0");
515 FixItHint Fixit1, Fixit2;
516
517 switch (Term->getStmtClass()) {
518 default:
519 // Don't know how to report this. Just fall back to 'may be used
520 // uninitialized'. This happens for range-based for, which the user
521 // can't explicitly fix.
522 // FIXME: This also happens if the first use of a variable is always
523 // uninitialized, eg "for (int n; n < 10; ++n)". We should report that
524 // with the 'is uninitialized' diagnostic.
525 continue;
526
527 // "condition is true / condition is false".
528 case Stmt::IfStmtClass: {
529 const IfStmt *IS = cast<IfStmt>(Term);
530 DiagKind = 0;
531 Str = "if";
532 Range = IS->getCond()->getSourceRange();
533 RemoveDiagKind = 0;
534 CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
535 I->Output, Fixit1, Fixit2);
536 break;
537 }
538 case Stmt::ConditionalOperatorClass: {
539 const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
540 DiagKind = 0;
541 Str = "?:";
542 Range = CO->getCond()->getSourceRange();
543 RemoveDiagKind = 0;
544 CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
545 I->Output, Fixit1, Fixit2);
546 break;
547 }
548 case Stmt::BinaryOperatorClass: {
549 const BinaryOperator *BO = cast<BinaryOperator>(Term);
550 if (!BO->isLogicalOp())
551 continue;
552 DiagKind = 0;
553 Str = BO->getOpcodeStr();
554 Range = BO->getLHS()->getSourceRange();
555 RemoveDiagKind = 0;
556 if ((BO->getOpcode() == BO_LAnd && I->Output) ||
557 (BO->getOpcode() == BO_LOr && !I->Output))
558 // true && y -> y, false || y -> y.
559 Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
560 BO->getOperatorLoc()));
561 else
562 // false && y -> false, true || y -> true.
563 Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
564 break;
565 }
566
567 // "loop is entered / loop is exited".
568 case Stmt::WhileStmtClass:
569 DiagKind = 1;
570 Str = "while";
571 Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
572 RemoveDiagKind = 1;
573 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
574 break;
575 case Stmt::ForStmtClass:
576 DiagKind = 1;
577 Str = "for";
578 Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
579 RemoveDiagKind = 1;
580 if (I->Output)
581 Fixit1 = FixItHint::CreateRemoval(Range);
582 else
583 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
584 break;
585
586 // "condition is true / loop is exited".
587 case Stmt::DoStmtClass:
588 DiagKind = 2;
589 Str = "do";
590 Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
591 RemoveDiagKind = 1;
592 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
593 break;
594
595 // "switch case is taken".
596 case Stmt::CaseStmtClass:
597 DiagKind = 3;
598 Str = "case";
599 Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
600 break;
601 case Stmt::DefaultStmtClass:
602 DiagKind = 3;
603 Str = "default";
604 Range = cast<DefaultStmt>(Term)->getDefaultLoc();
605 break;
606 }
607
608 S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
609 << VD->getDeclName() << IsCapturedByBlock << DiagKind
610 << Str << I->Output << Range;
611 S.Diag(User->getLocStart(), diag::note_uninit_var_use)
612 << IsCapturedByBlock << User->getSourceRange();
613 if (RemoveDiagKind != -1)
614 S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
615 << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
616
617 Diagnosed = true;
618 }
619
620 if (!Diagnosed)
621 S.Diag(Use.getUser()->getLocStart(),
622 Use.getKind() == UninitUse::Always ? diag::warn_uninit_var
623 : diag::warn_maybe_uninit_var)
624 << VD->getDeclName() << IsCapturedByBlock
625 << Use.getUser()->getSourceRange();
626 }
627
628 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
629 /// uninitialized variable. This manages the different forms of diagnostic
630 /// emitted for particular types of uses. Returns true if the use was diagnosed
631 /// as a warning. If a particular use is one we omit warnings for, returns
632 /// false.
DiagnoseUninitializedUse(Sema & S,const VarDecl * VD,const UninitUse & Use,bool alwaysReportSelfInit=false)633 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
634 const UninitUse &Use,
635 bool alwaysReportSelfInit = false) {
636
637 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
638 // Inspect the initializer of the variable declaration which is
639 // being referenced prior to its initialization. We emit
640 // specialized diagnostics for self-initialization, and we
641 // specifically avoid warning about self references which take the
642 // form of:
643 //
644 // int x = x;
645 //
646 // This is used to indicate to GCC that 'x' is intentionally left
647 // uninitialized. Proven code paths which access 'x' in
648 // an uninitialized state after this will still warn.
649 if (const Expr *Initializer = VD->getInit()) {
650 if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
651 return false;
652
653 ContainsReference CR(S.Context, DRE);
654 CR.Visit(const_cast<Expr*>(Initializer));
655 if (CR.doesContainReference()) {
656 S.Diag(DRE->getLocStart(),
657 diag::warn_uninit_self_reference_in_init)
658 << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
659 return true;
660 }
661 }
662
663 DiagUninitUse(S, VD, Use, false);
664 } else {
665 const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
666 if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
667 S.Diag(BE->getLocStart(),
668 diag::warn_uninit_byref_blockvar_captured_by_block)
669 << VD->getDeclName();
670 else
671 DiagUninitUse(S, VD, Use, true);
672 }
673
674 // Report where the variable was declared when the use wasn't within
675 // the initializer of that declaration & we didn't already suggest
676 // an initialization fixit.
677 if (!SuggestInitializationFixit(S, VD))
678 S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
679 << VD->getDeclName();
680
681 return true;
682 }
683
684 namespace {
685 class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
686 public:
FallthroughMapper(Sema & S)687 FallthroughMapper(Sema &S)
688 : FoundSwitchStatements(false),
689 S(S) {
690 }
691
foundSwitchStatements() const692 bool foundSwitchStatements() const { return FoundSwitchStatements; }
693
markFallthroughVisited(const AttributedStmt * Stmt)694 void markFallthroughVisited(const AttributedStmt *Stmt) {
695 bool Found = FallthroughStmts.erase(Stmt);
696 assert(Found);
697 (void)Found;
698 }
699
700 typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
701
getFallthroughStmts() const702 const AttrStmts &getFallthroughStmts() const {
703 return FallthroughStmts;
704 }
705
fillReachableBlocks(CFG * Cfg)706 void fillReachableBlocks(CFG *Cfg) {
707 assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
708 std::deque<const CFGBlock *> BlockQueue;
709
710 ReachableBlocks.insert(&Cfg->getEntry());
711 BlockQueue.push_back(&Cfg->getEntry());
712 // Mark all case blocks reachable to avoid problems with switching on
713 // constants, covered enums, etc.
714 // These blocks can contain fall-through annotations, and we don't want to
715 // issue a warn_fallthrough_attr_unreachable for them.
716 for (CFG::iterator I = Cfg->begin(), E = Cfg->end(); I != E; ++I) {
717 const CFGBlock *B = *I;
718 const Stmt *L = B->getLabel();
719 if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B))
720 BlockQueue.push_back(B);
721 }
722
723 while (!BlockQueue.empty()) {
724 const CFGBlock *P = BlockQueue.front();
725 BlockQueue.pop_front();
726 for (CFGBlock::const_succ_iterator I = P->succ_begin(),
727 E = P->succ_end();
728 I != E; ++I) {
729 if (*I && ReachableBlocks.insert(*I))
730 BlockQueue.push_back(*I);
731 }
732 }
733 }
734
checkFallThroughIntoBlock(const CFGBlock & B,int & AnnotatedCnt)735 bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
736 assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
737
738 int UnannotatedCnt = 0;
739 AnnotatedCnt = 0;
740
741 std::deque<const CFGBlock*> BlockQueue;
742
743 std::copy(B.pred_begin(), B.pred_end(), std::back_inserter(BlockQueue));
744
745 while (!BlockQueue.empty()) {
746 const CFGBlock *P = BlockQueue.front();
747 BlockQueue.pop_front();
748
749 const Stmt *Term = P->getTerminator();
750 if (Term && isa<SwitchStmt>(Term))
751 continue; // Switch statement, good.
752
753 const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
754 if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
755 continue; // Previous case label has no statements, good.
756
757 const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
758 if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
759 continue; // Case label is preceded with a normal label, good.
760
761 if (!ReachableBlocks.count(P)) {
762 for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
763 ElemEnd = P->rend();
764 ElemIt != ElemEnd; ++ElemIt) {
765 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
766 if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
767 S.Diag(AS->getLocStart(),
768 diag::warn_fallthrough_attr_unreachable);
769 markFallthroughVisited(AS);
770 ++AnnotatedCnt;
771 break;
772 }
773 // Don't care about other unreachable statements.
774 }
775 }
776 // If there are no unreachable statements, this may be a special
777 // case in CFG:
778 // case X: {
779 // A a; // A has a destructor.
780 // break;
781 // }
782 // // <<<< This place is represented by a 'hanging' CFG block.
783 // case Y:
784 continue;
785 }
786
787 const Stmt *LastStmt = getLastStmt(*P);
788 if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
789 markFallthroughVisited(AS);
790 ++AnnotatedCnt;
791 continue; // Fallthrough annotation, good.
792 }
793
794 if (!LastStmt) { // This block contains no executable statements.
795 // Traverse its predecessors.
796 std::copy(P->pred_begin(), P->pred_end(),
797 std::back_inserter(BlockQueue));
798 continue;
799 }
800
801 ++UnannotatedCnt;
802 }
803 return !!UnannotatedCnt;
804 }
805
806 // RecursiveASTVisitor setup.
shouldWalkTypesOfTypeLocs() const807 bool shouldWalkTypesOfTypeLocs() const { return false; }
808
VisitAttributedStmt(AttributedStmt * S)809 bool VisitAttributedStmt(AttributedStmt *S) {
810 if (asFallThroughAttr(S))
811 FallthroughStmts.insert(S);
812 return true;
813 }
814
VisitSwitchStmt(SwitchStmt * S)815 bool VisitSwitchStmt(SwitchStmt *S) {
816 FoundSwitchStatements = true;
817 return true;
818 }
819
820 // We don't want to traverse local type declarations. We analyze their
821 // methods separately.
TraverseDecl(Decl * D)822 bool TraverseDecl(Decl *D) { return true; }
823
824 private:
825
asFallThroughAttr(const Stmt * S)826 static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
827 if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
828 if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
829 return AS;
830 }
831 return 0;
832 }
833
getLastStmt(const CFGBlock & B)834 static const Stmt *getLastStmt(const CFGBlock &B) {
835 if (const Stmt *Term = B.getTerminator())
836 return Term;
837 for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
838 ElemEnd = B.rend();
839 ElemIt != ElemEnd; ++ElemIt) {
840 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
841 return CS->getStmt();
842 }
843 // Workaround to detect a statement thrown out by CFGBuilder:
844 // case X: {} case Y:
845 // case X: ; case Y:
846 if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
847 if (!isa<SwitchCase>(SW->getSubStmt()))
848 return SW->getSubStmt();
849
850 return 0;
851 }
852
853 bool FoundSwitchStatements;
854 AttrStmts FallthroughStmts;
855 Sema &S;
856 llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
857 };
858 }
859
DiagnoseSwitchLabelsFallthrough(Sema & S,AnalysisDeclContext & AC,bool PerFunction)860 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
861 bool PerFunction) {
862 // Only perform this analysis when using C++11. There is no good workflow
863 // for this warning when not using C++11. There is no good way to silence
864 // the warning (no attribute is available) unless we are using C++11's support
865 // for generalized attributes. Once could use pragmas to silence the warning,
866 // but as a general solution that is gross and not in the spirit of this
867 // warning.
868 //
869 // NOTE: This an intermediate solution. There are on-going discussions on
870 // how to properly support this warning outside of C++11 with an annotation.
871 if (!AC.getASTContext().getLangOpts().CPlusPlus11)
872 return;
873
874 FallthroughMapper FM(S);
875 FM.TraverseStmt(AC.getBody());
876
877 if (!FM.foundSwitchStatements())
878 return;
879
880 if (PerFunction && FM.getFallthroughStmts().empty())
881 return;
882
883 CFG *Cfg = AC.getCFG();
884
885 if (!Cfg)
886 return;
887
888 FM.fillReachableBlocks(Cfg);
889
890 for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
891 const CFGBlock *B = *I;
892 const Stmt *Label = B->getLabel();
893
894 if (!Label || !isa<SwitchCase>(Label))
895 continue;
896
897 int AnnotatedCnt;
898
899 if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
900 continue;
901
902 S.Diag(Label->getLocStart(),
903 PerFunction ? diag::warn_unannotated_fallthrough_per_function
904 : diag::warn_unannotated_fallthrough);
905
906 if (!AnnotatedCnt) {
907 SourceLocation L = Label->getLocStart();
908 if (L.isMacroID())
909 continue;
910 if (S.getLangOpts().CPlusPlus11) {
911 const Stmt *Term = B->getTerminator();
912 // Skip empty cases.
913 while (B->empty() && !Term && B->succ_size() == 1) {
914 B = *B->succ_begin();
915 Term = B->getTerminator();
916 }
917 if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
918 Preprocessor &PP = S.getPreprocessor();
919 TokenValue Tokens[] = {
920 tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
921 tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
922 tok::r_square, tok::r_square
923 };
924 StringRef AnnotationSpelling = "[[clang::fallthrough]]";
925 StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
926 if (!MacroName.empty())
927 AnnotationSpelling = MacroName;
928 SmallString<64> TextToInsert(AnnotationSpelling);
929 TextToInsert += "; ";
930 S.Diag(L, diag::note_insert_fallthrough_fixit) <<
931 AnnotationSpelling <<
932 FixItHint::CreateInsertion(L, TextToInsert);
933 }
934 }
935 S.Diag(L, diag::note_insert_break_fixit) <<
936 FixItHint::CreateInsertion(L, "break; ");
937 }
938 }
939
940 const FallthroughMapper::AttrStmts &Fallthroughs = FM.getFallthroughStmts();
941 for (FallthroughMapper::AttrStmts::const_iterator I = Fallthroughs.begin(),
942 E = Fallthroughs.end();
943 I != E; ++I) {
944 S.Diag((*I)->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
945 }
946
947 }
948
949 namespace {
950 typedef std::pair<const Stmt *,
951 sema::FunctionScopeInfo::WeakObjectUseMap::const_iterator>
952 StmtUsesPair;
953
954 class StmtUseSorter {
955 const SourceManager &SM;
956
957 public:
StmtUseSorter(const SourceManager & SM)958 explicit StmtUseSorter(const SourceManager &SM) : SM(SM) { }
959
operator ()(const StmtUsesPair & LHS,const StmtUsesPair & RHS)960 bool operator()(const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
961 return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
962 RHS.first->getLocStart());
963 }
964 };
965 }
966
isInLoop(const ASTContext & Ctx,const ParentMap & PM,const Stmt * S)967 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
968 const Stmt *S) {
969 assert(S);
970
971 do {
972 switch (S->getStmtClass()) {
973 case Stmt::ForStmtClass:
974 case Stmt::WhileStmtClass:
975 case Stmt::CXXForRangeStmtClass:
976 case Stmt::ObjCForCollectionStmtClass:
977 return true;
978 case Stmt::DoStmtClass: {
979 const Expr *Cond = cast<DoStmt>(S)->getCond();
980 llvm::APSInt Val;
981 if (!Cond->EvaluateAsInt(Val, Ctx))
982 return true;
983 return Val.getBoolValue();
984 }
985 default:
986 break;
987 }
988 } while ((S = PM.getParent(S)));
989
990 return false;
991 }
992
993
diagnoseRepeatedUseOfWeak(Sema & S,const sema::FunctionScopeInfo * CurFn,const Decl * D,const ParentMap & PM)994 static void diagnoseRepeatedUseOfWeak(Sema &S,
995 const sema::FunctionScopeInfo *CurFn,
996 const Decl *D,
997 const ParentMap &PM) {
998 typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
999 typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1000 typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1001
1002 ASTContext &Ctx = S.getASTContext();
1003
1004 const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1005
1006 // Extract all weak objects that are referenced more than once.
1007 SmallVector<StmtUsesPair, 8> UsesByStmt;
1008 for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1009 I != E; ++I) {
1010 const WeakUseVector &Uses = I->second;
1011
1012 // Find the first read of the weak object.
1013 WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1014 for ( ; UI != UE; ++UI) {
1015 if (UI->isUnsafe())
1016 break;
1017 }
1018
1019 // If there were only writes to this object, don't warn.
1020 if (UI == UE)
1021 continue;
1022
1023 // If there was only one read, followed by any number of writes, and the
1024 // read is not within a loop, don't warn. Additionally, don't warn in a
1025 // loop if the base object is a local variable -- local variables are often
1026 // changed in loops.
1027 if (UI == Uses.begin()) {
1028 WeakUseVector::const_iterator UI2 = UI;
1029 for (++UI2; UI2 != UE; ++UI2)
1030 if (UI2->isUnsafe())
1031 break;
1032
1033 if (UI2 == UE) {
1034 if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1035 continue;
1036
1037 const WeakObjectProfileTy &Profile = I->first;
1038 if (!Profile.isExactProfile())
1039 continue;
1040
1041 const NamedDecl *Base = Profile.getBase();
1042 if (!Base)
1043 Base = Profile.getProperty();
1044 assert(Base && "A profile always has a base or property.");
1045
1046 if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1047 if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1048 continue;
1049 }
1050 }
1051
1052 UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1053 }
1054
1055 if (UsesByStmt.empty())
1056 return;
1057
1058 // Sort by first use so that we emit the warnings in a deterministic order.
1059 std::sort(UsesByStmt.begin(), UsesByStmt.end(),
1060 StmtUseSorter(S.getSourceManager()));
1061
1062 // Classify the current code body for better warning text.
1063 // This enum should stay in sync with the cases in
1064 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1065 // FIXME: Should we use a common classification enum and the same set of
1066 // possibilities all throughout Sema?
1067 enum {
1068 Function,
1069 Method,
1070 Block,
1071 Lambda
1072 } FunctionKind;
1073
1074 if (isa<sema::BlockScopeInfo>(CurFn))
1075 FunctionKind = Block;
1076 else if (isa<sema::LambdaScopeInfo>(CurFn))
1077 FunctionKind = Lambda;
1078 else if (isa<ObjCMethodDecl>(D))
1079 FunctionKind = Method;
1080 else
1081 FunctionKind = Function;
1082
1083 // Iterate through the sorted problems and emit warnings for each.
1084 for (SmallVectorImpl<StmtUsesPair>::const_iterator I = UsesByStmt.begin(),
1085 E = UsesByStmt.end();
1086 I != E; ++I) {
1087 const Stmt *FirstRead = I->first;
1088 const WeakObjectProfileTy &Key = I->second->first;
1089 const WeakUseVector &Uses = I->second->second;
1090
1091 // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1092 // may not contain enough information to determine that these are different
1093 // properties. We can only be 100% sure of a repeated use in certain cases,
1094 // and we adjust the diagnostic kind accordingly so that the less certain
1095 // case can be turned off if it is too noisy.
1096 unsigned DiagKind;
1097 if (Key.isExactProfile())
1098 DiagKind = diag::warn_arc_repeated_use_of_weak;
1099 else
1100 DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1101
1102 // Classify the weak object being accessed for better warning text.
1103 // This enum should stay in sync with the cases in
1104 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1105 enum {
1106 Variable,
1107 Property,
1108 ImplicitProperty,
1109 Ivar
1110 } ObjectKind;
1111
1112 const NamedDecl *D = Key.getProperty();
1113 if (isa<VarDecl>(D))
1114 ObjectKind = Variable;
1115 else if (isa<ObjCPropertyDecl>(D))
1116 ObjectKind = Property;
1117 else if (isa<ObjCMethodDecl>(D))
1118 ObjectKind = ImplicitProperty;
1119 else if (isa<ObjCIvarDecl>(D))
1120 ObjectKind = Ivar;
1121 else
1122 llvm_unreachable("Unexpected weak object kind!");
1123
1124 // Show the first time the object was read.
1125 S.Diag(FirstRead->getLocStart(), DiagKind)
1126 << int(ObjectKind) << D << int(FunctionKind)
1127 << FirstRead->getSourceRange();
1128
1129 // Print all the other accesses as notes.
1130 for (WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1131 UI != UE; ++UI) {
1132 if (UI->getUseExpr() == FirstRead)
1133 continue;
1134 S.Diag(UI->getUseExpr()->getLocStart(),
1135 diag::note_arc_weak_also_accessed_here)
1136 << UI->getUseExpr()->getSourceRange();
1137 }
1138 }
1139 }
1140
1141
1142 namespace {
1143 struct SLocSort {
operator ()__anon8cca75670911::SLocSort1144 bool operator()(const UninitUse &a, const UninitUse &b) {
1145 // Prefer a more confident report over a less confident one.
1146 if (a.getKind() != b.getKind())
1147 return a.getKind() > b.getKind();
1148 SourceLocation aLoc = a.getUser()->getLocStart();
1149 SourceLocation bLoc = b.getUser()->getLocStart();
1150 return aLoc.getRawEncoding() < bLoc.getRawEncoding();
1151 }
1152 };
1153
1154 class UninitValsDiagReporter : public UninitVariablesHandler {
1155 Sema &S;
1156 typedef SmallVector<UninitUse, 2> UsesVec;
1157 typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1158 // Prefer using MapVector to DenseMap, so that iteration order will be
1159 // the same as insertion order. This is needed to obtain a deterministic
1160 // order of diagnostics when calling flushDiagnostics().
1161 typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1162 UsesMap *uses;
1163
1164 public:
UninitValsDiagReporter(Sema & S)1165 UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
~UninitValsDiagReporter()1166 ~UninitValsDiagReporter() {
1167 flushDiagnostics();
1168 }
1169
getUses(const VarDecl * vd)1170 MappedType &getUses(const VarDecl *vd) {
1171 if (!uses)
1172 uses = new UsesMap();
1173
1174 MappedType &V = (*uses)[vd];
1175 if (!V.getPointer())
1176 V.setPointer(new UsesVec());
1177
1178 return V;
1179 }
1180
handleUseOfUninitVariable(const VarDecl * vd,const UninitUse & use)1181 void handleUseOfUninitVariable(const VarDecl *vd, const UninitUse &use) {
1182 getUses(vd).getPointer()->push_back(use);
1183 }
1184
handleSelfInit(const VarDecl * vd)1185 void handleSelfInit(const VarDecl *vd) {
1186 getUses(vd).setInt(true);
1187 }
1188
flushDiagnostics()1189 void flushDiagnostics() {
1190 if (!uses)
1191 return;
1192
1193 for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
1194 const VarDecl *vd = i->first;
1195 const MappedType &V = i->second;
1196
1197 UsesVec *vec = V.getPointer();
1198 bool hasSelfInit = V.getInt();
1199
1200 // Specially handle the case where we have uses of an uninitialized
1201 // variable, but the root cause is an idiomatic self-init. We want
1202 // to report the diagnostic at the self-init since that is the root cause.
1203 if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1204 DiagnoseUninitializedUse(S, vd,
1205 UninitUse(vd->getInit()->IgnoreParenCasts(),
1206 /* isAlwaysUninit */ true),
1207 /* alwaysReportSelfInit */ true);
1208 else {
1209 // Sort the uses by their SourceLocations. While not strictly
1210 // guaranteed to produce them in line/column order, this will provide
1211 // a stable ordering.
1212 std::sort(vec->begin(), vec->end(), SLocSort());
1213
1214 for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
1215 ++vi) {
1216 // If we have self-init, downgrade all uses to 'may be uninitialized'.
1217 UninitUse Use = hasSelfInit ? UninitUse(vi->getUser(), false) : *vi;
1218
1219 if (DiagnoseUninitializedUse(S, vd, Use))
1220 // Skip further diagnostics for this variable. We try to warn only
1221 // on the first point at which a variable is used uninitialized.
1222 break;
1223 }
1224 }
1225
1226 // Release the uses vector.
1227 delete vec;
1228 }
1229 delete uses;
1230 }
1231
1232 private:
hasAlwaysUninitializedUse(const UsesVec * vec)1233 static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1234 for (UsesVec::const_iterator i = vec->begin(), e = vec->end(); i != e; ++i) {
1235 if (i->getKind() == UninitUse::Always) {
1236 return true;
1237 }
1238 }
1239 return false;
1240 }
1241 };
1242 }
1243
1244
1245 //===----------------------------------------------------------------------===//
1246 // -Wthread-safety
1247 //===----------------------------------------------------------------------===//
1248 namespace clang {
1249 namespace thread_safety {
1250 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1251 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1252 typedef std::list<DelayedDiag> DiagList;
1253
1254 struct SortDiagBySourceLocation {
1255 SourceManager &SM;
SortDiagBySourceLocationclang::thread_safety::SortDiagBySourceLocation1256 SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1257
operator ()clang::thread_safety::SortDiagBySourceLocation1258 bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1259 // Although this call will be slow, this is only called when outputting
1260 // multiple warnings.
1261 return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1262 }
1263 };
1264
1265 namespace {
1266 class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
1267 Sema &S;
1268 DiagList Warnings;
1269 SourceLocation FunLocation, FunEndLocation;
1270
1271 // Helper functions
warnLockMismatch(unsigned DiagID,Name LockName,SourceLocation Loc)1272 void warnLockMismatch(unsigned DiagID, Name LockName, SourceLocation Loc) {
1273 // Gracefully handle rare cases when the analysis can't get a more
1274 // precise source location.
1275 if (!Loc.isValid())
1276 Loc = FunLocation;
1277 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << LockName);
1278 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1279 }
1280
1281 public:
ThreadSafetyReporter(Sema & S,SourceLocation FL,SourceLocation FEL)1282 ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1283 : S(S), FunLocation(FL), FunEndLocation(FEL) {}
1284
1285 /// \brief Emit all buffered diagnostics in order of sourcelocation.
1286 /// We need to output diagnostics produced while iterating through
1287 /// the lockset in deterministic order, so this function orders diagnostics
1288 /// and outputs them.
emitDiagnostics()1289 void emitDiagnostics() {
1290 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1291 for (DiagList::iterator I = Warnings.begin(), E = Warnings.end();
1292 I != E; ++I) {
1293 S.Diag(I->first.first, I->first.second);
1294 const OptionalNotes &Notes = I->second;
1295 for (unsigned NoteI = 0, NoteN = Notes.size(); NoteI != NoteN; ++NoteI)
1296 S.Diag(Notes[NoteI].first, Notes[NoteI].second);
1297 }
1298 }
1299
handleInvalidLockExp(SourceLocation Loc)1300 void handleInvalidLockExp(SourceLocation Loc) {
1301 PartialDiagnosticAt Warning(Loc,
1302 S.PDiag(diag::warn_cannot_resolve_lock) << Loc);
1303 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1304 }
handleUnmatchedUnlock(Name LockName,SourceLocation Loc)1305 void handleUnmatchedUnlock(Name LockName, SourceLocation Loc) {
1306 warnLockMismatch(diag::warn_unlock_but_no_lock, LockName, Loc);
1307 }
1308
handleDoubleLock(Name LockName,SourceLocation Loc)1309 void handleDoubleLock(Name LockName, SourceLocation Loc) {
1310 warnLockMismatch(diag::warn_double_lock, LockName, Loc);
1311 }
1312
handleMutexHeldEndOfScope(Name LockName,SourceLocation LocLocked,SourceLocation LocEndOfScope,LockErrorKind LEK)1313 void handleMutexHeldEndOfScope(Name LockName, SourceLocation LocLocked,
1314 SourceLocation LocEndOfScope,
1315 LockErrorKind LEK){
1316 unsigned DiagID = 0;
1317 switch (LEK) {
1318 case LEK_LockedSomePredecessors:
1319 DiagID = diag::warn_lock_some_predecessors;
1320 break;
1321 case LEK_LockedSomeLoopIterations:
1322 DiagID = diag::warn_expecting_lock_held_on_loop;
1323 break;
1324 case LEK_LockedAtEndOfFunction:
1325 DiagID = diag::warn_no_unlock;
1326 break;
1327 case LEK_NotLockedAtEndOfFunction:
1328 DiagID = diag::warn_expecting_locked;
1329 break;
1330 }
1331 if (LocEndOfScope.isInvalid())
1332 LocEndOfScope = FunEndLocation;
1333
1334 PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << LockName);
1335 if (LocLocked.isValid()) {
1336 PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here));
1337 Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1338 return;
1339 }
1340 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1341 }
1342
1343
handleExclusiveAndShared(Name LockName,SourceLocation Loc1,SourceLocation Loc2)1344 void handleExclusiveAndShared(Name LockName, SourceLocation Loc1,
1345 SourceLocation Loc2) {
1346 PartialDiagnosticAt Warning(
1347 Loc1, S.PDiag(diag::warn_lock_exclusive_and_shared) << LockName);
1348 PartialDiagnosticAt Note(
1349 Loc2, S.PDiag(diag::note_lock_exclusive_and_shared) << LockName);
1350 Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1351 }
1352
handleNoMutexHeld(const NamedDecl * D,ProtectedOperationKind POK,AccessKind AK,SourceLocation Loc)1353 void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
1354 AccessKind AK, SourceLocation Loc) {
1355 assert((POK == POK_VarAccess || POK == POK_VarDereference)
1356 && "Only works for variables");
1357 unsigned DiagID = POK == POK_VarAccess?
1358 diag::warn_variable_requires_any_lock:
1359 diag::warn_var_deref_requires_any_lock;
1360 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1361 << D->getNameAsString() << getLockKindFromAccessKind(AK));
1362 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1363 }
1364
handleMutexNotHeld(const NamedDecl * D,ProtectedOperationKind POK,Name LockName,LockKind LK,SourceLocation Loc,Name * PossibleMatch)1365 void handleMutexNotHeld(const NamedDecl *D, ProtectedOperationKind POK,
1366 Name LockName, LockKind LK, SourceLocation Loc,
1367 Name *PossibleMatch) {
1368 unsigned DiagID = 0;
1369 if (PossibleMatch) {
1370 switch (POK) {
1371 case POK_VarAccess:
1372 DiagID = diag::warn_variable_requires_lock_precise;
1373 break;
1374 case POK_VarDereference:
1375 DiagID = diag::warn_var_deref_requires_lock_precise;
1376 break;
1377 case POK_FunctionCall:
1378 DiagID = diag::warn_fun_requires_lock_precise;
1379 break;
1380 }
1381 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1382 << D->getNameAsString() << LockName << LK);
1383 PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1384 << *PossibleMatch);
1385 Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1386 } else {
1387 switch (POK) {
1388 case POK_VarAccess:
1389 DiagID = diag::warn_variable_requires_lock;
1390 break;
1391 case POK_VarDereference:
1392 DiagID = diag::warn_var_deref_requires_lock;
1393 break;
1394 case POK_FunctionCall:
1395 DiagID = diag::warn_fun_requires_lock;
1396 break;
1397 }
1398 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1399 << D->getNameAsString() << LockName << LK);
1400 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1401 }
1402 }
1403
handleFunExcludesLock(Name FunName,Name LockName,SourceLocation Loc)1404 void handleFunExcludesLock(Name FunName, Name LockName, SourceLocation Loc) {
1405 PartialDiagnosticAt Warning(Loc,
1406 S.PDiag(diag::warn_fun_excludes_mutex) << FunName << LockName);
1407 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1408 }
1409 };
1410 }
1411 }
1412 }
1413
1414 //===----------------------------------------------------------------------===//
1415 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1416 // warnings on a function, method, or block.
1417 //===----------------------------------------------------------------------===//
1418
Policy()1419 clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1420 enableCheckFallThrough = 1;
1421 enableCheckUnreachable = 0;
1422 enableThreadSafetyAnalysis = 0;
1423 }
1424
AnalysisBasedWarnings(Sema & s)1425 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1426 : S(s),
1427 NumFunctionsAnalyzed(0),
1428 NumFunctionsWithBadCFGs(0),
1429 NumCFGBlocks(0),
1430 MaxCFGBlocksPerFunction(0),
1431 NumUninitAnalysisFunctions(0),
1432 NumUninitAnalysisVariables(0),
1433 MaxUninitAnalysisVariablesPerFunction(0),
1434 NumUninitAnalysisBlockVisits(0),
1435 MaxUninitAnalysisBlockVisitsPerFunction(0) {
1436 DiagnosticsEngine &D = S.getDiagnostics();
1437 DefaultPolicy.enableCheckUnreachable = (unsigned)
1438 (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
1439 DiagnosticsEngine::Ignored);
1440 DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
1441 (D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
1442 DiagnosticsEngine::Ignored);
1443
1444 }
1445
flushDiagnostics(Sema & S,sema::FunctionScopeInfo * fscope)1446 static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
1447 for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1448 i = fscope->PossiblyUnreachableDiags.begin(),
1449 e = fscope->PossiblyUnreachableDiags.end();
1450 i != e; ++i) {
1451 const sema::PossiblyUnreachableDiag &D = *i;
1452 S.Diag(D.Loc, D.PD);
1453 }
1454 }
1455
1456 void clang::sema::
IssueWarnings(sema::AnalysisBasedWarnings::Policy P,sema::FunctionScopeInfo * fscope,const Decl * D,const BlockExpr * blkExpr)1457 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1458 sema::FunctionScopeInfo *fscope,
1459 const Decl *D, const BlockExpr *blkExpr) {
1460
1461 // We avoid doing analysis-based warnings when there are errors for
1462 // two reasons:
1463 // (1) The CFGs often can't be constructed (if the body is invalid), so
1464 // don't bother trying.
1465 // (2) The code already has problems; running the analysis just takes more
1466 // time.
1467 DiagnosticsEngine &Diags = S.getDiagnostics();
1468
1469 // Do not do any analysis for declarations in system headers if we are
1470 // going to just ignore them.
1471 if (Diags.getSuppressSystemWarnings() &&
1472 S.SourceMgr.isInSystemHeader(D->getLocation()))
1473 return;
1474
1475 // For code in dependent contexts, we'll do this at instantiation time.
1476 if (cast<DeclContext>(D)->isDependentContext())
1477 return;
1478
1479 if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
1480 // Flush out any possibly unreachable diagnostics.
1481 flushDiagnostics(S, fscope);
1482 return;
1483 }
1484
1485 const Stmt *Body = D->getBody();
1486 assert(Body);
1487
1488 AnalysisDeclContext AC(/* AnalysisDeclContextManager */ 0, D);
1489
1490 // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
1491 // explosion for destrutors that can result and the compile time hit.
1492 AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
1493 AC.getCFGBuildOptions().AddEHEdges = false;
1494 AC.getCFGBuildOptions().AddInitializers = true;
1495 AC.getCFGBuildOptions().AddImplicitDtors = true;
1496 AC.getCFGBuildOptions().AddTemporaryDtors = true;
1497
1498 // Force that certain expressions appear as CFGElements in the CFG. This
1499 // is used to speed up various analyses.
1500 // FIXME: This isn't the right factoring. This is here for initial
1501 // prototyping, but we need a way for analyses to say what expressions they
1502 // expect to always be CFGElements and then fill in the BuildOptions
1503 // appropriately. This is essentially a layering violation.
1504 if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis) {
1505 // Unreachable code analysis and thread safety require a linearized CFG.
1506 AC.getCFGBuildOptions().setAllAlwaysAdd();
1507 }
1508 else {
1509 AC.getCFGBuildOptions()
1510 .setAlwaysAdd(Stmt::BinaryOperatorClass)
1511 .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
1512 .setAlwaysAdd(Stmt::BlockExprClass)
1513 .setAlwaysAdd(Stmt::CStyleCastExprClass)
1514 .setAlwaysAdd(Stmt::DeclRefExprClass)
1515 .setAlwaysAdd(Stmt::ImplicitCastExprClass)
1516 .setAlwaysAdd(Stmt::UnaryOperatorClass)
1517 .setAlwaysAdd(Stmt::AttributedStmtClass);
1518 }
1519
1520 // Construct the analysis context with the specified CFG build options.
1521
1522 // Emit delayed diagnostics.
1523 if (!fscope->PossiblyUnreachableDiags.empty()) {
1524 bool analyzed = false;
1525
1526 // Register the expressions with the CFGBuilder.
1527 for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1528 i = fscope->PossiblyUnreachableDiags.begin(),
1529 e = fscope->PossiblyUnreachableDiags.end();
1530 i != e; ++i) {
1531 if (const Stmt *stmt = i->stmt)
1532 AC.registerForcedBlockExpression(stmt);
1533 }
1534
1535 if (AC.getCFG()) {
1536 analyzed = true;
1537 for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1538 i = fscope->PossiblyUnreachableDiags.begin(),
1539 e = fscope->PossiblyUnreachableDiags.end();
1540 i != e; ++i)
1541 {
1542 const sema::PossiblyUnreachableDiag &D = *i;
1543 bool processed = false;
1544 if (const Stmt *stmt = i->stmt) {
1545 const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
1546 CFGReverseBlockReachabilityAnalysis *cra =
1547 AC.getCFGReachablityAnalysis();
1548 // FIXME: We should be able to assert that block is non-null, but
1549 // the CFG analysis can skip potentially-evaluated expressions in
1550 // edge cases; see test/Sema/vla-2.c.
1551 if (block && cra) {
1552 // Can this block be reached from the entrance?
1553 if (cra->isReachable(&AC.getCFG()->getEntry(), block))
1554 S.Diag(D.Loc, D.PD);
1555 processed = true;
1556 }
1557 }
1558 if (!processed) {
1559 // Emit the warning anyway if we cannot map to a basic block.
1560 S.Diag(D.Loc, D.PD);
1561 }
1562 }
1563 }
1564
1565 if (!analyzed)
1566 flushDiagnostics(S, fscope);
1567 }
1568
1569
1570 // Warning: check missing 'return'
1571 if (P.enableCheckFallThrough) {
1572 const CheckFallThroughDiagnostics &CD =
1573 (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
1574 : (isa<CXXMethodDecl>(D) &&
1575 cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
1576 cast<CXXMethodDecl>(D)->getParent()->isLambda())
1577 ? CheckFallThroughDiagnostics::MakeForLambda()
1578 : CheckFallThroughDiagnostics::MakeForFunction(D));
1579 CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
1580 }
1581
1582 // Warning: check for unreachable code
1583 if (P.enableCheckUnreachable) {
1584 // Only check for unreachable code on non-template instantiations.
1585 // Different template instantiations can effectively change the control-flow
1586 // and it is very difficult to prove that a snippet of code in a template
1587 // is unreachable for all instantiations.
1588 bool isTemplateInstantiation = false;
1589 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
1590 isTemplateInstantiation = Function->isTemplateInstantiation();
1591 if (!isTemplateInstantiation)
1592 CheckUnreachable(S, AC);
1593 }
1594
1595 // Check for thread safety violations
1596 if (P.enableThreadSafetyAnalysis) {
1597 SourceLocation FL = AC.getDecl()->getLocation();
1598 SourceLocation FEL = AC.getDecl()->getLocEnd();
1599 thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL);
1600 if (Diags.getDiagnosticLevel(diag::warn_thread_safety_beta,D->getLocStart())
1601 != DiagnosticsEngine::Ignored)
1602 Reporter.setIssueBetaWarnings(true);
1603
1604 thread_safety::runThreadSafetyAnalysis(AC, Reporter);
1605 Reporter.emitDiagnostics();
1606 }
1607
1608 if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
1609 != DiagnosticsEngine::Ignored ||
1610 Diags.getDiagnosticLevel(diag::warn_sometimes_uninit_var,D->getLocStart())
1611 != DiagnosticsEngine::Ignored ||
1612 Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
1613 != DiagnosticsEngine::Ignored) {
1614 if (CFG *cfg = AC.getCFG()) {
1615 UninitValsDiagReporter reporter(S);
1616 UninitVariablesAnalysisStats stats;
1617 std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
1618 runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
1619 reporter, stats);
1620
1621 if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
1622 ++NumUninitAnalysisFunctions;
1623 NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
1624 NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
1625 MaxUninitAnalysisVariablesPerFunction =
1626 std::max(MaxUninitAnalysisVariablesPerFunction,
1627 stats.NumVariablesAnalyzed);
1628 MaxUninitAnalysisBlockVisitsPerFunction =
1629 std::max(MaxUninitAnalysisBlockVisitsPerFunction,
1630 stats.NumBlockVisits);
1631 }
1632 }
1633 }
1634
1635 bool FallThroughDiagFull =
1636 Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough,
1637 D->getLocStart()) != DiagnosticsEngine::Ignored;
1638 bool FallThroughDiagPerFunction =
1639 Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough_per_function,
1640 D->getLocStart()) != DiagnosticsEngine::Ignored;
1641 if (FallThroughDiagFull || FallThroughDiagPerFunction) {
1642 DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
1643 }
1644
1645 if (S.getLangOpts().ObjCARCWeak &&
1646 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1647 D->getLocStart()) != DiagnosticsEngine::Ignored)
1648 diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
1649
1650 // Collect statistics about the CFG if it was built.
1651 if (S.CollectStats && AC.isCFGBuilt()) {
1652 ++NumFunctionsAnalyzed;
1653 if (CFG *cfg = AC.getCFG()) {
1654 // If we successfully built a CFG for this context, record some more
1655 // detail information about it.
1656 NumCFGBlocks += cfg->getNumBlockIDs();
1657 MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
1658 cfg->getNumBlockIDs());
1659 } else {
1660 ++NumFunctionsWithBadCFGs;
1661 }
1662 }
1663 }
1664
PrintStats() const1665 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
1666 llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
1667
1668 unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
1669 unsigned AvgCFGBlocksPerFunction =
1670 !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
1671 llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
1672 << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
1673 << " " << NumCFGBlocks << " CFG blocks built.\n"
1674 << " " << AvgCFGBlocksPerFunction
1675 << " average CFG blocks per function.\n"
1676 << " " << MaxCFGBlocksPerFunction
1677 << " max CFG blocks per function.\n";
1678
1679 unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
1680 : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
1681 unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
1682 : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
1683 llvm::errs() << NumUninitAnalysisFunctions
1684 << " functions analyzed for uninitialiazed variables\n"
1685 << " " << NumUninitAnalysisVariables << " variables analyzed.\n"
1686 << " " << AvgUninitVariablesPerFunction
1687 << " average variables per function.\n"
1688 << " " << MaxUninitAnalysisVariablesPerFunction
1689 << " max variables per function.\n"
1690 << " " << NumUninitAnalysisBlockVisits << " block visits.\n"
1691 << " " << AvgUninitBlockVisitsPerFunction
1692 << " average block visits per function.\n"
1693 << " " << MaxUninitAnalysisBlockVisitsPerFunction
1694 << " max block visits per function.\n";
1695 }
1696