1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/quic/quic_data_writer.h"
6
7 #include <algorithm>
8 #include <limits>
9 #include <string>
10
11 #include "base/basictypes.h"
12 #include "base/logging.h"
13
14 using base::StringPiece;
15 using std::numeric_limits;
16
17 namespace net {
18
QuicDataWriter(size_t size)19 QuicDataWriter::QuicDataWriter(size_t size)
20 : buffer_(new char[size]),
21 capacity_(size),
22 length_(0) {
23 }
24
~QuicDataWriter()25 QuicDataWriter::~QuicDataWriter() {
26 delete[] buffer_;
27 }
28
take()29 char* QuicDataWriter::take() {
30 char* rv = buffer_;
31 buffer_ = NULL;
32 capacity_ = 0;
33 length_ = 0;
34 return rv;
35 }
36
WriteUInt8(uint8 value)37 bool QuicDataWriter::WriteUInt8(uint8 value) {
38 return WriteBytes(&value, sizeof(value));
39 }
40
WriteUInt16(uint16 value)41 bool QuicDataWriter::WriteUInt16(uint16 value) {
42 return WriteBytes(&value, sizeof(value));
43 }
44
WriteUInt32(uint32 value)45 bool QuicDataWriter::WriteUInt32(uint32 value) {
46 return WriteBytes(&value, sizeof(value));
47 }
48
WriteUInt48(uint64 value)49 bool QuicDataWriter::WriteUInt48(uint64 value) {
50 uint32 hi = value >> 32;
51 uint32 lo = value & GG_UINT64_C(0x00000000FFFFFFFF);
52 return WriteUInt32(lo) && WriteUInt16(hi);
53 }
54
WriteUInt64(uint64 value)55 bool QuicDataWriter::WriteUInt64(uint64 value) {
56 return WriteBytes(&value, sizeof(value));
57 }
58
WriteUFloat16(uint64 value)59 bool QuicDataWriter::WriteUFloat16(uint64 value) {
60 uint16 result;
61 if (value < (GG_UINT64_C(1) << kUFloat16MantissaEffectiveBits)) {
62 // Fast path: either the value is denormalized, or has exponent zero.
63 // Both cases are represented by the value itself.
64 result = value;
65 } else if (value >= kUFloat16MaxValue) {
66 // Value is out of range; clamp it to the maximum representable.
67 result = numeric_limits<uint16>::max();
68 } else {
69 // The highest bit is between position 13 and 42 (zero-based), which
70 // corresponds to exponent 1-30. In the output, mantissa is from 0 to 10,
71 // hidden bit is 11 and exponent is 11 to 15. Shift the highest bit to 11
72 // and count the shifts.
73 uint16 exponent = 0;
74 for (uint16 offset = 16; offset > 0; offset /= 2) {
75 // Right-shift the value until the highest bit is in position 11.
76 // For offset of 16, 8, 4, 2 and 1 (binary search over 1-30),
77 // shift if the bit is at or above 11 + offset.
78 if (value >= (GG_UINT64_C(1) << (kUFloat16MantissaBits + offset))) {
79 exponent += offset;
80 value >>= offset;
81 }
82 }
83
84 DCHECK_GE(exponent, 1);
85 DCHECK_LE(exponent, kUFloat16MaxExponent);
86 DCHECK_GE(value, GG_UINT64_C(1) << kUFloat16MantissaBits);
87 DCHECK_LT(value, GG_UINT64_C(1) << kUFloat16MantissaEffectiveBits);
88
89 // Hidden bit (position 11) is set. We should remove it and increment the
90 // exponent. Equivalently, we just add it to the exponent.
91 // This hides the bit.
92 result = value + (exponent << kUFloat16MantissaBits);
93 }
94
95 return WriteBytes(&result, sizeof(result));
96 }
97
WriteStringPiece16(StringPiece val)98 bool QuicDataWriter::WriteStringPiece16(StringPiece val) {
99 if (val.length() > numeric_limits<uint16>::max()) {
100 return false;
101 }
102 if (!WriteUInt16(val.size())) {
103 return false;
104 }
105 return WriteBytes(val.data(), val.size());
106 }
107
WriteIOVector(const IOVector & data)108 bool QuicDataWriter::WriteIOVector(const IOVector& data) {
109 char *dest = BeginWrite(data.TotalBufferSize());
110 if (!dest) {
111 return false;
112 }
113 for (size_t i = 0; i < data.Size(); ++i) {
114 WriteBytes(data.iovec()[i].iov_base, data.iovec()[i].iov_len);
115 }
116
117 return true;
118 }
119
BeginWrite(size_t length)120 char* QuicDataWriter::BeginWrite(size_t length) {
121 if (length_ > capacity_) {
122 return NULL;
123 }
124
125 if (capacity_ - length_ < length) {
126 return NULL;
127 }
128
129 #ifdef ARCH_CPU_64_BITS
130 DCHECK_LE(length, numeric_limits<uint32>::max());
131 #endif
132
133 return buffer_ + length_;
134 }
135
WriteBytes(const void * data,size_t data_len)136 bool QuicDataWriter::WriteBytes(const void* data, size_t data_len) {
137 char* dest = BeginWrite(data_len);
138 if (!dest) {
139 return false;
140 }
141
142 memcpy(dest, data, data_len);
143
144 length_ += data_len;
145 return true;
146 }
147
WriteRepeatedByte(uint8 byte,size_t count)148 bool QuicDataWriter::WriteRepeatedByte(uint8 byte, size_t count) {
149 char* dest = BeginWrite(count);
150 if (!dest) {
151 return false;
152 }
153
154 memset(dest, byte, count);
155
156 length_ += count;
157 return true;
158 }
159
WritePadding()160 void QuicDataWriter::WritePadding() {
161 DCHECK_LE(length_, capacity_);
162 if (length_ > capacity_) {
163 return;
164 }
165 memset(buffer_ + length_, 0x00, capacity_ - length_);
166 length_ = capacity_;
167 }
168
WriteUInt8ToOffset(uint8 value,size_t offset)169 bool QuicDataWriter::WriteUInt8ToOffset(uint8 value, size_t offset) {
170 DCHECK_LT(offset, capacity_);
171 size_t latched_length = length_;
172 length_ = offset;
173 bool success = WriteUInt8(value);
174 DCHECK_LE(length_, latched_length);
175 length_ = latched_length;
176 return success;
177 }
178
WriteUInt32ToOffset(uint32 value,size_t offset)179 bool QuicDataWriter::WriteUInt32ToOffset(uint32 value, size_t offset) {
180 DCHECK_LT(offset, capacity_);
181 size_t latched_length = length_;
182 length_ = offset;
183 bool success = WriteUInt32(value);
184 DCHECK_LE(length_, latched_length);
185 length_ = latched_length;
186 return success;
187 }
188
WriteUInt48ToOffset(uint64 value,size_t offset)189 bool QuicDataWriter::WriteUInt48ToOffset(uint64 value, size_t offset) {
190 DCHECK_LT(offset, capacity_);
191 size_t latched_length = length_;
192 length_ = offset;
193 bool success = WriteUInt48(value);
194 DCHECK_LE(length_, latched_length);
195 length_ = latched_length;
196 return success;
197 }
198
199 } // namespace net
200