• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains some functions that are useful for math stuff.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
15 #define LLVM_SUPPORT_MATHEXTRAS_H
16 
17 #include "llvm/Support/Compiler.h"
18 #include "llvm/Support/SwapByteOrder.h"
19 #include "llvm/Support/type_traits.h"
20 
21 #include <cstring>
22 
23 #ifdef _MSC_VER
24 # include <intrin.h>
25 #endif
26 
27 namespace llvm {
28 /// \brief The behavior an operation has on an input of 0.
29 enum ZeroBehavior {
30   /// \brief The returned value is undefined.
31   ZB_Undefined,
32   /// \brief The returned value is numeric_limits<T>::max()
33   ZB_Max,
34   /// \brief The returned value is numeric_limits<T>::digits
35   ZB_Width
36 };
37 
38 /// \brief Count number of 0's from the least significant bit to the most
39 ///   stopping at the first 1.
40 ///
41 /// Only unsigned integral types are allowed.
42 ///
43 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
44 ///   valid arguments.
45 template <typename T>
46 typename enable_if_c<std::numeric_limits<T>::is_integer &&
47                      !std::numeric_limits<T>::is_signed, std::size_t>::type
48 countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
49   (void)ZB;
50 
51   if (!Val)
52     return std::numeric_limits<T>::digits;
53   if (Val & 0x1)
54     return 0;
55 
56   // Bisection method.
57   std::size_t ZeroBits = 0;
58   T Shift = std::numeric_limits<T>::digits >> 1;
59   T Mask = std::numeric_limits<T>::max() >> Shift;
60   while (Shift) {
61     if ((Val & Mask) == 0) {
62       Val >>= Shift;
63       ZeroBits |= Shift;
64     }
65     Shift >>= 1;
66     Mask >>= Shift;
67   }
68   return ZeroBits;
69 }
70 
71 // Disable signed.
72 template <typename T>
73 typename enable_if_c<std::numeric_limits<T>::is_integer &&
74                      std::numeric_limits<T>::is_signed, std::size_t>::type
75 countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) LLVM_DELETED_FUNCTION;
76 
77 #if __GNUC__ >= 4 || _MSC_VER
78 template <>
79 inline std::size_t countTrailingZeros<uint32_t>(uint32_t Val, ZeroBehavior ZB) {
80   if (ZB != ZB_Undefined && Val == 0)
81     return 32;
82 
83 #if __has_builtin(__builtin_ctz) || __GNUC_PREREQ(4, 0)
84   return __builtin_ctz(Val);
85 #elif _MSC_VER
86   unsigned long Index;
87   _BitScanForward(&Index, Val);
88   return Index;
89 #endif
90 }
91 
92 #if !defined(_MSC_VER) || defined(_M_X64)
93 template <>
94 inline std::size_t countTrailingZeros<uint64_t>(uint64_t Val, ZeroBehavior ZB) {
95   if (ZB != ZB_Undefined && Val == 0)
96     return 64;
97 
98 #if __has_builtin(__builtin_ctzll) || __GNUC_PREREQ(4, 0)
99   return __builtin_ctzll(Val);
100 #elif _MSC_VER
101   unsigned long Index;
102   _BitScanForward64(&Index, Val);
103   return Index;
104 #endif
105 }
106 #endif
107 #endif
108 
109 /// \brief Count number of 0's from the most significant bit to the least
110 ///   stopping at the first 1.
111 ///
112 /// Only unsigned integral types are allowed.
113 ///
114 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
115 ///   valid arguments.
116 template <typename T>
117 typename enable_if_c<std::numeric_limits<T>::is_integer &&
118                      !std::numeric_limits<T>::is_signed, std::size_t>::type
119 countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
120   (void)ZB;
121 
122   if (!Val)
123     return std::numeric_limits<T>::digits;
124 
125   // Bisection method.
126   std::size_t ZeroBits = 0;
127   for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
128     T Tmp = Val >> Shift;
129     if (Tmp)
130       Val = Tmp;
131     else
132       ZeroBits |= Shift;
133   }
134   return ZeroBits;
135 }
136 
137 // Disable signed.
138 template <typename T>
139 typename enable_if_c<std::numeric_limits<T>::is_integer &&
140                      std::numeric_limits<T>::is_signed, std::size_t>::type
141 countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) LLVM_DELETED_FUNCTION;
142 
143 #if __GNUC__ >= 4 || _MSC_VER
144 template <>
145 inline std::size_t countLeadingZeros<uint32_t>(uint32_t Val, ZeroBehavior ZB) {
146   if (ZB != ZB_Undefined && Val == 0)
147     return 32;
148 
149 #if __has_builtin(__builtin_clz) || __GNUC_PREREQ(4, 0)
150   return __builtin_clz(Val);
151 #elif _MSC_VER
152   unsigned long Index;
153   _BitScanReverse(&Index, Val);
154   return Index ^ 31;
155 #endif
156 }
157 
158 #if !defined(_MSC_VER) || defined(_M_X64)
159 template <>
160 inline std::size_t countLeadingZeros<uint64_t>(uint64_t Val, ZeroBehavior ZB) {
161   if (ZB != ZB_Undefined && Val == 0)
162     return 64;
163 
164 #if __has_builtin(__builtin_clzll) || __GNUC_PREREQ(4, 0)
165   return __builtin_clzll(Val);
166 #elif _MSC_VER
167   unsigned long Index;
168   _BitScanReverse64(&Index, Val);
169   return Index ^ 63;
170 #endif
171 }
172 #endif
173 #endif
174 
175 /// \brief Get the index of the first set bit starting from the least
176 ///   significant bit.
177 ///
178 /// Only unsigned integral types are allowed.
179 ///
180 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
181 ///   valid arguments.
182 template <typename T>
183 typename enable_if_c<std::numeric_limits<T>::is_integer &&
184                      !std::numeric_limits<T>::is_signed, T>::type
185 findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
186   if (ZB == ZB_Max && Val == 0)
187     return std::numeric_limits<T>::max();
188 
189   return countTrailingZeros(Val, ZB_Undefined);
190 }
191 
192 // Disable signed.
193 template <typename T>
194 typename enable_if_c<std::numeric_limits<T>::is_integer &&
195                      std::numeric_limits<T>::is_signed, T>::type
196 findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) LLVM_DELETED_FUNCTION;
197 
198 /// \brief Get the index of the last set bit starting from the least
199 ///   significant bit.
200 ///
201 /// Only unsigned integral types are allowed.
202 ///
203 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
204 ///   valid arguments.
205 template <typename T>
206 typename enable_if_c<std::numeric_limits<T>::is_integer &&
207                      !std::numeric_limits<T>::is_signed, T>::type
208 findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
209   if (ZB == ZB_Max && Val == 0)
210     return std::numeric_limits<T>::max();
211 
212   // Use ^ instead of - because both gcc and llvm can remove the associated ^
213   // in the __builtin_clz intrinsic on x86.
214   return countLeadingZeros(Val, ZB_Undefined) ^
215          (std::numeric_limits<T>::digits - 1);
216 }
217 
218 // Disable signed.
219 template <typename T>
220 typename enable_if_c<std::numeric_limits<T>::is_integer &&
221                      std::numeric_limits<T>::is_signed, T>::type
222 findLastSet(T Val, ZeroBehavior ZB = ZB_Max) LLVM_DELETED_FUNCTION;
223 
224 /// \brief Macro compressed bit reversal table for 256 bits.
225 ///
226 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
227 static const unsigned char BitReverseTable256[256] = {
228 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
229 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
230 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
231   R6(0), R6(2), R6(1), R6(3)
232 };
233 
234 /// \brief Reverse the bits in \p Val.
235 template <typename T>
reverseBits(T Val)236 T reverseBits(T Val) {
237   unsigned char in[sizeof(Val)];
238   unsigned char out[sizeof(Val)];
239   std::memcpy(in, &Val, sizeof(Val));
240   for (unsigned i = 0; i < sizeof(Val); ++i)
241     out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
242   std::memcpy(&Val, out, sizeof(Val));
243   return Val;
244 }
245 
246 // NOTE: The following support functions use the _32/_64 extensions instead of
247 // type overloading so that signed and unsigned integers can be used without
248 // ambiguity.
249 
250 /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
Hi_32(uint64_t Value)251 inline uint32_t Hi_32(uint64_t Value) {
252   return static_cast<uint32_t>(Value >> 32);
253 }
254 
255 /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
Lo_32(uint64_t Value)256 inline uint32_t Lo_32(uint64_t Value) {
257   return static_cast<uint32_t>(Value);
258 }
259 
260 /// isInt - Checks if an integer fits into the given bit width.
261 template<unsigned N>
isInt(int64_t x)262 inline bool isInt(int64_t x) {
263   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
264 }
265 // Template specializations to get better code for common cases.
266 template<>
267 inline bool isInt<8>(int64_t x) {
268   return static_cast<int8_t>(x) == x;
269 }
270 template<>
271 inline bool isInt<16>(int64_t x) {
272   return static_cast<int16_t>(x) == x;
273 }
274 template<>
275 inline bool isInt<32>(int64_t x) {
276   return static_cast<int32_t>(x) == x;
277 }
278 
279 /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
280 ///                     left by S.
281 template<unsigned N, unsigned S>
isShiftedInt(int64_t x)282 inline bool isShiftedInt(int64_t x) {
283   return isInt<N+S>(x) && (x % (1<<S) == 0);
284 }
285 
286 /// isUInt - Checks if an unsigned integer fits into the given bit width.
287 template<unsigned N>
isUInt(uint64_t x)288 inline bool isUInt(uint64_t x) {
289   return N >= 64 || x < (UINT64_C(1)<<(N));
290 }
291 // Template specializations to get better code for common cases.
292 template<>
293 inline bool isUInt<8>(uint64_t x) {
294   return static_cast<uint8_t>(x) == x;
295 }
296 template<>
297 inline bool isUInt<16>(uint64_t x) {
298   return static_cast<uint16_t>(x) == x;
299 }
300 template<>
301 inline bool isUInt<32>(uint64_t x) {
302   return static_cast<uint32_t>(x) == x;
303 }
304 
305 /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
306 ///                     left by S.
307 template<unsigned N, unsigned S>
isShiftedUInt(uint64_t x)308 inline bool isShiftedUInt(uint64_t x) {
309   return isUInt<N+S>(x) && (x % (1<<S) == 0);
310 }
311 
312 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
313 /// bit width.
isUIntN(unsigned N,uint64_t x)314 inline bool isUIntN(unsigned N, uint64_t x) {
315   return x == (x & (~0ULL >> (64 - N)));
316 }
317 
318 /// isIntN - Checks if an signed integer fits into the given (dynamic)
319 /// bit width.
isIntN(unsigned N,int64_t x)320 inline bool isIntN(unsigned N, int64_t x) {
321   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
322 }
323 
324 /// isMask_32 - This function returns true if the argument is a sequence of ones
325 /// starting at the least significant bit with the remainder zero (32 bit
326 /// version).   Ex. isMask_32(0x0000FFFFU) == true.
isMask_32(uint32_t Value)327 inline bool isMask_32(uint32_t Value) {
328   return Value && ((Value + 1) & Value) == 0;
329 }
330 
331 /// isMask_64 - This function returns true if the argument is a sequence of ones
332 /// starting at the least significant bit with the remainder zero (64 bit
333 /// version).
isMask_64(uint64_t Value)334 inline bool isMask_64(uint64_t Value) {
335   return Value && ((Value + 1) & Value) == 0;
336 }
337 
338 /// isShiftedMask_32 - This function returns true if the argument contains a
339 /// sequence of ones with the remainder zero (32 bit version.)
340 /// Ex. isShiftedMask_32(0x0000FF00U) == true.
isShiftedMask_32(uint32_t Value)341 inline bool isShiftedMask_32(uint32_t Value) {
342   return isMask_32((Value - 1) | Value);
343 }
344 
345 /// isShiftedMask_64 - This function returns true if the argument contains a
346 /// sequence of ones with the remainder zero (64 bit version.)
isShiftedMask_64(uint64_t Value)347 inline bool isShiftedMask_64(uint64_t Value) {
348   return isMask_64((Value - 1) | Value);
349 }
350 
351 /// isPowerOf2_32 - This function returns true if the argument is a power of
352 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
isPowerOf2_32(uint32_t Value)353 inline bool isPowerOf2_32(uint32_t Value) {
354   return Value && !(Value & (Value - 1));
355 }
356 
357 /// isPowerOf2_64 - This function returns true if the argument is a power of two
358 /// > 0 (64 bit edition.)
isPowerOf2_64(uint64_t Value)359 inline bool isPowerOf2_64(uint64_t Value) {
360   return Value && !(Value & (Value - int64_t(1L)));
361 }
362 
363 /// ByteSwap_16 - This function returns a byte-swapped representation of the
364 /// 16-bit argument, Value.
ByteSwap_16(uint16_t Value)365 inline uint16_t ByteSwap_16(uint16_t Value) {
366   return sys::SwapByteOrder_16(Value);
367 }
368 
369 /// ByteSwap_32 - This function returns a byte-swapped representation of the
370 /// 32-bit argument, Value.
ByteSwap_32(uint32_t Value)371 inline uint32_t ByteSwap_32(uint32_t Value) {
372   return sys::SwapByteOrder_32(Value);
373 }
374 
375 /// ByteSwap_64 - This function returns a byte-swapped representation of the
376 /// 64-bit argument, Value.
ByteSwap_64(uint64_t Value)377 inline uint64_t ByteSwap_64(uint64_t Value) {
378   return sys::SwapByteOrder_64(Value);
379 }
380 
381 /// CountLeadingOnes_32 - this function performs the operation of
382 /// counting the number of ones from the most significant bit to the first zero
383 /// bit.  Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
384 /// Returns 32 if the word is all ones.
CountLeadingOnes_32(uint32_t Value)385 inline unsigned CountLeadingOnes_32(uint32_t Value) {
386   return countLeadingZeros(~Value);
387 }
388 
389 /// CountLeadingOnes_64 - This function performs the operation
390 /// of counting the number of ones from the most significant bit to the first
391 /// zero bit (64 bit edition.)
392 /// Returns 64 if the word is all ones.
CountLeadingOnes_64(uint64_t Value)393 inline unsigned CountLeadingOnes_64(uint64_t Value) {
394   return countLeadingZeros(~Value);
395 }
396 
397 /// CountTrailingOnes_32 - this function performs the operation of
398 /// counting the number of ones from the least significant bit to the first zero
399 /// bit.  Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
400 /// Returns 32 if the word is all ones.
CountTrailingOnes_32(uint32_t Value)401 inline unsigned CountTrailingOnes_32(uint32_t Value) {
402   return countTrailingZeros(~Value);
403 }
404 
405 /// CountTrailingOnes_64 - This function performs the operation
406 /// of counting the number of ones from the least significant bit to the first
407 /// zero bit (64 bit edition.)
408 /// Returns 64 if the word is all ones.
CountTrailingOnes_64(uint64_t Value)409 inline unsigned CountTrailingOnes_64(uint64_t Value) {
410   return countTrailingZeros(~Value);
411 }
412 
413 /// CountPopulation_32 - this function counts the number of set bits in a value.
414 /// Ex. CountPopulation(0xF000F000) = 8
415 /// Returns 0 if the word is zero.
CountPopulation_32(uint32_t Value)416 inline unsigned CountPopulation_32(uint32_t Value) {
417 #if __GNUC__ >= 4
418   return __builtin_popcount(Value);
419 #else
420   uint32_t v = Value - ((Value >> 1) & 0x55555555);
421   v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
422   return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
423 #endif
424 }
425 
426 /// CountPopulation_64 - this function counts the number of set bits in a value,
427 /// (64 bit edition.)
CountPopulation_64(uint64_t Value)428 inline unsigned CountPopulation_64(uint64_t Value) {
429 #if __GNUC__ >= 4
430   return __builtin_popcountll(Value);
431 #else
432   uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
433   v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
434   v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
435   return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
436 #endif
437 }
438 
439 /// Log2_32 - This function returns the floor log base 2 of the specified value,
440 /// -1 if the value is zero. (32 bit edition.)
441 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
Log2_32(uint32_t Value)442 inline unsigned Log2_32(uint32_t Value) {
443   return 31 - countLeadingZeros(Value);
444 }
445 
446 /// Log2_64 - This function returns the floor log base 2 of the specified value,
447 /// -1 if the value is zero. (64 bit edition.)
Log2_64(uint64_t Value)448 inline unsigned Log2_64(uint64_t Value) {
449   return 63 - countLeadingZeros(Value);
450 }
451 
452 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
453 /// value, 32 if the value is zero. (32 bit edition).
454 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
Log2_32_Ceil(uint32_t Value)455 inline unsigned Log2_32_Ceil(uint32_t Value) {
456   return 32 - countLeadingZeros(Value - 1);
457 }
458 
459 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
460 /// value, 64 if the value is zero. (64 bit edition.)
Log2_64_Ceil(uint64_t Value)461 inline unsigned Log2_64_Ceil(uint64_t Value) {
462   return 64 - countLeadingZeros(Value - 1);
463 }
464 
465 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
466 /// values using Euclid's algorithm.
GreatestCommonDivisor64(uint64_t A,uint64_t B)467 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
468   while (B) {
469     uint64_t T = B;
470     B = A % B;
471     A = T;
472   }
473   return A;
474 }
475 
476 /// BitsToDouble - This function takes a 64-bit integer and returns the bit
477 /// equivalent double.
BitsToDouble(uint64_t Bits)478 inline double BitsToDouble(uint64_t Bits) {
479   union {
480     uint64_t L;
481     double D;
482   } T;
483   T.L = Bits;
484   return T.D;
485 }
486 
487 /// BitsToFloat - This function takes a 32-bit integer and returns the bit
488 /// equivalent float.
BitsToFloat(uint32_t Bits)489 inline float BitsToFloat(uint32_t Bits) {
490   union {
491     uint32_t I;
492     float F;
493   } T;
494   T.I = Bits;
495   return T.F;
496 }
497 
498 /// DoubleToBits - This function takes a double and returns the bit
499 /// equivalent 64-bit integer.  Note that copying doubles around
500 /// changes the bits of NaNs on some hosts, notably x86, so this
501 /// routine cannot be used if these bits are needed.
DoubleToBits(double Double)502 inline uint64_t DoubleToBits(double Double) {
503   union {
504     uint64_t L;
505     double D;
506   } T;
507   T.D = Double;
508   return T.L;
509 }
510 
511 /// FloatToBits - This function takes a float and returns the bit
512 /// equivalent 32-bit integer.  Note that copying floats around
513 /// changes the bits of NaNs on some hosts, notably x86, so this
514 /// routine cannot be used if these bits are needed.
FloatToBits(float Float)515 inline uint32_t FloatToBits(float Float) {
516   union {
517     uint32_t I;
518     float F;
519   } T;
520   T.F = Float;
521   return T.I;
522 }
523 
524 /// Platform-independent wrappers for the C99 isnan() function.
525 int IsNAN(float f);
526 int IsNAN(double d);
527 
528 /// Platform-independent wrappers for the C99 isinf() function.
529 int IsInf(float f);
530 int IsInf(double d);
531 
532 /// MinAlign - A and B are either alignments or offsets.  Return the minimum
533 /// alignment that may be assumed after adding the two together.
MinAlign(uint64_t A,uint64_t B)534 inline uint64_t MinAlign(uint64_t A, uint64_t B) {
535   // The largest power of 2 that divides both A and B.
536   //
537   // Replace "-Value" by "1+~Value" in the following commented code to avoid
538   // MSVC warning C4146
539   //    return (A | B) & -(A | B);
540   return (A | B) & (1 + ~(A | B));
541 }
542 
543 /// NextPowerOf2 - Returns the next power of two (in 64-bits)
544 /// that is strictly greater than A.  Returns zero on overflow.
NextPowerOf2(uint64_t A)545 inline uint64_t NextPowerOf2(uint64_t A) {
546   A |= (A >> 1);
547   A |= (A >> 2);
548   A |= (A >> 4);
549   A |= (A >> 8);
550   A |= (A >> 16);
551   A |= (A >> 32);
552   return A + 1;
553 }
554 
555 /// Returns the next integer (mod 2**64) that is greater than or equal to
556 /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
557 ///
558 /// Examples:
559 /// \code
560 ///   RoundUpToAlignment(5, 8) = 8
561 ///   RoundUpToAlignment(17, 8) = 24
562 ///   RoundUpToAlignment(~0LL, 8) = 0
563 /// \endcode
RoundUpToAlignment(uint64_t Value,uint64_t Align)564 inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
565   return ((Value + Align - 1) / Align) * Align;
566 }
567 
568 /// Returns the offset to the next integer (mod 2**64) that is greater than
569 /// or equal to \p Value and is a multiple of \p Align. \p Align must be
570 /// non-zero.
OffsetToAlignment(uint64_t Value,uint64_t Align)571 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
572   return RoundUpToAlignment(Value, Align) - Value;
573 }
574 
575 /// abs64 - absolute value of a 64-bit int.  Not all environments support
576 /// "abs" on whatever their name for the 64-bit int type is.  The absolute
577 /// value of the largest negative number is undefined, as with "abs".
abs64(int64_t x)578 inline int64_t abs64(int64_t x) {
579   return (x < 0) ? -x : x;
580 }
581 
582 /// SignExtend32 - Sign extend B-bit number x to 32-bit int.
583 /// Usage int32_t r = SignExtend32<5>(x);
SignExtend32(uint32_t x)584 template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
585   return int32_t(x << (32 - B)) >> (32 - B);
586 }
587 
588 /// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
589 /// Requires 0 < B <= 32.
SignExtend32(uint32_t X,unsigned B)590 inline int32_t SignExtend32(uint32_t X, unsigned B) {
591   return int32_t(X << (32 - B)) >> (32 - B);
592 }
593 
594 /// SignExtend64 - Sign extend B-bit number x to 64-bit int.
595 /// Usage int64_t r = SignExtend64<5>(x);
SignExtend64(uint64_t x)596 template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
597   return int64_t(x << (64 - B)) >> (64 - B);
598 }
599 
600 /// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
601 /// Requires 0 < B <= 64.
SignExtend64(uint64_t X,unsigned B)602 inline int64_t SignExtend64(uint64_t X, unsigned B) {
603   return int64_t(X << (64 - B)) >> (64 - B);
604 }
605 
606 } // End llvm namespace
607 
608 #endif
609