1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "assembler"
11 #include "llvm/MC/MCAssembler.h"
12 #include "llvm/ADT/Statistic.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/MC/MCAsmBackend.h"
16 #include "llvm/MC/MCAsmLayout.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCDwarf.h"
20 #include "llvm/MC/MCExpr.h"
21 #include "llvm/MC/MCFixupKindInfo.h"
22 #include "llvm/MC/MCObjectWriter.h"
23 #include "llvm/MC/MCSection.h"
24 #include "llvm/MC/MCSymbol.h"
25 #include "llvm/MC/MCValue.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/LEB128.h"
29 #include "llvm/Support/TargetRegistry.h"
30 #include "llvm/Support/raw_ostream.h"
31
32 using namespace llvm;
33
34 namespace {
35 namespace stats {
36 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
37 STATISTIC(EmittedRelaxableFragments,
38 "Number of emitted assembler fragments - relaxable");
39 STATISTIC(EmittedDataFragments,
40 "Number of emitted assembler fragments - data");
41 STATISTIC(EmittedCompactEncodedInstFragments,
42 "Number of emitted assembler fragments - compact encoded inst");
43 STATISTIC(EmittedAlignFragments,
44 "Number of emitted assembler fragments - align");
45 STATISTIC(EmittedFillFragments,
46 "Number of emitted assembler fragments - fill");
47 STATISTIC(EmittedOrgFragments,
48 "Number of emitted assembler fragments - org");
49 STATISTIC(evaluateFixup, "Number of evaluated fixups");
50 STATISTIC(FragmentLayouts, "Number of fragment layouts");
51 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
52 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
53 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
54 }
55 }
56
57 // FIXME FIXME FIXME: There are number of places in this file where we convert
58 // what is a 64-bit assembler value used for computation into a value in the
59 // object file, which may truncate it. We should detect that truncation where
60 // invalid and report errors back.
61
62 /* *** */
63
MCAsmLayout(MCAssembler & Asm)64 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
65 : Assembler(Asm), LastValidFragment()
66 {
67 // Compute the section layout order. Virtual sections must go last.
68 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
69 if (!it->getSection().isVirtualSection())
70 SectionOrder.push_back(&*it);
71 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
72 if (it->getSection().isVirtualSection())
73 SectionOrder.push_back(&*it);
74 }
75
isFragmentValid(const MCFragment * F) const76 bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
77 const MCSectionData &SD = *F->getParent();
78 const MCFragment *LastValid = LastValidFragment.lookup(&SD);
79 if (!LastValid)
80 return false;
81 assert(LastValid->getParent() == F->getParent());
82 return F->getLayoutOrder() <= LastValid->getLayoutOrder();
83 }
84
invalidateFragmentsFrom(MCFragment * F)85 void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
86 // If this fragment wasn't already valid, we don't need to do anything.
87 if (!isFragmentValid(F))
88 return;
89
90 // Otherwise, reset the last valid fragment to the previous fragment
91 // (if this is the first fragment, it will be NULL).
92 const MCSectionData &SD = *F->getParent();
93 LastValidFragment[&SD] = F->getPrevNode();
94 }
95
ensureValid(const MCFragment * F) const96 void MCAsmLayout::ensureValid(const MCFragment *F) const {
97 MCSectionData &SD = *F->getParent();
98
99 MCFragment *Cur = LastValidFragment[&SD];
100 if (!Cur)
101 Cur = &*SD.begin();
102 else
103 Cur = Cur->getNextNode();
104
105 // Advance the layout position until the fragment is valid.
106 while (!isFragmentValid(F)) {
107 assert(Cur && "Layout bookkeeping error");
108 const_cast<MCAsmLayout*>(this)->layoutFragment(Cur);
109 Cur = Cur->getNextNode();
110 }
111 }
112
getFragmentOffset(const MCFragment * F) const113 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
114 ensureValid(F);
115 assert(F->Offset != ~UINT64_C(0) && "Address not set!");
116 return F->Offset;
117 }
118
getSymbolOffset(const MCSymbolData * SD) const119 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
120 const MCSymbol &S = SD->getSymbol();
121
122 // If this is a variable, then recursively evaluate now.
123 if (S.isVariable()) {
124 MCValue Target;
125 if (!S.getVariableValue()->EvaluateAsRelocatable(Target, *this))
126 report_fatal_error("unable to evaluate offset for variable '" +
127 S.getName() + "'");
128
129 // Verify that any used symbols are defined.
130 if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined())
131 report_fatal_error("unable to evaluate offset to undefined symbol '" +
132 Target.getSymA()->getSymbol().getName() + "'");
133 if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined())
134 report_fatal_error("unable to evaluate offset to undefined symbol '" +
135 Target.getSymB()->getSymbol().getName() + "'");
136
137 uint64_t Offset = Target.getConstant();
138 if (Target.getSymA())
139 Offset += getSymbolOffset(&Assembler.getSymbolData(
140 Target.getSymA()->getSymbol()));
141 if (Target.getSymB())
142 Offset -= getSymbolOffset(&Assembler.getSymbolData(
143 Target.getSymB()->getSymbol()));
144 return Offset;
145 }
146
147 assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!");
148 return getFragmentOffset(SD->getFragment()) + SD->getOffset();
149 }
150
getSectionAddressSize(const MCSectionData * SD) const151 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
152 // The size is the last fragment's end offset.
153 const MCFragment &F = SD->getFragmentList().back();
154 return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
155 }
156
getSectionFileSize(const MCSectionData * SD) const157 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
158 // Virtual sections have no file size.
159 if (SD->getSection().isVirtualSection())
160 return 0;
161
162 // Otherwise, the file size is the same as the address space size.
163 return getSectionAddressSize(SD);
164 }
165
computeBundlePadding(const MCFragment * F,uint64_t FOffset,uint64_t FSize)166 uint64_t MCAsmLayout::computeBundlePadding(const MCFragment *F,
167 uint64_t FOffset, uint64_t FSize) {
168 uint64_t BundleSize = Assembler.getBundleAlignSize();
169 assert(BundleSize > 0 &&
170 "computeBundlePadding should only be called if bundling is enabled");
171 uint64_t BundleMask = BundleSize - 1;
172 uint64_t OffsetInBundle = FOffset & BundleMask;
173 uint64_t EndOfFragment = OffsetInBundle + FSize;
174
175 // There are two kinds of bundling restrictions:
176 //
177 // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
178 // *end* on a bundle boundary.
179 // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
180 // would, add padding until the end of the bundle so that the fragment
181 // will start in a new one.
182 if (F->alignToBundleEnd()) {
183 // Three possibilities here:
184 //
185 // A) The fragment just happens to end at a bundle boundary, so we're good.
186 // B) The fragment ends before the current bundle boundary: pad it just
187 // enough to reach the boundary.
188 // C) The fragment ends after the current bundle boundary: pad it until it
189 // reaches the end of the next bundle boundary.
190 //
191 // Note: this code could be made shorter with some modulo trickery, but it's
192 // intentionally kept in its more explicit form for simplicity.
193 if (EndOfFragment == BundleSize)
194 return 0;
195 else if (EndOfFragment < BundleSize)
196 return BundleSize - EndOfFragment;
197 else { // EndOfFragment > BundleSize
198 return 2 * BundleSize - EndOfFragment;
199 }
200 } else if (EndOfFragment > BundleSize)
201 return BundleSize - OffsetInBundle;
202 else
203 return 0;
204 }
205
206 /* *** */
207
MCFragment()208 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
209 }
210
~MCFragment()211 MCFragment::~MCFragment() {
212 }
213
MCFragment(FragmentType _Kind,MCSectionData * _Parent)214 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
215 : Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0)),
216 LayoutOrder(~(0U))
217 {
218 if (Parent)
219 Parent->getFragmentList().push_back(this);
220 }
221
222 /* *** */
223
~MCEncodedFragment()224 MCEncodedFragment::~MCEncodedFragment() {
225 }
226
227 /* *** */
228
~MCEncodedFragmentWithFixups()229 MCEncodedFragmentWithFixups::~MCEncodedFragmentWithFixups() {
230 }
231
232 /* *** */
233
MCSectionData()234 MCSectionData::MCSectionData() : Section(0) {}
235
MCSectionData(const MCSection & _Section,MCAssembler * A)236 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
237 : Section(&_Section),
238 Ordinal(~UINT32_C(0)),
239 Alignment(1),
240 BundleLockState(NotBundleLocked), BundleGroupBeforeFirstInst(false),
241 HasInstructions(false)
242 {
243 if (A)
244 A->getSectionList().push_back(this);
245 }
246
247 MCSectionData::iterator
getSubsectionInsertionPoint(unsigned Subsection)248 MCSectionData::getSubsectionInsertionPoint(unsigned Subsection) {
249 if (Subsection == 0 && SubsectionFragmentMap.empty())
250 return end();
251
252 SmallVectorImpl<std::pair<unsigned, MCFragment *> >::iterator MI =
253 std::lower_bound(SubsectionFragmentMap.begin(), SubsectionFragmentMap.end(),
254 std::make_pair(Subsection, (MCFragment *)0));
255 bool ExactMatch = false;
256 if (MI != SubsectionFragmentMap.end()) {
257 ExactMatch = MI->first == Subsection;
258 if (ExactMatch)
259 ++MI;
260 }
261 iterator IP;
262 if (MI == SubsectionFragmentMap.end())
263 IP = end();
264 else
265 IP = MI->second;
266 if (!ExactMatch && Subsection != 0) {
267 // The GNU as documentation claims that subsections have an alignment of 4,
268 // although this appears not to be the case.
269 MCFragment *F = new MCDataFragment();
270 SubsectionFragmentMap.insert(MI, std::make_pair(Subsection, F));
271 getFragmentList().insert(IP, F);
272 F->setParent(this);
273 }
274 return IP;
275 }
276
277 /* *** */
278
MCSymbolData()279 MCSymbolData::MCSymbolData() : Symbol(0) {}
280
MCSymbolData(const MCSymbol & _Symbol,MCFragment * _Fragment,uint64_t _Offset,MCAssembler * A)281 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
282 uint64_t _Offset, MCAssembler *A)
283 : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
284 IsExternal(false), IsPrivateExtern(false),
285 CommonSize(0), SymbolSize(0), CommonAlign(0),
286 Flags(0), Index(0)
287 {
288 if (A)
289 A->getSymbolList().push_back(this);
290 }
291
292 /* *** */
293
MCAssembler(MCContext & Context_,MCAsmBackend & Backend_,MCCodeEmitter & Emitter_,MCObjectWriter & Writer_,raw_ostream & OS_)294 MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
295 MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
296 raw_ostream &OS_)
297 : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(&Writer_),
298 OS(OS_), BundleAlignSize(0), RelaxAll(false), NoExecStack(false),
299 SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
300 }
301
~MCAssembler()302 MCAssembler::~MCAssembler() {
303 }
304
setWriter(MCObjectWriter & ObjectWriter)305 void MCAssembler::setWriter(MCObjectWriter &ObjectWriter) {
306 delete Writer;
307 Writer = &ObjectWriter;
308 }
309
reset()310 void MCAssembler::reset() {
311 Sections.clear();
312 Symbols.clear();
313 SectionMap.clear();
314 SymbolMap.clear();
315 IndirectSymbols.clear();
316 DataRegions.clear();
317 ThumbFuncs.clear();
318 RelaxAll = false;
319 NoExecStack = false;
320 SubsectionsViaSymbols = false;
321 ELFHeaderEFlags = 0;
322
323 // reset objects owned by us
324 getBackend().reset();
325 getEmitter().reset();
326 getWriter().reset();
327 }
328
isSymbolLinkerVisible(const MCSymbol & Symbol) const329 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
330 // Non-temporary labels should always be visible to the linker.
331 if (!Symbol.isTemporary())
332 return true;
333
334 // Absolute temporary labels are never visible.
335 if (!Symbol.isInSection())
336 return false;
337
338 // Otherwise, check if the section requires symbols even for temporary labels.
339 return getBackend().doesSectionRequireSymbols(Symbol.getSection());
340 }
341
getAtom(const MCSymbolData * SD) const342 const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
343 // Linker visible symbols define atoms.
344 if (isSymbolLinkerVisible(SD->getSymbol()))
345 return SD;
346
347 // Absolute and undefined symbols have no defining atom.
348 if (!SD->getFragment())
349 return 0;
350
351 // Non-linker visible symbols in sections which can't be atomized have no
352 // defining atom.
353 if (!getBackend().isSectionAtomizable(
354 SD->getFragment()->getParent()->getSection()))
355 return 0;
356
357 // Otherwise, return the atom for the containing fragment.
358 return SD->getFragment()->getAtom();
359 }
360
evaluateFixup(const MCAsmLayout & Layout,const MCFixup & Fixup,const MCFragment * DF,MCValue & Target,uint64_t & Value) const361 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
362 const MCFixup &Fixup, const MCFragment *DF,
363 MCValue &Target, uint64_t &Value) const {
364 ++stats::evaluateFixup;
365
366 if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout))
367 getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
368
369 bool IsPCRel = Backend.getFixupKindInfo(
370 Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
371
372 bool IsResolved;
373 if (IsPCRel) {
374 if (Target.getSymB()) {
375 IsResolved = false;
376 } else if (!Target.getSymA()) {
377 IsResolved = false;
378 } else {
379 const MCSymbolRefExpr *A = Target.getSymA();
380 const MCSymbol &SA = A->getSymbol();
381 if (A->getKind() != MCSymbolRefExpr::VK_None ||
382 SA.AliasedSymbol().isUndefined()) {
383 IsResolved = false;
384 } else {
385 const MCSymbolData &DataA = getSymbolData(SA);
386 IsResolved =
387 getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
388 *DF, false, true);
389 }
390 }
391 } else {
392 IsResolved = Target.isAbsolute();
393 }
394
395 Value = Target.getConstant();
396
397 if (const MCSymbolRefExpr *A = Target.getSymA()) {
398 const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
399 if (Sym.isDefined())
400 Value += Layout.getSymbolOffset(&getSymbolData(Sym));
401 }
402 if (const MCSymbolRefExpr *B = Target.getSymB()) {
403 const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
404 if (Sym.isDefined())
405 Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
406 }
407
408
409 bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
410 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
411 assert((ShouldAlignPC ? IsPCRel : true) &&
412 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
413
414 if (IsPCRel) {
415 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
416
417 // A number of ARM fixups in Thumb mode require that the effective PC
418 // address be determined as the 32-bit aligned version of the actual offset.
419 if (ShouldAlignPC) Offset &= ~0x3;
420 Value -= Offset;
421 }
422
423 // Let the backend adjust the fixup value if necessary, including whether
424 // we need a relocation.
425 Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
426 IsResolved);
427
428 return IsResolved;
429 }
430
computeFragmentSize(const MCAsmLayout & Layout,const MCFragment & F) const431 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
432 const MCFragment &F) const {
433 switch (F.getKind()) {
434 case MCFragment::FT_Data:
435 case MCFragment::FT_Relaxable:
436 case MCFragment::FT_CompactEncodedInst:
437 return cast<MCEncodedFragment>(F).getContents().size();
438 case MCFragment::FT_Fill:
439 return cast<MCFillFragment>(F).getSize();
440
441 case MCFragment::FT_LEB:
442 return cast<MCLEBFragment>(F).getContents().size();
443
444 case MCFragment::FT_Align: {
445 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
446 unsigned Offset = Layout.getFragmentOffset(&AF);
447 unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
448 // If we are padding with nops, force the padding to be larger than the
449 // minimum nop size.
450 if (Size > 0 && AF.hasEmitNops()) {
451 while (Size % getBackend().getMinimumNopSize())
452 Size += AF.getAlignment();
453 }
454 if (Size > AF.getMaxBytesToEmit())
455 return 0;
456 return Size;
457 }
458
459 case MCFragment::FT_Org: {
460 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
461 int64_t TargetLocation;
462 if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
463 report_fatal_error("expected assembly-time absolute expression");
464
465 // FIXME: We need a way to communicate this error.
466 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
467 int64_t Size = TargetLocation - FragmentOffset;
468 if (Size < 0 || Size >= 0x40000000)
469 report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
470 "' (at offset '" + Twine(FragmentOffset) + "')");
471 return Size;
472 }
473
474 case MCFragment::FT_Dwarf:
475 return cast<MCDwarfLineAddrFragment>(F).getContents().size();
476 case MCFragment::FT_DwarfFrame:
477 return cast<MCDwarfCallFrameFragment>(F).getContents().size();
478 }
479
480 llvm_unreachable("invalid fragment kind");
481 }
482
layoutFragment(MCFragment * F)483 void MCAsmLayout::layoutFragment(MCFragment *F) {
484 MCFragment *Prev = F->getPrevNode();
485
486 // We should never try to recompute something which is valid.
487 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
488 // We should never try to compute the fragment layout if its predecessor
489 // isn't valid.
490 assert((!Prev || isFragmentValid(Prev)) &&
491 "Attempt to compute fragment before its predecessor!");
492
493 ++stats::FragmentLayouts;
494
495 // Compute fragment offset and size.
496 if (Prev)
497 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
498 else
499 F->Offset = 0;
500 LastValidFragment[F->getParent()] = F;
501
502 // If bundling is enabled and this fragment has instructions in it, it has to
503 // obey the bundling restrictions. With padding, we'll have:
504 //
505 //
506 // BundlePadding
507 // |||
508 // -------------------------------------
509 // Prev |##########| F |
510 // -------------------------------------
511 // ^
512 // |
513 // F->Offset
514 //
515 // The fragment's offset will point to after the padding, and its computed
516 // size won't include the padding.
517 //
518 if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
519 assert(isa<MCEncodedFragment>(F) &&
520 "Only MCEncodedFragment implementations have instructions");
521 uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
522
523 if (FSize > Assembler.getBundleAlignSize())
524 report_fatal_error("Fragment can't be larger than a bundle size");
525
526 uint64_t RequiredBundlePadding = computeBundlePadding(F, F->Offset, FSize);
527 if (RequiredBundlePadding > UINT8_MAX)
528 report_fatal_error("Padding cannot exceed 255 bytes");
529 F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
530 F->Offset += RequiredBundlePadding;
531 }
532 }
533
534 /// \brief Write the contents of a fragment to the given object writer. Expects
535 /// a MCEncodedFragment.
writeFragmentContents(const MCFragment & F,MCObjectWriter * OW)536 static void writeFragmentContents(const MCFragment &F, MCObjectWriter *OW) {
537 const MCEncodedFragment &EF = cast<MCEncodedFragment>(F);
538 OW->WriteBytes(EF.getContents());
539 }
540
541 /// \brief Write the fragment \p F to the output file.
writeFragment(const MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment & F)542 static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
543 const MCFragment &F) {
544 MCObjectWriter *OW = &Asm.getWriter();
545
546 // FIXME: Embed in fragments instead?
547 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
548
549 // Should NOP padding be written out before this fragment?
550 unsigned BundlePadding = F.getBundlePadding();
551 if (BundlePadding > 0) {
552 assert(Asm.isBundlingEnabled() &&
553 "Writing bundle padding with disabled bundling");
554 assert(F.hasInstructions() &&
555 "Writing bundle padding for a fragment without instructions");
556
557 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FragmentSize);
558 if (F.alignToBundleEnd() && TotalLength > Asm.getBundleAlignSize()) {
559 // If the padding itself crosses a bundle boundary, it must be emitted
560 // in 2 pieces, since even nop instructions must not cross boundaries.
561 // v--------------v <- BundleAlignSize
562 // v---------v <- BundlePadding
563 // ----------------------------
564 // | Prev |####|####| F |
565 // ----------------------------
566 // ^-------------------^ <- TotalLength
567 unsigned DistanceToBoundary = TotalLength - Asm.getBundleAlignSize();
568 if (!Asm.getBackend().writeNopData(DistanceToBoundary, OW))
569 report_fatal_error("unable to write NOP sequence of " +
570 Twine(DistanceToBoundary) + " bytes");
571 BundlePadding -= DistanceToBoundary;
572 }
573 if (!Asm.getBackend().writeNopData(BundlePadding, OW))
574 report_fatal_error("unable to write NOP sequence of " +
575 Twine(BundlePadding) + " bytes");
576 }
577
578 // This variable (and its dummy usage) is to participate in the assert at
579 // the end of the function.
580 uint64_t Start = OW->getStream().tell();
581 (void) Start;
582
583 ++stats::EmittedFragments;
584
585 switch (F.getKind()) {
586 case MCFragment::FT_Align: {
587 ++stats::EmittedAlignFragments;
588 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
589 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
590
591 uint64_t Count = FragmentSize / AF.getValueSize();
592
593 // FIXME: This error shouldn't actually occur (the front end should emit
594 // multiple .align directives to enforce the semantics it wants), but is
595 // severe enough that we want to report it. How to handle this?
596 if (Count * AF.getValueSize() != FragmentSize)
597 report_fatal_error("undefined .align directive, value size '" +
598 Twine(AF.getValueSize()) +
599 "' is not a divisor of padding size '" +
600 Twine(FragmentSize) + "'");
601
602 // See if we are aligning with nops, and if so do that first to try to fill
603 // the Count bytes. Then if that did not fill any bytes or there are any
604 // bytes left to fill use the Value and ValueSize to fill the rest.
605 // If we are aligning with nops, ask that target to emit the right data.
606 if (AF.hasEmitNops()) {
607 if (!Asm.getBackend().writeNopData(Count, OW))
608 report_fatal_error("unable to write nop sequence of " +
609 Twine(Count) + " bytes");
610 break;
611 }
612
613 // Otherwise, write out in multiples of the value size.
614 for (uint64_t i = 0; i != Count; ++i) {
615 switch (AF.getValueSize()) {
616 default: llvm_unreachable("Invalid size!");
617 case 1: OW->Write8 (uint8_t (AF.getValue())); break;
618 case 2: OW->Write16(uint16_t(AF.getValue())); break;
619 case 4: OW->Write32(uint32_t(AF.getValue())); break;
620 case 8: OW->Write64(uint64_t(AF.getValue())); break;
621 }
622 }
623 break;
624 }
625
626 case MCFragment::FT_Data:
627 ++stats::EmittedDataFragments;
628 writeFragmentContents(F, OW);
629 break;
630
631 case MCFragment::FT_Relaxable:
632 ++stats::EmittedRelaxableFragments;
633 writeFragmentContents(F, OW);
634 break;
635
636 case MCFragment::FT_CompactEncodedInst:
637 ++stats::EmittedCompactEncodedInstFragments;
638 writeFragmentContents(F, OW);
639 break;
640
641 case MCFragment::FT_Fill: {
642 ++stats::EmittedFillFragments;
643 const MCFillFragment &FF = cast<MCFillFragment>(F);
644
645 assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
646
647 for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
648 switch (FF.getValueSize()) {
649 default: llvm_unreachable("Invalid size!");
650 case 1: OW->Write8 (uint8_t (FF.getValue())); break;
651 case 2: OW->Write16(uint16_t(FF.getValue())); break;
652 case 4: OW->Write32(uint32_t(FF.getValue())); break;
653 case 8: OW->Write64(uint64_t(FF.getValue())); break;
654 }
655 }
656 break;
657 }
658
659 case MCFragment::FT_LEB: {
660 const MCLEBFragment &LF = cast<MCLEBFragment>(F);
661 OW->WriteBytes(LF.getContents().str());
662 break;
663 }
664
665 case MCFragment::FT_Org: {
666 ++stats::EmittedOrgFragments;
667 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
668
669 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
670 OW->Write8(uint8_t(OF.getValue()));
671
672 break;
673 }
674
675 case MCFragment::FT_Dwarf: {
676 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
677 OW->WriteBytes(OF.getContents().str());
678 break;
679 }
680 case MCFragment::FT_DwarfFrame: {
681 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
682 OW->WriteBytes(CF.getContents().str());
683 break;
684 }
685 }
686
687 assert(OW->getStream().tell() - Start == FragmentSize &&
688 "The stream should advance by fragment size");
689 }
690
writeSectionData(const MCSectionData * SD,const MCAsmLayout & Layout) const691 void MCAssembler::writeSectionData(const MCSectionData *SD,
692 const MCAsmLayout &Layout) const {
693 // Ignore virtual sections.
694 if (SD->getSection().isVirtualSection()) {
695 assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
696
697 // Check that contents are only things legal inside a virtual section.
698 for (MCSectionData::const_iterator it = SD->begin(),
699 ie = SD->end(); it != ie; ++it) {
700 switch (it->getKind()) {
701 default: llvm_unreachable("Invalid fragment in virtual section!");
702 case MCFragment::FT_Data: {
703 // Check that we aren't trying to write a non-zero contents (or fixups)
704 // into a virtual section. This is to support clients which use standard
705 // directives to fill the contents of virtual sections.
706 const MCDataFragment &DF = cast<MCDataFragment>(*it);
707 assert(DF.fixup_begin() == DF.fixup_end() &&
708 "Cannot have fixups in virtual section!");
709 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
710 assert(DF.getContents()[i] == 0 &&
711 "Invalid data value for virtual section!");
712 break;
713 }
714 case MCFragment::FT_Align:
715 // Check that we aren't trying to write a non-zero value into a virtual
716 // section.
717 assert((cast<MCAlignFragment>(it)->getValueSize() == 0 ||
718 cast<MCAlignFragment>(it)->getValue() == 0) &&
719 "Invalid align in virtual section!");
720 break;
721 case MCFragment::FT_Fill:
722 assert((cast<MCFillFragment>(it)->getValueSize() == 0 ||
723 cast<MCFillFragment>(it)->getValue() == 0) &&
724 "Invalid fill in virtual section!");
725 break;
726 }
727 }
728
729 return;
730 }
731
732 uint64_t Start = getWriter().getStream().tell();
733 (void)Start;
734
735 for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end();
736 it != ie; ++it)
737 writeFragment(*this, Layout, *it);
738
739 assert(getWriter().getStream().tell() - Start ==
740 Layout.getSectionAddressSize(SD));
741 }
742
743
handleFixup(const MCAsmLayout & Layout,MCFragment & F,const MCFixup & Fixup)744 uint64_t MCAssembler::handleFixup(const MCAsmLayout &Layout,
745 MCFragment &F,
746 const MCFixup &Fixup) {
747 // Evaluate the fixup.
748 MCValue Target;
749 uint64_t FixedValue;
750 if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
751 // The fixup was unresolved, we need a relocation. Inform the object
752 // writer of the relocation, and give it an opportunity to adjust the
753 // fixup value if need be.
754 getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
755 }
756 return FixedValue;
757 }
758
Finish()759 void MCAssembler::Finish() {
760 DEBUG_WITH_TYPE("mc-dump", {
761 llvm::errs() << "assembler backend - pre-layout\n--\n";
762 dump(); });
763
764 // Create the layout object.
765 MCAsmLayout Layout(*this);
766
767 // Create dummy fragments and assign section ordinals.
768 unsigned SectionIndex = 0;
769 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
770 // Create dummy fragments to eliminate any empty sections, this simplifies
771 // layout.
772 if (it->getFragmentList().empty())
773 new MCDataFragment(it);
774
775 it->setOrdinal(SectionIndex++);
776 }
777
778 // Assign layout order indices to sections and fragments.
779 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
780 MCSectionData *SD = Layout.getSectionOrder()[i];
781 SD->setLayoutOrder(i);
782
783 unsigned FragmentIndex = 0;
784 for (MCSectionData::iterator iFrag = SD->begin(), iFragEnd = SD->end();
785 iFrag != iFragEnd; ++iFrag)
786 iFrag->setLayoutOrder(FragmentIndex++);
787 }
788
789 // Layout until everything fits.
790 while (layoutOnce(Layout))
791 continue;
792
793 DEBUG_WITH_TYPE("mc-dump", {
794 llvm::errs() << "assembler backend - post-relaxation\n--\n";
795 dump(); });
796
797 // Finalize the layout, including fragment lowering.
798 finishLayout(Layout);
799
800 DEBUG_WITH_TYPE("mc-dump", {
801 llvm::errs() << "assembler backend - final-layout\n--\n";
802 dump(); });
803
804 uint64_t StartOffset = OS.tell();
805
806 // Allow the object writer a chance to perform post-layout binding (for
807 // example, to set the index fields in the symbol data).
808 getWriter().ExecutePostLayoutBinding(*this, Layout);
809
810 // Evaluate and apply the fixups, generating relocation entries as necessary.
811 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
812 for (MCSectionData::iterator it2 = it->begin(),
813 ie2 = it->end(); it2 != ie2; ++it2) {
814 MCEncodedFragmentWithFixups *F =
815 dyn_cast<MCEncodedFragmentWithFixups>(it2);
816 if (F) {
817 for (MCEncodedFragmentWithFixups::fixup_iterator it3 = F->fixup_begin(),
818 ie3 = F->fixup_end(); it3 != ie3; ++it3) {
819 MCFixup &Fixup = *it3;
820 uint64_t FixedValue = handleFixup(Layout, *F, Fixup);
821 getBackend().applyFixup(Fixup, F->getContents().data(),
822 F->getContents().size(), FixedValue);
823 }
824 }
825 }
826 }
827
828 // Write the object file.
829 getWriter().WriteObject(*this, Layout);
830
831 stats::ObjectBytes += OS.tell() - StartOffset;
832 }
833
fixupNeedsRelaxation(const MCFixup & Fixup,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const834 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
835 const MCRelaxableFragment *DF,
836 const MCAsmLayout &Layout) const {
837 // If we cannot resolve the fixup value, it requires relaxation.
838 MCValue Target;
839 uint64_t Value;
840 if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
841 return true;
842
843 return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
844 }
845
fragmentNeedsRelaxation(const MCRelaxableFragment * F,const MCAsmLayout & Layout) const846 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
847 const MCAsmLayout &Layout) const {
848 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
849 // are intentionally pushing out inst fragments, or because we relaxed a
850 // previous instruction to one that doesn't need relaxation.
851 if (!getBackend().mayNeedRelaxation(F->getInst()))
852 return false;
853
854 for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(),
855 ie = F->fixup_end(); it != ie; ++it)
856 if (fixupNeedsRelaxation(*it, F, Layout))
857 return true;
858
859 return false;
860 }
861
relaxInstruction(MCAsmLayout & Layout,MCRelaxableFragment & F)862 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
863 MCRelaxableFragment &F) {
864 if (!fragmentNeedsRelaxation(&F, Layout))
865 return false;
866
867 ++stats::RelaxedInstructions;
868
869 // FIXME-PERF: We could immediately lower out instructions if we can tell
870 // they are fully resolved, to avoid retesting on later passes.
871
872 // Relax the fragment.
873
874 MCInst Relaxed;
875 getBackend().relaxInstruction(F.getInst(), Relaxed);
876
877 // Encode the new instruction.
878 //
879 // FIXME-PERF: If it matters, we could let the target do this. It can
880 // probably do so more efficiently in many cases.
881 SmallVector<MCFixup, 4> Fixups;
882 SmallString<256> Code;
883 raw_svector_ostream VecOS(Code);
884 getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
885 VecOS.flush();
886
887 // Update the fragment.
888 F.setInst(Relaxed);
889 F.getContents() = Code;
890 F.getFixups() = Fixups;
891
892 return true;
893 }
894
relaxLEB(MCAsmLayout & Layout,MCLEBFragment & LF)895 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
896 int64_t Value = 0;
897 uint64_t OldSize = LF.getContents().size();
898 bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout);
899 (void)IsAbs;
900 assert(IsAbs);
901 SmallString<8> &Data = LF.getContents();
902 Data.clear();
903 raw_svector_ostream OSE(Data);
904 if (LF.isSigned())
905 encodeSLEB128(Value, OSE);
906 else
907 encodeULEB128(Value, OSE);
908 OSE.flush();
909 return OldSize != LF.getContents().size();
910 }
911
relaxDwarfLineAddr(MCAsmLayout & Layout,MCDwarfLineAddrFragment & DF)912 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
913 MCDwarfLineAddrFragment &DF) {
914 MCContext &Context = Layout.getAssembler().getContext();
915 int64_t AddrDelta = 0;
916 uint64_t OldSize = DF.getContents().size();
917 bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
918 (void)IsAbs;
919 assert(IsAbs);
920 int64_t LineDelta;
921 LineDelta = DF.getLineDelta();
922 SmallString<8> &Data = DF.getContents();
923 Data.clear();
924 raw_svector_ostream OSE(Data);
925 MCDwarfLineAddr::Encode(Context, LineDelta, AddrDelta, OSE);
926 OSE.flush();
927 return OldSize != Data.size();
928 }
929
relaxDwarfCallFrameFragment(MCAsmLayout & Layout,MCDwarfCallFrameFragment & DF)930 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
931 MCDwarfCallFrameFragment &DF) {
932 MCContext &Context = Layout.getAssembler().getContext();
933 int64_t AddrDelta = 0;
934 uint64_t OldSize = DF.getContents().size();
935 bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
936 (void)IsAbs;
937 assert(IsAbs);
938 SmallString<8> &Data = DF.getContents();
939 Data.clear();
940 raw_svector_ostream OSE(Data);
941 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
942 OSE.flush();
943 return OldSize != Data.size();
944 }
945
layoutSectionOnce(MCAsmLayout & Layout,MCSectionData & SD)946 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD) {
947 // Holds the first fragment which needed relaxing during this layout. It will
948 // remain NULL if none were relaxed.
949 // When a fragment is relaxed, all the fragments following it should get
950 // invalidated because their offset is going to change.
951 MCFragment *FirstRelaxedFragment = NULL;
952
953 // Attempt to relax all the fragments in the section.
954 for (MCSectionData::iterator I = SD.begin(), IE = SD.end(); I != IE; ++I) {
955 // Check if this is a fragment that needs relaxation.
956 bool RelaxedFrag = false;
957 switch(I->getKind()) {
958 default:
959 break;
960 case MCFragment::FT_Relaxable:
961 assert(!getRelaxAll() &&
962 "Did not expect a MCRelaxableFragment in RelaxAll mode");
963 RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
964 break;
965 case MCFragment::FT_Dwarf:
966 RelaxedFrag = relaxDwarfLineAddr(Layout,
967 *cast<MCDwarfLineAddrFragment>(I));
968 break;
969 case MCFragment::FT_DwarfFrame:
970 RelaxedFrag =
971 relaxDwarfCallFrameFragment(Layout,
972 *cast<MCDwarfCallFrameFragment>(I));
973 break;
974 case MCFragment::FT_LEB:
975 RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
976 break;
977 }
978 if (RelaxedFrag && !FirstRelaxedFragment)
979 FirstRelaxedFragment = I;
980 }
981 if (FirstRelaxedFragment) {
982 Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
983 return true;
984 }
985 return false;
986 }
987
layoutOnce(MCAsmLayout & Layout)988 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
989 ++stats::RelaxationSteps;
990
991 bool WasRelaxed = false;
992 for (iterator it = begin(), ie = end(); it != ie; ++it) {
993 MCSectionData &SD = *it;
994 while (layoutSectionOnce(Layout, SD))
995 WasRelaxed = true;
996 }
997
998 return WasRelaxed;
999 }
1000
finishLayout(MCAsmLayout & Layout)1001 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1002 // The layout is done. Mark every fragment as valid.
1003 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1004 Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
1005 }
1006 }
1007
1008 // Debugging methods
1009
1010 namespace llvm {
1011
operator <<(raw_ostream & OS,const MCFixup & AF)1012 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
1013 OS << "<MCFixup" << " Offset:" << AF.getOffset()
1014 << " Value:" << *AF.getValue()
1015 << " Kind:" << AF.getKind() << ">";
1016 return OS;
1017 }
1018
1019 }
1020
1021 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump()1022 void MCFragment::dump() {
1023 raw_ostream &OS = llvm::errs();
1024
1025 OS << "<";
1026 switch (getKind()) {
1027 case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
1028 case MCFragment::FT_Data: OS << "MCDataFragment"; break;
1029 case MCFragment::FT_CompactEncodedInst:
1030 OS << "MCCompactEncodedInstFragment"; break;
1031 case MCFragment::FT_Fill: OS << "MCFillFragment"; break;
1032 case MCFragment::FT_Relaxable: OS << "MCRelaxableFragment"; break;
1033 case MCFragment::FT_Org: OS << "MCOrgFragment"; break;
1034 case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
1035 case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
1036 case MCFragment::FT_LEB: OS << "MCLEBFragment"; break;
1037 }
1038
1039 OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
1040 << " Offset:" << Offset
1041 << " HasInstructions:" << hasInstructions()
1042 << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
1043
1044 switch (getKind()) {
1045 case MCFragment::FT_Align: {
1046 const MCAlignFragment *AF = cast<MCAlignFragment>(this);
1047 if (AF->hasEmitNops())
1048 OS << " (emit nops)";
1049 OS << "\n ";
1050 OS << " Alignment:" << AF->getAlignment()
1051 << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
1052 << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
1053 break;
1054 }
1055 case MCFragment::FT_Data: {
1056 const MCDataFragment *DF = cast<MCDataFragment>(this);
1057 OS << "\n ";
1058 OS << " Contents:[";
1059 const SmallVectorImpl<char> &Contents = DF->getContents();
1060 for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1061 if (i) OS << ",";
1062 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1063 }
1064 OS << "] (" << Contents.size() << " bytes)";
1065
1066 if (DF->fixup_begin() != DF->fixup_end()) {
1067 OS << ",\n ";
1068 OS << " Fixups:[";
1069 for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
1070 ie = DF->fixup_end(); it != ie; ++it) {
1071 if (it != DF->fixup_begin()) OS << ",\n ";
1072 OS << *it;
1073 }
1074 OS << "]";
1075 }
1076 break;
1077 }
1078 case MCFragment::FT_CompactEncodedInst: {
1079 const MCCompactEncodedInstFragment *CEIF =
1080 cast<MCCompactEncodedInstFragment>(this);
1081 OS << "\n ";
1082 OS << " Contents:[";
1083 const SmallVectorImpl<char> &Contents = CEIF->getContents();
1084 for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1085 if (i) OS << ",";
1086 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1087 }
1088 OS << "] (" << Contents.size() << " bytes)";
1089 break;
1090 }
1091 case MCFragment::FT_Fill: {
1092 const MCFillFragment *FF = cast<MCFillFragment>(this);
1093 OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
1094 << " Size:" << FF->getSize();
1095 break;
1096 }
1097 case MCFragment::FT_Relaxable: {
1098 const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
1099 OS << "\n ";
1100 OS << " Inst:";
1101 F->getInst().dump_pretty(OS);
1102 break;
1103 }
1104 case MCFragment::FT_Org: {
1105 const MCOrgFragment *OF = cast<MCOrgFragment>(this);
1106 OS << "\n ";
1107 OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
1108 break;
1109 }
1110 case MCFragment::FT_Dwarf: {
1111 const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
1112 OS << "\n ";
1113 OS << " AddrDelta:" << OF->getAddrDelta()
1114 << " LineDelta:" << OF->getLineDelta();
1115 break;
1116 }
1117 case MCFragment::FT_DwarfFrame: {
1118 const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
1119 OS << "\n ";
1120 OS << " AddrDelta:" << CF->getAddrDelta();
1121 break;
1122 }
1123 case MCFragment::FT_LEB: {
1124 const MCLEBFragment *LF = cast<MCLEBFragment>(this);
1125 OS << "\n ";
1126 OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
1127 break;
1128 }
1129 }
1130 OS << ">";
1131 }
1132
dump()1133 void MCSectionData::dump() {
1134 raw_ostream &OS = llvm::errs();
1135
1136 OS << "<MCSectionData";
1137 OS << " Alignment:" << getAlignment()
1138 << " Fragments:[\n ";
1139 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1140 if (it != begin()) OS << ",\n ";
1141 it->dump();
1142 }
1143 OS << "]>";
1144 }
1145
dump()1146 void MCSymbolData::dump() {
1147 raw_ostream &OS = llvm::errs();
1148
1149 OS << "<MCSymbolData Symbol:" << getSymbol()
1150 << " Fragment:" << getFragment() << " Offset:" << getOffset()
1151 << " Flags:" << getFlags() << " Index:" << getIndex();
1152 if (isCommon())
1153 OS << " (common, size:" << getCommonSize()
1154 << " align: " << getCommonAlignment() << ")";
1155 if (isExternal())
1156 OS << " (external)";
1157 if (isPrivateExtern())
1158 OS << " (private extern)";
1159 OS << ">";
1160 }
1161
dump()1162 void MCAssembler::dump() {
1163 raw_ostream &OS = llvm::errs();
1164
1165 OS << "<MCAssembler\n";
1166 OS << " Sections:[\n ";
1167 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1168 if (it != begin()) OS << ",\n ";
1169 it->dump();
1170 }
1171 OS << "],\n";
1172 OS << " Symbols:[";
1173
1174 for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1175 if (it != symbol_begin()) OS << ",\n ";
1176 it->dump();
1177 }
1178 OS << "]>\n";
1179 }
1180 #endif
1181
1182 // anchors for MC*Fragment vtables
anchor()1183 void MCEncodedFragment::anchor() { }
anchor()1184 void MCEncodedFragmentWithFixups::anchor() { }
anchor()1185 void MCDataFragment::anchor() { }
anchor()1186 void MCCompactEncodedInstFragment::anchor() { }
anchor()1187 void MCRelaxableFragment::anchor() { }
anchor()1188 void MCAlignFragment::anchor() { }
anchor()1189 void MCFillFragment::anchor() { }
anchor()1190 void MCOrgFragment::anchor() { }
anchor()1191 void MCLEBFragment::anchor() { }
anchor()1192 void MCDwarfLineAddrFragment::anchor() { }
anchor()1193 void MCDwarfCallFrameFragment::anchor() { }
1194