• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=-- lsan_common.cc ------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of LeakSanitizer.
11 // Implementation of common leak checking functionality.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "lsan_common.h"
16 
17 #include "sanitizer_common/sanitizer_common.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_stackdepot.h"
21 #include "sanitizer_common/sanitizer_stacktrace.h"
22 #include "sanitizer_common/sanitizer_stoptheworld.h"
23 #include "sanitizer_common/sanitizer_suppressions.h"
24 
25 #if CAN_SANITIZE_LEAKS
26 namespace __lsan {
27 
28 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject.
29 BlockingMutex global_mutex(LINKER_INITIALIZED);
30 
31 THREADLOCAL int disable_counter;
DisabledInThisThread()32 bool DisabledInThisThread() { return disable_counter > 0; }
33 
34 Flags lsan_flags;
35 
InitializeFlags()36 static void InitializeFlags() {
37   Flags *f = flags();
38   // Default values.
39   f->report_objects = false;
40   f->resolution = 0;
41   f->max_leaks = 0;
42   f->exitcode = 23;
43   f->suppressions="";
44   f->use_registers = true;
45   f->use_globals = true;
46   f->use_stacks = true;
47   f->use_tls = true;
48   f->use_unaligned = false;
49   f->verbosity = 0;
50   f->log_pointers = false;
51   f->log_threads = false;
52 
53   const char *options = GetEnv("LSAN_OPTIONS");
54   if (options) {
55     ParseFlag(options, &f->use_registers, "use_registers");
56     ParseFlag(options, &f->use_globals, "use_globals");
57     ParseFlag(options, &f->use_stacks, "use_stacks");
58     ParseFlag(options, &f->use_tls, "use_tls");
59     ParseFlag(options, &f->use_unaligned, "use_unaligned");
60     ParseFlag(options, &f->report_objects, "report_objects");
61     ParseFlag(options, &f->resolution, "resolution");
62     CHECK_GE(&f->resolution, 0);
63     ParseFlag(options, &f->max_leaks, "max_leaks");
64     CHECK_GE(&f->max_leaks, 0);
65     ParseFlag(options, &f->verbosity, "verbosity");
66     ParseFlag(options, &f->log_pointers, "log_pointers");
67     ParseFlag(options, &f->log_threads, "log_threads");
68     ParseFlag(options, &f->exitcode, "exitcode");
69     ParseFlag(options, &f->suppressions, "suppressions");
70   }
71 }
72 
73 SuppressionContext *suppression_ctx;
74 
InitializeSuppressions()75 void InitializeSuppressions() {
76   CHECK(!suppression_ctx);
77   ALIGNED(64) static char placeholder_[sizeof(SuppressionContext)];
78   suppression_ctx = new(placeholder_) SuppressionContext;
79   char *suppressions_from_file;
80   uptr buffer_size;
81   if (ReadFileToBuffer(flags()->suppressions, &suppressions_from_file,
82                        &buffer_size, 1 << 26 /* max_len */))
83     suppression_ctx->Parse(suppressions_from_file);
84   if (flags()->suppressions[0] && !buffer_size) {
85     Printf("LeakSanitizer: failed to read suppressions file '%s'\n",
86            flags()->suppressions);
87     Die();
88   }
89   if (&__lsan_default_suppressions)
90     suppression_ctx->Parse(__lsan_default_suppressions());
91 }
92 
InitCommonLsan()93 void InitCommonLsan() {
94   InitializeFlags();
95   InitializeSuppressions();
96   InitializePlatformSpecificModules();
97 }
98 
CanBeAHeapPointer(uptr p)99 static inline bool CanBeAHeapPointer(uptr p) {
100   // Since our heap is located in mmap-ed memory, we can assume a sensible lower
101   // bound on heap addresses.
102   const uptr kMinAddress = 4 * 4096;
103   if (p < kMinAddress) return false;
104 #ifdef __x86_64__
105   // Accept only canonical form user-space addresses.
106   return ((p >> 47) == 0);
107 #else
108   return true;
109 #endif
110 }
111 
112 // Scans the memory range, looking for byte patterns that point into allocator
113 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
114 // There are two usage modes for this function: finding reachable or ignored
115 // chunks (|tag| = kReachable or kIgnored) and finding indirectly leaked chunks
116 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
117 // so |frontier| = 0.
ScanRangeForPointers(uptr begin,uptr end,Frontier * frontier,const char * region_type,ChunkTag tag)118 void ScanRangeForPointers(uptr begin, uptr end,
119                           Frontier *frontier,
120                           const char *region_type, ChunkTag tag) {
121   const uptr alignment = flags()->pointer_alignment();
122   if (flags()->log_pointers)
123     Report("Scanning %s range %p-%p.\n", region_type, begin, end);
124   uptr pp = begin;
125   if (pp % alignment)
126     pp = pp + alignment - pp % alignment;
127   for (; pp + sizeof(void *) <= end; pp += alignment) {  // NOLINT
128     void *p = *reinterpret_cast<void **>(pp);
129     if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
130     uptr chunk = PointsIntoChunk(p);
131     if (!chunk) continue;
132     LsanMetadata m(chunk);
133     // Reachable beats ignored beats leaked.
134     if (m.tag() == kReachable) continue;
135     if (m.tag() == kIgnored && tag != kReachable) continue;
136     m.set_tag(tag);
137     if (flags()->log_pointers)
138       Report("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
139              chunk, chunk + m.requested_size(), m.requested_size());
140     if (frontier)
141       frontier->push_back(chunk);
142   }
143 }
144 
145 // Scans thread data (stacks and TLS) for heap pointers.
ProcessThreads(SuspendedThreadsList const & suspended_threads,Frontier * frontier)146 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
147                            Frontier *frontier) {
148   InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
149   uptr registers_begin = reinterpret_cast<uptr>(registers.data());
150   uptr registers_end = registers_begin + registers.size();
151   for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
152     uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
153     if (flags()->log_threads) Report("Processing thread %d.\n", os_id);
154     uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
155     bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
156                                               &tls_begin, &tls_end,
157                                               &cache_begin, &cache_end);
158     if (!thread_found) {
159       // If a thread can't be found in the thread registry, it's probably in the
160       // process of destruction. Log this event and move on.
161       if (flags()->log_threads)
162         Report("Thread %d not found in registry.\n", os_id);
163       continue;
164     }
165     uptr sp;
166     bool have_registers =
167         (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
168     if (!have_registers) {
169       Report("Unable to get registers from thread %d.\n");
170       // If unable to get SP, consider the entire stack to be reachable.
171       sp = stack_begin;
172     }
173 
174     if (flags()->use_registers && have_registers)
175       ScanRangeForPointers(registers_begin, registers_end, frontier,
176                            "REGISTERS", kReachable);
177 
178     if (flags()->use_stacks) {
179       if (flags()->log_threads)
180         Report("Stack at %p-%p, SP = %p.\n", stack_begin, stack_end, sp);
181       if (sp < stack_begin || sp >= stack_end) {
182         // SP is outside the recorded stack range (e.g. the thread is running a
183         // signal handler on alternate stack). Again, consider the entire stack
184         // range to be reachable.
185         if (flags()->log_threads)
186           Report("WARNING: stack pointer not in stack range.\n");
187       } else {
188         // Shrink the stack range to ignore out-of-scope values.
189         stack_begin = sp;
190       }
191       ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
192                            kReachable);
193     }
194 
195     if (flags()->use_tls) {
196       if (flags()->log_threads) Report("TLS at %p-%p.\n", tls_begin, tls_end);
197       if (cache_begin == cache_end) {
198         ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
199       } else {
200         // Because LSan should not be loaded with dlopen(), we can assume
201         // that allocator cache will be part of static TLS image.
202         CHECK_LE(tls_begin, cache_begin);
203         CHECK_GE(tls_end, cache_end);
204         if (tls_begin < cache_begin)
205           ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
206                                kReachable);
207         if (tls_end > cache_end)
208           ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
209       }
210     }
211   }
212 }
213 
FloodFillTag(Frontier * frontier,ChunkTag tag)214 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
215   while (frontier->size()) {
216     uptr next_chunk = frontier->back();
217     frontier->pop_back();
218     LsanMetadata m(next_chunk);
219     ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
220                          "HEAP", tag);
221   }
222 }
223 
224 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
225 // which are reachable from it as indirectly leaked.
MarkIndirectlyLeakedCb(uptr chunk,void * arg)226 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
227   chunk = GetUserBegin(chunk);
228   LsanMetadata m(chunk);
229   if (m.allocated() && m.tag() != kReachable) {
230     ScanRangeForPointers(chunk, chunk + m.requested_size(),
231                          /* frontier */ 0, "HEAP", kIndirectlyLeaked);
232   }
233 }
234 
235 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
236 // frontier.
CollectIgnoredCb(uptr chunk,void * arg)237 static void CollectIgnoredCb(uptr chunk, void *arg) {
238   CHECK(arg);
239   chunk = GetUserBegin(chunk);
240   LsanMetadata m(chunk);
241   if (m.allocated() && m.tag() == kIgnored)
242     reinterpret_cast<Frontier *>(arg)->push_back(chunk);
243 }
244 
245 // Sets the appropriate tag on each chunk.
ClassifyAllChunks(SuspendedThreadsList const & suspended_threads)246 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
247   // Holds the flood fill frontier.
248   Frontier frontier(GetPageSizeCached());
249 
250   if (flags()->use_globals)
251     ProcessGlobalRegions(&frontier);
252   ProcessThreads(suspended_threads, &frontier);
253   FloodFillTag(&frontier, kReachable);
254   // The check here is relatively expensive, so we do this in a separate flood
255   // fill. That way we can skip the check for chunks that are reachable
256   // otherwise.
257   ProcessPlatformSpecificAllocations(&frontier);
258   FloodFillTag(&frontier, kReachable);
259 
260   if (flags()->log_pointers)
261     Report("Scanning ignored chunks.\n");
262   CHECK_EQ(0, frontier.size());
263   ForEachChunk(CollectIgnoredCb, &frontier);
264   FloodFillTag(&frontier, kIgnored);
265 
266   // Iterate over leaked chunks and mark those that are reachable from other
267   // leaked chunks.
268   if (flags()->log_pointers)
269     Report("Scanning leaked chunks.\n");
270   ForEachChunk(MarkIndirectlyLeakedCb, 0 /* arg */);
271 }
272 
PrintStackTraceById(u32 stack_trace_id)273 static void PrintStackTraceById(u32 stack_trace_id) {
274   CHECK(stack_trace_id);
275   uptr size = 0;
276   const uptr *trace = StackDepotGet(stack_trace_id, &size);
277   StackTrace::PrintStack(trace, size, common_flags()->symbolize,
278                          common_flags()->strip_path_prefix, 0);
279 }
280 
281 // ForEachChunk callback. Aggregates unreachable chunks into a LeakReport.
CollectLeaksCb(uptr chunk,void * arg)282 static void CollectLeaksCb(uptr chunk, void *arg) {
283   CHECK(arg);
284   LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
285   chunk = GetUserBegin(chunk);
286   LsanMetadata m(chunk);
287   if (!m.allocated()) return;
288   if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
289     uptr resolution = flags()->resolution;
290     if (resolution > 0) {
291       uptr size = 0;
292       const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
293       size = Min(size, resolution);
294       leak_report->Add(StackDepotPut(trace, size), m.requested_size(), m.tag());
295     } else {
296       leak_report->Add(m.stack_trace_id(), m.requested_size(), m.tag());
297     }
298   }
299 }
300 
301 // ForEachChunkCallback. Prints addresses of unreachable chunks.
PrintLeakedCb(uptr chunk,void * arg)302 static void PrintLeakedCb(uptr chunk, void *arg) {
303   chunk = GetUserBegin(chunk);
304   LsanMetadata m(chunk);
305   if (!m.allocated()) return;
306   if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
307     Printf("%s leaked %zu byte object at %p.\n",
308            m.tag() == kDirectlyLeaked ? "Directly" : "Indirectly",
309            m.requested_size(), chunk);
310   }
311 }
312 
PrintMatchedSuppressions()313 static void PrintMatchedSuppressions() {
314   InternalMmapVector<Suppression *> matched(1);
315   suppression_ctx->GetMatched(&matched);
316   if (!matched.size())
317     return;
318   const char *line = "-----------------------------------------------------";
319   Printf("%s\n", line);
320   Printf("Suppressions used:\n");
321   Printf("  count      bytes template\n");
322   for (uptr i = 0; i < matched.size(); i++)
323     Printf("%7zu %10zu %s\n", static_cast<uptr>(matched[i]->hit_count),
324            matched[i]->weight, matched[i]->templ);
325   Printf("%s\n\n", line);
326 }
327 
PrintLeaked()328 static void PrintLeaked() {
329   Printf("\n");
330   Printf("Reporting individual objects:\n");
331   ForEachChunk(PrintLeakedCb, 0 /* arg */);
332 }
333 
334 struct DoLeakCheckParam {
335   bool success;
336   LeakReport leak_report;
337 };
338 
DoLeakCheckCallback(const SuspendedThreadsList & suspended_threads,void * arg)339 static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
340                                 void *arg) {
341   DoLeakCheckParam *param = reinterpret_cast<DoLeakCheckParam *>(arg);
342   CHECK(param);
343   CHECK(!param->success);
344   CHECK(param->leak_report.IsEmpty());
345   ClassifyAllChunks(suspended_threads);
346   ForEachChunk(CollectLeaksCb, &param->leak_report);
347   if (!param->leak_report.IsEmpty() && flags()->report_objects)
348     PrintLeaked();
349   param->success = true;
350 }
351 
DoLeakCheck()352 void DoLeakCheck() {
353   EnsureMainThreadIDIsCorrect();
354   BlockingMutexLock l(&global_mutex);
355   static bool already_done;
356   if (already_done) return;
357   already_done = true;
358   if (&__lsan_is_turned_off && __lsan_is_turned_off())
359     return;
360 
361   DoLeakCheckParam param;
362   param.success = false;
363   LockThreadRegistry();
364   LockAllocator();
365   StopTheWorld(DoLeakCheckCallback, &param);
366   UnlockAllocator();
367   UnlockThreadRegistry();
368 
369   if (!param.success) {
370     Report("LeakSanitizer has encountered a fatal error.\n");
371     Die();
372   }
373   uptr have_unsuppressed = param.leak_report.ApplySuppressions();
374   if (have_unsuppressed) {
375     Printf("\n"
376            "================================================================="
377            "\n");
378     Report("ERROR: LeakSanitizer: detected memory leaks\n");
379     param.leak_report.PrintLargest(flags()->max_leaks);
380   }
381   if (have_unsuppressed || (flags()->verbosity >= 1)) {
382     PrintMatchedSuppressions();
383     param.leak_report.PrintSummary();
384   }
385   if (have_unsuppressed && flags()->exitcode)
386     internal__exit(flags()->exitcode);
387 }
388 
GetSuppressionForAddr(uptr addr)389 static Suppression *GetSuppressionForAddr(uptr addr) {
390   static const uptr kMaxAddrFrames = 16;
391   InternalScopedBuffer<AddressInfo> addr_frames(kMaxAddrFrames);
392   for (uptr i = 0; i < kMaxAddrFrames; i++) new (&addr_frames[i]) AddressInfo();
393   uptr addr_frames_num = __sanitizer::SymbolizeCode(addr, addr_frames.data(),
394                                                     kMaxAddrFrames);
395   for (uptr i = 0; i < addr_frames_num; i++) {
396     Suppression* s;
397     if (suppression_ctx->Match(addr_frames[i].function, SuppressionLeak, &s) ||
398         suppression_ctx->Match(addr_frames[i].file, SuppressionLeak, &s) ||
399         suppression_ctx->Match(addr_frames[i].module, SuppressionLeak, &s))
400       return s;
401   }
402   return 0;
403 }
404 
GetSuppressionForStack(u32 stack_trace_id)405 static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
406   uptr size = 0;
407   const uptr *trace = StackDepotGet(stack_trace_id, &size);
408   for (uptr i = 0; i < size; i++) {
409     Suppression *s =
410         GetSuppressionForAddr(StackTrace::GetPreviousInstructionPc(trace[i]));
411     if (s) return s;
412   }
413   return 0;
414 }
415 
416 ///// LeakReport implementation. /////
417 
418 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
419 // in LeakReport::Add(). We don't expect to ever see this many leaks in
420 // real-world applications.
421 // FIXME: Get rid of this limit by changing the implementation of LeakReport to
422 // use a hash table.
423 const uptr kMaxLeaksConsidered = 5000;
424 
Add(u32 stack_trace_id,uptr leaked_size,ChunkTag tag)425 void LeakReport::Add(u32 stack_trace_id, uptr leaked_size, ChunkTag tag) {
426   CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
427   bool is_directly_leaked = (tag == kDirectlyLeaked);
428   for (uptr i = 0; i < leaks_.size(); i++)
429     if (leaks_[i].stack_trace_id == stack_trace_id &&
430         leaks_[i].is_directly_leaked == is_directly_leaked) {
431       leaks_[i].hit_count++;
432       leaks_[i].total_size += leaked_size;
433       return;
434     }
435   if (leaks_.size() == kMaxLeaksConsidered) return;
436   Leak leak = { /* hit_count */ 1, leaked_size, stack_trace_id,
437                 is_directly_leaked, /* is_suppressed */ false };
438   leaks_.push_back(leak);
439 }
440 
LeakComparator(const Leak & leak1,const Leak & leak2)441 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
442   if (leak1.is_directly_leaked == leak2.is_directly_leaked)
443     return leak1.total_size > leak2.total_size;
444   else
445     return leak1.is_directly_leaked;
446 }
447 
PrintLargest(uptr num_leaks_to_print)448 void LeakReport::PrintLargest(uptr num_leaks_to_print) {
449   CHECK(leaks_.size() <= kMaxLeaksConsidered);
450   Printf("\n");
451   if (leaks_.size() == kMaxLeaksConsidered)
452     Printf("Too many leaks! Only the first %zu leaks encountered will be "
453            "reported.\n",
454            kMaxLeaksConsidered);
455 
456   uptr unsuppressed_count = 0;
457   for (uptr i = 0; i < leaks_.size(); i++)
458     if (!leaks_[i].is_suppressed) unsuppressed_count++;
459   if (num_leaks_to_print > 0 && num_leaks_to_print < unsuppressed_count)
460     Printf("The %zu largest leak(s):\n", num_leaks_to_print);
461   InternalSort(&leaks_, leaks_.size(), LeakComparator);
462   uptr leaks_printed = 0;
463   for (uptr i = 0; i < leaks_.size(); i++) {
464     if (leaks_[i].is_suppressed) continue;
465     Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
466            leaks_[i].is_directly_leaked ? "Direct" : "Indirect",
467            leaks_[i].total_size, leaks_[i].hit_count);
468     PrintStackTraceById(leaks_[i].stack_trace_id);
469     Printf("\n");
470     leaks_printed++;
471     if (leaks_printed == num_leaks_to_print) break;
472   }
473   if (leaks_printed < unsuppressed_count) {
474     uptr remaining = unsuppressed_count - leaks_printed;
475     Printf("Omitting %zu more leak(s).\n", remaining);
476   }
477 }
478 
PrintSummary()479 void LeakReport::PrintSummary() {
480   CHECK(leaks_.size() <= kMaxLeaksConsidered);
481   uptr bytes = 0, allocations = 0;
482   for (uptr i = 0; i < leaks_.size(); i++) {
483       if (leaks_[i].is_suppressed) continue;
484       bytes += leaks_[i].total_size;
485       allocations += leaks_[i].hit_count;
486   }
487   const int kMaxSummaryLength = 128;
488   InternalScopedBuffer<char> summary(kMaxSummaryLength);
489   internal_snprintf(summary.data(), kMaxSummaryLength,
490                     "LeakSanitizer: %zu byte(s) leaked in %zu allocation(s).",
491                     bytes, allocations);
492   __sanitizer_report_error_summary(summary.data());
493 }
494 
ApplySuppressions()495 uptr LeakReport::ApplySuppressions() {
496   uptr unsuppressed_count = 0;
497   for (uptr i = 0; i < leaks_.size(); i++) {
498     Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
499     if (s) {
500       s->weight += leaks_[i].total_size;
501       s->hit_count += leaks_[i].hit_count;
502       leaks_[i].is_suppressed = true;
503     } else {
504     unsuppressed_count++;
505     }
506   }
507   return unsuppressed_count;
508 }
509 }  // namespace __lsan
510 #endif  // CAN_SANITIZE_LEAKS
511 
512 using namespace __lsan;  // NOLINT
513 
514 extern "C" {
515 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_ignore_object(const void * p)516 void __lsan_ignore_object(const void *p) {
517 #if CAN_SANITIZE_LEAKS
518   // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
519   // locked.
520   BlockingMutexLock l(&global_mutex);
521   IgnoreObjectResult res = IgnoreObjectLocked(p);
522   if (res == kIgnoreObjectInvalid && flags()->verbosity >= 2)
523     Report("__lsan_ignore_object(): no heap object found at %p", p);
524   if (res == kIgnoreObjectAlreadyIgnored && flags()->verbosity >= 2)
525     Report("__lsan_ignore_object(): "
526            "heap object at %p is already being ignored\n", p);
527   if (res == kIgnoreObjectSuccess && flags()->verbosity >= 3)
528     Report("__lsan_ignore_object(): ignoring heap object at %p\n", p);
529 #endif  // CAN_SANITIZE_LEAKS
530 }
531 
532 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_disable()533 void __lsan_disable() {
534 #if CAN_SANITIZE_LEAKS
535   __lsan::disable_counter++;
536 #endif
537 }
538 
539 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_enable()540 void __lsan_enable() {
541 #if CAN_SANITIZE_LEAKS
542   if (!__lsan::disable_counter) {
543     Report("Unmatched call to __lsan_enable().\n");
544     Die();
545   }
546   __lsan::disable_counter--;
547 #endif
548 }
549 
550 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_leak_check()551 void __lsan_do_leak_check() {
552 #if CAN_SANITIZE_LEAKS
553   if (common_flags()->detect_leaks)
554     __lsan::DoLeakCheck();
555 #endif  // CAN_SANITIZE_LEAKS
556 }
557 
558 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
559 SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
__lsan_is_turned_off()560 int __lsan_is_turned_off() {
561   return 0;
562 }
563 #endif
564 }  // extern "C"
565