1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/Operator.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ConstantRange.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28
29 //===----------------------------------------------------------------------===//
30 // CallSite Class
31 //===----------------------------------------------------------------------===//
32
getCallee() const33 User::op_iterator CallSite::getCallee() const {
34 Instruction *II(getInstruction());
35 return isCall()
36 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38 }
39
40 //===----------------------------------------------------------------------===//
41 // TerminatorInst Class
42 //===----------------------------------------------------------------------===//
43
44 // Out of line virtual method, so the vtable, etc has a home.
~TerminatorInst()45 TerminatorInst::~TerminatorInst() {
46 }
47
48 //===----------------------------------------------------------------------===//
49 // UnaryInstruction Class
50 //===----------------------------------------------------------------------===//
51
52 // Out of line virtual method, so the vtable, etc has a home.
~UnaryInstruction()53 UnaryInstruction::~UnaryInstruction() {
54 }
55
56 //===----------------------------------------------------------------------===//
57 // SelectInst Class
58 //===----------------------------------------------------------------------===//
59
60 /// areInvalidOperands - Return a string if the specified operands are invalid
61 /// for a select operation, otherwise return null.
areInvalidOperands(Value * Op0,Value * Op1,Value * Op2)62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63 if (Op1->getType() != Op2->getType())
64 return "both values to select must have same type";
65
66 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
67 // Vector select.
68 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
69 return "vector select condition element type must be i1";
70 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
71 if (ET == 0)
72 return "selected values for vector select must be vectors";
73 if (ET->getNumElements() != VT->getNumElements())
74 return "vector select requires selected vectors to have "
75 "the same vector length as select condition";
76 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
77 return "select condition must be i1 or <n x i1>";
78 }
79 return 0;
80 }
81
82
83 //===----------------------------------------------------------------------===//
84 // PHINode Class
85 //===----------------------------------------------------------------------===//
86
PHINode(const PHINode & PN)87 PHINode::PHINode(const PHINode &PN)
88 : Instruction(PN.getType(), Instruction::PHI,
89 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
90 ReservedSpace(PN.getNumOperands()) {
91 std::copy(PN.op_begin(), PN.op_end(), op_begin());
92 std::copy(PN.block_begin(), PN.block_end(), block_begin());
93 SubclassOptionalData = PN.SubclassOptionalData;
94 }
95
~PHINode()96 PHINode::~PHINode() {
97 dropHungoffUses();
98 }
99
allocHungoffUses(unsigned N) const100 Use *PHINode::allocHungoffUses(unsigned N) const {
101 // Allocate the array of Uses of the incoming values, followed by a pointer
102 // (with bottom bit set) to the User, followed by the array of pointers to
103 // the incoming basic blocks.
104 size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
105 + N * sizeof(BasicBlock*);
106 Use *Begin = static_cast<Use*>(::operator new(size));
107 Use *End = Begin + N;
108 (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
109 return Use::initTags(Begin, End);
110 }
111
112 // removeIncomingValue - Remove an incoming value. This is useful if a
113 // predecessor basic block is deleted.
removeIncomingValue(unsigned Idx,bool DeletePHIIfEmpty)114 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
115 Value *Removed = getIncomingValue(Idx);
116
117 // Move everything after this operand down.
118 //
119 // FIXME: we could just swap with the end of the list, then erase. However,
120 // clients might not expect this to happen. The code as it is thrashes the
121 // use/def lists, which is kinda lame.
122 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
123 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
124
125 // Nuke the last value.
126 Op<-1>().set(0);
127 --NumOperands;
128
129 // If the PHI node is dead, because it has zero entries, nuke it now.
130 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
131 // If anyone is using this PHI, make them use a dummy value instead...
132 replaceAllUsesWith(UndefValue::get(getType()));
133 eraseFromParent();
134 }
135 return Removed;
136 }
137
138 /// growOperands - grow operands - This grows the operand list in response
139 /// to a push_back style of operation. This grows the number of ops by 1.5
140 /// times.
141 ///
growOperands()142 void PHINode::growOperands() {
143 unsigned e = getNumOperands();
144 unsigned NumOps = e + e / 2;
145 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
146
147 Use *OldOps = op_begin();
148 BasicBlock **OldBlocks = block_begin();
149
150 ReservedSpace = NumOps;
151 OperandList = allocHungoffUses(ReservedSpace);
152
153 std::copy(OldOps, OldOps + e, op_begin());
154 std::copy(OldBlocks, OldBlocks + e, block_begin());
155
156 Use::zap(OldOps, OldOps + e, true);
157 }
158
159 /// hasConstantValue - If the specified PHI node always merges together the same
160 /// value, return the value, otherwise return null.
hasConstantValue() const161 Value *PHINode::hasConstantValue() const {
162 // Exploit the fact that phi nodes always have at least one entry.
163 Value *ConstantValue = getIncomingValue(0);
164 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
165 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
166 if (ConstantValue != this)
167 return 0; // Incoming values not all the same.
168 // The case where the first value is this PHI.
169 ConstantValue = getIncomingValue(i);
170 }
171 if (ConstantValue == this)
172 return UndefValue::get(getType());
173 return ConstantValue;
174 }
175
176 //===----------------------------------------------------------------------===//
177 // LandingPadInst Implementation
178 //===----------------------------------------------------------------------===//
179
LandingPadInst(Type * RetTy,Value * PersonalityFn,unsigned NumReservedValues,const Twine & NameStr,Instruction * InsertBefore)180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
181 unsigned NumReservedValues, const Twine &NameStr,
182 Instruction *InsertBefore)
183 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
184 init(PersonalityFn, 1 + NumReservedValues, NameStr);
185 }
186
LandingPadInst(Type * RetTy,Value * PersonalityFn,unsigned NumReservedValues,const Twine & NameStr,BasicBlock * InsertAtEnd)187 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
188 unsigned NumReservedValues, const Twine &NameStr,
189 BasicBlock *InsertAtEnd)
190 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
191 init(PersonalityFn, 1 + NumReservedValues, NameStr);
192 }
193
LandingPadInst(const LandingPadInst & LP)194 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
195 : Instruction(LP.getType(), Instruction::LandingPad,
196 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
197 ReservedSpace(LP.getNumOperands()) {
198 Use *OL = OperandList, *InOL = LP.OperandList;
199 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
200 OL[I] = InOL[I];
201
202 setCleanup(LP.isCleanup());
203 }
204
~LandingPadInst()205 LandingPadInst::~LandingPadInst() {
206 dropHungoffUses();
207 }
208
Create(Type * RetTy,Value * PersonalityFn,unsigned NumReservedClauses,const Twine & NameStr,Instruction * InsertBefore)209 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
210 unsigned NumReservedClauses,
211 const Twine &NameStr,
212 Instruction *InsertBefore) {
213 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
214 InsertBefore);
215 }
216
Create(Type * RetTy,Value * PersonalityFn,unsigned NumReservedClauses,const Twine & NameStr,BasicBlock * InsertAtEnd)217 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
218 unsigned NumReservedClauses,
219 const Twine &NameStr,
220 BasicBlock *InsertAtEnd) {
221 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
222 InsertAtEnd);
223 }
224
init(Value * PersFn,unsigned NumReservedValues,const Twine & NameStr)225 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
226 const Twine &NameStr) {
227 ReservedSpace = NumReservedValues;
228 NumOperands = 1;
229 OperandList = allocHungoffUses(ReservedSpace);
230 OperandList[0] = PersFn;
231 setName(NameStr);
232 setCleanup(false);
233 }
234
235 /// growOperands - grow operands - This grows the operand list in response to a
236 /// push_back style of operation. This grows the number of ops by 2 times.
growOperands(unsigned Size)237 void LandingPadInst::growOperands(unsigned Size) {
238 unsigned e = getNumOperands();
239 if (ReservedSpace >= e + Size) return;
240 ReservedSpace = (e + Size / 2) * 2;
241
242 Use *NewOps = allocHungoffUses(ReservedSpace);
243 Use *OldOps = OperandList;
244 for (unsigned i = 0; i != e; ++i)
245 NewOps[i] = OldOps[i];
246
247 OperandList = NewOps;
248 Use::zap(OldOps, OldOps + e, true);
249 }
250
addClause(Value * Val)251 void LandingPadInst::addClause(Value *Val) {
252 unsigned OpNo = getNumOperands();
253 growOperands(1);
254 assert(OpNo < ReservedSpace && "Growing didn't work!");
255 ++NumOperands;
256 OperandList[OpNo] = Val;
257 }
258
259 //===----------------------------------------------------------------------===//
260 // CallInst Implementation
261 //===----------------------------------------------------------------------===//
262
~CallInst()263 CallInst::~CallInst() {
264 }
265
init(Value * Func,ArrayRef<Value * > Args,const Twine & NameStr)266 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
267 assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
268 Op<-1>() = Func;
269
270 #ifndef NDEBUG
271 FunctionType *FTy =
272 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
273
274 assert((Args.size() == FTy->getNumParams() ||
275 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
276 "Calling a function with bad signature!");
277
278 for (unsigned i = 0; i != Args.size(); ++i)
279 assert((i >= FTy->getNumParams() ||
280 FTy->getParamType(i) == Args[i]->getType()) &&
281 "Calling a function with a bad signature!");
282 #endif
283
284 std::copy(Args.begin(), Args.end(), op_begin());
285 setName(NameStr);
286 }
287
init(Value * Func,const Twine & NameStr)288 void CallInst::init(Value *Func, const Twine &NameStr) {
289 assert(NumOperands == 1 && "NumOperands not set up?");
290 Op<-1>() = Func;
291
292 #ifndef NDEBUG
293 FunctionType *FTy =
294 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
295
296 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
297 #endif
298
299 setName(NameStr);
300 }
301
CallInst(Value * Func,const Twine & Name,Instruction * InsertBefore)302 CallInst::CallInst(Value *Func, const Twine &Name,
303 Instruction *InsertBefore)
304 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
305 ->getElementType())->getReturnType(),
306 Instruction::Call,
307 OperandTraits<CallInst>::op_end(this) - 1,
308 1, InsertBefore) {
309 init(Func, Name);
310 }
311
CallInst(Value * Func,const Twine & Name,BasicBlock * InsertAtEnd)312 CallInst::CallInst(Value *Func, const Twine &Name,
313 BasicBlock *InsertAtEnd)
314 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
315 ->getElementType())->getReturnType(),
316 Instruction::Call,
317 OperandTraits<CallInst>::op_end(this) - 1,
318 1, InsertAtEnd) {
319 init(Func, Name);
320 }
321
CallInst(const CallInst & CI)322 CallInst::CallInst(const CallInst &CI)
323 : Instruction(CI.getType(), Instruction::Call,
324 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
325 CI.getNumOperands()) {
326 setAttributes(CI.getAttributes());
327 setTailCall(CI.isTailCall());
328 setCallingConv(CI.getCallingConv());
329
330 std::copy(CI.op_begin(), CI.op_end(), op_begin());
331 SubclassOptionalData = CI.SubclassOptionalData;
332 }
333
addAttribute(unsigned i,Attribute::AttrKind attr)334 void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
335 AttributeSet PAL = getAttributes();
336 PAL = PAL.addAttribute(getContext(), i, attr);
337 setAttributes(PAL);
338 }
339
removeAttribute(unsigned i,Attribute attr)340 void CallInst::removeAttribute(unsigned i, Attribute attr) {
341 AttributeSet PAL = getAttributes();
342 AttrBuilder B(attr);
343 LLVMContext &Context = getContext();
344 PAL = PAL.removeAttributes(Context, i,
345 AttributeSet::get(Context, i, B));
346 setAttributes(PAL);
347 }
348
hasFnAttrImpl(Attribute::AttrKind A) const349 bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const {
350 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
351 return true;
352 if (const Function *F = getCalledFunction())
353 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
354 return false;
355 }
356
paramHasAttr(unsigned i,Attribute::AttrKind A) const357 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
358 if (AttributeList.hasAttribute(i, A))
359 return true;
360 if (const Function *F = getCalledFunction())
361 return F->getAttributes().hasAttribute(i, A);
362 return false;
363 }
364
365 /// IsConstantOne - Return true only if val is constant int 1
IsConstantOne(Value * val)366 static bool IsConstantOne(Value *val) {
367 assert(val && "IsConstantOne does not work with NULL val");
368 return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
369 }
370
createMalloc(Instruction * InsertBefore,BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)371 static Instruction *createMalloc(Instruction *InsertBefore,
372 BasicBlock *InsertAtEnd, Type *IntPtrTy,
373 Type *AllocTy, Value *AllocSize,
374 Value *ArraySize, Function *MallocF,
375 const Twine &Name) {
376 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
377 "createMalloc needs either InsertBefore or InsertAtEnd");
378
379 // malloc(type) becomes:
380 // bitcast (i8* malloc(typeSize)) to type*
381 // malloc(type, arraySize) becomes:
382 // bitcast (i8 *malloc(typeSize*arraySize)) to type*
383 if (!ArraySize)
384 ArraySize = ConstantInt::get(IntPtrTy, 1);
385 else if (ArraySize->getType() != IntPtrTy) {
386 if (InsertBefore)
387 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
388 "", InsertBefore);
389 else
390 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
391 "", InsertAtEnd);
392 }
393
394 if (!IsConstantOne(ArraySize)) {
395 if (IsConstantOne(AllocSize)) {
396 AllocSize = ArraySize; // Operand * 1 = Operand
397 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
398 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
399 false /*ZExt*/);
400 // Malloc arg is constant product of type size and array size
401 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
402 } else {
403 // Multiply type size by the array size...
404 if (InsertBefore)
405 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
406 "mallocsize", InsertBefore);
407 else
408 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
409 "mallocsize", InsertAtEnd);
410 }
411 }
412
413 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
414 // Create the call to Malloc.
415 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
416 Module* M = BB->getParent()->getParent();
417 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
418 Value *MallocFunc = MallocF;
419 if (!MallocFunc)
420 // prototype malloc as "void *malloc(size_t)"
421 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
422 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
423 CallInst *MCall = NULL;
424 Instruction *Result = NULL;
425 if (InsertBefore) {
426 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
427 Result = MCall;
428 if (Result->getType() != AllocPtrType)
429 // Create a cast instruction to convert to the right type...
430 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
431 } else {
432 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
433 Result = MCall;
434 if (Result->getType() != AllocPtrType) {
435 InsertAtEnd->getInstList().push_back(MCall);
436 // Create a cast instruction to convert to the right type...
437 Result = new BitCastInst(MCall, AllocPtrType, Name);
438 }
439 }
440 MCall->setTailCall();
441 if (Function *F = dyn_cast<Function>(MallocFunc)) {
442 MCall->setCallingConv(F->getCallingConv());
443 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
444 }
445 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
446
447 return Result;
448 }
449
450 /// CreateMalloc - Generate the IR for a call to malloc:
451 /// 1. Compute the malloc call's argument as the specified type's size,
452 /// possibly multiplied by the array size if the array size is not
453 /// constant 1.
454 /// 2. Call malloc with that argument.
455 /// 3. Bitcast the result of the malloc call to the specified type.
CreateMalloc(Instruction * InsertBefore,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)456 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
457 Type *IntPtrTy, Type *AllocTy,
458 Value *AllocSize, Value *ArraySize,
459 Function * MallocF,
460 const Twine &Name) {
461 return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
462 ArraySize, MallocF, Name);
463 }
464
465 /// CreateMalloc - Generate the IR for a call to malloc:
466 /// 1. Compute the malloc call's argument as the specified type's size,
467 /// possibly multiplied by the array size if the array size is not
468 /// constant 1.
469 /// 2. Call malloc with that argument.
470 /// 3. Bitcast the result of the malloc call to the specified type.
471 /// Note: This function does not add the bitcast to the basic block, that is the
472 /// responsibility of the caller.
CreateMalloc(BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)473 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
474 Type *IntPtrTy, Type *AllocTy,
475 Value *AllocSize, Value *ArraySize,
476 Function *MallocF, const Twine &Name) {
477 return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
478 ArraySize, MallocF, Name);
479 }
480
createFree(Value * Source,Instruction * InsertBefore,BasicBlock * InsertAtEnd)481 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
482 BasicBlock *InsertAtEnd) {
483 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
484 "createFree needs either InsertBefore or InsertAtEnd");
485 assert(Source->getType()->isPointerTy() &&
486 "Can not free something of nonpointer type!");
487
488 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
489 Module* M = BB->getParent()->getParent();
490
491 Type *VoidTy = Type::getVoidTy(M->getContext());
492 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
493 // prototype free as "void free(void*)"
494 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
495 CallInst* Result = NULL;
496 Value *PtrCast = Source;
497 if (InsertBefore) {
498 if (Source->getType() != IntPtrTy)
499 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
500 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
501 } else {
502 if (Source->getType() != IntPtrTy)
503 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
504 Result = CallInst::Create(FreeFunc, PtrCast, "");
505 }
506 Result->setTailCall();
507 if (Function *F = dyn_cast<Function>(FreeFunc))
508 Result->setCallingConv(F->getCallingConv());
509
510 return Result;
511 }
512
513 /// CreateFree - Generate the IR for a call to the builtin free function.
CreateFree(Value * Source,Instruction * InsertBefore)514 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
515 return createFree(Source, InsertBefore, NULL);
516 }
517
518 /// CreateFree - Generate the IR for a call to the builtin free function.
519 /// Note: This function does not add the call to the basic block, that is the
520 /// responsibility of the caller.
CreateFree(Value * Source,BasicBlock * InsertAtEnd)521 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
522 Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
523 assert(FreeCall && "CreateFree did not create a CallInst");
524 return FreeCall;
525 }
526
527 //===----------------------------------------------------------------------===//
528 // InvokeInst Implementation
529 //===----------------------------------------------------------------------===//
530
init(Value * Fn,BasicBlock * IfNormal,BasicBlock * IfException,ArrayRef<Value * > Args,const Twine & NameStr)531 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
532 ArrayRef<Value *> Args, const Twine &NameStr) {
533 assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
534 Op<-3>() = Fn;
535 Op<-2>() = IfNormal;
536 Op<-1>() = IfException;
537
538 #ifndef NDEBUG
539 FunctionType *FTy =
540 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
541
542 assert(((Args.size() == FTy->getNumParams()) ||
543 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
544 "Invoking a function with bad signature");
545
546 for (unsigned i = 0, e = Args.size(); i != e; i++)
547 assert((i >= FTy->getNumParams() ||
548 FTy->getParamType(i) == Args[i]->getType()) &&
549 "Invoking a function with a bad signature!");
550 #endif
551
552 std::copy(Args.begin(), Args.end(), op_begin());
553 setName(NameStr);
554 }
555
InvokeInst(const InvokeInst & II)556 InvokeInst::InvokeInst(const InvokeInst &II)
557 : TerminatorInst(II.getType(), Instruction::Invoke,
558 OperandTraits<InvokeInst>::op_end(this)
559 - II.getNumOperands(),
560 II.getNumOperands()) {
561 setAttributes(II.getAttributes());
562 setCallingConv(II.getCallingConv());
563 std::copy(II.op_begin(), II.op_end(), op_begin());
564 SubclassOptionalData = II.SubclassOptionalData;
565 }
566
getSuccessorV(unsigned idx) const567 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
568 return getSuccessor(idx);
569 }
getNumSuccessorsV() const570 unsigned InvokeInst::getNumSuccessorsV() const {
571 return getNumSuccessors();
572 }
setSuccessorV(unsigned idx,BasicBlock * B)573 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
574 return setSuccessor(idx, B);
575 }
576
hasFnAttrImpl(Attribute::AttrKind A) const577 bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
578 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
579 return true;
580 if (const Function *F = getCalledFunction())
581 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
582 return false;
583 }
584
paramHasAttr(unsigned i,Attribute::AttrKind A) const585 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
586 if (AttributeList.hasAttribute(i, A))
587 return true;
588 if (const Function *F = getCalledFunction())
589 return F->getAttributes().hasAttribute(i, A);
590 return false;
591 }
592
addAttribute(unsigned i,Attribute::AttrKind attr)593 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
594 AttributeSet PAL = getAttributes();
595 PAL = PAL.addAttribute(getContext(), i, attr);
596 setAttributes(PAL);
597 }
598
removeAttribute(unsigned i,Attribute attr)599 void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
600 AttributeSet PAL = getAttributes();
601 AttrBuilder B(attr);
602 PAL = PAL.removeAttributes(getContext(), i,
603 AttributeSet::get(getContext(), i, B));
604 setAttributes(PAL);
605 }
606
getLandingPadInst() const607 LandingPadInst *InvokeInst::getLandingPadInst() const {
608 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
609 }
610
611 //===----------------------------------------------------------------------===//
612 // ReturnInst Implementation
613 //===----------------------------------------------------------------------===//
614
ReturnInst(const ReturnInst & RI)615 ReturnInst::ReturnInst(const ReturnInst &RI)
616 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
617 OperandTraits<ReturnInst>::op_end(this) -
618 RI.getNumOperands(),
619 RI.getNumOperands()) {
620 if (RI.getNumOperands())
621 Op<0>() = RI.Op<0>();
622 SubclassOptionalData = RI.SubclassOptionalData;
623 }
624
ReturnInst(LLVMContext & C,Value * retVal,Instruction * InsertBefore)625 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
626 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
627 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
628 InsertBefore) {
629 if (retVal)
630 Op<0>() = retVal;
631 }
ReturnInst(LLVMContext & C,Value * retVal,BasicBlock * InsertAtEnd)632 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
633 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
634 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
635 InsertAtEnd) {
636 if (retVal)
637 Op<0>() = retVal;
638 }
ReturnInst(LLVMContext & Context,BasicBlock * InsertAtEnd)639 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
640 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
641 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
642 }
643
getNumSuccessorsV() const644 unsigned ReturnInst::getNumSuccessorsV() const {
645 return getNumSuccessors();
646 }
647
648 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
649 /// emit the vtable for the class in this translation unit.
setSuccessorV(unsigned idx,BasicBlock * NewSucc)650 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
651 llvm_unreachable("ReturnInst has no successors!");
652 }
653
getSuccessorV(unsigned idx) const654 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
655 llvm_unreachable("ReturnInst has no successors!");
656 }
657
~ReturnInst()658 ReturnInst::~ReturnInst() {
659 }
660
661 //===----------------------------------------------------------------------===//
662 // ResumeInst Implementation
663 //===----------------------------------------------------------------------===//
664
ResumeInst(const ResumeInst & RI)665 ResumeInst::ResumeInst(const ResumeInst &RI)
666 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
667 OperandTraits<ResumeInst>::op_begin(this), 1) {
668 Op<0>() = RI.Op<0>();
669 }
670
ResumeInst(Value * Exn,Instruction * InsertBefore)671 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
672 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
673 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
674 Op<0>() = Exn;
675 }
676
ResumeInst(Value * Exn,BasicBlock * InsertAtEnd)677 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
678 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
679 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
680 Op<0>() = Exn;
681 }
682
getNumSuccessorsV() const683 unsigned ResumeInst::getNumSuccessorsV() const {
684 return getNumSuccessors();
685 }
686
setSuccessorV(unsigned idx,BasicBlock * NewSucc)687 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
688 llvm_unreachable("ResumeInst has no successors!");
689 }
690
getSuccessorV(unsigned idx) const691 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
692 llvm_unreachable("ResumeInst has no successors!");
693 }
694
695 //===----------------------------------------------------------------------===//
696 // UnreachableInst Implementation
697 //===----------------------------------------------------------------------===//
698
UnreachableInst(LLVMContext & Context,Instruction * InsertBefore)699 UnreachableInst::UnreachableInst(LLVMContext &Context,
700 Instruction *InsertBefore)
701 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
702 0, 0, InsertBefore) {
703 }
UnreachableInst(LLVMContext & Context,BasicBlock * InsertAtEnd)704 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
705 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
706 0, 0, InsertAtEnd) {
707 }
708
getNumSuccessorsV() const709 unsigned UnreachableInst::getNumSuccessorsV() const {
710 return getNumSuccessors();
711 }
712
setSuccessorV(unsigned idx,BasicBlock * NewSucc)713 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
714 llvm_unreachable("UnreachableInst has no successors!");
715 }
716
getSuccessorV(unsigned idx) const717 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
718 llvm_unreachable("UnreachableInst has no successors!");
719 }
720
721 //===----------------------------------------------------------------------===//
722 // BranchInst Implementation
723 //===----------------------------------------------------------------------===//
724
AssertOK()725 void BranchInst::AssertOK() {
726 if (isConditional())
727 assert(getCondition()->getType()->isIntegerTy(1) &&
728 "May only branch on boolean predicates!");
729 }
730
BranchInst(BasicBlock * IfTrue,Instruction * InsertBefore)731 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
732 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
733 OperandTraits<BranchInst>::op_end(this) - 1,
734 1, InsertBefore) {
735 assert(IfTrue != 0 && "Branch destination may not be null!");
736 Op<-1>() = IfTrue;
737 }
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,Instruction * InsertBefore)738 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
739 Instruction *InsertBefore)
740 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
741 OperandTraits<BranchInst>::op_end(this) - 3,
742 3, InsertBefore) {
743 Op<-1>() = IfTrue;
744 Op<-2>() = IfFalse;
745 Op<-3>() = Cond;
746 #ifndef NDEBUG
747 AssertOK();
748 #endif
749 }
750
BranchInst(BasicBlock * IfTrue,BasicBlock * InsertAtEnd)751 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
752 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
753 OperandTraits<BranchInst>::op_end(this) - 1,
754 1, InsertAtEnd) {
755 assert(IfTrue != 0 && "Branch destination may not be null!");
756 Op<-1>() = IfTrue;
757 }
758
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,BasicBlock * InsertAtEnd)759 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
760 BasicBlock *InsertAtEnd)
761 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
762 OperandTraits<BranchInst>::op_end(this) - 3,
763 3, InsertAtEnd) {
764 Op<-1>() = IfTrue;
765 Op<-2>() = IfFalse;
766 Op<-3>() = Cond;
767 #ifndef NDEBUG
768 AssertOK();
769 #endif
770 }
771
772
BranchInst(const BranchInst & BI)773 BranchInst::BranchInst(const BranchInst &BI) :
774 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
775 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
776 BI.getNumOperands()) {
777 Op<-1>() = BI.Op<-1>();
778 if (BI.getNumOperands() != 1) {
779 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
780 Op<-3>() = BI.Op<-3>();
781 Op<-2>() = BI.Op<-2>();
782 }
783 SubclassOptionalData = BI.SubclassOptionalData;
784 }
785
swapSuccessors()786 void BranchInst::swapSuccessors() {
787 assert(isConditional() &&
788 "Cannot swap successors of an unconditional branch");
789 Op<-1>().swap(Op<-2>());
790
791 // Update profile metadata if present and it matches our structural
792 // expectations.
793 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
794 if (!ProfileData || ProfileData->getNumOperands() != 3)
795 return;
796
797 // The first operand is the name. Fetch them backwards and build a new one.
798 Value *Ops[] = {
799 ProfileData->getOperand(0),
800 ProfileData->getOperand(2),
801 ProfileData->getOperand(1)
802 };
803 setMetadata(LLVMContext::MD_prof,
804 MDNode::get(ProfileData->getContext(), Ops));
805 }
806
getSuccessorV(unsigned idx) const807 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
808 return getSuccessor(idx);
809 }
getNumSuccessorsV() const810 unsigned BranchInst::getNumSuccessorsV() const {
811 return getNumSuccessors();
812 }
setSuccessorV(unsigned idx,BasicBlock * B)813 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
814 setSuccessor(idx, B);
815 }
816
817
818 //===----------------------------------------------------------------------===//
819 // AllocaInst Implementation
820 //===----------------------------------------------------------------------===//
821
getAISize(LLVMContext & Context,Value * Amt)822 static Value *getAISize(LLVMContext &Context, Value *Amt) {
823 if (!Amt)
824 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
825 else {
826 assert(!isa<BasicBlock>(Amt) &&
827 "Passed basic block into allocation size parameter! Use other ctor");
828 assert(Amt->getType()->isIntegerTy() &&
829 "Allocation array size is not an integer!");
830 }
831 return Amt;
832 }
833
AllocaInst(Type * Ty,Value * ArraySize,const Twine & Name,Instruction * InsertBefore)834 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
835 const Twine &Name, Instruction *InsertBefore)
836 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
837 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
838 setAlignment(0);
839 assert(!Ty->isVoidTy() && "Cannot allocate void!");
840 setName(Name);
841 }
842
AllocaInst(Type * Ty,Value * ArraySize,const Twine & Name,BasicBlock * InsertAtEnd)843 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
844 const Twine &Name, BasicBlock *InsertAtEnd)
845 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
846 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
847 setAlignment(0);
848 assert(!Ty->isVoidTy() && "Cannot allocate void!");
849 setName(Name);
850 }
851
AllocaInst(Type * Ty,const Twine & Name,Instruction * InsertBefore)852 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
853 Instruction *InsertBefore)
854 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
855 getAISize(Ty->getContext(), 0), InsertBefore) {
856 setAlignment(0);
857 assert(!Ty->isVoidTy() && "Cannot allocate void!");
858 setName(Name);
859 }
860
AllocaInst(Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)861 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
862 BasicBlock *InsertAtEnd)
863 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
864 getAISize(Ty->getContext(), 0), InsertAtEnd) {
865 setAlignment(0);
866 assert(!Ty->isVoidTy() && "Cannot allocate void!");
867 setName(Name);
868 }
869
AllocaInst(Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,Instruction * InsertBefore)870 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
871 const Twine &Name, Instruction *InsertBefore)
872 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
873 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
874 setAlignment(Align);
875 assert(!Ty->isVoidTy() && "Cannot allocate void!");
876 setName(Name);
877 }
878
AllocaInst(Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,BasicBlock * InsertAtEnd)879 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
880 const Twine &Name, BasicBlock *InsertAtEnd)
881 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
882 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
883 setAlignment(Align);
884 assert(!Ty->isVoidTy() && "Cannot allocate void!");
885 setName(Name);
886 }
887
888 // Out of line virtual method, so the vtable, etc has a home.
~AllocaInst()889 AllocaInst::~AllocaInst() {
890 }
891
setAlignment(unsigned Align)892 void AllocaInst::setAlignment(unsigned Align) {
893 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
894 assert(Align <= MaximumAlignment &&
895 "Alignment is greater than MaximumAlignment!");
896 setInstructionSubclassData(Log2_32(Align) + 1);
897 assert(getAlignment() == Align && "Alignment representation error!");
898 }
899
isArrayAllocation() const900 bool AllocaInst::isArrayAllocation() const {
901 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
902 return !CI->isOne();
903 return true;
904 }
905
getAllocatedType() const906 Type *AllocaInst::getAllocatedType() const {
907 return getType()->getElementType();
908 }
909
910 /// isStaticAlloca - Return true if this alloca is in the entry block of the
911 /// function and is a constant size. If so, the code generator will fold it
912 /// into the prolog/epilog code, so it is basically free.
isStaticAlloca() const913 bool AllocaInst::isStaticAlloca() const {
914 // Must be constant size.
915 if (!isa<ConstantInt>(getArraySize())) return false;
916
917 // Must be in the entry block.
918 const BasicBlock *Parent = getParent();
919 return Parent == &Parent->getParent()->front();
920 }
921
922 //===----------------------------------------------------------------------===//
923 // LoadInst Implementation
924 //===----------------------------------------------------------------------===//
925
AssertOK()926 void LoadInst::AssertOK() {
927 assert(getOperand(0)->getType()->isPointerTy() &&
928 "Ptr must have pointer type.");
929 assert(!(isAtomic() && getAlignment() == 0) &&
930 "Alignment required for atomic load");
931 }
932
LoadInst(Value * Ptr,const Twine & Name,Instruction * InsertBef)933 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
934 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
935 Load, Ptr, InsertBef) {
936 setVolatile(false);
937 setAlignment(0);
938 setAtomic(NotAtomic);
939 AssertOK();
940 setName(Name);
941 }
942
LoadInst(Value * Ptr,const Twine & Name,BasicBlock * InsertAE)943 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
944 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
945 Load, Ptr, InsertAE) {
946 setVolatile(false);
947 setAlignment(0);
948 setAtomic(NotAtomic);
949 AssertOK();
950 setName(Name);
951 }
952
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,Instruction * InsertBef)953 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
954 Instruction *InsertBef)
955 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
956 Load, Ptr, InsertBef) {
957 setVolatile(isVolatile);
958 setAlignment(0);
959 setAtomic(NotAtomic);
960 AssertOK();
961 setName(Name);
962 }
963
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,BasicBlock * InsertAE)964 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
965 BasicBlock *InsertAE)
966 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
967 Load, Ptr, InsertAE) {
968 setVolatile(isVolatile);
969 setAlignment(0);
970 setAtomic(NotAtomic);
971 AssertOK();
972 setName(Name);
973 }
974
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,Instruction * InsertBef)975 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
976 unsigned Align, Instruction *InsertBef)
977 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
978 Load, Ptr, InsertBef) {
979 setVolatile(isVolatile);
980 setAlignment(Align);
981 setAtomic(NotAtomic);
982 AssertOK();
983 setName(Name);
984 }
985
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,BasicBlock * InsertAE)986 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
987 unsigned Align, BasicBlock *InsertAE)
988 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
989 Load, Ptr, InsertAE) {
990 setVolatile(isVolatile);
991 setAlignment(Align);
992 setAtomic(NotAtomic);
993 AssertOK();
994 setName(Name);
995 }
996
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,Instruction * InsertBef)997 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
998 unsigned Align, AtomicOrdering Order,
999 SynchronizationScope SynchScope,
1000 Instruction *InsertBef)
1001 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1002 Load, Ptr, InsertBef) {
1003 setVolatile(isVolatile);
1004 setAlignment(Align);
1005 setAtomic(Order, SynchScope);
1006 AssertOK();
1007 setName(Name);
1008 }
1009
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,BasicBlock * InsertAE)1010 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1011 unsigned Align, AtomicOrdering Order,
1012 SynchronizationScope SynchScope,
1013 BasicBlock *InsertAE)
1014 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1015 Load, Ptr, InsertAE) {
1016 setVolatile(isVolatile);
1017 setAlignment(Align);
1018 setAtomic(Order, SynchScope);
1019 AssertOK();
1020 setName(Name);
1021 }
1022
LoadInst(Value * Ptr,const char * Name,Instruction * InsertBef)1023 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1024 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1025 Load, Ptr, InsertBef) {
1026 setVolatile(false);
1027 setAlignment(0);
1028 setAtomic(NotAtomic);
1029 AssertOK();
1030 if (Name && Name[0]) setName(Name);
1031 }
1032
LoadInst(Value * Ptr,const char * Name,BasicBlock * InsertAE)1033 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1034 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1035 Load, Ptr, InsertAE) {
1036 setVolatile(false);
1037 setAlignment(0);
1038 setAtomic(NotAtomic);
1039 AssertOK();
1040 if (Name && Name[0]) setName(Name);
1041 }
1042
LoadInst(Value * Ptr,const char * Name,bool isVolatile,Instruction * InsertBef)1043 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1044 Instruction *InsertBef)
1045 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1046 Load, Ptr, InsertBef) {
1047 setVolatile(isVolatile);
1048 setAlignment(0);
1049 setAtomic(NotAtomic);
1050 AssertOK();
1051 if (Name && Name[0]) setName(Name);
1052 }
1053
LoadInst(Value * Ptr,const char * Name,bool isVolatile,BasicBlock * InsertAE)1054 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1055 BasicBlock *InsertAE)
1056 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1057 Load, Ptr, InsertAE) {
1058 setVolatile(isVolatile);
1059 setAlignment(0);
1060 setAtomic(NotAtomic);
1061 AssertOK();
1062 if (Name && Name[0]) setName(Name);
1063 }
1064
setAlignment(unsigned Align)1065 void LoadInst::setAlignment(unsigned Align) {
1066 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1067 assert(Align <= MaximumAlignment &&
1068 "Alignment is greater than MaximumAlignment!");
1069 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1070 ((Log2_32(Align)+1)<<1));
1071 assert(getAlignment() == Align && "Alignment representation error!");
1072 }
1073
1074 //===----------------------------------------------------------------------===//
1075 // StoreInst Implementation
1076 //===----------------------------------------------------------------------===//
1077
AssertOK()1078 void StoreInst::AssertOK() {
1079 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1080 assert(getOperand(1)->getType()->isPointerTy() &&
1081 "Ptr must have pointer type!");
1082 assert(getOperand(0)->getType() ==
1083 cast<PointerType>(getOperand(1)->getType())->getElementType()
1084 && "Ptr must be a pointer to Val type!");
1085 assert(!(isAtomic() && getAlignment() == 0) &&
1086 "Alignment required for atomic load");
1087 }
1088
1089
StoreInst(Value * val,Value * addr,Instruction * InsertBefore)1090 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1091 : Instruction(Type::getVoidTy(val->getContext()), Store,
1092 OperandTraits<StoreInst>::op_begin(this),
1093 OperandTraits<StoreInst>::operands(this),
1094 InsertBefore) {
1095 Op<0>() = val;
1096 Op<1>() = addr;
1097 setVolatile(false);
1098 setAlignment(0);
1099 setAtomic(NotAtomic);
1100 AssertOK();
1101 }
1102
StoreInst(Value * val,Value * addr,BasicBlock * InsertAtEnd)1103 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1104 : Instruction(Type::getVoidTy(val->getContext()), Store,
1105 OperandTraits<StoreInst>::op_begin(this),
1106 OperandTraits<StoreInst>::operands(this),
1107 InsertAtEnd) {
1108 Op<0>() = val;
1109 Op<1>() = addr;
1110 setVolatile(false);
1111 setAlignment(0);
1112 setAtomic(NotAtomic);
1113 AssertOK();
1114 }
1115
StoreInst(Value * val,Value * addr,bool isVolatile,Instruction * InsertBefore)1116 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1117 Instruction *InsertBefore)
1118 : Instruction(Type::getVoidTy(val->getContext()), Store,
1119 OperandTraits<StoreInst>::op_begin(this),
1120 OperandTraits<StoreInst>::operands(this),
1121 InsertBefore) {
1122 Op<0>() = val;
1123 Op<1>() = addr;
1124 setVolatile(isVolatile);
1125 setAlignment(0);
1126 setAtomic(NotAtomic);
1127 AssertOK();
1128 }
1129
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,Instruction * InsertBefore)1130 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1131 unsigned Align, Instruction *InsertBefore)
1132 : Instruction(Type::getVoidTy(val->getContext()), Store,
1133 OperandTraits<StoreInst>::op_begin(this),
1134 OperandTraits<StoreInst>::operands(this),
1135 InsertBefore) {
1136 Op<0>() = val;
1137 Op<1>() = addr;
1138 setVolatile(isVolatile);
1139 setAlignment(Align);
1140 setAtomic(NotAtomic);
1141 AssertOK();
1142 }
1143
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,Instruction * InsertBefore)1144 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1145 unsigned Align, AtomicOrdering Order,
1146 SynchronizationScope SynchScope,
1147 Instruction *InsertBefore)
1148 : Instruction(Type::getVoidTy(val->getContext()), Store,
1149 OperandTraits<StoreInst>::op_begin(this),
1150 OperandTraits<StoreInst>::operands(this),
1151 InsertBefore) {
1152 Op<0>() = val;
1153 Op<1>() = addr;
1154 setVolatile(isVolatile);
1155 setAlignment(Align);
1156 setAtomic(Order, SynchScope);
1157 AssertOK();
1158 }
1159
StoreInst(Value * val,Value * addr,bool isVolatile,BasicBlock * InsertAtEnd)1160 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1161 BasicBlock *InsertAtEnd)
1162 : Instruction(Type::getVoidTy(val->getContext()), Store,
1163 OperandTraits<StoreInst>::op_begin(this),
1164 OperandTraits<StoreInst>::operands(this),
1165 InsertAtEnd) {
1166 Op<0>() = val;
1167 Op<1>() = addr;
1168 setVolatile(isVolatile);
1169 setAlignment(0);
1170 setAtomic(NotAtomic);
1171 AssertOK();
1172 }
1173
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,BasicBlock * InsertAtEnd)1174 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1175 unsigned Align, BasicBlock *InsertAtEnd)
1176 : Instruction(Type::getVoidTy(val->getContext()), Store,
1177 OperandTraits<StoreInst>::op_begin(this),
1178 OperandTraits<StoreInst>::operands(this),
1179 InsertAtEnd) {
1180 Op<0>() = val;
1181 Op<1>() = addr;
1182 setVolatile(isVolatile);
1183 setAlignment(Align);
1184 setAtomic(NotAtomic);
1185 AssertOK();
1186 }
1187
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1188 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1189 unsigned Align, AtomicOrdering Order,
1190 SynchronizationScope SynchScope,
1191 BasicBlock *InsertAtEnd)
1192 : Instruction(Type::getVoidTy(val->getContext()), Store,
1193 OperandTraits<StoreInst>::op_begin(this),
1194 OperandTraits<StoreInst>::operands(this),
1195 InsertAtEnd) {
1196 Op<0>() = val;
1197 Op<1>() = addr;
1198 setVolatile(isVolatile);
1199 setAlignment(Align);
1200 setAtomic(Order, SynchScope);
1201 AssertOK();
1202 }
1203
setAlignment(unsigned Align)1204 void StoreInst::setAlignment(unsigned Align) {
1205 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1206 assert(Align <= MaximumAlignment &&
1207 "Alignment is greater than MaximumAlignment!");
1208 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1209 ((Log2_32(Align)+1) << 1));
1210 assert(getAlignment() == Align && "Alignment representation error!");
1211 }
1212
1213 //===----------------------------------------------------------------------===//
1214 // AtomicCmpXchgInst Implementation
1215 //===----------------------------------------------------------------------===//
1216
Init(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering Ordering,SynchronizationScope SynchScope)1217 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1218 AtomicOrdering Ordering,
1219 SynchronizationScope SynchScope) {
1220 Op<0>() = Ptr;
1221 Op<1>() = Cmp;
1222 Op<2>() = NewVal;
1223 setOrdering(Ordering);
1224 setSynchScope(SynchScope);
1225
1226 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1227 "All operands must be non-null!");
1228 assert(getOperand(0)->getType()->isPointerTy() &&
1229 "Ptr must have pointer type!");
1230 assert(getOperand(1)->getType() ==
1231 cast<PointerType>(getOperand(0)->getType())->getElementType()
1232 && "Ptr must be a pointer to Cmp type!");
1233 assert(getOperand(2)->getType() ==
1234 cast<PointerType>(getOperand(0)->getType())->getElementType()
1235 && "Ptr must be a pointer to NewVal type!");
1236 assert(Ordering != NotAtomic &&
1237 "AtomicCmpXchg instructions must be atomic!");
1238 }
1239
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1240 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1241 AtomicOrdering Ordering,
1242 SynchronizationScope SynchScope,
1243 Instruction *InsertBefore)
1244 : Instruction(Cmp->getType(), AtomicCmpXchg,
1245 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1246 OperandTraits<AtomicCmpXchgInst>::operands(this),
1247 InsertBefore) {
1248 Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1249 }
1250
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1251 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1252 AtomicOrdering Ordering,
1253 SynchronizationScope SynchScope,
1254 BasicBlock *InsertAtEnd)
1255 : Instruction(Cmp->getType(), AtomicCmpXchg,
1256 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1257 OperandTraits<AtomicCmpXchgInst>::operands(this),
1258 InsertAtEnd) {
1259 Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1260 }
1261
1262 //===----------------------------------------------------------------------===//
1263 // AtomicRMWInst Implementation
1264 //===----------------------------------------------------------------------===//
1265
Init(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope)1266 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1267 AtomicOrdering Ordering,
1268 SynchronizationScope SynchScope) {
1269 Op<0>() = Ptr;
1270 Op<1>() = Val;
1271 setOperation(Operation);
1272 setOrdering(Ordering);
1273 setSynchScope(SynchScope);
1274
1275 assert(getOperand(0) && getOperand(1) &&
1276 "All operands must be non-null!");
1277 assert(getOperand(0)->getType()->isPointerTy() &&
1278 "Ptr must have pointer type!");
1279 assert(getOperand(1)->getType() ==
1280 cast<PointerType>(getOperand(0)->getType())->getElementType()
1281 && "Ptr must be a pointer to Val type!");
1282 assert(Ordering != NotAtomic &&
1283 "AtomicRMW instructions must be atomic!");
1284 }
1285
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1286 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1287 AtomicOrdering Ordering,
1288 SynchronizationScope SynchScope,
1289 Instruction *InsertBefore)
1290 : Instruction(Val->getType(), AtomicRMW,
1291 OperandTraits<AtomicRMWInst>::op_begin(this),
1292 OperandTraits<AtomicRMWInst>::operands(this),
1293 InsertBefore) {
1294 Init(Operation, Ptr, Val, Ordering, SynchScope);
1295 }
1296
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1297 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1298 AtomicOrdering Ordering,
1299 SynchronizationScope SynchScope,
1300 BasicBlock *InsertAtEnd)
1301 : Instruction(Val->getType(), AtomicRMW,
1302 OperandTraits<AtomicRMWInst>::op_begin(this),
1303 OperandTraits<AtomicRMWInst>::operands(this),
1304 InsertAtEnd) {
1305 Init(Operation, Ptr, Val, Ordering, SynchScope);
1306 }
1307
1308 //===----------------------------------------------------------------------===//
1309 // FenceInst Implementation
1310 //===----------------------------------------------------------------------===//
1311
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1312 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1313 SynchronizationScope SynchScope,
1314 Instruction *InsertBefore)
1315 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
1316 setOrdering(Ordering);
1317 setSynchScope(SynchScope);
1318 }
1319
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1320 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1321 SynchronizationScope SynchScope,
1322 BasicBlock *InsertAtEnd)
1323 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
1324 setOrdering(Ordering);
1325 setSynchScope(SynchScope);
1326 }
1327
1328 //===----------------------------------------------------------------------===//
1329 // GetElementPtrInst Implementation
1330 //===----------------------------------------------------------------------===//
1331
init(Value * Ptr,ArrayRef<Value * > IdxList,const Twine & Name)1332 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1333 const Twine &Name) {
1334 assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1335 OperandList[0] = Ptr;
1336 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1337 setName(Name);
1338 }
1339
GetElementPtrInst(const GetElementPtrInst & GEPI)1340 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1341 : Instruction(GEPI.getType(), GetElementPtr,
1342 OperandTraits<GetElementPtrInst>::op_end(this)
1343 - GEPI.getNumOperands(),
1344 GEPI.getNumOperands()) {
1345 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1346 SubclassOptionalData = GEPI.SubclassOptionalData;
1347 }
1348
1349 /// getIndexedType - Returns the type of the element that would be accessed with
1350 /// a gep instruction with the specified parameters.
1351 ///
1352 /// The Idxs pointer should point to a continuous piece of memory containing the
1353 /// indices, either as Value* or uint64_t.
1354 ///
1355 /// A null type is returned if the indices are invalid for the specified
1356 /// pointer type.
1357 ///
1358 template <typename IndexTy>
getIndexedTypeInternal(Type * Ptr,ArrayRef<IndexTy> IdxList)1359 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
1360 PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType());
1361 if (!PTy) return 0; // Type isn't a pointer type!
1362 Type *Agg = PTy->getElementType();
1363
1364 // Handle the special case of the empty set index set, which is always valid.
1365 if (IdxList.empty())
1366 return Agg;
1367
1368 // If there is at least one index, the top level type must be sized, otherwise
1369 // it cannot be 'stepped over'.
1370 if (!Agg->isSized())
1371 return 0;
1372
1373 unsigned CurIdx = 1;
1374 for (; CurIdx != IdxList.size(); ++CurIdx) {
1375 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1376 if (!CT || CT->isPointerTy()) return 0;
1377 IndexTy Index = IdxList[CurIdx];
1378 if (!CT->indexValid(Index)) return 0;
1379 Agg = CT->getTypeAtIndex(Index);
1380 }
1381 return CurIdx == IdxList.size() ? Agg : 0;
1382 }
1383
getIndexedType(Type * Ptr,ArrayRef<Value * > IdxList)1384 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
1385 return getIndexedTypeInternal(Ptr, IdxList);
1386 }
1387
getIndexedType(Type * Ptr,ArrayRef<Constant * > IdxList)1388 Type *GetElementPtrInst::getIndexedType(Type *Ptr,
1389 ArrayRef<Constant *> IdxList) {
1390 return getIndexedTypeInternal(Ptr, IdxList);
1391 }
1392
getIndexedType(Type * Ptr,ArrayRef<uint64_t> IdxList)1393 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
1394 return getIndexedTypeInternal(Ptr, IdxList);
1395 }
1396
1397 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1398 /// zeros. If so, the result pointer and the first operand have the same
1399 /// value, just potentially different types.
hasAllZeroIndices() const1400 bool GetElementPtrInst::hasAllZeroIndices() const {
1401 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1402 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1403 if (!CI->isZero()) return false;
1404 } else {
1405 return false;
1406 }
1407 }
1408 return true;
1409 }
1410
1411 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1412 /// constant integers. If so, the result pointer and the first operand have
1413 /// a constant offset between them.
hasAllConstantIndices() const1414 bool GetElementPtrInst::hasAllConstantIndices() const {
1415 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1416 if (!isa<ConstantInt>(getOperand(i)))
1417 return false;
1418 }
1419 return true;
1420 }
1421
setIsInBounds(bool B)1422 void GetElementPtrInst::setIsInBounds(bool B) {
1423 cast<GEPOperator>(this)->setIsInBounds(B);
1424 }
1425
isInBounds() const1426 bool GetElementPtrInst::isInBounds() const {
1427 return cast<GEPOperator>(this)->isInBounds();
1428 }
1429
accumulateConstantOffset(const DataLayout & DL,APInt & Offset) const1430 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1431 APInt &Offset) const {
1432 // Delegate to the generic GEPOperator implementation.
1433 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1434 }
1435
1436 //===----------------------------------------------------------------------===//
1437 // ExtractElementInst Implementation
1438 //===----------------------------------------------------------------------===//
1439
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,Instruction * InsertBef)1440 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1441 const Twine &Name,
1442 Instruction *InsertBef)
1443 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1444 ExtractElement,
1445 OperandTraits<ExtractElementInst>::op_begin(this),
1446 2, InsertBef) {
1447 assert(isValidOperands(Val, Index) &&
1448 "Invalid extractelement instruction operands!");
1449 Op<0>() = Val;
1450 Op<1>() = Index;
1451 setName(Name);
1452 }
1453
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,BasicBlock * InsertAE)1454 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1455 const Twine &Name,
1456 BasicBlock *InsertAE)
1457 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1458 ExtractElement,
1459 OperandTraits<ExtractElementInst>::op_begin(this),
1460 2, InsertAE) {
1461 assert(isValidOperands(Val, Index) &&
1462 "Invalid extractelement instruction operands!");
1463
1464 Op<0>() = Val;
1465 Op<1>() = Index;
1466 setName(Name);
1467 }
1468
1469
isValidOperands(const Value * Val,const Value * Index)1470 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1471 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1472 return false;
1473 return true;
1474 }
1475
1476
1477 //===----------------------------------------------------------------------===//
1478 // InsertElementInst Implementation
1479 //===----------------------------------------------------------------------===//
1480
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,Instruction * InsertBef)1481 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1482 const Twine &Name,
1483 Instruction *InsertBef)
1484 : Instruction(Vec->getType(), InsertElement,
1485 OperandTraits<InsertElementInst>::op_begin(this),
1486 3, InsertBef) {
1487 assert(isValidOperands(Vec, Elt, Index) &&
1488 "Invalid insertelement instruction operands!");
1489 Op<0>() = Vec;
1490 Op<1>() = Elt;
1491 Op<2>() = Index;
1492 setName(Name);
1493 }
1494
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,BasicBlock * InsertAE)1495 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1496 const Twine &Name,
1497 BasicBlock *InsertAE)
1498 : Instruction(Vec->getType(), InsertElement,
1499 OperandTraits<InsertElementInst>::op_begin(this),
1500 3, InsertAE) {
1501 assert(isValidOperands(Vec, Elt, Index) &&
1502 "Invalid insertelement instruction operands!");
1503
1504 Op<0>() = Vec;
1505 Op<1>() = Elt;
1506 Op<2>() = Index;
1507 setName(Name);
1508 }
1509
isValidOperands(const Value * Vec,const Value * Elt,const Value * Index)1510 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1511 const Value *Index) {
1512 if (!Vec->getType()->isVectorTy())
1513 return false; // First operand of insertelement must be vector type.
1514
1515 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1516 return false;// Second operand of insertelement must be vector element type.
1517
1518 if (!Index->getType()->isIntegerTy(32))
1519 return false; // Third operand of insertelement must be i32.
1520 return true;
1521 }
1522
1523
1524 //===----------------------------------------------------------------------===//
1525 // ShuffleVectorInst Implementation
1526 //===----------------------------------------------------------------------===//
1527
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,Instruction * InsertBefore)1528 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1529 const Twine &Name,
1530 Instruction *InsertBefore)
1531 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1532 cast<VectorType>(Mask->getType())->getNumElements()),
1533 ShuffleVector,
1534 OperandTraits<ShuffleVectorInst>::op_begin(this),
1535 OperandTraits<ShuffleVectorInst>::operands(this),
1536 InsertBefore) {
1537 assert(isValidOperands(V1, V2, Mask) &&
1538 "Invalid shuffle vector instruction operands!");
1539 Op<0>() = V1;
1540 Op<1>() = V2;
1541 Op<2>() = Mask;
1542 setName(Name);
1543 }
1544
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,BasicBlock * InsertAtEnd)1545 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1546 const Twine &Name,
1547 BasicBlock *InsertAtEnd)
1548 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1549 cast<VectorType>(Mask->getType())->getNumElements()),
1550 ShuffleVector,
1551 OperandTraits<ShuffleVectorInst>::op_begin(this),
1552 OperandTraits<ShuffleVectorInst>::operands(this),
1553 InsertAtEnd) {
1554 assert(isValidOperands(V1, V2, Mask) &&
1555 "Invalid shuffle vector instruction operands!");
1556
1557 Op<0>() = V1;
1558 Op<1>() = V2;
1559 Op<2>() = Mask;
1560 setName(Name);
1561 }
1562
isValidOperands(const Value * V1,const Value * V2,const Value * Mask)1563 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1564 const Value *Mask) {
1565 // V1 and V2 must be vectors of the same type.
1566 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1567 return false;
1568
1569 // Mask must be vector of i32.
1570 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1571 if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1572 return false;
1573
1574 // Check to see if Mask is valid.
1575 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1576 return true;
1577
1578 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1579 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1580 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1581 if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1582 if (CI->uge(V1Size*2))
1583 return false;
1584 } else if (!isa<UndefValue>(MV->getOperand(i))) {
1585 return false;
1586 }
1587 }
1588 return true;
1589 }
1590
1591 if (const ConstantDataSequential *CDS =
1592 dyn_cast<ConstantDataSequential>(Mask)) {
1593 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1594 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1595 if (CDS->getElementAsInteger(i) >= V1Size*2)
1596 return false;
1597 return true;
1598 }
1599
1600 // The bitcode reader can create a place holder for a forward reference
1601 // used as the shuffle mask. When this occurs, the shuffle mask will
1602 // fall into this case and fail. To avoid this error, do this bit of
1603 // ugliness to allow such a mask pass.
1604 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1605 if (CE->getOpcode() == Instruction::UserOp1)
1606 return true;
1607
1608 return false;
1609 }
1610
1611 /// getMaskValue - Return the index from the shuffle mask for the specified
1612 /// output result. This is either -1 if the element is undef or a number less
1613 /// than 2*numelements.
getMaskValue(Constant * Mask,unsigned i)1614 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1615 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1616 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1617 return CDS->getElementAsInteger(i);
1618 Constant *C = Mask->getAggregateElement(i);
1619 if (isa<UndefValue>(C))
1620 return -1;
1621 return cast<ConstantInt>(C)->getZExtValue();
1622 }
1623
1624 /// getShuffleMask - Return the full mask for this instruction, where each
1625 /// element is the element number and undef's are returned as -1.
getShuffleMask(Constant * Mask,SmallVectorImpl<int> & Result)1626 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1627 SmallVectorImpl<int> &Result) {
1628 unsigned NumElts = Mask->getType()->getVectorNumElements();
1629
1630 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1631 for (unsigned i = 0; i != NumElts; ++i)
1632 Result.push_back(CDS->getElementAsInteger(i));
1633 return;
1634 }
1635 for (unsigned i = 0; i != NumElts; ++i) {
1636 Constant *C = Mask->getAggregateElement(i);
1637 Result.push_back(isa<UndefValue>(C) ? -1 :
1638 cast<ConstantInt>(C)->getZExtValue());
1639 }
1640 }
1641
1642
1643 //===----------------------------------------------------------------------===//
1644 // InsertValueInst Class
1645 //===----------------------------------------------------------------------===//
1646
init(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const Twine & Name)1647 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1648 const Twine &Name) {
1649 assert(NumOperands == 2 && "NumOperands not initialized?");
1650
1651 // There's no fundamental reason why we require at least one index
1652 // (other than weirdness with &*IdxBegin being invalid; see
1653 // getelementptr's init routine for example). But there's no
1654 // present need to support it.
1655 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1656
1657 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1658 Val->getType() && "Inserted value must match indexed type!");
1659 Op<0>() = Agg;
1660 Op<1>() = Val;
1661
1662 Indices.append(Idxs.begin(), Idxs.end());
1663 setName(Name);
1664 }
1665
InsertValueInst(const InsertValueInst & IVI)1666 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1667 : Instruction(IVI.getType(), InsertValue,
1668 OperandTraits<InsertValueInst>::op_begin(this), 2),
1669 Indices(IVI.Indices) {
1670 Op<0>() = IVI.getOperand(0);
1671 Op<1>() = IVI.getOperand(1);
1672 SubclassOptionalData = IVI.SubclassOptionalData;
1673 }
1674
1675 //===----------------------------------------------------------------------===//
1676 // ExtractValueInst Class
1677 //===----------------------------------------------------------------------===//
1678
init(ArrayRef<unsigned> Idxs,const Twine & Name)1679 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1680 assert(NumOperands == 1 && "NumOperands not initialized?");
1681
1682 // There's no fundamental reason why we require at least one index.
1683 // But there's no present need to support it.
1684 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1685
1686 Indices.append(Idxs.begin(), Idxs.end());
1687 setName(Name);
1688 }
1689
ExtractValueInst(const ExtractValueInst & EVI)1690 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1691 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1692 Indices(EVI.Indices) {
1693 SubclassOptionalData = EVI.SubclassOptionalData;
1694 }
1695
1696 // getIndexedType - Returns the type of the element that would be extracted
1697 // with an extractvalue instruction with the specified parameters.
1698 //
1699 // A null type is returned if the indices are invalid for the specified
1700 // pointer type.
1701 //
getIndexedType(Type * Agg,ArrayRef<unsigned> Idxs)1702 Type *ExtractValueInst::getIndexedType(Type *Agg,
1703 ArrayRef<unsigned> Idxs) {
1704 for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
1705 unsigned Index = Idxs[CurIdx];
1706 // We can't use CompositeType::indexValid(Index) here.
1707 // indexValid() always returns true for arrays because getelementptr allows
1708 // out-of-bounds indices. Since we don't allow those for extractvalue and
1709 // insertvalue we need to check array indexing manually.
1710 // Since the only other types we can index into are struct types it's just
1711 // as easy to check those manually as well.
1712 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1713 if (Index >= AT->getNumElements())
1714 return 0;
1715 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1716 if (Index >= ST->getNumElements())
1717 return 0;
1718 } else {
1719 // Not a valid type to index into.
1720 return 0;
1721 }
1722
1723 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1724 }
1725 return const_cast<Type*>(Agg);
1726 }
1727
1728 //===----------------------------------------------------------------------===//
1729 // BinaryOperator Class
1730 //===----------------------------------------------------------------------===//
1731
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,Instruction * InsertBefore)1732 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1733 Type *Ty, const Twine &Name,
1734 Instruction *InsertBefore)
1735 : Instruction(Ty, iType,
1736 OperandTraits<BinaryOperator>::op_begin(this),
1737 OperandTraits<BinaryOperator>::operands(this),
1738 InsertBefore) {
1739 Op<0>() = S1;
1740 Op<1>() = S2;
1741 init(iType);
1742 setName(Name);
1743 }
1744
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)1745 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1746 Type *Ty, const Twine &Name,
1747 BasicBlock *InsertAtEnd)
1748 : Instruction(Ty, iType,
1749 OperandTraits<BinaryOperator>::op_begin(this),
1750 OperandTraits<BinaryOperator>::operands(this),
1751 InsertAtEnd) {
1752 Op<0>() = S1;
1753 Op<1>() = S2;
1754 init(iType);
1755 setName(Name);
1756 }
1757
1758
init(BinaryOps iType)1759 void BinaryOperator::init(BinaryOps iType) {
1760 Value *LHS = getOperand(0), *RHS = getOperand(1);
1761 (void)LHS; (void)RHS; // Silence warnings.
1762 assert(LHS->getType() == RHS->getType() &&
1763 "Binary operator operand types must match!");
1764 #ifndef NDEBUG
1765 switch (iType) {
1766 case Add: case Sub:
1767 case Mul:
1768 assert(getType() == LHS->getType() &&
1769 "Arithmetic operation should return same type as operands!");
1770 assert(getType()->isIntOrIntVectorTy() &&
1771 "Tried to create an integer operation on a non-integer type!");
1772 break;
1773 case FAdd: case FSub:
1774 case FMul:
1775 assert(getType() == LHS->getType() &&
1776 "Arithmetic operation should return same type as operands!");
1777 assert(getType()->isFPOrFPVectorTy() &&
1778 "Tried to create a floating-point operation on a "
1779 "non-floating-point type!");
1780 break;
1781 case UDiv:
1782 case SDiv:
1783 assert(getType() == LHS->getType() &&
1784 "Arithmetic operation should return same type as operands!");
1785 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1786 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1787 "Incorrect operand type (not integer) for S/UDIV");
1788 break;
1789 case FDiv:
1790 assert(getType() == LHS->getType() &&
1791 "Arithmetic operation should return same type as operands!");
1792 assert(getType()->isFPOrFPVectorTy() &&
1793 "Incorrect operand type (not floating point) for FDIV");
1794 break;
1795 case URem:
1796 case SRem:
1797 assert(getType() == LHS->getType() &&
1798 "Arithmetic operation should return same type as operands!");
1799 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1800 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1801 "Incorrect operand type (not integer) for S/UREM");
1802 break;
1803 case FRem:
1804 assert(getType() == LHS->getType() &&
1805 "Arithmetic operation should return same type as operands!");
1806 assert(getType()->isFPOrFPVectorTy() &&
1807 "Incorrect operand type (not floating point) for FREM");
1808 break;
1809 case Shl:
1810 case LShr:
1811 case AShr:
1812 assert(getType() == LHS->getType() &&
1813 "Shift operation should return same type as operands!");
1814 assert((getType()->isIntegerTy() ||
1815 (getType()->isVectorTy() &&
1816 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1817 "Tried to create a shift operation on a non-integral type!");
1818 break;
1819 case And: case Or:
1820 case Xor:
1821 assert(getType() == LHS->getType() &&
1822 "Logical operation should return same type as operands!");
1823 assert((getType()->isIntegerTy() ||
1824 (getType()->isVectorTy() &&
1825 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1826 "Tried to create a logical operation on a non-integral type!");
1827 break;
1828 default:
1829 break;
1830 }
1831 #endif
1832 }
1833
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)1834 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1835 const Twine &Name,
1836 Instruction *InsertBefore) {
1837 assert(S1->getType() == S2->getType() &&
1838 "Cannot create binary operator with two operands of differing type!");
1839 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1840 }
1841
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)1842 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1843 const Twine &Name,
1844 BasicBlock *InsertAtEnd) {
1845 BinaryOperator *Res = Create(Op, S1, S2, Name);
1846 InsertAtEnd->getInstList().push_back(Res);
1847 return Res;
1848 }
1849
CreateNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1850 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1851 Instruction *InsertBefore) {
1852 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1853 return new BinaryOperator(Instruction::Sub,
1854 zero, Op,
1855 Op->getType(), Name, InsertBefore);
1856 }
1857
CreateNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1858 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1859 BasicBlock *InsertAtEnd) {
1860 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1861 return new BinaryOperator(Instruction::Sub,
1862 zero, Op,
1863 Op->getType(), Name, InsertAtEnd);
1864 }
1865
CreateNSWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1866 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1867 Instruction *InsertBefore) {
1868 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1869 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1870 }
1871
CreateNSWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1872 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1873 BasicBlock *InsertAtEnd) {
1874 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1875 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1876 }
1877
CreateNUWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1878 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1879 Instruction *InsertBefore) {
1880 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1881 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1882 }
1883
CreateNUWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1884 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1885 BasicBlock *InsertAtEnd) {
1886 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1887 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1888 }
1889
CreateFNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1890 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1891 Instruction *InsertBefore) {
1892 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1893 return new BinaryOperator(Instruction::FSub, zero, Op,
1894 Op->getType(), Name, InsertBefore);
1895 }
1896
CreateFNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1897 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1898 BasicBlock *InsertAtEnd) {
1899 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1900 return new BinaryOperator(Instruction::FSub, zero, Op,
1901 Op->getType(), Name, InsertAtEnd);
1902 }
1903
CreateNot(Value * Op,const Twine & Name,Instruction * InsertBefore)1904 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1905 Instruction *InsertBefore) {
1906 Constant *C = Constant::getAllOnesValue(Op->getType());
1907 return new BinaryOperator(Instruction::Xor, Op, C,
1908 Op->getType(), Name, InsertBefore);
1909 }
1910
CreateNot(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1911 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1912 BasicBlock *InsertAtEnd) {
1913 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
1914 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1915 Op->getType(), Name, InsertAtEnd);
1916 }
1917
1918
1919 // isConstantAllOnes - Helper function for several functions below
isConstantAllOnes(const Value * V)1920 static inline bool isConstantAllOnes(const Value *V) {
1921 if (const Constant *C = dyn_cast<Constant>(V))
1922 return C->isAllOnesValue();
1923 return false;
1924 }
1925
isNeg(const Value * V)1926 bool BinaryOperator::isNeg(const Value *V) {
1927 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1928 if (Bop->getOpcode() == Instruction::Sub)
1929 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1930 return C->isNegativeZeroValue();
1931 return false;
1932 }
1933
isFNeg(const Value * V,bool IgnoreZeroSign)1934 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
1935 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1936 if (Bop->getOpcode() == Instruction::FSub)
1937 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
1938 if (!IgnoreZeroSign)
1939 IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
1940 return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
1941 }
1942 return false;
1943 }
1944
isNot(const Value * V)1945 bool BinaryOperator::isNot(const Value *V) {
1946 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1947 return (Bop->getOpcode() == Instruction::Xor &&
1948 (isConstantAllOnes(Bop->getOperand(1)) ||
1949 isConstantAllOnes(Bop->getOperand(0))));
1950 return false;
1951 }
1952
getNegArgument(Value * BinOp)1953 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1954 return cast<BinaryOperator>(BinOp)->getOperand(1);
1955 }
1956
getNegArgument(const Value * BinOp)1957 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1958 return getNegArgument(const_cast<Value*>(BinOp));
1959 }
1960
getFNegArgument(Value * BinOp)1961 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1962 return cast<BinaryOperator>(BinOp)->getOperand(1);
1963 }
1964
getFNegArgument(const Value * BinOp)1965 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1966 return getFNegArgument(const_cast<Value*>(BinOp));
1967 }
1968
getNotArgument(Value * BinOp)1969 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1970 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1971 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1972 Value *Op0 = BO->getOperand(0);
1973 Value *Op1 = BO->getOperand(1);
1974 if (isConstantAllOnes(Op0)) return Op1;
1975
1976 assert(isConstantAllOnes(Op1));
1977 return Op0;
1978 }
1979
getNotArgument(const Value * BinOp)1980 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1981 return getNotArgument(const_cast<Value*>(BinOp));
1982 }
1983
1984
1985 // swapOperands - Exchange the two operands to this instruction. This
1986 // instruction is safe to use on any binary instruction and does not
1987 // modify the semantics of the instruction. If the instruction is
1988 // order dependent (SetLT f.e.) the opcode is changed.
1989 //
swapOperands()1990 bool BinaryOperator::swapOperands() {
1991 if (!isCommutative())
1992 return true; // Can't commute operands
1993 Op<0>().swap(Op<1>());
1994 return false;
1995 }
1996
setHasNoUnsignedWrap(bool b)1997 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1998 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1999 }
2000
setHasNoSignedWrap(bool b)2001 void BinaryOperator::setHasNoSignedWrap(bool b) {
2002 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
2003 }
2004
setIsExact(bool b)2005 void BinaryOperator::setIsExact(bool b) {
2006 cast<PossiblyExactOperator>(this)->setIsExact(b);
2007 }
2008
hasNoUnsignedWrap() const2009 bool BinaryOperator::hasNoUnsignedWrap() const {
2010 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
2011 }
2012
hasNoSignedWrap() const2013 bool BinaryOperator::hasNoSignedWrap() const {
2014 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
2015 }
2016
isExact() const2017 bool BinaryOperator::isExact() const {
2018 return cast<PossiblyExactOperator>(this)->isExact();
2019 }
2020
2021 //===----------------------------------------------------------------------===//
2022 // FPMathOperator Class
2023 //===----------------------------------------------------------------------===//
2024
2025 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2026 /// An accuracy of 0.0 means that the operation should be performed with the
2027 /// default precision.
getFPAccuracy() const2028 float FPMathOperator::getFPAccuracy() const {
2029 const MDNode *MD =
2030 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2031 if (!MD)
2032 return 0.0;
2033 ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
2034 return Accuracy->getValueAPF().convertToFloat();
2035 }
2036
2037
2038 //===----------------------------------------------------------------------===//
2039 // CastInst Class
2040 //===----------------------------------------------------------------------===//
2041
anchor()2042 void CastInst::anchor() {}
2043
2044 // Just determine if this cast only deals with integral->integral conversion.
isIntegerCast() const2045 bool CastInst::isIntegerCast() const {
2046 switch (getOpcode()) {
2047 default: return false;
2048 case Instruction::ZExt:
2049 case Instruction::SExt:
2050 case Instruction::Trunc:
2051 return true;
2052 case Instruction::BitCast:
2053 return getOperand(0)->getType()->isIntegerTy() &&
2054 getType()->isIntegerTy();
2055 }
2056 }
2057
isLosslessCast() const2058 bool CastInst::isLosslessCast() const {
2059 // Only BitCast can be lossless, exit fast if we're not BitCast
2060 if (getOpcode() != Instruction::BitCast)
2061 return false;
2062
2063 // Identity cast is always lossless
2064 Type* SrcTy = getOperand(0)->getType();
2065 Type* DstTy = getType();
2066 if (SrcTy == DstTy)
2067 return true;
2068
2069 // Pointer to pointer is always lossless.
2070 if (SrcTy->isPointerTy())
2071 return DstTy->isPointerTy();
2072 return false; // Other types have no identity values
2073 }
2074
2075 /// This function determines if the CastInst does not require any bits to be
2076 /// changed in order to effect the cast. Essentially, it identifies cases where
2077 /// no code gen is necessary for the cast, hence the name no-op cast. For
2078 /// example, the following are all no-op casts:
2079 /// # bitcast i32* %x to i8*
2080 /// # bitcast <2 x i32> %x to <4 x i16>
2081 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2082 /// @brief Determine if the described cast is a no-op.
isNoopCast(Instruction::CastOps Opcode,Type * SrcTy,Type * DestTy,Type * IntPtrTy)2083 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2084 Type *SrcTy,
2085 Type *DestTy,
2086 Type *IntPtrTy) {
2087 switch (Opcode) {
2088 default: llvm_unreachable("Invalid CastOp");
2089 case Instruction::Trunc:
2090 case Instruction::ZExt:
2091 case Instruction::SExt:
2092 case Instruction::FPTrunc:
2093 case Instruction::FPExt:
2094 case Instruction::UIToFP:
2095 case Instruction::SIToFP:
2096 case Instruction::FPToUI:
2097 case Instruction::FPToSI:
2098 return false; // These always modify bits
2099 case Instruction::BitCast:
2100 return true; // BitCast never modifies bits.
2101 case Instruction::PtrToInt:
2102 return IntPtrTy->getScalarSizeInBits() ==
2103 DestTy->getScalarSizeInBits();
2104 case Instruction::IntToPtr:
2105 return IntPtrTy->getScalarSizeInBits() ==
2106 SrcTy->getScalarSizeInBits();
2107 }
2108 }
2109
2110 /// @brief Determine if a cast is a no-op.
isNoopCast(Type * IntPtrTy) const2111 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2112 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2113 }
2114
2115 /// This function determines if a pair of casts can be eliminated and what
2116 /// opcode should be used in the elimination. This assumes that there are two
2117 /// instructions like this:
2118 /// * %F = firstOpcode SrcTy %x to MidTy
2119 /// * %S = secondOpcode MidTy %F to DstTy
2120 /// The function returns a resultOpcode so these two casts can be replaced with:
2121 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2122 /// If no such cast is permited, the function returns 0.
isEliminableCastPair(Instruction::CastOps firstOp,Instruction::CastOps secondOp,Type * SrcTy,Type * MidTy,Type * DstTy,Type * SrcIntPtrTy,Type * MidIntPtrTy,Type * DstIntPtrTy)2123 unsigned CastInst::isEliminableCastPair(
2124 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2125 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2126 Type *DstIntPtrTy) {
2127 // Define the 144 possibilities for these two cast instructions. The values
2128 // in this matrix determine what to do in a given situation and select the
2129 // case in the switch below. The rows correspond to firstOp, the columns
2130 // correspond to secondOp. In looking at the table below, keep in mind
2131 // the following cast properties:
2132 //
2133 // Size Compare Source Destination
2134 // Operator Src ? Size Type Sign Type Sign
2135 // -------- ------------ ------------------- ---------------------
2136 // TRUNC > Integer Any Integral Any
2137 // ZEXT < Integral Unsigned Integer Any
2138 // SEXT < Integral Signed Integer Any
2139 // FPTOUI n/a FloatPt n/a Integral Unsigned
2140 // FPTOSI n/a FloatPt n/a Integral Signed
2141 // UITOFP n/a Integral Unsigned FloatPt n/a
2142 // SITOFP n/a Integral Signed FloatPt n/a
2143 // FPTRUNC > FloatPt n/a FloatPt n/a
2144 // FPEXT < FloatPt n/a FloatPt n/a
2145 // PTRTOINT n/a Pointer n/a Integral Unsigned
2146 // INTTOPTR n/a Integral Unsigned Pointer n/a
2147 // BITCAST = FirstClass n/a FirstClass n/a
2148 //
2149 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2150 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2151 // into "fptoui double to i64", but this loses information about the range
2152 // of the produced value (we no longer know the top-part is all zeros).
2153 // Further this conversion is often much more expensive for typical hardware,
2154 // and causes issues when building libgcc. We disallow fptosi+sext for the
2155 // same reason.
2156 const unsigned numCastOps =
2157 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2158 static const uint8_t CastResults[numCastOps][numCastOps] = {
2159 // T F F U S F F P I B -+
2160 // R Z S P P I I T P 2 N T |
2161 // U E E 2 2 2 2 R E I T C +- secondOp
2162 // N X X U S F F N X N 2 V |
2163 // C T T I I P P C T T P T -+
2164 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
2165 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
2166 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
2167 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
2168 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
2169 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
2170 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
2171 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
2172 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
2173 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
2174 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
2175 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
2176 };
2177
2178 // If either of the casts are a bitcast from scalar to vector, disallow the
2179 // merging. However, bitcast of A->B->A are allowed.
2180 bool isFirstBitcast = (firstOp == Instruction::BitCast);
2181 bool isSecondBitcast = (secondOp == Instruction::BitCast);
2182 bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2183
2184 // Check if any of the bitcasts convert scalars<->vectors.
2185 if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2186 (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2187 // Unless we are bitcasing to the original type, disallow optimizations.
2188 if (!chainedBitcast) return 0;
2189
2190 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2191 [secondOp-Instruction::CastOpsBegin];
2192 switch (ElimCase) {
2193 case 0:
2194 // categorically disallowed
2195 return 0;
2196 case 1:
2197 // allowed, use first cast's opcode
2198 return firstOp;
2199 case 2:
2200 // allowed, use second cast's opcode
2201 return secondOp;
2202 case 3:
2203 // no-op cast in second op implies firstOp as long as the DestTy
2204 // is integer and we are not converting between a vector and a
2205 // non vector type.
2206 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2207 return firstOp;
2208 return 0;
2209 case 4:
2210 // no-op cast in second op implies firstOp as long as the DestTy
2211 // is floating point.
2212 if (DstTy->isFloatingPointTy())
2213 return firstOp;
2214 return 0;
2215 case 5:
2216 // no-op cast in first op implies secondOp as long as the SrcTy
2217 // is an integer.
2218 if (SrcTy->isIntegerTy())
2219 return secondOp;
2220 return 0;
2221 case 6:
2222 // no-op cast in first op implies secondOp as long as the SrcTy
2223 // is a floating point.
2224 if (SrcTy->isFloatingPointTy())
2225 return secondOp;
2226 return 0;
2227 case 7: {
2228 unsigned MidSize = MidTy->getScalarSizeInBits();
2229 // Check the address spaces first. If we know they are in the same address
2230 // space, the pointer sizes must be the same so we can still fold this
2231 // without knowing the actual sizes as long we know that the intermediate
2232 // pointer is the largest possible pointer size.
2233 if (MidSize == 64 &&
2234 SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace())
2235 return Instruction::BitCast;
2236
2237 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2238 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2239 return 0;
2240 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2241 if (MidSize >= PtrSize)
2242 return Instruction::BitCast;
2243 return 0;
2244 }
2245 case 8: {
2246 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2247 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2248 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2249 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2250 unsigned DstSize = DstTy->getScalarSizeInBits();
2251 if (SrcSize == DstSize)
2252 return Instruction::BitCast;
2253 else if (SrcSize < DstSize)
2254 return firstOp;
2255 return secondOp;
2256 }
2257 case 9: // zext, sext -> zext, because sext can't sign extend after zext
2258 return Instruction::ZExt;
2259 case 10:
2260 // fpext followed by ftrunc is allowed if the bit size returned to is
2261 // the same as the original, in which case its just a bitcast
2262 if (SrcTy == DstTy)
2263 return Instruction::BitCast;
2264 return 0; // If the types are not the same we can't eliminate it.
2265 case 11: {
2266 // bitcast followed by ptrtoint is allowed as long as the bitcast is a
2267 // pointer to pointer cast, and the pointers are the same size.
2268 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy);
2269 PointerType *MidPtrTy = dyn_cast<PointerType>(MidTy);
2270 if (!SrcPtrTy || !MidPtrTy)
2271 return 0;
2272
2273 // If the address spaces are the same, we know they are the same size
2274 // without size information
2275 if (SrcPtrTy->getAddressSpace() == MidPtrTy->getAddressSpace())
2276 return secondOp;
2277
2278 if (!SrcIntPtrTy || !MidIntPtrTy)
2279 return 0;
2280
2281 if (SrcIntPtrTy->getScalarSizeInBits() ==
2282 MidIntPtrTy->getScalarSizeInBits())
2283 return secondOp;
2284
2285 return 0;
2286 }
2287 case 12: {
2288 // inttoptr, bitcast -> inttoptr if bitcast is a ptr to ptr cast
2289 // and the ptrs are to address spaces of the same size
2290 PointerType *MidPtrTy = dyn_cast<PointerType>(MidTy);
2291 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy);
2292 if (!MidPtrTy || !DstPtrTy)
2293 return 0;
2294
2295 if (MidPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2296 return firstOp;
2297
2298 if (MidIntPtrTy &&
2299 DstIntPtrTy &&
2300 MidIntPtrTy->getScalarSizeInBits() ==
2301 DstIntPtrTy->getScalarSizeInBits())
2302 return firstOp;
2303 return 0;
2304 }
2305 case 13: {
2306 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2307 if (!MidIntPtrTy)
2308 return 0;
2309 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2310 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2311 unsigned DstSize = DstTy->getScalarSizeInBits();
2312 if (SrcSize <= PtrSize && SrcSize == DstSize)
2313 return Instruction::BitCast;
2314 return 0;
2315 }
2316 case 99:
2317 // cast combination can't happen (error in input). This is for all cases
2318 // where the MidTy is not the same for the two cast instructions.
2319 llvm_unreachable("Invalid Cast Combination");
2320 default:
2321 llvm_unreachable("Error in CastResults table!!!");
2322 }
2323 }
2324
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2325 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2326 const Twine &Name, Instruction *InsertBefore) {
2327 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2328 // Construct and return the appropriate CastInst subclass
2329 switch (op) {
2330 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2331 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2332 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2333 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2334 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2335 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2336 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2337 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2338 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2339 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2340 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2341 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2342 default: llvm_unreachable("Invalid opcode provided");
2343 }
2344 }
2345
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2346 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2347 const Twine &Name, BasicBlock *InsertAtEnd) {
2348 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2349 // Construct and return the appropriate CastInst subclass
2350 switch (op) {
2351 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2352 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2353 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2354 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2355 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2356 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2357 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2358 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2359 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2360 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2361 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2362 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2363 default: llvm_unreachable("Invalid opcode provided");
2364 }
2365 }
2366
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2367 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2368 const Twine &Name,
2369 Instruction *InsertBefore) {
2370 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2371 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2372 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2373 }
2374
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2375 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2376 const Twine &Name,
2377 BasicBlock *InsertAtEnd) {
2378 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2379 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2380 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2381 }
2382
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2383 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2384 const Twine &Name,
2385 Instruction *InsertBefore) {
2386 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2387 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2388 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2389 }
2390
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2391 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2392 const Twine &Name,
2393 BasicBlock *InsertAtEnd) {
2394 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2395 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2396 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2397 }
2398
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2399 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2400 const Twine &Name,
2401 Instruction *InsertBefore) {
2402 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2403 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2404 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2405 }
2406
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2407 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2408 const Twine &Name,
2409 BasicBlock *InsertAtEnd) {
2410 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2411 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2412 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2413 }
2414
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2415 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2416 const Twine &Name,
2417 BasicBlock *InsertAtEnd) {
2418 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2419 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2420 "Invalid cast");
2421 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2422 assert((!Ty->isVectorTy() ||
2423 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2424 "Invalid cast");
2425
2426 if (Ty->isIntOrIntVectorTy())
2427 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2428 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2429 }
2430
2431 /// @brief Create a BitCast or a PtrToInt cast instruction
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2432 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2433 const Twine &Name,
2434 Instruction *InsertBefore) {
2435 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2436 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2437 "Invalid cast");
2438 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2439 assert((!Ty->isVectorTy() ||
2440 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2441 "Invalid cast");
2442
2443 if (Ty->isIntOrIntVectorTy())
2444 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2445 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2446 }
2447
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,Instruction * InsertBefore)2448 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2449 bool isSigned, const Twine &Name,
2450 Instruction *InsertBefore) {
2451 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2452 "Invalid integer cast");
2453 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2454 unsigned DstBits = Ty->getScalarSizeInBits();
2455 Instruction::CastOps opcode =
2456 (SrcBits == DstBits ? Instruction::BitCast :
2457 (SrcBits > DstBits ? Instruction::Trunc :
2458 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2459 return Create(opcode, C, Ty, Name, InsertBefore);
2460 }
2461
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,BasicBlock * InsertAtEnd)2462 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2463 bool isSigned, const Twine &Name,
2464 BasicBlock *InsertAtEnd) {
2465 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2466 "Invalid cast");
2467 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2468 unsigned DstBits = Ty->getScalarSizeInBits();
2469 Instruction::CastOps opcode =
2470 (SrcBits == DstBits ? Instruction::BitCast :
2471 (SrcBits > DstBits ? Instruction::Trunc :
2472 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2473 return Create(opcode, C, Ty, Name, InsertAtEnd);
2474 }
2475
CreateFPCast(Value * C,Type * Ty,const Twine & Name,Instruction * InsertBefore)2476 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2477 const Twine &Name,
2478 Instruction *InsertBefore) {
2479 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2480 "Invalid cast");
2481 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2482 unsigned DstBits = Ty->getScalarSizeInBits();
2483 Instruction::CastOps opcode =
2484 (SrcBits == DstBits ? Instruction::BitCast :
2485 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2486 return Create(opcode, C, Ty, Name, InsertBefore);
2487 }
2488
CreateFPCast(Value * C,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2489 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2490 const Twine &Name,
2491 BasicBlock *InsertAtEnd) {
2492 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2493 "Invalid cast");
2494 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2495 unsigned DstBits = Ty->getScalarSizeInBits();
2496 Instruction::CastOps opcode =
2497 (SrcBits == DstBits ? Instruction::BitCast :
2498 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2499 return Create(opcode, C, Ty, Name, InsertAtEnd);
2500 }
2501
2502 // Check whether it is valid to call getCastOpcode for these types.
2503 // This routine must be kept in sync with getCastOpcode.
isCastable(Type * SrcTy,Type * DestTy)2504 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2505 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2506 return false;
2507
2508 if (SrcTy == DestTy)
2509 return true;
2510
2511 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2512 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2513 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2514 // An element by element cast. Valid if casting the elements is valid.
2515 SrcTy = SrcVecTy->getElementType();
2516 DestTy = DestVecTy->getElementType();
2517 }
2518
2519 // Get the bit sizes, we'll need these
2520 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2521 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2522
2523 // Run through the possibilities ...
2524 if (DestTy->isIntegerTy()) { // Casting to integral
2525 if (SrcTy->isIntegerTy()) { // Casting from integral
2526 return true;
2527 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2528 return true;
2529 } else if (SrcTy->isVectorTy()) { // Casting from vector
2530 return DestBits == SrcBits;
2531 } else { // Casting from something else
2532 return SrcTy->isPointerTy();
2533 }
2534 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2535 if (SrcTy->isIntegerTy()) { // Casting from integral
2536 return true;
2537 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2538 return true;
2539 } else if (SrcTy->isVectorTy()) { // Casting from vector
2540 return DestBits == SrcBits;
2541 } else { // Casting from something else
2542 return false;
2543 }
2544 } else if (DestTy->isVectorTy()) { // Casting to vector
2545 return DestBits == SrcBits;
2546 } else if (DestTy->isPointerTy()) { // Casting to pointer
2547 if (SrcTy->isPointerTy()) { // Casting from pointer
2548 return true;
2549 } else if (SrcTy->isIntegerTy()) { // Casting from integral
2550 return true;
2551 } else { // Casting from something else
2552 return false;
2553 }
2554 } else if (DestTy->isX86_MMXTy()) {
2555 if (SrcTy->isVectorTy()) {
2556 return DestBits == SrcBits; // 64-bit vector to MMX
2557 } else {
2558 return false;
2559 }
2560 } else { // Casting to something else
2561 return false;
2562 }
2563 }
2564
isBitCastable(Type * SrcTy,Type * DestTy)2565 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2566 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2567 return false;
2568
2569 if (SrcTy == DestTy)
2570 return true;
2571
2572 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2573 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2574 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2575 // An element by element cast. Valid if casting the elements is valid.
2576 SrcTy = SrcVecTy->getElementType();
2577 DestTy = DestVecTy->getElementType();
2578 }
2579 }
2580 }
2581
2582 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2583 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2584 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2585 }
2586 }
2587
2588 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2589 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2590
2591 // Could still have vectors of pointers if the number of elements doesn't
2592 // match
2593 if (SrcBits == 0 || DestBits == 0)
2594 return false;
2595
2596 if (SrcBits != DestBits)
2597 return false;
2598
2599 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2600 return false;
2601
2602 return true;
2603 }
2604
2605 // Provide a way to get a "cast" where the cast opcode is inferred from the
2606 // types and size of the operand. This, basically, is a parallel of the
2607 // logic in the castIsValid function below. This axiom should hold:
2608 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2609 // should not assert in castIsValid. In other words, this produces a "correct"
2610 // casting opcode for the arguments passed to it.
2611 // This routine must be kept in sync with isCastable.
2612 Instruction::CastOps
getCastOpcode(const Value * Src,bool SrcIsSigned,Type * DestTy,bool DestIsSigned)2613 CastInst::getCastOpcode(
2614 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2615 Type *SrcTy = Src->getType();
2616
2617 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2618 "Only first class types are castable!");
2619
2620 if (SrcTy == DestTy)
2621 return BitCast;
2622
2623 // FIXME: Check address space sizes here
2624 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2625 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2626 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2627 // An element by element cast. Find the appropriate opcode based on the
2628 // element types.
2629 SrcTy = SrcVecTy->getElementType();
2630 DestTy = DestVecTy->getElementType();
2631 }
2632
2633 // Get the bit sizes, we'll need these
2634 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2635 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2636
2637 // Run through the possibilities ...
2638 if (DestTy->isIntegerTy()) { // Casting to integral
2639 if (SrcTy->isIntegerTy()) { // Casting from integral
2640 if (DestBits < SrcBits)
2641 return Trunc; // int -> smaller int
2642 else if (DestBits > SrcBits) { // its an extension
2643 if (SrcIsSigned)
2644 return SExt; // signed -> SEXT
2645 else
2646 return ZExt; // unsigned -> ZEXT
2647 } else {
2648 return BitCast; // Same size, No-op cast
2649 }
2650 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2651 if (DestIsSigned)
2652 return FPToSI; // FP -> sint
2653 else
2654 return FPToUI; // FP -> uint
2655 } else if (SrcTy->isVectorTy()) {
2656 assert(DestBits == SrcBits &&
2657 "Casting vector to integer of different width");
2658 return BitCast; // Same size, no-op cast
2659 } else {
2660 assert(SrcTy->isPointerTy() &&
2661 "Casting from a value that is not first-class type");
2662 return PtrToInt; // ptr -> int
2663 }
2664 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2665 if (SrcTy->isIntegerTy()) { // Casting from integral
2666 if (SrcIsSigned)
2667 return SIToFP; // sint -> FP
2668 else
2669 return UIToFP; // uint -> FP
2670 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2671 if (DestBits < SrcBits) {
2672 return FPTrunc; // FP -> smaller FP
2673 } else if (DestBits > SrcBits) {
2674 return FPExt; // FP -> larger FP
2675 } else {
2676 return BitCast; // same size, no-op cast
2677 }
2678 } else if (SrcTy->isVectorTy()) {
2679 assert(DestBits == SrcBits &&
2680 "Casting vector to floating point of different width");
2681 return BitCast; // same size, no-op cast
2682 }
2683 llvm_unreachable("Casting pointer or non-first class to float");
2684 } else if (DestTy->isVectorTy()) {
2685 assert(DestBits == SrcBits &&
2686 "Illegal cast to vector (wrong type or size)");
2687 return BitCast;
2688 } else if (DestTy->isPointerTy()) {
2689 if (SrcTy->isPointerTy()) {
2690 // TODO: Address space pointer sizes may not match
2691 return BitCast; // ptr -> ptr
2692 } else if (SrcTy->isIntegerTy()) {
2693 return IntToPtr; // int -> ptr
2694 }
2695 llvm_unreachable("Casting pointer to other than pointer or int");
2696 } else if (DestTy->isX86_MMXTy()) {
2697 if (SrcTy->isVectorTy()) {
2698 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2699 return BitCast; // 64-bit vector to MMX
2700 }
2701 llvm_unreachable("Illegal cast to X86_MMX");
2702 }
2703 llvm_unreachable("Casting to type that is not first-class");
2704 }
2705
2706 //===----------------------------------------------------------------------===//
2707 // CastInst SubClass Constructors
2708 //===----------------------------------------------------------------------===//
2709
2710 /// Check that the construction parameters for a CastInst are correct. This
2711 /// could be broken out into the separate constructors but it is useful to have
2712 /// it in one place and to eliminate the redundant code for getting the sizes
2713 /// of the types involved.
2714 bool
castIsValid(Instruction::CastOps op,Value * S,Type * DstTy)2715 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2716
2717 // Check for type sanity on the arguments
2718 Type *SrcTy = S->getType();
2719
2720 // If this is a cast to the same type then it's trivially true.
2721 if (SrcTy == DstTy)
2722 return true;
2723
2724 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2725 SrcTy->isAggregateType() || DstTy->isAggregateType())
2726 return false;
2727
2728 // Get the size of the types in bits, we'll need this later
2729 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2730 unsigned DstBitSize = DstTy->getScalarSizeInBits();
2731
2732 // If these are vector types, get the lengths of the vectors (using zero for
2733 // scalar types means that checking that vector lengths match also checks that
2734 // scalars are not being converted to vectors or vectors to scalars).
2735 unsigned SrcLength = SrcTy->isVectorTy() ?
2736 cast<VectorType>(SrcTy)->getNumElements() : 0;
2737 unsigned DstLength = DstTy->isVectorTy() ?
2738 cast<VectorType>(DstTy)->getNumElements() : 0;
2739
2740 // Switch on the opcode provided
2741 switch (op) {
2742 default: return false; // This is an input error
2743 case Instruction::Trunc:
2744 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2745 SrcLength == DstLength && SrcBitSize > DstBitSize;
2746 case Instruction::ZExt:
2747 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2748 SrcLength == DstLength && SrcBitSize < DstBitSize;
2749 case Instruction::SExt:
2750 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2751 SrcLength == DstLength && SrcBitSize < DstBitSize;
2752 case Instruction::FPTrunc:
2753 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2754 SrcLength == DstLength && SrcBitSize > DstBitSize;
2755 case Instruction::FPExt:
2756 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2757 SrcLength == DstLength && SrcBitSize < DstBitSize;
2758 case Instruction::UIToFP:
2759 case Instruction::SIToFP:
2760 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2761 SrcLength == DstLength;
2762 case Instruction::FPToUI:
2763 case Instruction::FPToSI:
2764 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2765 SrcLength == DstLength;
2766 case Instruction::PtrToInt:
2767 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2768 return false;
2769 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2770 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2771 return false;
2772 return SrcTy->getScalarType()->isPointerTy() &&
2773 DstTy->getScalarType()->isIntegerTy();
2774 case Instruction::IntToPtr:
2775 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2776 return false;
2777 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2778 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2779 return false;
2780 return SrcTy->getScalarType()->isIntegerTy() &&
2781 DstTy->getScalarType()->isPointerTy();
2782 case Instruction::BitCast:
2783 // BitCast implies a no-op cast of type only. No bits change.
2784 // However, you can't cast pointers to anything but pointers.
2785 if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2786 return false;
2787
2788 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2789 // these cases, the cast is okay if the source and destination bit widths
2790 // are identical.
2791 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2792 }
2793 }
2794
TruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2795 TruncInst::TruncInst(
2796 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2797 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2798 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2799 }
2800
TruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2801 TruncInst::TruncInst(
2802 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2803 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2804 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2805 }
2806
ZExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2807 ZExtInst::ZExtInst(
2808 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2809 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2810 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2811 }
2812
ZExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2813 ZExtInst::ZExtInst(
2814 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2815 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2816 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2817 }
SExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2818 SExtInst::SExtInst(
2819 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2820 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2821 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2822 }
2823
SExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2824 SExtInst::SExtInst(
2825 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2826 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2827 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2828 }
2829
FPTruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2830 FPTruncInst::FPTruncInst(
2831 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2832 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2833 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2834 }
2835
FPTruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2836 FPTruncInst::FPTruncInst(
2837 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2838 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2839 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2840 }
2841
FPExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2842 FPExtInst::FPExtInst(
2843 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2844 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2845 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2846 }
2847
FPExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2848 FPExtInst::FPExtInst(
2849 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2850 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2851 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2852 }
2853
UIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2854 UIToFPInst::UIToFPInst(
2855 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2856 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2857 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2858 }
2859
UIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2860 UIToFPInst::UIToFPInst(
2861 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2862 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2863 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2864 }
2865
SIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2866 SIToFPInst::SIToFPInst(
2867 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2868 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2869 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2870 }
2871
SIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2872 SIToFPInst::SIToFPInst(
2873 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2874 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2875 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2876 }
2877
FPToUIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2878 FPToUIInst::FPToUIInst(
2879 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2880 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2881 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2882 }
2883
FPToUIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2884 FPToUIInst::FPToUIInst(
2885 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2886 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2887 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2888 }
2889
FPToSIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2890 FPToSIInst::FPToSIInst(
2891 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2892 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2893 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2894 }
2895
FPToSIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2896 FPToSIInst::FPToSIInst(
2897 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2898 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2899 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2900 }
2901
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2902 PtrToIntInst::PtrToIntInst(
2903 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2904 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2905 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2906 }
2907
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2908 PtrToIntInst::PtrToIntInst(
2909 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2910 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2911 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2912 }
2913
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2914 IntToPtrInst::IntToPtrInst(
2915 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2916 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2917 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2918 }
2919
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2920 IntToPtrInst::IntToPtrInst(
2921 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2922 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2923 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2924 }
2925
BitCastInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2926 BitCastInst::BitCastInst(
2927 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2928 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2929 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2930 }
2931
BitCastInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2932 BitCastInst::BitCastInst(
2933 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2934 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2935 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2936 }
2937
2938 //===----------------------------------------------------------------------===//
2939 // CmpInst Classes
2940 //===----------------------------------------------------------------------===//
2941
anchor()2942 void CmpInst::anchor() {}
2943
CmpInst(Type * ty,OtherOps op,unsigned short predicate,Value * LHS,Value * RHS,const Twine & Name,Instruction * InsertBefore)2944 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2945 Value *LHS, Value *RHS, const Twine &Name,
2946 Instruction *InsertBefore)
2947 : Instruction(ty, op,
2948 OperandTraits<CmpInst>::op_begin(this),
2949 OperandTraits<CmpInst>::operands(this),
2950 InsertBefore) {
2951 Op<0>() = LHS;
2952 Op<1>() = RHS;
2953 setPredicate((Predicate)predicate);
2954 setName(Name);
2955 }
2956
CmpInst(Type * ty,OtherOps op,unsigned short predicate,Value * LHS,Value * RHS,const Twine & Name,BasicBlock * InsertAtEnd)2957 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2958 Value *LHS, Value *RHS, const Twine &Name,
2959 BasicBlock *InsertAtEnd)
2960 : Instruction(ty, op,
2961 OperandTraits<CmpInst>::op_begin(this),
2962 OperandTraits<CmpInst>::operands(this),
2963 InsertAtEnd) {
2964 Op<0>() = LHS;
2965 Op<1>() = RHS;
2966 setPredicate((Predicate)predicate);
2967 setName(Name);
2968 }
2969
2970 CmpInst *
Create(OtherOps Op,unsigned short predicate,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)2971 CmpInst::Create(OtherOps Op, unsigned short predicate,
2972 Value *S1, Value *S2,
2973 const Twine &Name, Instruction *InsertBefore) {
2974 if (Op == Instruction::ICmp) {
2975 if (InsertBefore)
2976 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2977 S1, S2, Name);
2978 else
2979 return new ICmpInst(CmpInst::Predicate(predicate),
2980 S1, S2, Name);
2981 }
2982
2983 if (InsertBefore)
2984 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2985 S1, S2, Name);
2986 else
2987 return new FCmpInst(CmpInst::Predicate(predicate),
2988 S1, S2, Name);
2989 }
2990
2991 CmpInst *
Create(OtherOps Op,unsigned short predicate,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)2992 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2993 const Twine &Name, BasicBlock *InsertAtEnd) {
2994 if (Op == Instruction::ICmp) {
2995 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2996 S1, S2, Name);
2997 }
2998 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2999 S1, S2, Name);
3000 }
3001
swapOperands()3002 void CmpInst::swapOperands() {
3003 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3004 IC->swapOperands();
3005 else
3006 cast<FCmpInst>(this)->swapOperands();
3007 }
3008
isCommutative() const3009 bool CmpInst::isCommutative() const {
3010 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3011 return IC->isCommutative();
3012 return cast<FCmpInst>(this)->isCommutative();
3013 }
3014
isEquality() const3015 bool CmpInst::isEquality() const {
3016 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3017 return IC->isEquality();
3018 return cast<FCmpInst>(this)->isEquality();
3019 }
3020
3021
getInversePredicate(Predicate pred)3022 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3023 switch (pred) {
3024 default: llvm_unreachable("Unknown cmp predicate!");
3025 case ICMP_EQ: return ICMP_NE;
3026 case ICMP_NE: return ICMP_EQ;
3027 case ICMP_UGT: return ICMP_ULE;
3028 case ICMP_ULT: return ICMP_UGE;
3029 case ICMP_UGE: return ICMP_ULT;
3030 case ICMP_ULE: return ICMP_UGT;
3031 case ICMP_SGT: return ICMP_SLE;
3032 case ICMP_SLT: return ICMP_SGE;
3033 case ICMP_SGE: return ICMP_SLT;
3034 case ICMP_SLE: return ICMP_SGT;
3035
3036 case FCMP_OEQ: return FCMP_UNE;
3037 case FCMP_ONE: return FCMP_UEQ;
3038 case FCMP_OGT: return FCMP_ULE;
3039 case FCMP_OLT: return FCMP_UGE;
3040 case FCMP_OGE: return FCMP_ULT;
3041 case FCMP_OLE: return FCMP_UGT;
3042 case FCMP_UEQ: return FCMP_ONE;
3043 case FCMP_UNE: return FCMP_OEQ;
3044 case FCMP_UGT: return FCMP_OLE;
3045 case FCMP_ULT: return FCMP_OGE;
3046 case FCMP_UGE: return FCMP_OLT;
3047 case FCMP_ULE: return FCMP_OGT;
3048 case FCMP_ORD: return FCMP_UNO;
3049 case FCMP_UNO: return FCMP_ORD;
3050 case FCMP_TRUE: return FCMP_FALSE;
3051 case FCMP_FALSE: return FCMP_TRUE;
3052 }
3053 }
3054
getSignedPredicate(Predicate pred)3055 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3056 switch (pred) {
3057 default: llvm_unreachable("Unknown icmp predicate!");
3058 case ICMP_EQ: case ICMP_NE:
3059 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3060 return pred;
3061 case ICMP_UGT: return ICMP_SGT;
3062 case ICMP_ULT: return ICMP_SLT;
3063 case ICMP_UGE: return ICMP_SGE;
3064 case ICMP_ULE: return ICMP_SLE;
3065 }
3066 }
3067
getUnsignedPredicate(Predicate pred)3068 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3069 switch (pred) {
3070 default: llvm_unreachable("Unknown icmp predicate!");
3071 case ICMP_EQ: case ICMP_NE:
3072 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3073 return pred;
3074 case ICMP_SGT: return ICMP_UGT;
3075 case ICMP_SLT: return ICMP_ULT;
3076 case ICMP_SGE: return ICMP_UGE;
3077 case ICMP_SLE: return ICMP_ULE;
3078 }
3079 }
3080
3081 /// Initialize a set of values that all satisfy the condition with C.
3082 ///
3083 ConstantRange
makeConstantRange(Predicate pred,const APInt & C)3084 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
3085 APInt Lower(C);
3086 APInt Upper(C);
3087 uint32_t BitWidth = C.getBitWidth();
3088 switch (pred) {
3089 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3090 case ICmpInst::ICMP_EQ: ++Upper; break;
3091 case ICmpInst::ICMP_NE: ++Lower; break;
3092 case ICmpInst::ICMP_ULT:
3093 Lower = APInt::getMinValue(BitWidth);
3094 // Check for an empty-set condition.
3095 if (Lower == Upper)
3096 return ConstantRange(BitWidth, /*isFullSet=*/false);
3097 break;
3098 case ICmpInst::ICMP_SLT:
3099 Lower = APInt::getSignedMinValue(BitWidth);
3100 // Check for an empty-set condition.
3101 if (Lower == Upper)
3102 return ConstantRange(BitWidth, /*isFullSet=*/false);
3103 break;
3104 case ICmpInst::ICMP_UGT:
3105 ++Lower; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3106 // Check for an empty-set condition.
3107 if (Lower == Upper)
3108 return ConstantRange(BitWidth, /*isFullSet=*/false);
3109 break;
3110 case ICmpInst::ICMP_SGT:
3111 ++Lower; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3112 // Check for an empty-set condition.
3113 if (Lower == Upper)
3114 return ConstantRange(BitWidth, /*isFullSet=*/false);
3115 break;
3116 case ICmpInst::ICMP_ULE:
3117 Lower = APInt::getMinValue(BitWidth); ++Upper;
3118 // Check for a full-set condition.
3119 if (Lower == Upper)
3120 return ConstantRange(BitWidth, /*isFullSet=*/true);
3121 break;
3122 case ICmpInst::ICMP_SLE:
3123 Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
3124 // Check for a full-set condition.
3125 if (Lower == Upper)
3126 return ConstantRange(BitWidth, /*isFullSet=*/true);
3127 break;
3128 case ICmpInst::ICMP_UGE:
3129 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3130 // Check for a full-set condition.
3131 if (Lower == Upper)
3132 return ConstantRange(BitWidth, /*isFullSet=*/true);
3133 break;
3134 case ICmpInst::ICMP_SGE:
3135 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3136 // Check for a full-set condition.
3137 if (Lower == Upper)
3138 return ConstantRange(BitWidth, /*isFullSet=*/true);
3139 break;
3140 }
3141 return ConstantRange(Lower, Upper);
3142 }
3143
getSwappedPredicate(Predicate pred)3144 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3145 switch (pred) {
3146 default: llvm_unreachable("Unknown cmp predicate!");
3147 case ICMP_EQ: case ICMP_NE:
3148 return pred;
3149 case ICMP_SGT: return ICMP_SLT;
3150 case ICMP_SLT: return ICMP_SGT;
3151 case ICMP_SGE: return ICMP_SLE;
3152 case ICMP_SLE: return ICMP_SGE;
3153 case ICMP_UGT: return ICMP_ULT;
3154 case ICMP_ULT: return ICMP_UGT;
3155 case ICMP_UGE: return ICMP_ULE;
3156 case ICMP_ULE: return ICMP_UGE;
3157
3158 case FCMP_FALSE: case FCMP_TRUE:
3159 case FCMP_OEQ: case FCMP_ONE:
3160 case FCMP_UEQ: case FCMP_UNE:
3161 case FCMP_ORD: case FCMP_UNO:
3162 return pred;
3163 case FCMP_OGT: return FCMP_OLT;
3164 case FCMP_OLT: return FCMP_OGT;
3165 case FCMP_OGE: return FCMP_OLE;
3166 case FCMP_OLE: return FCMP_OGE;
3167 case FCMP_UGT: return FCMP_ULT;
3168 case FCMP_ULT: return FCMP_UGT;
3169 case FCMP_UGE: return FCMP_ULE;
3170 case FCMP_ULE: return FCMP_UGE;
3171 }
3172 }
3173
isUnsigned(unsigned short predicate)3174 bool CmpInst::isUnsigned(unsigned short predicate) {
3175 switch (predicate) {
3176 default: return false;
3177 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3178 case ICmpInst::ICMP_UGE: return true;
3179 }
3180 }
3181
isSigned(unsigned short predicate)3182 bool CmpInst::isSigned(unsigned short predicate) {
3183 switch (predicate) {
3184 default: return false;
3185 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3186 case ICmpInst::ICMP_SGE: return true;
3187 }
3188 }
3189
isOrdered(unsigned short predicate)3190 bool CmpInst::isOrdered(unsigned short predicate) {
3191 switch (predicate) {
3192 default: return false;
3193 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3194 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3195 case FCmpInst::FCMP_ORD: return true;
3196 }
3197 }
3198
isUnordered(unsigned short predicate)3199 bool CmpInst::isUnordered(unsigned short predicate) {
3200 switch (predicate) {
3201 default: return false;
3202 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3203 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3204 case FCmpInst::FCMP_UNO: return true;
3205 }
3206 }
3207
isTrueWhenEqual(unsigned short predicate)3208 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3209 switch(predicate) {
3210 default: return false;
3211 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3212 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3213 }
3214 }
3215
isFalseWhenEqual(unsigned short predicate)3216 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3217 switch(predicate) {
3218 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3219 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3220 default: return false;
3221 }
3222 }
3223
3224
3225 //===----------------------------------------------------------------------===//
3226 // SwitchInst Implementation
3227 //===----------------------------------------------------------------------===//
3228
init(Value * Value,BasicBlock * Default,unsigned NumReserved)3229 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3230 assert(Value && Default && NumReserved);
3231 ReservedSpace = NumReserved;
3232 NumOperands = 2;
3233 OperandList = allocHungoffUses(ReservedSpace);
3234
3235 OperandList[0] = Value;
3236 OperandList[1] = Default;
3237 }
3238
3239 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3240 /// switch on and a default destination. The number of additional cases can
3241 /// be specified here to make memory allocation more efficient. This
3242 /// constructor can also autoinsert before another instruction.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,Instruction * InsertBefore)3243 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3244 Instruction *InsertBefore)
3245 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3246 0, 0, InsertBefore) {
3247 init(Value, Default, 2+NumCases*2);
3248 }
3249
3250 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3251 /// switch on and a default destination. The number of additional cases can
3252 /// be specified here to make memory allocation more efficient. This
3253 /// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,BasicBlock * InsertAtEnd)3254 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3255 BasicBlock *InsertAtEnd)
3256 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3257 0, 0, InsertAtEnd) {
3258 init(Value, Default, 2+NumCases*2);
3259 }
3260
SwitchInst(const SwitchInst & SI)3261 SwitchInst::SwitchInst(const SwitchInst &SI)
3262 : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
3263 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3264 NumOperands = SI.getNumOperands();
3265 Use *OL = OperandList, *InOL = SI.OperandList;
3266 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3267 OL[i] = InOL[i];
3268 OL[i+1] = InOL[i+1];
3269 }
3270 TheSubsets = SI.TheSubsets;
3271 SubclassOptionalData = SI.SubclassOptionalData;
3272 }
3273
~SwitchInst()3274 SwitchInst::~SwitchInst() {
3275 dropHungoffUses();
3276 }
3277
3278
3279 /// addCase - Add an entry to the switch instruction...
3280 ///
addCase(ConstantInt * OnVal,BasicBlock * Dest)3281 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3282 IntegersSubsetToBB Mapping;
3283
3284 // FIXME: Currently we work with ConstantInt based cases.
3285 // So inititalize IntItem container directly from ConstantInt.
3286 Mapping.add(IntItem::fromConstantInt(OnVal));
3287 IntegersSubset CaseRanges = Mapping.getCase();
3288 addCase(CaseRanges, Dest);
3289 }
3290
addCase(IntegersSubset & OnVal,BasicBlock * Dest)3291 void SwitchInst::addCase(IntegersSubset& OnVal, BasicBlock *Dest) {
3292 unsigned NewCaseIdx = getNumCases();
3293 unsigned OpNo = NumOperands;
3294 if (OpNo+2 > ReservedSpace)
3295 growOperands(); // Get more space!
3296 // Initialize some new operands.
3297 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3298 NumOperands = OpNo+2;
3299
3300 SubsetsIt TheSubsetsIt = TheSubsets.insert(TheSubsets.end(), OnVal);
3301
3302 CaseIt Case(this, NewCaseIdx, TheSubsetsIt);
3303 Case.updateCaseValueOperand(OnVal);
3304 Case.setSuccessor(Dest);
3305 }
3306
3307 /// removeCase - This method removes the specified case and its successor
3308 /// from the switch instruction.
removeCase(CaseIt & i)3309 void SwitchInst::removeCase(CaseIt& i) {
3310 unsigned idx = i.getCaseIndex();
3311
3312 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3313
3314 unsigned NumOps = getNumOperands();
3315 Use *OL = OperandList;
3316
3317 // Overwrite this case with the end of the list.
3318 if (2 + (idx + 1) * 2 != NumOps) {
3319 OL[2 + idx * 2] = OL[NumOps - 2];
3320 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3321 }
3322
3323 // Nuke the last value.
3324 OL[NumOps-2].set(0);
3325 OL[NumOps-2+1].set(0);
3326
3327 // Do the same with TheCases collection:
3328 if (i.SubsetIt != --TheSubsets.end()) {
3329 *i.SubsetIt = TheSubsets.back();
3330 TheSubsets.pop_back();
3331 } else {
3332 TheSubsets.pop_back();
3333 i.SubsetIt = TheSubsets.end();
3334 }
3335
3336 NumOperands = NumOps-2;
3337 }
3338
3339 /// growOperands - grow operands - This grows the operand list in response
3340 /// to a push_back style of operation. This grows the number of ops by 3 times.
3341 ///
growOperands()3342 void SwitchInst::growOperands() {
3343 unsigned e = getNumOperands();
3344 unsigned NumOps = e*3;
3345
3346 ReservedSpace = NumOps;
3347 Use *NewOps = allocHungoffUses(NumOps);
3348 Use *OldOps = OperandList;
3349 for (unsigned i = 0; i != e; ++i) {
3350 NewOps[i] = OldOps[i];
3351 }
3352 OperandList = NewOps;
3353 Use::zap(OldOps, OldOps + e, true);
3354 }
3355
3356
getSuccessorV(unsigned idx) const3357 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3358 return getSuccessor(idx);
3359 }
getNumSuccessorsV() const3360 unsigned SwitchInst::getNumSuccessorsV() const {
3361 return getNumSuccessors();
3362 }
setSuccessorV(unsigned idx,BasicBlock * B)3363 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3364 setSuccessor(idx, B);
3365 }
3366
3367 //===----------------------------------------------------------------------===//
3368 // IndirectBrInst Implementation
3369 //===----------------------------------------------------------------------===//
3370
init(Value * Address,unsigned NumDests)3371 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3372 assert(Address && Address->getType()->isPointerTy() &&
3373 "Address of indirectbr must be a pointer");
3374 ReservedSpace = 1+NumDests;
3375 NumOperands = 1;
3376 OperandList = allocHungoffUses(ReservedSpace);
3377
3378 OperandList[0] = Address;
3379 }
3380
3381
3382 /// growOperands - grow operands - This grows the operand list in response
3383 /// to a push_back style of operation. This grows the number of ops by 2 times.
3384 ///
growOperands()3385 void IndirectBrInst::growOperands() {
3386 unsigned e = getNumOperands();
3387 unsigned NumOps = e*2;
3388
3389 ReservedSpace = NumOps;
3390 Use *NewOps = allocHungoffUses(NumOps);
3391 Use *OldOps = OperandList;
3392 for (unsigned i = 0; i != e; ++i)
3393 NewOps[i] = OldOps[i];
3394 OperandList = NewOps;
3395 Use::zap(OldOps, OldOps + e, true);
3396 }
3397
IndirectBrInst(Value * Address,unsigned NumCases,Instruction * InsertBefore)3398 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3399 Instruction *InsertBefore)
3400 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3401 0, 0, InsertBefore) {
3402 init(Address, NumCases);
3403 }
3404
IndirectBrInst(Value * Address,unsigned NumCases,BasicBlock * InsertAtEnd)3405 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3406 BasicBlock *InsertAtEnd)
3407 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3408 0, 0, InsertAtEnd) {
3409 init(Address, NumCases);
3410 }
3411
IndirectBrInst(const IndirectBrInst & IBI)3412 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3413 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3414 allocHungoffUses(IBI.getNumOperands()),
3415 IBI.getNumOperands()) {
3416 Use *OL = OperandList, *InOL = IBI.OperandList;
3417 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3418 OL[i] = InOL[i];
3419 SubclassOptionalData = IBI.SubclassOptionalData;
3420 }
3421
~IndirectBrInst()3422 IndirectBrInst::~IndirectBrInst() {
3423 dropHungoffUses();
3424 }
3425
3426 /// addDestination - Add a destination.
3427 ///
addDestination(BasicBlock * DestBB)3428 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3429 unsigned OpNo = NumOperands;
3430 if (OpNo+1 > ReservedSpace)
3431 growOperands(); // Get more space!
3432 // Initialize some new operands.
3433 assert(OpNo < ReservedSpace && "Growing didn't work!");
3434 NumOperands = OpNo+1;
3435 OperandList[OpNo] = DestBB;
3436 }
3437
3438 /// removeDestination - This method removes the specified successor from the
3439 /// indirectbr instruction.
removeDestination(unsigned idx)3440 void IndirectBrInst::removeDestination(unsigned idx) {
3441 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3442
3443 unsigned NumOps = getNumOperands();
3444 Use *OL = OperandList;
3445
3446 // Replace this value with the last one.
3447 OL[idx+1] = OL[NumOps-1];
3448
3449 // Nuke the last value.
3450 OL[NumOps-1].set(0);
3451 NumOperands = NumOps-1;
3452 }
3453
getSuccessorV(unsigned idx) const3454 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3455 return getSuccessor(idx);
3456 }
getNumSuccessorsV() const3457 unsigned IndirectBrInst::getNumSuccessorsV() const {
3458 return getNumSuccessors();
3459 }
setSuccessorV(unsigned idx,BasicBlock * B)3460 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3461 setSuccessor(idx, B);
3462 }
3463
3464 //===----------------------------------------------------------------------===//
3465 // clone_impl() implementations
3466 //===----------------------------------------------------------------------===//
3467
3468 // Define these methods here so vtables don't get emitted into every translation
3469 // unit that uses these classes.
3470
clone_impl() const3471 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3472 return new (getNumOperands()) GetElementPtrInst(*this);
3473 }
3474
clone_impl() const3475 BinaryOperator *BinaryOperator::clone_impl() const {
3476 return Create(getOpcode(), Op<0>(), Op<1>());
3477 }
3478
clone_impl() const3479 FCmpInst* FCmpInst::clone_impl() const {
3480 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3481 }
3482
clone_impl() const3483 ICmpInst* ICmpInst::clone_impl() const {
3484 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3485 }
3486
clone_impl() const3487 ExtractValueInst *ExtractValueInst::clone_impl() const {
3488 return new ExtractValueInst(*this);
3489 }
3490
clone_impl() const3491 InsertValueInst *InsertValueInst::clone_impl() const {
3492 return new InsertValueInst(*this);
3493 }
3494
clone_impl() const3495 AllocaInst *AllocaInst::clone_impl() const {
3496 return new AllocaInst(getAllocatedType(),
3497 (Value*)getOperand(0),
3498 getAlignment());
3499 }
3500
clone_impl() const3501 LoadInst *LoadInst::clone_impl() const {
3502 return new LoadInst(getOperand(0), Twine(), isVolatile(),
3503 getAlignment(), getOrdering(), getSynchScope());
3504 }
3505
clone_impl() const3506 StoreInst *StoreInst::clone_impl() const {
3507 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3508 getAlignment(), getOrdering(), getSynchScope());
3509
3510 }
3511
clone_impl() const3512 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3513 AtomicCmpXchgInst *Result =
3514 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3515 getOrdering(), getSynchScope());
3516 Result->setVolatile(isVolatile());
3517 return Result;
3518 }
3519
clone_impl() const3520 AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3521 AtomicRMWInst *Result =
3522 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3523 getOrdering(), getSynchScope());
3524 Result->setVolatile(isVolatile());
3525 return Result;
3526 }
3527
clone_impl() const3528 FenceInst *FenceInst::clone_impl() const {
3529 return new FenceInst(getContext(), getOrdering(), getSynchScope());
3530 }
3531
clone_impl() const3532 TruncInst *TruncInst::clone_impl() const {
3533 return new TruncInst(getOperand(0), getType());
3534 }
3535
clone_impl() const3536 ZExtInst *ZExtInst::clone_impl() const {
3537 return new ZExtInst(getOperand(0), getType());
3538 }
3539
clone_impl() const3540 SExtInst *SExtInst::clone_impl() const {
3541 return new SExtInst(getOperand(0), getType());
3542 }
3543
clone_impl() const3544 FPTruncInst *FPTruncInst::clone_impl() const {
3545 return new FPTruncInst(getOperand(0), getType());
3546 }
3547
clone_impl() const3548 FPExtInst *FPExtInst::clone_impl() const {
3549 return new FPExtInst(getOperand(0), getType());
3550 }
3551
clone_impl() const3552 UIToFPInst *UIToFPInst::clone_impl() const {
3553 return new UIToFPInst(getOperand(0), getType());
3554 }
3555
clone_impl() const3556 SIToFPInst *SIToFPInst::clone_impl() const {
3557 return new SIToFPInst(getOperand(0), getType());
3558 }
3559
clone_impl() const3560 FPToUIInst *FPToUIInst::clone_impl() const {
3561 return new FPToUIInst(getOperand(0), getType());
3562 }
3563
clone_impl() const3564 FPToSIInst *FPToSIInst::clone_impl() const {
3565 return new FPToSIInst(getOperand(0), getType());
3566 }
3567
clone_impl() const3568 PtrToIntInst *PtrToIntInst::clone_impl() const {
3569 return new PtrToIntInst(getOperand(0), getType());
3570 }
3571
clone_impl() const3572 IntToPtrInst *IntToPtrInst::clone_impl() const {
3573 return new IntToPtrInst(getOperand(0), getType());
3574 }
3575
clone_impl() const3576 BitCastInst *BitCastInst::clone_impl() const {
3577 return new BitCastInst(getOperand(0), getType());
3578 }
3579
clone_impl() const3580 CallInst *CallInst::clone_impl() const {
3581 return new(getNumOperands()) CallInst(*this);
3582 }
3583
clone_impl() const3584 SelectInst *SelectInst::clone_impl() const {
3585 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3586 }
3587
clone_impl() const3588 VAArgInst *VAArgInst::clone_impl() const {
3589 return new VAArgInst(getOperand(0), getType());
3590 }
3591
clone_impl() const3592 ExtractElementInst *ExtractElementInst::clone_impl() const {
3593 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3594 }
3595
clone_impl() const3596 InsertElementInst *InsertElementInst::clone_impl() const {
3597 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3598 }
3599
clone_impl() const3600 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3601 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3602 }
3603
clone_impl() const3604 PHINode *PHINode::clone_impl() const {
3605 return new PHINode(*this);
3606 }
3607
clone_impl() const3608 LandingPadInst *LandingPadInst::clone_impl() const {
3609 return new LandingPadInst(*this);
3610 }
3611
clone_impl() const3612 ReturnInst *ReturnInst::clone_impl() const {
3613 return new(getNumOperands()) ReturnInst(*this);
3614 }
3615
clone_impl() const3616 BranchInst *BranchInst::clone_impl() const {
3617 return new(getNumOperands()) BranchInst(*this);
3618 }
3619
clone_impl() const3620 SwitchInst *SwitchInst::clone_impl() const {
3621 return new SwitchInst(*this);
3622 }
3623
clone_impl() const3624 IndirectBrInst *IndirectBrInst::clone_impl() const {
3625 return new IndirectBrInst(*this);
3626 }
3627
3628
clone_impl() const3629 InvokeInst *InvokeInst::clone_impl() const {
3630 return new(getNumOperands()) InvokeInst(*this);
3631 }
3632
clone_impl() const3633 ResumeInst *ResumeInst::clone_impl() const {
3634 return new(1) ResumeInst(*this);
3635 }
3636
clone_impl() const3637 UnreachableInst *UnreachableInst::clone_impl() const {
3638 LLVMContext &Context = getContext();
3639 return new UnreachableInst(Context);
3640 }
3641