1 //===-- Passes.cpp - Target independent code generation passes ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines interfaces to access the target independent code
11 // generation passes provided by the LLVM backend.
12 //
13 //===---------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/Passes.h"
16 #include "llvm/Analysis/Passes.h"
17 #include "llvm/Analysis/Verifier.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/CodeGen/GCStrategy.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/RegAllocRegistry.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/PassManager.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Target/TargetLowering.h"
28 #include "llvm/Target/TargetSubtargetInfo.h"
29 #include "llvm/Transforms/Scalar.h"
30
31 using namespace llvm;
32
33 static cl::opt<bool> DisablePostRA("disable-post-ra", cl::Hidden,
34 cl::desc("Disable Post Regalloc"));
35 static cl::opt<bool> DisableBranchFold("disable-branch-fold", cl::Hidden,
36 cl::desc("Disable branch folding"));
37 static cl::opt<bool> DisableTailDuplicate("disable-tail-duplicate", cl::Hidden,
38 cl::desc("Disable tail duplication"));
39 static cl::opt<bool> DisableEarlyTailDup("disable-early-taildup", cl::Hidden,
40 cl::desc("Disable pre-register allocation tail duplication"));
41 static cl::opt<bool> DisableBlockPlacement("disable-block-placement",
42 cl::Hidden, cl::desc("Disable probability-driven block placement"));
43 static cl::opt<bool> EnableBlockPlacementStats("enable-block-placement-stats",
44 cl::Hidden, cl::desc("Collect probability-driven block placement stats"));
45 static cl::opt<bool> DisableSSC("disable-ssc", cl::Hidden,
46 cl::desc("Disable Stack Slot Coloring"));
47 static cl::opt<bool> DisableMachineDCE("disable-machine-dce", cl::Hidden,
48 cl::desc("Disable Machine Dead Code Elimination"));
49 static cl::opt<bool> DisableEarlyIfConversion("disable-early-ifcvt", cl::Hidden,
50 cl::desc("Disable Early If-conversion"));
51 static cl::opt<bool> DisableMachineLICM("disable-machine-licm", cl::Hidden,
52 cl::desc("Disable Machine LICM"));
53 static cl::opt<bool> DisableMachineCSE("disable-machine-cse", cl::Hidden,
54 cl::desc("Disable Machine Common Subexpression Elimination"));
55 static cl::opt<cl::boolOrDefault>
56 OptimizeRegAlloc("optimize-regalloc", cl::Hidden,
57 cl::desc("Enable optimized register allocation compilation path."));
58 static cl::opt<cl::boolOrDefault>
59 EnableMachineSched("enable-misched", cl::Hidden,
60 cl::desc("Enable the machine instruction scheduling pass."));
61 static cl::opt<bool> EnableStrongPHIElim("strong-phi-elim", cl::Hidden,
62 cl::desc("Use strong PHI elimination."));
63 static cl::opt<bool> DisablePostRAMachineLICM("disable-postra-machine-licm",
64 cl::Hidden,
65 cl::desc("Disable Machine LICM"));
66 static cl::opt<bool> DisableMachineSink("disable-machine-sink", cl::Hidden,
67 cl::desc("Disable Machine Sinking"));
68 static cl::opt<bool> DisableLSR("disable-lsr", cl::Hidden,
69 cl::desc("Disable Loop Strength Reduction Pass"));
70 static cl::opt<bool> DisableCGP("disable-cgp", cl::Hidden,
71 cl::desc("Disable Codegen Prepare"));
72 static cl::opt<bool> DisableCopyProp("disable-copyprop", cl::Hidden,
73 cl::desc("Disable Copy Propagation pass"));
74 static cl::opt<bool> PrintLSR("print-lsr-output", cl::Hidden,
75 cl::desc("Print LLVM IR produced by the loop-reduce pass"));
76 static cl::opt<bool> PrintISelInput("print-isel-input", cl::Hidden,
77 cl::desc("Print LLVM IR input to isel pass"));
78 static cl::opt<bool> PrintGCInfo("print-gc", cl::Hidden,
79 cl::desc("Dump garbage collector data"));
80 static cl::opt<bool> VerifyMachineCode("verify-machineinstrs", cl::Hidden,
81 cl::desc("Verify generated machine code"),
82 cl::init(getenv("LLVM_VERIFY_MACHINEINSTRS")!=NULL));
83 static cl::opt<std::string>
84 PrintMachineInstrs("print-machineinstrs", cl::ValueOptional,
85 cl::desc("Print machine instrs"),
86 cl::value_desc("pass-name"), cl::init("option-unspecified"));
87
88 // Experimental option to run live interval analysis early.
89 static cl::opt<bool> EarlyLiveIntervals("early-live-intervals", cl::Hidden,
90 cl::desc("Run live interval analysis earlier in the pipeline"));
91
92 /// Allow standard passes to be disabled by command line options. This supports
93 /// simple binary flags that either suppress the pass or do nothing.
94 /// i.e. -disable-mypass=false has no effect.
95 /// These should be converted to boolOrDefault in order to use applyOverride.
applyDisable(IdentifyingPassPtr PassID,bool Override)96 static IdentifyingPassPtr applyDisable(IdentifyingPassPtr PassID,
97 bool Override) {
98 if (Override)
99 return IdentifyingPassPtr();
100 return PassID;
101 }
102
103 /// Allow Pass selection to be overriden by command line options. This supports
104 /// flags with ternary conditions. TargetID is passed through by default. The
105 /// pass is suppressed when the option is false. When the option is true, the
106 /// StandardID is selected if the target provides no default.
applyOverride(IdentifyingPassPtr TargetID,cl::boolOrDefault Override,AnalysisID StandardID)107 static IdentifyingPassPtr applyOverride(IdentifyingPassPtr TargetID,
108 cl::boolOrDefault Override,
109 AnalysisID StandardID) {
110 switch (Override) {
111 case cl::BOU_UNSET:
112 return TargetID;
113 case cl::BOU_TRUE:
114 if (TargetID.isValid())
115 return TargetID;
116 if (StandardID == 0)
117 report_fatal_error("Target cannot enable pass");
118 return StandardID;
119 case cl::BOU_FALSE:
120 return IdentifyingPassPtr();
121 }
122 llvm_unreachable("Invalid command line option state");
123 }
124
125 /// Allow standard passes to be disabled by the command line, regardless of who
126 /// is adding the pass.
127 ///
128 /// StandardID is the pass identified in the standard pass pipeline and provided
129 /// to addPass(). It may be a target-specific ID in the case that the target
130 /// directly adds its own pass, but in that case we harmlessly fall through.
131 ///
132 /// TargetID is the pass that the target has configured to override StandardID.
133 ///
134 /// StandardID may be a pseudo ID. In that case TargetID is the name of the real
135 /// pass to run. This allows multiple options to control a single pass depending
136 /// on where in the pipeline that pass is added.
overridePass(AnalysisID StandardID,IdentifyingPassPtr TargetID)137 static IdentifyingPassPtr overridePass(AnalysisID StandardID,
138 IdentifyingPassPtr TargetID) {
139 if (StandardID == &PostRASchedulerID)
140 return applyDisable(TargetID, DisablePostRA);
141
142 if (StandardID == &BranchFolderPassID)
143 return applyDisable(TargetID, DisableBranchFold);
144
145 if (StandardID == &TailDuplicateID)
146 return applyDisable(TargetID, DisableTailDuplicate);
147
148 if (StandardID == &TargetPassConfig::EarlyTailDuplicateID)
149 return applyDisable(TargetID, DisableEarlyTailDup);
150
151 if (StandardID == &MachineBlockPlacementID)
152 return applyDisable(TargetID, DisableBlockPlacement);
153
154 if (StandardID == &StackSlotColoringID)
155 return applyDisable(TargetID, DisableSSC);
156
157 if (StandardID == &DeadMachineInstructionElimID)
158 return applyDisable(TargetID, DisableMachineDCE);
159
160 if (StandardID == &EarlyIfConverterID)
161 return applyDisable(TargetID, DisableEarlyIfConversion);
162
163 if (StandardID == &MachineLICMID)
164 return applyDisable(TargetID, DisableMachineLICM);
165
166 if (StandardID == &MachineCSEID)
167 return applyDisable(TargetID, DisableMachineCSE);
168
169 if (StandardID == &MachineSchedulerID)
170 return applyOverride(TargetID, EnableMachineSched, StandardID);
171
172 if (StandardID == &TargetPassConfig::PostRAMachineLICMID)
173 return applyDisable(TargetID, DisablePostRAMachineLICM);
174
175 if (StandardID == &MachineSinkingID)
176 return applyDisable(TargetID, DisableMachineSink);
177
178 if (StandardID == &MachineCopyPropagationID)
179 return applyDisable(TargetID, DisableCopyProp);
180
181 return TargetID;
182 }
183
184 //===---------------------------------------------------------------------===//
185 /// TargetPassConfig
186 //===---------------------------------------------------------------------===//
187
188 INITIALIZE_PASS(TargetPassConfig, "targetpassconfig",
189 "Target Pass Configuration", false, false)
190 char TargetPassConfig::ID = 0;
191
192 // Pseudo Pass IDs.
193 char TargetPassConfig::EarlyTailDuplicateID = 0;
194 char TargetPassConfig::PostRAMachineLICMID = 0;
195
196 namespace llvm {
197 class PassConfigImpl {
198 public:
199 // List of passes explicitly substituted by this target. Normally this is
200 // empty, but it is a convenient way to suppress or replace specific passes
201 // that are part of a standard pass pipeline without overridding the entire
202 // pipeline. This mechanism allows target options to inherit a standard pass's
203 // user interface. For example, a target may disable a standard pass by
204 // default by substituting a pass ID of zero, and the user may still enable
205 // that standard pass with an explicit command line option.
206 DenseMap<AnalysisID,IdentifyingPassPtr> TargetPasses;
207
208 /// Store the pairs of <AnalysisID, AnalysisID> of which the second pass
209 /// is inserted after each instance of the first one.
210 SmallVector<std::pair<AnalysisID, IdentifyingPassPtr>, 4> InsertedPasses;
211 };
212 } // namespace llvm
213
214 // Out of line virtual method.
~TargetPassConfig()215 TargetPassConfig::~TargetPassConfig() {
216 delete Impl;
217 }
218
219 // Out of line constructor provides default values for pass options and
220 // registers all common codegen passes.
TargetPassConfig(TargetMachine * tm,PassManagerBase & pm)221 TargetPassConfig::TargetPassConfig(TargetMachine *tm, PassManagerBase &pm)
222 : ImmutablePass(ID), PM(&pm), StartAfter(0), StopAfter(0),
223 Started(true), Stopped(false), TM(tm), Impl(0), Initialized(false),
224 DisableVerify(false),
225 EnableTailMerge(true) {
226
227 Impl = new PassConfigImpl();
228
229 // Register all target independent codegen passes to activate their PassIDs,
230 // including this pass itself.
231 initializeCodeGen(*PassRegistry::getPassRegistry());
232
233 // Substitute Pseudo Pass IDs for real ones.
234 substitutePass(&EarlyTailDuplicateID, &TailDuplicateID);
235 substitutePass(&PostRAMachineLICMID, &MachineLICMID);
236
237 // Temporarily disable experimental passes.
238 const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
239 if (!ST.enableMachineScheduler())
240 disablePass(&MachineSchedulerID);
241 }
242
243 /// Insert InsertedPassID pass after TargetPassID.
insertPass(AnalysisID TargetPassID,IdentifyingPassPtr InsertedPassID)244 void TargetPassConfig::insertPass(AnalysisID TargetPassID,
245 IdentifyingPassPtr InsertedPassID) {
246 assert(((!InsertedPassID.isInstance() &&
247 TargetPassID != InsertedPassID.getID()) ||
248 (InsertedPassID.isInstance() &&
249 TargetPassID != InsertedPassID.getInstance()->getPassID())) &&
250 "Insert a pass after itself!");
251 std::pair<AnalysisID, IdentifyingPassPtr> P(TargetPassID, InsertedPassID);
252 Impl->InsertedPasses.push_back(P);
253 }
254
255 /// createPassConfig - Create a pass configuration object to be used by
256 /// addPassToEmitX methods for generating a pipeline of CodeGen passes.
257 ///
258 /// Targets may override this to extend TargetPassConfig.
createPassConfig(PassManagerBase & PM)259 TargetPassConfig *LLVMTargetMachine::createPassConfig(PassManagerBase &PM) {
260 return new TargetPassConfig(this, PM);
261 }
262
TargetPassConfig()263 TargetPassConfig::TargetPassConfig()
264 : ImmutablePass(ID), PM(0) {
265 llvm_unreachable("TargetPassConfig should not be constructed on-the-fly");
266 }
267
268 // Helper to verify the analysis is really immutable.
setOpt(bool & Opt,bool Val)269 void TargetPassConfig::setOpt(bool &Opt, bool Val) {
270 assert(!Initialized && "PassConfig is immutable");
271 Opt = Val;
272 }
273
substitutePass(AnalysisID StandardID,IdentifyingPassPtr TargetID)274 void TargetPassConfig::substitutePass(AnalysisID StandardID,
275 IdentifyingPassPtr TargetID) {
276 Impl->TargetPasses[StandardID] = TargetID;
277 }
278
getPassSubstitution(AnalysisID ID) const279 IdentifyingPassPtr TargetPassConfig::getPassSubstitution(AnalysisID ID) const {
280 DenseMap<AnalysisID, IdentifyingPassPtr>::const_iterator
281 I = Impl->TargetPasses.find(ID);
282 if (I == Impl->TargetPasses.end())
283 return ID;
284 return I->second;
285 }
286
287 /// Add a pass to the PassManager if that pass is supposed to be run. If the
288 /// Started/Stopped flags indicate either that the compilation should start at
289 /// a later pass or that it should stop after an earlier pass, then do not add
290 /// the pass. Finally, compare the current pass against the StartAfter
291 /// and StopAfter options and change the Started/Stopped flags accordingly.
addPass(Pass * P)292 void TargetPassConfig::addPass(Pass *P) {
293 assert(!Initialized && "PassConfig is immutable");
294
295 // Cache the Pass ID here in case the pass manager finds this pass is
296 // redundant with ones already scheduled / available, and deletes it.
297 // Fundamentally, once we add the pass to the manager, we no longer own it
298 // and shouldn't reference it.
299 AnalysisID PassID = P->getPassID();
300
301 if (Started && !Stopped)
302 PM->add(P);
303 else
304 delete P;
305 if (StopAfter == PassID)
306 Stopped = true;
307 if (StartAfter == PassID)
308 Started = true;
309 if (Stopped && !Started)
310 report_fatal_error("Cannot stop compilation after pass that is not run");
311 }
312
313 /// Add a CodeGen pass at this point in the pipeline after checking for target
314 /// and command line overrides.
315 ///
316 /// addPass cannot return a pointer to the pass instance because is internal the
317 /// PassManager and the instance we create here may already be freed.
addPass(AnalysisID PassID)318 AnalysisID TargetPassConfig::addPass(AnalysisID PassID) {
319 IdentifyingPassPtr TargetID = getPassSubstitution(PassID);
320 IdentifyingPassPtr FinalPtr = overridePass(PassID, TargetID);
321 if (!FinalPtr.isValid())
322 return 0;
323
324 Pass *P;
325 if (FinalPtr.isInstance())
326 P = FinalPtr.getInstance();
327 else {
328 P = Pass::createPass(FinalPtr.getID());
329 if (!P)
330 llvm_unreachable("Pass ID not registered");
331 }
332 AnalysisID FinalID = P->getPassID();
333 addPass(P); // Ends the lifetime of P.
334
335 // Add the passes after the pass P if there is any.
336 for (SmallVectorImpl<std::pair<AnalysisID, IdentifyingPassPtr> >::iterator
337 I = Impl->InsertedPasses.begin(), E = Impl->InsertedPasses.end();
338 I != E; ++I) {
339 if ((*I).first == PassID) {
340 assert((*I).second.isValid() && "Illegal Pass ID!");
341 Pass *NP;
342 if ((*I).second.isInstance())
343 NP = (*I).second.getInstance();
344 else {
345 NP = Pass::createPass((*I).second.getID());
346 assert(NP && "Pass ID not registered");
347 }
348 addPass(NP);
349 }
350 }
351 return FinalID;
352 }
353
printAndVerify(const char * Banner)354 void TargetPassConfig::printAndVerify(const char *Banner) {
355 if (TM->shouldPrintMachineCode())
356 addPass(createMachineFunctionPrinterPass(dbgs(), Banner));
357
358 if (VerifyMachineCode)
359 addPass(createMachineVerifierPass(Banner));
360 }
361
362 /// Add common target configurable passes that perform LLVM IR to IR transforms
363 /// following machine independent optimization.
addIRPasses()364 void TargetPassConfig::addIRPasses() {
365 // Basic AliasAnalysis support.
366 // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
367 // BasicAliasAnalysis wins if they disagree. This is intended to help
368 // support "obvious" type-punning idioms.
369 addPass(createTypeBasedAliasAnalysisPass());
370 addPass(createBasicAliasAnalysisPass());
371
372 // Before running any passes, run the verifier to determine if the input
373 // coming from the front-end and/or optimizer is valid.
374 if (!DisableVerify)
375 addPass(createVerifierPass());
376
377 // Run loop strength reduction before anything else.
378 if (getOptLevel() != CodeGenOpt::None && !DisableLSR) {
379 addPass(createLoopStrengthReducePass());
380 if (PrintLSR)
381 addPass(createPrintFunctionPass("\n\n*** Code after LSR ***\n", &dbgs()));
382 }
383
384 addPass(createGCLoweringPass());
385
386 // Make sure that no unreachable blocks are instruction selected.
387 addPass(createUnreachableBlockEliminationPass());
388 }
389
390 /// Turn exception handling constructs into something the code generators can
391 /// handle.
addPassesToHandleExceptions()392 void TargetPassConfig::addPassesToHandleExceptions() {
393 switch (TM->getMCAsmInfo()->getExceptionHandlingType()) {
394 case ExceptionHandling::SjLj:
395 // SjLj piggy-backs on dwarf for this bit. The cleanups done apply to both
396 // Dwarf EH prepare needs to be run after SjLj prepare. Otherwise,
397 // catch info can get misplaced when a selector ends up more than one block
398 // removed from the parent invoke(s). This could happen when a landing
399 // pad is shared by multiple invokes and is also a target of a normal
400 // edge from elsewhere.
401 addPass(createSjLjEHPreparePass(TM));
402 // FALLTHROUGH
403 case ExceptionHandling::DwarfCFI:
404 case ExceptionHandling::ARM:
405 case ExceptionHandling::Win64:
406 addPass(createDwarfEHPass(TM));
407 break;
408 case ExceptionHandling::None:
409 addPass(createLowerInvokePass(TM));
410
411 // The lower invoke pass may create unreachable code. Remove it.
412 addPass(createUnreachableBlockEliminationPass());
413 break;
414 }
415 }
416
417 /// Add pass to prepare the LLVM IR for code generation. This should be done
418 /// before exception handling preparation passes.
addCodeGenPrepare()419 void TargetPassConfig::addCodeGenPrepare() {
420 if (getOptLevel() != CodeGenOpt::None && !DisableCGP)
421 addPass(createCodeGenPreparePass(TM));
422 }
423
424 /// Add common passes that perform LLVM IR to IR transforms in preparation for
425 /// instruction selection.
addISelPrepare()426 void TargetPassConfig::addISelPrepare() {
427 addPass(createStackProtectorPass(TM));
428
429 addPreISel();
430
431 if (PrintISelInput)
432 addPass(createPrintFunctionPass("\n\n"
433 "*** Final LLVM Code input to ISel ***\n",
434 &dbgs()));
435
436 // All passes which modify the LLVM IR are now complete; run the verifier
437 // to ensure that the IR is valid.
438 if (!DisableVerify)
439 addPass(createVerifierPass());
440 }
441
442 /// Add the complete set of target-independent postISel code generator passes.
443 ///
444 /// This can be read as the standard order of major LLVM CodeGen stages. Stages
445 /// with nontrivial configuration or multiple passes are broken out below in
446 /// add%Stage routines.
447 ///
448 /// Any TargetPassConfig::addXX routine may be overriden by the Target. The
449 /// addPre/Post methods with empty header implementations allow injecting
450 /// target-specific fixups just before or after major stages. Additionally,
451 /// targets have the flexibility to change pass order within a stage by
452 /// overriding default implementation of add%Stage routines below. Each
453 /// technique has maintainability tradeoffs because alternate pass orders are
454 /// not well supported. addPre/Post works better if the target pass is easily
455 /// tied to a common pass. But if it has subtle dependencies on multiple passes,
456 /// the target should override the stage instead.
457 ///
458 /// TODO: We could use a single addPre/Post(ID) hook to allow pass injection
459 /// before/after any target-independent pass. But it's currently overkill.
addMachinePasses()460 void TargetPassConfig::addMachinePasses() {
461 // Insert a machine instr printer pass after the specified pass.
462 // If -print-machineinstrs specified, print machineinstrs after all passes.
463 if (StringRef(PrintMachineInstrs.getValue()).equals(""))
464 TM->Options.PrintMachineCode = true;
465 else if (!StringRef(PrintMachineInstrs.getValue())
466 .equals("option-unspecified")) {
467 const PassRegistry *PR = PassRegistry::getPassRegistry();
468 const PassInfo *TPI = PR->getPassInfo(PrintMachineInstrs.getValue());
469 const PassInfo *IPI = PR->getPassInfo(StringRef("print-machineinstrs"));
470 assert (TPI && IPI && "Pass ID not registered!");
471 const char *TID = (const char *)(TPI->getTypeInfo());
472 const char *IID = (const char *)(IPI->getTypeInfo());
473 insertPass(TID, IID);
474 }
475
476 // Print the instruction selected machine code...
477 printAndVerify("After Instruction Selection");
478
479 // Expand pseudo-instructions emitted by ISel.
480 if (addPass(&ExpandISelPseudosID))
481 printAndVerify("After ExpandISelPseudos");
482
483 // Add passes that optimize machine instructions in SSA form.
484 if (getOptLevel() != CodeGenOpt::None) {
485 addMachineSSAOptimization();
486 } else {
487 // If the target requests it, assign local variables to stack slots relative
488 // to one another and simplify frame index references where possible.
489 addPass(&LocalStackSlotAllocationID);
490 }
491
492 // Run pre-ra passes.
493 if (addPreRegAlloc())
494 printAndVerify("After PreRegAlloc passes");
495
496 // Run register allocation and passes that are tightly coupled with it,
497 // including phi elimination and scheduling.
498 if (getOptimizeRegAlloc())
499 addOptimizedRegAlloc(createRegAllocPass(true));
500 else
501 addFastRegAlloc(createRegAllocPass(false));
502
503 // Run post-ra passes.
504 if (addPostRegAlloc())
505 printAndVerify("After PostRegAlloc passes");
506
507 // Insert prolog/epilog code. Eliminate abstract frame index references...
508 addPass(&PrologEpilogCodeInserterID);
509 printAndVerify("After PrologEpilogCodeInserter");
510
511 /// Add passes that optimize machine instructions after register allocation.
512 if (getOptLevel() != CodeGenOpt::None)
513 addMachineLateOptimization();
514
515 // Expand pseudo instructions before second scheduling pass.
516 addPass(&ExpandPostRAPseudosID);
517 printAndVerify("After ExpandPostRAPseudos");
518
519 // Run pre-sched2 passes.
520 if (addPreSched2())
521 printAndVerify("After PreSched2 passes");
522
523 // Second pass scheduler.
524 if (getOptLevel() != CodeGenOpt::None) {
525 addPass(&PostRASchedulerID);
526 printAndVerify("After PostRAScheduler");
527 }
528
529 // GC
530 if (addGCPasses()) {
531 if (PrintGCInfo)
532 addPass(createGCInfoPrinter(dbgs()));
533 }
534
535 // Basic block placement.
536 if (getOptLevel() != CodeGenOpt::None)
537 addBlockPlacement();
538
539 if (addPreEmitPass())
540 printAndVerify("After PreEmit passes");
541 }
542
543 /// Add passes that optimize machine instructions in SSA form.
addMachineSSAOptimization()544 void TargetPassConfig::addMachineSSAOptimization() {
545 // Pre-ra tail duplication.
546 if (addPass(&EarlyTailDuplicateID))
547 printAndVerify("After Pre-RegAlloc TailDuplicate");
548
549 // Optimize PHIs before DCE: removing dead PHI cycles may make more
550 // instructions dead.
551 addPass(&OptimizePHIsID);
552
553 // This pass merges large allocas. StackSlotColoring is a different pass
554 // which merges spill slots.
555 addPass(&StackColoringID);
556
557 // If the target requests it, assign local variables to stack slots relative
558 // to one another and simplify frame index references where possible.
559 addPass(&LocalStackSlotAllocationID);
560
561 // With optimization, dead code should already be eliminated. However
562 // there is one known exception: lowered code for arguments that are only
563 // used by tail calls, where the tail calls reuse the incoming stack
564 // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
565 addPass(&DeadMachineInstructionElimID);
566 printAndVerify("After codegen DCE pass");
567
568 // Allow targets to insert passes that improve instruction level parallelism,
569 // like if-conversion. Such passes will typically need dominator trees and
570 // loop info, just like LICM and CSE below.
571 if (addILPOpts())
572 printAndVerify("After ILP optimizations");
573
574 addPass(&MachineLICMID);
575 addPass(&MachineCSEID);
576 addPass(&MachineSinkingID);
577 printAndVerify("After Machine LICM, CSE and Sinking passes");
578
579 addPass(&PeepholeOptimizerID);
580 printAndVerify("After codegen peephole optimization pass");
581 }
582
583 //===---------------------------------------------------------------------===//
584 /// Register Allocation Pass Configuration
585 //===---------------------------------------------------------------------===//
586
getOptimizeRegAlloc() const587 bool TargetPassConfig::getOptimizeRegAlloc() const {
588 switch (OptimizeRegAlloc) {
589 case cl::BOU_UNSET: return getOptLevel() != CodeGenOpt::None;
590 case cl::BOU_TRUE: return true;
591 case cl::BOU_FALSE: return false;
592 }
593 llvm_unreachable("Invalid optimize-regalloc state");
594 }
595
596 /// RegisterRegAlloc's global Registry tracks allocator registration.
597 MachinePassRegistry RegisterRegAlloc::Registry;
598
599 /// A dummy default pass factory indicates whether the register allocator is
600 /// overridden on the command line.
useDefaultRegisterAllocator()601 static FunctionPass *useDefaultRegisterAllocator() { return 0; }
602 static RegisterRegAlloc
603 defaultRegAlloc("default",
604 "pick register allocator based on -O option",
605 useDefaultRegisterAllocator);
606
607 /// -regalloc=... command line option.
608 static cl::opt<RegisterRegAlloc::FunctionPassCtor, false,
609 RegisterPassParser<RegisterRegAlloc> >
610 RegAlloc("regalloc",
611 cl::init(&useDefaultRegisterAllocator),
612 cl::desc("Register allocator to use"));
613
614
615 /// Instantiate the default register allocator pass for this target for either
616 /// the optimized or unoptimized allocation path. This will be added to the pass
617 /// manager by addFastRegAlloc in the unoptimized case or addOptimizedRegAlloc
618 /// in the optimized case.
619 ///
620 /// A target that uses the standard regalloc pass order for fast or optimized
621 /// allocation may still override this for per-target regalloc
622 /// selection. But -regalloc=... always takes precedence.
createTargetRegisterAllocator(bool Optimized)623 FunctionPass *TargetPassConfig::createTargetRegisterAllocator(bool Optimized) {
624 if (Optimized)
625 return createGreedyRegisterAllocator();
626 else
627 return createFastRegisterAllocator();
628 }
629
630 /// Find and instantiate the register allocation pass requested by this target
631 /// at the current optimization level. Different register allocators are
632 /// defined as separate passes because they may require different analysis.
633 ///
634 /// This helper ensures that the regalloc= option is always available,
635 /// even for targets that override the default allocator.
636 ///
637 /// FIXME: When MachinePassRegistry register pass IDs instead of function ptrs,
638 /// this can be folded into addPass.
createRegAllocPass(bool Optimized)639 FunctionPass *TargetPassConfig::createRegAllocPass(bool Optimized) {
640 RegisterRegAlloc::FunctionPassCtor Ctor = RegisterRegAlloc::getDefault();
641
642 // Initialize the global default.
643 if (!Ctor) {
644 Ctor = RegAlloc;
645 RegisterRegAlloc::setDefault(RegAlloc);
646 }
647 if (Ctor != useDefaultRegisterAllocator)
648 return Ctor();
649
650 // With no -regalloc= override, ask the target for a regalloc pass.
651 return createTargetRegisterAllocator(Optimized);
652 }
653
654 /// Add the minimum set of target-independent passes that are required for
655 /// register allocation. No coalescing or scheduling.
addFastRegAlloc(FunctionPass * RegAllocPass)656 void TargetPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
657 addPass(&PHIEliminationID);
658 addPass(&TwoAddressInstructionPassID);
659
660 addPass(RegAllocPass);
661 printAndVerify("After Register Allocation");
662 }
663
664 /// Add standard target-independent passes that are tightly coupled with
665 /// optimized register allocation, including coalescing, machine instruction
666 /// scheduling, and register allocation itself.
addOptimizedRegAlloc(FunctionPass * RegAllocPass)667 void TargetPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
668 addPass(&ProcessImplicitDefsID);
669
670 // LiveVariables currently requires pure SSA form.
671 //
672 // FIXME: Once TwoAddressInstruction pass no longer uses kill flags,
673 // LiveVariables can be removed completely, and LiveIntervals can be directly
674 // computed. (We still either need to regenerate kill flags after regalloc, or
675 // preferably fix the scavenger to not depend on them).
676 addPass(&LiveVariablesID);
677
678 // Add passes that move from transformed SSA into conventional SSA. This is a
679 // "copy coalescing" problem.
680 //
681 if (!EnableStrongPHIElim) {
682 // Edge splitting is smarter with machine loop info.
683 addPass(&MachineLoopInfoID);
684 addPass(&PHIEliminationID);
685 }
686
687 // Eventually, we want to run LiveIntervals before PHI elimination.
688 if (EarlyLiveIntervals)
689 addPass(&LiveIntervalsID);
690
691 addPass(&TwoAddressInstructionPassID);
692
693 if (EnableStrongPHIElim)
694 addPass(&StrongPHIEliminationID);
695
696 addPass(&RegisterCoalescerID);
697
698 // PreRA instruction scheduling.
699 if (addPass(&MachineSchedulerID))
700 printAndVerify("After Machine Scheduling");
701
702 // Add the selected register allocation pass.
703 addPass(RegAllocPass);
704 printAndVerify("After Register Allocation, before rewriter");
705
706 // Allow targets to change the register assignments before rewriting.
707 if (addPreRewrite())
708 printAndVerify("After pre-rewrite passes");
709
710 // Finally rewrite virtual registers.
711 addPass(&VirtRegRewriterID);
712 printAndVerify("After Virtual Register Rewriter");
713
714 // Perform stack slot coloring and post-ra machine LICM.
715 //
716 // FIXME: Re-enable coloring with register when it's capable of adding
717 // kill markers.
718 addPass(&StackSlotColoringID);
719
720 // Run post-ra machine LICM to hoist reloads / remats.
721 //
722 // FIXME: can this move into MachineLateOptimization?
723 addPass(&PostRAMachineLICMID);
724
725 printAndVerify("After StackSlotColoring and postra Machine LICM");
726 }
727
728 //===---------------------------------------------------------------------===//
729 /// Post RegAlloc Pass Configuration
730 //===---------------------------------------------------------------------===//
731
732 /// Add passes that optimize machine instructions after register allocation.
addMachineLateOptimization()733 void TargetPassConfig::addMachineLateOptimization() {
734 // Branch folding must be run after regalloc and prolog/epilog insertion.
735 if (addPass(&BranchFolderPassID))
736 printAndVerify("After BranchFolding");
737
738 // Tail duplication.
739 if (addPass(&TailDuplicateID))
740 printAndVerify("After TailDuplicate");
741
742 // Copy propagation.
743 if (addPass(&MachineCopyPropagationID))
744 printAndVerify("After copy propagation pass");
745 }
746
747 /// Add standard GC passes.
addGCPasses()748 bool TargetPassConfig::addGCPasses() {
749 addPass(&GCMachineCodeAnalysisID);
750 return true;
751 }
752
753 /// Add standard basic block placement passes.
addBlockPlacement()754 void TargetPassConfig::addBlockPlacement() {
755 if (addPass(&MachineBlockPlacementID)) {
756 // Run a separate pass to collect block placement statistics.
757 if (EnableBlockPlacementStats)
758 addPass(&MachineBlockPlacementStatsID);
759
760 printAndVerify("After machine block placement.");
761 }
762 }
763