• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains some templates that are useful if you are working with the
11 // STL at all.
12 //
13 // No library is required when using these functions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_ADT_STLEXTRAS_H
18 #define LLVM_ADT_STLEXTRAS_H
19 
20 #include <cstddef> // for std::size_t
21 #include <cstdlib> // for qsort
22 #include <functional>
23 #include <iterator>
24 #include <utility> // for std::pair
25 
26 namespace llvm {
27 
28 //===----------------------------------------------------------------------===//
29 //     Extra additions to <functional>
30 //===----------------------------------------------------------------------===//
31 
32 template<class Ty>
33 struct identity : public std::unary_function<Ty, Ty> {
operatoridentity34   Ty &operator()(Ty &self) const {
35     return self;
36   }
operatoridentity37   const Ty &operator()(const Ty &self) const {
38     return self;
39   }
40 };
41 
42 template<class Ty>
43 struct less_ptr : public std::binary_function<Ty, Ty, bool> {
operatorless_ptr44   bool operator()(const Ty* left, const Ty* right) const {
45     return *left < *right;
46   }
47 };
48 
49 template<class Ty>
50 struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
operatorgreater_ptr51   bool operator()(const Ty* left, const Ty* right) const {
52     return *right < *left;
53   }
54 };
55 
56 // deleter - Very very very simple method that is used to invoke operator
57 // delete on something.  It is used like this:
58 //
59 //   for_each(V.begin(), B.end(), deleter<Interval>);
60 //
61 template <class T>
deleter(T * Ptr)62 inline void deleter(T *Ptr) {
63   delete Ptr;
64 }
65 
66 
67 
68 //===----------------------------------------------------------------------===//
69 //     Extra additions to <iterator>
70 //===----------------------------------------------------------------------===//
71 
72 // mapped_iterator - This is a simple iterator adapter that causes a function to
73 // be dereferenced whenever operator* is invoked on the iterator.
74 //
75 template <class RootIt, class UnaryFunc>
76 class mapped_iterator {
77   RootIt current;
78   UnaryFunc Fn;
79 public:
80   typedef typename std::iterator_traits<RootIt>::iterator_category
81           iterator_category;
82   typedef typename std::iterator_traits<RootIt>::difference_type
83           difference_type;
84   typedef typename UnaryFunc::result_type value_type;
85 
86   typedef void pointer;
87   //typedef typename UnaryFunc::result_type *pointer;
88   typedef void reference;        // Can't modify value returned by fn
89 
90   typedef RootIt iterator_type;
91   typedef mapped_iterator<RootIt, UnaryFunc> _Self;
92 
getCurrent()93   inline const RootIt &getCurrent() const { return current; }
getFunc()94   inline const UnaryFunc &getFunc() const { return Fn; }
95 
mapped_iterator(const RootIt & I,UnaryFunc F)96   inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
97     : current(I), Fn(F) {}
mapped_iterator(const mapped_iterator & It)98   inline mapped_iterator(const mapped_iterator &It)
99     : current(It.current), Fn(It.Fn) {}
100 
101   inline value_type operator*() const {   // All this work to do this
102     return Fn(*current);         // little change
103   }
104 
105   _Self& operator++() { ++current; return *this; }
106   _Self& operator--() { --current; return *this; }
107   _Self  operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
108   _Self  operator--(int) { _Self __tmp = *this; --current; return __tmp; }
109   _Self  operator+    (difference_type n) const {
110     return _Self(current + n, Fn);
111   }
112   _Self& operator+=   (difference_type n) { current += n; return *this; }
113   _Self  operator-    (difference_type n) const {
114     return _Self(current - n, Fn);
115   }
116   _Self& operator-=   (difference_type n) { current -= n; return *this; }
117   reference operator[](difference_type n) const { return *(*this + n); }
118 
119   inline bool operator!=(const _Self &X) const { return !operator==(X); }
120   inline bool operator==(const _Self &X) const { return current == X.current; }
121   inline bool operator< (const _Self &X) const { return current <  X.current; }
122 
123   inline difference_type operator-(const _Self &X) const {
124     return current - X.current;
125   }
126 };
127 
128 template <class _Iterator, class Func>
129 inline mapped_iterator<_Iterator, Func>
130 operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
131           const mapped_iterator<_Iterator, Func>& X) {
132   return mapped_iterator<_Iterator, Func>(X.getCurrent() - N, X.getFunc());
133 }
134 
135 
136 // map_iterator - Provide a convenient way to create mapped_iterators, just like
137 // make_pair is useful for creating pairs...
138 //
139 template <class ItTy, class FuncTy>
map_iterator(const ItTy & I,FuncTy F)140 inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
141   return mapped_iterator<ItTy, FuncTy>(I, F);
142 }
143 
144 
145 // next/prior - These functions unlike std::advance do not modify the
146 // passed iterator but return a copy.
147 //
148 // next(myIt) returns copy of myIt incremented once
149 // next(myIt, n) returns copy of myIt incremented n times
150 // prior(myIt) returns copy of myIt decremented once
151 // prior(myIt, n) returns copy of myIt decremented n times
152 
153 template <typename ItTy, typename Dist>
next(ItTy it,Dist n)154 inline ItTy next(ItTy it, Dist n)
155 {
156   std::advance(it, n);
157   return it;
158 }
159 
160 template <typename ItTy>
next(ItTy it)161 inline ItTy next(ItTy it)
162 {
163   return ++it;
164 }
165 
166 template <typename ItTy, typename Dist>
prior(ItTy it,Dist n)167 inline ItTy prior(ItTy it, Dist n)
168 {
169   std::advance(it, -n);
170   return it;
171 }
172 
173 template <typename ItTy>
prior(ItTy it)174 inline ItTy prior(ItTy it)
175 {
176   return --it;
177 }
178 
179 //===----------------------------------------------------------------------===//
180 //     Extra additions to <utility>
181 //===----------------------------------------------------------------------===//
182 
183 // tie - this function ties two objects and returns a temporary object
184 // that is assignable from a std::pair. This can be used to make code
185 // more readable when using values returned from functions bundled in
186 // a std::pair. Since an example is worth 1000 words:
187 //
188 // typedef std::map<int, int> Int2IntMap;
189 //
190 // Int2IntMap myMap;
191 // Int2IntMap::iterator where;
192 // bool inserted;
193 // tie(where, inserted) = myMap.insert(std::make_pair(123,456));
194 //
195 // if (inserted)
196 //   // do stuff
197 // else
198 //   // do other stuff
199 template <typename T1, typename T2>
200 struct tier {
201   typedef T1 &first_type;
202   typedef T2 &second_type;
203 
204   first_type first;
205   second_type second;
206 
tiertier207   tier(first_type f, second_type s) : first(f), second(s) { }
208   tier& operator=(const std::pair<T1, T2>& p) {
209     first = p.first;
210     second = p.second;
211     return *this;
212   }
213 };
214 
215 template <typename T1, typename T2>
tie(T1 & f,T2 & s)216 inline tier<T1, T2> tie(T1& f, T2& s) {
217   return tier<T1, T2>(f, s);
218 }
219 
220 //===----------------------------------------------------------------------===//
221 //     Extra additions for arrays
222 //===----------------------------------------------------------------------===//
223 
224 /// Find where an array ends (for ending iterators)
225 /// This returns a pointer to the byte immediately
226 /// after the end of an array.
227 template<class T, std::size_t N>
array_endof(T (& x)[N])228 inline T *array_endof(T (&x)[N]) {
229   return x+N;
230 }
231 
232 /// Find the length of an array.
233 template<class T, std::size_t N>
array_lengthof(T (&)[N])234 inline size_t array_lengthof(T (&)[N]) {
235   return N;
236 }
237 
238 /// array_pod_sort_comparator - This is helper function for array_pod_sort,
239 /// which just uses operator< on T.
240 template<typename T>
array_pod_sort_comparator(const void * P1,const void * P2)241 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
242   if (*reinterpret_cast<const T*>(P1) < *reinterpret_cast<const T*>(P2))
243     return -1;
244   if (*reinterpret_cast<const T*>(P2) < *reinterpret_cast<const T*>(P1))
245     return 1;
246   return 0;
247 }
248 
249 /// get_array_pod_sort_comparator - This is an internal helper function used to
250 /// get type deduction of T right.
251 template<typename T>
get_array_pod_sort_comparator(const T &)252 inline int (*get_array_pod_sort_comparator(const T &))
253              (const void*, const void*) {
254   return array_pod_sort_comparator<T>;
255 }
256 
257 
258 /// array_pod_sort - This sorts an array with the specified start and end
259 /// extent.  This is just like std::sort, except that it calls qsort instead of
260 /// using an inlined template.  qsort is slightly slower than std::sort, but
261 /// most sorts are not performance critical in LLVM and std::sort has to be
262 /// template instantiated for each type, leading to significant measured code
263 /// bloat.  This function should generally be used instead of std::sort where
264 /// possible.
265 ///
266 /// This function assumes that you have simple POD-like types that can be
267 /// compared with operator< and can be moved with memcpy.  If this isn't true,
268 /// you should use std::sort.
269 ///
270 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
271 /// default to std::less.
272 template<class IteratorTy>
array_pod_sort(IteratorTy Start,IteratorTy End)273 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
274   // Don't dereference start iterator of empty sequence.
275   if (Start == End) return;
276   qsort(&*Start, End-Start, sizeof(*Start),
277         get_array_pod_sort_comparator(*Start));
278 }
279 
280 template<class IteratorTy>
array_pod_sort(IteratorTy Start,IteratorTy End,int (* Compare)(const void *,const void *))281 inline void array_pod_sort(IteratorTy Start, IteratorTy End,
282                                   int (*Compare)(const void*, const void*)) {
283   // Don't dereference start iterator of empty sequence.
284   if (Start == End) return;
285   qsort(&*Start, End-Start, sizeof(*Start), Compare);
286 }
287 
288 //===----------------------------------------------------------------------===//
289 //     Extra additions to <algorithm>
290 //===----------------------------------------------------------------------===//
291 
292 /// For a container of pointers, deletes the pointers and then clears the
293 /// container.
294 template<typename Container>
DeleteContainerPointers(Container & C)295 void DeleteContainerPointers(Container &C) {
296   for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
297     delete *I;
298   C.clear();
299 }
300 
301 /// In a container of pairs (usually a map) whose second element is a pointer,
302 /// deletes the second elements and then clears the container.
303 template<typename Container>
DeleteContainerSeconds(Container & C)304 void DeleteContainerSeconds(Container &C) {
305   for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
306     delete I->second;
307   C.clear();
308 }
309 
310 } // End llvm namespace
311 
312 #endif
313