1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mark_sweep.h"
18
19 #include <functional>
20 #include <numeric>
21 #include <climits>
22 #include <vector>
23
24 #include "base/bounded_fifo.h"
25 #include "base/logging.h"
26 #include "base/macros.h"
27 #include "base/mutex-inl.h"
28 #include "base/timing_logger.h"
29 #include "gc/accounting/card_table-inl.h"
30 #include "gc/accounting/heap_bitmap.h"
31 #include "gc/accounting/space_bitmap-inl.h"
32 #include "gc/heap.h"
33 #include "gc/space/image_space.h"
34 #include "gc/space/large_object_space.h"
35 #include "gc/space/space-inl.h"
36 #include "indirect_reference_table.h"
37 #include "intern_table.h"
38 #include "jni_internal.h"
39 #include "monitor.h"
40 #include "mark_sweep-inl.h"
41 #include "mirror/art_field.h"
42 #include "mirror/art_field-inl.h"
43 #include "mirror/class-inl.h"
44 #include "mirror/class_loader.h"
45 #include "mirror/dex_cache.h"
46 #include "mirror/object-inl.h"
47 #include "mirror/object_array.h"
48 #include "mirror/object_array-inl.h"
49 #include "runtime.h"
50 #include "thread-inl.h"
51 #include "thread_list.h"
52 #include "verifier/method_verifier.h"
53
54 using ::art::mirror::ArtField;
55 using ::art::mirror::Class;
56 using ::art::mirror::Object;
57 using ::art::mirror::ObjectArray;
58
59 namespace art {
60 namespace gc {
61 namespace collector {
62
63 // Performance options.
64 constexpr bool kUseRecursiveMark = false;
65 constexpr bool kUseMarkStackPrefetch = true;
66 constexpr size_t kSweepArrayChunkFreeSize = 1024;
67
68 // Parallelism options.
69 constexpr bool kParallelCardScan = true;
70 constexpr bool kParallelRecursiveMark = true;
71 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n
72 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
73 // having this can add overhead in ProcessReferences since we may end up doing many calls of
74 // ProcessMarkStack with very small mark stacks.
75 constexpr size_t kMinimumParallelMarkStackSize = 128;
76 constexpr bool kParallelProcessMarkStack = true;
77
78 // Profiling and information flags.
79 constexpr bool kCountClassesMarked = false;
80 constexpr bool kProfileLargeObjects = false;
81 constexpr bool kMeasureOverhead = false;
82 constexpr bool kCountTasks = false;
83 constexpr bool kCountJavaLangRefs = false;
84
85 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
86 constexpr bool kCheckLocks = kDebugLocking;
87
ImmuneSpace(space::ContinuousSpace * space)88 void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) {
89 // Bind live to mark bitmap if necessary.
90 if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
91 BindLiveToMarkBitmap(space);
92 }
93
94 // Add the space to the immune region.
95 if (immune_begin_ == NULL) {
96 DCHECK(immune_end_ == NULL);
97 SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
98 reinterpret_cast<Object*>(space->End()));
99 } else {
100 const space::ContinuousSpace* prev_space = nullptr;
101 // Find out if the previous space is immune.
102 for (space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
103 if (cur_space == space) {
104 break;
105 }
106 prev_space = cur_space;
107 }
108 // If previous space was immune, then extend the immune region. Relies on continuous spaces
109 // being sorted by Heap::AddContinuousSpace.
110 if (prev_space != NULL &&
111 immune_begin_ <= reinterpret_cast<Object*>(prev_space->Begin()) &&
112 immune_end_ >= reinterpret_cast<Object*>(prev_space->End())) {
113 immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
114 immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
115 }
116 }
117 }
118
BindBitmaps()119 void MarkSweep::BindBitmaps() {
120 timings_.StartSplit("BindBitmaps");
121 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
122 // Mark all of the spaces we never collect as immune.
123 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
124 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
125 ImmuneSpace(space);
126 }
127 }
128 timings_.EndSplit();
129 }
130
MarkSweep(Heap * heap,bool is_concurrent,const std::string & name_prefix)131 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
132 : GarbageCollector(heap,
133 name_prefix + (name_prefix.empty() ? "" : " ") +
134 (is_concurrent ? "concurrent mark sweep": "mark sweep")),
135 current_mark_bitmap_(NULL),
136 java_lang_Class_(NULL),
137 mark_stack_(NULL),
138 immune_begin_(NULL),
139 immune_end_(NULL),
140 soft_reference_list_(NULL),
141 weak_reference_list_(NULL),
142 finalizer_reference_list_(NULL),
143 phantom_reference_list_(NULL),
144 cleared_reference_list_(NULL),
145 gc_barrier_(new Barrier(0)),
146 large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
147 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
148 is_concurrent_(is_concurrent),
149 clear_soft_references_(false) {
150 }
151
InitializePhase()152 void MarkSweep::InitializePhase() {
153 timings_.Reset();
154 base::TimingLogger::ScopedSplit split("InitializePhase", &timings_);
155 mark_stack_ = heap_->mark_stack_.get();
156 DCHECK(mark_stack_ != nullptr);
157 SetImmuneRange(nullptr, nullptr);
158 soft_reference_list_ = nullptr;
159 weak_reference_list_ = nullptr;
160 finalizer_reference_list_ = nullptr;
161 phantom_reference_list_ = nullptr;
162 cleared_reference_list_ = nullptr;
163 freed_bytes_ = 0;
164 freed_large_object_bytes_ = 0;
165 freed_objects_ = 0;
166 freed_large_objects_ = 0;
167 class_count_ = 0;
168 array_count_ = 0;
169 other_count_ = 0;
170 large_object_test_ = 0;
171 large_object_mark_ = 0;
172 classes_marked_ = 0;
173 overhead_time_ = 0;
174 work_chunks_created_ = 0;
175 work_chunks_deleted_ = 0;
176 reference_count_ = 0;
177 java_lang_Class_ = Class::GetJavaLangClass();
178 CHECK(java_lang_Class_ != nullptr);
179
180 FindDefaultMarkBitmap();
181
182 // Do any pre GC verification.
183 timings_.NewSplit("PreGcVerification");
184 heap_->PreGcVerification(this);
185 }
186
ProcessReferences(Thread * self)187 void MarkSweep::ProcessReferences(Thread* self) {
188 base::TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
189 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
190 ProcessReferences(&soft_reference_list_, clear_soft_references_, &weak_reference_list_,
191 &finalizer_reference_list_, &phantom_reference_list_);
192 }
193
HandleDirtyObjectsPhase()194 bool MarkSweep::HandleDirtyObjectsPhase() {
195 base::TimingLogger::ScopedSplit split("HandleDirtyObjectsPhase", &timings_);
196 Thread* self = Thread::Current();
197 Locks::mutator_lock_->AssertExclusiveHeld(self);
198
199 {
200 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
201
202 // Re-mark root set.
203 ReMarkRoots();
204
205 // Scan dirty objects, this is only required if we are not doing concurrent GC.
206 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
207 }
208
209 ProcessReferences(self);
210
211 // Only need to do this if we have the card mark verification on, and only during concurrent GC.
212 if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_||
213 GetHeap()->verify_post_gc_heap_) {
214 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
215 // This second sweep makes sure that we don't have any objects in the live stack which point to
216 // freed objects. These cause problems since their references may be previously freed objects.
217 SweepArray(GetHeap()->allocation_stack_.get(), false);
218 }
219
220 timings_.StartSplit("PreSweepingGcVerification");
221 heap_->PreSweepingGcVerification(this);
222 timings_.EndSplit();
223
224 // Ensure that nobody inserted items in the live stack after we swapped the stacks.
225 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
226 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
227
228 // Disallow new system weaks to prevent a race which occurs when someone adds a new system
229 // weak before we sweep them. Since this new system weak may not be marked, the GC may
230 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
231 // reference to a string that is about to be swept.
232 Runtime::Current()->DisallowNewSystemWeaks();
233 return true;
234 }
235
IsConcurrent() const236 bool MarkSweep::IsConcurrent() const {
237 return is_concurrent_;
238 }
239
MarkingPhase()240 void MarkSweep::MarkingPhase() {
241 base::TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
242 Thread* self = Thread::Current();
243
244 BindBitmaps();
245 FindDefaultMarkBitmap();
246
247 // Process dirty cards and add dirty cards to mod union tables.
248 heap_->ProcessCards(timings_);
249
250 // Need to do this before the checkpoint since we don't want any threads to add references to
251 // the live stack during the recursive mark.
252 timings_.NewSplit("SwapStacks");
253 heap_->SwapStacks();
254
255 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
256 if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
257 // If we exclusively hold the mutator lock, all threads must be suspended.
258 MarkRoots();
259 } else {
260 MarkThreadRoots(self);
261 // At this point the live stack should no longer have any mutators which push into it.
262 MarkNonThreadRoots();
263 }
264 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
265 MarkConcurrentRoots();
266
267 heap_->UpdateAndMarkModUnion(this, timings_, GetGcType());
268 MarkReachableObjects();
269 }
270
MarkThreadRoots(Thread * self)271 void MarkSweep::MarkThreadRoots(Thread* self) {
272 MarkRootsCheckpoint(self);
273 }
274
MarkReachableObjects()275 void MarkSweep::MarkReachableObjects() {
276 // Mark everything allocated since the last as GC live so that we can sweep concurrently,
277 // knowing that new allocations won't be marked as live.
278 timings_.StartSplit("MarkStackAsLive");
279 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
280 heap_->MarkAllocStack(heap_->alloc_space_->GetLiveBitmap(),
281 heap_->large_object_space_->GetLiveObjects(), live_stack);
282 live_stack->Reset();
283 timings_.EndSplit();
284 // Recursively mark all the non-image bits set in the mark bitmap.
285 RecursiveMark();
286 }
287
ReclaimPhase()288 void MarkSweep::ReclaimPhase() {
289 base::TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
290 Thread* self = Thread::Current();
291
292 if (!IsConcurrent()) {
293 ProcessReferences(self);
294 }
295
296 {
297 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
298 SweepSystemWeaks();
299 }
300
301 if (IsConcurrent()) {
302 Runtime::Current()->AllowNewSystemWeaks();
303
304 base::TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
305 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
306 accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
307 // The allocation stack contains things allocated since the start of the GC. These may have been
308 // marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC.
309 // Remove these objects from the mark bitmaps so that they will be eligible for sticky
310 // collection.
311 // There is a race here which is safely handled. Another thread such as the hprof could
312 // have flushed the alloc stack after we resumed the threads. This is safe however, since
313 // reseting the allocation stack zeros it out with madvise. This means that we will either
314 // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
315 // first place.
316 mirror::Object** end = allocation_stack->End();
317 for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
318 const Object* obj = *it;
319 if (obj != NULL) {
320 UnMarkObjectNonNull(obj);
321 }
322 }
323 }
324
325 // Before freeing anything, lets verify the heap.
326 if (kIsDebugBuild) {
327 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
328 VerifyImageRoots();
329 }
330
331 {
332 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
333
334 // Reclaim unmarked objects.
335 Sweep(false);
336
337 // Swap the live and mark bitmaps for each space which we modified space. This is an
338 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
339 // bitmaps.
340 timings_.StartSplit("SwapBitmaps");
341 SwapBitmaps();
342 timings_.EndSplit();
343
344 // Unbind the live and mark bitmaps.
345 UnBindBitmaps();
346 }
347 }
348
SetImmuneRange(Object * begin,Object * end)349 void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
350 immune_begin_ = begin;
351 immune_end_ = end;
352 }
353
FindDefaultMarkBitmap()354 void MarkSweep::FindDefaultMarkBitmap() {
355 base::TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
356 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
357 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
358 current_mark_bitmap_ = space->GetMarkBitmap();
359 CHECK(current_mark_bitmap_ != NULL);
360 return;
361 }
362 }
363 GetHeap()->DumpSpaces();
364 LOG(FATAL) << "Could not find a default mark bitmap";
365 }
366
ExpandMarkStack()367 void MarkSweep::ExpandMarkStack() {
368 ResizeMarkStack(mark_stack_->Capacity() * 2);
369 }
370
ResizeMarkStack(size_t new_size)371 void MarkSweep::ResizeMarkStack(size_t new_size) {
372 // Rare case, no need to have Thread::Current be a parameter.
373 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
374 // Someone else acquired the lock and expanded the mark stack before us.
375 return;
376 }
377 std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
378 CHECK_LE(mark_stack_->Size(), new_size);
379 mark_stack_->Resize(new_size);
380 for (const auto& obj : temp) {
381 mark_stack_->PushBack(obj);
382 }
383 }
384
MarkObjectNonNullParallel(const Object * obj)385 inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) {
386 DCHECK(obj != NULL);
387 if (MarkObjectParallel(obj)) {
388 MutexLock mu(Thread::Current(), mark_stack_lock_);
389 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
390 ExpandMarkStack();
391 }
392 // The object must be pushed on to the mark stack.
393 mark_stack_->PushBack(const_cast<Object*>(obj));
394 }
395 }
396
UnMarkObjectNonNull(const Object * obj)397 inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
398 DCHECK(!IsImmune(obj));
399 // Try to take advantage of locality of references within a space, failing this find the space
400 // the hard way.
401 accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
402 if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
403 accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
404 if (LIKELY(new_bitmap != NULL)) {
405 object_bitmap = new_bitmap;
406 } else {
407 MarkLargeObject(obj, false);
408 return;
409 }
410 }
411
412 DCHECK(object_bitmap->HasAddress(obj));
413 object_bitmap->Clear(obj);
414 }
415
MarkObjectNonNull(const Object * obj)416 inline void MarkSweep::MarkObjectNonNull(const Object* obj) {
417 DCHECK(obj != NULL);
418
419 if (IsImmune(obj)) {
420 DCHECK(IsMarked(obj));
421 return;
422 }
423
424 // Try to take advantage of locality of references within a space, failing this find the space
425 // the hard way.
426 accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
427 if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
428 accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
429 if (LIKELY(new_bitmap != NULL)) {
430 object_bitmap = new_bitmap;
431 } else {
432 MarkLargeObject(obj, true);
433 return;
434 }
435 }
436
437 // This object was not previously marked.
438 if (!object_bitmap->Test(obj)) {
439 object_bitmap->Set(obj);
440 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
441 // Lock is not needed but is here anyways to please annotalysis.
442 MutexLock mu(Thread::Current(), mark_stack_lock_);
443 ExpandMarkStack();
444 }
445 // The object must be pushed on to the mark stack.
446 mark_stack_->PushBack(const_cast<Object*>(obj));
447 }
448 }
449
450 // Rare case, probably not worth inlining since it will increase instruction cache miss rate.
MarkLargeObject(const Object * obj,bool set)451 bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
452 // TODO: support >1 discontinuous space.
453 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
454 accounting::SpaceSetMap* large_objects = large_object_space->GetMarkObjects();
455 if (kProfileLargeObjects) {
456 ++large_object_test_;
457 }
458 if (UNLIKELY(!large_objects->Test(obj))) {
459 if (!large_object_space->Contains(obj)) {
460 LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
461 LOG(ERROR) << "Attempting see if it's a bad root";
462 VerifyRoots();
463 LOG(FATAL) << "Can't mark bad root";
464 }
465 if (kProfileLargeObjects) {
466 ++large_object_mark_;
467 }
468 if (set) {
469 large_objects->Set(obj);
470 } else {
471 large_objects->Clear(obj);
472 }
473 return true;
474 }
475 return false;
476 }
477
MarkObjectParallel(const Object * obj)478 inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
479 DCHECK(obj != NULL);
480
481 if (IsImmune(obj)) {
482 DCHECK(IsMarked(obj));
483 return false;
484 }
485
486 // Try to take advantage of locality of references within a space, failing this find the space
487 // the hard way.
488 accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
489 if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
490 accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
491 if (new_bitmap != NULL) {
492 object_bitmap = new_bitmap;
493 } else {
494 // TODO: Remove the Thread::Current here?
495 // TODO: Convert this to some kind of atomic marking?
496 MutexLock mu(Thread::Current(), large_object_lock_);
497 return MarkLargeObject(obj, true);
498 }
499 }
500
501 // Return true if the object was not previously marked.
502 return !object_bitmap->AtomicTestAndSet(obj);
503 }
504
505 // Used to mark objects when recursing. Recursion is done by moving
506 // the finger across the bitmaps in address order and marking child
507 // objects. Any newly-marked objects whose addresses are lower than
508 // the finger won't be visited by the bitmap scan, so those objects
509 // need to be added to the mark stack.
MarkObject(const Object * obj)510 inline void MarkSweep::MarkObject(const Object* obj) {
511 if (obj != NULL) {
512 MarkObjectNonNull(obj);
513 }
514 }
515
MarkRoot(const Object * obj)516 void MarkSweep::MarkRoot(const Object* obj) {
517 if (obj != NULL) {
518 MarkObjectNonNull(obj);
519 }
520 }
521
MarkRootParallelCallback(const Object * root,void * arg)522 void MarkSweep::MarkRootParallelCallback(const Object* root, void* arg) {
523 DCHECK(root != NULL);
524 DCHECK(arg != NULL);
525 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(root);
526 }
527
MarkObjectCallback(const Object * root,void * arg)528 void MarkSweep::MarkObjectCallback(const Object* root, void* arg) {
529 DCHECK(root != NULL);
530 DCHECK(arg != NULL);
531 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
532 mark_sweep->MarkObjectNonNull(root);
533 }
534
ReMarkObjectVisitor(const Object * root,void * arg)535 void MarkSweep::ReMarkObjectVisitor(const Object* root, void* arg) {
536 DCHECK(root != NULL);
537 DCHECK(arg != NULL);
538 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
539 mark_sweep->MarkObjectNonNull(root);
540 }
541
VerifyRootCallback(const Object * root,void * arg,size_t vreg,const StackVisitor * visitor)542 void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
543 const StackVisitor* visitor) {
544 reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
545 }
546
VerifyRoot(const Object * root,size_t vreg,const StackVisitor * visitor)547 void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
548 // See if the root is on any space bitmap.
549 if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
550 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
551 if (!large_object_space->Contains(root)) {
552 LOG(ERROR) << "Found invalid root: " << root;
553 if (visitor != NULL) {
554 LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
555 }
556 }
557 }
558 }
559
VerifyRoots()560 void MarkSweep::VerifyRoots() {
561 Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
562 }
563
564 // Marks all objects in the root set.
MarkRoots()565 void MarkSweep::MarkRoots() {
566 timings_.StartSplit("MarkRoots");
567 Runtime::Current()->VisitNonConcurrentRoots(MarkObjectCallback, this);
568 timings_.EndSplit();
569 }
570
MarkNonThreadRoots()571 void MarkSweep::MarkNonThreadRoots() {
572 timings_.StartSplit("MarkNonThreadRoots");
573 Runtime::Current()->VisitNonThreadRoots(MarkObjectCallback, this);
574 timings_.EndSplit();
575 }
576
MarkConcurrentRoots()577 void MarkSweep::MarkConcurrentRoots() {
578 timings_.StartSplit("MarkConcurrentRoots");
579 // Visit all runtime roots and clear dirty flags.
580 Runtime::Current()->VisitConcurrentRoots(MarkObjectCallback, this, false, true);
581 timings_.EndSplit();
582 }
583
CheckObject(const Object * obj)584 void MarkSweep::CheckObject(const Object* obj) {
585 DCHECK(obj != NULL);
586 VisitObjectReferences(obj, [this](const Object* obj, const Object* ref, MemberOffset offset,
587 bool is_static) NO_THREAD_SAFETY_ANALYSIS {
588 Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
589 CheckReference(obj, ref, offset, is_static);
590 });
591 }
592
VerifyImageRootVisitor(Object * root,void * arg)593 void MarkSweep::VerifyImageRootVisitor(Object* root, void* arg) {
594 DCHECK(root != NULL);
595 DCHECK(arg != NULL);
596 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
597 DCHECK(mark_sweep->heap_->GetMarkBitmap()->Test(root));
598 mark_sweep->CheckObject(root);
599 }
600
BindLiveToMarkBitmap(space::ContinuousSpace * space)601 void MarkSweep::BindLiveToMarkBitmap(space::ContinuousSpace* space) {
602 CHECK(space->IsDlMallocSpace());
603 space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
604 accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
605 accounting::SpaceBitmap* mark_bitmap = alloc_space->mark_bitmap_.release();
606 GetHeap()->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap);
607 alloc_space->temp_bitmap_.reset(mark_bitmap);
608 alloc_space->mark_bitmap_.reset(live_bitmap);
609 }
610
611 class ScanObjectVisitor {
612 public:
ScanObjectVisitor(MarkSweep * const mark_sweep)613 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
614 : mark_sweep_(mark_sweep) {}
615
616 // TODO: Fixme when anotatalysis works with visitors.
operator ()(const Object * obj) const617 void operator()(const Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
618 if (kCheckLocks) {
619 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
620 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
621 }
622 mark_sweep_->ScanObject(obj);
623 }
624
625 private:
626 MarkSweep* const mark_sweep_;
627 };
628
629 template <bool kUseFinger = false>
630 class MarkStackTask : public Task {
631 public:
MarkStackTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,size_t mark_stack_size,const Object ** mark_stack)632 MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
633 const Object** mark_stack)
634 : mark_sweep_(mark_sweep),
635 thread_pool_(thread_pool),
636 mark_stack_pos_(mark_stack_size) {
637 // We may have to copy part of an existing mark stack when another mark stack overflows.
638 if (mark_stack_size != 0) {
639 DCHECK(mark_stack != NULL);
640 // TODO: Check performance?
641 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
642 }
643 if (kCountTasks) {
644 ++mark_sweep_->work_chunks_created_;
645 }
646 }
647
648 static const size_t kMaxSize = 1 * KB;
649
650 protected:
651 class ScanObjectParallelVisitor {
652 public:
ScanObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task)653 explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
654 : chunk_task_(chunk_task) {}
655
operator ()(const Object * obj) const656 void operator()(const Object* obj) const {
657 MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
658 mark_sweep->ScanObjectVisit(obj,
659 [mark_sweep, this](const Object* /* obj */, const Object* ref,
660 const MemberOffset& /* offset */, bool /* is_static */) ALWAYS_INLINE {
661 if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
662 if (kUseFinger) {
663 android_memory_barrier();
664 if (reinterpret_cast<uintptr_t>(ref) >=
665 static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
666 return;
667 }
668 }
669 chunk_task_->MarkStackPush(ref);
670 }
671 });
672 }
673
674 private:
675 MarkStackTask<kUseFinger>* const chunk_task_;
676 };
677
~MarkStackTask()678 virtual ~MarkStackTask() {
679 // Make sure that we have cleared our mark stack.
680 DCHECK_EQ(mark_stack_pos_, 0U);
681 if (kCountTasks) {
682 ++mark_sweep_->work_chunks_deleted_;
683 }
684 }
685
686 MarkSweep* const mark_sweep_;
687 ThreadPool* const thread_pool_;
688 // Thread local mark stack for this task.
689 const Object* mark_stack_[kMaxSize];
690 // Mark stack position.
691 size_t mark_stack_pos_;
692
MarkStackPush(const Object * obj)693 void MarkStackPush(const Object* obj) ALWAYS_INLINE {
694 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
695 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
696 mark_stack_pos_ /= 2;
697 auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
698 mark_stack_ + mark_stack_pos_);
699 thread_pool_->AddTask(Thread::Current(), task);
700 }
701 DCHECK(obj != nullptr);
702 DCHECK(mark_stack_pos_ < kMaxSize);
703 mark_stack_[mark_stack_pos_++] = obj;
704 }
705
Finalize()706 virtual void Finalize() {
707 delete this;
708 }
709
710 // Scans all of the objects
Run(Thread * self)711 virtual void Run(Thread* self) {
712 ScanObjectParallelVisitor visitor(this);
713 // TODO: Tune this.
714 static const size_t kFifoSize = 4;
715 BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
716 for (;;) {
717 const Object* obj = NULL;
718 if (kUseMarkStackPrefetch) {
719 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
720 const Object* obj = mark_stack_[--mark_stack_pos_];
721 DCHECK(obj != NULL);
722 __builtin_prefetch(obj);
723 prefetch_fifo.push_back(obj);
724 }
725 if (UNLIKELY(prefetch_fifo.empty())) {
726 break;
727 }
728 obj = prefetch_fifo.front();
729 prefetch_fifo.pop_front();
730 } else {
731 if (UNLIKELY(mark_stack_pos_ == 0)) {
732 break;
733 }
734 obj = mark_stack_[--mark_stack_pos_];
735 }
736 DCHECK(obj != NULL);
737 visitor(obj);
738 }
739 }
740 };
741
742 class CardScanTask : public MarkStackTask<false> {
743 public:
CardScanTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::SpaceBitmap * bitmap,byte * begin,byte * end,byte minimum_age,size_t mark_stack_size,const Object ** mark_stack_obj)744 CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
745 byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
746 const Object** mark_stack_obj)
747 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
748 bitmap_(bitmap),
749 begin_(begin),
750 end_(end),
751 minimum_age_(minimum_age) {
752 }
753
754 protected:
755 accounting::SpaceBitmap* const bitmap_;
756 byte* const begin_;
757 byte* const end_;
758 const byte minimum_age_;
759
Finalize()760 virtual void Finalize() {
761 delete this;
762 }
763
Run(Thread * self)764 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
765 ScanObjectParallelVisitor visitor(this);
766 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
767 size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
768 mark_sweep_->cards_scanned_.fetch_add(cards_scanned);
769 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
770 << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
771 // Finish by emptying our local mark stack.
772 MarkStackTask::Run(self);
773 }
774 };
775
GetThreadCount(bool paused) const776 size_t MarkSweep::GetThreadCount(bool paused) const {
777 if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
778 return 0;
779 }
780 if (paused) {
781 return heap_->GetParallelGCThreadCount() + 1;
782 } else {
783 return heap_->GetConcGCThreadCount() + 1;
784 }
785 }
786
ScanGrayObjects(bool paused,byte minimum_age)787 void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
788 accounting::CardTable* card_table = GetHeap()->GetCardTable();
789 ThreadPool* thread_pool = GetHeap()->GetThreadPool();
790 size_t thread_count = GetThreadCount(paused);
791 // The parallel version with only one thread is faster for card scanning, TODO: fix.
792 if (kParallelCardScan && thread_count > 0) {
793 Thread* self = Thread::Current();
794 // Can't have a different split for each space since multiple spaces can have their cards being
795 // scanned at the same time.
796 timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
797 // Try to take some of the mark stack since we can pass this off to the worker tasks.
798 const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin());
799 const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End());
800 const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
801 // Estimated number of work tasks we will create.
802 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
803 DCHECK_NE(mark_stack_tasks, 0U);
804 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
805 mark_stack_size / mark_stack_tasks + 1);
806 size_t ref_card_count = 0;
807 cards_scanned_ = 0;
808 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
809 byte* card_begin = space->Begin();
810 byte* card_end = space->End();
811 // Calculate how many bytes of heap we will scan,
812 const size_t address_range = card_end - card_begin;
813 // Calculate how much address range each task gets.
814 const size_t card_delta = RoundUp(address_range / thread_count + 1,
815 accounting::CardTable::kCardSize);
816 // Create the worker tasks for this space.
817 while (card_begin != card_end) {
818 // Add a range of cards.
819 size_t addr_remaining = card_end - card_begin;
820 size_t card_increment = std::min(card_delta, addr_remaining);
821 // Take from the back of the mark stack.
822 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
823 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
824 mark_stack_end -= mark_stack_increment;
825 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
826 DCHECK_EQ(mark_stack_end, mark_stack_->End());
827 // Add the new task to the thread pool.
828 auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
829 card_begin + card_increment, minimum_age,
830 mark_stack_increment, mark_stack_end);
831 thread_pool->AddTask(self, task);
832 card_begin += card_increment;
833 }
834
835 if (paused && kIsDebugBuild) {
836 // Make sure we don't miss scanning any cards.
837 size_t scanned_cards = card_table->Scan(space->GetMarkBitmap(), space->Begin(),
838 space->End(), VoidFunctor(), minimum_age);
839 VLOG(heap) << "Scanning space cards " << reinterpret_cast<void*>(space->Begin()) << " - "
840 << reinterpret_cast<void*>(space->End()) << " = " << scanned_cards;
841 ref_card_count += scanned_cards;
842 }
843 }
844
845 thread_pool->SetMaxActiveWorkers(thread_count - 1);
846 thread_pool->StartWorkers(self);
847 thread_pool->Wait(self, true, true);
848 thread_pool->StopWorkers(self);
849 if (paused) {
850 DCHECK_EQ(ref_card_count, static_cast<size_t>(cards_scanned_.load()));
851 }
852 timings_.EndSplit();
853 } else {
854 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
855 // Image spaces are handled properly since live == marked for them.
856 switch (space->GetGcRetentionPolicy()) {
857 case space::kGcRetentionPolicyNeverCollect:
858 timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
859 "ScanGrayImageSpaceObjects");
860 break;
861 case space::kGcRetentionPolicyFullCollect:
862 timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
863 "ScanGrayZygoteSpaceObjects");
864 break;
865 case space::kGcRetentionPolicyAlwaysCollect:
866 timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
867 "ScanGrayAllocSpaceObjects");
868 break;
869 }
870 ScanObjectVisitor visitor(this);
871 card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
872 timings_.EndSplit();
873 }
874 }
875 }
876
VerifyImageRoots()877 void MarkSweep::VerifyImageRoots() {
878 // Verify roots ensures that all the references inside the image space point
879 // objects which are either in the image space or marked objects in the alloc
880 // space
881 timings_.StartSplit("VerifyImageRoots");
882 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
883 if (space->IsImageSpace()) {
884 space::ImageSpace* image_space = space->AsImageSpace();
885 uintptr_t begin = reinterpret_cast<uintptr_t>(image_space->Begin());
886 uintptr_t end = reinterpret_cast<uintptr_t>(image_space->End());
887 accounting::SpaceBitmap* live_bitmap = image_space->GetLiveBitmap();
888 DCHECK(live_bitmap != NULL);
889 live_bitmap->VisitMarkedRange(begin, end, [this](const Object* obj) {
890 if (kCheckLocks) {
891 Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
892 }
893 DCHECK(obj != NULL);
894 CheckObject(obj);
895 });
896 }
897 }
898 timings_.EndSplit();
899 }
900
901 class RecursiveMarkTask : public MarkStackTask<false> {
902 public:
RecursiveMarkTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::SpaceBitmap * bitmap,uintptr_t begin,uintptr_t end)903 RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
904 accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
905 : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
906 bitmap_(bitmap),
907 begin_(begin),
908 end_(end) {
909 }
910
911 protected:
912 accounting::SpaceBitmap* const bitmap_;
913 const uintptr_t begin_;
914 const uintptr_t end_;
915
Finalize()916 virtual void Finalize() {
917 delete this;
918 }
919
920 // Scans all of the objects
Run(Thread * self)921 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
922 ScanObjectParallelVisitor visitor(this);
923 bitmap_->VisitMarkedRange(begin_, end_, visitor);
924 // Finish by emptying our local mark stack.
925 MarkStackTask::Run(self);
926 }
927 };
928
929 // Populates the mark stack based on the set of marked objects and
930 // recursively marks until the mark stack is emptied.
RecursiveMark()931 void MarkSweep::RecursiveMark() {
932 base::TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
933 // RecursiveMark will build the lists of known instances of the Reference classes.
934 // See DelayReferenceReferent for details.
935 CHECK(soft_reference_list_ == NULL);
936 CHECK(weak_reference_list_ == NULL);
937 CHECK(finalizer_reference_list_ == NULL);
938 CHECK(phantom_reference_list_ == NULL);
939 CHECK(cleared_reference_list_ == NULL);
940
941 if (kUseRecursiveMark) {
942 const bool partial = GetGcType() == kGcTypePartial;
943 ScanObjectVisitor scan_visitor(this);
944 auto* self = Thread::Current();
945 ThreadPool* thread_pool = heap_->GetThreadPool();
946 size_t thread_count = GetThreadCount(false);
947 const bool parallel = kParallelRecursiveMark && thread_count > 1;
948 mark_stack_->Reset();
949 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
950 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
951 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
952 current_mark_bitmap_ = space->GetMarkBitmap();
953 if (current_mark_bitmap_ == NULL) {
954 GetHeap()->DumpSpaces();
955 LOG(FATAL) << "invalid bitmap";
956 }
957 if (parallel) {
958 // We will use the mark stack the future.
959 // CHECK(mark_stack_->IsEmpty());
960 // This function does not handle heap end increasing, so we must use the space end.
961 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
962 uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
963 atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
964
965 // Create a few worker tasks.
966 const size_t n = thread_count * 2;
967 while (begin != end) {
968 uintptr_t start = begin;
969 uintptr_t delta = (end - begin) / n;
970 delta = RoundUp(delta, KB);
971 if (delta < 16 * KB) delta = end - begin;
972 begin += delta;
973 auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start,
974 begin);
975 thread_pool->AddTask(self, task);
976 }
977 thread_pool->SetMaxActiveWorkers(thread_count - 1);
978 thread_pool->StartWorkers(self);
979 thread_pool->Wait(self, true, true);
980 thread_pool->StopWorkers(self);
981 } else {
982 // This function does not handle heap end increasing, so we must use the space end.
983 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
984 uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
985 current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
986 }
987 }
988 }
989 }
990 ProcessMarkStack(false);
991 }
992
IsMarkedCallback(const Object * object,void * arg)993 bool MarkSweep::IsMarkedCallback(const Object* object, void* arg) {
994 return reinterpret_cast<MarkSweep*>(arg)->IsMarked(object);
995 }
996
RecursiveMarkDirtyObjects(bool paused,byte minimum_age)997 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
998 ScanGrayObjects(paused, minimum_age);
999 ProcessMarkStack(paused);
1000 }
1001
ReMarkRoots()1002 void MarkSweep::ReMarkRoots() {
1003 timings_.StartSplit("ReMarkRoots");
1004 Runtime::Current()->VisitRoots(ReMarkObjectVisitor, this, true, true);
1005 timings_.EndSplit();
1006 }
1007
SweepJniWeakGlobals(IsMarkedTester is_marked,void * arg)1008 void MarkSweep::SweepJniWeakGlobals(IsMarkedTester is_marked, void* arg) {
1009 Runtime::Current()->GetJavaVM()->SweepWeakGlobals(is_marked, arg);
1010 }
1011
1012 struct ArrayMarkedCheck {
1013 accounting::ObjectStack* live_stack;
1014 MarkSweep* mark_sweep;
1015 };
1016
1017 // Either marked or not live.
IsMarkedArrayCallback(const Object * object,void * arg)1018 bool MarkSweep::IsMarkedArrayCallback(const Object* object, void* arg) {
1019 ArrayMarkedCheck* array_check = reinterpret_cast<ArrayMarkedCheck*>(arg);
1020 if (array_check->mark_sweep->IsMarked(object)) {
1021 return true;
1022 }
1023 accounting::ObjectStack* live_stack = array_check->live_stack;
1024 if (std::find(live_stack->Begin(), live_stack->End(), object) == live_stack->End()) {
1025 return true;
1026 }
1027 return false;
1028 }
1029
SweepSystemWeaks()1030 void MarkSweep::SweepSystemWeaks() {
1031 Runtime* runtime = Runtime::Current();
1032 timings_.StartSplit("SweepSystemWeaks");
1033 runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedCallback, this);
1034 runtime->GetMonitorList()->SweepMonitorList(IsMarkedCallback, this);
1035 SweepJniWeakGlobals(IsMarkedCallback, this);
1036 timings_.EndSplit();
1037 }
1038
VerifyIsLiveCallback(const Object * obj,void * arg)1039 bool MarkSweep::VerifyIsLiveCallback(const Object* obj, void* arg) {
1040 reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
1041 // We don't actually want to sweep the object, so lets return "marked"
1042 return true;
1043 }
1044
VerifyIsLive(const Object * obj)1045 void MarkSweep::VerifyIsLive(const Object* obj) {
1046 Heap* heap = GetHeap();
1047 if (!heap->GetLiveBitmap()->Test(obj)) {
1048 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1049 if (!large_object_space->GetLiveObjects()->Test(obj)) {
1050 if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
1051 heap->allocation_stack_->End()) {
1052 // Object not found!
1053 heap->DumpSpaces();
1054 LOG(FATAL) << "Found dead object " << obj;
1055 }
1056 }
1057 }
1058 }
1059
VerifySystemWeaks()1060 void MarkSweep::VerifySystemWeaks() {
1061 Runtime* runtime = Runtime::Current();
1062 // Verify system weaks, uses a special IsMarked callback which always returns true.
1063 runtime->GetInternTable()->SweepInternTableWeaks(VerifyIsLiveCallback, this);
1064 runtime->GetMonitorList()->SweepMonitorList(VerifyIsLiveCallback, this);
1065 runtime->GetJavaVM()->SweepWeakGlobals(VerifyIsLiveCallback, this);
1066 }
1067
1068 struct SweepCallbackContext {
1069 MarkSweep* mark_sweep;
1070 space::AllocSpace* space;
1071 Thread* self;
1072 };
1073
1074 class CheckpointMarkThreadRoots : public Closure {
1075 public:
CheckpointMarkThreadRoots(MarkSweep * mark_sweep)1076 explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1077
Run(Thread * thread)1078 virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1079 ATRACE_BEGIN("Marking thread roots");
1080 // Note: self is not necessarily equal to thread since thread may be suspended.
1081 Thread* self = Thread::Current();
1082 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1083 << thread->GetState() << " thread " << thread << " self " << self;
1084 thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
1085 ATRACE_END();
1086 mark_sweep_->GetBarrier().Pass(self);
1087 }
1088
1089 private:
1090 MarkSweep* mark_sweep_;
1091 };
1092
MarkRootsCheckpoint(Thread * self)1093 void MarkSweep::MarkRootsCheckpoint(Thread* self) {
1094 CheckpointMarkThreadRoots check_point(this);
1095 timings_.StartSplit("MarkRootsCheckpoint");
1096 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1097 // Request the check point is run on all threads returning a count of the threads that must
1098 // run through the barrier including self.
1099 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1100 // Release locks then wait for all mutator threads to pass the barrier.
1101 // TODO: optimize to not release locks when there are no threads to wait for.
1102 Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1103 Locks::mutator_lock_->SharedUnlock(self);
1104 ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
1105 CHECK_EQ(old_state, kWaitingPerformingGc);
1106 gc_barrier_->Increment(self, barrier_count);
1107 self->SetState(kWaitingPerformingGc);
1108 Locks::mutator_lock_->SharedLock(self);
1109 Locks::heap_bitmap_lock_->ExclusiveLock(self);
1110 timings_.EndSplit();
1111 }
1112
SweepCallback(size_t num_ptrs,Object ** ptrs,void * arg)1113 void MarkSweep::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
1114 SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
1115 MarkSweep* mark_sweep = context->mark_sweep;
1116 Heap* heap = mark_sweep->GetHeap();
1117 space::AllocSpace* space = context->space;
1118 Thread* self = context->self;
1119 Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
1120 // Use a bulk free, that merges consecutive objects before freeing or free per object?
1121 // Documentation suggests better free performance with merging, but this may be at the expensive
1122 // of allocation.
1123 size_t freed_objects = num_ptrs;
1124 // AllocSpace::FreeList clears the value in ptrs, so perform after clearing the live bit
1125 size_t freed_bytes = space->FreeList(self, num_ptrs, ptrs);
1126 heap->RecordFree(freed_objects, freed_bytes);
1127 mark_sweep->freed_objects_.fetch_add(freed_objects);
1128 mark_sweep->freed_bytes_.fetch_add(freed_bytes);
1129 }
1130
ZygoteSweepCallback(size_t num_ptrs,Object ** ptrs,void * arg)1131 void MarkSweep::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
1132 SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
1133 Locks::heap_bitmap_lock_->AssertExclusiveHeld(context->self);
1134 Heap* heap = context->mark_sweep->GetHeap();
1135 // We don't free any actual memory to avoid dirtying the shared zygote pages.
1136 for (size_t i = 0; i < num_ptrs; ++i) {
1137 Object* obj = static_cast<Object*>(ptrs[i]);
1138 heap->GetLiveBitmap()->Clear(obj);
1139 heap->GetCardTable()->MarkCard(obj);
1140 }
1141 }
1142
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)1143 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1144 space::DlMallocSpace* space = heap_->GetAllocSpace();
1145 timings_.StartSplit("SweepArray");
1146 // Newly allocated objects MUST be in the alloc space and those are the only objects which we are
1147 // going to free.
1148 accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1149 accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1150 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1151 accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
1152 accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
1153 if (swap_bitmaps) {
1154 std::swap(live_bitmap, mark_bitmap);
1155 std::swap(large_live_objects, large_mark_objects);
1156 }
1157
1158 size_t freed_bytes = 0;
1159 size_t freed_large_object_bytes = 0;
1160 size_t freed_objects = 0;
1161 size_t freed_large_objects = 0;
1162 size_t count = allocations->Size();
1163 Object** objects = const_cast<Object**>(allocations->Begin());
1164 Object** out = objects;
1165 Object** objects_to_chunk_free = out;
1166
1167 // Empty the allocation stack.
1168 Thread* self = Thread::Current();
1169 for (size_t i = 0; i < count; ++i) {
1170 Object* obj = objects[i];
1171 // There should only be objects in the AllocSpace/LargeObjectSpace in the allocation stack.
1172 if (LIKELY(mark_bitmap->HasAddress(obj))) {
1173 if (!mark_bitmap->Test(obj)) {
1174 // Don't bother un-marking since we clear the mark bitmap anyways.
1175 *(out++) = obj;
1176 // Free objects in chunks.
1177 DCHECK_GE(out, objects_to_chunk_free);
1178 DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
1179 if (static_cast<size_t>(out - objects_to_chunk_free) == kSweepArrayChunkFreeSize) {
1180 timings_.StartSplit("FreeList");
1181 size_t chunk_freed_objects = out - objects_to_chunk_free;
1182 freed_objects += chunk_freed_objects;
1183 freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
1184 objects_to_chunk_free = out;
1185 timings_.EndSplit();
1186 }
1187 }
1188 } else if (!large_mark_objects->Test(obj)) {
1189 ++freed_large_objects;
1190 freed_large_object_bytes += large_object_space->Free(self, obj);
1191 }
1192 }
1193 // Free the remaining objects in chunks.
1194 DCHECK_GE(out, objects_to_chunk_free);
1195 DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
1196 if (out - objects_to_chunk_free > 0) {
1197 timings_.StartSplit("FreeList");
1198 size_t chunk_freed_objects = out - objects_to_chunk_free;
1199 freed_objects += chunk_freed_objects;
1200 freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
1201 timings_.EndSplit();
1202 }
1203 CHECK_EQ(count, allocations->Size());
1204 timings_.EndSplit();
1205
1206 timings_.StartSplit("RecordFree");
1207 VLOG(heap) << "Freed " << freed_objects << "/" << count
1208 << " objects with size " << PrettySize(freed_bytes);
1209 heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1210 freed_objects_.fetch_add(freed_objects);
1211 freed_large_objects_.fetch_add(freed_large_objects);
1212 freed_bytes_.fetch_add(freed_bytes);
1213 freed_large_object_bytes_.fetch_add(freed_large_object_bytes);
1214 timings_.EndSplit();
1215
1216 timings_.StartSplit("ResetStack");
1217 allocations->Reset();
1218 timings_.EndSplit();
1219 }
1220
Sweep(bool swap_bitmaps)1221 void MarkSweep::Sweep(bool swap_bitmaps) {
1222 DCHECK(mark_stack_->IsEmpty());
1223 base::TimingLogger::ScopedSplit("Sweep", &timings_);
1224
1225 const bool partial = (GetGcType() == kGcTypePartial);
1226 SweepCallbackContext scc;
1227 scc.mark_sweep = this;
1228 scc.self = Thread::Current();
1229 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1230 // We always sweep always collect spaces.
1231 bool sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect);
1232 if (!partial && !sweep_space) {
1233 // We sweep full collect spaces when the GC isn't a partial GC (ie its full).
1234 sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect);
1235 }
1236 if (sweep_space) {
1237 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1238 uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1239 scc.space = space->AsDlMallocSpace();
1240 accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1241 accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1242 if (swap_bitmaps) {
1243 std::swap(live_bitmap, mark_bitmap);
1244 }
1245 if (!space->IsZygoteSpace()) {
1246 base::TimingLogger::ScopedSplit split("SweepAllocSpace", &timings_);
1247 // Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked.
1248 accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
1249 &SweepCallback, reinterpret_cast<void*>(&scc));
1250 } else {
1251 base::TimingLogger::ScopedSplit split("SweepZygote", &timings_);
1252 // Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual
1253 // memory.
1254 accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
1255 &ZygoteSweepCallback, reinterpret_cast<void*>(&scc));
1256 }
1257 }
1258 }
1259
1260 SweepLargeObjects(swap_bitmaps);
1261 }
1262
SweepLargeObjects(bool swap_bitmaps)1263 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1264 base::TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1265 // Sweep large objects
1266 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1267 accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
1268 accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
1269 if (swap_bitmaps) {
1270 std::swap(large_live_objects, large_mark_objects);
1271 }
1272 // O(n*log(n)) but hopefully there are not too many large objects.
1273 size_t freed_objects = 0;
1274 size_t freed_bytes = 0;
1275 Thread* self = Thread::Current();
1276 for (const Object* obj : large_live_objects->GetObjects()) {
1277 if (!large_mark_objects->Test(obj)) {
1278 freed_bytes += large_object_space->Free(self, const_cast<Object*>(obj));
1279 ++freed_objects;
1280 }
1281 }
1282 freed_large_objects_.fetch_add(freed_objects);
1283 freed_large_object_bytes_.fetch_add(freed_bytes);
1284 GetHeap()->RecordFree(freed_objects, freed_bytes);
1285 }
1286
CheckReference(const Object * obj,const Object * ref,MemberOffset offset,bool is_static)1287 void MarkSweep::CheckReference(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) {
1288 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1289 if (space->IsDlMallocSpace() && space->Contains(ref)) {
1290 DCHECK(IsMarked(obj));
1291
1292 bool is_marked = IsMarked(ref);
1293 if (!is_marked) {
1294 LOG(INFO) << *space;
1295 LOG(WARNING) << (is_static ? "Static ref'" : "Instance ref'") << PrettyTypeOf(ref)
1296 << "' (" << reinterpret_cast<const void*>(ref) << ") in '" << PrettyTypeOf(obj)
1297 << "' (" << reinterpret_cast<const void*>(obj) << ") at offset "
1298 << reinterpret_cast<void*>(offset.Int32Value()) << " wasn't marked";
1299
1300 const Class* klass = is_static ? obj->AsClass() : obj->GetClass();
1301 DCHECK(klass != NULL);
1302 const ObjectArray<ArtField>* fields = is_static ? klass->GetSFields() : klass->GetIFields();
1303 DCHECK(fields != NULL);
1304 bool found = false;
1305 for (int32_t i = 0; i < fields->GetLength(); ++i) {
1306 const ArtField* cur = fields->Get(i);
1307 if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
1308 LOG(WARNING) << "Field referencing the alloc space was " << PrettyField(cur);
1309 found = true;
1310 break;
1311 }
1312 }
1313 if (!found) {
1314 LOG(WARNING) << "Could not find field in object alloc space with offset " << offset.Int32Value();
1315 }
1316
1317 bool obj_marked = heap_->GetCardTable()->IsDirty(obj);
1318 if (!obj_marked) {
1319 LOG(WARNING) << "Object '" << PrettyTypeOf(obj) << "' "
1320 << "(" << reinterpret_cast<const void*>(obj) << ") contains references to "
1321 << "the alloc space, but wasn't card marked";
1322 }
1323 }
1324 }
1325 break;
1326 }
1327 }
1328
1329 // Process the "referent" field in a java.lang.ref.Reference. If the
1330 // referent has not yet been marked, put it on the appropriate list in
1331 // the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,Object * obj)1332 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
1333 DCHECK(klass != nullptr);
1334 DCHECK(klass->IsReferenceClass());
1335 DCHECK(obj != NULL);
1336 Object* referent = heap_->GetReferenceReferent(obj);
1337 if (referent != NULL && !IsMarked(referent)) {
1338 if (kCountJavaLangRefs) {
1339 ++reference_count_;
1340 }
1341 Thread* self = Thread::Current();
1342 // TODO: Remove these locks, and use atomic stacks for storing references?
1343 // We need to check that the references haven't already been enqueued since we can end up
1344 // scanning the same reference multiple times due to dirty cards.
1345 if (klass->IsSoftReferenceClass()) {
1346 MutexLock mu(self, *heap_->GetSoftRefQueueLock());
1347 if (!heap_->IsEnqueued(obj)) {
1348 heap_->EnqueuePendingReference(obj, &soft_reference_list_);
1349 }
1350 } else if (klass->IsWeakReferenceClass()) {
1351 MutexLock mu(self, *heap_->GetWeakRefQueueLock());
1352 if (!heap_->IsEnqueued(obj)) {
1353 heap_->EnqueuePendingReference(obj, &weak_reference_list_);
1354 }
1355 } else if (klass->IsFinalizerReferenceClass()) {
1356 MutexLock mu(self, *heap_->GetFinalizerRefQueueLock());
1357 if (!heap_->IsEnqueued(obj)) {
1358 heap_->EnqueuePendingReference(obj, &finalizer_reference_list_);
1359 }
1360 } else if (klass->IsPhantomReferenceClass()) {
1361 MutexLock mu(self, *heap_->GetPhantomRefQueueLock());
1362 if (!heap_->IsEnqueued(obj)) {
1363 heap_->EnqueuePendingReference(obj, &phantom_reference_list_);
1364 }
1365 } else {
1366 LOG(FATAL) << "Invalid reference type " << PrettyClass(klass)
1367 << " " << std::hex << klass->GetAccessFlags();
1368 }
1369 }
1370 }
1371
ScanRoot(const Object * obj)1372 void MarkSweep::ScanRoot(const Object* obj) {
1373 ScanObject(obj);
1374 }
1375
1376 class MarkObjectVisitor {
1377 public:
MarkObjectVisitor(MarkSweep * const mark_sweep)1378 explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
1379
1380 // TODO: Fixme when anotatalysis works with visitors.
operator ()(const Object *,const Object * ref,const MemberOffset &,bool) const1381 void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
1382 bool /* is_static */) const ALWAYS_INLINE
1383 NO_THREAD_SAFETY_ANALYSIS {
1384 if (kCheckLocks) {
1385 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1386 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1387 }
1388 mark_sweep_->MarkObject(ref);
1389 }
1390
1391 private:
1392 MarkSweep* const mark_sweep_;
1393 };
1394
1395 // Scans an object reference. Determines the type of the reference
1396 // and dispatches to a specialized scanning routine.
ScanObject(const Object * obj)1397 void MarkSweep::ScanObject(const Object* obj) {
1398 MarkObjectVisitor visitor(this);
1399 ScanObjectVisit(obj, visitor);
1400 }
1401
ProcessMarkStackParallel(size_t thread_count)1402 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1403 Thread* self = Thread::Current();
1404 ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1405 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1406 static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1407 CHECK_GT(chunk_size, 0U);
1408 // Split the current mark stack up into work tasks.
1409 for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1410 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1411 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta,
1412 const_cast<const mirror::Object**>(it)));
1413 it += delta;
1414 }
1415 thread_pool->SetMaxActiveWorkers(thread_count - 1);
1416 thread_pool->StartWorkers(self);
1417 thread_pool->Wait(self, true, true);
1418 thread_pool->StopWorkers(self);
1419 mark_stack_->Reset();
1420 CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1421 }
1422
1423 // Scan anything that's on the mark stack.
ProcessMarkStack(bool paused)1424 void MarkSweep::ProcessMarkStack(bool paused) {
1425 timings_.StartSplit("ProcessMarkStack");
1426 size_t thread_count = GetThreadCount(paused);
1427 if (kParallelProcessMarkStack && thread_count > 1 &&
1428 mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1429 ProcessMarkStackParallel(thread_count);
1430 } else {
1431 // TODO: Tune this.
1432 static const size_t kFifoSize = 4;
1433 BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
1434 for (;;) {
1435 const Object* obj = NULL;
1436 if (kUseMarkStackPrefetch) {
1437 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1438 const Object* obj = mark_stack_->PopBack();
1439 DCHECK(obj != NULL);
1440 __builtin_prefetch(obj);
1441 prefetch_fifo.push_back(obj);
1442 }
1443 if (prefetch_fifo.empty()) {
1444 break;
1445 }
1446 obj = prefetch_fifo.front();
1447 prefetch_fifo.pop_front();
1448 } else {
1449 if (mark_stack_->IsEmpty()) {
1450 break;
1451 }
1452 obj = mark_stack_->PopBack();
1453 }
1454 DCHECK(obj != NULL);
1455 ScanObject(obj);
1456 }
1457 }
1458 timings_.EndSplit();
1459 }
1460
1461 // Walks the reference list marking any references subject to the
1462 // reference clearing policy. References with a black referent are
1463 // removed from the list. References with white referents biased
1464 // toward saving are blackened and also removed from the list.
PreserveSomeSoftReferences(Object ** list)1465 void MarkSweep::PreserveSomeSoftReferences(Object** list) {
1466 DCHECK(list != NULL);
1467 Object* clear = NULL;
1468 size_t counter = 0;
1469
1470 DCHECK(mark_stack_->IsEmpty());
1471
1472 timings_.StartSplit("PreserveSomeSoftReferences");
1473 while (*list != NULL) {
1474 Object* ref = heap_->DequeuePendingReference(list);
1475 Object* referent = heap_->GetReferenceReferent(ref);
1476 if (referent == NULL) {
1477 // Referent was cleared by the user during marking.
1478 continue;
1479 }
1480 bool is_marked = IsMarked(referent);
1481 if (!is_marked && ((++counter) & 1)) {
1482 // Referent is white and biased toward saving, mark it.
1483 MarkObject(referent);
1484 is_marked = true;
1485 }
1486 if (!is_marked) {
1487 // Referent is white, queue it for clearing.
1488 heap_->EnqueuePendingReference(ref, &clear);
1489 }
1490 }
1491 *list = clear;
1492 timings_.EndSplit();
1493
1494 // Restart the mark with the newly black references added to the root set.
1495 ProcessMarkStack(true);
1496 }
1497
IsMarked(const Object * object) const1498 inline bool MarkSweep::IsMarked(const Object* object) const
1499 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1500 if (IsImmune(object)) {
1501 return true;
1502 }
1503 DCHECK(current_mark_bitmap_ != NULL);
1504 if (current_mark_bitmap_->HasAddress(object)) {
1505 return current_mark_bitmap_->Test(object);
1506 }
1507 return heap_->GetMarkBitmap()->Test(object);
1508 }
1509
1510 // Unlink the reference list clearing references objects with white
1511 // referents. Cleared references registered to a reference queue are
1512 // scheduled for appending by the heap worker thread.
ClearWhiteReferences(Object ** list)1513 void MarkSweep::ClearWhiteReferences(Object** list) {
1514 DCHECK(list != NULL);
1515 while (*list != NULL) {
1516 Object* ref = heap_->DequeuePendingReference(list);
1517 Object* referent = heap_->GetReferenceReferent(ref);
1518 if (referent != NULL && !IsMarked(referent)) {
1519 // Referent is white, clear it.
1520 heap_->ClearReferenceReferent(ref);
1521 if (heap_->IsEnqueuable(ref)) {
1522 heap_->EnqueueReference(ref, &cleared_reference_list_);
1523 }
1524 }
1525 }
1526 DCHECK(*list == NULL);
1527 }
1528
1529 // Enqueues finalizer references with white referents. White
1530 // referents are blackened, moved to the zombie field, and the
1531 // referent field is cleared.
EnqueueFinalizerReferences(Object ** list)1532 void MarkSweep::EnqueueFinalizerReferences(Object** list) {
1533 DCHECK(list != NULL);
1534 timings_.StartSplit("EnqueueFinalizerReferences");
1535 MemberOffset zombie_offset = heap_->GetFinalizerReferenceZombieOffset();
1536 bool has_enqueued = false;
1537 while (*list != NULL) {
1538 Object* ref = heap_->DequeuePendingReference(list);
1539 Object* referent = heap_->GetReferenceReferent(ref);
1540 if (referent != NULL && !IsMarked(referent)) {
1541 MarkObject(referent);
1542 // If the referent is non-null the reference must queuable.
1543 DCHECK(heap_->IsEnqueuable(ref));
1544 ref->SetFieldObject(zombie_offset, referent, false);
1545 heap_->ClearReferenceReferent(ref);
1546 heap_->EnqueueReference(ref, &cleared_reference_list_);
1547 has_enqueued = true;
1548 }
1549 }
1550 timings_.EndSplit();
1551 if (has_enqueued) {
1552 ProcessMarkStack(true);
1553 }
1554 DCHECK(*list == NULL);
1555 }
1556
1557 // Process reference class instances and schedule finalizations.
ProcessReferences(Object ** soft_references,bool clear_soft,Object ** weak_references,Object ** finalizer_references,Object ** phantom_references)1558 void MarkSweep::ProcessReferences(Object** soft_references, bool clear_soft,
1559 Object** weak_references,
1560 Object** finalizer_references,
1561 Object** phantom_references) {
1562 CHECK(soft_references != NULL);
1563 CHECK(weak_references != NULL);
1564 CHECK(finalizer_references != NULL);
1565 CHECK(phantom_references != NULL);
1566 CHECK(mark_stack_->IsEmpty());
1567
1568 // Unless we are in the zygote or required to clear soft references
1569 // with white references, preserve some white referents.
1570 if (!clear_soft && !Runtime::Current()->IsZygote()) {
1571 PreserveSomeSoftReferences(soft_references);
1572 }
1573
1574 timings_.StartSplit("ProcessReferences");
1575 // Clear all remaining soft and weak references with white
1576 // referents.
1577 ClearWhiteReferences(soft_references);
1578 ClearWhiteReferences(weak_references);
1579 timings_.EndSplit();
1580
1581 // Preserve all white objects with finalize methods and schedule
1582 // them for finalization.
1583 EnqueueFinalizerReferences(finalizer_references);
1584
1585 timings_.StartSplit("ProcessReferences");
1586 // Clear all f-reachable soft and weak references with white
1587 // referents.
1588 ClearWhiteReferences(soft_references);
1589 ClearWhiteReferences(weak_references);
1590
1591 // Clear all phantom references with white referents.
1592 ClearWhiteReferences(phantom_references);
1593
1594 // At this point all reference lists should be empty.
1595 DCHECK(*soft_references == NULL);
1596 DCHECK(*weak_references == NULL);
1597 DCHECK(*finalizer_references == NULL);
1598 DCHECK(*phantom_references == NULL);
1599 timings_.EndSplit();
1600 }
1601
UnBindBitmaps()1602 void MarkSweep::UnBindBitmaps() {
1603 base::TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
1604 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1605 if (space->IsDlMallocSpace()) {
1606 space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
1607 if (alloc_space->temp_bitmap_.get() != NULL) {
1608 // At this point, the temp_bitmap holds our old mark bitmap.
1609 accounting::SpaceBitmap* new_bitmap = alloc_space->temp_bitmap_.release();
1610 GetHeap()->GetMarkBitmap()->ReplaceBitmap(alloc_space->mark_bitmap_.get(), new_bitmap);
1611 CHECK_EQ(alloc_space->mark_bitmap_.release(), alloc_space->live_bitmap_.get());
1612 alloc_space->mark_bitmap_.reset(new_bitmap);
1613 DCHECK(alloc_space->temp_bitmap_.get() == NULL);
1614 }
1615 }
1616 }
1617 }
1618
FinishPhase()1619 void MarkSweep::FinishPhase() {
1620 base::TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1621 // Can't enqueue references if we hold the mutator lock.
1622 Object* cleared_references = GetClearedReferences();
1623 Heap* heap = GetHeap();
1624 timings_.NewSplit("EnqueueClearedReferences");
1625 heap->EnqueueClearedReferences(&cleared_references);
1626
1627 timings_.NewSplit("PostGcVerification");
1628 heap->PostGcVerification(this);
1629
1630 timings_.NewSplit("GrowForUtilization");
1631 heap->GrowForUtilization(GetGcType(), GetDurationNs());
1632
1633 timings_.NewSplit("RequestHeapTrim");
1634 heap->RequestHeapTrim();
1635
1636 // Update the cumulative statistics
1637 total_time_ns_ += GetDurationNs();
1638 total_paused_time_ns_ += std::accumulate(GetPauseTimes().begin(), GetPauseTimes().end(), 0,
1639 std::plus<uint64_t>());
1640 total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
1641 total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
1642
1643 // Ensure that the mark stack is empty.
1644 CHECK(mark_stack_->IsEmpty());
1645
1646 if (kCountScannedTypes) {
1647 VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1648 << " other=" << other_count_;
1649 }
1650
1651 if (kCountTasks) {
1652 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1653 }
1654
1655 if (kMeasureOverhead) {
1656 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1657 }
1658
1659 if (kProfileLargeObjects) {
1660 VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1661 }
1662
1663 if (kCountClassesMarked) {
1664 VLOG(gc) << "Classes marked " << classes_marked_;
1665 }
1666
1667 if (kCountJavaLangRefs) {
1668 VLOG(gc) << "References scanned " << reference_count_;
1669 }
1670
1671 // Update the cumulative loggers.
1672 cumulative_timings_.Start();
1673 cumulative_timings_.AddLogger(timings_);
1674 cumulative_timings_.End();
1675
1676 // Clear all of the spaces' mark bitmaps.
1677 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1678 if (space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
1679 space->GetMarkBitmap()->Clear();
1680 }
1681 }
1682 mark_stack_->Reset();
1683
1684 // Reset the marked large objects.
1685 space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
1686 large_objects->GetMarkObjects()->Clear();
1687 }
1688
1689 } // namespace collector
1690 } // namespace gc
1691 } // namespace art
1692