1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate information gleaned from the
11 // target register and register class definitions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc-emitter"
16
17 #include "CodeGenRegisters.h"
18 #include "CodeGenTarget.h"
19 #include "llvm/ADT/IntEqClasses.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/TableGen/Error.h"
26
27 using namespace llvm;
28
29 //===----------------------------------------------------------------------===//
30 // CodeGenSubRegIndex
31 //===----------------------------------------------------------------------===//
32
CodeGenSubRegIndex(Record * R,unsigned Enum)33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
34 : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
35 Name = R->getName();
36 if (R->getValue("Namespace"))
37 Namespace = R->getValueAsString("Namespace");
38 Size = R->getValueAsInt("Size");
39 Offset = R->getValueAsInt("Offset");
40 }
41
CodeGenSubRegIndex(StringRef N,StringRef Nspace,unsigned Enum)42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
43 unsigned Enum)
44 : TheDef(0), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
45 EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
46 }
47
getQualifiedName() const48 std::string CodeGenSubRegIndex::getQualifiedName() const {
49 std::string N = getNamespace();
50 if (!N.empty())
51 N += "::";
52 N += getName();
53 return N;
54 }
55
updateComponents(CodeGenRegBank & RegBank)56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
57 if (!TheDef)
58 return;
59
60 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
61 if (!Comps.empty()) {
62 if (Comps.size() != 2)
63 PrintFatalError(TheDef->getLoc(),
64 "ComposedOf must have exactly two entries");
65 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
66 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
67 CodeGenSubRegIndex *X = A->addComposite(B, this);
68 if (X)
69 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
70 }
71
72 std::vector<Record*> Parts =
73 TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
74 if (!Parts.empty()) {
75 if (Parts.size() < 2)
76 PrintFatalError(TheDef->getLoc(),
77 "CoveredBySubRegs must have two or more entries");
78 SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
79 for (unsigned i = 0, e = Parts.size(); i != e; ++i)
80 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
81 RegBank.addConcatSubRegIndex(IdxParts, this);
82 }
83 }
84
computeLaneMask()85 unsigned CodeGenSubRegIndex::computeLaneMask() {
86 // Already computed?
87 if (LaneMask)
88 return LaneMask;
89
90 // Recursion guard, shouldn't be required.
91 LaneMask = ~0u;
92
93 // The lane mask is simply the union of all sub-indices.
94 unsigned M = 0;
95 for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I)
96 M |= I->second->computeLaneMask();
97 assert(M && "Missing lane mask, sub-register cycle?");
98 LaneMask = M;
99 return LaneMask;
100 }
101
102 //===----------------------------------------------------------------------===//
103 // CodeGenRegister
104 //===----------------------------------------------------------------------===//
105
CodeGenRegister(Record * R,unsigned Enum)106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
107 : TheDef(R),
108 EnumValue(Enum),
109 CostPerUse(R->getValueAsInt("CostPerUse")),
110 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
111 NumNativeRegUnits(0),
112 SubRegsComplete(false),
113 SuperRegsComplete(false),
114 TopoSig(~0u)
115 {}
116
buildObjectGraph(CodeGenRegBank & RegBank)117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
118 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
119 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
120
121 if (SRIs.size() != SRs.size())
122 PrintFatalError(TheDef->getLoc(),
123 "SubRegs and SubRegIndices must have the same size");
124
125 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
126 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
127 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
128 }
129
130 // Also compute leading super-registers. Each register has a list of
131 // covered-by-subregs super-registers where it appears as the first explicit
132 // sub-register.
133 //
134 // This is used by computeSecondarySubRegs() to find candidates.
135 if (CoveredBySubRegs && !ExplicitSubRegs.empty())
136 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
137
138 // Add ad hoc alias links. This is a symmetric relationship between two
139 // registers, so build a symmetric graph by adding links in both ends.
140 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
141 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
142 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
143 ExplicitAliases.push_back(Reg);
144 Reg->ExplicitAliases.push_back(this);
145 }
146 }
147
getName() const148 const std::string &CodeGenRegister::getName() const {
149 return TheDef->getName();
150 }
151
152 namespace {
153 // Iterate over all register units in a set of registers.
154 class RegUnitIterator {
155 CodeGenRegister::Set::const_iterator RegI, RegE;
156 CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
157
158 public:
RegUnitIterator(const CodeGenRegister::Set & Regs)159 RegUnitIterator(const CodeGenRegister::Set &Regs):
160 RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
161
162 if (RegI != RegE) {
163 UnitI = (*RegI)->getRegUnits().begin();
164 UnitE = (*RegI)->getRegUnits().end();
165 advance();
166 }
167 }
168
isValid() const169 bool isValid() const { return UnitI != UnitE; }
170
operator *() const171 unsigned operator* () const { assert(isValid()); return *UnitI; }
172
getReg() const173 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
174
175 /// Preincrement. Move to the next unit.
operator ++()176 void operator++() {
177 assert(isValid() && "Cannot advance beyond the last operand");
178 ++UnitI;
179 advance();
180 }
181
182 protected:
advance()183 void advance() {
184 while (UnitI == UnitE) {
185 if (++RegI == RegE)
186 break;
187 UnitI = (*RegI)->getRegUnits().begin();
188 UnitE = (*RegI)->getRegUnits().end();
189 }
190 }
191 };
192 } // namespace
193
194 // Merge two RegUnitLists maintaining the order and removing duplicates.
195 // Overwrites MergedRU in the process.
mergeRegUnits(CodeGenRegister::RegUnitList & MergedRU,const CodeGenRegister::RegUnitList & RRU)196 static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
197 const CodeGenRegister::RegUnitList &RRU) {
198 CodeGenRegister::RegUnitList LRU = MergedRU;
199 MergedRU.clear();
200 std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
201 std::back_inserter(MergedRU));
202 }
203
204 // Return true of this unit appears in RegUnits.
hasRegUnit(CodeGenRegister::RegUnitList & RegUnits,unsigned Unit)205 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
206 return std::count(RegUnits.begin(), RegUnits.end(), Unit);
207 }
208
209 // Inherit register units from subregisters.
210 // Return true if the RegUnits changed.
inheritRegUnits(CodeGenRegBank & RegBank)211 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
212 unsigned OldNumUnits = RegUnits.size();
213 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
214 I != E; ++I) {
215 CodeGenRegister *SR = I->second;
216 // Merge the subregister's units into this register's RegUnits.
217 mergeRegUnits(RegUnits, SR->RegUnits);
218 }
219 return OldNumUnits != RegUnits.size();
220 }
221
222 const CodeGenRegister::SubRegMap &
computeSubRegs(CodeGenRegBank & RegBank)223 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
224 // Only compute this map once.
225 if (SubRegsComplete)
226 return SubRegs;
227 SubRegsComplete = true;
228
229 // First insert the explicit subregs and make sure they are fully indexed.
230 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
231 CodeGenRegister *SR = ExplicitSubRegs[i];
232 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
233 if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
234 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
235 " appears twice in Register " + getName());
236 // Map explicit sub-registers first, so the names take precedence.
237 // The inherited sub-registers are mapped below.
238 SubReg2Idx.insert(std::make_pair(SR, Idx));
239 }
240
241 // Keep track of inherited subregs and how they can be reached.
242 SmallPtrSet<CodeGenRegister*, 8> Orphans;
243
244 // Clone inherited subregs and place duplicate entries in Orphans.
245 // Here the order is important - earlier subregs take precedence.
246 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
247 CodeGenRegister *SR = ExplicitSubRegs[i];
248 const SubRegMap &Map = SR->computeSubRegs(RegBank);
249
250 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
251 ++SI) {
252 if (!SubRegs.insert(*SI).second)
253 Orphans.insert(SI->second);
254 }
255 }
256
257 // Expand any composed subreg indices.
258 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
259 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
260 // expanded subreg indices recursively.
261 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
262 for (unsigned i = 0; i != Indices.size(); ++i) {
263 CodeGenSubRegIndex *Idx = Indices[i];
264 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
265 CodeGenRegister *SR = SubRegs[Idx];
266 const SubRegMap &Map = SR->computeSubRegs(RegBank);
267
268 // Look at the possible compositions of Idx.
269 // They may not all be supported by SR.
270 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
271 E = Comps.end(); I != E; ++I) {
272 SubRegMap::const_iterator SRI = Map.find(I->first);
273 if (SRI == Map.end())
274 continue; // Idx + I->first doesn't exist in SR.
275 // Add I->second as a name for the subreg SRI->second, assuming it is
276 // orphaned, and the name isn't already used for something else.
277 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
278 continue;
279 // We found a new name for the orphaned sub-register.
280 SubRegs.insert(std::make_pair(I->second, SRI->second));
281 Indices.push_back(I->second);
282 }
283 }
284
285 // Now Orphans contains the inherited subregisters without a direct index.
286 // Create inferred indexes for all missing entries.
287 // Work backwards in the Indices vector in order to compose subregs bottom-up.
288 // Consider this subreg sequence:
289 //
290 // qsub_1 -> dsub_0 -> ssub_0
291 //
292 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
293 // can be reached in two different ways:
294 //
295 // qsub_1 -> ssub_0
296 // dsub_2 -> ssub_0
297 //
298 // We pick the latter composition because another register may have [dsub_0,
299 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
300 // dsub_2 -> ssub_0 composition can be shared.
301 while (!Indices.empty() && !Orphans.empty()) {
302 CodeGenSubRegIndex *Idx = Indices.pop_back_val();
303 CodeGenRegister *SR = SubRegs[Idx];
304 const SubRegMap &Map = SR->computeSubRegs(RegBank);
305 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
306 ++SI)
307 if (Orphans.erase(SI->second))
308 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
309 }
310
311 // Compute the inverse SubReg -> Idx map.
312 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
313 SI != SE; ++SI) {
314 if (SI->second == this) {
315 ArrayRef<SMLoc> Loc;
316 if (TheDef)
317 Loc = TheDef->getLoc();
318 PrintFatalError(Loc, "Register " + getName() +
319 " has itself as a sub-register");
320 }
321
322 // Compute AllSuperRegsCovered.
323 if (!CoveredBySubRegs)
324 SI->first->AllSuperRegsCovered = false;
325
326 // Ensure that every sub-register has a unique name.
327 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
328 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
329 if (Ins->second == SI->first)
330 continue;
331 // Trouble: Two different names for SI->second.
332 ArrayRef<SMLoc> Loc;
333 if (TheDef)
334 Loc = TheDef->getLoc();
335 PrintFatalError(Loc, "Sub-register can't have two names: " +
336 SI->second->getName() + " available as " +
337 SI->first->getName() + " and " + Ins->second->getName());
338 }
339
340 // Derive possible names for sub-register concatenations from any explicit
341 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
342 // that getConcatSubRegIndex() won't invent any concatenated indices that the
343 // user already specified.
344 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
345 CodeGenRegister *SR = ExplicitSubRegs[i];
346 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
347 continue;
348
349 // SR is composed of multiple sub-regs. Find their names in this register.
350 SmallVector<CodeGenSubRegIndex*, 8> Parts;
351 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
352 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
353
354 // Offer this as an existing spelling for the concatenation of Parts.
355 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
356 }
357
358 // Initialize RegUnitList. Because getSubRegs is called recursively, this
359 // processes the register hierarchy in postorder.
360 //
361 // Inherit all sub-register units. It is good enough to look at the explicit
362 // sub-registers, the other registers won't contribute any more units.
363 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
364 CodeGenRegister *SR = ExplicitSubRegs[i];
365 // Explicit sub-registers are usually disjoint, so this is a good way of
366 // computing the union. We may pick up a few duplicates that will be
367 // eliminated below.
368 unsigned N = RegUnits.size();
369 RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
370 std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
371 }
372 RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
373
374 // Absent any ad hoc aliasing, we create one register unit per leaf register.
375 // These units correspond to the maximal cliques in the register overlap
376 // graph which is optimal.
377 //
378 // When there is ad hoc aliasing, we simply create one unit per edge in the
379 // undirected ad hoc aliasing graph. Technically, we could do better by
380 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
381 // are extremely rare anyway (I've never seen one), so we don't bother with
382 // the added complexity.
383 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
384 CodeGenRegister *AR = ExplicitAliases[i];
385 // Only visit each edge once.
386 if (AR->SubRegsComplete)
387 continue;
388 // Create a RegUnit representing this alias edge, and add it to both
389 // registers.
390 unsigned Unit = RegBank.newRegUnit(this, AR);
391 RegUnits.push_back(Unit);
392 AR->RegUnits.push_back(Unit);
393 }
394
395 // Finally, create units for leaf registers without ad hoc aliases. Note that
396 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
397 // necessary. This means the aliasing leaf registers can share a single unit.
398 if (RegUnits.empty())
399 RegUnits.push_back(RegBank.newRegUnit(this));
400
401 // We have now computed the native register units. More may be adopted later
402 // for balancing purposes.
403 NumNativeRegUnits = RegUnits.size();
404
405 return SubRegs;
406 }
407
408 // In a register that is covered by its sub-registers, try to find redundant
409 // sub-registers. For example:
410 //
411 // QQ0 = {Q0, Q1}
412 // Q0 = {D0, D1}
413 // Q1 = {D2, D3}
414 //
415 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
416 // the register definition.
417 //
418 // The explicitly specified registers form a tree. This function discovers
419 // sub-register relationships that would force a DAG.
420 //
computeSecondarySubRegs(CodeGenRegBank & RegBank)421 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
422 // Collect new sub-registers first, add them later.
423 SmallVector<SubRegMap::value_type, 8> NewSubRegs;
424
425 // Look at the leading super-registers of each sub-register. Those are the
426 // candidates for new sub-registers, assuming they are fully contained in
427 // this register.
428 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
429 const CodeGenRegister *SubReg = I->second;
430 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
431 for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
432 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
433 // Already got this sub-register?
434 if (Cand == this || getSubRegIndex(Cand))
435 continue;
436 // Check if each component of Cand is already a sub-register.
437 // We know that the first component is I->second, and is present with the
438 // name I->first.
439 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
440 assert(!Cand->ExplicitSubRegs.empty() &&
441 "Super-register has no sub-registers");
442 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
443 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
444 Parts.push_back(Idx);
445 else {
446 // Sub-register doesn't exist.
447 Parts.clear();
448 break;
449 }
450 }
451 // If some Cand sub-register is not part of this register, or if Cand only
452 // has one sub-register, there is nothing to do.
453 if (Parts.size() <= 1)
454 continue;
455
456 // Each part of Cand is a sub-register of this. Make the full Cand also
457 // a sub-register with a concatenated sub-register index.
458 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
459 NewSubRegs.push_back(std::make_pair(Concat, Cand));
460 }
461 }
462
463 // Now add all the new sub-registers.
464 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
465 // Don't add Cand if another sub-register is already using the index.
466 if (!SubRegs.insert(NewSubRegs[i]).second)
467 continue;
468
469 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
470 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
471 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
472 }
473
474 // Create sub-register index composition maps for the synthesized indices.
475 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
476 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
477 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
478 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
479 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
480 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
481 if (!SubIdx)
482 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
483 SI->second->getName() + " in " + getName());
484 NewIdx->addComposite(SI->first, SubIdx);
485 }
486 }
487 }
488
computeSuperRegs(CodeGenRegBank & RegBank)489 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
490 // Only visit each register once.
491 if (SuperRegsComplete)
492 return;
493 SuperRegsComplete = true;
494
495 // Make sure all sub-registers have been visited first, so the super-reg
496 // lists will be topologically ordered.
497 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
498 I != E; ++I)
499 I->second->computeSuperRegs(RegBank);
500
501 // Now add this as a super-register on all sub-registers.
502 // Also compute the TopoSigId in post-order.
503 TopoSigId Id;
504 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
505 I != E; ++I) {
506 // Topological signature computed from SubIdx, TopoId(SubReg).
507 // Loops and idempotent indices have TopoSig = ~0u.
508 Id.push_back(I->first->EnumValue);
509 Id.push_back(I->second->TopoSig);
510
511 // Don't add duplicate entries.
512 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
513 continue;
514 I->second->SuperRegs.push_back(this);
515 }
516 TopoSig = RegBank.getTopoSig(Id);
517 }
518
519 void
addSubRegsPreOrder(SetVector<const CodeGenRegister * > & OSet,CodeGenRegBank & RegBank) const520 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
521 CodeGenRegBank &RegBank) const {
522 assert(SubRegsComplete && "Must precompute sub-registers");
523 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
524 CodeGenRegister *SR = ExplicitSubRegs[i];
525 if (OSet.insert(SR))
526 SR->addSubRegsPreOrder(OSet, RegBank);
527 }
528 // Add any secondary sub-registers that weren't part of the explicit tree.
529 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
530 I != E; ++I)
531 OSet.insert(I->second);
532 }
533
534 // Get the sum of this register's unit weights.
getWeight(const CodeGenRegBank & RegBank) const535 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
536 unsigned Weight = 0;
537 for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
538 I != E; ++I) {
539 Weight += RegBank.getRegUnit(*I).Weight;
540 }
541 return Weight;
542 }
543
544 //===----------------------------------------------------------------------===//
545 // RegisterTuples
546 //===----------------------------------------------------------------------===//
547
548 // A RegisterTuples def is used to generate pseudo-registers from lists of
549 // sub-registers. We provide a SetTheory expander class that returns the new
550 // registers.
551 namespace {
552 struct TupleExpander : SetTheory::Expander {
expand__anon80467f140211::TupleExpander553 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
554 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
555 unsigned Dim = Indices.size();
556 ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
557 if (Dim != SubRegs->getSize())
558 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
559 if (Dim < 2)
560 PrintFatalError(Def->getLoc(),
561 "Tuples must have at least 2 sub-registers");
562
563 // Evaluate the sub-register lists to be zipped.
564 unsigned Length = ~0u;
565 SmallVector<SetTheory::RecSet, 4> Lists(Dim);
566 for (unsigned i = 0; i != Dim; ++i) {
567 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
568 Length = std::min(Length, unsigned(Lists[i].size()));
569 }
570
571 if (Length == 0)
572 return;
573
574 // Precompute some types.
575 Record *RegisterCl = Def->getRecords().getClass("Register");
576 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
577 StringInit *BlankName = StringInit::get("");
578
579 // Zip them up.
580 for (unsigned n = 0; n != Length; ++n) {
581 std::string Name;
582 Record *Proto = Lists[0][n];
583 std::vector<Init*> Tuple;
584 unsigned CostPerUse = 0;
585 for (unsigned i = 0; i != Dim; ++i) {
586 Record *Reg = Lists[i][n];
587 if (i) Name += '_';
588 Name += Reg->getName();
589 Tuple.push_back(DefInit::get(Reg));
590 CostPerUse = std::max(CostPerUse,
591 unsigned(Reg->getValueAsInt("CostPerUse")));
592 }
593
594 // Create a new Record representing the synthesized register. This record
595 // is only for consumption by CodeGenRegister, it is not added to the
596 // RecordKeeper.
597 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
598 Elts.insert(NewReg);
599
600 // Copy Proto super-classes.
601 ArrayRef<Record *> Supers = Proto->getSuperClasses();
602 ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
603 for (unsigned i = 0, e = Supers.size(); i != e; ++i)
604 NewReg->addSuperClass(Supers[i], Ranges[i]);
605
606 // Copy Proto fields.
607 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
608 RecordVal RV = Proto->getValues()[i];
609
610 // Skip existing fields, like NAME.
611 if (NewReg->getValue(RV.getNameInit()))
612 continue;
613
614 StringRef Field = RV.getName();
615
616 // Replace the sub-register list with Tuple.
617 if (Field == "SubRegs")
618 RV.setValue(ListInit::get(Tuple, RegisterRecTy));
619
620 // Provide a blank AsmName. MC hacks are required anyway.
621 if (Field == "AsmName")
622 RV.setValue(BlankName);
623
624 // CostPerUse is aggregated from all Tuple members.
625 if (Field == "CostPerUse")
626 RV.setValue(IntInit::get(CostPerUse));
627
628 // Composite registers are always covered by sub-registers.
629 if (Field == "CoveredBySubRegs")
630 RV.setValue(BitInit::get(true));
631
632 // Copy fields from the RegisterTuples def.
633 if (Field == "SubRegIndices" ||
634 Field == "CompositeIndices") {
635 NewReg->addValue(*Def->getValue(Field));
636 continue;
637 }
638
639 // Some fields get their default uninitialized value.
640 if (Field == "DwarfNumbers" ||
641 Field == "DwarfAlias" ||
642 Field == "Aliases") {
643 if (const RecordVal *DefRV = RegisterCl->getValue(Field))
644 NewReg->addValue(*DefRV);
645 continue;
646 }
647
648 // Everything else is copied from Proto.
649 NewReg->addValue(RV);
650 }
651 }
652 }
653 };
654 }
655
656 //===----------------------------------------------------------------------===//
657 // CodeGenRegisterClass
658 //===----------------------------------------------------------------------===//
659
CodeGenRegisterClass(CodeGenRegBank & RegBank,Record * R)660 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
661 : TheDef(R),
662 Name(R->getName()),
663 TopoSigs(RegBank.getNumTopoSigs()),
664 EnumValue(-1) {
665 // Rename anonymous register classes.
666 if (R->getName().size() > 9 && R->getName()[9] == '.') {
667 static unsigned AnonCounter = 0;
668 R->setName("AnonRegClass_" + utostr(AnonCounter));
669 // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr.
670 ++AnonCounter;
671 }
672
673 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
674 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
675 Record *Type = TypeList[i];
676 if (!Type->isSubClassOf("ValueType"))
677 PrintFatalError("RegTypes list member '" + Type->getName() +
678 "' does not derive from the ValueType class!");
679 VTs.push_back(getValueType(Type));
680 }
681 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
682
683 // Allocation order 0 is the full set. AltOrders provides others.
684 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
685 ListInit *AltOrders = R->getValueAsListInit("AltOrders");
686 Orders.resize(1 + AltOrders->size());
687
688 // Default allocation order always contains all registers.
689 for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
690 Orders[0].push_back((*Elements)[i]);
691 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
692 Members.insert(Reg);
693 TopoSigs.set(Reg->getTopoSig());
694 }
695
696 // Alternative allocation orders may be subsets.
697 SetTheory::RecSet Order;
698 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
699 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
700 Orders[1 + i].append(Order.begin(), Order.end());
701 // Verify that all altorder members are regclass members.
702 while (!Order.empty()) {
703 CodeGenRegister *Reg = RegBank.getReg(Order.back());
704 Order.pop_back();
705 if (!contains(Reg))
706 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
707 " is not a class member");
708 }
709 }
710
711 // Allow targets to override the size in bits of the RegisterClass.
712 unsigned Size = R->getValueAsInt("Size");
713
714 Namespace = R->getValueAsString("Namespace");
715 SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
716 SpillAlignment = R->getValueAsInt("Alignment");
717 CopyCost = R->getValueAsInt("CopyCost");
718 Allocatable = R->getValueAsBit("isAllocatable");
719 AltOrderSelect = R->getValueAsString("AltOrderSelect");
720 }
721
722 // Create an inferred register class that was missing from the .td files.
723 // Most properties will be inherited from the closest super-class after the
724 // class structure has been computed.
CodeGenRegisterClass(CodeGenRegBank & RegBank,StringRef Name,Key Props)725 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
726 StringRef Name, Key Props)
727 : Members(*Props.Members),
728 TheDef(0),
729 Name(Name),
730 TopoSigs(RegBank.getNumTopoSigs()),
731 EnumValue(-1),
732 SpillSize(Props.SpillSize),
733 SpillAlignment(Props.SpillAlignment),
734 CopyCost(0),
735 Allocatable(true) {
736 for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
737 I != E; ++I)
738 TopoSigs.set((*I)->getTopoSig());
739 }
740
741 // Compute inherited propertied for a synthesized register class.
inheritProperties(CodeGenRegBank & RegBank)742 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
743 assert(!getDef() && "Only synthesized classes can inherit properties");
744 assert(!SuperClasses.empty() && "Synthesized class without super class");
745
746 // The last super-class is the smallest one.
747 CodeGenRegisterClass &Super = *SuperClasses.back();
748
749 // Most properties are copied directly.
750 // Exceptions are members, size, and alignment
751 Namespace = Super.Namespace;
752 VTs = Super.VTs;
753 CopyCost = Super.CopyCost;
754 Allocatable = Super.Allocatable;
755 AltOrderSelect = Super.AltOrderSelect;
756
757 // Copy all allocation orders, filter out foreign registers from the larger
758 // super-class.
759 Orders.resize(Super.Orders.size());
760 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
761 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
762 if (contains(RegBank.getReg(Super.Orders[i][j])))
763 Orders[i].push_back(Super.Orders[i][j]);
764 }
765
contains(const CodeGenRegister * Reg) const766 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
767 return Members.count(Reg);
768 }
769
770 namespace llvm {
operator <<(raw_ostream & OS,const CodeGenRegisterClass::Key & K)771 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
772 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
773 for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
774 E = K.Members->end(); I != E; ++I)
775 OS << ", " << (*I)->getName();
776 return OS << " }";
777 }
778 }
779
780 // This is a simple lexicographical order that can be used to search for sets.
781 // It is not the same as the topological order provided by TopoOrderRC.
782 bool CodeGenRegisterClass::Key::
operator <(const CodeGenRegisterClass::Key & B) const783 operator<(const CodeGenRegisterClass::Key &B) const {
784 assert(Members && B.Members);
785 if (*Members != *B.Members)
786 return *Members < *B.Members;
787 if (SpillSize != B.SpillSize)
788 return SpillSize < B.SpillSize;
789 return SpillAlignment < B.SpillAlignment;
790 }
791
792 // Returns true if RC is a strict subclass.
793 // RC is a sub-class of this class if it is a valid replacement for any
794 // instruction operand where a register of this classis required. It must
795 // satisfy these conditions:
796 //
797 // 1. All RC registers are also in this.
798 // 2. The RC spill size must not be smaller than our spill size.
799 // 3. RC spill alignment must be compatible with ours.
800 //
testSubClass(const CodeGenRegisterClass * A,const CodeGenRegisterClass * B)801 static bool testSubClass(const CodeGenRegisterClass *A,
802 const CodeGenRegisterClass *B) {
803 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
804 A->SpillSize <= B->SpillSize &&
805 std::includes(A->getMembers().begin(), A->getMembers().end(),
806 B->getMembers().begin(), B->getMembers().end(),
807 CodeGenRegister::Less());
808 }
809
810 /// Sorting predicate for register classes. This provides a topological
811 /// ordering that arranges all register classes before their sub-classes.
812 ///
813 /// Register classes with the same registers, spill size, and alignment form a
814 /// clique. They will be ordered alphabetically.
815 ///
TopoOrderRC(const void * PA,const void * PB)816 static int TopoOrderRC(const void *PA, const void *PB) {
817 const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
818 const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
819 if (A == B)
820 return 0;
821
822 // Order by ascending spill size.
823 if (A->SpillSize < B->SpillSize)
824 return -1;
825 if (A->SpillSize > B->SpillSize)
826 return 1;
827
828 // Order by ascending spill alignment.
829 if (A->SpillAlignment < B->SpillAlignment)
830 return -1;
831 if (A->SpillAlignment > B->SpillAlignment)
832 return 1;
833
834 // Order by descending set size. Note that the classes' allocation order may
835 // not have been computed yet. The Members set is always vaild.
836 if (A->getMembers().size() > B->getMembers().size())
837 return -1;
838 if (A->getMembers().size() < B->getMembers().size())
839 return 1;
840
841 // Finally order by name as a tie breaker.
842 return StringRef(A->getName()).compare(B->getName());
843 }
844
getQualifiedName() const845 std::string CodeGenRegisterClass::getQualifiedName() const {
846 if (Namespace.empty())
847 return getName();
848 else
849 return Namespace + "::" + getName();
850 }
851
852 // Compute sub-classes of all register classes.
853 // Assume the classes are ordered topologically.
computeSubClasses(CodeGenRegBank & RegBank)854 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
855 ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
856
857 // Visit backwards so sub-classes are seen first.
858 for (unsigned rci = RegClasses.size(); rci; --rci) {
859 CodeGenRegisterClass &RC = *RegClasses[rci - 1];
860 RC.SubClasses.resize(RegClasses.size());
861 RC.SubClasses.set(RC.EnumValue);
862
863 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
864 for (unsigned s = rci; s != RegClasses.size(); ++s) {
865 if (RC.SubClasses.test(s))
866 continue;
867 CodeGenRegisterClass *SubRC = RegClasses[s];
868 if (!testSubClass(&RC, SubRC))
869 continue;
870 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
871 // check them again.
872 RC.SubClasses |= SubRC->SubClasses;
873 }
874
875 // Sweep up missed clique members. They will be immediately preceding RC.
876 for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
877 RC.SubClasses.set(s - 1);
878 }
879
880 // Compute the SuperClasses lists from the SubClasses vectors.
881 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
882 const BitVector &SC = RegClasses[rci]->getSubClasses();
883 for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
884 if (unsigned(s) == rci)
885 continue;
886 RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
887 }
888 }
889
890 // With the class hierarchy in place, let synthesized register classes inherit
891 // properties from their closest super-class. The iteration order here can
892 // propagate properties down multiple levels.
893 for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
894 if (!RegClasses[rci]->getDef())
895 RegClasses[rci]->inheritProperties(RegBank);
896 }
897
898 void
getSuperRegClasses(CodeGenSubRegIndex * SubIdx,BitVector & Out) const899 CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
900 BitVector &Out) const {
901 DenseMap<CodeGenSubRegIndex*,
902 SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
903 FindI = SuperRegClasses.find(SubIdx);
904 if (FindI == SuperRegClasses.end())
905 return;
906 for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
907 FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
908 Out.set((*I)->EnumValue);
909 }
910
911 // Populate a unique sorted list of units from a register set.
buildRegUnitSet(std::vector<unsigned> & RegUnits) const912 void CodeGenRegisterClass::buildRegUnitSet(
913 std::vector<unsigned> &RegUnits) const {
914 std::vector<unsigned> TmpUnits;
915 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
916 TmpUnits.push_back(*UnitI);
917 std::sort(TmpUnits.begin(), TmpUnits.end());
918 std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
919 std::back_inserter(RegUnits));
920 }
921
922 //===----------------------------------------------------------------------===//
923 // CodeGenRegBank
924 //===----------------------------------------------------------------------===//
925
CodeGenRegBank(RecordKeeper & Records)926 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
927 // Configure register Sets to understand register classes and tuples.
928 Sets.addFieldExpander("RegisterClass", "MemberList");
929 Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
930 Sets.addExpander("RegisterTuples", new TupleExpander());
931
932 // Read in the user-defined (named) sub-register indices.
933 // More indices will be synthesized later.
934 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
935 std::sort(SRIs.begin(), SRIs.end(), LessRecord());
936 for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
937 getSubRegIdx(SRIs[i]);
938 // Build composite maps from ComposedOf fields.
939 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
940 SubRegIndices[i]->updateComponents(*this);
941
942 // Read in the register definitions.
943 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
944 std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
945 Registers.reserve(Regs.size());
946 // Assign the enumeration values.
947 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
948 getReg(Regs[i]);
949
950 // Expand tuples and number the new registers.
951 std::vector<Record*> Tups =
952 Records.getAllDerivedDefinitions("RegisterTuples");
953
954 std::vector<Record*> TupRegsCopy;
955 for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
956 const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
957 TupRegsCopy.reserve(TupRegs->size());
958 TupRegsCopy.assign(TupRegs->begin(), TupRegs->end());
959 std::sort(TupRegsCopy.begin(), TupRegsCopy.end(), LessRecordRegister());
960 for (unsigned j = 0, je = TupRegsCopy.size(); j != je; ++j)
961 getReg((TupRegsCopy)[j]);
962 TupRegsCopy.clear();
963 }
964
965 // Now all the registers are known. Build the object graph of explicit
966 // register-register references.
967 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
968 Registers[i]->buildObjectGraph(*this);
969
970 // Compute register name map.
971 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
972 RegistersByName.GetOrCreateValue(
973 Registers[i]->TheDef->getValueAsString("AsmName"),
974 Registers[i]);
975
976 // Precompute all sub-register maps.
977 // This will create Composite entries for all inferred sub-register indices.
978 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
979 Registers[i]->computeSubRegs(*this);
980
981 // Infer even more sub-registers by combining leading super-registers.
982 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
983 if (Registers[i]->CoveredBySubRegs)
984 Registers[i]->computeSecondarySubRegs(*this);
985
986 // After the sub-register graph is complete, compute the topologically
987 // ordered SuperRegs list.
988 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
989 Registers[i]->computeSuperRegs(*this);
990
991 // Native register units are associated with a leaf register. They've all been
992 // discovered now.
993 NumNativeRegUnits = RegUnits.size();
994
995 // Read in register class definitions.
996 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
997 if (RCs.empty())
998 PrintFatalError(std::string("No 'RegisterClass' subclasses defined!"));
999
1000 // Allocate user-defined register classes.
1001 RegClasses.reserve(RCs.size());
1002 for (unsigned i = 0, e = RCs.size(); i != e; ++i)
1003 addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
1004
1005 // Infer missing classes to create a full algebra.
1006 computeInferredRegisterClasses();
1007
1008 // Order register classes topologically and assign enum values.
1009 array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
1010 for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
1011 RegClasses[i]->EnumValue = i;
1012 CodeGenRegisterClass::computeSubClasses(*this);
1013 }
1014
1015 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1016 CodeGenSubRegIndex*
createSubRegIndex(StringRef Name,StringRef Namespace)1017 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1018 CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace,
1019 SubRegIndices.size() + 1);
1020 SubRegIndices.push_back(Idx);
1021 return Idx;
1022 }
1023
getSubRegIdx(Record * Def)1024 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1025 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1026 if (Idx)
1027 return Idx;
1028 Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
1029 SubRegIndices.push_back(Idx);
1030 return Idx;
1031 }
1032
getReg(Record * Def)1033 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1034 CodeGenRegister *&Reg = Def2Reg[Def];
1035 if (Reg)
1036 return Reg;
1037 Reg = new CodeGenRegister(Def, Registers.size() + 1);
1038 Registers.push_back(Reg);
1039 return Reg;
1040 }
1041
addToMaps(CodeGenRegisterClass * RC)1042 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1043 RegClasses.push_back(RC);
1044
1045 if (Record *Def = RC->getDef())
1046 Def2RC.insert(std::make_pair(Def, RC));
1047
1048 // Duplicate classes are rejected by insert().
1049 // That's OK, we only care about the properties handled by CGRC::Key.
1050 CodeGenRegisterClass::Key K(*RC);
1051 Key2RC.insert(std::make_pair(K, RC));
1052 }
1053
1054 // Create a synthetic sub-class if it is missing.
1055 CodeGenRegisterClass*
getOrCreateSubClass(const CodeGenRegisterClass * RC,const CodeGenRegister::Set * Members,StringRef Name)1056 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1057 const CodeGenRegister::Set *Members,
1058 StringRef Name) {
1059 // Synthetic sub-class has the same size and alignment as RC.
1060 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1061 RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1062 if (FoundI != Key2RC.end())
1063 return FoundI->second;
1064
1065 // Sub-class doesn't exist, create a new one.
1066 CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K);
1067 addToMaps(NewRC);
1068 return NewRC;
1069 }
1070
getRegClass(Record * Def)1071 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1072 if (CodeGenRegisterClass *RC = Def2RC[Def])
1073 return RC;
1074
1075 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1076 }
1077
1078 CodeGenSubRegIndex*
getCompositeSubRegIndex(CodeGenSubRegIndex * A,CodeGenSubRegIndex * B)1079 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1080 CodeGenSubRegIndex *B) {
1081 // Look for an existing entry.
1082 CodeGenSubRegIndex *Comp = A->compose(B);
1083 if (Comp)
1084 return Comp;
1085
1086 // None exists, synthesize one.
1087 std::string Name = A->getName() + "_then_" + B->getName();
1088 Comp = createSubRegIndex(Name, A->getNamespace());
1089 A->addComposite(B, Comp);
1090 return Comp;
1091 }
1092
1093 CodeGenSubRegIndex *CodeGenRegBank::
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *,8> & Parts)1094 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1095 assert(Parts.size() > 1 && "Need two parts to concatenate");
1096
1097 // Look for an existing entry.
1098 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1099 if (Idx)
1100 return Idx;
1101
1102 // None exists, synthesize one.
1103 std::string Name = Parts.front()->getName();
1104 // Determine whether all parts are contiguous.
1105 bool isContinuous = true;
1106 unsigned Size = Parts.front()->Size;
1107 unsigned LastOffset = Parts.front()->Offset;
1108 unsigned LastSize = Parts.front()->Size;
1109 for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1110 Name += '_';
1111 Name += Parts[i]->getName();
1112 Size += Parts[i]->Size;
1113 if (Parts[i]->Offset != (LastOffset + LastSize))
1114 isContinuous = false;
1115 LastOffset = Parts[i]->Offset;
1116 LastSize = Parts[i]->Size;
1117 }
1118 Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1119 Idx->Size = Size;
1120 Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1121 return Idx;
1122 }
1123
computeComposites()1124 void CodeGenRegBank::computeComposites() {
1125 // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1126 // and many registers will share TopoSigs on regular architectures.
1127 BitVector TopoSigs(getNumTopoSigs());
1128
1129 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1130 CodeGenRegister *Reg1 = Registers[i];
1131
1132 // Skip identical subreg structures already processed.
1133 if (TopoSigs.test(Reg1->getTopoSig()))
1134 continue;
1135 TopoSigs.set(Reg1->getTopoSig());
1136
1137 const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
1138 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1139 e1 = SRM1.end(); i1 != e1; ++i1) {
1140 CodeGenSubRegIndex *Idx1 = i1->first;
1141 CodeGenRegister *Reg2 = i1->second;
1142 // Ignore identity compositions.
1143 if (Reg1 == Reg2)
1144 continue;
1145 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1146 // Try composing Idx1 with another SubRegIndex.
1147 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1148 e2 = SRM2.end(); i2 != e2; ++i2) {
1149 CodeGenSubRegIndex *Idx2 = i2->first;
1150 CodeGenRegister *Reg3 = i2->second;
1151 // Ignore identity compositions.
1152 if (Reg2 == Reg3)
1153 continue;
1154 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1155 CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3);
1156 assert(Idx3 && "Sub-register doesn't have an index");
1157
1158 // Conflicting composition? Emit a warning but allow it.
1159 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1160 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1161 " and " + Idx2->getQualifiedName() +
1162 " compose ambiguously as " + Prev->getQualifiedName() +
1163 " or " + Idx3->getQualifiedName());
1164 }
1165 }
1166 }
1167 }
1168
1169 // Compute lane masks. This is similar to register units, but at the
1170 // sub-register index level. Each bit in the lane mask is like a register unit
1171 // class, and two lane masks will have a bit in common if two sub-register
1172 // indices overlap in some register.
1173 //
1174 // Conservatively share a lane mask bit if two sub-register indices overlap in
1175 // some registers, but not in others. That shouldn't happen a lot.
computeSubRegIndexLaneMasks()1176 void CodeGenRegBank::computeSubRegIndexLaneMasks() {
1177 // First assign individual bits to all the leaf indices.
1178 unsigned Bit = 0;
1179 // Determine mask of lanes that cover their registers.
1180 CoveringLanes = ~0u;
1181 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
1182 CodeGenSubRegIndex *Idx = SubRegIndices[i];
1183 if (Idx->getComposites().empty()) {
1184 Idx->LaneMask = 1u << Bit;
1185 // Share bit 31 in the unlikely case there are more than 32 leafs.
1186 //
1187 // Sharing bits is harmless; it allows graceful degradation in targets
1188 // with more than 32 vector lanes. They simply get a limited resolution
1189 // view of lanes beyond the 32nd.
1190 //
1191 // See also the comment for getSubRegIndexLaneMask().
1192 if (Bit < 31)
1193 ++Bit;
1194 else
1195 // Once bit 31 is shared among multiple leafs, the 'lane' it represents
1196 // is no longer covering its registers.
1197 CoveringLanes &= ~(1u << Bit);
1198 } else {
1199 Idx->LaneMask = 0;
1200 }
1201 }
1202
1203 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1204 // by the sub-register graph? This doesn't occur in any known targets.
1205
1206 // Inherit lanes from composites.
1207 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
1208 unsigned Mask = SubRegIndices[i]->computeLaneMask();
1209 // If some super-registers without CoveredBySubRegs use this index, we can
1210 // no longer assume that the lanes are covering their registers.
1211 if (!SubRegIndices[i]->AllSuperRegsCovered)
1212 CoveringLanes &= ~Mask;
1213 }
1214 }
1215
1216 namespace {
1217 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1218 // the transitive closure of the union of overlapping register
1219 // classes. Together, the UberRegSets form a partition of the registers. If we
1220 // consider overlapping register classes to be connected, then each UberRegSet
1221 // is a set of connected components.
1222 //
1223 // An UberRegSet will likely be a horizontal slice of register names of
1224 // the same width. Nontrivial subregisters should then be in a separate
1225 // UberRegSet. But this property isn't required for valid computation of
1226 // register unit weights.
1227 //
1228 // A Weight field caches the max per-register unit weight in each UberRegSet.
1229 //
1230 // A set of SingularDeterminants flags single units of some register in this set
1231 // for which the unit weight equals the set weight. These units should not have
1232 // their weight increased.
1233 struct UberRegSet {
1234 CodeGenRegister::Set Regs;
1235 unsigned Weight;
1236 CodeGenRegister::RegUnitList SingularDeterminants;
1237
UberRegSet__anon80467f140311::UberRegSet1238 UberRegSet(): Weight(0) {}
1239 };
1240 } // namespace
1241
1242 // Partition registers into UberRegSets, where each set is the transitive
1243 // closure of the union of overlapping register classes.
1244 //
1245 // UberRegSets[0] is a special non-allocatable set.
computeUberSets(std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,CodeGenRegBank & RegBank)1246 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1247 std::vector<UberRegSet*> &RegSets,
1248 CodeGenRegBank &RegBank) {
1249
1250 const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
1251
1252 // The Register EnumValue is one greater than its index into Registers.
1253 assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
1254 "register enum value mismatch");
1255
1256 // For simplicitly make the SetID the same as EnumValue.
1257 IntEqClasses UberSetIDs(Registers.size()+1);
1258 std::set<unsigned> AllocatableRegs;
1259 for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
1260
1261 CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
1262 if (!RegClass->Allocatable)
1263 continue;
1264
1265 const CodeGenRegister::Set &Regs = RegClass->getMembers();
1266 if (Regs.empty())
1267 continue;
1268
1269 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1270 assert(USetID && "register number 0 is invalid");
1271
1272 AllocatableRegs.insert((*Regs.begin())->EnumValue);
1273 for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()),
1274 E = Regs.end(); I != E; ++I) {
1275 AllocatableRegs.insert((*I)->EnumValue);
1276 UberSetIDs.join(USetID, (*I)->EnumValue);
1277 }
1278 }
1279 // Combine non-allocatable regs.
1280 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1281 unsigned RegNum = Registers[i]->EnumValue;
1282 if (AllocatableRegs.count(RegNum))
1283 continue;
1284
1285 UberSetIDs.join(0, RegNum);
1286 }
1287 UberSetIDs.compress();
1288
1289 // Make the first UberSet a special unallocatable set.
1290 unsigned ZeroID = UberSetIDs[0];
1291
1292 // Insert Registers into the UberSets formed by union-find.
1293 // Do not resize after this.
1294 UberSets.resize(UberSetIDs.getNumClasses());
1295 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1296 const CodeGenRegister *Reg = Registers[i];
1297 unsigned USetID = UberSetIDs[Reg->EnumValue];
1298 if (!USetID)
1299 USetID = ZeroID;
1300 else if (USetID == ZeroID)
1301 USetID = 0;
1302
1303 UberRegSet *USet = &UberSets[USetID];
1304 USet->Regs.insert(Reg);
1305 RegSets[i] = USet;
1306 }
1307 }
1308
1309 // Recompute each UberSet weight after changing unit weights.
computeUberWeights(std::vector<UberRegSet> & UberSets,CodeGenRegBank & RegBank)1310 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1311 CodeGenRegBank &RegBank) {
1312 // Skip the first unallocatable set.
1313 for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()),
1314 E = UberSets.end(); I != E; ++I) {
1315
1316 // Initialize all unit weights in this set, and remember the max units/reg.
1317 const CodeGenRegister *Reg = 0;
1318 unsigned MaxWeight = 0, Weight = 0;
1319 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1320 if (Reg != UnitI.getReg()) {
1321 if (Weight > MaxWeight)
1322 MaxWeight = Weight;
1323 Reg = UnitI.getReg();
1324 Weight = 0;
1325 }
1326 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1327 if (!UWeight) {
1328 UWeight = 1;
1329 RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1330 }
1331 Weight += UWeight;
1332 }
1333 if (Weight > MaxWeight)
1334 MaxWeight = Weight;
1335 if (I->Weight != MaxWeight) {
1336 DEBUG(
1337 dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
1338 for (CodeGenRegister::Set::iterator
1339 UnitI = I->Regs.begin(), UnitE = I->Regs.end();
1340 UnitI != UnitE; ++UnitI) {
1341 dbgs() << " " << (*UnitI)->getName();
1342 }
1343 dbgs() << "\n");
1344 // Update the set weight.
1345 I->Weight = MaxWeight;
1346 }
1347
1348 // Find singular determinants.
1349 for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
1350 RegE = I->Regs.end(); RegI != RegE; ++RegI) {
1351 if ((*RegI)->getRegUnits().size() == 1
1352 && (*RegI)->getWeight(RegBank) == I->Weight)
1353 mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
1354 }
1355 }
1356 }
1357
1358 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1359 // a register and its subregisters so that they have the same weight as their
1360 // UberSet. Self-recursion processes the subregister tree in postorder so
1361 // subregisters are normalized first.
1362 //
1363 // Side effects:
1364 // - creates new adopted register units
1365 // - causes superregisters to inherit adopted units
1366 // - increases the weight of "singular" units
1367 // - induces recomputation of UberWeights.
normalizeWeight(CodeGenRegister * Reg,std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,std::set<unsigned> & NormalRegs,CodeGenRegister::RegUnitList & NormalUnits,CodeGenRegBank & RegBank)1368 static bool normalizeWeight(CodeGenRegister *Reg,
1369 std::vector<UberRegSet> &UberSets,
1370 std::vector<UberRegSet*> &RegSets,
1371 std::set<unsigned> &NormalRegs,
1372 CodeGenRegister::RegUnitList &NormalUnits,
1373 CodeGenRegBank &RegBank) {
1374 bool Changed = false;
1375 if (!NormalRegs.insert(Reg->EnumValue).second)
1376 return Changed;
1377
1378 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1379 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1380 SRE = SRM.end(); SRI != SRE; ++SRI) {
1381 if (SRI->second == Reg)
1382 continue; // self-cycles happen
1383
1384 Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1385 NormalRegs, NormalUnits, RegBank);
1386 }
1387 // Postorder register normalization.
1388
1389 // Inherit register units newly adopted by subregisters.
1390 if (Reg->inheritRegUnits(RegBank))
1391 computeUberWeights(UberSets, RegBank);
1392
1393 // Check if this register is too skinny for its UberRegSet.
1394 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1395
1396 unsigned RegWeight = Reg->getWeight(RegBank);
1397 if (UberSet->Weight > RegWeight) {
1398 // A register unit's weight can be adjusted only if it is the singular unit
1399 // for this register, has not been used to normalize a subregister's set,
1400 // and has not already been used to singularly determine this UberRegSet.
1401 unsigned AdjustUnit = Reg->getRegUnits().front();
1402 if (Reg->getRegUnits().size() != 1
1403 || hasRegUnit(NormalUnits, AdjustUnit)
1404 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1405 // We don't have an adjustable unit, so adopt a new one.
1406 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1407 Reg->adoptRegUnit(AdjustUnit);
1408 // Adopting a unit does not immediately require recomputing set weights.
1409 }
1410 else {
1411 // Adjust the existing single unit.
1412 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1413 // The unit may be shared among sets and registers within this set.
1414 computeUberWeights(UberSets, RegBank);
1415 }
1416 Changed = true;
1417 }
1418
1419 // Mark these units normalized so superregisters can't change their weights.
1420 mergeRegUnits(NormalUnits, Reg->getRegUnits());
1421
1422 return Changed;
1423 }
1424
1425 // Compute a weight for each register unit created during getSubRegs.
1426 //
1427 // The goal is that two registers in the same class will have the same weight,
1428 // where each register's weight is defined as sum of its units' weights.
computeRegUnitWeights()1429 void CodeGenRegBank::computeRegUnitWeights() {
1430 std::vector<UberRegSet> UberSets;
1431 std::vector<UberRegSet*> RegSets(Registers.size());
1432 computeUberSets(UberSets, RegSets, *this);
1433 // UberSets and RegSets are now immutable.
1434
1435 computeUberWeights(UberSets, *this);
1436
1437 // Iterate over each Register, normalizing the unit weights until reaching
1438 // a fix point.
1439 unsigned NumIters = 0;
1440 for (bool Changed = true; Changed; ++NumIters) {
1441 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1442 Changed = false;
1443 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1444 CodeGenRegister::RegUnitList NormalUnits;
1445 std::set<unsigned> NormalRegs;
1446 Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
1447 NormalRegs, NormalUnits, *this);
1448 }
1449 }
1450 }
1451
1452 // Find a set in UniqueSets with the same elements as Set.
1453 // Return an iterator into UniqueSets.
1454 static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> & UniqueSets,const RegUnitSet & Set)1455 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1456 const RegUnitSet &Set) {
1457 std::vector<RegUnitSet>::const_iterator
1458 I = UniqueSets.begin(), E = UniqueSets.end();
1459 for(;I != E; ++I) {
1460 if (I->Units == Set.Units)
1461 break;
1462 }
1463 return I;
1464 }
1465
1466 // Return true if the RUSubSet is a subset of RUSuperSet.
isRegUnitSubSet(const std::vector<unsigned> & RUSubSet,const std::vector<unsigned> & RUSuperSet)1467 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1468 const std::vector<unsigned> &RUSuperSet) {
1469 return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1470 RUSubSet.begin(), RUSubSet.end());
1471 }
1472
1473 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1474 /// but with one or two registers removed. We occasionally have registers like
1475 /// APSR and PC thrown in with the general registers. We also see many
1476 /// special-purpose register subsets, such as tail-call and Thumb
1477 /// encodings. Generating all possible overlapping sets is combinatorial and
1478 /// overkill for modeling pressure. Ideally we could fix this statically in
1479 /// tablegen by (1) having the target define register classes that only include
1480 /// the allocatable registers and marking other classes as non-allocatable and
1481 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1482 /// the purpose of pressure. However, we make an attempt to handle targets that
1483 /// are not nicely defined by merging nearly identical register unit sets
1484 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1485 /// set limit by filtering the reserved registers.
1486 ///
1487 /// Merge sets only if the units have the same weight. For example, on ARM,
1488 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1489 /// should not expand the S set to include D regs.
pruneUnitSets()1490 void CodeGenRegBank::pruneUnitSets() {
1491 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1492
1493 // Form an equivalence class of UnitSets with no significant difference.
1494 std::vector<unsigned> SuperSetIDs;
1495 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1496 SubIdx != EndIdx; ++SubIdx) {
1497 const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1498 unsigned SuperIdx = 0;
1499 for (; SuperIdx != EndIdx; ++SuperIdx) {
1500 if (SuperIdx == SubIdx)
1501 continue;
1502
1503 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1504 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1505 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1506 && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1507 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1508 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1509 DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1510 << "\n");
1511 break;
1512 }
1513 }
1514 if (SuperIdx == EndIdx)
1515 SuperSetIDs.push_back(SubIdx);
1516 }
1517 // Populate PrunedUnitSets with each equivalence class's superset.
1518 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1519 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1520 unsigned SuperIdx = SuperSetIDs[i];
1521 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1522 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1523 }
1524 RegUnitSets.swap(PrunedUnitSets);
1525 }
1526
1527 // Create a RegUnitSet for each RegClass that contains all units in the class
1528 // including adopted units that are necessary to model register pressure. Then
1529 // iteratively compute RegUnitSets such that the union of any two overlapping
1530 // RegUnitSets is repreresented.
1531 //
1532 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1533 // RegUnitSet that is a superset of that RegUnitClass.
computeRegUnitSets()1534 void CodeGenRegBank::computeRegUnitSets() {
1535 assert(RegUnitSets.empty() && "dirty RegUnitSets");
1536
1537 // Compute a unique RegUnitSet for each RegClass.
1538 const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
1539 unsigned NumRegClasses = RegClasses.size();
1540 for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1541 if (!RegClasses[RCIdx]->Allocatable)
1542 continue;
1543
1544 // Speculatively grow the RegUnitSets to hold the new set.
1545 RegUnitSets.resize(RegUnitSets.size() + 1);
1546 RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
1547
1548 // Compute a sorted list of units in this class.
1549 RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
1550
1551 // Find an existing RegUnitSet.
1552 std::vector<RegUnitSet>::const_iterator SetI =
1553 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1554 if (SetI != llvm::prior(RegUnitSets.end()))
1555 RegUnitSets.pop_back();
1556 }
1557
1558 DEBUG(dbgs() << "\nBefore pruning:\n";
1559 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1560 USIdx < USEnd; ++USIdx) {
1561 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1562 << ":";
1563 ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
1564 for (unsigned i = 0, e = Units.size(); i < e; ++i)
1565 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
1566 dbgs() << "\n";
1567 });
1568
1569 // Iteratively prune unit sets.
1570 pruneUnitSets();
1571
1572 DEBUG(dbgs() << "\nBefore union:\n";
1573 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1574 USIdx < USEnd; ++USIdx) {
1575 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1576 << ":";
1577 ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
1578 for (unsigned i = 0, e = Units.size(); i < e; ++i)
1579 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
1580 dbgs() << "\n";
1581 }
1582 dbgs() << "\nUnion sets:\n");
1583
1584 // Iterate over all unit sets, including new ones added by this loop.
1585 unsigned NumRegUnitSubSets = RegUnitSets.size();
1586 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1587 // In theory, this is combinatorial. In practice, it needs to be bounded
1588 // by a small number of sets for regpressure to be efficient.
1589 // If the assert is hit, we need to implement pruning.
1590 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1591
1592 // Compare new sets with all original classes.
1593 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1594 SearchIdx != EndIdx; ++SearchIdx) {
1595 std::set<unsigned> Intersection;
1596 std::set_intersection(RegUnitSets[Idx].Units.begin(),
1597 RegUnitSets[Idx].Units.end(),
1598 RegUnitSets[SearchIdx].Units.begin(),
1599 RegUnitSets[SearchIdx].Units.end(),
1600 std::inserter(Intersection, Intersection.begin()));
1601 if (Intersection.empty())
1602 continue;
1603
1604 // Speculatively grow the RegUnitSets to hold the new set.
1605 RegUnitSets.resize(RegUnitSets.size() + 1);
1606 RegUnitSets.back().Name =
1607 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1608
1609 std::set_union(RegUnitSets[Idx].Units.begin(),
1610 RegUnitSets[Idx].Units.end(),
1611 RegUnitSets[SearchIdx].Units.begin(),
1612 RegUnitSets[SearchIdx].Units.end(),
1613 std::inserter(RegUnitSets.back().Units,
1614 RegUnitSets.back().Units.begin()));
1615
1616 // Find an existing RegUnitSet, or add the union to the unique sets.
1617 std::vector<RegUnitSet>::const_iterator SetI =
1618 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1619 if (SetI != llvm::prior(RegUnitSets.end()))
1620 RegUnitSets.pop_back();
1621 else {
1622 DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
1623 << " " << RegUnitSets.back().Name << ":";
1624 ArrayRef<unsigned> Units = RegUnitSets.back().Units;
1625 for (unsigned i = 0, e = Units.size(); i < e; ++i)
1626 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
1627 dbgs() << "\n";);
1628 }
1629 }
1630 }
1631
1632 // Iteratively prune unit sets after inferring supersets.
1633 pruneUnitSets();
1634
1635 DEBUG(dbgs() << "\n";
1636 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1637 USIdx < USEnd; ++USIdx) {
1638 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1639 << ":";
1640 ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
1641 for (unsigned i = 0, e = Units.size(); i < e; ++i)
1642 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
1643 dbgs() << "\n";
1644 });
1645
1646 // For each register class, list the UnitSets that are supersets.
1647 RegClassUnitSets.resize(NumRegClasses);
1648 for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1649 if (!RegClasses[RCIdx]->Allocatable)
1650 continue;
1651
1652 // Recompute the sorted list of units in this class.
1653 std::vector<unsigned> RCRegUnits;
1654 RegClasses[RCIdx]->buildRegUnitSet(RCRegUnits);
1655
1656 // Don't increase pressure for unallocatable regclasses.
1657 if (RCRegUnits.empty())
1658 continue;
1659
1660 DEBUG(dbgs() << "RC " << RegClasses[RCIdx]->getName() << " Units: \n";
1661 for (unsigned i = 0, e = RCRegUnits.size(); i < e; ++i)
1662 dbgs() << RegUnits[RCRegUnits[i]].getRoots()[0]->getName() << " ";
1663 dbgs() << "\n UnitSetIDs:");
1664
1665 // Find all supersets.
1666 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1667 USIdx != USEnd; ++USIdx) {
1668 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1669 DEBUG(dbgs() << " " << USIdx);
1670 RegClassUnitSets[RCIdx].push_back(USIdx);
1671 }
1672 }
1673 DEBUG(dbgs() << "\n");
1674 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1675 }
1676
1677 // For each register unit, ensure that we have the list of UnitSets that
1678 // contain the unit. Normally, this matches an existing list of UnitSets for a
1679 // register class. If not, we create a new entry in RegClassUnitSets as a
1680 // "fake" register class.
1681 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1682 UnitIdx < UnitEnd; ++UnitIdx) {
1683 std::vector<unsigned> RUSets;
1684 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1685 RegUnitSet &RUSet = RegUnitSets[i];
1686 if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
1687 == RUSet.Units.end())
1688 continue;
1689 RUSets.push_back(i);
1690 }
1691 unsigned RCUnitSetsIdx = 0;
1692 for (unsigned e = RegClassUnitSets.size();
1693 RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1694 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1695 break;
1696 }
1697 }
1698 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1699 if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1700 // Create a new list of UnitSets as a "fake" register class.
1701 RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1702 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1703 }
1704 }
1705 }
1706
1707 struct LessUnits {
1708 const CodeGenRegBank &RegBank;
LessUnitsLessUnits1709 LessUnits(const CodeGenRegBank &RB): RegBank(RB) {}
1710
operator ()LessUnits1711 bool operator()(unsigned ID1, unsigned ID2) {
1712 return RegBank.getRegPressureSet(ID1).Units.size()
1713 < RegBank.getRegPressureSet(ID2).Units.size();
1714 }
1715 };
1716
computeDerivedInfo()1717 void CodeGenRegBank::computeDerivedInfo() {
1718 computeComposites();
1719 computeSubRegIndexLaneMasks();
1720
1721 // Compute a weight for each register unit created during getSubRegs.
1722 // This may create adopted register units (with unit # >= NumNativeRegUnits).
1723 computeRegUnitWeights();
1724
1725 // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1726 // supersets for the union of overlapping sets.
1727 computeRegUnitSets();
1728
1729 // Get the weight of each set.
1730 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1731 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
1732
1733 // Find the order of each set.
1734 RegUnitSetOrder.reserve(RegUnitSets.size());
1735 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1736 RegUnitSetOrder.push_back(Idx);
1737
1738 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
1739 LessUnits(*this));
1740 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1741 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
1742 }
1743 }
1744
1745 //
1746 // Synthesize missing register class intersections.
1747 //
1748 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1749 // returns a maximal register class for all X.
1750 //
inferCommonSubClass(CodeGenRegisterClass * RC)1751 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1752 for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
1753 CodeGenRegisterClass *RC1 = RC;
1754 CodeGenRegisterClass *RC2 = RegClasses[rci];
1755 if (RC1 == RC2)
1756 continue;
1757
1758 // Compute the set intersection of RC1 and RC2.
1759 const CodeGenRegister::Set &Memb1 = RC1->getMembers();
1760 const CodeGenRegister::Set &Memb2 = RC2->getMembers();
1761 CodeGenRegister::Set Intersection;
1762 std::set_intersection(Memb1.begin(), Memb1.end(),
1763 Memb2.begin(), Memb2.end(),
1764 std::inserter(Intersection, Intersection.begin()),
1765 CodeGenRegister::Less());
1766
1767 // Skip disjoint class pairs.
1768 if (Intersection.empty())
1769 continue;
1770
1771 // If RC1 and RC2 have different spill sizes or alignments, use the
1772 // larger size for sub-classing. If they are equal, prefer RC1.
1773 if (RC2->SpillSize > RC1->SpillSize ||
1774 (RC2->SpillSize == RC1->SpillSize &&
1775 RC2->SpillAlignment > RC1->SpillAlignment))
1776 std::swap(RC1, RC2);
1777
1778 getOrCreateSubClass(RC1, &Intersection,
1779 RC1->getName() + "_and_" + RC2->getName());
1780 }
1781 }
1782
1783 //
1784 // Synthesize missing sub-classes for getSubClassWithSubReg().
1785 //
1786 // Make sure that the set of registers in RC with a given SubIdx sub-register
1787 // form a register class. Update RC->SubClassWithSubReg.
1788 //
inferSubClassWithSubReg(CodeGenRegisterClass * RC)1789 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1790 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1791 typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
1792 CodeGenSubRegIndex::Less> SubReg2SetMap;
1793
1794 // Compute the set of registers supporting each SubRegIndex.
1795 SubReg2SetMap SRSets;
1796 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1797 RE = RC->getMembers().end(); RI != RE; ++RI) {
1798 const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
1799 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1800 E = SRM.end(); I != E; ++I)
1801 SRSets[I->first].insert(*RI);
1802 }
1803
1804 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
1805 // numerical order to visit synthetic indices last.
1806 for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1807 CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1808 SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
1809 // Unsupported SubRegIndex. Skip it.
1810 if (I == SRSets.end())
1811 continue;
1812 // In most cases, all RC registers support the SubRegIndex.
1813 if (I->second.size() == RC->getMembers().size()) {
1814 RC->setSubClassWithSubReg(SubIdx, RC);
1815 continue;
1816 }
1817 // This is a real subset. See if we have a matching class.
1818 CodeGenRegisterClass *SubRC =
1819 getOrCreateSubClass(RC, &I->second,
1820 RC->getName() + "_with_" + I->first->getName());
1821 RC->setSubClassWithSubReg(SubIdx, SubRC);
1822 }
1823 }
1824
1825 //
1826 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1827 //
1828 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1829 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1830 //
1831
inferMatchingSuperRegClass(CodeGenRegisterClass * RC,unsigned FirstSubRegRC)1832 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1833 unsigned FirstSubRegRC) {
1834 SmallVector<std::pair<const CodeGenRegister*,
1835 const CodeGenRegister*>, 16> SSPairs;
1836 BitVector TopoSigs(getNumTopoSigs());
1837
1838 // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1839 for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1840 CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1841 // Skip indexes that aren't fully supported by RC's registers. This was
1842 // computed by inferSubClassWithSubReg() above which should have been
1843 // called first.
1844 if (RC->getSubClassWithSubReg(SubIdx) != RC)
1845 continue;
1846
1847 // Build list of (Super, Sub) pairs for this SubIdx.
1848 SSPairs.clear();
1849 TopoSigs.reset();
1850 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1851 RE = RC->getMembers().end(); RI != RE; ++RI) {
1852 const CodeGenRegister *Super = *RI;
1853 const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
1854 assert(Sub && "Missing sub-register");
1855 SSPairs.push_back(std::make_pair(Super, Sub));
1856 TopoSigs.set(Sub->getTopoSig());
1857 }
1858
1859 // Iterate over sub-register class candidates. Ignore classes created by
1860 // this loop. They will never be useful.
1861 for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
1862 ++rci) {
1863 CodeGenRegisterClass *SubRC = RegClasses[rci];
1864 // Topological shortcut: SubRC members have the wrong shape.
1865 if (!TopoSigs.anyCommon(SubRC->getTopoSigs()))
1866 continue;
1867 // Compute the subset of RC that maps into SubRC.
1868 CodeGenRegister::Set SubSet;
1869 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1870 if (SubRC->contains(SSPairs[i].second))
1871 SubSet.insert(SSPairs[i].first);
1872 if (SubSet.empty())
1873 continue;
1874 // RC injects completely into SubRC.
1875 if (SubSet.size() == SSPairs.size()) {
1876 SubRC->addSuperRegClass(SubIdx, RC);
1877 continue;
1878 }
1879 // Only a subset of RC maps into SubRC. Make sure it is represented by a
1880 // class.
1881 getOrCreateSubClass(RC, &SubSet, RC->getName() +
1882 "_with_" + SubIdx->getName() +
1883 "_in_" + SubRC->getName());
1884 }
1885 }
1886 }
1887
1888
1889 //
1890 // Infer missing register classes.
1891 //
computeInferredRegisterClasses()1892 void CodeGenRegBank::computeInferredRegisterClasses() {
1893 // When this function is called, the register classes have not been sorted
1894 // and assigned EnumValues yet. That means getSubClasses(),
1895 // getSuperClasses(), and hasSubClass() functions are defunct.
1896 unsigned FirstNewRC = RegClasses.size();
1897
1898 // Visit all register classes, including the ones being added by the loop.
1899 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
1900 CodeGenRegisterClass *RC = RegClasses[rci];
1901
1902 // Synthesize answers for getSubClassWithSubReg().
1903 inferSubClassWithSubReg(RC);
1904
1905 // Synthesize answers for getCommonSubClass().
1906 inferCommonSubClass(RC);
1907
1908 // Synthesize answers for getMatchingSuperRegClass().
1909 inferMatchingSuperRegClass(RC);
1910
1911 // New register classes are created while this loop is running, and we need
1912 // to visit all of them. I particular, inferMatchingSuperRegClass needs
1913 // to match old super-register classes with sub-register classes created
1914 // after inferMatchingSuperRegClass was called. At this point,
1915 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
1916 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
1917 if (rci + 1 == FirstNewRC) {
1918 unsigned NextNewRC = RegClasses.size();
1919 for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
1920 inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
1921 FirstNewRC = NextNewRC;
1922 }
1923 }
1924 }
1925
1926 /// getRegisterClassForRegister - Find the register class that contains the
1927 /// specified physical register. If the register is not in a register class,
1928 /// return null. If the register is in multiple classes, and the classes have a
1929 /// superset-subset relationship and the same set of types, return the
1930 /// superclass. Otherwise return null.
1931 const CodeGenRegisterClass*
getRegClassForRegister(Record * R)1932 CodeGenRegBank::getRegClassForRegister(Record *R) {
1933 const CodeGenRegister *Reg = getReg(R);
1934 ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
1935 const CodeGenRegisterClass *FoundRC = 0;
1936 for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
1937 const CodeGenRegisterClass &RC = *RCs[i];
1938 if (!RC.contains(Reg))
1939 continue;
1940
1941 // If this is the first class that contains the register,
1942 // make a note of it and go on to the next class.
1943 if (!FoundRC) {
1944 FoundRC = &RC;
1945 continue;
1946 }
1947
1948 // If a register's classes have different types, return null.
1949 if (RC.getValueTypes() != FoundRC->getValueTypes())
1950 return 0;
1951
1952 // Check to see if the previously found class that contains
1953 // the register is a subclass of the current class. If so,
1954 // prefer the superclass.
1955 if (RC.hasSubClass(FoundRC)) {
1956 FoundRC = &RC;
1957 continue;
1958 }
1959
1960 // Check to see if the previously found class that contains
1961 // the register is a superclass of the current class. If so,
1962 // prefer the superclass.
1963 if (FoundRC->hasSubClass(&RC))
1964 continue;
1965
1966 // Multiple classes, and neither is a superclass of the other.
1967 // Return null.
1968 return 0;
1969 }
1970 return FoundRC;
1971 }
1972
computeCoveredRegisters(ArrayRef<Record * > Regs)1973 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
1974 SetVector<const CodeGenRegister*> Set;
1975
1976 // First add Regs with all sub-registers.
1977 for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
1978 CodeGenRegister *Reg = getReg(Regs[i]);
1979 if (Set.insert(Reg))
1980 // Reg is new, add all sub-registers.
1981 // The pre-ordering is not important here.
1982 Reg->addSubRegsPreOrder(Set, *this);
1983 }
1984
1985 // Second, find all super-registers that are completely covered by the set.
1986 for (unsigned i = 0; i != Set.size(); ++i) {
1987 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
1988 for (unsigned j = 0, e = SR.size(); j != e; ++j) {
1989 const CodeGenRegister *Super = SR[j];
1990 if (!Super->CoveredBySubRegs || Set.count(Super))
1991 continue;
1992 // This new super-register is covered by its sub-registers.
1993 bool AllSubsInSet = true;
1994 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
1995 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1996 E = SRM.end(); I != E; ++I)
1997 if (!Set.count(I->second)) {
1998 AllSubsInSet = false;
1999 break;
2000 }
2001 // All sub-registers in Set, add Super as well.
2002 // We will visit Super later to recheck its super-registers.
2003 if (AllSubsInSet)
2004 Set.insert(Super);
2005 }
2006 }
2007
2008 // Convert to BitVector.
2009 BitVector BV(Registers.size() + 1);
2010 for (unsigned i = 0, e = Set.size(); i != e; ++i)
2011 BV.set(Set[i]->EnumValue);
2012 return BV;
2013 }
2014