1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with generation of the layout of virtual tables.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/VTableBuilder.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/Support/Format.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include <algorithm>
22 #include <cstdio>
23
24 using namespace clang;
25
26 #define DUMP_OVERRIDERS 0
27
28 namespace {
29
30 /// BaseOffset - Represents an offset from a derived class to a direct or
31 /// indirect base class.
32 struct BaseOffset {
33 /// DerivedClass - The derived class.
34 const CXXRecordDecl *DerivedClass;
35
36 /// VirtualBase - If the path from the derived class to the base class
37 /// involves virtual base classes, this holds the declaration of the last
38 /// virtual base in this path (i.e. closest to the base class).
39 const CXXRecordDecl *VirtualBase;
40
41 /// NonVirtualOffset - The offset from the derived class to the base class.
42 /// (Or the offset from the virtual base class to the base class, if the
43 /// path from the derived class to the base class involves a virtual base
44 /// class.
45 CharUnits NonVirtualOffset;
46
BaseOffset__anonf071dba20111::BaseOffset47 BaseOffset() : DerivedClass(0), VirtualBase(0),
48 NonVirtualOffset(CharUnits::Zero()) { }
BaseOffset__anonf071dba20111::BaseOffset49 BaseOffset(const CXXRecordDecl *DerivedClass,
50 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
51 : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
52 NonVirtualOffset(NonVirtualOffset) { }
53
isEmpty__anonf071dba20111::BaseOffset54 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
55 };
56
57 /// FinalOverriders - Contains the final overrider member functions for all
58 /// member functions in the base subobjects of a class.
59 class FinalOverriders {
60 public:
61 /// OverriderInfo - Information about a final overrider.
62 struct OverriderInfo {
63 /// Method - The method decl of the overrider.
64 const CXXMethodDecl *Method;
65
66 /// Offset - the base offset of the overrider's parent in the layout class.
67 CharUnits Offset;
68
OverriderInfo__anonf071dba20111::FinalOverriders::OverriderInfo69 OverriderInfo() : Method(0), Offset(CharUnits::Zero()) { }
70 };
71
72 private:
73 /// MostDerivedClass - The most derived class for which the final overriders
74 /// are stored.
75 const CXXRecordDecl *MostDerivedClass;
76
77 /// MostDerivedClassOffset - If we're building final overriders for a
78 /// construction vtable, this holds the offset from the layout class to the
79 /// most derived class.
80 const CharUnits MostDerivedClassOffset;
81
82 /// LayoutClass - The class we're using for layout information. Will be
83 /// different than the most derived class if the final overriders are for a
84 /// construction vtable.
85 const CXXRecordDecl *LayoutClass;
86
87 ASTContext &Context;
88
89 /// MostDerivedClassLayout - the AST record layout of the most derived class.
90 const ASTRecordLayout &MostDerivedClassLayout;
91
92 /// MethodBaseOffsetPairTy - Uniquely identifies a member function
93 /// in a base subobject.
94 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
95
96 typedef llvm::DenseMap<MethodBaseOffsetPairTy,
97 OverriderInfo> OverridersMapTy;
98
99 /// OverridersMap - The final overriders for all virtual member functions of
100 /// all the base subobjects of the most derived class.
101 OverridersMapTy OverridersMap;
102
103 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
104 /// as a record decl and a subobject number) and its offsets in the most
105 /// derived class as well as the layout class.
106 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
107 CharUnits> SubobjectOffsetMapTy;
108
109 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
110
111 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
112 /// given base.
113 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
114 CharUnits OffsetInLayoutClass,
115 SubobjectOffsetMapTy &SubobjectOffsets,
116 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
117 SubobjectCountMapTy &SubobjectCounts);
118
119 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
120
121 /// dump - dump the final overriders for a base subobject, and all its direct
122 /// and indirect base subobjects.
123 void dump(raw_ostream &Out, BaseSubobject Base,
124 VisitedVirtualBasesSetTy& VisitedVirtualBases);
125
126 public:
127 FinalOverriders(const CXXRecordDecl *MostDerivedClass,
128 CharUnits MostDerivedClassOffset,
129 const CXXRecordDecl *LayoutClass);
130
131 /// getOverrider - Get the final overrider for the given method declaration in
132 /// the subobject with the given base offset.
getOverrider(const CXXMethodDecl * MD,CharUnits BaseOffset) const133 OverriderInfo getOverrider(const CXXMethodDecl *MD,
134 CharUnits BaseOffset) const {
135 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
136 "Did not find overrider!");
137
138 return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
139 }
140
141 /// dump - dump the final overriders.
dump()142 void dump() {
143 VisitedVirtualBasesSetTy VisitedVirtualBases;
144 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
145 VisitedVirtualBases);
146 }
147
148 };
149
FinalOverriders(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,const CXXRecordDecl * LayoutClass)150 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
151 CharUnits MostDerivedClassOffset,
152 const CXXRecordDecl *LayoutClass)
153 : MostDerivedClass(MostDerivedClass),
154 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
155 Context(MostDerivedClass->getASTContext()),
156 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
157
158 // Compute base offsets.
159 SubobjectOffsetMapTy SubobjectOffsets;
160 SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
161 SubobjectCountMapTy SubobjectCounts;
162 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
163 /*IsVirtual=*/false,
164 MostDerivedClassOffset,
165 SubobjectOffsets, SubobjectLayoutClassOffsets,
166 SubobjectCounts);
167
168 // Get the final overriders.
169 CXXFinalOverriderMap FinalOverriders;
170 MostDerivedClass->getFinalOverriders(FinalOverriders);
171
172 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
173 E = FinalOverriders.end(); I != E; ++I) {
174 const CXXMethodDecl *MD = I->first;
175 const OverridingMethods& Methods = I->second;
176
177 for (OverridingMethods::const_iterator I = Methods.begin(),
178 E = Methods.end(); I != E; ++I) {
179 unsigned SubobjectNumber = I->first;
180 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
181 SubobjectNumber)) &&
182 "Did not find subobject offset!");
183
184 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
185 SubobjectNumber)];
186
187 assert(I->second.size() == 1 && "Final overrider is not unique!");
188 const UniqueVirtualMethod &Method = I->second.front();
189
190 const CXXRecordDecl *OverriderRD = Method.Method->getParent();
191 assert(SubobjectLayoutClassOffsets.count(
192 std::make_pair(OverriderRD, Method.Subobject))
193 && "Did not find subobject offset!");
194 CharUnits OverriderOffset =
195 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
196 Method.Subobject)];
197
198 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
199 assert(!Overrider.Method && "Overrider should not exist yet!");
200
201 Overrider.Offset = OverriderOffset;
202 Overrider.Method = Method.Method;
203 }
204 }
205
206 #if DUMP_OVERRIDERS
207 // And dump them (for now).
208 dump();
209 #endif
210 }
211
ComputeBaseOffset(ASTContext & Context,const CXXRecordDecl * DerivedRD,const CXXBasePath & Path)212 static BaseOffset ComputeBaseOffset(ASTContext &Context,
213 const CXXRecordDecl *DerivedRD,
214 const CXXBasePath &Path) {
215 CharUnits NonVirtualOffset = CharUnits::Zero();
216
217 unsigned NonVirtualStart = 0;
218 const CXXRecordDecl *VirtualBase = 0;
219
220 // First, look for the virtual base class.
221 for (int I = Path.size(), E = 0; I != E; --I) {
222 const CXXBasePathElement &Element = Path[I - 1];
223
224 if (Element.Base->isVirtual()) {
225 NonVirtualStart = I;
226 QualType VBaseType = Element.Base->getType();
227 VirtualBase = VBaseType->getAsCXXRecordDecl();
228 break;
229 }
230 }
231
232 // Now compute the non-virtual offset.
233 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
234 const CXXBasePathElement &Element = Path[I];
235
236 // Check the base class offset.
237 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
238
239 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
240
241 NonVirtualOffset += Layout.getBaseClassOffset(Base);
242 }
243
244 // FIXME: This should probably use CharUnits or something. Maybe we should
245 // even change the base offsets in ASTRecordLayout to be specified in
246 // CharUnits.
247 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
248
249 }
250
ComputeBaseOffset(ASTContext & Context,const CXXRecordDecl * BaseRD,const CXXRecordDecl * DerivedRD)251 static BaseOffset ComputeBaseOffset(ASTContext &Context,
252 const CXXRecordDecl *BaseRD,
253 const CXXRecordDecl *DerivedRD) {
254 CXXBasePaths Paths(/*FindAmbiguities=*/false,
255 /*RecordPaths=*/true, /*DetectVirtual=*/false);
256
257 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
258 llvm_unreachable("Class must be derived from the passed in base class!");
259
260 return ComputeBaseOffset(Context, DerivedRD, Paths.front());
261 }
262
263 static BaseOffset
ComputeReturnAdjustmentBaseOffset(ASTContext & Context,const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)264 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
265 const CXXMethodDecl *DerivedMD,
266 const CXXMethodDecl *BaseMD) {
267 const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>();
268 const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>();
269
270 // Canonicalize the return types.
271 CanQualType CanDerivedReturnType =
272 Context.getCanonicalType(DerivedFT->getResultType());
273 CanQualType CanBaseReturnType =
274 Context.getCanonicalType(BaseFT->getResultType());
275
276 assert(CanDerivedReturnType->getTypeClass() ==
277 CanBaseReturnType->getTypeClass() &&
278 "Types must have same type class!");
279
280 if (CanDerivedReturnType == CanBaseReturnType) {
281 // No adjustment needed.
282 return BaseOffset();
283 }
284
285 if (isa<ReferenceType>(CanDerivedReturnType)) {
286 CanDerivedReturnType =
287 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
288 CanBaseReturnType =
289 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
290 } else if (isa<PointerType>(CanDerivedReturnType)) {
291 CanDerivedReturnType =
292 CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
293 CanBaseReturnType =
294 CanBaseReturnType->getAs<PointerType>()->getPointeeType();
295 } else {
296 llvm_unreachable("Unexpected return type!");
297 }
298
299 // We need to compare unqualified types here; consider
300 // const T *Base::foo();
301 // T *Derived::foo();
302 if (CanDerivedReturnType.getUnqualifiedType() ==
303 CanBaseReturnType.getUnqualifiedType()) {
304 // No adjustment needed.
305 return BaseOffset();
306 }
307
308 const CXXRecordDecl *DerivedRD =
309 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
310
311 const CXXRecordDecl *BaseRD =
312 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
313
314 return ComputeBaseOffset(Context, BaseRD, DerivedRD);
315 }
316
317 void
ComputeBaseOffsets(BaseSubobject Base,bool IsVirtual,CharUnits OffsetInLayoutClass,SubobjectOffsetMapTy & SubobjectOffsets,SubobjectOffsetMapTy & SubobjectLayoutClassOffsets,SubobjectCountMapTy & SubobjectCounts)318 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
319 CharUnits OffsetInLayoutClass,
320 SubobjectOffsetMapTy &SubobjectOffsets,
321 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
322 SubobjectCountMapTy &SubobjectCounts) {
323 const CXXRecordDecl *RD = Base.getBase();
324
325 unsigned SubobjectNumber = 0;
326 if (!IsVirtual)
327 SubobjectNumber = ++SubobjectCounts[RD];
328
329 // Set up the subobject to offset mapping.
330 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
331 && "Subobject offset already exists!");
332 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
333 && "Subobject offset already exists!");
334
335 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
336 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
337 OffsetInLayoutClass;
338
339 // Traverse our bases.
340 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
341 E = RD->bases_end(); I != E; ++I) {
342 const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
343
344 CharUnits BaseOffset;
345 CharUnits BaseOffsetInLayoutClass;
346 if (I->isVirtual()) {
347 // Check if we've visited this virtual base before.
348 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
349 continue;
350
351 const ASTRecordLayout &LayoutClassLayout =
352 Context.getASTRecordLayout(LayoutClass);
353
354 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
355 BaseOffsetInLayoutClass =
356 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
357 } else {
358 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
359 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
360
361 BaseOffset = Base.getBaseOffset() + Offset;
362 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
363 }
364
365 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
366 I->isVirtual(), BaseOffsetInLayoutClass,
367 SubobjectOffsets, SubobjectLayoutClassOffsets,
368 SubobjectCounts);
369 }
370 }
371
dump(raw_ostream & Out,BaseSubobject Base,VisitedVirtualBasesSetTy & VisitedVirtualBases)372 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
373 VisitedVirtualBasesSetTy &VisitedVirtualBases) {
374 const CXXRecordDecl *RD = Base.getBase();
375 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
376
377 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
378 E = RD->bases_end(); I != E; ++I) {
379 const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
380
381 // Ignore bases that don't have any virtual member functions.
382 if (!BaseDecl->isPolymorphic())
383 continue;
384
385 CharUnits BaseOffset;
386 if (I->isVirtual()) {
387 if (!VisitedVirtualBases.insert(BaseDecl)) {
388 // We've visited this base before.
389 continue;
390 }
391
392 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
393 } else {
394 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
395 }
396
397 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
398 }
399
400 Out << "Final overriders for (" << RD->getQualifiedNameAsString() << ", ";
401 Out << Base.getBaseOffset().getQuantity() << ")\n";
402
403 // Now dump the overriders for this base subobject.
404 for (CXXRecordDecl::method_iterator I = RD->method_begin(),
405 E = RD->method_end(); I != E; ++I) {
406 const CXXMethodDecl *MD = *I;
407
408 if (!MD->isVirtual())
409 continue;
410
411 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
412
413 Out << " " << MD->getQualifiedNameAsString() << " - (";
414 Out << Overrider.Method->getQualifiedNameAsString();
415 Out << ", " << Overrider.Offset.getQuantity() << ')';
416
417 BaseOffset Offset;
418 if (!Overrider.Method->isPure())
419 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
420
421 if (!Offset.isEmpty()) {
422 Out << " [ret-adj: ";
423 if (Offset.VirtualBase)
424 Out << Offset.VirtualBase->getQualifiedNameAsString() << " vbase, ";
425
426 Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
427 }
428
429 Out << "\n";
430 }
431 }
432
433 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
434 struct VCallOffsetMap {
435
436 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
437
438 /// Offsets - Keeps track of methods and their offsets.
439 // FIXME: This should be a real map and not a vector.
440 SmallVector<MethodAndOffsetPairTy, 16> Offsets;
441
442 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
443 /// can share the same vcall offset.
444 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
445 const CXXMethodDecl *RHS);
446
447 public:
448 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
449 /// add was successful, or false if there was already a member function with
450 /// the same signature in the map.
451 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
452
453 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
454 /// vtable address point) for the given virtual member function.
455 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
456
457 // empty - Return whether the offset map is empty or not.
empty__anonf071dba20111::VCallOffsetMap458 bool empty() const { return Offsets.empty(); }
459 };
460
HasSameVirtualSignature(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)461 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
462 const CXXMethodDecl *RHS) {
463 const FunctionProtoType *LT =
464 cast<FunctionProtoType>(LHS->getType().getCanonicalType());
465 const FunctionProtoType *RT =
466 cast<FunctionProtoType>(RHS->getType().getCanonicalType());
467
468 // Fast-path matches in the canonical types.
469 if (LT == RT) return true;
470
471 // Force the signatures to match. We can't rely on the overrides
472 // list here because there isn't necessarily an inheritance
473 // relationship between the two methods.
474 if (LT->getTypeQuals() != RT->getTypeQuals() ||
475 LT->getNumArgs() != RT->getNumArgs())
476 return false;
477 for (unsigned I = 0, E = LT->getNumArgs(); I != E; ++I)
478 if (LT->getArgType(I) != RT->getArgType(I))
479 return false;
480 return true;
481 }
482
MethodsCanShareVCallOffset(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)483 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
484 const CXXMethodDecl *RHS) {
485 assert(LHS->isVirtual() && "LHS must be virtual!");
486 assert(RHS->isVirtual() && "LHS must be virtual!");
487
488 // A destructor can share a vcall offset with another destructor.
489 if (isa<CXXDestructorDecl>(LHS))
490 return isa<CXXDestructorDecl>(RHS);
491
492 // FIXME: We need to check more things here.
493
494 // The methods must have the same name.
495 DeclarationName LHSName = LHS->getDeclName();
496 DeclarationName RHSName = RHS->getDeclName();
497 if (LHSName != RHSName)
498 return false;
499
500 // And the same signatures.
501 return HasSameVirtualSignature(LHS, RHS);
502 }
503
AddVCallOffset(const CXXMethodDecl * MD,CharUnits OffsetOffset)504 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
505 CharUnits OffsetOffset) {
506 // Check if we can reuse an offset.
507 for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
508 if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
509 return false;
510 }
511
512 // Add the offset.
513 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
514 return true;
515 }
516
getVCallOffsetOffset(const CXXMethodDecl * MD)517 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
518 // Look for an offset.
519 for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
520 if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
521 return Offsets[I].second;
522 }
523
524 llvm_unreachable("Should always find a vcall offset offset!");
525 }
526
527 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
528 class VCallAndVBaseOffsetBuilder {
529 public:
530 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
531 VBaseOffsetOffsetsMapTy;
532
533 private:
534 /// MostDerivedClass - The most derived class for which we're building vcall
535 /// and vbase offsets.
536 const CXXRecordDecl *MostDerivedClass;
537
538 /// LayoutClass - The class we're using for layout information. Will be
539 /// different than the most derived class if we're building a construction
540 /// vtable.
541 const CXXRecordDecl *LayoutClass;
542
543 /// Context - The ASTContext which we will use for layout information.
544 ASTContext &Context;
545
546 /// Components - vcall and vbase offset components
547 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
548 VTableComponentVectorTy Components;
549
550 /// VisitedVirtualBases - Visited virtual bases.
551 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
552
553 /// VCallOffsets - Keeps track of vcall offsets.
554 VCallOffsetMap VCallOffsets;
555
556
557 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
558 /// relative to the address point.
559 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
560
561 /// FinalOverriders - The final overriders of the most derived class.
562 /// (Can be null when we're not building a vtable of the most derived class).
563 const FinalOverriders *Overriders;
564
565 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
566 /// given base subobject.
567 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
568 CharUnits RealBaseOffset);
569
570 /// AddVCallOffsets - Add vcall offsets for the given base subobject.
571 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
572
573 /// AddVBaseOffsets - Add vbase offsets for the given class.
574 void AddVBaseOffsets(const CXXRecordDecl *Base,
575 CharUnits OffsetInLayoutClass);
576
577 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
578 /// chars, relative to the vtable address point.
579 CharUnits getCurrentOffsetOffset() const;
580
581 public:
VCallAndVBaseOffsetBuilder(const CXXRecordDecl * MostDerivedClass,const CXXRecordDecl * LayoutClass,const FinalOverriders * Overriders,BaseSubobject Base,bool BaseIsVirtual,CharUnits OffsetInLayoutClass)582 VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
583 const CXXRecordDecl *LayoutClass,
584 const FinalOverriders *Overriders,
585 BaseSubobject Base, bool BaseIsVirtual,
586 CharUnits OffsetInLayoutClass)
587 : MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
588 Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
589
590 // Add vcall and vbase offsets.
591 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
592 }
593
594 /// Methods for iterating over the components.
595 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
components_begin() const596 const_iterator components_begin() const { return Components.rbegin(); }
components_end() const597 const_iterator components_end() const { return Components.rend(); }
598
getVCallOffsets() const599 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
getVBaseOffsetOffsets() const600 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
601 return VBaseOffsetOffsets;
602 }
603 };
604
605 void
AddVCallAndVBaseOffsets(BaseSubobject Base,bool BaseIsVirtual,CharUnits RealBaseOffset)606 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
607 bool BaseIsVirtual,
608 CharUnits RealBaseOffset) {
609 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
610
611 // Itanium C++ ABI 2.5.2:
612 // ..in classes sharing a virtual table with a primary base class, the vcall
613 // and vbase offsets added by the derived class all come before the vcall
614 // and vbase offsets required by the base class, so that the latter may be
615 // laid out as required by the base class without regard to additions from
616 // the derived class(es).
617
618 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
619 // emit them for the primary base first).
620 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
621 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
622
623 CharUnits PrimaryBaseOffset;
624
625 // Get the base offset of the primary base.
626 if (PrimaryBaseIsVirtual) {
627 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
628 "Primary vbase should have a zero offset!");
629
630 const ASTRecordLayout &MostDerivedClassLayout =
631 Context.getASTRecordLayout(MostDerivedClass);
632
633 PrimaryBaseOffset =
634 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
635 } else {
636 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
637 "Primary base should have a zero offset!");
638
639 PrimaryBaseOffset = Base.getBaseOffset();
640 }
641
642 AddVCallAndVBaseOffsets(
643 BaseSubobject(PrimaryBase,PrimaryBaseOffset),
644 PrimaryBaseIsVirtual, RealBaseOffset);
645 }
646
647 AddVBaseOffsets(Base.getBase(), RealBaseOffset);
648
649 // We only want to add vcall offsets for virtual bases.
650 if (BaseIsVirtual)
651 AddVCallOffsets(Base, RealBaseOffset);
652 }
653
getCurrentOffsetOffset() const654 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
655 // OffsetIndex is the index of this vcall or vbase offset, relative to the
656 // vtable address point. (We subtract 3 to account for the information just
657 // above the address point, the RTTI info, the offset to top, and the
658 // vcall offset itself).
659 int64_t OffsetIndex = -(int64_t)(3 + Components.size());
660
661 CharUnits PointerWidth =
662 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
663 CharUnits OffsetOffset = PointerWidth * OffsetIndex;
664 return OffsetOffset;
665 }
666
AddVCallOffsets(BaseSubobject Base,CharUnits VBaseOffset)667 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
668 CharUnits VBaseOffset) {
669 const CXXRecordDecl *RD = Base.getBase();
670 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
671
672 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
673
674 // Handle the primary base first.
675 // We only want to add vcall offsets if the base is non-virtual; a virtual
676 // primary base will have its vcall and vbase offsets emitted already.
677 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
678 // Get the base offset of the primary base.
679 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
680 "Primary base should have a zero offset!");
681
682 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
683 VBaseOffset);
684 }
685
686 // Add the vcall offsets.
687 for (CXXRecordDecl::method_iterator I = RD->method_begin(),
688 E = RD->method_end(); I != E; ++I) {
689 const CXXMethodDecl *MD = *I;
690
691 if (!MD->isVirtual())
692 continue;
693
694 CharUnits OffsetOffset = getCurrentOffsetOffset();
695
696 // Don't add a vcall offset if we already have one for this member function
697 // signature.
698 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
699 continue;
700
701 CharUnits Offset = CharUnits::Zero();
702
703 if (Overriders) {
704 // Get the final overrider.
705 FinalOverriders::OverriderInfo Overrider =
706 Overriders->getOverrider(MD, Base.getBaseOffset());
707
708 /// The vcall offset is the offset from the virtual base to the object
709 /// where the function was overridden.
710 Offset = Overrider.Offset - VBaseOffset;
711 }
712
713 Components.push_back(
714 VTableComponent::MakeVCallOffset(Offset));
715 }
716
717 // And iterate over all non-virtual bases (ignoring the primary base).
718 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
719 E = RD->bases_end(); I != E; ++I) {
720
721 if (I->isVirtual())
722 continue;
723
724 const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
725 if (BaseDecl == PrimaryBase)
726 continue;
727
728 // Get the base offset of this base.
729 CharUnits BaseOffset = Base.getBaseOffset() +
730 Layout.getBaseClassOffset(BaseDecl);
731
732 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
733 VBaseOffset);
734 }
735 }
736
737 void
AddVBaseOffsets(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass)738 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
739 CharUnits OffsetInLayoutClass) {
740 const ASTRecordLayout &LayoutClassLayout =
741 Context.getASTRecordLayout(LayoutClass);
742
743 // Add vbase offsets.
744 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
745 E = RD->bases_end(); I != E; ++I) {
746 const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
747
748 // Check if this is a virtual base that we haven't visited before.
749 if (I->isVirtual() && VisitedVirtualBases.insert(BaseDecl)) {
750 CharUnits Offset =
751 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
752
753 // Add the vbase offset offset.
754 assert(!VBaseOffsetOffsets.count(BaseDecl) &&
755 "vbase offset offset already exists!");
756
757 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
758 VBaseOffsetOffsets.insert(
759 std::make_pair(BaseDecl, VBaseOffsetOffset));
760
761 Components.push_back(
762 VTableComponent::MakeVBaseOffset(Offset));
763 }
764
765 // Check the base class looking for more vbase offsets.
766 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
767 }
768 }
769
770 /// VTableBuilder - Class for building vtable layout information.
771 // FIXME: rename to ItaniumVTableBuilder.
772 class VTableBuilder {
773 public:
774 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
775 /// primary bases.
776 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
777 PrimaryBasesSetVectorTy;
778
779 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
780 VBaseOffsetOffsetsMapTy;
781
782 typedef llvm::DenseMap<BaseSubobject, uint64_t>
783 AddressPointsMapTy;
784
785 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
786
787 private:
788 /// VTables - Global vtable information.
789 VTableContext &VTables;
790
791 /// MostDerivedClass - The most derived class for which we're building this
792 /// vtable.
793 const CXXRecordDecl *MostDerivedClass;
794
795 /// MostDerivedClassOffset - If we're building a construction vtable, this
796 /// holds the offset from the layout class to the most derived class.
797 const CharUnits MostDerivedClassOffset;
798
799 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
800 /// base. (This only makes sense when building a construction vtable).
801 bool MostDerivedClassIsVirtual;
802
803 /// LayoutClass - The class we're using for layout information. Will be
804 /// different than the most derived class if we're building a construction
805 /// vtable.
806 const CXXRecordDecl *LayoutClass;
807
808 /// Context - The ASTContext which we will use for layout information.
809 ASTContext &Context;
810
811 /// FinalOverriders - The final overriders of the most derived class.
812 const FinalOverriders Overriders;
813
814 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
815 /// bases in this vtable.
816 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
817
818 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
819 /// the most derived class.
820 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
821
822 /// Components - The components of the vtable being built.
823 SmallVector<VTableComponent, 64> Components;
824
825 /// AddressPoints - Address points for the vtable being built.
826 AddressPointsMapTy AddressPoints;
827
828 /// MethodInfo - Contains information about a method in a vtable.
829 /// (Used for computing 'this' pointer adjustment thunks.
830 struct MethodInfo {
831 /// BaseOffset - The base offset of this method.
832 const CharUnits BaseOffset;
833
834 /// BaseOffsetInLayoutClass - The base offset in the layout class of this
835 /// method.
836 const CharUnits BaseOffsetInLayoutClass;
837
838 /// VTableIndex - The index in the vtable that this method has.
839 /// (For destructors, this is the index of the complete destructor).
840 const uint64_t VTableIndex;
841
MethodInfo__anonf071dba20111::VTableBuilder::MethodInfo842 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
843 uint64_t VTableIndex)
844 : BaseOffset(BaseOffset),
845 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
846 VTableIndex(VTableIndex) { }
847
MethodInfo__anonf071dba20111::VTableBuilder::MethodInfo848 MethodInfo()
849 : BaseOffset(CharUnits::Zero()),
850 BaseOffsetInLayoutClass(CharUnits::Zero()),
851 VTableIndex(0) { }
852 };
853
854 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
855
856 /// MethodInfoMap - The information for all methods in the vtable we're
857 /// currently building.
858 MethodInfoMapTy MethodInfoMap;
859
860 /// MethodVTableIndices - Contains the index (relative to the vtable address
861 /// point) where the function pointer for a virtual function is stored.
862 MethodVTableIndicesTy MethodVTableIndices;
863
864 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
865
866 /// VTableThunks - The thunks by vtable index in the vtable currently being
867 /// built.
868 VTableThunksMapTy VTableThunks;
869
870 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
871 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
872
873 /// Thunks - A map that contains all the thunks needed for all methods in the
874 /// most derived class for which the vtable is currently being built.
875 ThunksMapTy Thunks;
876
877 /// AddThunk - Add a thunk for the given method.
878 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
879
880 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
881 /// part of the vtable we're currently building.
882 void ComputeThisAdjustments();
883
884 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
885
886 /// PrimaryVirtualBases - All known virtual bases who are a primary base of
887 /// some other base.
888 VisitedVirtualBasesSetTy PrimaryVirtualBases;
889
890 /// ComputeReturnAdjustment - Compute the return adjustment given a return
891 /// adjustment base offset.
892 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
893
894 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
895 /// the 'this' pointer from the base subobject to the derived subobject.
896 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
897 BaseSubobject Derived) const;
898
899 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
900 /// given virtual member function, its offset in the layout class and its
901 /// final overrider.
902 ThisAdjustment
903 ComputeThisAdjustment(const CXXMethodDecl *MD,
904 CharUnits BaseOffsetInLayoutClass,
905 FinalOverriders::OverriderInfo Overrider);
906
907 /// AddMethod - Add a single virtual member function to the vtable
908 /// components vector.
909 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
910
911 /// IsOverriderUsed - Returns whether the overrider will ever be used in this
912 /// part of the vtable.
913 ///
914 /// Itanium C++ ABI 2.5.2:
915 ///
916 /// struct A { virtual void f(); };
917 /// struct B : virtual public A { int i; };
918 /// struct C : virtual public A { int j; };
919 /// struct D : public B, public C {};
920 ///
921 /// When B and C are declared, A is a primary base in each case, so although
922 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
923 /// adjustment is required and no thunk is generated. However, inside D
924 /// objects, A is no longer a primary base of C, so if we allowed calls to
925 /// C::f() to use the copy of A's vtable in the C subobject, we would need
926 /// to adjust this from C* to B::A*, which would require a third-party
927 /// thunk. Since we require that a call to C::f() first convert to A*,
928 /// C-in-D's copy of A's vtable is never referenced, so this is not
929 /// necessary.
930 bool IsOverriderUsed(const CXXMethodDecl *Overrider,
931 CharUnits BaseOffsetInLayoutClass,
932 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
933 CharUnits FirstBaseOffsetInLayoutClass) const;
934
935
936 /// AddMethods - Add the methods of this base subobject and all its
937 /// primary bases to the vtable components vector.
938 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
939 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
940 CharUnits FirstBaseOffsetInLayoutClass,
941 PrimaryBasesSetVectorTy &PrimaryBases);
942
943 // LayoutVTable - Layout the vtable for the given base class, including its
944 // secondary vtables and any vtables for virtual bases.
945 void LayoutVTable();
946
947 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
948 /// given base subobject, as well as all its secondary vtables.
949 ///
950 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
951 /// or a direct or indirect base of a virtual base.
952 ///
953 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
954 /// in the layout class.
955 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
956 bool BaseIsMorallyVirtual,
957 bool BaseIsVirtualInLayoutClass,
958 CharUnits OffsetInLayoutClass);
959
960 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
961 /// subobject.
962 ///
963 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
964 /// or a direct or indirect base of a virtual base.
965 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
966 CharUnits OffsetInLayoutClass);
967
968 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
969 /// class hierarchy.
970 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
971 CharUnits OffsetInLayoutClass,
972 VisitedVirtualBasesSetTy &VBases);
973
974 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
975 /// given base (excluding any primary bases).
976 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
977 VisitedVirtualBasesSetTy &VBases);
978
979 /// isBuildingConstructionVTable - Return whether this vtable builder is
980 /// building a construction vtable.
isBuildingConstructorVTable() const981 bool isBuildingConstructorVTable() const {
982 return MostDerivedClass != LayoutClass;
983 }
984
985 public:
VTableBuilder(VTableContext & VTables,const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)986 VTableBuilder(VTableContext &VTables, const CXXRecordDecl *MostDerivedClass,
987 CharUnits MostDerivedClassOffset,
988 bool MostDerivedClassIsVirtual, const
989 CXXRecordDecl *LayoutClass)
990 : VTables(VTables), MostDerivedClass(MostDerivedClass),
991 MostDerivedClassOffset(MostDerivedClassOffset),
992 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
993 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
994 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
995
996 LayoutVTable();
997
998 if (Context.getLangOpts().DumpVTableLayouts)
999 dumpLayout(llvm::errs());
1000 }
1001
isMicrosoftABI() const1002 bool isMicrosoftABI() const {
1003 return VTables.isMicrosoftABI();
1004 }
1005
getNumThunks() const1006 uint64_t getNumThunks() const {
1007 return Thunks.size();
1008 }
1009
thunks_begin() const1010 ThunksMapTy::const_iterator thunks_begin() const {
1011 return Thunks.begin();
1012 }
1013
thunks_end() const1014 ThunksMapTy::const_iterator thunks_end() const {
1015 return Thunks.end();
1016 }
1017
getVBaseOffsetOffsets() const1018 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1019 return VBaseOffsetOffsets;
1020 }
1021
getAddressPoints() const1022 const AddressPointsMapTy &getAddressPoints() const {
1023 return AddressPoints;
1024 }
1025
vtable_indices_begin() const1026 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1027 return MethodVTableIndices.begin();
1028 }
1029
vtable_indices_end() const1030 MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1031 return MethodVTableIndices.end();
1032 }
1033
1034 /// getNumVTableComponents - Return the number of components in the vtable
1035 /// currently built.
getNumVTableComponents() const1036 uint64_t getNumVTableComponents() const {
1037 return Components.size();
1038 }
1039
vtable_component_begin() const1040 const VTableComponent *vtable_component_begin() const {
1041 return Components.begin();
1042 }
1043
vtable_component_end() const1044 const VTableComponent *vtable_component_end() const {
1045 return Components.end();
1046 }
1047
address_points_begin() const1048 AddressPointsMapTy::const_iterator address_points_begin() const {
1049 return AddressPoints.begin();
1050 }
1051
address_points_end() const1052 AddressPointsMapTy::const_iterator address_points_end() const {
1053 return AddressPoints.end();
1054 }
1055
vtable_thunks_begin() const1056 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1057 return VTableThunks.begin();
1058 }
1059
vtable_thunks_end() const1060 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1061 return VTableThunks.end();
1062 }
1063
1064 /// dumpLayout - Dump the vtable layout.
1065 void dumpLayout(raw_ostream&);
1066 };
1067
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)1068 void VTableBuilder::AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
1069 assert(!isBuildingConstructorVTable() &&
1070 "Can't add thunks for construction vtable");
1071
1072 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1073
1074 // Check if we have this thunk already.
1075 if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
1076 ThunksVector.end())
1077 return;
1078
1079 ThunksVector.push_back(Thunk);
1080 }
1081
1082 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1083
1084 /// Visit all the methods overridden by the given method recursively,
1085 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
1086 /// indicating whether to continue the recursion for the given overridden
1087 /// method (i.e. returning false stops the iteration).
1088 template <class VisitorTy>
1089 static void
visitAllOverriddenMethods(const CXXMethodDecl * MD,VisitorTy & Visitor)1090 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1091 assert(MD->isVirtual() && "Method is not virtual!");
1092
1093 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1094 E = MD->end_overridden_methods(); I != E; ++I) {
1095 const CXXMethodDecl *OverriddenMD = *I;
1096 if (!Visitor.visit(OverriddenMD))
1097 continue;
1098 visitAllOverriddenMethods(OverriddenMD, Visitor);
1099 }
1100 }
1101
1102 namespace {
1103 struct OverriddenMethodsCollector {
1104 OverriddenMethodsSetTy *Methods;
1105
visit__anonf071dba20111::__anonf071dba20211::OverriddenMethodsCollector1106 bool visit(const CXXMethodDecl *MD) {
1107 // Don't recurse on this method if we've already collected it.
1108 return Methods->insert(MD);
1109 }
1110 };
1111 }
1112
1113 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1114 /// the overridden methods that the function decl overrides.
1115 static void
ComputeAllOverriddenMethods(const CXXMethodDecl * MD,OverriddenMethodsSetTy & OverriddenMethods)1116 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1117 OverriddenMethodsSetTy& OverriddenMethods) {
1118 OverriddenMethodsCollector Collector = { &OverriddenMethods };
1119 visitAllOverriddenMethods(MD, Collector);
1120 }
1121
ComputeThisAdjustments()1122 void VTableBuilder::ComputeThisAdjustments() {
1123 // Now go through the method info map and see if any of the methods need
1124 // 'this' pointer adjustments.
1125 for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
1126 E = MethodInfoMap.end(); I != E; ++I) {
1127 const CXXMethodDecl *MD = I->first;
1128 const MethodInfo &MethodInfo = I->second;
1129
1130 // Ignore adjustments for unused function pointers.
1131 uint64_t VTableIndex = MethodInfo.VTableIndex;
1132 if (Components[VTableIndex].getKind() ==
1133 VTableComponent::CK_UnusedFunctionPointer)
1134 continue;
1135
1136 // Get the final overrider for this method.
1137 FinalOverriders::OverriderInfo Overrider =
1138 Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1139
1140 // Check if we need an adjustment at all.
1141 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1142 // When a return thunk is needed by a derived class that overrides a
1143 // virtual base, gcc uses a virtual 'this' adjustment as well.
1144 // While the thunk itself might be needed by vtables in subclasses or
1145 // in construction vtables, there doesn't seem to be a reason for using
1146 // the thunk in this vtable. Still, we do so to match gcc.
1147 if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1148 continue;
1149 }
1150
1151 ThisAdjustment ThisAdjustment =
1152 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1153
1154 if (ThisAdjustment.isEmpty())
1155 continue;
1156
1157 // Add it.
1158 VTableThunks[VTableIndex].This = ThisAdjustment;
1159
1160 if (isa<CXXDestructorDecl>(MD) && !isMicrosoftABI()) {
1161 // Add an adjustment for the deleting destructor as well.
1162 VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1163 }
1164 }
1165
1166 /// Clear the method info map.
1167 MethodInfoMap.clear();
1168
1169 if (isBuildingConstructorVTable()) {
1170 // We don't need to store thunk information for construction vtables.
1171 return;
1172 }
1173
1174 for (VTableThunksMapTy::const_iterator I = VTableThunks.begin(),
1175 E = VTableThunks.end(); I != E; ++I) {
1176 const VTableComponent &Component = Components[I->first];
1177 const ThunkInfo &Thunk = I->second;
1178 const CXXMethodDecl *MD;
1179
1180 switch (Component.getKind()) {
1181 default:
1182 llvm_unreachable("Unexpected vtable component kind!");
1183 case VTableComponent::CK_FunctionPointer:
1184 MD = Component.getFunctionDecl();
1185 break;
1186 case VTableComponent::CK_CompleteDtorPointer:
1187 MD = Component.getDestructorDecl();
1188 break;
1189 case VTableComponent::CK_DeletingDtorPointer:
1190 // We've already added the thunk when we saw the complete dtor pointer.
1191 // FIXME: check how this works in the Microsoft ABI
1192 // while working on the multiple inheritance patch.
1193 continue;
1194 }
1195
1196 if (MD->getParent() == MostDerivedClass)
1197 AddThunk(MD, Thunk);
1198 }
1199 }
1200
ComputeReturnAdjustment(BaseOffset Offset)1201 ReturnAdjustment VTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1202 ReturnAdjustment Adjustment;
1203
1204 if (!Offset.isEmpty()) {
1205 if (Offset.VirtualBase) {
1206 // Get the virtual base offset offset.
1207 if (Offset.DerivedClass == MostDerivedClass) {
1208 // We can get the offset offset directly from our map.
1209 Adjustment.VBaseOffsetOffset =
1210 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1211 } else {
1212 Adjustment.VBaseOffsetOffset =
1213 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1214 Offset.VirtualBase).getQuantity();
1215 }
1216 }
1217
1218 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1219 }
1220
1221 return Adjustment;
1222 }
1223
1224 BaseOffset
ComputeThisAdjustmentBaseOffset(BaseSubobject Base,BaseSubobject Derived) const1225 VTableBuilder::ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
1226 BaseSubobject Derived) const {
1227 const CXXRecordDecl *BaseRD = Base.getBase();
1228 const CXXRecordDecl *DerivedRD = Derived.getBase();
1229
1230 CXXBasePaths Paths(/*FindAmbiguities=*/true,
1231 /*RecordPaths=*/true, /*DetectVirtual=*/true);
1232
1233 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1234 llvm_unreachable("Class must be derived from the passed in base class!");
1235
1236 // We have to go through all the paths, and see which one leads us to the
1237 // right base subobject.
1238 for (CXXBasePaths::const_paths_iterator I = Paths.begin(), E = Paths.end();
1239 I != E; ++I) {
1240 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, *I);
1241
1242 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1243
1244 if (Offset.VirtualBase) {
1245 // If we have a virtual base class, the non-virtual offset is relative
1246 // to the virtual base class offset.
1247 const ASTRecordLayout &LayoutClassLayout =
1248 Context.getASTRecordLayout(LayoutClass);
1249
1250 /// Get the virtual base offset, relative to the most derived class
1251 /// layout.
1252 OffsetToBaseSubobject +=
1253 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1254 } else {
1255 // Otherwise, the non-virtual offset is relative to the derived class
1256 // offset.
1257 OffsetToBaseSubobject += Derived.getBaseOffset();
1258 }
1259
1260 // Check if this path gives us the right base subobject.
1261 if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1262 // Since we're going from the base class _to_ the derived class, we'll
1263 // invert the non-virtual offset here.
1264 Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1265 return Offset;
1266 }
1267 }
1268
1269 return BaseOffset();
1270 }
1271
1272 ThisAdjustment
ComputeThisAdjustment(const CXXMethodDecl * MD,CharUnits BaseOffsetInLayoutClass,FinalOverriders::OverriderInfo Overrider)1273 VTableBuilder::ComputeThisAdjustment(const CXXMethodDecl *MD,
1274 CharUnits BaseOffsetInLayoutClass,
1275 FinalOverriders::OverriderInfo Overrider) {
1276 // Ignore adjustments for pure virtual member functions.
1277 if (Overrider.Method->isPure())
1278 return ThisAdjustment();
1279
1280 BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1281 BaseOffsetInLayoutClass);
1282
1283 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1284 Overrider.Offset);
1285
1286 // Compute the adjustment offset.
1287 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1288 OverriderBaseSubobject);
1289 if (Offset.isEmpty())
1290 return ThisAdjustment();
1291
1292 ThisAdjustment Adjustment;
1293
1294 if (Offset.VirtualBase) {
1295 // Get the vcall offset map for this virtual base.
1296 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1297
1298 if (VCallOffsets.empty()) {
1299 // We don't have vcall offsets for this virtual base, go ahead and
1300 // build them.
1301 VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
1302 /*FinalOverriders=*/0,
1303 BaseSubobject(Offset.VirtualBase,
1304 CharUnits::Zero()),
1305 /*BaseIsVirtual=*/true,
1306 /*OffsetInLayoutClass=*/
1307 CharUnits::Zero());
1308
1309 VCallOffsets = Builder.getVCallOffsets();
1310 }
1311
1312 Adjustment.VCallOffsetOffset =
1313 VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1314 }
1315
1316 // Set the non-virtual part of the adjustment.
1317 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1318
1319 return Adjustment;
1320 }
1321
1322 void
AddMethod(const CXXMethodDecl * MD,ReturnAdjustment ReturnAdjustment)1323 VTableBuilder::AddMethod(const CXXMethodDecl *MD,
1324 ReturnAdjustment ReturnAdjustment) {
1325 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1326 assert(ReturnAdjustment.isEmpty() &&
1327 "Destructor can't have return adjustment!");
1328
1329 // FIXME: Should probably add a layer of abstraction for vtable generation.
1330 if (!isMicrosoftABI()) {
1331 // Add both the complete destructor and the deleting destructor.
1332 Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1333 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1334 } else {
1335 // Add the scalar deleting destructor.
1336 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1337 }
1338 } else {
1339 // Add the return adjustment if necessary.
1340 if (!ReturnAdjustment.isEmpty())
1341 VTableThunks[Components.size()].Return = ReturnAdjustment;
1342
1343 // Add the function.
1344 Components.push_back(VTableComponent::MakeFunction(MD));
1345 }
1346 }
1347
1348 /// OverridesIndirectMethodInBase - Return whether the given member function
1349 /// overrides any methods in the set of given bases.
1350 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1351 /// For example, if we have:
1352 ///
1353 /// struct A { virtual void f(); }
1354 /// struct B : A { virtual void f(); }
1355 /// struct C : B { virtual void f(); }
1356 ///
1357 /// OverridesIndirectMethodInBase will return true if given C::f as the method
1358 /// and { A } as the set of bases.
1359 static bool
OverridesIndirectMethodInBases(const CXXMethodDecl * MD,VTableBuilder::PrimaryBasesSetVectorTy & Bases)1360 OverridesIndirectMethodInBases(const CXXMethodDecl *MD,
1361 VTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1362 if (Bases.count(MD->getParent()))
1363 return true;
1364
1365 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1366 E = MD->end_overridden_methods(); I != E; ++I) {
1367 const CXXMethodDecl *OverriddenMD = *I;
1368
1369 // Check "indirect overriders".
1370 if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1371 return true;
1372 }
1373
1374 return false;
1375 }
1376
1377 bool
IsOverriderUsed(const CXXMethodDecl * Overrider,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass) const1378 VTableBuilder::IsOverriderUsed(const CXXMethodDecl *Overrider,
1379 CharUnits BaseOffsetInLayoutClass,
1380 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1381 CharUnits FirstBaseOffsetInLayoutClass) const {
1382 // If the base and the first base in the primary base chain have the same
1383 // offsets, then this overrider will be used.
1384 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1385 return true;
1386
1387 // We know now that Base (or a direct or indirect base of it) is a primary
1388 // base in part of the class hierarchy, but not a primary base in the most
1389 // derived class.
1390
1391 // If the overrider is the first base in the primary base chain, we know
1392 // that the overrider will be used.
1393 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1394 return true;
1395
1396 VTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1397
1398 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1399 PrimaryBases.insert(RD);
1400
1401 // Now traverse the base chain, starting with the first base, until we find
1402 // the base that is no longer a primary base.
1403 while (true) {
1404 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1405 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1406
1407 if (!PrimaryBase)
1408 break;
1409
1410 if (Layout.isPrimaryBaseVirtual()) {
1411 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1412 "Primary base should always be at offset 0!");
1413
1414 const ASTRecordLayout &LayoutClassLayout =
1415 Context.getASTRecordLayout(LayoutClass);
1416
1417 // Now check if this is the primary base that is not a primary base in the
1418 // most derived class.
1419 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1420 FirstBaseOffsetInLayoutClass) {
1421 // We found it, stop walking the chain.
1422 break;
1423 }
1424 } else {
1425 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1426 "Primary base should always be at offset 0!");
1427 }
1428
1429 if (!PrimaryBases.insert(PrimaryBase))
1430 llvm_unreachable("Found a duplicate primary base!");
1431
1432 RD = PrimaryBase;
1433 }
1434
1435 // If the final overrider is an override of one of the primary bases,
1436 // then we know that it will be used.
1437 return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1438 }
1439
1440 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1441
1442 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
1443 /// from the nearest base. Returns null if no method was found.
1444 /// The Bases are expected to be sorted in a base-to-derived order.
1445 static const CXXMethodDecl *
FindNearestOverriddenMethod(const CXXMethodDecl * MD,BasesSetVectorTy & Bases)1446 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1447 BasesSetVectorTy &Bases) {
1448 OverriddenMethodsSetTy OverriddenMethods;
1449 ComputeAllOverriddenMethods(MD, OverriddenMethods);
1450
1451 for (int I = Bases.size(), E = 0; I != E; --I) {
1452 const CXXRecordDecl *PrimaryBase = Bases[I - 1];
1453
1454 // Now check the overridden methods.
1455 for (OverriddenMethodsSetTy::const_iterator I = OverriddenMethods.begin(),
1456 E = OverriddenMethods.end(); I != E; ++I) {
1457 const CXXMethodDecl *OverriddenMD = *I;
1458
1459 // We found our overridden method.
1460 if (OverriddenMD->getParent() == PrimaryBase)
1461 return OverriddenMD;
1462 }
1463 }
1464
1465 return 0;
1466 }
1467
1468 void
AddMethods(BaseSubobject Base,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass,PrimaryBasesSetVectorTy & PrimaryBases)1469 VTableBuilder::AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1470 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1471 CharUnits FirstBaseOffsetInLayoutClass,
1472 PrimaryBasesSetVectorTy &PrimaryBases) {
1473 // Itanium C++ ABI 2.5.2:
1474 // The order of the virtual function pointers in a virtual table is the
1475 // order of declaration of the corresponding member functions in the class.
1476 //
1477 // There is an entry for any virtual function declared in a class,
1478 // whether it is a new function or overrides a base class function,
1479 // unless it overrides a function from the primary base, and conversion
1480 // between their return types does not require an adjustment.
1481
1482 const CXXRecordDecl *RD = Base.getBase();
1483 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1484
1485 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1486 CharUnits PrimaryBaseOffset;
1487 CharUnits PrimaryBaseOffsetInLayoutClass;
1488 if (Layout.isPrimaryBaseVirtual()) {
1489 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1490 "Primary vbase should have a zero offset!");
1491
1492 const ASTRecordLayout &MostDerivedClassLayout =
1493 Context.getASTRecordLayout(MostDerivedClass);
1494
1495 PrimaryBaseOffset =
1496 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1497
1498 const ASTRecordLayout &LayoutClassLayout =
1499 Context.getASTRecordLayout(LayoutClass);
1500
1501 PrimaryBaseOffsetInLayoutClass =
1502 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1503 } else {
1504 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1505 "Primary base should have a zero offset!");
1506
1507 PrimaryBaseOffset = Base.getBaseOffset();
1508 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1509 }
1510
1511 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1512 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1513 FirstBaseOffsetInLayoutClass, PrimaryBases);
1514
1515 if (!PrimaryBases.insert(PrimaryBase))
1516 llvm_unreachable("Found a duplicate primary base!");
1517 }
1518
1519 const CXXDestructorDecl *ImplicitVirtualDtor = 0;
1520
1521 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1522 NewVirtualFunctionsTy NewVirtualFunctions;
1523
1524 // Now go through all virtual member functions and add them.
1525 for (CXXRecordDecl::method_iterator I = RD->method_begin(),
1526 E = RD->method_end(); I != E; ++I) {
1527 const CXXMethodDecl *MD = *I;
1528
1529 if (!MD->isVirtual())
1530 continue;
1531
1532 // Get the final overrider.
1533 FinalOverriders::OverriderInfo Overrider =
1534 Overriders.getOverrider(MD, Base.getBaseOffset());
1535
1536 // Check if this virtual member function overrides a method in a primary
1537 // base. If this is the case, and the return type doesn't require adjustment
1538 // then we can just use the member function from the primary base.
1539 if (const CXXMethodDecl *OverriddenMD =
1540 FindNearestOverriddenMethod(MD, PrimaryBases)) {
1541 if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1542 OverriddenMD).isEmpty()) {
1543 // Replace the method info of the overridden method with our own
1544 // method.
1545 assert(MethodInfoMap.count(OverriddenMD) &&
1546 "Did not find the overridden method!");
1547 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1548
1549 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1550 OverriddenMethodInfo.VTableIndex);
1551
1552 assert(!MethodInfoMap.count(MD) &&
1553 "Should not have method info for this method yet!");
1554
1555 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1556 MethodInfoMap.erase(OverriddenMD);
1557
1558 // If the overridden method exists in a virtual base class or a direct
1559 // or indirect base class of a virtual base class, we need to emit a
1560 // thunk if we ever have a class hierarchy where the base class is not
1561 // a primary base in the complete object.
1562 if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1563 // Compute the this adjustment.
1564 ThisAdjustment ThisAdjustment =
1565 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1566 Overrider);
1567
1568 if (ThisAdjustment.VCallOffsetOffset &&
1569 Overrider.Method->getParent() == MostDerivedClass) {
1570
1571 // There's no return adjustment from OverriddenMD and MD,
1572 // but that doesn't mean there isn't one between MD and
1573 // the final overrider.
1574 BaseOffset ReturnAdjustmentOffset =
1575 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1576 ReturnAdjustment ReturnAdjustment =
1577 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1578
1579 // This is a virtual thunk for the most derived class, add it.
1580 AddThunk(Overrider.Method,
1581 ThunkInfo(ThisAdjustment, ReturnAdjustment));
1582 }
1583 }
1584
1585 continue;
1586 }
1587 }
1588
1589 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1590 if (MD->isImplicit()) {
1591 // Itanium C++ ABI 2.5.2:
1592 // If a class has an implicitly-defined virtual destructor,
1593 // its entries come after the declared virtual function pointers.
1594
1595 assert(!ImplicitVirtualDtor &&
1596 "Did already see an implicit virtual dtor!");
1597 ImplicitVirtualDtor = DD;
1598 continue;
1599 }
1600 }
1601
1602 NewVirtualFunctions.push_back(MD);
1603 }
1604
1605 if (ImplicitVirtualDtor)
1606 NewVirtualFunctions.push_back(ImplicitVirtualDtor);
1607
1608 for (NewVirtualFunctionsTy::const_iterator I = NewVirtualFunctions.begin(),
1609 E = NewVirtualFunctions.end(); I != E; ++I) {
1610 const CXXMethodDecl *MD = *I;
1611
1612 // Get the final overrider.
1613 FinalOverriders::OverriderInfo Overrider =
1614 Overriders.getOverrider(MD, Base.getBaseOffset());
1615
1616 // Insert the method info for this method.
1617 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1618 Components.size());
1619
1620 assert(!MethodInfoMap.count(MD) &&
1621 "Should not have method info for this method yet!");
1622 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1623
1624 // Check if this overrider is going to be used.
1625 const CXXMethodDecl *OverriderMD = Overrider.Method;
1626 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1627 FirstBaseInPrimaryBaseChain,
1628 FirstBaseOffsetInLayoutClass)) {
1629 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1630 continue;
1631 }
1632
1633 // Check if this overrider needs a return adjustment.
1634 // We don't want to do this for pure virtual member functions.
1635 BaseOffset ReturnAdjustmentOffset;
1636 if (!OverriderMD->isPure()) {
1637 ReturnAdjustmentOffset =
1638 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1639 }
1640
1641 ReturnAdjustment ReturnAdjustment =
1642 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1643
1644 AddMethod(Overrider.Method, ReturnAdjustment);
1645 }
1646 }
1647
LayoutVTable()1648 void VTableBuilder::LayoutVTable() {
1649 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1650 CharUnits::Zero()),
1651 /*BaseIsMorallyVirtual=*/false,
1652 MostDerivedClassIsVirtual,
1653 MostDerivedClassOffset);
1654
1655 VisitedVirtualBasesSetTy VBases;
1656
1657 // Determine the primary virtual bases.
1658 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1659 VBases);
1660 VBases.clear();
1661
1662 LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1663
1664 // -fapple-kext adds an extra entry at end of vtbl.
1665 bool IsAppleKext = Context.getLangOpts().AppleKext;
1666 if (IsAppleKext)
1667 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1668 }
1669
1670 void
LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,bool BaseIsVirtualInLayoutClass,CharUnits OffsetInLayoutClass)1671 VTableBuilder::LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
1672 bool BaseIsMorallyVirtual,
1673 bool BaseIsVirtualInLayoutClass,
1674 CharUnits OffsetInLayoutClass) {
1675 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1676
1677 // Add vcall and vbase offsets for this vtable.
1678 VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
1679 Base, BaseIsVirtualInLayoutClass,
1680 OffsetInLayoutClass);
1681 Components.append(Builder.components_begin(), Builder.components_end());
1682
1683 // Check if we need to add these vcall offsets.
1684 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1685 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1686
1687 if (VCallOffsets.empty())
1688 VCallOffsets = Builder.getVCallOffsets();
1689 }
1690
1691 // If we're laying out the most derived class we want to keep track of the
1692 // virtual base class offset offsets.
1693 if (Base.getBase() == MostDerivedClass)
1694 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1695
1696 // FIXME: Should probably add a layer of abstraction for vtable generation.
1697 if (!isMicrosoftABI()) {
1698 // Add the offset to top.
1699 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1700 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1701
1702 // Next, add the RTTI.
1703 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1704 } else {
1705 // FIXME: unclear what to do with RTTI in MS ABI as emitting it anywhere
1706 // breaks the vftable layout. Just skip RTTI for now, can't mangle anyway.
1707 }
1708
1709 uint64_t AddressPoint = Components.size();
1710
1711 // Now go through all virtual member functions and add them.
1712 PrimaryBasesSetVectorTy PrimaryBases;
1713 AddMethods(Base, OffsetInLayoutClass,
1714 Base.getBase(), OffsetInLayoutClass,
1715 PrimaryBases);
1716
1717 const CXXRecordDecl *RD = Base.getBase();
1718 if (RD == MostDerivedClass) {
1719 assert(MethodVTableIndices.empty());
1720 for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
1721 E = MethodInfoMap.end(); I != E; ++I) {
1722 const CXXMethodDecl *MD = I->first;
1723 const MethodInfo &MI = I->second;
1724 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1725 // FIXME: Should probably add a layer of abstraction for vtable generation.
1726 if (!isMicrosoftABI()) {
1727 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1728 = MI.VTableIndex - AddressPoint;
1729 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1730 = MI.VTableIndex + 1 - AddressPoint;
1731 } else {
1732 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1733 = MI.VTableIndex - AddressPoint;
1734 }
1735 } else {
1736 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1737 }
1738 }
1739 }
1740
1741 // Compute 'this' pointer adjustments.
1742 ComputeThisAdjustments();
1743
1744 // Add all address points.
1745 while (true) {
1746 AddressPoints.insert(std::make_pair(
1747 BaseSubobject(RD, OffsetInLayoutClass),
1748 AddressPoint));
1749
1750 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1751 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1752
1753 if (!PrimaryBase)
1754 break;
1755
1756 if (Layout.isPrimaryBaseVirtual()) {
1757 // Check if this virtual primary base is a primary base in the layout
1758 // class. If it's not, we don't want to add it.
1759 const ASTRecordLayout &LayoutClassLayout =
1760 Context.getASTRecordLayout(LayoutClass);
1761
1762 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1763 OffsetInLayoutClass) {
1764 // We don't want to add this class (or any of its primary bases).
1765 break;
1766 }
1767 }
1768
1769 RD = PrimaryBase;
1770 }
1771
1772 // Layout secondary vtables.
1773 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1774 }
1775
LayoutSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,CharUnits OffsetInLayoutClass)1776 void VTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1777 bool BaseIsMorallyVirtual,
1778 CharUnits OffsetInLayoutClass) {
1779 // Itanium C++ ABI 2.5.2:
1780 // Following the primary virtual table of a derived class are secondary
1781 // virtual tables for each of its proper base classes, except any primary
1782 // base(s) with which it shares its primary virtual table.
1783
1784 const CXXRecordDecl *RD = Base.getBase();
1785 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1786 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1787
1788 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1789 E = RD->bases_end(); I != E; ++I) {
1790 // Ignore virtual bases, we'll emit them later.
1791 if (I->isVirtual())
1792 continue;
1793
1794 const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
1795
1796 // Ignore bases that don't have a vtable.
1797 if (!BaseDecl->isDynamicClass())
1798 continue;
1799
1800 if (isBuildingConstructorVTable()) {
1801 // Itanium C++ ABI 2.6.4:
1802 // Some of the base class subobjects may not need construction virtual
1803 // tables, which will therefore not be present in the construction
1804 // virtual table group, even though the subobject virtual tables are
1805 // present in the main virtual table group for the complete object.
1806 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1807 continue;
1808 }
1809
1810 // Get the base offset of this base.
1811 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1812 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1813
1814 CharUnits BaseOffsetInLayoutClass =
1815 OffsetInLayoutClass + RelativeBaseOffset;
1816
1817 // Don't emit a secondary vtable for a primary base. We might however want
1818 // to emit secondary vtables for other bases of this base.
1819 if (BaseDecl == PrimaryBase) {
1820 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1821 BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1822 continue;
1823 }
1824
1825 // Layout the primary vtable (and any secondary vtables) for this base.
1826 LayoutPrimaryAndSecondaryVTables(
1827 BaseSubobject(BaseDecl, BaseOffset),
1828 BaseIsMorallyVirtual,
1829 /*BaseIsVirtualInLayoutClass=*/false,
1830 BaseOffsetInLayoutClass);
1831 }
1832 }
1833
1834 void
DeterminePrimaryVirtualBases(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass,VisitedVirtualBasesSetTy & VBases)1835 VTableBuilder::DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
1836 CharUnits OffsetInLayoutClass,
1837 VisitedVirtualBasesSetTy &VBases) {
1838 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1839
1840 // Check if this base has a primary base.
1841 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1842
1843 // Check if it's virtual.
1844 if (Layout.isPrimaryBaseVirtual()) {
1845 bool IsPrimaryVirtualBase = true;
1846
1847 if (isBuildingConstructorVTable()) {
1848 // Check if the base is actually a primary base in the class we use for
1849 // layout.
1850 const ASTRecordLayout &LayoutClassLayout =
1851 Context.getASTRecordLayout(LayoutClass);
1852
1853 CharUnits PrimaryBaseOffsetInLayoutClass =
1854 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1855
1856 // We know that the base is not a primary base in the layout class if
1857 // the base offsets are different.
1858 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1859 IsPrimaryVirtualBase = false;
1860 }
1861
1862 if (IsPrimaryVirtualBase)
1863 PrimaryVirtualBases.insert(PrimaryBase);
1864 }
1865 }
1866
1867 // Traverse bases, looking for more primary virtual bases.
1868 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1869 E = RD->bases_end(); I != E; ++I) {
1870 const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
1871
1872 CharUnits BaseOffsetInLayoutClass;
1873
1874 if (I->isVirtual()) {
1875 if (!VBases.insert(BaseDecl))
1876 continue;
1877
1878 const ASTRecordLayout &LayoutClassLayout =
1879 Context.getASTRecordLayout(LayoutClass);
1880
1881 BaseOffsetInLayoutClass =
1882 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1883 } else {
1884 BaseOffsetInLayoutClass =
1885 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1886 }
1887
1888 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1889 }
1890 }
1891
1892 void
LayoutVTablesForVirtualBases(const CXXRecordDecl * RD,VisitedVirtualBasesSetTy & VBases)1893 VTableBuilder::LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
1894 VisitedVirtualBasesSetTy &VBases) {
1895 // Itanium C++ ABI 2.5.2:
1896 // Then come the virtual base virtual tables, also in inheritance graph
1897 // order, and again excluding primary bases (which share virtual tables with
1898 // the classes for which they are primary).
1899 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1900 E = RD->bases_end(); I != E; ++I) {
1901 const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
1902
1903 // Check if this base needs a vtable. (If it's virtual, not a primary base
1904 // of some other class, and we haven't visited it before).
1905 if (I->isVirtual() && BaseDecl->isDynamicClass() &&
1906 !PrimaryVirtualBases.count(BaseDecl) && VBases.insert(BaseDecl)) {
1907 const ASTRecordLayout &MostDerivedClassLayout =
1908 Context.getASTRecordLayout(MostDerivedClass);
1909 CharUnits BaseOffset =
1910 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1911
1912 const ASTRecordLayout &LayoutClassLayout =
1913 Context.getASTRecordLayout(LayoutClass);
1914 CharUnits BaseOffsetInLayoutClass =
1915 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1916
1917 LayoutPrimaryAndSecondaryVTables(
1918 BaseSubobject(BaseDecl, BaseOffset),
1919 /*BaseIsMorallyVirtual=*/true,
1920 /*BaseIsVirtualInLayoutClass=*/true,
1921 BaseOffsetInLayoutClass);
1922 }
1923
1924 // We only need to check the base for virtual base vtables if it actually
1925 // has virtual bases.
1926 if (BaseDecl->getNumVBases())
1927 LayoutVTablesForVirtualBases(BaseDecl, VBases);
1928 }
1929 }
1930
1931 /// dumpLayout - Dump the vtable layout.
dumpLayout(raw_ostream & Out)1932 void VTableBuilder::dumpLayout(raw_ostream& Out) {
1933 // FIXME: write more tests that actually use the dumpLayout output to prevent
1934 // VTableBuilder regressions.
1935
1936 if (isBuildingConstructorVTable()) {
1937 Out << "Construction vtable for ('";
1938 Out << MostDerivedClass->getQualifiedNameAsString() << "', ";
1939 Out << MostDerivedClassOffset.getQuantity() << ") in '";
1940 Out << LayoutClass->getQualifiedNameAsString();
1941 } else {
1942 Out << "Vtable for '";
1943 Out << MostDerivedClass->getQualifiedNameAsString();
1944 }
1945 Out << "' (" << Components.size() << " entries).\n";
1946
1947 // Iterate through the address points and insert them into a new map where
1948 // they are keyed by the index and not the base object.
1949 // Since an address point can be shared by multiple subobjects, we use an
1950 // STL multimap.
1951 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1952 for (AddressPointsMapTy::const_iterator I = AddressPoints.begin(),
1953 E = AddressPoints.end(); I != E; ++I) {
1954 const BaseSubobject& Base = I->first;
1955 uint64_t Index = I->second;
1956
1957 AddressPointsByIndex.insert(std::make_pair(Index, Base));
1958 }
1959
1960 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1961 uint64_t Index = I;
1962
1963 Out << llvm::format("%4d | ", I);
1964
1965 const VTableComponent &Component = Components[I];
1966
1967 // Dump the component.
1968 switch (Component.getKind()) {
1969
1970 case VTableComponent::CK_VCallOffset:
1971 Out << "vcall_offset ("
1972 << Component.getVCallOffset().getQuantity()
1973 << ")";
1974 break;
1975
1976 case VTableComponent::CK_VBaseOffset:
1977 Out << "vbase_offset ("
1978 << Component.getVBaseOffset().getQuantity()
1979 << ")";
1980 break;
1981
1982 case VTableComponent::CK_OffsetToTop:
1983 Out << "offset_to_top ("
1984 << Component.getOffsetToTop().getQuantity()
1985 << ")";
1986 break;
1987
1988 case VTableComponent::CK_RTTI:
1989 Out << Component.getRTTIDecl()->getQualifiedNameAsString() << " RTTI";
1990 break;
1991
1992 case VTableComponent::CK_FunctionPointer: {
1993 const CXXMethodDecl *MD = Component.getFunctionDecl();
1994
1995 std::string Str =
1996 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
1997 MD);
1998 Out << Str;
1999 if (MD->isPure())
2000 Out << " [pure]";
2001
2002 if (MD->isDeleted())
2003 Out << " [deleted]";
2004
2005 ThunkInfo Thunk = VTableThunks.lookup(I);
2006 if (!Thunk.isEmpty()) {
2007 // If this function pointer has a return adjustment, dump it.
2008 if (!Thunk.Return.isEmpty()) {
2009 Out << "\n [return adjustment: ";
2010 Out << Thunk.Return.NonVirtual << " non-virtual";
2011
2012 if (Thunk.Return.VBaseOffsetOffset) {
2013 Out << ", " << Thunk.Return.VBaseOffsetOffset;
2014 Out << " vbase offset offset";
2015 }
2016
2017 Out << ']';
2018 }
2019
2020 // If this function pointer has a 'this' pointer adjustment, dump it.
2021 if (!Thunk.This.isEmpty()) {
2022 Out << "\n [this adjustment: ";
2023 Out << Thunk.This.NonVirtual << " non-virtual";
2024
2025 if (Thunk.This.VCallOffsetOffset) {
2026 Out << ", " << Thunk.This.VCallOffsetOffset;
2027 Out << " vcall offset offset";
2028 }
2029
2030 Out << ']';
2031 }
2032 }
2033
2034 break;
2035 }
2036
2037 case VTableComponent::CK_CompleteDtorPointer:
2038 case VTableComponent::CK_DeletingDtorPointer: {
2039 bool IsComplete =
2040 Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
2041
2042 const CXXDestructorDecl *DD = Component.getDestructorDecl();
2043
2044 Out << DD->getQualifiedNameAsString();
2045 if (IsComplete)
2046 Out << "() [complete]";
2047 else if (isMicrosoftABI())
2048 Out << "() [scalar deleting]";
2049 else
2050 Out << "() [deleting]";
2051
2052 if (DD->isPure())
2053 Out << " [pure]";
2054
2055 ThunkInfo Thunk = VTableThunks.lookup(I);
2056 if (!Thunk.isEmpty()) {
2057 // If this destructor has a 'this' pointer adjustment, dump it.
2058 if (!Thunk.This.isEmpty()) {
2059 Out << "\n [this adjustment: ";
2060 Out << Thunk.This.NonVirtual << " non-virtual";
2061
2062 if (Thunk.This.VCallOffsetOffset) {
2063 Out << ", " << Thunk.This.VCallOffsetOffset;
2064 Out << " vcall offset offset";
2065 }
2066
2067 Out << ']';
2068 }
2069 }
2070
2071 break;
2072 }
2073
2074 case VTableComponent::CK_UnusedFunctionPointer: {
2075 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2076
2077 std::string Str =
2078 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2079 MD);
2080 Out << "[unused] " << Str;
2081 if (MD->isPure())
2082 Out << " [pure]";
2083 }
2084
2085 }
2086
2087 Out << '\n';
2088
2089 // Dump the next address point.
2090 uint64_t NextIndex = Index + 1;
2091 if (AddressPointsByIndex.count(NextIndex)) {
2092 if (AddressPointsByIndex.count(NextIndex) == 1) {
2093 const BaseSubobject &Base =
2094 AddressPointsByIndex.find(NextIndex)->second;
2095
2096 Out << " -- (" << Base.getBase()->getQualifiedNameAsString();
2097 Out << ", " << Base.getBaseOffset().getQuantity();
2098 Out << ") vtable address --\n";
2099 } else {
2100 CharUnits BaseOffset =
2101 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2102
2103 // We store the class names in a set to get a stable order.
2104 std::set<std::string> ClassNames;
2105 for (std::multimap<uint64_t, BaseSubobject>::const_iterator I =
2106 AddressPointsByIndex.lower_bound(NextIndex), E =
2107 AddressPointsByIndex.upper_bound(NextIndex); I != E; ++I) {
2108 assert(I->second.getBaseOffset() == BaseOffset &&
2109 "Invalid base offset!");
2110 const CXXRecordDecl *RD = I->second.getBase();
2111 ClassNames.insert(RD->getQualifiedNameAsString());
2112 }
2113
2114 for (std::set<std::string>::const_iterator I = ClassNames.begin(),
2115 E = ClassNames.end(); I != E; ++I) {
2116 Out << " -- (" << *I;
2117 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2118 }
2119 }
2120 }
2121 }
2122
2123 Out << '\n';
2124
2125 if (isBuildingConstructorVTable())
2126 return;
2127
2128 if (MostDerivedClass->getNumVBases()) {
2129 // We store the virtual base class names and their offsets in a map to get
2130 // a stable order.
2131
2132 std::map<std::string, CharUnits> ClassNamesAndOffsets;
2133 for (VBaseOffsetOffsetsMapTy::const_iterator I = VBaseOffsetOffsets.begin(),
2134 E = VBaseOffsetOffsets.end(); I != E; ++I) {
2135 std::string ClassName = I->first->getQualifiedNameAsString();
2136 CharUnits OffsetOffset = I->second;
2137 ClassNamesAndOffsets.insert(
2138 std::make_pair(ClassName, OffsetOffset));
2139 }
2140
2141 Out << "Virtual base offset offsets for '";
2142 Out << MostDerivedClass->getQualifiedNameAsString() << "' (";
2143 Out << ClassNamesAndOffsets.size();
2144 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2145
2146 for (std::map<std::string, CharUnits>::const_iterator I =
2147 ClassNamesAndOffsets.begin(), E = ClassNamesAndOffsets.end();
2148 I != E; ++I)
2149 Out << " " << I->first << " | " << I->second.getQuantity() << '\n';
2150
2151 Out << "\n";
2152 }
2153
2154 if (!Thunks.empty()) {
2155 // We store the method names in a map to get a stable order.
2156 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2157
2158 for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
2159 I != E; ++I) {
2160 const CXXMethodDecl *MD = I->first;
2161 std::string MethodName =
2162 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2163 MD);
2164
2165 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2166 }
2167
2168 for (std::map<std::string, const CXXMethodDecl *>::const_iterator I =
2169 MethodNamesAndDecls.begin(), E = MethodNamesAndDecls.end();
2170 I != E; ++I) {
2171 const std::string &MethodName = I->first;
2172 const CXXMethodDecl *MD = I->second;
2173
2174 ThunkInfoVectorTy ThunksVector = Thunks[MD];
2175 std::sort(ThunksVector.begin(), ThunksVector.end());
2176
2177 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2178 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2179
2180 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2181 const ThunkInfo &Thunk = ThunksVector[I];
2182
2183 Out << llvm::format("%4d | ", I);
2184
2185 // If this function pointer has a return pointer adjustment, dump it.
2186 if (!Thunk.Return.isEmpty()) {
2187 Out << "return adjustment: " << Thunk.Return.NonVirtual;
2188 Out << " non-virtual";
2189 if (Thunk.Return.VBaseOffsetOffset) {
2190 Out << ", " << Thunk.Return.VBaseOffsetOffset;
2191 Out << " vbase offset offset";
2192 }
2193
2194 if (!Thunk.This.isEmpty())
2195 Out << "\n ";
2196 }
2197
2198 // If this function pointer has a 'this' pointer adjustment, dump it.
2199 if (!Thunk.This.isEmpty()) {
2200 Out << "this adjustment: ";
2201 Out << Thunk.This.NonVirtual << " non-virtual";
2202
2203 if (Thunk.This.VCallOffsetOffset) {
2204 Out << ", " << Thunk.This.VCallOffsetOffset;
2205 Out << " vcall offset offset";
2206 }
2207 }
2208
2209 Out << '\n';
2210 }
2211
2212 Out << '\n';
2213 }
2214 }
2215
2216 // Compute the vtable indices for all the member functions.
2217 // Store them in a map keyed by the index so we'll get a sorted table.
2218 std::map<uint64_t, std::string> IndicesMap;
2219
2220 for (CXXRecordDecl::method_iterator i = MostDerivedClass->method_begin(),
2221 e = MostDerivedClass->method_end(); i != e; ++i) {
2222 const CXXMethodDecl *MD = *i;
2223
2224 // We only want virtual member functions.
2225 if (!MD->isVirtual())
2226 continue;
2227
2228 std::string MethodName =
2229 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2230 MD);
2231
2232 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2233 // FIXME: Should add a layer of abstraction for vtable generation.
2234 if (!isMicrosoftABI()) {
2235 GlobalDecl GD(DD, Dtor_Complete);
2236 assert(MethodVTableIndices.count(GD));
2237 uint64_t VTableIndex = MethodVTableIndices[GD];
2238 IndicesMap[VTableIndex] = MethodName + " [complete]";
2239 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2240 } else {
2241 GlobalDecl GD(DD, Dtor_Deleting);
2242 assert(MethodVTableIndices.count(GD));
2243 IndicesMap[MethodVTableIndices[GD]] = MethodName + " [scalar deleting]";
2244 }
2245 } else {
2246 assert(MethodVTableIndices.count(MD));
2247 IndicesMap[MethodVTableIndices[MD]] = MethodName;
2248 }
2249 }
2250
2251 // Print the vtable indices for all the member functions.
2252 if (!IndicesMap.empty()) {
2253 Out << "VTable indices for '";
2254 Out << MostDerivedClass->getQualifiedNameAsString();
2255 Out << "' (" << IndicesMap.size() << " entries).\n";
2256
2257 for (std::map<uint64_t, std::string>::const_iterator I = IndicesMap.begin(),
2258 E = IndicesMap.end(); I != E; ++I) {
2259 uint64_t VTableIndex = I->first;
2260 const std::string &MethodName = I->second;
2261
2262 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2263 << '\n';
2264 }
2265 }
2266
2267 Out << '\n';
2268 }
2269
2270 }
2271
VTableLayout(uint64_t NumVTableComponents,const VTableComponent * VTableComponents,uint64_t NumVTableThunks,const VTableThunkTy * VTableThunks,const AddressPointsMapTy & AddressPoints,bool IsMicrosoftABI)2272 VTableLayout::VTableLayout(uint64_t NumVTableComponents,
2273 const VTableComponent *VTableComponents,
2274 uint64_t NumVTableThunks,
2275 const VTableThunkTy *VTableThunks,
2276 const AddressPointsMapTy &AddressPoints,
2277 bool IsMicrosoftABI)
2278 : NumVTableComponents(NumVTableComponents),
2279 VTableComponents(new VTableComponent[NumVTableComponents]),
2280 NumVTableThunks(NumVTableThunks),
2281 VTableThunks(new VTableThunkTy[NumVTableThunks]),
2282 AddressPoints(AddressPoints),
2283 IsMicrosoftABI(IsMicrosoftABI) {
2284 std::copy(VTableComponents, VTableComponents+NumVTableComponents,
2285 this->VTableComponents.get());
2286 std::copy(VTableThunks, VTableThunks+NumVTableThunks,
2287 this->VTableThunks.get());
2288 }
2289
~VTableLayout()2290 VTableLayout::~VTableLayout() { }
2291
VTableContext(ASTContext & Context)2292 VTableContext::VTableContext(ASTContext &Context)
2293 : IsMicrosoftABI(Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2294 }
2295
~VTableContext()2296 VTableContext::~VTableContext() {
2297 llvm::DeleteContainerSeconds(VTableLayouts);
2298 }
2299
getMethodVTableIndex(GlobalDecl GD)2300 uint64_t VTableContext::getMethodVTableIndex(GlobalDecl GD) {
2301 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2302 if (I != MethodVTableIndices.end())
2303 return I->second;
2304
2305 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2306
2307 computeVTableRelatedInformation(RD);
2308
2309 I = MethodVTableIndices.find(GD);
2310 assert(I != MethodVTableIndices.end() && "Did not find index!");
2311 return I->second;
2312 }
2313
2314 CharUnits
getVirtualBaseOffsetOffset(const CXXRecordDecl * RD,const CXXRecordDecl * VBase)2315 VTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2316 const CXXRecordDecl *VBase) {
2317 ClassPairTy ClassPair(RD, VBase);
2318
2319 VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2320 VirtualBaseClassOffsetOffsets.find(ClassPair);
2321 if (I != VirtualBaseClassOffsetOffsets.end())
2322 return I->second;
2323
2324 VCallAndVBaseOffsetBuilder Builder(RD, RD, /*FinalOverriders=*/0,
2325 BaseSubobject(RD, CharUnits::Zero()),
2326 /*BaseIsVirtual=*/false,
2327 /*OffsetInLayoutClass=*/CharUnits::Zero());
2328
2329 for (VCallAndVBaseOffsetBuilder::VBaseOffsetOffsetsMapTy::const_iterator I =
2330 Builder.getVBaseOffsetOffsets().begin(),
2331 E = Builder.getVBaseOffsetOffsets().end(); I != E; ++I) {
2332 // Insert all types.
2333 ClassPairTy ClassPair(RD, I->first);
2334
2335 VirtualBaseClassOffsetOffsets.insert(
2336 std::make_pair(ClassPair, I->second));
2337 }
2338
2339 I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2340 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2341
2342 return I->second;
2343 }
2344
CreateVTableLayout(const VTableBuilder & Builder)2345 static VTableLayout *CreateVTableLayout(const VTableBuilder &Builder) {
2346 SmallVector<VTableLayout::VTableThunkTy, 1>
2347 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2348 std::sort(VTableThunks.begin(), VTableThunks.end());
2349
2350 return new VTableLayout(Builder.getNumVTableComponents(),
2351 Builder.vtable_component_begin(),
2352 VTableThunks.size(),
2353 VTableThunks.data(),
2354 Builder.getAddressPoints(),
2355 Builder.isMicrosoftABI());
2356 }
2357
computeVTableRelatedInformation(const CXXRecordDecl * RD)2358 void VTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2359 const VTableLayout *&Entry = VTableLayouts[RD];
2360
2361 // Check if we've computed this information before.
2362 if (Entry)
2363 return;
2364
2365 VTableBuilder Builder(*this, RD, CharUnits::Zero(),
2366 /*MostDerivedClassIsVirtual=*/0, RD);
2367 Entry = CreateVTableLayout(Builder);
2368
2369 MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2370 Builder.vtable_indices_end());
2371
2372 // Add the known thunks.
2373 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2374
2375 // If we don't have the vbase information for this class, insert it.
2376 // getVirtualBaseOffsetOffset will compute it separately without computing
2377 // the rest of the vtable related information.
2378 if (!RD->getNumVBases())
2379 return;
2380
2381 const CXXRecordDecl *VBase =
2382 RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2383
2384 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2385 return;
2386
2387 for (VTableBuilder::VBaseOffsetOffsetsMapTy::const_iterator I =
2388 Builder.getVBaseOffsetOffsets().begin(),
2389 E = Builder.getVBaseOffsetOffsets().end(); I != E; ++I) {
2390 // Insert all types.
2391 ClassPairTy ClassPair(RD, I->first);
2392
2393 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I->second));
2394 }
2395 }
2396
createConstructionVTableLayout(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)2397 VTableLayout *VTableContext::createConstructionVTableLayout(
2398 const CXXRecordDecl *MostDerivedClass,
2399 CharUnits MostDerivedClassOffset,
2400 bool MostDerivedClassIsVirtual,
2401 const CXXRecordDecl *LayoutClass) {
2402 VTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2403 MostDerivedClassIsVirtual, LayoutClass);
2404 return CreateVTableLayout(Builder);
2405 }
2406
GetVBTableIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * VBase)2407 unsigned clang::GetVBTableIndex(const CXXRecordDecl *Derived,
2408 const CXXRecordDecl *VBase) {
2409 unsigned VBTableIndex = 1; // Start with one to skip the self entry.
2410 for (CXXRecordDecl::base_class_const_iterator I = Derived->vbases_begin(),
2411 E = Derived->vbases_end(); I != E; ++I) {
2412 if (I->getType()->getAsCXXRecordDecl() == VBase)
2413 return VBTableIndex;
2414 ++VBTableIndex;
2415 }
2416 llvm_unreachable("VBase must be a vbase of Derived");
2417 }
2418
2419 namespace {
2420
2421 // Vtables in the Microsoft ABI are different from the Itanium ABI.
2422 //
2423 // The main differences are:
2424 // 1. Separate vftable and vbtable.
2425 //
2426 // 2. Each subobject with a vfptr gets its own vftable rather than an address
2427 // point in a single vtable shared between all the subobjects.
2428 // Each vftable is represented by a separate section and virtual calls
2429 // must be done using the vftable which has a slot for the function to be
2430 // called.
2431 //
2432 // 3. Virtual method definitions expect their 'this' parameter to point to the
2433 // first vfptr whose table provides a compatible overridden method. In many
2434 // cases, this permits the original vf-table entry to directly call
2435 // the method instead of passing through a thunk.
2436 //
2437 // A compatible overridden method is one which does not have a non-trivial
2438 // covariant-return adjustment.
2439 //
2440 // The first vfptr is the one with the lowest offset in the complete-object
2441 // layout of the defining class, and the method definition will subtract
2442 // that constant offset from the parameter value to get the real 'this'
2443 // value. Therefore, if the offset isn't really constant (e.g. if a virtual
2444 // function defined in a virtual base is overridden in a more derived
2445 // virtual base and these bases have a reverse order in the complete
2446 // object), the vf-table may require a this-adjustment thunk.
2447 //
2448 // 4. vftables do not contain new entries for overrides that merely require
2449 // this-adjustment. Together with #3, this keeps vf-tables smaller and
2450 // eliminates the need for this-adjustment thunks in many cases, at the cost
2451 // of often requiring redundant work to adjust the "this" pointer.
2452 //
2453 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2454 // Vtordisps are emitted into the class layout if a class has
2455 // a) a user-defined ctor/dtor
2456 // and
2457 // b) a method overriding a method in a virtual base.
2458
2459 class VFTableBuilder {
2460 public:
2461 typedef MicrosoftVFTableContext::MethodVFTableLocation MethodVFTableLocation;
2462
2463 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2464 MethodVFTableLocationsTy;
2465
2466 private:
2467 /// Context - The ASTContext which we will use for layout information.
2468 ASTContext &Context;
2469
2470 /// MostDerivedClass - The most derived class for which we're building this
2471 /// vtable.
2472 const CXXRecordDecl *MostDerivedClass;
2473
2474 const ASTRecordLayout &MostDerivedClassLayout;
2475
2476 VFPtrInfo WhichVFPtr;
2477
2478 /// FinalOverriders - The final overriders of the most derived class.
2479 const FinalOverriders Overriders;
2480
2481 /// Components - The components of the vftable being built.
2482 SmallVector<VTableComponent, 64> Components;
2483
2484 MethodVFTableLocationsTy MethodVFTableLocations;
2485
2486 /// MethodInfo - Contains information about a method in a vtable.
2487 /// (Used for computing 'this' pointer adjustment thunks.
2488 struct MethodInfo {
2489 /// VBTableIndex - The nonzero index in the vbtable that
2490 /// this method's base has, or zero.
2491 const uint64_t VBTableIndex;
2492
2493 /// VFTableIndex - The index in the vftable that this method has.
2494 const uint64_t VFTableIndex;
2495
2496 /// Shadowed - Indicates if this vftable slot is shadowed by
2497 /// a slot for a covariant-return override. If so, it shouldn't be printed
2498 /// or used for vcalls in the most derived class.
2499 bool Shadowed;
2500
MethodInfo__anonf071dba20311::VFTableBuilder::MethodInfo2501 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex)
2502 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2503 Shadowed(false) {}
2504
MethodInfo__anonf071dba20311::VFTableBuilder::MethodInfo2505 MethodInfo() : VBTableIndex(0), VFTableIndex(0), Shadowed(false) {}
2506 };
2507
2508 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2509
2510 /// MethodInfoMap - The information for all methods in the vftable we're
2511 /// currently building.
2512 MethodInfoMapTy MethodInfoMap;
2513
2514 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2515
2516 /// VTableThunks - The thunks by vftable index in the vftable currently being
2517 /// built.
2518 VTableThunksMapTy VTableThunks;
2519
2520 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2521 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2522
2523 /// Thunks - A map that contains all the thunks needed for all methods in the
2524 /// most derived class for which the vftable is currently being built.
2525 ThunksMapTy Thunks;
2526
2527 /// AddThunk - Add a thunk for the given method.
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)2528 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2529 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2530
2531 // Check if we have this thunk already.
2532 if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
2533 ThunksVector.end())
2534 return;
2535
2536 ThunksVector.push_back(Thunk);
2537 }
2538
2539 /// ComputeThisOffset - Returns the 'this' argument offset for the given
2540 /// method in the given subobject, relative to the beginning of the
2541 /// MostDerivedClass.
2542 CharUnits ComputeThisOffset(const CXXMethodDecl *MD,
2543 BaseSubobject Base,
2544 FinalOverriders::OverriderInfo Overrider);
2545
2546 /// AddMethod - Add a single virtual member function to the vftable
2547 /// components vector.
AddMethod(const CXXMethodDecl * MD,ThisAdjustment ThisAdjustment,ReturnAdjustment ReturnAdjustment)2548 void AddMethod(const CXXMethodDecl *MD, ThisAdjustment ThisAdjustment,
2549 ReturnAdjustment ReturnAdjustment) {
2550 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2551 assert(ReturnAdjustment.isEmpty() &&
2552 "Destructor can't have return adjustment!");
2553 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2554 } else {
2555 // Add the return adjustment if necessary.
2556 if (!ReturnAdjustment.isEmpty() || !ThisAdjustment.isEmpty()) {
2557 VTableThunks[Components.size()].Return = ReturnAdjustment;
2558 VTableThunks[Components.size()].This = ThisAdjustment;
2559 }
2560 Components.push_back(VTableComponent::MakeFunction(MD));
2561 }
2562 }
2563
2564 /// AddMethods - Add the methods of this base subobject and the relevant
2565 /// subbases to the vftable we're currently laying out.
2566 void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2567 const CXXRecordDecl *LastVBase,
2568 BasesSetVectorTy &VisitedBases);
2569
LayoutVFTable()2570 void LayoutVFTable() {
2571 // FIXME: add support for RTTI when we have proper LLVM support for symbols
2572 // pointing to the middle of a section.
2573
2574 BasesSetVectorTy VisitedBases;
2575 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, 0,
2576 VisitedBases);
2577
2578 assert(MethodVFTableLocations.empty());
2579 for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
2580 E = MethodInfoMap.end(); I != E; ++I) {
2581 const CXXMethodDecl *MD = I->first;
2582 const MethodInfo &MI = I->second;
2583 // Skip the methods that the MostDerivedClass didn't override
2584 // and the entries shadowed by return adjusting thunks.
2585 if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2586 continue;
2587 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.VFPtrOffset,
2588 MI.VFTableIndex);
2589 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2590 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2591 } else {
2592 MethodVFTableLocations[MD] = Loc;
2593 }
2594 }
2595 }
2596
ErrorUnsupported(StringRef Feature,SourceLocation Location)2597 void ErrorUnsupported(StringRef Feature, SourceLocation Location) {
2598 clang::DiagnosticsEngine &Diags = Context.getDiagnostics();
2599 unsigned DiagID = Diags.getCustomDiagID(
2600 DiagnosticsEngine::Error, "v-table layout for %0 is not supported yet");
2601 Diags.Report(Context.getFullLoc(Location), DiagID) << Feature;
2602 }
2603
2604 public:
VFTableBuilder(const CXXRecordDecl * MostDerivedClass,VFPtrInfo Which)2605 VFTableBuilder(const CXXRecordDecl *MostDerivedClass, VFPtrInfo Which)
2606 : Context(MostDerivedClass->getASTContext()),
2607 MostDerivedClass(MostDerivedClass),
2608 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2609 WhichVFPtr(Which),
2610 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2611 LayoutVFTable();
2612
2613 if (Context.getLangOpts().DumpVTableLayouts)
2614 dumpLayout(llvm::errs());
2615 }
2616
getNumThunks() const2617 uint64_t getNumThunks() const { return Thunks.size(); }
2618
thunks_begin() const2619 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2620
thunks_end() const2621 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2622
vtable_indices_begin() const2623 MethodVFTableLocationsTy::const_iterator vtable_indices_begin() const {
2624 return MethodVFTableLocations.begin();
2625 }
2626
vtable_indices_end() const2627 MethodVFTableLocationsTy::const_iterator vtable_indices_end() const {
2628 return MethodVFTableLocations.end();
2629 }
2630
getNumVTableComponents() const2631 uint64_t getNumVTableComponents() const { return Components.size(); }
2632
vtable_component_begin() const2633 const VTableComponent *vtable_component_begin() const {
2634 return Components.begin();
2635 }
2636
vtable_component_end() const2637 const VTableComponent *vtable_component_end() const {
2638 return Components.end();
2639 }
2640
vtable_thunks_begin() const2641 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2642 return VTableThunks.begin();
2643 }
2644
vtable_thunks_end() const2645 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2646 return VTableThunks.end();
2647 }
2648
2649 void dumpLayout(raw_ostream &);
2650 };
2651
2652 /// InitialOverriddenDefinitionCollector - Finds the set of least derived bases
2653 /// that define the given method.
2654 struct InitialOverriddenDefinitionCollector {
2655 BasesSetVectorTy Bases;
2656 OverriddenMethodsSetTy VisitedOverriddenMethods;
2657
visit__anonf071dba20311::InitialOverriddenDefinitionCollector2658 bool visit(const CXXMethodDecl *OverriddenMD) {
2659 if (OverriddenMD->size_overridden_methods() == 0)
2660 Bases.insert(OverriddenMD->getParent());
2661 // Don't recurse on this method if we've already collected it.
2662 return VisitedOverriddenMethods.insert(OverriddenMD);
2663 }
2664 };
2665
BaseInSet(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * BasesSet)2666 static bool BaseInSet(const CXXBaseSpecifier *Specifier,
2667 CXXBasePath &Path, void *BasesSet) {
2668 BasesSetVectorTy *Bases = (BasesSetVectorTy *)BasesSet;
2669 return Bases->count(Specifier->getType()->getAsCXXRecordDecl());
2670 }
2671
2672 CharUnits
ComputeThisOffset(const CXXMethodDecl * MD,BaseSubobject Base,FinalOverriders::OverriderInfo Overrider)2673 VFTableBuilder::ComputeThisOffset(const CXXMethodDecl *MD,
2674 BaseSubobject Base,
2675 FinalOverriders::OverriderInfo Overrider) {
2676 // Complete object virtual destructors are always emitted in the most derived
2677 // class, thus don't have this offset.
2678 if (isa<CXXDestructorDecl>(MD))
2679 return CharUnits();
2680
2681 InitialOverriddenDefinitionCollector Collector;
2682 visitAllOverriddenMethods(MD, Collector);
2683
2684 CXXBasePaths Paths;
2685 Base.getBase()->lookupInBases(BaseInSet, &Collector.Bases, Paths);
2686
2687 // This will hold the smallest this offset among overridees of MD.
2688 // This implies that an offset of a non-virtual base will dominate an offset
2689 // of a virtual base to potentially reduce the number of thunks required
2690 // in the derived classes that inherit this method.
2691 CharUnits Ret;
2692 bool First = true;
2693
2694 for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
2695 I != E; ++I) {
2696 const CXXBasePath &Path = (*I);
2697 CharUnits ThisOffset = Base.getBaseOffset();
2698
2699 // For each path from the overrider to the parents of the overridden methods,
2700 // traverse the path, calculating the this offset in the most derived class.
2701 for (int J = 0, F = Path.size(); J != F; ++J) {
2702 const CXXBasePathElement &Element = Path[J];
2703 QualType CurTy = Element.Base->getType();
2704 const CXXRecordDecl *PrevRD = Element.Class,
2705 *CurRD = CurTy->getAsCXXRecordDecl();
2706 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2707
2708 if (Element.Base->isVirtual()) {
2709 if (Overrider.Method->getParent() == PrevRD) {
2710 // This one's interesting. If the final overrider is in a vbase B of the
2711 // most derived class and it overrides a method of the B's own vbase A,
2712 // it uses A* as "this". In its prologue, it can cast A* to B* with
2713 // a static offset. This offset is used regardless of the actual
2714 // offset of A from B in the most derived class, requiring an
2715 // this-adjusting thunk in the vftable if A and B are laid out
2716 // differently in the most derived class.
2717 ThisOffset += Layout.getVBaseClassOffset(CurRD);
2718 } else {
2719 ThisOffset = MostDerivedClassLayout.getVBaseClassOffset(CurRD);
2720 }
2721 } else {
2722 ThisOffset += Layout.getBaseClassOffset(CurRD);
2723 }
2724 }
2725
2726 if (Ret > ThisOffset || First) {
2727 First = false;
2728 Ret = ThisOffset;
2729 }
2730 }
2731
2732 assert(!First && "Method not found in the given subobject?");
2733 return Ret;
2734 }
2735
2736 static const CXXMethodDecl*
FindDirectlyOverriddenMethodInBases(const CXXMethodDecl * MD,BasesSetVectorTy & Bases)2737 FindDirectlyOverriddenMethodInBases(const CXXMethodDecl *MD,
2738 BasesSetVectorTy &Bases) {
2739 // We can't just iterate over the overridden methods and return the first one
2740 // which has its parent in Bases, e.g. this doesn't work when we have
2741 // multiple subobjects of the same type that have its virtual function
2742 // overridden.
2743 for (int I = Bases.size(), E = 0; I != E; --I) {
2744 const CXXRecordDecl *CurrentBase = Bases[I - 1];
2745
2746 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2747 E = MD->end_overridden_methods(); I != E; ++I) {
2748 const CXXMethodDecl *OverriddenMD = *I;
2749
2750 if (OverriddenMD->getParent() == CurrentBase)
2751 return OverriddenMD;
2752 }
2753 }
2754
2755 return 0;
2756 }
2757
AddMethods(BaseSubobject Base,unsigned BaseDepth,const CXXRecordDecl * LastVBase,BasesSetVectorTy & VisitedBases)2758 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2759 const CXXRecordDecl *LastVBase,
2760 BasesSetVectorTy &VisitedBases) {
2761 const CXXRecordDecl *RD = Base.getBase();
2762 if (!RD->isPolymorphic())
2763 return;
2764
2765 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2766
2767 // See if this class expands a vftable of the base we look at, which is either
2768 // the one defined by the vfptr base path or the primary base of the current class.
2769 const CXXRecordDecl *NextBase = 0, *NextLastVBase = LastVBase;
2770 CharUnits NextBaseOffset;
2771 if (BaseDepth < WhichVFPtr.PathToBaseWithVFPtr.size()) {
2772 NextBase = WhichVFPtr.PathToBaseWithVFPtr[BaseDepth];
2773 if (Layout.getVBaseOffsetsMap().count(NextBase)) {
2774 NextLastVBase = NextBase;
2775 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2776 } else {
2777 NextBaseOffset =
2778 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2779 }
2780 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2781 assert(!Layout.isPrimaryBaseVirtual() &&
2782 "No primary virtual bases in this ABI");
2783 NextBase = PrimaryBase;
2784 NextBaseOffset = Base.getBaseOffset();
2785 }
2786
2787 if (NextBase) {
2788 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2789 NextLastVBase, VisitedBases);
2790 if (!VisitedBases.insert(NextBase))
2791 llvm_unreachable("Found a duplicate primary base!");
2792 }
2793
2794 // Now go through all virtual member functions and add them to the current
2795 // vftable. This is done by
2796 // - replacing overridden methods in their existing slots, as long as they
2797 // don't require return adjustment; calculating This adjustment if needed.
2798 // - adding new slots for methods of the current base not present in any
2799 // sub-bases;
2800 // - adding new slots for methods that require Return adjustment.
2801 // We keep track of the methods visited in the sub-bases in MethodInfoMap.
2802 for (CXXRecordDecl::method_iterator I = RD->method_begin(),
2803 E = RD->method_end(); I != E; ++I) {
2804 const CXXMethodDecl *MD = *I;
2805
2806 if (!MD->isVirtual())
2807 continue;
2808
2809 FinalOverriders::OverriderInfo Overrider =
2810 Overriders.getOverrider(MD, Base.getBaseOffset());
2811 ThisAdjustment ThisAdjustmentOffset;
2812
2813 // Check if this virtual member function overrides
2814 // a method in one of the visited bases.
2815 if (const CXXMethodDecl *OverriddenMD =
2816 FindDirectlyOverriddenMethodInBases(MD, VisitedBases)) {
2817 MethodInfoMapTy::iterator OverriddenMDIterator =
2818 MethodInfoMap.find(OverriddenMD);
2819
2820 // If the overridden method went to a different vftable, skip it.
2821 if (OverriddenMDIterator == MethodInfoMap.end())
2822 continue;
2823
2824 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
2825
2826 // Create a this-adjusting thunk if needed.
2827 CharUnits TI = ComputeThisOffset(MD, Base, Overrider);
2828 if (TI != WhichVFPtr.VFPtrFullOffset) {
2829 ThisAdjustmentOffset.NonVirtual =
2830 (TI - WhichVFPtr.VFPtrFullOffset).getQuantity();
2831 VTableThunks[OverriddenMethodInfo.VFTableIndex].This =
2832 ThisAdjustmentOffset;
2833 AddThunk(MD, VTableThunks[OverriddenMethodInfo.VFTableIndex]);
2834 }
2835
2836 if (ComputeReturnAdjustmentBaseOffset(Context, MD, OverriddenMD)
2837 .isEmpty()) {
2838 // No return adjustment needed - just replace the overridden method info
2839 // with the current info.
2840 MethodInfo MI(OverriddenMethodInfo.VBTableIndex,
2841 OverriddenMethodInfo.VFTableIndex);
2842 MethodInfoMap.erase(OverriddenMDIterator);
2843
2844 assert(!MethodInfoMap.count(MD) &&
2845 "Should not have method info for this method yet!");
2846 MethodInfoMap.insert(std::make_pair(MD, MI));
2847 continue;
2848 } else {
2849 // In case we need a return adjustment, we'll add a new slot for
2850 // the overrider and put a return-adjusting thunk where the overridden
2851 // method was in the vftable.
2852 // For now, just mark the overriden method as shadowed by a new slot.
2853 OverriddenMethodInfo.Shadowed = true;
2854
2855 // Also apply this adjustment to the shadowed slots.
2856 if (!ThisAdjustmentOffset.isEmpty()) {
2857 // FIXME: this is O(N^2), can be O(N).
2858 const CXXMethodDecl *SubOverride = OverriddenMD;
2859 while ((SubOverride =
2860 FindDirectlyOverriddenMethodInBases(SubOverride, VisitedBases))) {
2861 MethodInfoMapTy::iterator SubOverrideIterator =
2862 MethodInfoMap.find(SubOverride);
2863 if (SubOverrideIterator == MethodInfoMap.end())
2864 break;
2865 MethodInfo &SubOverrideMI = SubOverrideIterator->second;
2866 assert(SubOverrideMI.Shadowed);
2867 VTableThunks[SubOverrideMI.VFTableIndex].This =
2868 ThisAdjustmentOffset;
2869 AddThunk(MD, VTableThunks[SubOverrideMI.VFTableIndex]);
2870 }
2871 }
2872 }
2873 } else if (Base.getBaseOffset() != WhichVFPtr.VFPtrFullOffset ||
2874 MD->size_overridden_methods()) {
2875 // Skip methods that don't belong to the vftable of the current class,
2876 // e.g. each method that wasn't seen in any of the visited sub-bases
2877 // but overrides multiple methods of other sub-bases.
2878 continue;
2879 }
2880
2881 // If we got here, MD is a method not seen in any of the sub-bases or
2882 // it requires return adjustment. Insert the method info for this method.
2883 unsigned VBIndex =
2884 LastVBase ? GetVBTableIndex(MostDerivedClass, LastVBase) : 0;
2885 MethodInfo MI(VBIndex, Components.size());
2886
2887 assert(!MethodInfoMap.count(MD) &&
2888 "Should not have method info for this method yet!");
2889 MethodInfoMap.insert(std::make_pair(MD, MI));
2890
2891 const CXXMethodDecl *OverriderMD = Overrider.Method;
2892
2893 // Check if this overrider needs a return adjustment.
2894 // We don't want to do this for pure virtual member functions.
2895 BaseOffset ReturnAdjustmentOffset;
2896 ReturnAdjustment ReturnAdjustment;
2897 if (!OverriderMD->isPure()) {
2898 ReturnAdjustmentOffset =
2899 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
2900 }
2901 if (!ReturnAdjustmentOffset.isEmpty()) {
2902 ReturnAdjustment.NonVirtual =
2903 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
2904 if (ReturnAdjustmentOffset.VirtualBase) {
2905 // FIXME: We might want to create a VBIndex alias for VBaseOffsetOffset
2906 // in the ReturnAdjustment struct.
2907 ReturnAdjustment.VBaseOffsetOffset =
2908 GetVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
2909 ReturnAdjustmentOffset.VirtualBase);
2910 }
2911 }
2912
2913 AddMethod(Overrider.Method, ThisAdjustmentOffset, ReturnAdjustment);
2914 }
2915 }
2916
PrintBasePath(const VFPtrInfo::BasePath & Path,raw_ostream & Out)2917 void PrintBasePath(const VFPtrInfo::BasePath &Path, raw_ostream &Out) {
2918 for (VFPtrInfo::BasePath::const_reverse_iterator I = Path.rbegin(),
2919 E = Path.rend(); I != E; ++I) {
2920 Out << "'" << (*I)->getQualifiedNameAsString() << "' in ";
2921 }
2922 }
2923
dumpLayout(raw_ostream & Out)2924 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
2925 Out << "VFTable for ";
2926 PrintBasePath(WhichVFPtr.PathToBaseWithVFPtr, Out);
2927 Out << "'" << MostDerivedClass->getQualifiedNameAsString();
2928 Out << "' (" << Components.size() << " entries).\n";
2929
2930 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
2931 Out << llvm::format("%4d | ", I);
2932
2933 const VTableComponent &Component = Components[I];
2934
2935 // Dump the component.
2936 switch (Component.getKind()) {
2937 case VTableComponent::CK_RTTI:
2938 Out << Component.getRTTIDecl()->getQualifiedNameAsString() << " RTTI";
2939 break;
2940
2941 case VTableComponent::CK_FunctionPointer: {
2942 const CXXMethodDecl *MD = Component.getFunctionDecl();
2943
2944 std::string Str = PredefinedExpr::ComputeName(
2945 PredefinedExpr::PrettyFunctionNoVirtual, MD);
2946 Out << Str;
2947 if (MD->isPure())
2948 Out << " [pure]";
2949
2950 if (MD->isDeleted()) {
2951 ErrorUnsupported("deleted methods", MD->getLocation());
2952 Out << " [deleted]";
2953 }
2954
2955 ThunkInfo Thunk = VTableThunks.lookup(I);
2956 if (!Thunk.isEmpty()) {
2957 // If this function pointer has a return adjustment, dump it.
2958 if (!Thunk.Return.isEmpty()) {
2959 Out << "\n [return adjustment: ";
2960 if (Thunk.Return.VBaseOffsetOffset)
2961 Out << "vbase #" << Thunk.Return.VBaseOffsetOffset << ", ";
2962 Out << Thunk.Return.NonVirtual << " non-virtual]";
2963 }
2964
2965 // If this function pointer has a 'this' pointer adjustment, dump it.
2966 if (!Thunk.This.isEmpty()) {
2967 assert(!Thunk.This.VCallOffsetOffset &&
2968 "No virtual this adjustment in this ABI");
2969 Out << "\n [this adjustment: " << Thunk.This.NonVirtual
2970 << " non-virtual]";
2971 }
2972 }
2973
2974 break;
2975 }
2976
2977 case VTableComponent::CK_DeletingDtorPointer: {
2978 const CXXDestructorDecl *DD = Component.getDestructorDecl();
2979
2980 Out << DD->getQualifiedNameAsString();
2981 Out << "() [scalar deleting]";
2982
2983 if (DD->isPure())
2984 Out << " [pure]";
2985
2986 ThunkInfo Thunk = VTableThunks.lookup(I);
2987 if (!Thunk.isEmpty()) {
2988 assert(Thunk.Return.isEmpty() &&
2989 "No return adjustment needed for destructors!");
2990 // If this destructor has a 'this' pointer adjustment, dump it.
2991 if (!Thunk.This.isEmpty()) {
2992 assert(!Thunk.This.VCallOffsetOffset &&
2993 "No virtual this adjustment in this ABI");
2994 Out << "\n [this adjustment: " << Thunk.This.NonVirtual
2995 << " non-virtual]";
2996 }
2997 }
2998
2999 break;
3000 }
3001
3002 default:
3003 DiagnosticsEngine &Diags = Context.getDiagnostics();
3004 unsigned DiagID = Diags.getCustomDiagID(
3005 DiagnosticsEngine::Error,
3006 "Unexpected vftable component type %0 for component number %1");
3007 Diags.Report(MostDerivedClass->getLocation(), DiagID)
3008 << I << Component.getKind();
3009 }
3010
3011 Out << '\n';
3012 }
3013
3014 Out << '\n';
3015
3016 if (!Thunks.empty()) {
3017 // We store the method names in a map to get a stable order.
3018 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3019
3020 for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
3021 I != E; ++I) {
3022 const CXXMethodDecl *MD = I->first;
3023 std::string MethodName = PredefinedExpr::ComputeName(
3024 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3025
3026 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3027 }
3028
3029 for (std::map<std::string, const CXXMethodDecl *>::const_iterator
3030 I = MethodNamesAndDecls.begin(),
3031 E = MethodNamesAndDecls.end();
3032 I != E; ++I) {
3033 const std::string &MethodName = I->first;
3034 const CXXMethodDecl *MD = I->second;
3035
3036 ThunkInfoVectorTy ThunksVector = Thunks[MD];
3037 std::sort(ThunksVector.begin(), ThunksVector.end());
3038
3039 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3040 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3041
3042 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3043 const ThunkInfo &Thunk = ThunksVector[I];
3044
3045 Out << llvm::format("%4d | ", I);
3046
3047 // If this function pointer has a return pointer adjustment, dump it.
3048 if (!Thunk.Return.isEmpty()) {
3049 Out << "return adjustment: ";
3050 if (Thunk.Return.VBaseOffsetOffset)
3051 Out << "vbase #" << Thunk.Return.VBaseOffsetOffset << ", ";
3052 Out << Thunk.Return.NonVirtual << " non-virtual";
3053
3054 if (!Thunk.This.isEmpty())
3055 Out << "\n ";
3056 }
3057
3058 // If this function pointer has a 'this' pointer adjustment, dump it.
3059 if (!Thunk.This.isEmpty()) {
3060 assert(!Thunk.This.VCallOffsetOffset &&
3061 "No virtual this adjustment in this ABI");
3062 Out << "this adjustment: ";
3063 Out << Thunk.This.NonVirtual << " non-virtual";
3064 }
3065
3066 Out << '\n';
3067 }
3068
3069 Out << '\n';
3070 }
3071 }
3072 }
3073 }
3074
EnumerateVFPtrs(ASTContext & Context,const CXXRecordDecl * MostDerivedClass,const ASTRecordLayout & MostDerivedClassLayout,BaseSubobject Base,const CXXRecordDecl * LastVBase,const VFPtrInfo::BasePath & PathFromCompleteClass,BasesSetVectorTy & VisitedVBases,MicrosoftVFTableContext::VFPtrListTy & Result)3075 static void EnumerateVFPtrs(
3076 ASTContext &Context, const CXXRecordDecl *MostDerivedClass,
3077 const ASTRecordLayout &MostDerivedClassLayout,
3078 BaseSubobject Base, const CXXRecordDecl *LastVBase,
3079 const VFPtrInfo::BasePath &PathFromCompleteClass,
3080 BasesSetVectorTy &VisitedVBases,
3081 MicrosoftVFTableContext::VFPtrListTy &Result) {
3082 const CXXRecordDecl *CurrentClass = Base.getBase();
3083 CharUnits OffsetInCompleteClass = Base.getBaseOffset();
3084 const ASTRecordLayout &CurrentClassLayout =
3085 Context.getASTRecordLayout(CurrentClass);
3086
3087 if (CurrentClassLayout.hasOwnVFPtr()) {
3088 if (LastVBase) {
3089 uint64_t VBIndex = GetVBTableIndex(MostDerivedClass, LastVBase);
3090 assert(VBIndex > 0 && "vbases must have vbindex!");
3091 CharUnits VFPtrOffset =
3092 OffsetInCompleteClass -
3093 MostDerivedClassLayout.getVBaseClassOffset(LastVBase);
3094 Result.push_back(VFPtrInfo(VBIndex, LastVBase, VFPtrOffset,
3095 PathFromCompleteClass, OffsetInCompleteClass));
3096 } else {
3097 Result.push_back(VFPtrInfo(OffsetInCompleteClass, PathFromCompleteClass));
3098 }
3099 }
3100
3101 for (CXXRecordDecl::base_class_const_iterator I = CurrentClass->bases_begin(),
3102 E = CurrentClass->bases_end(); I != E; ++I) {
3103 const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
3104
3105 CharUnits NextBaseOffset;
3106 const CXXRecordDecl *NextLastVBase;
3107 if (I->isVirtual()) {
3108 if (VisitedVBases.count(BaseDecl))
3109 continue;
3110 VisitedVBases.insert(BaseDecl);
3111 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
3112 NextLastVBase = BaseDecl;
3113 } else {
3114 NextBaseOffset = OffsetInCompleteClass +
3115 CurrentClassLayout.getBaseClassOffset(BaseDecl);
3116 NextLastVBase = LastVBase;
3117 }
3118
3119 VFPtrInfo::BasePath NewPath = PathFromCompleteClass;
3120 NewPath.push_back(BaseDecl);
3121 BaseSubobject NextBase(BaseDecl, NextBaseOffset);
3122
3123 EnumerateVFPtrs(Context, MostDerivedClass, MostDerivedClassLayout, NextBase,
3124 NextLastVBase, NewPath, VisitedVBases, Result);
3125 }
3126 }
3127
EnumerateVFPtrs(ASTContext & Context,const CXXRecordDecl * ForClass,MicrosoftVFTableContext::VFPtrListTy & Result)3128 static void EnumerateVFPtrs(ASTContext &Context, const CXXRecordDecl *ForClass,
3129 MicrosoftVFTableContext::VFPtrListTy &Result) {
3130 Result.clear();
3131 const ASTRecordLayout &ClassLayout = Context.getASTRecordLayout(ForClass);
3132 BasesSetVectorTy VisitedVBases;
3133 EnumerateVFPtrs(Context, ForClass, ClassLayout,
3134 BaseSubobject(ForClass, CharUnits::Zero()), 0,
3135 VFPtrInfo::BasePath(), VisitedVBases, Result);
3136 }
3137
computeVTableRelatedInformation(const CXXRecordDecl * RD)3138 void MicrosoftVFTableContext::computeVTableRelatedInformation(
3139 const CXXRecordDecl *RD) {
3140 assert(RD->isDynamicClass());
3141
3142 // Check if we've computed this information before.
3143 if (VFPtrLocations.count(RD))
3144 return;
3145
3146 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3147
3148 VFPtrListTy &VFPtrs = VFPtrLocations[RD];
3149 EnumerateVFPtrs(Context, RD, VFPtrs);
3150
3151 MethodVFTableLocationsTy NewMethodLocations;
3152 for (VFPtrListTy::iterator I = VFPtrs.begin(), E = VFPtrs.end();
3153 I != E; ++I) {
3154 VFTableBuilder Builder(RD, *I);
3155
3156 VFTableIdTy id(RD, I->VFPtrFullOffset);
3157 assert(VFTableLayouts.count(id) == 0);
3158 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3159 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3160 std::sort(VTableThunks.begin(), VTableThunks.end());
3161 VFTableLayouts[id] = new VTableLayout(
3162 Builder.getNumVTableComponents(), Builder.vtable_component_begin(),
3163 VTableThunks.size(), VTableThunks.data(), EmptyAddressPointsMap, true);
3164 NewMethodLocations.insert(Builder.vtable_indices_begin(),
3165 Builder.vtable_indices_end());
3166 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3167 }
3168
3169 MethodVFTableLocations.insert(NewMethodLocations.begin(),
3170 NewMethodLocations.end());
3171 if (Context.getLangOpts().DumpVTableLayouts)
3172 dumpMethodLocations(RD, NewMethodLocations, llvm::errs());
3173 }
3174
dumpMethodLocations(const CXXRecordDecl * RD,const MethodVFTableLocationsTy & NewMethods,raw_ostream & Out)3175 void MicrosoftVFTableContext::dumpMethodLocations(
3176 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3177 raw_ostream &Out) {
3178 // Compute the vtable indices for all the member functions.
3179 // Store them in a map keyed by the location so we'll get a sorted table.
3180 std::map<MethodVFTableLocation, std::string> IndicesMap;
3181 bool HasNonzeroOffset = false;
3182
3183 for (MethodVFTableLocationsTy::const_iterator I = NewMethods.begin(),
3184 E = NewMethods.end(); I != E; ++I) {
3185 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I->first.getDecl());
3186 assert(MD->isVirtual());
3187
3188 std::string MethodName = PredefinedExpr::ComputeName(
3189 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3190
3191 if (isa<CXXDestructorDecl>(MD)) {
3192 IndicesMap[I->second] = MethodName + " [scalar deleting]";
3193 } else {
3194 IndicesMap[I->second] = MethodName;
3195 }
3196
3197 if (!I->second.VFTableOffset.isZero() || I->second.VBTableIndex != 0)
3198 HasNonzeroOffset = true;
3199 }
3200
3201 // Print the vtable indices for all the member functions.
3202 if (!IndicesMap.empty()) {
3203 Out << "VFTable indices for ";
3204 Out << "'" << RD->getQualifiedNameAsString();
3205 Out << "' (" << IndicesMap.size() << " entries).\n";
3206
3207 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3208 uint64_t LastVBIndex = 0;
3209 for (std::map<MethodVFTableLocation, std::string>::const_iterator
3210 I = IndicesMap.begin(),
3211 E = IndicesMap.end();
3212 I != E; ++I) {
3213 CharUnits VFPtrOffset = I->first.VFTableOffset;
3214 uint64_t VBIndex = I->first.VBTableIndex;
3215 if (HasNonzeroOffset &&
3216 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3217 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3218 Out << " -- accessible via ";
3219 if (VBIndex)
3220 Out << "vbtable index " << VBIndex << ", ";
3221 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3222 LastVFPtrOffset = VFPtrOffset;
3223 LastVBIndex = VBIndex;
3224 }
3225
3226 uint64_t VTableIndex = I->first.Index;
3227 const std::string &MethodName = I->second;
3228 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3229 }
3230 Out << '\n';
3231 }
3232 }
3233
3234 const MicrosoftVFTableContext::VFPtrListTy &
getVFPtrOffsets(const CXXRecordDecl * RD)3235 MicrosoftVFTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3236 computeVTableRelatedInformation(RD);
3237
3238 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3239 return VFPtrLocations[RD];
3240 }
3241
3242 const VTableLayout &
getVFTableLayout(const CXXRecordDecl * RD,CharUnits VFPtrOffset)3243 MicrosoftVFTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3244 CharUnits VFPtrOffset) {
3245 computeVTableRelatedInformation(RD);
3246
3247 VFTableIdTy id(RD, VFPtrOffset);
3248 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3249 return *VFTableLayouts[id];
3250 }
3251
3252 const MicrosoftVFTableContext::MethodVFTableLocation &
getMethodVFTableLocation(GlobalDecl GD)3253 MicrosoftVFTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3254 assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() &&
3255 "Only use this method for virtual methods or dtors");
3256 if (isa<CXXDestructorDecl>(GD.getDecl()))
3257 assert(GD.getDtorType() == Dtor_Deleting);
3258
3259 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3260 if (I != MethodVFTableLocations.end())
3261 return I->second;
3262
3263 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3264
3265 computeVTableRelatedInformation(RD);
3266
3267 I = MethodVFTableLocations.find(GD);
3268 assert(I != MethodVFTableLocations.end() && "Did not find index!");
3269 return I->second;
3270 }
3271