1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The inline spiller modifies the machine function directly instead of
11 // inserting spills and restores in VirtRegMap.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "Spiller.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/TinyPtrVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/LiveRangeEdit.h"
23 #include "llvm/CodeGen/LiveStackAnalysis.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/VirtRegMap.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38
39 using namespace llvm;
40
41 STATISTIC(NumSpilledRanges, "Number of spilled live ranges");
42 STATISTIC(NumSnippets, "Number of spilled snippets");
43 STATISTIC(NumSpills, "Number of spills inserted");
44 STATISTIC(NumSpillsRemoved, "Number of spills removed");
45 STATISTIC(NumReloads, "Number of reloads inserted");
46 STATISTIC(NumReloadsRemoved, "Number of reloads removed");
47 STATISTIC(NumFolded, "Number of folded stack accesses");
48 STATISTIC(NumFoldedLoads, "Number of folded loads");
49 STATISTIC(NumRemats, "Number of rematerialized defs for spilling");
50 STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
51 STATISTIC(NumHoists, "Number of hoisted spills");
52
53 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
54 cl::desc("Disable inline spill hoisting"));
55
56 namespace {
57 class InlineSpiller : public Spiller {
58 MachineFunction &MF;
59 LiveIntervals &LIS;
60 LiveStacks &LSS;
61 AliasAnalysis *AA;
62 MachineDominatorTree &MDT;
63 MachineLoopInfo &Loops;
64 VirtRegMap &VRM;
65 MachineFrameInfo &MFI;
66 MachineRegisterInfo &MRI;
67 const TargetInstrInfo &TII;
68 const TargetRegisterInfo &TRI;
69 const MachineBlockFrequencyInfo &MBFI;
70
71 // Variables that are valid during spill(), but used by multiple methods.
72 LiveRangeEdit *Edit;
73 LiveInterval *StackInt;
74 int StackSlot;
75 unsigned Original;
76
77 // All registers to spill to StackSlot, including the main register.
78 SmallVector<unsigned, 8> RegsToSpill;
79
80 // All COPY instructions to/from snippets.
81 // They are ignored since both operands refer to the same stack slot.
82 SmallPtrSet<MachineInstr*, 8> SnippetCopies;
83
84 // Values that failed to remat at some point.
85 SmallPtrSet<VNInfo*, 8> UsedValues;
86
87 public:
88 // Information about a value that was defined by a copy from a sibling
89 // register.
90 struct SibValueInfo {
91 // True when all reaching defs were reloads: No spill is necessary.
92 bool AllDefsAreReloads;
93
94 // True when value is defined by an original PHI not from splitting.
95 bool DefByOrigPHI;
96
97 // True when the COPY defining this value killed its source.
98 bool KillsSource;
99
100 // The preferred register to spill.
101 unsigned SpillReg;
102
103 // The value of SpillReg that should be spilled.
104 VNInfo *SpillVNI;
105
106 // The block where SpillVNI should be spilled. Currently, this must be the
107 // block containing SpillVNI->def.
108 MachineBasicBlock *SpillMBB;
109
110 // A defining instruction that is not a sibling copy or a reload, or NULL.
111 // This can be used as a template for rematerialization.
112 MachineInstr *DefMI;
113
114 // List of values that depend on this one. These values are actually the
115 // same, but live range splitting has placed them in different registers,
116 // or SSA update needed to insert PHI-defs to preserve SSA form. This is
117 // copies of the current value and phi-kills. Usually only phi-kills cause
118 // more than one dependent value.
119 TinyPtrVector<VNInfo*> Deps;
120
SibValueInfo__anoncdd3b79a0111::InlineSpiller::SibValueInfo121 SibValueInfo(unsigned Reg, VNInfo *VNI)
122 : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
123 SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {}
124
125 // Returns true when a def has been found.
hasDef__anoncdd3b79a0111::InlineSpiller::SibValueInfo126 bool hasDef() const { return DefByOrigPHI || DefMI; }
127 };
128
129 private:
130 // Values in RegsToSpill defined by sibling copies.
131 typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
132 SibValueMap SibValues;
133
134 // Dead defs generated during spilling.
135 SmallVector<MachineInstr*, 8> DeadDefs;
136
~InlineSpiller()137 ~InlineSpiller() {}
138
139 public:
InlineSpiller(MachineFunctionPass & pass,MachineFunction & mf,VirtRegMap & vrm)140 InlineSpiller(MachineFunctionPass &pass,
141 MachineFunction &mf,
142 VirtRegMap &vrm)
143 : MF(mf),
144 LIS(pass.getAnalysis<LiveIntervals>()),
145 LSS(pass.getAnalysis<LiveStacks>()),
146 AA(&pass.getAnalysis<AliasAnalysis>()),
147 MDT(pass.getAnalysis<MachineDominatorTree>()),
148 Loops(pass.getAnalysis<MachineLoopInfo>()),
149 VRM(vrm),
150 MFI(*mf.getFrameInfo()),
151 MRI(mf.getRegInfo()),
152 TII(*mf.getTarget().getInstrInfo()),
153 TRI(*mf.getTarget().getRegisterInfo()),
154 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {}
155
156 void spill(LiveRangeEdit &);
157
158 private:
159 bool isSnippet(const LiveInterval &SnipLI);
160 void collectRegsToSpill();
161
isRegToSpill(unsigned Reg)162 bool isRegToSpill(unsigned Reg) {
163 return std::find(RegsToSpill.begin(),
164 RegsToSpill.end(), Reg) != RegsToSpill.end();
165 }
166
167 bool isSibling(unsigned Reg);
168 MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
169 void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0);
170 void analyzeSiblingValues();
171
172 bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
173 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
174
175 void markValueUsed(LiveInterval*, VNInfo*);
176 bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
177 void reMaterializeAll();
178
179 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
180 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
181 MachineInstr *LoadMI = 0);
182 void insertReload(LiveInterval &NewLI, SlotIndex,
183 MachineBasicBlock::iterator MI);
184 void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
185 SlotIndex, MachineBasicBlock::iterator MI);
186
187 void spillAroundUses(unsigned Reg);
188 void spillAll();
189 };
190 }
191
192 namespace llvm {
createInlineSpiller(MachineFunctionPass & pass,MachineFunction & mf,VirtRegMap & vrm)193 Spiller *createInlineSpiller(MachineFunctionPass &pass,
194 MachineFunction &mf,
195 VirtRegMap &vrm) {
196 return new InlineSpiller(pass, mf, vrm);
197 }
198 }
199
200 //===----------------------------------------------------------------------===//
201 // Snippets
202 //===----------------------------------------------------------------------===//
203
204 // When spilling a virtual register, we also spill any snippets it is connected
205 // to. The snippets are small live ranges that only have a single real use,
206 // leftovers from live range splitting. Spilling them enables memory operand
207 // folding or tightens the live range around the single use.
208 //
209 // This minimizes register pressure and maximizes the store-to-load distance for
210 // spill slots which can be important in tight loops.
211
212 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
213 /// otherwise return 0.
isFullCopyOf(const MachineInstr * MI,unsigned Reg)214 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
215 if (!MI->isFullCopy())
216 return 0;
217 if (MI->getOperand(0).getReg() == Reg)
218 return MI->getOperand(1).getReg();
219 if (MI->getOperand(1).getReg() == Reg)
220 return MI->getOperand(0).getReg();
221 return 0;
222 }
223
224 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
225 /// It is assumed that SnipLI is a virtual register with the same original as
226 /// Edit->getReg().
isSnippet(const LiveInterval & SnipLI)227 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
228 unsigned Reg = Edit->getReg();
229
230 // A snippet is a tiny live range with only a single instruction using it
231 // besides copies to/from Reg or spills/fills. We accept:
232 //
233 // %snip = COPY %Reg / FILL fi#
234 // %snip = USE %snip
235 // %Reg = COPY %snip / SPILL %snip, fi#
236 //
237 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
238 return false;
239
240 MachineInstr *UseMI = 0;
241
242 // Check that all uses satisfy our criteria.
243 for (MachineRegisterInfo::reg_nodbg_iterator
244 RI = MRI.reg_nodbg_begin(SnipLI.reg);
245 MachineInstr *MI = RI.skipInstruction();) {
246
247 // Allow copies to/from Reg.
248 if (isFullCopyOf(MI, Reg))
249 continue;
250
251 // Allow stack slot loads.
252 int FI;
253 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
254 continue;
255
256 // Allow stack slot stores.
257 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
258 continue;
259
260 // Allow a single additional instruction.
261 if (UseMI && MI != UseMI)
262 return false;
263 UseMI = MI;
264 }
265 return true;
266 }
267
268 /// collectRegsToSpill - Collect live range snippets that only have a single
269 /// real use.
collectRegsToSpill()270 void InlineSpiller::collectRegsToSpill() {
271 unsigned Reg = Edit->getReg();
272
273 // Main register always spills.
274 RegsToSpill.assign(1, Reg);
275 SnippetCopies.clear();
276
277 // Snippets all have the same original, so there can't be any for an original
278 // register.
279 if (Original == Reg)
280 return;
281
282 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
283 MachineInstr *MI = RI.skipInstruction();) {
284 unsigned SnipReg = isFullCopyOf(MI, Reg);
285 if (!isSibling(SnipReg))
286 continue;
287 LiveInterval &SnipLI = LIS.getInterval(SnipReg);
288 if (!isSnippet(SnipLI))
289 continue;
290 SnippetCopies.insert(MI);
291 if (isRegToSpill(SnipReg))
292 continue;
293 RegsToSpill.push_back(SnipReg);
294 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
295 ++NumSnippets;
296 }
297 }
298
299
300 //===----------------------------------------------------------------------===//
301 // Sibling Values
302 //===----------------------------------------------------------------------===//
303
304 // After live range splitting, some values to be spilled may be defined by
305 // copies from sibling registers. We trace the sibling copies back to the
306 // original value if it still exists. We need it for rematerialization.
307 //
308 // Even when the value can't be rematerialized, we still want to determine if
309 // the value has already been spilled, or we may want to hoist the spill from a
310 // loop.
311
isSibling(unsigned Reg)312 bool InlineSpiller::isSibling(unsigned Reg) {
313 return TargetRegisterInfo::isVirtualRegister(Reg) &&
314 VRM.getOriginal(Reg) == Original;
315 }
316
317 #ifndef NDEBUG
operator <<(raw_ostream & OS,const InlineSpiller::SibValueInfo & SVI)318 static raw_ostream &operator<<(raw_ostream &OS,
319 const InlineSpiller::SibValueInfo &SVI) {
320 OS << "spill " << PrintReg(SVI.SpillReg) << ':'
321 << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
322 if (SVI.SpillMBB)
323 OS << " in BB#" << SVI.SpillMBB->getNumber();
324 if (SVI.AllDefsAreReloads)
325 OS << " all-reloads";
326 if (SVI.DefByOrigPHI)
327 OS << " orig-phi";
328 if (SVI.KillsSource)
329 OS << " kill";
330 OS << " deps[";
331 for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
332 OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
333 OS << " ]";
334 if (SVI.DefMI)
335 OS << " def: " << *SVI.DefMI;
336 else
337 OS << '\n';
338 return OS;
339 }
340 #endif
341
342 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is
343 /// known. Otherwise remember the dependency for later.
344 ///
345 /// @param SVIIter SibValues entry to propagate.
346 /// @param VNI Dependent value, or NULL to propagate to all saved dependents.
propagateSiblingValue(SibValueMap::iterator SVIIter,VNInfo * VNI)347 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVIIter,
348 VNInfo *VNI) {
349 SibValueMap::value_type *SVI = &*SVIIter;
350
351 // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
352 TinyPtrVector<VNInfo*> FirstDeps;
353 if (VNI) {
354 FirstDeps.push_back(VNI);
355 SVI->second.Deps.push_back(VNI);
356 }
357
358 // Has the value been completely determined yet? If not, defer propagation.
359 if (!SVI->second.hasDef())
360 return;
361
362 // Work list of values to propagate.
363 SmallSetVector<SibValueMap::value_type *, 8> WorkList;
364 WorkList.insert(SVI);
365
366 do {
367 SVI = WorkList.pop_back_val();
368 TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
369 VNI = 0;
370
371 SibValueInfo &SV = SVI->second;
372 if (!SV.SpillMBB)
373 SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
374
375 DEBUG(dbgs() << " prop to " << Deps->size() << ": "
376 << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
377
378 assert(SV.hasDef() && "Propagating undefined value");
379
380 // Should this value be propagated as a preferred spill candidate? We don't
381 // propagate values of registers that are about to spill.
382 bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
383 unsigned SpillDepth = ~0u;
384
385 for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
386 DepE = Deps->end(); DepI != DepE; ++DepI) {
387 SibValueMap::iterator DepSVI = SibValues.find(*DepI);
388 assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
389 SibValueInfo &DepSV = DepSVI->second;
390 if (!DepSV.SpillMBB)
391 DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
392
393 bool Changed = false;
394
395 // Propagate defining instruction.
396 if (!DepSV.hasDef()) {
397 Changed = true;
398 DepSV.DefMI = SV.DefMI;
399 DepSV.DefByOrigPHI = SV.DefByOrigPHI;
400 }
401
402 // Propagate AllDefsAreReloads. For PHI values, this computes an AND of
403 // all predecessors.
404 if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
405 Changed = true;
406 DepSV.AllDefsAreReloads = false;
407 }
408
409 // Propagate best spill value.
410 if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
411 if (SV.SpillMBB == DepSV.SpillMBB) {
412 // DepSV is in the same block. Hoist when dominated.
413 if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
414 // This is an alternative def earlier in the same MBB.
415 // Hoist the spill as far as possible in SpillMBB. This can ease
416 // register pressure:
417 //
418 // x = def
419 // y = use x
420 // s = copy x
421 //
422 // Hoisting the spill of s to immediately after the def removes the
423 // interference between x and y:
424 //
425 // x = def
426 // spill x
427 // y = use x<kill>
428 //
429 // This hoist only helps when the DepSV copy kills its source.
430 Changed = true;
431 DepSV.SpillReg = SV.SpillReg;
432 DepSV.SpillVNI = SV.SpillVNI;
433 DepSV.SpillMBB = SV.SpillMBB;
434 }
435 } else {
436 // DepSV is in a different block.
437 if (SpillDepth == ~0u)
438 SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
439
440 // Also hoist spills to blocks with smaller loop depth, but make sure
441 // that the new value dominates. Non-phi dependents are always
442 // dominated, phis need checking.
443 if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
444 (!DepSVI->first->isPHIDef() ||
445 MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
446 Changed = true;
447 DepSV.SpillReg = SV.SpillReg;
448 DepSV.SpillVNI = SV.SpillVNI;
449 DepSV.SpillMBB = SV.SpillMBB;
450 }
451 }
452 }
453
454 if (!Changed)
455 continue;
456
457 // Something changed in DepSVI. Propagate to dependents.
458 WorkList.insert(&*DepSVI);
459
460 DEBUG(dbgs() << " update " << DepSVI->first->id << '@'
461 << DepSVI->first->def << " to:\t" << DepSV);
462 }
463 } while (!WorkList.empty());
464 }
465
466 /// traceSiblingValue - Trace a value that is about to be spilled back to the
467 /// real defining instructions by looking through sibling copies. Always stay
468 /// within the range of OrigVNI so the registers are known to carry the same
469 /// value.
470 ///
471 /// Determine if the value is defined by all reloads, so spilling isn't
472 /// necessary - the value is already in the stack slot.
473 ///
474 /// Return a defining instruction that may be a candidate for rematerialization.
475 ///
traceSiblingValue(unsigned UseReg,VNInfo * UseVNI,VNInfo * OrigVNI)476 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
477 VNInfo *OrigVNI) {
478 // Check if a cached value already exists.
479 SibValueMap::iterator SVI;
480 bool Inserted;
481 tie(SVI, Inserted) =
482 SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
483 if (!Inserted) {
484 DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
485 << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
486 return SVI->second.DefMI;
487 }
488
489 DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
490 << UseVNI->id << '@' << UseVNI->def << '\n');
491
492 // List of (Reg, VNI) that have been inserted into SibValues, but need to be
493 // processed.
494 SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
495 WorkList.push_back(std::make_pair(UseReg, UseVNI));
496
497 do {
498 unsigned Reg;
499 VNInfo *VNI;
500 tie(Reg, VNI) = WorkList.pop_back_val();
501 DEBUG(dbgs() << " " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
502 << ":\t");
503
504 // First check if this value has already been computed.
505 SVI = SibValues.find(VNI);
506 assert(SVI != SibValues.end() && "Missing SibValues entry");
507
508 // Trace through PHI-defs created by live range splitting.
509 if (VNI->isPHIDef()) {
510 // Stop at original PHIs. We don't know the value at the predecessors.
511 if (VNI->def == OrigVNI->def) {
512 DEBUG(dbgs() << "orig phi value\n");
513 SVI->second.DefByOrigPHI = true;
514 SVI->second.AllDefsAreReloads = false;
515 propagateSiblingValue(SVI);
516 continue;
517 }
518
519 // This is a PHI inserted by live range splitting. We could trace the
520 // live-out value from predecessor blocks, but that search can be very
521 // expensive if there are many predecessors and many more PHIs as
522 // generated by tail-dup when it sees an indirectbr. Instead, look at
523 // all the non-PHI defs that have the same value as OrigVNI. They must
524 // jointly dominate VNI->def. This is not optimal since VNI may actually
525 // be jointly dominated by a smaller subset of defs, so there is a change
526 // we will miss a AllDefsAreReloads optimization.
527
528 // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
529 SmallVector<VNInfo*, 8> PHIs, NonPHIs;
530 LiveInterval &LI = LIS.getInterval(Reg);
531 LiveInterval &OrigLI = LIS.getInterval(Original);
532
533 for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
534 VI != VE; ++VI) {
535 VNInfo *VNI2 = *VI;
536 if (VNI2->isUnused())
537 continue;
538 if (!OrigLI.containsOneValue() &&
539 OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
540 continue;
541 if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
542 PHIs.push_back(VNI2);
543 else
544 NonPHIs.push_back(VNI2);
545 }
546 DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
547 << " phi-defs, and " << NonPHIs.size()
548 << " non-phi/orig defs\n");
549
550 // Create entries for all the PHIs. Don't add them to the worklist, we
551 // are processing all of them in one go here.
552 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
553 SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
554
555 // Add every PHI as a dependent of all the non-PHIs.
556 for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
557 VNInfo *NonPHI = NonPHIs[i];
558 // Known value? Try an insertion.
559 tie(SVI, Inserted) =
560 SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
561 // Add all the PHIs as dependents of NonPHI.
562 for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
563 SVI->second.Deps.push_back(PHIs[pi]);
564 // This is the first time we see NonPHI, add it to the worklist.
565 if (Inserted)
566 WorkList.push_back(std::make_pair(Reg, NonPHI));
567 else
568 // Propagate to all inserted PHIs, not just VNI.
569 propagateSiblingValue(SVI);
570 }
571
572 // Next work list item.
573 continue;
574 }
575
576 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
577 assert(MI && "Missing def");
578
579 // Trace through sibling copies.
580 if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
581 if (isSibling(SrcReg)) {
582 LiveInterval &SrcLI = LIS.getInterval(SrcReg);
583 LiveRangeQuery SrcQ(SrcLI, VNI->def);
584 assert(SrcQ.valueIn() && "Copy from non-existing value");
585 // Check if this COPY kills its source.
586 SVI->second.KillsSource = SrcQ.isKill();
587 VNInfo *SrcVNI = SrcQ.valueIn();
588 DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
589 << SrcVNI->id << '@' << SrcVNI->def
590 << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
591 // Known sibling source value? Try an insertion.
592 tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI,
593 SibValueInfo(SrcReg, SrcVNI)));
594 // This is the first time we see Src, add it to the worklist.
595 if (Inserted)
596 WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
597 propagateSiblingValue(SVI, VNI);
598 // Next work list item.
599 continue;
600 }
601 }
602
603 // Track reachable reloads.
604 SVI->second.DefMI = MI;
605 SVI->second.SpillMBB = MI->getParent();
606 int FI;
607 if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
608 DEBUG(dbgs() << "reload\n");
609 propagateSiblingValue(SVI);
610 // Next work list item.
611 continue;
612 }
613
614 // Potential remat candidate.
615 DEBUG(dbgs() << "def " << *MI);
616 SVI->second.AllDefsAreReloads = false;
617 propagateSiblingValue(SVI);
618 } while (!WorkList.empty());
619
620 // Look up the value we were looking for. We already did this lookup at the
621 // top of the function, but SibValues may have been invalidated.
622 SVI = SibValues.find(UseVNI);
623 assert(SVI != SibValues.end() && "Didn't compute requested info");
624 DEBUG(dbgs() << " traced to:\t" << SVI->second);
625 return SVI->second.DefMI;
626 }
627
628 /// analyzeSiblingValues - Trace values defined by sibling copies back to
629 /// something that isn't a sibling copy.
630 ///
631 /// Keep track of values that may be rematerializable.
analyzeSiblingValues()632 void InlineSpiller::analyzeSiblingValues() {
633 SibValues.clear();
634
635 // No siblings at all?
636 if (Edit->getReg() == Original)
637 return;
638
639 LiveInterval &OrigLI = LIS.getInterval(Original);
640 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
641 unsigned Reg = RegsToSpill[i];
642 LiveInterval &LI = LIS.getInterval(Reg);
643 for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
644 VE = LI.vni_end(); VI != VE; ++VI) {
645 VNInfo *VNI = *VI;
646 if (VNI->isUnused())
647 continue;
648 MachineInstr *DefMI = 0;
649 if (!VNI->isPHIDef()) {
650 DefMI = LIS.getInstructionFromIndex(VNI->def);
651 assert(DefMI && "No defining instruction");
652 }
653 // Check possible sibling copies.
654 if (VNI->isPHIDef() || DefMI->isCopy()) {
655 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
656 assert(OrigVNI && "Def outside original live range");
657 if (OrigVNI->def != VNI->def)
658 DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
659 }
660 if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
661 DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
662 << VNI->def << " may remat from " << *DefMI);
663 }
664 }
665 }
666 }
667
668 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
669 /// a spill at a better location.
hoistSpill(LiveInterval & SpillLI,MachineInstr * CopyMI)670 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
671 SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
672 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
673 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
674 SibValueMap::iterator I = SibValues.find(VNI);
675 if (I == SibValues.end())
676 return false;
677
678 const SibValueInfo &SVI = I->second;
679
680 // Let the normal folding code deal with the boring case.
681 if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
682 return false;
683
684 // SpillReg may have been deleted by remat and DCE.
685 if (!LIS.hasInterval(SVI.SpillReg)) {
686 DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
687 SibValues.erase(I);
688 return false;
689 }
690
691 LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
692 if (!SibLI.containsValue(SVI.SpillVNI)) {
693 DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
694 SibValues.erase(I);
695 return false;
696 }
697
698 // Conservatively extend the stack slot range to the range of the original
699 // value. We may be able to do better with stack slot coloring by being more
700 // careful here.
701 assert(StackInt && "No stack slot assigned yet.");
702 LiveInterval &OrigLI = LIS.getInterval(Original);
703 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
704 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
705 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
706 << *StackInt << '\n');
707
708 // Already spilled everywhere.
709 if (SVI.AllDefsAreReloads) {
710 DEBUG(dbgs() << "\tno spill needed: " << SVI);
711 ++NumOmitReloadSpill;
712 return true;
713 }
714 // We are going to spill SVI.SpillVNI immediately after its def, so clear out
715 // any later spills of the same value.
716 eliminateRedundantSpills(SibLI, SVI.SpillVNI);
717
718 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
719 MachineBasicBlock::iterator MII;
720 if (SVI.SpillVNI->isPHIDef())
721 MII = MBB->SkipPHIsAndLabels(MBB->begin());
722 else {
723 MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
724 assert(DefMI && "Defining instruction disappeared");
725 MII = DefMI;
726 ++MII;
727 }
728 // Insert spill without kill flag immediately after def.
729 TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
730 MRI.getRegClass(SVI.SpillReg), &TRI);
731 --MII; // Point to store instruction.
732 LIS.InsertMachineInstrInMaps(MII);
733 DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
734
735 ++NumSpills;
736 ++NumHoists;
737 return true;
738 }
739
740 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
741 /// redundant spills of this value in SLI.reg and sibling copies.
eliminateRedundantSpills(LiveInterval & SLI,VNInfo * VNI)742 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
743 assert(VNI && "Missing value");
744 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
745 WorkList.push_back(std::make_pair(&SLI, VNI));
746 assert(StackInt && "No stack slot assigned yet.");
747
748 do {
749 LiveInterval *LI;
750 tie(LI, VNI) = WorkList.pop_back_val();
751 unsigned Reg = LI->reg;
752 DEBUG(dbgs() << "Checking redundant spills for "
753 << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
754
755 // Regs to spill are taken care of.
756 if (isRegToSpill(Reg))
757 continue;
758
759 // Add all of VNI's live range to StackInt.
760 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
761 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
762
763 // Find all spills and copies of VNI.
764 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
765 MachineInstr *MI = UI.skipInstruction();) {
766 if (!MI->isCopy() && !MI->mayStore())
767 continue;
768 SlotIndex Idx = LIS.getInstructionIndex(MI);
769 if (LI->getVNInfoAt(Idx) != VNI)
770 continue;
771
772 // Follow sibling copies down the dominator tree.
773 if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
774 if (isSibling(DstReg)) {
775 LiveInterval &DstLI = LIS.getInterval(DstReg);
776 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
777 assert(DstVNI && "Missing defined value");
778 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
779 WorkList.push_back(std::make_pair(&DstLI, DstVNI));
780 }
781 continue;
782 }
783
784 // Erase spills.
785 int FI;
786 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
787 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
788 // eliminateDeadDefs won't normally remove stores, so switch opcode.
789 MI->setDesc(TII.get(TargetOpcode::KILL));
790 DeadDefs.push_back(MI);
791 ++NumSpillsRemoved;
792 --NumSpills;
793 }
794 }
795 } while (!WorkList.empty());
796 }
797
798
799 //===----------------------------------------------------------------------===//
800 // Rematerialization
801 //===----------------------------------------------------------------------===//
802
803 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
804 /// instruction cannot be eliminated. See through snippet copies
markValueUsed(LiveInterval * LI,VNInfo * VNI)805 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
806 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
807 WorkList.push_back(std::make_pair(LI, VNI));
808 do {
809 tie(LI, VNI) = WorkList.pop_back_val();
810 if (!UsedValues.insert(VNI))
811 continue;
812
813 if (VNI->isPHIDef()) {
814 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
815 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
816 PE = MBB->pred_end(); PI != PE; ++PI) {
817 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI));
818 if (PVNI)
819 WorkList.push_back(std::make_pair(LI, PVNI));
820 }
821 continue;
822 }
823
824 // Follow snippet copies.
825 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
826 if (!SnippetCopies.count(MI))
827 continue;
828 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
829 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
830 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
831 assert(SnipVNI && "Snippet undefined before copy");
832 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
833 } while (!WorkList.empty());
834 }
835
836 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
reMaterializeFor(LiveInterval & VirtReg,MachineBasicBlock::iterator MI)837 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
838 MachineBasicBlock::iterator MI) {
839 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
840 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
841
842 if (!ParentVNI) {
843 DEBUG(dbgs() << "\tadding <undef> flags: ");
844 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
845 MachineOperand &MO = MI->getOperand(i);
846 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
847 MO.setIsUndef();
848 }
849 DEBUG(dbgs() << UseIdx << '\t' << *MI);
850 return true;
851 }
852
853 if (SnippetCopies.count(MI))
854 return false;
855
856 // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
857 LiveRangeEdit::Remat RM(ParentVNI);
858 SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
859 if (SibI != SibValues.end())
860 RM.OrigMI = SibI->second.DefMI;
861 if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
862 markValueUsed(&VirtReg, ParentVNI);
863 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
864 return false;
865 }
866
867 // If the instruction also writes VirtReg.reg, it had better not require the
868 // same register for uses and defs.
869 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
870 MIBundleOperands::VirtRegInfo RI =
871 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
872 if (RI.Tied) {
873 markValueUsed(&VirtReg, ParentVNI);
874 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
875 return false;
876 }
877
878 // Before rematerializing into a register for a single instruction, try to
879 // fold a load into the instruction. That avoids allocating a new register.
880 if (RM.OrigMI->canFoldAsLoad() &&
881 foldMemoryOperand(Ops, RM.OrigMI)) {
882 Edit->markRematerialized(RM.ParentVNI);
883 ++NumFoldedLoads;
884 return true;
885 }
886
887 // Alocate a new register for the remat.
888 LiveInterval &NewLI = Edit->createFrom(Original);
889 NewLI.markNotSpillable();
890
891 // Finally we can rematerialize OrigMI before MI.
892 SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
893 TRI);
894 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
895 << *LIS.getInstructionFromIndex(DefIdx));
896
897 // Replace operands
898 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
899 MachineOperand &MO = MI->getOperand(Ops[i].second);
900 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
901 MO.setReg(NewLI.reg);
902 MO.setIsKill();
903 }
904 }
905 DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI);
906
907 VNInfo *DefVNI = NewLI.getNextValue(DefIdx, LIS.getVNInfoAllocator());
908 NewLI.addRange(LiveRange(DefIdx, UseIdx.getRegSlot(), DefVNI));
909 DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
910 ++NumRemats;
911 return true;
912 }
913
914 /// reMaterializeAll - Try to rematerialize as many uses as possible,
915 /// and trim the live ranges after.
reMaterializeAll()916 void InlineSpiller::reMaterializeAll() {
917 // analyzeSiblingValues has already tested all relevant defining instructions.
918 if (!Edit->anyRematerializable(AA))
919 return;
920
921 UsedValues.clear();
922
923 // Try to remat before all uses of snippets.
924 bool anyRemat = false;
925 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
926 unsigned Reg = RegsToSpill[i];
927 LiveInterval &LI = LIS.getInterval(Reg);
928 for (MachineRegisterInfo::use_nodbg_iterator
929 RI = MRI.use_nodbg_begin(Reg);
930 MachineInstr *MI = RI.skipBundle();)
931 anyRemat |= reMaterializeFor(LI, MI);
932 }
933 if (!anyRemat)
934 return;
935
936 // Remove any values that were completely rematted.
937 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
938 unsigned Reg = RegsToSpill[i];
939 LiveInterval &LI = LIS.getInterval(Reg);
940 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
941 I != E; ++I) {
942 VNInfo *VNI = *I;
943 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
944 continue;
945 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
946 MI->addRegisterDead(Reg, &TRI);
947 if (!MI->allDefsAreDead())
948 continue;
949 DEBUG(dbgs() << "All defs dead: " << *MI);
950 DeadDefs.push_back(MI);
951 }
952 }
953
954 // Eliminate dead code after remat. Note that some snippet copies may be
955 // deleted here.
956 if (DeadDefs.empty())
957 return;
958 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
959 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
960
961 // Get rid of deleted and empty intervals.
962 unsigned ResultPos = 0;
963 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
964 unsigned Reg = RegsToSpill[i];
965 if (!LIS.hasInterval(Reg))
966 continue;
967
968 LiveInterval &LI = LIS.getInterval(Reg);
969 if (LI.empty()) {
970 Edit->eraseVirtReg(Reg);
971 continue;
972 }
973
974 RegsToSpill[ResultPos++] = Reg;
975 }
976 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
977 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
978 }
979
980
981 //===----------------------------------------------------------------------===//
982 // Spilling
983 //===----------------------------------------------------------------------===//
984
985 /// If MI is a load or store of StackSlot, it can be removed.
coalesceStackAccess(MachineInstr * MI,unsigned Reg)986 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
987 int FI = 0;
988 unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
989 bool IsLoad = InstrReg;
990 if (!IsLoad)
991 InstrReg = TII.isStoreToStackSlot(MI, FI);
992
993 // We have a stack access. Is it the right register and slot?
994 if (InstrReg != Reg || FI != StackSlot)
995 return false;
996
997 DEBUG(dbgs() << "Coalescing stack access: " << *MI);
998 LIS.RemoveMachineInstrFromMaps(MI);
999 MI->eraseFromParent();
1000
1001 if (IsLoad) {
1002 ++NumReloadsRemoved;
1003 --NumReloads;
1004 } else {
1005 ++NumSpillsRemoved;
1006 --NumSpills;
1007 }
1008
1009 return true;
1010 }
1011
1012 /// foldMemoryOperand - Try folding stack slot references in Ops into their
1013 /// instructions.
1014 ///
1015 /// @param Ops Operand indices from analyzeVirtReg().
1016 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
1017 /// @return True on success.
1018 bool InlineSpiller::
foldMemoryOperand(ArrayRef<std::pair<MachineInstr *,unsigned>> Ops,MachineInstr * LoadMI)1019 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
1020 MachineInstr *LoadMI) {
1021 if (Ops.empty())
1022 return false;
1023 // Don't attempt folding in bundles.
1024 MachineInstr *MI = Ops.front().first;
1025 if (Ops.back().first != MI || MI->isBundled())
1026 return false;
1027
1028 bool WasCopy = MI->isCopy();
1029 unsigned ImpReg = 0;
1030
1031 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
1032 // operands.
1033 SmallVector<unsigned, 8> FoldOps;
1034 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1035 unsigned Idx = Ops[i].second;
1036 MachineOperand &MO = MI->getOperand(Idx);
1037 if (MO.isImplicit()) {
1038 ImpReg = MO.getReg();
1039 continue;
1040 }
1041 // FIXME: Teach targets to deal with subregs.
1042 if (MO.getSubReg())
1043 return false;
1044 // We cannot fold a load instruction into a def.
1045 if (LoadMI && MO.isDef())
1046 return false;
1047 // Tied use operands should not be passed to foldMemoryOperand.
1048 if (!MI->isRegTiedToDefOperand(Idx))
1049 FoldOps.push_back(Idx);
1050 }
1051
1052 MachineInstr *FoldMI =
1053 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
1054 : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
1055 if (!FoldMI)
1056 return false;
1057
1058 // Remove LIS for any dead defs in the original MI not in FoldMI.
1059 for (MIBundleOperands MO(MI); MO.isValid(); ++MO) {
1060 if (!MO->isReg())
1061 continue;
1062 unsigned Reg = MO->getReg();
1063 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
1064 MRI.isReserved(Reg)) {
1065 continue;
1066 }
1067 MIBundleOperands::PhysRegInfo RI =
1068 MIBundleOperands(FoldMI).analyzePhysReg(Reg, &TRI);
1069 if (MO->readsReg()) {
1070 assert(RI.Reads && "Cannot fold physreg reader");
1071 continue;
1072 }
1073 if (RI.Defines)
1074 continue;
1075 // FoldMI does not define this physreg. Remove the LI segment.
1076 assert(MO->isDead() && "Cannot fold physreg def");
1077 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) {
1078 if (LiveInterval *LI = LIS.getCachedRegUnit(*Units)) {
1079 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1080 if (VNInfo *VNI = LI->getVNInfoAt(Idx))
1081 LI->removeValNo(VNI);
1082 }
1083 }
1084 }
1085 LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
1086 MI->eraseFromParent();
1087
1088 // TII.foldMemoryOperand may have left some implicit operands on the
1089 // instruction. Strip them.
1090 if (ImpReg)
1091 for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1092 MachineOperand &MO = FoldMI->getOperand(i - 1);
1093 if (!MO.isReg() || !MO.isImplicit())
1094 break;
1095 if (MO.getReg() == ImpReg)
1096 FoldMI->RemoveOperand(i - 1);
1097 }
1098
1099 DEBUG(dbgs() << "\tfolded: " << LIS.getInstructionIndex(FoldMI) << '\t'
1100 << *FoldMI);
1101 if (!WasCopy)
1102 ++NumFolded;
1103 else if (Ops.front().second == 0)
1104 ++NumSpills;
1105 else
1106 ++NumReloads;
1107 return true;
1108 }
1109
1110 /// insertReload - Insert a reload of NewLI.reg before MI.
insertReload(LiveInterval & NewLI,SlotIndex Idx,MachineBasicBlock::iterator MI)1111 void InlineSpiller::insertReload(LiveInterval &NewLI,
1112 SlotIndex Idx,
1113 MachineBasicBlock::iterator MI) {
1114 MachineBasicBlock &MBB = *MI->getParent();
1115 TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot,
1116 MRI.getRegClass(NewLI.reg), &TRI);
1117 --MI; // Point to load instruction.
1118 SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
1119 // Some (out-of-tree) targets have EC reload instructions.
1120 if (MachineOperand *MO = MI->findRegisterDefOperand(NewLI.reg))
1121 if (MO->isEarlyClobber())
1122 LoadIdx = LoadIdx.getRegSlot(true);
1123 DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI);
1124 VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, LIS.getVNInfoAllocator());
1125 NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
1126 ++NumReloads;
1127 }
1128
1129 /// insertSpill - Insert a spill of NewLI.reg after MI.
insertSpill(LiveInterval & NewLI,const LiveInterval & OldLI,SlotIndex Idx,MachineBasicBlock::iterator MI)1130 void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
1131 SlotIndex Idx, MachineBasicBlock::iterator MI) {
1132 MachineBasicBlock &MBB = *MI->getParent();
1133 TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot,
1134 MRI.getRegClass(NewLI.reg), &TRI);
1135 --MI; // Point to store instruction.
1136 SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
1137 DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
1138 VNInfo *StoreVNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
1139 NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
1140 ++NumSpills;
1141 }
1142
1143 /// spillAroundUses - insert spill code around each use of Reg.
spillAroundUses(unsigned Reg)1144 void InlineSpiller::spillAroundUses(unsigned Reg) {
1145 DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
1146 LiveInterval &OldLI = LIS.getInterval(Reg);
1147
1148 // Iterate over instructions using Reg.
1149 for (MachineRegisterInfo::reg_iterator RegI = MRI.reg_begin(Reg);
1150 MachineInstr *MI = RegI.skipBundle();) {
1151
1152 // Debug values are not allowed to affect codegen.
1153 if (MI->isDebugValue()) {
1154 // Modify DBG_VALUE now that the value is in a spill slot.
1155 bool IsIndirect = MI->getOperand(1).isImm();
1156 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
1157 const MDNode *MDPtr = MI->getOperand(2).getMetadata();
1158 DebugLoc DL = MI->getDebugLoc();
1159 DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
1160 MachineBasicBlock *MBB = MI->getParent();
1161 BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE))
1162 .addFrameIndex(StackSlot).addImm(Offset).addMetadata(MDPtr);
1163 continue;
1164 }
1165
1166 // Ignore copies to/from snippets. We'll delete them.
1167 if (SnippetCopies.count(MI))
1168 continue;
1169
1170 // Stack slot accesses may coalesce away.
1171 if (coalesceStackAccess(MI, Reg))
1172 continue;
1173
1174 // Analyze instruction.
1175 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1176 MIBundleOperands::VirtRegInfo RI =
1177 MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops);
1178
1179 // Find the slot index where this instruction reads and writes OldLI.
1180 // This is usually the def slot, except for tied early clobbers.
1181 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1182 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1183 if (SlotIndex::isSameInstr(Idx, VNI->def))
1184 Idx = VNI->def;
1185
1186 // Check for a sibling copy.
1187 unsigned SibReg = isFullCopyOf(MI, Reg);
1188 if (SibReg && isSibling(SibReg)) {
1189 // This may actually be a copy between snippets.
1190 if (isRegToSpill(SibReg)) {
1191 DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1192 SnippetCopies.insert(MI);
1193 continue;
1194 }
1195 if (RI.Writes) {
1196 // Hoist the spill of a sib-reg copy.
1197 if (hoistSpill(OldLI, MI)) {
1198 // This COPY is now dead, the value is already in the stack slot.
1199 MI->getOperand(0).setIsDead();
1200 DeadDefs.push_back(MI);
1201 continue;
1202 }
1203 } else {
1204 // This is a reload for a sib-reg copy. Drop spills downstream.
1205 LiveInterval &SibLI = LIS.getInterval(SibReg);
1206 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1207 // The COPY will fold to a reload below.
1208 }
1209 }
1210
1211 // Attempt to fold memory ops.
1212 if (foldMemoryOperand(Ops))
1213 continue;
1214
1215 // Allocate interval around instruction.
1216 // FIXME: Infer regclass from instruction alone.
1217 LiveInterval &NewLI = Edit->createFrom(Reg);
1218 NewLI.markNotSpillable();
1219
1220 if (RI.Reads)
1221 insertReload(NewLI, Idx, MI);
1222
1223 // Rewrite instruction operands.
1224 bool hasLiveDef = false;
1225 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1226 MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
1227 MO.setReg(NewLI.reg);
1228 if (MO.isUse()) {
1229 if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
1230 MO.setIsKill();
1231 } else {
1232 if (!MO.isDead())
1233 hasLiveDef = true;
1234 }
1235 }
1236 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI);
1237
1238 // FIXME: Use a second vreg if instruction has no tied ops.
1239 if (RI.Writes) {
1240 if (hasLiveDef)
1241 insertSpill(NewLI, OldLI, Idx, MI);
1242 else {
1243 // This instruction defines a dead value. We don't need to spill it,
1244 // but do create a live range for the dead value.
1245 VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
1246 NewLI.addRange(LiveRange(Idx, Idx.getDeadSlot(), VNI));
1247 }
1248 }
1249
1250 DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
1251 }
1252 }
1253
1254 /// spillAll - Spill all registers remaining after rematerialization.
spillAll()1255 void InlineSpiller::spillAll() {
1256 // Update LiveStacks now that we are committed to spilling.
1257 if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1258 StackSlot = VRM.assignVirt2StackSlot(Original);
1259 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1260 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1261 } else
1262 StackInt = &LSS.getInterval(StackSlot);
1263
1264 if (Original != Edit->getReg())
1265 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1266
1267 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1268 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1269 StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
1270 StackInt->getValNumInfo(0));
1271 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1272
1273 // Spill around uses of all RegsToSpill.
1274 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1275 spillAroundUses(RegsToSpill[i]);
1276
1277 // Hoisted spills may cause dead code.
1278 if (!DeadDefs.empty()) {
1279 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1280 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1281 }
1282
1283 // Finally delete the SnippetCopies.
1284 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
1285 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]);
1286 MachineInstr *MI = RI.skipInstruction();) {
1287 assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
1288 // FIXME: Do this with a LiveRangeEdit callback.
1289 LIS.RemoveMachineInstrFromMaps(MI);
1290 MI->eraseFromParent();
1291 }
1292 }
1293
1294 // Delete all spilled registers.
1295 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1296 Edit->eraseVirtReg(RegsToSpill[i]);
1297 }
1298
spill(LiveRangeEdit & edit)1299 void InlineSpiller::spill(LiveRangeEdit &edit) {
1300 ++NumSpilledRanges;
1301 Edit = &edit;
1302 assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1303 && "Trying to spill a stack slot.");
1304 // Share a stack slot among all descendants of Original.
1305 Original = VRM.getOriginal(edit.getReg());
1306 StackSlot = VRM.getStackSlot(Original);
1307 StackInt = 0;
1308
1309 DEBUG(dbgs() << "Inline spilling "
1310 << MRI.getRegClass(edit.getReg())->getName()
1311 << ':' << PrintReg(edit.getReg()) << ' ' << edit.getParent()
1312 << "\nFrom original " << LIS.getInterval(Original) << '\n');
1313 assert(edit.getParent().isSpillable() &&
1314 "Attempting to spill already spilled value.");
1315 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1316
1317 collectRegsToSpill();
1318 analyzeSiblingValues();
1319 reMaterializeAll();
1320
1321 // Remat may handle everything.
1322 if (!RegsToSpill.empty())
1323 spillAll();
1324
1325 Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1326 }
1327