• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 //    of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 //    widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 //    of vectorization. It decides on the optimal vector width, which
27 //    can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // Other ideas/concepts are from:
38 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39 //
40 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41 //  Vectorizing Compilers.
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #define LV_NAME "loop-vectorize"
46 #define DEBUG_TYPE LV_NAME
47 
48 #include "llvm/Transforms/Vectorize.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/EquivalenceClasses.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/SetVector.h"
53 #include "llvm/ADT/SmallPtrSet.h"
54 #include "llvm/ADT/SmallSet.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/Analysis/AliasAnalysis.h"
58 #include "llvm/Analysis/Dominators.h"
59 #include "llvm/Analysis/LoopInfo.h"
60 #include "llvm/Analysis/LoopIterator.h"
61 #include "llvm/Analysis/LoopPass.h"
62 #include "llvm/Analysis/ScalarEvolution.h"
63 #include "llvm/Analysis/ScalarEvolutionExpander.h"
64 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/Analysis/ValueTracking.h"
67 #include "llvm/Analysis/Verifier.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/IRBuilder.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/LLVMContext.h"
76 #include "llvm/IR/Module.h"
77 #include "llvm/IR/Type.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/PatternMatch.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/Support/ValueHandle.h"
85 #include "llvm/Target/TargetLibraryInfo.h"
86 #include "llvm/Transforms/Scalar.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/Local.h"
89 #include <algorithm>
90 #include <map>
91 
92 using namespace llvm;
93 using namespace llvm::PatternMatch;
94 
95 static cl::opt<unsigned>
96 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
97                     cl::desc("Sets the SIMD width. Zero is autoselect."));
98 
99 static cl::opt<unsigned>
100 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
101                     cl::desc("Sets the vectorization unroll count. "
102                              "Zero is autoselect."));
103 
104 static cl::opt<bool>
105 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
106                    cl::desc("Enable if-conversion during vectorization."));
107 
108 /// We don't vectorize loops with a known constant trip count below this number.
109 static cl::opt<unsigned>
110 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
111                              cl::Hidden,
112                              cl::desc("Don't vectorize loops with a constant "
113                                       "trip count that is smaller than this "
114                                       "value."));
115 
116 /// We don't unroll loops with a known constant trip count below this number.
117 static const unsigned TinyTripCountUnrollThreshold = 128;
118 
119 /// When performing memory disambiguation checks at runtime do not make more
120 /// than this number of comparisons.
121 static const unsigned RuntimeMemoryCheckThreshold = 8;
122 
123 /// Maximum simd width.
124 static const unsigned MaxVectorWidth = 64;
125 
126 /// Maximum vectorization unroll count.
127 static const unsigned MaxUnrollFactor = 16;
128 
129 namespace {
130 
131 // Forward declarations.
132 class LoopVectorizationLegality;
133 class LoopVectorizationCostModel;
134 
135 /// InnerLoopVectorizer vectorizes loops which contain only one basic
136 /// block to a specified vectorization factor (VF).
137 /// This class performs the widening of scalars into vectors, or multiple
138 /// scalars. This class also implements the following features:
139 /// * It inserts an epilogue loop for handling loops that don't have iteration
140 ///   counts that are known to be a multiple of the vectorization factor.
141 /// * It handles the code generation for reduction variables.
142 /// * Scalarization (implementation using scalars) of un-vectorizable
143 ///   instructions.
144 /// InnerLoopVectorizer does not perform any vectorization-legality
145 /// checks, and relies on the caller to check for the different legality
146 /// aspects. The InnerLoopVectorizer relies on the
147 /// LoopVectorizationLegality class to provide information about the induction
148 /// and reduction variables that were found to a given vectorization factor.
149 class InnerLoopVectorizer {
150 public:
InnerLoopVectorizer(Loop * OrigLoop,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,DataLayout * DL,const TargetLibraryInfo * TLI,unsigned VecWidth,unsigned UnrollFactor)151   InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
152                       DominatorTree *DT, DataLayout *DL,
153                       const TargetLibraryInfo *TLI, unsigned VecWidth,
154                       unsigned UnrollFactor)
155       : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
156         VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
157         OldInduction(0), WidenMap(UnrollFactor) {}
158 
159   // Perform the actual loop widening (vectorization).
vectorize(LoopVectorizationLegality * Legal)160   void vectorize(LoopVectorizationLegality *Legal) {
161     // Create a new empty loop. Unlink the old loop and connect the new one.
162     createEmptyLoop(Legal);
163     // Widen each instruction in the old loop to a new one in the new loop.
164     // Use the Legality module to find the induction and reduction variables.
165     vectorizeLoop(Legal);
166     // Register the new loop and update the analysis passes.
167     updateAnalysis();
168   }
169 
170 private:
171   /// A small list of PHINodes.
172   typedef SmallVector<PHINode*, 4> PhiVector;
173   /// When we unroll loops we have multiple vector values for each scalar.
174   /// This data structure holds the unrolled and vectorized values that
175   /// originated from one scalar instruction.
176   typedef SmallVector<Value*, 2> VectorParts;
177 
178   // When we if-convert we need create edge masks. We have to cache values so
179   // that we don't end up with exponential recursion/IR.
180   typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
181                    VectorParts> EdgeMaskCache;
182 
183   /// Add code that checks at runtime if the accessed arrays overlap.
184   /// Returns the comparator value or NULL if no check is needed.
185   Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
186                                Instruction *Loc);
187   /// Create an empty loop, based on the loop ranges of the old loop.
188   void createEmptyLoop(LoopVectorizationLegality *Legal);
189   /// Copy and widen the instructions from the old loop.
190   void vectorizeLoop(LoopVectorizationLegality *Legal);
191 
192   /// A helper function that computes the predicate of the block BB, assuming
193   /// that the header block of the loop is set to True. It returns the *entry*
194   /// mask for the block BB.
195   VectorParts createBlockInMask(BasicBlock *BB);
196   /// A helper function that computes the predicate of the edge between SRC
197   /// and DST.
198   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
199 
200   /// A helper function to vectorize a single BB within the innermost loop.
201   void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
202                             PhiVector *PV);
203 
204   /// Insert the new loop to the loop hierarchy and pass manager
205   /// and update the analysis passes.
206   void updateAnalysis();
207 
208   /// This instruction is un-vectorizable. Implement it as a sequence
209   /// of scalars.
210   void scalarizeInstruction(Instruction *Instr);
211 
212   /// Vectorize Load and Store instructions,
213   void vectorizeMemoryInstruction(Instruction *Instr,
214                                   LoopVectorizationLegality *Legal);
215 
216   /// Create a broadcast instruction. This method generates a broadcast
217   /// instruction (shuffle) for loop invariant values and for the induction
218   /// value. If this is the induction variable then we extend it to N, N+1, ...
219   /// this is needed because each iteration in the loop corresponds to a SIMD
220   /// element.
221   Value *getBroadcastInstrs(Value *V);
222 
223   /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
224   /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
225   /// The sequence starts at StartIndex.
226   Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
227 
228   /// When we go over instructions in the basic block we rely on previous
229   /// values within the current basic block or on loop invariant values.
230   /// When we widen (vectorize) values we place them in the map. If the values
231   /// are not within the map, they have to be loop invariant, so we simply
232   /// broadcast them into a vector.
233   VectorParts &getVectorValue(Value *V);
234 
235   /// Generate a shuffle sequence that will reverse the vector Vec.
236   Value *reverseVector(Value *Vec);
237 
238   /// This is a helper class that holds the vectorizer state. It maps scalar
239   /// instructions to vector instructions. When the code is 'unrolled' then
240   /// then a single scalar value is mapped to multiple vector parts. The parts
241   /// are stored in the VectorPart type.
242   struct ValueMap {
243     /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
244     /// are mapped.
ValueMap__anon8ed721d90111::InnerLoopVectorizer::ValueMap245     ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
246 
247     /// \return True if 'Key' is saved in the Value Map.
has__anon8ed721d90111::InnerLoopVectorizer::ValueMap248     bool has(Value *Key) const { return MapStorage.count(Key); }
249 
250     /// Initializes a new entry in the map. Sets all of the vector parts to the
251     /// save value in 'Val'.
252     /// \return A reference to a vector with splat values.
splat__anon8ed721d90111::InnerLoopVectorizer::ValueMap253     VectorParts &splat(Value *Key, Value *Val) {
254       VectorParts &Entry = MapStorage[Key];
255       Entry.assign(UF, Val);
256       return Entry;
257     }
258 
259     ///\return A reference to the value that is stored at 'Key'.
get__anon8ed721d90111::InnerLoopVectorizer::ValueMap260     VectorParts &get(Value *Key) {
261       VectorParts &Entry = MapStorage[Key];
262       if (Entry.empty())
263         Entry.resize(UF);
264       assert(Entry.size() == UF);
265       return Entry;
266     }
267 
268   private:
269     /// The unroll factor. Each entry in the map stores this number of vector
270     /// elements.
271     unsigned UF;
272 
273     /// Map storage. We use std::map and not DenseMap because insertions to a
274     /// dense map invalidates its iterators.
275     std::map<Value *, VectorParts> MapStorage;
276   };
277 
278   /// The original loop.
279   Loop *OrigLoop;
280   /// Scev analysis to use.
281   ScalarEvolution *SE;
282   /// Loop Info.
283   LoopInfo *LI;
284   /// Dominator Tree.
285   DominatorTree *DT;
286   /// Data Layout.
287   DataLayout *DL;
288   /// Target Library Info.
289   const TargetLibraryInfo *TLI;
290 
291   /// The vectorization SIMD factor to use. Each vector will have this many
292   /// vector elements.
293   unsigned VF;
294   /// The vectorization unroll factor to use. Each scalar is vectorized to this
295   /// many different vector instructions.
296   unsigned UF;
297 
298   /// The builder that we use
299   IRBuilder<> Builder;
300 
301   // --- Vectorization state ---
302 
303   /// The vector-loop preheader.
304   BasicBlock *LoopVectorPreHeader;
305   /// The scalar-loop preheader.
306   BasicBlock *LoopScalarPreHeader;
307   /// Middle Block between the vector and the scalar.
308   BasicBlock *LoopMiddleBlock;
309   ///The ExitBlock of the scalar loop.
310   BasicBlock *LoopExitBlock;
311   ///The vector loop body.
312   BasicBlock *LoopVectorBody;
313   ///The scalar loop body.
314   BasicBlock *LoopScalarBody;
315   /// A list of all bypass blocks. The first block is the entry of the loop.
316   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
317 
318   /// The new Induction variable which was added to the new block.
319   PHINode *Induction;
320   /// The induction variable of the old basic block.
321   PHINode *OldInduction;
322   /// Holds the extended (to the widest induction type) start index.
323   Value *ExtendedIdx;
324   /// Maps scalars to widened vectors.
325   ValueMap WidenMap;
326   EdgeMaskCache MaskCache;
327 };
328 
329 /// \brief Look for a meaningful debug location on the instruction or it's
330 /// operands.
getDebugLocFromInstOrOperands(Instruction * I)331 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
332   if (!I)
333     return I;
334 
335   DebugLoc Empty;
336   if (I->getDebugLoc() != Empty)
337     return I;
338 
339   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
340     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
341       if (OpInst->getDebugLoc() != Empty)
342         return OpInst;
343   }
344 
345   return I;
346 }
347 
348 /// \brief Set the debug location in the builder using the debug location in the
349 /// instruction.
setDebugLocFromInst(IRBuilder<> & B,const Value * Ptr)350 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
351   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
352     B.SetCurrentDebugLocation(Inst->getDebugLoc());
353   else
354     B.SetCurrentDebugLocation(DebugLoc());
355 }
356 
357 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
358 /// to what vectorization factor.
359 /// This class does not look at the profitability of vectorization, only the
360 /// legality. This class has two main kinds of checks:
361 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
362 ///   will change the order of memory accesses in a way that will change the
363 ///   correctness of the program.
364 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
365 /// checks for a number of different conditions, such as the availability of a
366 /// single induction variable, that all types are supported and vectorize-able,
367 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
368 /// This class is also used by InnerLoopVectorizer for identifying
369 /// induction variable and the different reduction variables.
370 class LoopVectorizationLegality {
371 public:
LoopVectorizationLegality(Loop * L,ScalarEvolution * SE,DataLayout * DL,DominatorTree * DT,TargetLibraryInfo * TLI)372   LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
373                             DominatorTree *DT, TargetLibraryInfo *TLI)
374       : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI),
375         Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
376         MaxSafeDepDistBytes(-1U) {}
377 
378   /// This enum represents the kinds of reductions that we support.
379   enum ReductionKind {
380     RK_NoReduction, ///< Not a reduction.
381     RK_IntegerAdd,  ///< Sum of integers.
382     RK_IntegerMult, ///< Product of integers.
383     RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
384     RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
385     RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
386     RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
387     RK_FloatAdd,    ///< Sum of floats.
388     RK_FloatMult,   ///< Product of floats.
389     RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
390   };
391 
392   /// This enum represents the kinds of inductions that we support.
393   enum InductionKind {
394     IK_NoInduction,         ///< Not an induction variable.
395     IK_IntInduction,        ///< Integer induction variable. Step = 1.
396     IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
397     IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
398     IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
399   };
400 
401   // This enum represents the kind of minmax reduction.
402   enum MinMaxReductionKind {
403     MRK_Invalid,
404     MRK_UIntMin,
405     MRK_UIntMax,
406     MRK_SIntMin,
407     MRK_SIntMax,
408     MRK_FloatMin,
409     MRK_FloatMax
410   };
411 
412   /// This POD struct holds information about reduction variables.
413   struct ReductionDescriptor {
ReductionDescriptor__anon8ed721d90111::LoopVectorizationLegality::ReductionDescriptor414     ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
415       Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
416 
ReductionDescriptor__anon8ed721d90111::LoopVectorizationLegality::ReductionDescriptor417     ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
418                         MinMaxReductionKind MK)
419         : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
420 
421     // The starting value of the reduction.
422     // It does not have to be zero!
423     TrackingVH<Value> StartValue;
424     // The instruction who's value is used outside the loop.
425     Instruction *LoopExitInstr;
426     // The kind of the reduction.
427     ReductionKind Kind;
428     // If this a min/max reduction the kind of reduction.
429     MinMaxReductionKind MinMaxKind;
430   };
431 
432   /// This POD struct holds information about a potential reduction operation.
433   struct ReductionInstDesc {
ReductionInstDesc__anon8ed721d90111::LoopVectorizationLegality::ReductionInstDesc434     ReductionInstDesc(bool IsRedux, Instruction *I) :
435       IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
436 
ReductionInstDesc__anon8ed721d90111::LoopVectorizationLegality::ReductionInstDesc437     ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
438       IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
439 
440     // Is this instruction a reduction candidate.
441     bool IsReduction;
442     // The last instruction in a min/max pattern (select of the select(icmp())
443     // pattern), or the current reduction instruction otherwise.
444     Instruction *PatternLastInst;
445     // If this is a min/max pattern the comparison predicate.
446     MinMaxReductionKind MinMaxKind;
447   };
448 
449   // This POD struct holds information about the memory runtime legality
450   // check that a group of pointers do not overlap.
451   struct RuntimePointerCheck {
RuntimePointerCheck__anon8ed721d90111::LoopVectorizationLegality::RuntimePointerCheck452     RuntimePointerCheck() : Need(false) {}
453 
454     /// Reset the state of the pointer runtime information.
reset__anon8ed721d90111::LoopVectorizationLegality::RuntimePointerCheck455     void reset() {
456       Need = false;
457       Pointers.clear();
458       Starts.clear();
459       Ends.clear();
460     }
461 
462     /// Insert a pointer and calculate the start and end SCEVs.
463     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
464                 unsigned DepSetId);
465 
466     /// This flag indicates if we need to add the runtime check.
467     bool Need;
468     /// Holds the pointers that we need to check.
469     SmallVector<TrackingVH<Value>, 2> Pointers;
470     /// Holds the pointer value at the beginning of the loop.
471     SmallVector<const SCEV*, 2> Starts;
472     /// Holds the pointer value at the end of the loop.
473     SmallVector<const SCEV*, 2> Ends;
474     /// Holds the information if this pointer is used for writing to memory.
475     SmallVector<bool, 2> IsWritePtr;
476     /// Holds the id of the set of pointers that could be dependent because of a
477     /// shared underlying object.
478     SmallVector<unsigned, 2> DependencySetId;
479   };
480 
481   /// A POD for saving information about induction variables.
482   struct InductionInfo {
InductionInfo__anon8ed721d90111::LoopVectorizationLegality::InductionInfo483     InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
InductionInfo__anon8ed721d90111::LoopVectorizationLegality::InductionInfo484     InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
485     /// Start value.
486     TrackingVH<Value> StartValue;
487     /// Induction kind.
488     InductionKind IK;
489   };
490 
491   /// ReductionList contains the reduction descriptors for all
492   /// of the reductions that were found in the loop.
493   typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
494 
495   /// InductionList saves induction variables and maps them to the
496   /// induction descriptor.
497   typedef MapVector<PHINode*, InductionInfo> InductionList;
498 
499   /// Returns true if it is legal to vectorize this loop.
500   /// This does not mean that it is profitable to vectorize this
501   /// loop, only that it is legal to do so.
502   bool canVectorize();
503 
504   /// Returns the Induction variable.
getInduction()505   PHINode *getInduction() { return Induction; }
506 
507   /// Returns the reduction variables found in the loop.
getReductionVars()508   ReductionList *getReductionVars() { return &Reductions; }
509 
510   /// Returns the induction variables found in the loop.
getInductionVars()511   InductionList *getInductionVars() { return &Inductions; }
512 
513   /// Returns the widest induction type.
getWidestInductionType()514   Type *getWidestInductionType() { return WidestIndTy; }
515 
516   /// Returns True if V is an induction variable in this loop.
517   bool isInductionVariable(const Value *V);
518 
519   /// Return true if the block BB needs to be predicated in order for the loop
520   /// to be vectorized.
521   bool blockNeedsPredication(BasicBlock *BB);
522 
523   /// Check if this  pointer is consecutive when vectorizing. This happens
524   /// when the last index of the GEP is the induction variable, or that the
525   /// pointer itself is an induction variable.
526   /// This check allows us to vectorize A[idx] into a wide load/store.
527   /// Returns:
528   /// 0 - Stride is unknown or non consecutive.
529   /// 1 - Address is consecutive.
530   /// -1 - Address is consecutive, and decreasing.
531   int isConsecutivePtr(Value *Ptr);
532 
533   /// Returns true if the value V is uniform within the loop.
534   bool isUniform(Value *V);
535 
536   /// Returns true if this instruction will remain scalar after vectorization.
isUniformAfterVectorization(Instruction * I)537   bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
538 
539   /// Returns the information that we collected about runtime memory check.
getRuntimePointerCheck()540   RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
541 
542   /// This function returns the identity element (or neutral element) for
543   /// the operation K.
544   static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
545 
getMaxSafeDepDistBytes()546   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
547 
548 private:
549   /// Check if a single basic block loop is vectorizable.
550   /// At this point we know that this is a loop with a constant trip count
551   /// and we only need to check individual instructions.
552   bool canVectorizeInstrs();
553 
554   /// When we vectorize loops we may change the order in which
555   /// we read and write from memory. This method checks if it is
556   /// legal to vectorize the code, considering only memory constrains.
557   /// Returns true if the loop is vectorizable
558   bool canVectorizeMemory();
559 
560   /// Return true if we can vectorize this loop using the IF-conversion
561   /// transformation.
562   bool canVectorizeWithIfConvert();
563 
564   /// Collect the variables that need to stay uniform after vectorization.
565   void collectLoopUniforms();
566 
567   /// Return true if all of the instructions in the block can be speculatively
568   /// executed. \p SafePtrs is a list of addresses that are known to be legal
569   /// and we know that we can read from them without segfault.
570   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
571 
572   /// Returns True, if 'Phi' is the kind of reduction variable for type
573   /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
574   bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
575   /// Returns a struct describing if the instruction 'I' can be a reduction
576   /// variable of type 'Kind'. If the reduction is a min/max pattern of
577   /// select(icmp()) this function advances the instruction pointer 'I' from the
578   /// compare instruction to the select instruction and stores this pointer in
579   /// 'PatternLastInst' member of the returned struct.
580   ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
581                                      ReductionInstDesc &Desc);
582   /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
583   /// pattern corresponding to a min(X, Y) or max(X, Y).
584   static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
585                                                     ReductionInstDesc &Prev);
586   /// Returns the induction kind of Phi. This function may return NoInduction
587   /// if the PHI is not an induction variable.
588   InductionKind isInductionVariable(PHINode *Phi);
589 
590   /// The loop that we evaluate.
591   Loop *TheLoop;
592   /// Scev analysis.
593   ScalarEvolution *SE;
594   /// DataLayout analysis.
595   DataLayout *DL;
596   /// Dominators.
597   DominatorTree *DT;
598   /// Target Library Info.
599   TargetLibraryInfo *TLI;
600 
601   //  ---  vectorization state --- //
602 
603   /// Holds the integer induction variable. This is the counter of the
604   /// loop.
605   PHINode *Induction;
606   /// Holds the reduction variables.
607   ReductionList Reductions;
608   /// Holds all of the induction variables that we found in the loop.
609   /// Notice that inductions don't need to start at zero and that induction
610   /// variables can be pointers.
611   InductionList Inductions;
612   /// Holds the widest induction type encountered.
613   Type *WidestIndTy;
614 
615   /// Allowed outside users. This holds the reduction
616   /// vars which can be accessed from outside the loop.
617   SmallPtrSet<Value*, 4> AllowedExit;
618   /// This set holds the variables which are known to be uniform after
619   /// vectorization.
620   SmallPtrSet<Instruction*, 4> Uniforms;
621   /// We need to check that all of the pointers in this list are disjoint
622   /// at runtime.
623   RuntimePointerCheck PtrRtCheck;
624   /// Can we assume the absence of NaNs.
625   bool HasFunNoNaNAttr;
626 
627   unsigned MaxSafeDepDistBytes;
628 };
629 
630 /// LoopVectorizationCostModel - estimates the expected speedups due to
631 /// vectorization.
632 /// In many cases vectorization is not profitable. This can happen because of
633 /// a number of reasons. In this class we mainly attempt to predict the
634 /// expected speedup/slowdowns due to the supported instruction set. We use the
635 /// TargetTransformInfo to query the different backends for the cost of
636 /// different operations.
637 class LoopVectorizationCostModel {
638 public:
LoopVectorizationCostModel(Loop * L,ScalarEvolution * SE,LoopInfo * LI,LoopVectorizationLegality * Legal,const TargetTransformInfo & TTI,DataLayout * DL,const TargetLibraryInfo * TLI)639   LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
640                              LoopVectorizationLegality *Legal,
641                              const TargetTransformInfo &TTI,
642                              DataLayout *DL, const TargetLibraryInfo *TLI)
643       : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
644 
645   /// Information about vectorization costs
646   struct VectorizationFactor {
647     unsigned Width; // Vector width with best cost
648     unsigned Cost; // Cost of the loop with that width
649   };
650   /// \return The most profitable vectorization factor and the cost of that VF.
651   /// This method checks every power of two up to VF. If UserVF is not ZERO
652   /// then this vectorization factor will be selected if vectorization is
653   /// possible.
654   VectorizationFactor selectVectorizationFactor(bool OptForSize,
655                                                 unsigned UserVF);
656 
657   /// \return The size (in bits) of the widest type in the code that
658   /// needs to be vectorized. We ignore values that remain scalar such as
659   /// 64 bit loop indices.
660   unsigned getWidestType();
661 
662   /// \return The most profitable unroll factor.
663   /// If UserUF is non-zero then this method finds the best unroll-factor
664   /// based on register pressure and other parameters.
665   /// VF and LoopCost are the selected vectorization factor and the cost of the
666   /// selected VF.
667   unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
668                               unsigned LoopCost);
669 
670   /// \brief A struct that represents some properties of the register usage
671   /// of a loop.
672   struct RegisterUsage {
673     /// Holds the number of loop invariant values that are used in the loop.
674     unsigned LoopInvariantRegs;
675     /// Holds the maximum number of concurrent live intervals in the loop.
676     unsigned MaxLocalUsers;
677     /// Holds the number of instructions in the loop.
678     unsigned NumInstructions;
679   };
680 
681   /// \return  information about the register usage of the loop.
682   RegisterUsage calculateRegisterUsage();
683 
684 private:
685   /// Returns the expected execution cost. The unit of the cost does
686   /// not matter because we use the 'cost' units to compare different
687   /// vector widths. The cost that is returned is *not* normalized by
688   /// the factor width.
689   unsigned expectedCost(unsigned VF);
690 
691   /// Returns the execution time cost of an instruction for a given vector
692   /// width. Vector width of one means scalar.
693   unsigned getInstructionCost(Instruction *I, unsigned VF);
694 
695   /// A helper function for converting Scalar types to vector types.
696   /// If the incoming type is void, we return void. If the VF is 1, we return
697   /// the scalar type.
698   static Type* ToVectorTy(Type *Scalar, unsigned VF);
699 
700   /// Returns whether the instruction is a load or store and will be a emitted
701   /// as a vector operation.
702   bool isConsecutiveLoadOrStore(Instruction *I);
703 
704   /// The loop that we evaluate.
705   Loop *TheLoop;
706   /// Scev analysis.
707   ScalarEvolution *SE;
708   /// Loop Info analysis.
709   LoopInfo *LI;
710   /// Vectorization legality.
711   LoopVectorizationLegality *Legal;
712   /// Vector target information.
713   const TargetTransformInfo &TTI;
714   /// Target data layout information.
715   DataLayout *DL;
716   /// Target Library Info.
717   const TargetLibraryInfo *TLI;
718 };
719 
720 /// Utility class for getting and setting loop vectorizer hints in the form
721 /// of loop metadata.
722 struct LoopVectorizeHints {
723   /// Vectorization width.
724   unsigned Width;
725   /// Vectorization unroll factor.
726   unsigned Unroll;
727 
LoopVectorizeHints__anon8ed721d90111::LoopVectorizeHints728   LoopVectorizeHints(const Loop *L)
729   : Width(VectorizationFactor)
730   , Unroll(VectorizationUnroll)
731   , LoopID(L->getLoopID()) {
732     getHints(L);
733     // The command line options override any loop metadata except for when
734     // width == 1 which is used to indicate the loop is already vectorized.
735     if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
736       Width = VectorizationFactor;
737     if (VectorizationUnroll.getNumOccurrences() > 0)
738       Unroll = VectorizationUnroll;
739   }
740 
741   /// Return the loop vectorizer metadata prefix.
Prefix__anon8ed721d90111::LoopVectorizeHints742   static StringRef Prefix() { return "llvm.vectorizer."; }
743 
createHint__anon8ed721d90111::LoopVectorizeHints744   MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
745     SmallVector<Value*, 2> Vals;
746     Vals.push_back(MDString::get(Context, Name));
747     Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
748     return MDNode::get(Context, Vals);
749   }
750 
751   /// Mark the loop L as already vectorized by setting the width to 1.
setAlreadyVectorized__anon8ed721d90111::LoopVectorizeHints752   void setAlreadyVectorized(Loop *L) {
753     LLVMContext &Context = L->getHeader()->getContext();
754 
755     Width = 1;
756 
757     // Create a new loop id with one more operand for the already_vectorized
758     // hint. If the loop already has a loop id then copy the existing operands.
759     SmallVector<Value*, 4> Vals(1);
760     if (LoopID)
761       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
762         Vals.push_back(LoopID->getOperand(i));
763 
764     Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
765 
766     MDNode *NewLoopID = MDNode::get(Context, Vals);
767     // Set operand 0 to refer to the loop id itself.
768     NewLoopID->replaceOperandWith(0, NewLoopID);
769 
770     L->setLoopID(NewLoopID);
771     if (LoopID)
772       LoopID->replaceAllUsesWith(NewLoopID);
773 
774     LoopID = NewLoopID;
775   }
776 
777 private:
778   MDNode *LoopID;
779 
780   /// Find hints specified in the loop metadata.
getHints__anon8ed721d90111::LoopVectorizeHints781   void getHints(const Loop *L) {
782     if (!LoopID)
783       return;
784 
785     // First operand should refer to the loop id itself.
786     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
787     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
788 
789     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
790       const MDString *S = 0;
791       SmallVector<Value*, 4> Args;
792 
793       // The expected hint is either a MDString or a MDNode with the first
794       // operand a MDString.
795       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
796         if (!MD || MD->getNumOperands() == 0)
797           continue;
798         S = dyn_cast<MDString>(MD->getOperand(0));
799         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
800           Args.push_back(MD->getOperand(i));
801       } else {
802         S = dyn_cast<MDString>(LoopID->getOperand(i));
803         assert(Args.size() == 0 && "too many arguments for MDString");
804       }
805 
806       if (!S)
807         continue;
808 
809       // Check if the hint starts with the vectorizer prefix.
810       StringRef Hint = S->getString();
811       if (!Hint.startswith(Prefix()))
812         continue;
813       // Remove the prefix.
814       Hint = Hint.substr(Prefix().size(), StringRef::npos);
815 
816       if (Args.size() == 1)
817         getHint(Hint, Args[0]);
818     }
819   }
820 
821   // Check string hint with one operand.
getHint__anon8ed721d90111::LoopVectorizeHints822   void getHint(StringRef Hint, Value *Arg) {
823     const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
824     if (!C) return;
825     unsigned Val = C->getZExtValue();
826 
827     if (Hint == "width") {
828       assert(isPowerOf2_32(Val) && Val <= MaxVectorWidth &&
829              "Invalid width metadata");
830       Width = Val;
831     } else if (Hint == "unroll") {
832       assert(isPowerOf2_32(Val) && Val <= MaxUnrollFactor &&
833              "Invalid unroll metadata");
834       Unroll = Val;
835     } else
836       DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint);
837   }
838 };
839 
840 /// The LoopVectorize Pass.
841 struct LoopVectorize : public LoopPass {
842   /// Pass identification, replacement for typeid
843   static char ID;
844 
LoopVectorize__anon8ed721d90111::LoopVectorize845   explicit LoopVectorize() : LoopPass(ID) {
846     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
847   }
848 
849   ScalarEvolution *SE;
850   DataLayout *DL;
851   LoopInfo *LI;
852   TargetTransformInfo *TTI;
853   DominatorTree *DT;
854   TargetLibraryInfo *TLI;
855 
runOnLoop__anon8ed721d90111::LoopVectorize856   virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
857     // We only vectorize innermost loops.
858     if (!L->empty())
859       return false;
860 
861     SE = &getAnalysis<ScalarEvolution>();
862     DL = getAnalysisIfAvailable<DataLayout>();
863     LI = &getAnalysis<LoopInfo>();
864     TTI = &getAnalysis<TargetTransformInfo>();
865     DT = &getAnalysis<DominatorTree>();
866     TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
867 
868     if (DL == NULL) {
869       DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout");
870       return false;
871     }
872 
873     DEBUG(dbgs() << "LV: Checking a loop in \"" <<
874           L->getHeader()->getParent()->getName() << "\"\n");
875 
876     LoopVectorizeHints Hints(L);
877 
878     if (Hints.Width == 1) {
879       DEBUG(dbgs() << "LV: Not vectorizing.\n");
880       return false;
881     }
882 
883     // Check if it is legal to vectorize the loop.
884     LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
885     if (!LVL.canVectorize()) {
886       DEBUG(dbgs() << "LV: Not vectorizing.\n");
887       return false;
888     }
889 
890     // Use the cost model.
891     LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
892 
893     // Check the function attributes to find out if this function should be
894     // optimized for size.
895     Function *F = L->getHeader()->getParent();
896     Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
897     Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
898     unsigned FnIndex = AttributeSet::FunctionIndex;
899     bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
900     bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
901 
902     if (NoFloat) {
903       DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
904             "attribute is used.\n");
905       return false;
906     }
907 
908     // Select the optimal vectorization factor.
909     LoopVectorizationCostModel::VectorizationFactor VF;
910     VF = CM.selectVectorizationFactor(OptForSize, Hints.Width);
911     // Select the unroll factor.
912     unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
913                                         VF.Cost);
914 
915     if (VF.Width == 1) {
916       DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
917       return false;
918     }
919 
920     DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
921           F->getParent()->getModuleIdentifier()<<"\n");
922     DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
923 
924     // If we decided that it is *legal* to vectorize the loop then do it.
925     InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
926     LB.vectorize(&LVL);
927 
928     // Mark the loop as already vectorized to avoid vectorizing again.
929     Hints.setAlreadyVectorized(L);
930 
931     DEBUG(verifyFunction(*L->getHeader()->getParent()));
932     return true;
933   }
934 
getAnalysisUsage__anon8ed721d90111::LoopVectorize935   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
936     LoopPass::getAnalysisUsage(AU);
937     AU.addRequiredID(LoopSimplifyID);
938     AU.addRequiredID(LCSSAID);
939     AU.addRequired<DominatorTree>();
940     AU.addRequired<LoopInfo>();
941     AU.addRequired<ScalarEvolution>();
942     AU.addRequired<TargetTransformInfo>();
943     AU.addPreserved<LoopInfo>();
944     AU.addPreserved<DominatorTree>();
945   }
946 
947 };
948 
949 } // end anonymous namespace
950 
951 //===----------------------------------------------------------------------===//
952 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
953 // LoopVectorizationCostModel.
954 //===----------------------------------------------------------------------===//
955 
956 void
insert(ScalarEvolution * SE,Loop * Lp,Value * Ptr,bool WritePtr,unsigned DepSetId)957 LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
958                                                        Loop *Lp, Value *Ptr,
959                                                        bool WritePtr,
960                                                        unsigned DepSetId) {
961   const SCEV *Sc = SE->getSCEV(Ptr);
962   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
963   assert(AR && "Invalid addrec expression");
964   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
965   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
966   Pointers.push_back(Ptr);
967   Starts.push_back(AR->getStart());
968   Ends.push_back(ScEnd);
969   IsWritePtr.push_back(WritePtr);
970   DependencySetId.push_back(DepSetId);
971 }
972 
getBroadcastInstrs(Value * V)973 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
974   // Save the current insertion location.
975   Instruction *Loc = Builder.GetInsertPoint();
976 
977   // We need to place the broadcast of invariant variables outside the loop.
978   Instruction *Instr = dyn_cast<Instruction>(V);
979   bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
980   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
981 
982   // Place the code for broadcasting invariant variables in the new preheader.
983   if (Invariant)
984     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
985 
986   // Broadcast the scalar into all locations in the vector.
987   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
988 
989   // Restore the builder insertion point.
990   if (Invariant)
991     Builder.SetInsertPoint(Loc);
992 
993   return Shuf;
994 }
995 
getConsecutiveVector(Value * Val,int StartIdx,bool Negate)996 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
997                                                  bool Negate) {
998   assert(Val->getType()->isVectorTy() && "Must be a vector");
999   assert(Val->getType()->getScalarType()->isIntegerTy() &&
1000          "Elem must be an integer");
1001   // Create the types.
1002   Type *ITy = Val->getType()->getScalarType();
1003   VectorType *Ty = cast<VectorType>(Val->getType());
1004   int VLen = Ty->getNumElements();
1005   SmallVector<Constant*, 8> Indices;
1006 
1007   // Create a vector of consecutive numbers from zero to VF.
1008   for (int i = 0; i < VLen; ++i) {
1009     int64_t Idx = Negate ? (-i) : i;
1010     Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1011   }
1012 
1013   // Add the consecutive indices to the vector value.
1014   Constant *Cv = ConstantVector::get(Indices);
1015   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1016   return Builder.CreateAdd(Val, Cv, "induction");
1017 }
1018 
isConsecutivePtr(Value * Ptr)1019 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1020   assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
1021   // Make sure that the pointer does not point to structs.
1022   if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType())
1023     return 0;
1024 
1025   // If this value is a pointer induction variable we know it is consecutive.
1026   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1027   if (Phi && Inductions.count(Phi)) {
1028     InductionInfo II = Inductions[Phi];
1029     if (IK_PtrInduction == II.IK)
1030       return 1;
1031     else if (IK_ReversePtrInduction == II.IK)
1032       return -1;
1033   }
1034 
1035   GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1036   if (!Gep)
1037     return 0;
1038 
1039   unsigned NumOperands = Gep->getNumOperands();
1040   Value *LastIndex = Gep->getOperand(NumOperands - 1);
1041 
1042   Value *GpPtr = Gep->getPointerOperand();
1043   // If this GEP value is a consecutive pointer induction variable and all of
1044   // the indices are constant then we know it is consecutive. We can
1045   Phi = dyn_cast<PHINode>(GpPtr);
1046   if (Phi && Inductions.count(Phi)) {
1047 
1048     // Make sure that the pointer does not point to structs.
1049     PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1050     if (GepPtrType->getElementType()->isAggregateType())
1051       return 0;
1052 
1053     // Make sure that all of the index operands are loop invariant.
1054     for (unsigned i = 1; i < NumOperands; ++i)
1055       if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1056         return 0;
1057 
1058     InductionInfo II = Inductions[Phi];
1059     if (IK_PtrInduction == II.IK)
1060       return 1;
1061     else if (IK_ReversePtrInduction == II.IK)
1062       return -1;
1063   }
1064 
1065   // Check that all of the gep indices are uniform except for the last.
1066   for (unsigned i = 0; i < NumOperands - 1; ++i)
1067     if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1068       return 0;
1069 
1070   // We can emit wide load/stores only if the last index is the induction
1071   // variable.
1072   const SCEV *Last = SE->getSCEV(LastIndex);
1073   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1074     const SCEV *Step = AR->getStepRecurrence(*SE);
1075 
1076     // The memory is consecutive because the last index is consecutive
1077     // and all other indices are loop invariant.
1078     if (Step->isOne())
1079       return 1;
1080     if (Step->isAllOnesValue())
1081       return -1;
1082   }
1083 
1084   return 0;
1085 }
1086 
isUniform(Value * V)1087 bool LoopVectorizationLegality::isUniform(Value *V) {
1088   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1089 }
1090 
1091 InnerLoopVectorizer::VectorParts&
getVectorValue(Value * V)1092 InnerLoopVectorizer::getVectorValue(Value *V) {
1093   assert(V != Induction && "The new induction variable should not be used.");
1094   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1095 
1096   // If we have this scalar in the map, return it.
1097   if (WidenMap.has(V))
1098     return WidenMap.get(V);
1099 
1100   // If this scalar is unknown, assume that it is a constant or that it is
1101   // loop invariant. Broadcast V and save the value for future uses.
1102   Value *B = getBroadcastInstrs(V);
1103   return WidenMap.splat(V, B);
1104 }
1105 
reverseVector(Value * Vec)1106 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1107   assert(Vec->getType()->isVectorTy() && "Invalid type");
1108   SmallVector<Constant*, 8> ShuffleMask;
1109   for (unsigned i = 0; i < VF; ++i)
1110     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1111 
1112   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1113                                      ConstantVector::get(ShuffleMask),
1114                                      "reverse");
1115 }
1116 
1117 
vectorizeMemoryInstruction(Instruction * Instr,LoopVectorizationLegality * Legal)1118 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
1119                                              LoopVectorizationLegality *Legal) {
1120   // Attempt to issue a wide load.
1121   LoadInst *LI = dyn_cast<LoadInst>(Instr);
1122   StoreInst *SI = dyn_cast<StoreInst>(Instr);
1123 
1124   assert((LI || SI) && "Invalid Load/Store instruction");
1125 
1126   Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1127   Type *DataTy = VectorType::get(ScalarDataTy, VF);
1128   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1129   unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1130   unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1131   unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1132   unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1133 
1134   if (ScalarAllocatedSize != VectorElementSize)
1135     return scalarizeInstruction(Instr);
1136 
1137   // If the pointer is loop invariant or if it is non consecutive,
1138   // scalarize the load.
1139   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1140   bool Reverse = ConsecutiveStride < 0;
1141   bool UniformLoad = LI && Legal->isUniform(Ptr);
1142   if (!ConsecutiveStride || UniformLoad)
1143     return scalarizeInstruction(Instr);
1144 
1145   Constant *Zero = Builder.getInt32(0);
1146   VectorParts &Entry = WidenMap.get(Instr);
1147 
1148   // Handle consecutive loads/stores.
1149   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1150   if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1151     setDebugLocFromInst(Builder, Gep);
1152     Value *PtrOperand = Gep->getPointerOperand();
1153     Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1154     FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1155 
1156     // Create the new GEP with the new induction variable.
1157     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1158     Gep2->setOperand(0, FirstBasePtr);
1159     Gep2->setName("gep.indvar.base");
1160     Ptr = Builder.Insert(Gep2);
1161   } else if (Gep) {
1162     setDebugLocFromInst(Builder, Gep);
1163     assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1164                                OrigLoop) && "Base ptr must be invariant");
1165 
1166     // The last index does not have to be the induction. It can be
1167     // consecutive and be a function of the index. For example A[I+1];
1168     unsigned NumOperands = Gep->getNumOperands();
1169     unsigned LastOperand = NumOperands - 1;
1170     // Create the new GEP with the new induction variable.
1171     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1172 
1173     for (unsigned i = 0; i < NumOperands; ++i) {
1174       Value *GepOperand = Gep->getOperand(i);
1175       Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1176 
1177       // Update last index or loop invariant instruction anchored in loop.
1178       if (i == LastOperand ||
1179           (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1180         assert((i == LastOperand ||
1181                SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1182                "Must be last index or loop invariant");
1183 
1184         VectorParts &GEPParts = getVectorValue(GepOperand);
1185         Value *Index = GEPParts[0];
1186         Index = Builder.CreateExtractElement(Index, Zero);
1187         Gep2->setOperand(i, Index);
1188         Gep2->setName("gep.indvar.idx");
1189       }
1190     }
1191     Ptr = Builder.Insert(Gep2);
1192   } else {
1193     // Use the induction element ptr.
1194     assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1195     setDebugLocFromInst(Builder, Ptr);
1196     VectorParts &PtrVal = getVectorValue(Ptr);
1197     Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1198   }
1199 
1200   // Handle Stores:
1201   if (SI) {
1202     assert(!Legal->isUniform(SI->getPointerOperand()) &&
1203            "We do not allow storing to uniform addresses");
1204     setDebugLocFromInst(Builder, SI);
1205     // We don't want to update the value in the map as it might be used in
1206     // another expression. So don't use a reference type for "StoredVal".
1207     VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1208 
1209     for (unsigned Part = 0; Part < UF; ++Part) {
1210       // Calculate the pointer for the specific unroll-part.
1211       Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1212 
1213       if (Reverse) {
1214         // If we store to reverse consecutive memory locations then we need
1215         // to reverse the order of elements in the stored value.
1216         StoredVal[Part] = reverseVector(StoredVal[Part]);
1217         // If the address is consecutive but reversed, then the
1218         // wide store needs to start at the last vector element.
1219         PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1220         PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1221       }
1222 
1223       Value *VecPtr = Builder.CreateBitCast(PartPtr,
1224                                             DataTy->getPointerTo(AddressSpace));
1225       Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1226     }
1227     return;
1228   }
1229 
1230   // Handle loads.
1231   assert(LI && "Must have a load instruction");
1232   setDebugLocFromInst(Builder, LI);
1233   for (unsigned Part = 0; Part < UF; ++Part) {
1234     // Calculate the pointer for the specific unroll-part.
1235     Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1236 
1237     if (Reverse) {
1238       // If the address is consecutive but reversed, then the
1239       // wide store needs to start at the last vector element.
1240       PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1241       PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1242     }
1243 
1244     Value *VecPtr = Builder.CreateBitCast(PartPtr,
1245                                           DataTy->getPointerTo(AddressSpace));
1246     Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1247     cast<LoadInst>(LI)->setAlignment(Alignment);
1248     Entry[Part] = Reverse ? reverseVector(LI) :  LI;
1249   }
1250 }
1251 
scalarizeInstruction(Instruction * Instr)1252 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
1253   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1254   // Holds vector parameters or scalars, in case of uniform vals.
1255   SmallVector<VectorParts, 4> Params;
1256 
1257   setDebugLocFromInst(Builder, Instr);
1258 
1259   // Find all of the vectorized parameters.
1260   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1261     Value *SrcOp = Instr->getOperand(op);
1262 
1263     // If we are accessing the old induction variable, use the new one.
1264     if (SrcOp == OldInduction) {
1265       Params.push_back(getVectorValue(SrcOp));
1266       continue;
1267     }
1268 
1269     // Try using previously calculated values.
1270     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1271 
1272     // If the src is an instruction that appeared earlier in the basic block
1273     // then it should already be vectorized.
1274     if (SrcInst && OrigLoop->contains(SrcInst)) {
1275       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1276       // The parameter is a vector value from earlier.
1277       Params.push_back(WidenMap.get(SrcInst));
1278     } else {
1279       // The parameter is a scalar from outside the loop. Maybe even a constant.
1280       VectorParts Scalars;
1281       Scalars.append(UF, SrcOp);
1282       Params.push_back(Scalars);
1283     }
1284   }
1285 
1286   assert(Params.size() == Instr->getNumOperands() &&
1287          "Invalid number of operands");
1288 
1289   // Does this instruction return a value ?
1290   bool IsVoidRetTy = Instr->getType()->isVoidTy();
1291 
1292   Value *UndefVec = IsVoidRetTy ? 0 :
1293     UndefValue::get(VectorType::get(Instr->getType(), VF));
1294   // Create a new entry in the WidenMap and initialize it to Undef or Null.
1295   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1296 
1297   // For each vector unroll 'part':
1298   for (unsigned Part = 0; Part < UF; ++Part) {
1299     // For each scalar that we create:
1300     for (unsigned Width = 0; Width < VF; ++Width) {
1301       Instruction *Cloned = Instr->clone();
1302       if (!IsVoidRetTy)
1303         Cloned->setName(Instr->getName() + ".cloned");
1304       // Replace the operands of the cloned instrucions with extracted scalars.
1305       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1306         Value *Op = Params[op][Part];
1307         // Param is a vector. Need to extract the right lane.
1308         if (Op->getType()->isVectorTy())
1309           Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1310         Cloned->setOperand(op, Op);
1311       }
1312 
1313       // Place the cloned scalar in the new loop.
1314       Builder.Insert(Cloned);
1315 
1316       // If the original scalar returns a value we need to place it in a vector
1317       // so that future users will be able to use it.
1318       if (!IsVoidRetTy)
1319         VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1320                                                        Builder.getInt32(Width));
1321     }
1322   }
1323 }
1324 
1325 Instruction *
addRuntimeCheck(LoopVectorizationLegality * Legal,Instruction * Loc)1326 InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1327                                      Instruction *Loc) {
1328   LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1329   Legal->getRuntimePointerCheck();
1330 
1331   if (!PtrRtCheck->Need)
1332     return NULL;
1333 
1334   unsigned NumPointers = PtrRtCheck->Pointers.size();
1335   SmallVector<TrackingVH<Value> , 2> Starts;
1336   SmallVector<TrackingVH<Value> , 2> Ends;
1337 
1338   SCEVExpander Exp(*SE, "induction");
1339 
1340   // Use this type for pointer arithmetic.
1341   Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
1342 
1343   for (unsigned i = 0; i < NumPointers; ++i) {
1344     Value *Ptr = PtrRtCheck->Pointers[i];
1345     const SCEV *Sc = SE->getSCEV(Ptr);
1346 
1347     if (SE->isLoopInvariant(Sc, OrigLoop)) {
1348       DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1349             *Ptr <<"\n");
1350       Starts.push_back(Ptr);
1351       Ends.push_back(Ptr);
1352     } else {
1353       DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
1354 
1355       Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1356       Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1357       Starts.push_back(Start);
1358       Ends.push_back(End);
1359     }
1360   }
1361 
1362   IRBuilder<> ChkBuilder(Loc);
1363   // Our instructions might fold to a constant.
1364   Value *MemoryRuntimeCheck = 0;
1365   for (unsigned i = 0; i < NumPointers; ++i) {
1366     for (unsigned j = i+1; j < NumPointers; ++j) {
1367       // No need to check if two readonly pointers intersect.
1368       if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1369         continue;
1370 
1371       // Only need to check pointers between two different dependency sets.
1372       if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
1373        continue;
1374 
1375       Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc");
1376       Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc");
1377       Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy, "bc");
1378       Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy, "bc");
1379 
1380       Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1381       Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1382       Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1383       if (MemoryRuntimeCheck)
1384         IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1385                                          "conflict.rdx");
1386       MemoryRuntimeCheck = IsConflict;
1387     }
1388   }
1389 
1390   // We have to do this trickery because the IRBuilder might fold the check to a
1391   // constant expression in which case there is no Instruction anchored in a
1392   // the block.
1393   LLVMContext &Ctx = Loc->getContext();
1394   Instruction * Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1395                                                   ConstantInt::getTrue(Ctx));
1396   ChkBuilder.Insert(Check, "memcheck.conflict");
1397   return Check;
1398 }
1399 
1400 void
createEmptyLoop(LoopVectorizationLegality * Legal)1401 InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1402   /*
1403    In this function we generate a new loop. The new loop will contain
1404    the vectorized instructions while the old loop will continue to run the
1405    scalar remainder.
1406 
1407        [ ] <-- vector loop bypass (may consist of multiple blocks).
1408      /  |
1409     /   v
1410    |   [ ]     <-- vector pre header.
1411    |    |
1412    |    v
1413    |   [  ] \
1414    |   [  ]_|   <-- vector loop.
1415    |    |
1416     \   v
1417       >[ ]   <--- middle-block.
1418      /  |
1419     /   v
1420    |   [ ]     <--- new preheader.
1421    |    |
1422    |    v
1423    |   [ ] \
1424    |   [ ]_|   <-- old scalar loop to handle remainder.
1425     \   |
1426      \  v
1427       >[ ]     <-- exit block.
1428    ...
1429    */
1430 
1431   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1432   BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1433   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1434   assert(ExitBlock && "Must have an exit block");
1435 
1436   // Some loops have a single integer induction variable, while other loops
1437   // don't. One example is c++ iterators that often have multiple pointer
1438   // induction variables. In the code below we also support a case where we
1439   // don't have a single induction variable.
1440   OldInduction = Legal->getInduction();
1441   Type *IdxTy = Legal->getWidestInductionType();
1442 
1443   // Find the loop boundaries.
1444   const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
1445   assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1446 
1447   // Get the total trip count from the count by adding 1.
1448   ExitCount = SE->getAddExpr(ExitCount,
1449                              SE->getConstant(ExitCount->getType(), 1));
1450 
1451   // Expand the trip count and place the new instructions in the preheader.
1452   // Notice that the pre-header does not change, only the loop body.
1453   SCEVExpander Exp(*SE, "induction");
1454 
1455   // Count holds the overall loop count (N).
1456   Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1457                                    BypassBlock->getTerminator());
1458 
1459   // The loop index does not have to start at Zero. Find the original start
1460   // value from the induction PHI node. If we don't have an induction variable
1461   // then we know that it starts at zero.
1462   Builder.SetInsertPoint(BypassBlock->getTerminator());
1463   Value *StartIdx = ExtendedIdx = OldInduction ?
1464     Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
1465                        IdxTy):
1466     ConstantInt::get(IdxTy, 0);
1467 
1468   assert(BypassBlock && "Invalid loop structure");
1469   LoopBypassBlocks.push_back(BypassBlock);
1470 
1471   // Split the single block loop into the two loop structure described above.
1472   BasicBlock *VectorPH =
1473   BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1474   BasicBlock *VecBody =
1475   VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1476   BasicBlock *MiddleBlock =
1477   VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1478   BasicBlock *ScalarPH =
1479   MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1480 
1481   // Create and register the new vector loop.
1482   Loop* Lp = new Loop();
1483   Loop *ParentLoop = OrigLoop->getParentLoop();
1484 
1485   // Insert the new loop into the loop nest and register the new basic blocks
1486   // before calling any utilities such as SCEV that require valid LoopInfo.
1487   if (ParentLoop) {
1488     ParentLoop->addChildLoop(Lp);
1489     ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1490     ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1491     ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1492   } else {
1493     LI->addTopLevelLoop(Lp);
1494   }
1495   Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1496 
1497   // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1498   // inside the loop.
1499   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1500 
1501   // Generate the induction variable.
1502   setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
1503   Induction = Builder.CreatePHI(IdxTy, 2, "index");
1504   // The loop step is equal to the vectorization factor (num of SIMD elements)
1505   // times the unroll factor (num of SIMD instructions).
1506   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1507 
1508   // This is the IR builder that we use to add all of the logic for bypassing
1509   // the new vector loop.
1510   IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1511   setDebugLocFromInst(BypassBuilder,
1512                       getDebugLocFromInstOrOperands(OldInduction));
1513 
1514   // We may need to extend the index in case there is a type mismatch.
1515   // We know that the count starts at zero and does not overflow.
1516   if (Count->getType() != IdxTy) {
1517     // The exit count can be of pointer type. Convert it to the correct
1518     // integer type.
1519     if (ExitCount->getType()->isPointerTy())
1520       Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1521     else
1522       Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1523   }
1524 
1525   // Add the start index to the loop count to get the new end index.
1526   Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1527 
1528   // Now we need to generate the expression for N - (N % VF), which is
1529   // the part that the vectorized body will execute.
1530   Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1531   Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1532   Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1533                                                      "end.idx.rnd.down");
1534 
1535   // Now, compare the new count to zero. If it is zero skip the vector loop and
1536   // jump to the scalar loop.
1537   Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1538                                           "cmp.zero");
1539 
1540   BasicBlock *LastBypassBlock = BypassBlock;
1541 
1542   // Generate the code that checks in runtime if arrays overlap. We put the
1543   // checks into a separate block to make the more common case of few elements
1544   // faster.
1545   Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1546                                                  BypassBlock->getTerminator());
1547   if (MemRuntimeCheck) {
1548     // Create a new block containing the memory check.
1549     BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1550                                                           "vector.memcheck");
1551     if (ParentLoop)
1552       ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
1553     LoopBypassBlocks.push_back(CheckBlock);
1554 
1555     // Replace the branch into the memory check block with a conditional branch
1556     // for the "few elements case".
1557     Instruction *OldTerm = BypassBlock->getTerminator();
1558     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1559     OldTerm->eraseFromParent();
1560 
1561     Cmp = MemRuntimeCheck;
1562     LastBypassBlock = CheckBlock;
1563   }
1564 
1565   LastBypassBlock->getTerminator()->eraseFromParent();
1566   BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1567                      LastBypassBlock);
1568 
1569   // We are going to resume the execution of the scalar loop.
1570   // Go over all of the induction variables that we found and fix the
1571   // PHIs that are left in the scalar version of the loop.
1572   // The starting values of PHI nodes depend on the counter of the last
1573   // iteration in the vectorized loop.
1574   // If we come from a bypass edge then we need to start from the original
1575   // start value.
1576 
1577   // This variable saves the new starting index for the scalar loop.
1578   PHINode *ResumeIndex = 0;
1579   LoopVectorizationLegality::InductionList::iterator I, E;
1580   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1581   // Set builder to point to last bypass block.
1582   BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
1583   for (I = List->begin(), E = List->end(); I != E; ++I) {
1584     PHINode *OrigPhi = I->first;
1585     LoopVectorizationLegality::InductionInfo II = I->second;
1586 
1587     Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
1588     PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
1589                                          MiddleBlock->getTerminator());
1590     // We might have extended the type of the induction variable but we need a
1591     // truncated version for the scalar loop.
1592     PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
1593       PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
1594                       MiddleBlock->getTerminator()) : 0;
1595 
1596     Value *EndValue = 0;
1597     switch (II.IK) {
1598     case LoopVectorizationLegality::IK_NoInduction:
1599       llvm_unreachable("Unknown induction");
1600     case LoopVectorizationLegality::IK_IntInduction: {
1601       // Handle the integer induction counter.
1602       assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1603 
1604       // We have the canonical induction variable.
1605       if (OrigPhi == OldInduction) {
1606         // Create a truncated version of the resume value for the scalar loop,
1607         // we might have promoted the type to a larger width.
1608         EndValue =
1609           BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
1610         // The new PHI merges the original incoming value, in case of a bypass,
1611         // or the value at the end of the vectorized loop.
1612         for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1613           TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1614         TruncResumeVal->addIncoming(EndValue, VecBody);
1615 
1616         // We know what the end value is.
1617         EndValue = IdxEndRoundDown;
1618         // We also know which PHI node holds it.
1619         ResumeIndex = ResumeVal;
1620         break;
1621       }
1622 
1623       // Not the canonical induction variable - add the vector loop count to the
1624       // start value.
1625       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1626                                                    II.StartValue->getType(),
1627                                                    "cast.crd");
1628       EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
1629       break;
1630     }
1631     case LoopVectorizationLegality::IK_ReverseIntInduction: {
1632       // Convert the CountRoundDown variable to the PHI size.
1633       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1634                                                    II.StartValue->getType(),
1635                                                    "cast.crd");
1636       // Handle reverse integer induction counter.
1637       EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
1638       break;
1639     }
1640     case LoopVectorizationLegality::IK_PtrInduction: {
1641       // For pointer induction variables, calculate the offset using
1642       // the end index.
1643       EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
1644                                          "ptr.ind.end");
1645       break;
1646     }
1647     case LoopVectorizationLegality::IK_ReversePtrInduction: {
1648       // The value at the end of the loop for the reverse pointer is calculated
1649       // by creating a GEP with a negative index starting from the start value.
1650       Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1651       Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
1652                                               "rev.ind.end");
1653       EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
1654                                          "rev.ptr.ind.end");
1655       break;
1656     }
1657     }// end of case
1658 
1659     // The new PHI merges the original incoming value, in case of a bypass,
1660     // or the value at the end of the vectorized loop.
1661     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) {
1662       if (OrigPhi == OldInduction)
1663         ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
1664       else
1665         ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1666     }
1667     ResumeVal->addIncoming(EndValue, VecBody);
1668 
1669     // Fix the scalar body counter (PHI node).
1670     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1671     // The old inductions phi node in the scalar body needs the truncated value.
1672     if (OrigPhi == OldInduction)
1673       OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal);
1674     else
1675       OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1676   }
1677 
1678   // If we are generating a new induction variable then we also need to
1679   // generate the code that calculates the exit value. This value is not
1680   // simply the end of the counter because we may skip the vectorized body
1681   // in case of a runtime check.
1682   if (!OldInduction){
1683     assert(!ResumeIndex && "Unexpected resume value found");
1684     ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1685                                   MiddleBlock->getTerminator());
1686     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1687       ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1688     ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1689   }
1690 
1691   // Make sure that we found the index where scalar loop needs to continue.
1692   assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1693          "Invalid resume Index");
1694 
1695   // Add a check in the middle block to see if we have completed
1696   // all of the iterations in the first vector loop.
1697   // If (N - N%VF) == N, then we *don't* need to run the remainder.
1698   Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1699                                 ResumeIndex, "cmp.n",
1700                                 MiddleBlock->getTerminator());
1701 
1702   BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1703   // Remove the old terminator.
1704   MiddleBlock->getTerminator()->eraseFromParent();
1705 
1706   // Create i+1 and fill the PHINode.
1707   Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1708   Induction->addIncoming(StartIdx, VectorPH);
1709   Induction->addIncoming(NextIdx, VecBody);
1710   // Create the compare.
1711   Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1712   Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1713 
1714   // Now we have two terminators. Remove the old one from the block.
1715   VecBody->getTerminator()->eraseFromParent();
1716 
1717   // Get ready to start creating new instructions into the vectorized body.
1718   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1719 
1720   // Save the state.
1721   LoopVectorPreHeader = VectorPH;
1722   LoopScalarPreHeader = ScalarPH;
1723   LoopMiddleBlock = MiddleBlock;
1724   LoopExitBlock = ExitBlock;
1725   LoopVectorBody = VecBody;
1726   LoopScalarBody = OldBasicBlock;
1727 }
1728 
1729 /// This function returns the identity element (or neutral element) for
1730 /// the operation K.
1731 Constant*
getReductionIdentity(ReductionKind K,Type * Tp)1732 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
1733   switch (K) {
1734   case RK_IntegerXor:
1735   case RK_IntegerAdd:
1736   case RK_IntegerOr:
1737     // Adding, Xoring, Oring zero to a number does not change it.
1738     return ConstantInt::get(Tp, 0);
1739   case RK_IntegerMult:
1740     // Multiplying a number by 1 does not change it.
1741     return ConstantInt::get(Tp, 1);
1742   case RK_IntegerAnd:
1743     // AND-ing a number with an all-1 value does not change it.
1744     return ConstantInt::get(Tp, -1, true);
1745   case  RK_FloatMult:
1746     // Multiplying a number by 1 does not change it.
1747     return ConstantFP::get(Tp, 1.0L);
1748   case  RK_FloatAdd:
1749     // Adding zero to a number does not change it.
1750     return ConstantFP::get(Tp, 0.0L);
1751   default:
1752     llvm_unreachable("Unknown reduction kind");
1753   }
1754 }
1755 
1756 static Intrinsic::ID
getIntrinsicIDForCall(CallInst * CI,const TargetLibraryInfo * TLI)1757 getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
1758   // If we have an intrinsic call, check if it is trivially vectorizable.
1759   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1760     switch (II->getIntrinsicID()) {
1761     case Intrinsic::sqrt:
1762     case Intrinsic::sin:
1763     case Intrinsic::cos:
1764     case Intrinsic::exp:
1765     case Intrinsic::exp2:
1766     case Intrinsic::log:
1767     case Intrinsic::log10:
1768     case Intrinsic::log2:
1769     case Intrinsic::fabs:
1770     case Intrinsic::floor:
1771     case Intrinsic::ceil:
1772     case Intrinsic::trunc:
1773     case Intrinsic::rint:
1774     case Intrinsic::nearbyint:
1775     case Intrinsic::pow:
1776     case Intrinsic::fma:
1777     case Intrinsic::fmuladd:
1778     case Intrinsic::lifetime_start:
1779     case Intrinsic::lifetime_end:
1780       return II->getIntrinsicID();
1781     default:
1782       return Intrinsic::not_intrinsic;
1783     }
1784   }
1785 
1786   if (!TLI)
1787     return Intrinsic::not_intrinsic;
1788 
1789   LibFunc::Func Func;
1790   Function *F = CI->getCalledFunction();
1791   // We're going to make assumptions on the semantics of the functions, check
1792   // that the target knows that it's available in this environment.
1793   if (!F || !TLI->getLibFunc(F->getName(), Func))
1794     return Intrinsic::not_intrinsic;
1795 
1796   // Otherwise check if we have a call to a function that can be turned into a
1797   // vector intrinsic.
1798   switch (Func) {
1799   default:
1800     break;
1801   case LibFunc::sin:
1802   case LibFunc::sinf:
1803   case LibFunc::sinl:
1804     return Intrinsic::sin;
1805   case LibFunc::cos:
1806   case LibFunc::cosf:
1807   case LibFunc::cosl:
1808     return Intrinsic::cos;
1809   case LibFunc::exp:
1810   case LibFunc::expf:
1811   case LibFunc::expl:
1812     return Intrinsic::exp;
1813   case LibFunc::exp2:
1814   case LibFunc::exp2f:
1815   case LibFunc::exp2l:
1816     return Intrinsic::exp2;
1817   case LibFunc::log:
1818   case LibFunc::logf:
1819   case LibFunc::logl:
1820     return Intrinsic::log;
1821   case LibFunc::log10:
1822   case LibFunc::log10f:
1823   case LibFunc::log10l:
1824     return Intrinsic::log10;
1825   case LibFunc::log2:
1826   case LibFunc::log2f:
1827   case LibFunc::log2l:
1828     return Intrinsic::log2;
1829   case LibFunc::fabs:
1830   case LibFunc::fabsf:
1831   case LibFunc::fabsl:
1832     return Intrinsic::fabs;
1833   case LibFunc::floor:
1834   case LibFunc::floorf:
1835   case LibFunc::floorl:
1836     return Intrinsic::floor;
1837   case LibFunc::ceil:
1838   case LibFunc::ceilf:
1839   case LibFunc::ceill:
1840     return Intrinsic::ceil;
1841   case LibFunc::trunc:
1842   case LibFunc::truncf:
1843   case LibFunc::truncl:
1844     return Intrinsic::trunc;
1845   case LibFunc::rint:
1846   case LibFunc::rintf:
1847   case LibFunc::rintl:
1848     return Intrinsic::rint;
1849   case LibFunc::nearbyint:
1850   case LibFunc::nearbyintf:
1851   case LibFunc::nearbyintl:
1852     return Intrinsic::nearbyint;
1853   case LibFunc::pow:
1854   case LibFunc::powf:
1855   case LibFunc::powl:
1856     return Intrinsic::pow;
1857   }
1858 
1859   return Intrinsic::not_intrinsic;
1860 }
1861 
1862 /// This function translates the reduction kind to an LLVM binary operator.
1863 static unsigned
getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind)1864 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
1865   switch (Kind) {
1866     case LoopVectorizationLegality::RK_IntegerAdd:
1867       return Instruction::Add;
1868     case LoopVectorizationLegality::RK_IntegerMult:
1869       return Instruction::Mul;
1870     case LoopVectorizationLegality::RK_IntegerOr:
1871       return Instruction::Or;
1872     case LoopVectorizationLegality::RK_IntegerAnd:
1873       return Instruction::And;
1874     case LoopVectorizationLegality::RK_IntegerXor:
1875       return Instruction::Xor;
1876     case LoopVectorizationLegality::RK_FloatMult:
1877       return Instruction::FMul;
1878     case LoopVectorizationLegality::RK_FloatAdd:
1879       return Instruction::FAdd;
1880     case LoopVectorizationLegality::RK_IntegerMinMax:
1881       return Instruction::ICmp;
1882     case LoopVectorizationLegality::RK_FloatMinMax:
1883       return Instruction::FCmp;
1884     default:
1885       llvm_unreachable("Unknown reduction operation");
1886   }
1887 }
1888 
createMinMaxOp(IRBuilder<> & Builder,LoopVectorizationLegality::MinMaxReductionKind RK,Value * Left,Value * Right)1889 Value *createMinMaxOp(IRBuilder<> &Builder,
1890                       LoopVectorizationLegality::MinMaxReductionKind RK,
1891                       Value *Left,
1892                       Value *Right) {
1893   CmpInst::Predicate P = CmpInst::ICMP_NE;
1894   switch (RK) {
1895   default:
1896     llvm_unreachable("Unknown min/max reduction kind");
1897   case LoopVectorizationLegality::MRK_UIntMin:
1898     P = CmpInst::ICMP_ULT;
1899     break;
1900   case LoopVectorizationLegality::MRK_UIntMax:
1901     P = CmpInst::ICMP_UGT;
1902     break;
1903   case LoopVectorizationLegality::MRK_SIntMin:
1904     P = CmpInst::ICMP_SLT;
1905     break;
1906   case LoopVectorizationLegality::MRK_SIntMax:
1907     P = CmpInst::ICMP_SGT;
1908     break;
1909   case LoopVectorizationLegality::MRK_FloatMin:
1910     P = CmpInst::FCMP_OLT;
1911     break;
1912   case LoopVectorizationLegality::MRK_FloatMax:
1913     P = CmpInst::FCMP_OGT;
1914     break;
1915   }
1916 
1917   Value *Cmp;
1918   if (RK == LoopVectorizationLegality::MRK_FloatMin ||
1919       RK == LoopVectorizationLegality::MRK_FloatMax)
1920     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
1921   else
1922     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
1923 
1924   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
1925   return Select;
1926 }
1927 
1928 void
vectorizeLoop(LoopVectorizationLegality * Legal)1929 InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
1930   //===------------------------------------------------===//
1931   //
1932   // Notice: any optimization or new instruction that go
1933   // into the code below should be also be implemented in
1934   // the cost-model.
1935   //
1936   //===------------------------------------------------===//
1937   Constant *Zero = Builder.getInt32(0);
1938 
1939   // In order to support reduction variables we need to be able to vectorize
1940   // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
1941   // stages. First, we create a new vector PHI node with no incoming edges.
1942   // We use this value when we vectorize all of the instructions that use the
1943   // PHI. Next, after all of the instructions in the block are complete we
1944   // add the new incoming edges to the PHI. At this point all of the
1945   // instructions in the basic block are vectorized, so we can use them to
1946   // construct the PHI.
1947   PhiVector RdxPHIsToFix;
1948 
1949   // Scan the loop in a topological order to ensure that defs are vectorized
1950   // before users.
1951   LoopBlocksDFS DFS(OrigLoop);
1952   DFS.perform(LI);
1953 
1954   // Vectorize all of the blocks in the original loop.
1955   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
1956        be = DFS.endRPO(); bb != be; ++bb)
1957     vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
1958 
1959   // At this point every instruction in the original loop is widened to
1960   // a vector form. We are almost done. Now, we need to fix the PHI nodes
1961   // that we vectorized. The PHI nodes are currently empty because we did
1962   // not want to introduce cycles. Notice that the remaining PHI nodes
1963   // that we need to fix are reduction variables.
1964 
1965   // Create the 'reduced' values for each of the induction vars.
1966   // The reduced values are the vector values that we scalarize and combine
1967   // after the loop is finished.
1968   for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
1969        it != e; ++it) {
1970     PHINode *RdxPhi = *it;
1971     assert(RdxPhi && "Unable to recover vectorized PHI");
1972 
1973     // Find the reduction variable descriptor.
1974     assert(Legal->getReductionVars()->count(RdxPhi) &&
1975            "Unable to find the reduction variable");
1976     LoopVectorizationLegality::ReductionDescriptor RdxDesc =
1977     (*Legal->getReductionVars())[RdxPhi];
1978 
1979     setDebugLocFromInst(Builder, RdxDesc.StartValue);
1980 
1981     // We need to generate a reduction vector from the incoming scalar.
1982     // To do so, we need to generate the 'identity' vector and overide
1983     // one of the elements with the incoming scalar reduction. We need
1984     // to do it in the vector-loop preheader.
1985     Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
1986 
1987     // This is the vector-clone of the value that leaves the loop.
1988     VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
1989     Type *VecTy = VectorExit[0]->getType();
1990 
1991     // Find the reduction identity variable. Zero for addition, or, xor,
1992     // one for multiplication, -1 for And.
1993     Value *Identity;
1994     Value *VectorStart;
1995     if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
1996         RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
1997       // MinMax reduction have the start value as their identify.
1998       VectorStart = Identity = Builder.CreateVectorSplat(VF, RdxDesc.StartValue,
1999                                                          "minmax.ident");
2000     } else {
2001       Constant *Iden =
2002         LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2003                                                         VecTy->getScalarType());
2004       Identity = ConstantVector::getSplat(VF, Iden);
2005 
2006       // This vector is the Identity vector where the first element is the
2007       // incoming scalar reduction.
2008       VectorStart = Builder.CreateInsertElement(Identity,
2009                                                 RdxDesc.StartValue, Zero);
2010     }
2011 
2012     // Fix the vector-loop phi.
2013     // We created the induction variable so we know that the
2014     // preheader is the first entry.
2015     BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
2016 
2017     // Reductions do not have to start at zero. They can start with
2018     // any loop invariant values.
2019     VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2020     BasicBlock *Latch = OrigLoop->getLoopLatch();
2021     Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2022     VectorParts &Val = getVectorValue(LoopVal);
2023     for (unsigned part = 0; part < UF; ++part) {
2024       // Make sure to add the reduction stat value only to the
2025       // first unroll part.
2026       Value *StartVal = (part == 0) ? VectorStart : Identity;
2027       cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
2028       cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
2029     }
2030 
2031     // Before each round, move the insertion point right between
2032     // the PHIs and the values we are going to write.
2033     // This allows us to write both PHINodes and the extractelement
2034     // instructions.
2035     Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2036 
2037     VectorParts RdxParts;
2038     setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2039     for (unsigned part = 0; part < UF; ++part) {
2040       // This PHINode contains the vectorized reduction variable, or
2041       // the initial value vector, if we bypass the vector loop.
2042       VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2043       PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2044       Value *StartVal = (part == 0) ? VectorStart : Identity;
2045       for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
2046         NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2047       NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
2048       RdxParts.push_back(NewPhi);
2049     }
2050 
2051     // Reduce all of the unrolled parts into a single vector.
2052     Value *ReducedPartRdx = RdxParts[0];
2053     unsigned Op = getReductionBinOp(RdxDesc.Kind);
2054     setDebugLocFromInst(Builder, ReducedPartRdx);
2055     for (unsigned part = 1; part < UF; ++part) {
2056       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2057         ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
2058                                              RdxParts[part], ReducedPartRdx,
2059                                              "bin.rdx");
2060       else
2061         ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2062                                         ReducedPartRdx, RdxParts[part]);
2063     }
2064 
2065     // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2066     // and vector ops, reducing the set of values being computed by half each
2067     // round.
2068     assert(isPowerOf2_32(VF) &&
2069            "Reduction emission only supported for pow2 vectors!");
2070     Value *TmpVec = ReducedPartRdx;
2071     SmallVector<Constant*, 32> ShuffleMask(VF, 0);
2072     for (unsigned i = VF; i != 1; i >>= 1) {
2073       // Move the upper half of the vector to the lower half.
2074       for (unsigned j = 0; j != i/2; ++j)
2075         ShuffleMask[j] = Builder.getInt32(i/2 + j);
2076 
2077       // Fill the rest of the mask with undef.
2078       std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2079                 UndefValue::get(Builder.getInt32Ty()));
2080 
2081       Value *Shuf =
2082         Builder.CreateShuffleVector(TmpVec,
2083                                     UndefValue::get(TmpVec->getType()),
2084                                     ConstantVector::get(ShuffleMask),
2085                                     "rdx.shuf");
2086 
2087       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2088         TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
2089                                      "bin.rdx");
2090       else
2091         TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2092     }
2093 
2094     // The result is in the first element of the vector.
2095     Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
2096 
2097     // Now, we need to fix the users of the reduction variable
2098     // inside and outside of the scalar remainder loop.
2099     // We know that the loop is in LCSSA form. We need to update the
2100     // PHI nodes in the exit blocks.
2101     for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2102          LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2103       PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2104       if (!LCSSAPhi) continue;
2105 
2106       // All PHINodes need to have a single entry edge, or two if
2107       // we already fixed them.
2108       assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2109 
2110       // We found our reduction value exit-PHI. Update it with the
2111       // incoming bypass edge.
2112       if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2113         // Add an edge coming from the bypass.
2114         LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
2115         break;
2116       }
2117     }// end of the LCSSA phi scan.
2118 
2119     // Fix the scalar loop reduction variable with the incoming reduction sum
2120     // from the vector body and from the backedge value.
2121     int IncomingEdgeBlockIdx =
2122     (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2123     assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2124     // Pick the other block.
2125     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2126     (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
2127     (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2128   }// end of for each redux variable.
2129 
2130   // The Loop exit block may have single value PHI nodes where the incoming
2131   // value is 'undef'. While vectorizing we only handled real values that
2132   // were defined inside the loop. Here we handle the 'undef case'.
2133   // See PR14725.
2134   for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2135        LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2136     PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2137     if (!LCSSAPhi) continue;
2138     if (LCSSAPhi->getNumIncomingValues() == 1)
2139       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2140                             LoopMiddleBlock);
2141   }
2142 }
2143 
2144 InnerLoopVectorizer::VectorParts
createEdgeMask(BasicBlock * Src,BasicBlock * Dst)2145 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2146   assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2147          "Invalid edge");
2148 
2149   // Look for cached value.
2150   std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
2151   EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
2152   if (ECEntryIt != MaskCache.end())
2153     return ECEntryIt->second;
2154 
2155   VectorParts SrcMask = createBlockInMask(Src);
2156 
2157   // The terminator has to be a branch inst!
2158   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
2159   assert(BI && "Unexpected terminator found");
2160 
2161   if (BI->isConditional()) {
2162     VectorParts EdgeMask = getVectorValue(BI->getCondition());
2163 
2164     if (BI->getSuccessor(0) != Dst)
2165       for (unsigned part = 0; part < UF; ++part)
2166         EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
2167 
2168     for (unsigned part = 0; part < UF; ++part)
2169       EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
2170 
2171     MaskCache[Edge] = EdgeMask;
2172     return EdgeMask;
2173   }
2174 
2175   MaskCache[Edge] = SrcMask;
2176   return SrcMask;
2177 }
2178 
2179 InnerLoopVectorizer::VectorParts
createBlockInMask(BasicBlock * BB)2180 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
2181   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
2182 
2183   // Loop incoming mask is all-one.
2184   if (OrigLoop->getHeader() == BB) {
2185     Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
2186     return getVectorValue(C);
2187   }
2188 
2189   // This is the block mask. We OR all incoming edges, and with zero.
2190   Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
2191   VectorParts BlockMask = getVectorValue(Zero);
2192 
2193   // For each pred:
2194   for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
2195     VectorParts EM = createEdgeMask(*it, BB);
2196     for (unsigned part = 0; part < UF; ++part)
2197       BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
2198   }
2199 
2200   return BlockMask;
2201 }
2202 
2203 void
vectorizeBlockInLoop(LoopVectorizationLegality * Legal,BasicBlock * BB,PhiVector * PV)2204 InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
2205                                           BasicBlock *BB, PhiVector *PV) {
2206   // For each instruction in the old loop.
2207   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2208     VectorParts &Entry = WidenMap.get(it);
2209     switch (it->getOpcode()) {
2210     case Instruction::Br:
2211       // Nothing to do for PHIs and BR, since we already took care of the
2212       // loop control flow instructions.
2213       continue;
2214     case Instruction::PHI:{
2215       PHINode* P = cast<PHINode>(it);
2216       // Handle reduction variables:
2217       if (Legal->getReductionVars()->count(P)) {
2218         for (unsigned part = 0; part < UF; ++part) {
2219           // This is phase one of vectorizing PHIs.
2220           Type *VecTy = VectorType::get(it->getType(), VF);
2221           Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
2222                                         LoopVectorBody-> getFirstInsertionPt());
2223         }
2224         PV->push_back(P);
2225         continue;
2226       }
2227 
2228       setDebugLocFromInst(Builder, P);
2229       // Check for PHI nodes that are lowered to vector selects.
2230       if (P->getParent() != OrigLoop->getHeader()) {
2231         // We know that all PHIs in non header blocks are converted into
2232         // selects, so we don't have to worry about the insertion order and we
2233         // can just use the builder.
2234         // At this point we generate the predication tree. There may be
2235         // duplications since this is a simple recursive scan, but future
2236         // optimizations will clean it up.
2237 
2238         unsigned NumIncoming = P->getNumIncomingValues();
2239 
2240         // Generate a sequence of selects of the form:
2241         // SELECT(Mask3, In3,
2242         //      SELECT(Mask2, In2,
2243         //                   ( ...)))
2244         for (unsigned In = 0; In < NumIncoming; In++) {
2245           VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
2246                                             P->getParent());
2247           VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2248 
2249           for (unsigned part = 0; part < UF; ++part) {
2250             // We might have single edge PHIs (blocks) - use an identity
2251             // 'select' for the first PHI operand.
2252             if (In == 0)
2253               Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2254                                                  In0[part]);
2255             else
2256               // Select between the current value and the previous incoming edge
2257               // based on the incoming mask.
2258               Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2259                                                  Entry[part], "predphi");
2260           }
2261         }
2262         continue;
2263       }
2264 
2265       // This PHINode must be an induction variable.
2266       // Make sure that we know about it.
2267       assert(Legal->getInductionVars()->count(P) &&
2268              "Not an induction variable");
2269 
2270       LoopVectorizationLegality::InductionInfo II =
2271         Legal->getInductionVars()->lookup(P);
2272 
2273       switch (II.IK) {
2274       case LoopVectorizationLegality::IK_NoInduction:
2275         llvm_unreachable("Unknown induction");
2276       case LoopVectorizationLegality::IK_IntInduction: {
2277         assert(P->getType() == II.StartValue->getType() && "Types must match");
2278         Type *PhiTy = P->getType();
2279         Value *Broadcasted;
2280         if (P == OldInduction) {
2281           // Handle the canonical induction variable. We might have had to
2282           // extend the type.
2283           Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
2284         } else {
2285           // Handle other induction variables that are now based on the
2286           // canonical one.
2287           Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
2288                                                    "normalized.idx");
2289           NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
2290           Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
2291                                           "offset.idx");
2292         }
2293         Broadcasted = getBroadcastInstrs(Broadcasted);
2294         // After broadcasting the induction variable we need to make the vector
2295         // consecutive by adding 0, 1, 2, etc.
2296         for (unsigned part = 0; part < UF; ++part)
2297           Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2298         continue;
2299       }
2300       case LoopVectorizationLegality::IK_ReverseIntInduction:
2301       case LoopVectorizationLegality::IK_PtrInduction:
2302       case LoopVectorizationLegality::IK_ReversePtrInduction:
2303         // Handle reverse integer and pointer inductions.
2304         Value *StartIdx = ExtendedIdx;
2305         // This is the normalized GEP that starts counting at zero.
2306         Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2307                                                  "normalized.idx");
2308 
2309         // Handle the reverse integer induction variable case.
2310         if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
2311           IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
2312           Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
2313                                                  "resize.norm.idx");
2314           Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
2315                                                  "reverse.idx");
2316 
2317           // This is a new value so do not hoist it out.
2318           Value *Broadcasted = getBroadcastInstrs(ReverseInd);
2319           // After broadcasting the induction variable we need to make the
2320           // vector consecutive by adding  ... -3, -2, -1, 0.
2321           for (unsigned part = 0; part < UF; ++part)
2322             Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
2323                                                true);
2324           continue;
2325         }
2326 
2327         // Handle the pointer induction variable case.
2328         assert(P->getType()->isPointerTy() && "Unexpected type.");
2329 
2330         // Is this a reverse induction ptr or a consecutive induction ptr.
2331         bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
2332                         II.IK);
2333 
2334         // This is the vector of results. Notice that we don't generate
2335         // vector geps because scalar geps result in better code.
2336         for (unsigned part = 0; part < UF; ++part) {
2337           Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
2338           for (unsigned int i = 0; i < VF; ++i) {
2339             int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
2340             Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2341             Value *GlobalIdx;
2342             if (!Reverse)
2343               GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2344             else
2345               GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2346 
2347             Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2348                                                "next.gep");
2349             VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
2350                                                  Builder.getInt32(i),
2351                                                  "insert.gep");
2352           }
2353           Entry[part] = VecVal;
2354         }
2355         continue;
2356       }
2357 
2358     }// End of PHI.
2359 
2360     case Instruction::Add:
2361     case Instruction::FAdd:
2362     case Instruction::Sub:
2363     case Instruction::FSub:
2364     case Instruction::Mul:
2365     case Instruction::FMul:
2366     case Instruction::UDiv:
2367     case Instruction::SDiv:
2368     case Instruction::FDiv:
2369     case Instruction::URem:
2370     case Instruction::SRem:
2371     case Instruction::FRem:
2372     case Instruction::Shl:
2373     case Instruction::LShr:
2374     case Instruction::AShr:
2375     case Instruction::And:
2376     case Instruction::Or:
2377     case Instruction::Xor: {
2378       // Just widen binops.
2379       BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
2380       setDebugLocFromInst(Builder, BinOp);
2381       VectorParts &A = getVectorValue(it->getOperand(0));
2382       VectorParts &B = getVectorValue(it->getOperand(1));
2383 
2384       // Use this vector value for all users of the original instruction.
2385       for (unsigned Part = 0; Part < UF; ++Part) {
2386         Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
2387 
2388         // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
2389         BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
2390         if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
2391           VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
2392           VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
2393         }
2394         if (VecOp && isa<PossiblyExactOperator>(VecOp))
2395           VecOp->setIsExact(BinOp->isExact());
2396 
2397         Entry[Part] = V;
2398       }
2399       break;
2400     }
2401     case Instruction::Select: {
2402       // Widen selects.
2403       // If the selector is loop invariant we can create a select
2404       // instruction with a scalar condition. Otherwise, use vector-select.
2405       bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
2406                                                OrigLoop);
2407       setDebugLocFromInst(Builder, it);
2408 
2409       // The condition can be loop invariant  but still defined inside the
2410       // loop. This means that we can't just use the original 'cond' value.
2411       // We have to take the 'vectorized' value and pick the first lane.
2412       // Instcombine will make this a no-op.
2413       VectorParts &Cond = getVectorValue(it->getOperand(0));
2414       VectorParts &Op0  = getVectorValue(it->getOperand(1));
2415       VectorParts &Op1  = getVectorValue(it->getOperand(2));
2416       Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
2417                                                        Builder.getInt32(0));
2418       for (unsigned Part = 0; Part < UF; ++Part) {
2419         Entry[Part] = Builder.CreateSelect(
2420           InvariantCond ? ScalarCond : Cond[Part],
2421           Op0[Part],
2422           Op1[Part]);
2423       }
2424       break;
2425     }
2426 
2427     case Instruction::ICmp:
2428     case Instruction::FCmp: {
2429       // Widen compares. Generate vector compares.
2430       bool FCmp = (it->getOpcode() == Instruction::FCmp);
2431       CmpInst *Cmp = dyn_cast<CmpInst>(it);
2432       setDebugLocFromInst(Builder, it);
2433       VectorParts &A = getVectorValue(it->getOperand(0));
2434       VectorParts &B = getVectorValue(it->getOperand(1));
2435       for (unsigned Part = 0; Part < UF; ++Part) {
2436         Value *C = 0;
2437         if (FCmp)
2438           C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
2439         else
2440           C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
2441         Entry[Part] = C;
2442       }
2443       break;
2444     }
2445 
2446     case Instruction::Store:
2447     case Instruction::Load:
2448         vectorizeMemoryInstruction(it, Legal);
2449         break;
2450     case Instruction::ZExt:
2451     case Instruction::SExt:
2452     case Instruction::FPToUI:
2453     case Instruction::FPToSI:
2454     case Instruction::FPExt:
2455     case Instruction::PtrToInt:
2456     case Instruction::IntToPtr:
2457     case Instruction::SIToFP:
2458     case Instruction::UIToFP:
2459     case Instruction::Trunc:
2460     case Instruction::FPTrunc:
2461     case Instruction::BitCast: {
2462       CastInst *CI = dyn_cast<CastInst>(it);
2463       setDebugLocFromInst(Builder, it);
2464       /// Optimize the special case where the source is the induction
2465       /// variable. Notice that we can only optimize the 'trunc' case
2466       /// because: a. FP conversions lose precision, b. sext/zext may wrap,
2467       /// c. other casts depend on pointer size.
2468       if (CI->getOperand(0) == OldInduction &&
2469           it->getOpcode() == Instruction::Trunc) {
2470         Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
2471                                                CI->getType());
2472         Value *Broadcasted = getBroadcastInstrs(ScalarCast);
2473         for (unsigned Part = 0; Part < UF; ++Part)
2474           Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
2475         break;
2476       }
2477       /// Vectorize casts.
2478       Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
2479 
2480       VectorParts &A = getVectorValue(it->getOperand(0));
2481       for (unsigned Part = 0; Part < UF; ++Part)
2482         Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
2483       break;
2484     }
2485 
2486     case Instruction::Call: {
2487       // Ignore dbg intrinsics.
2488       if (isa<DbgInfoIntrinsic>(it))
2489         break;
2490       setDebugLocFromInst(Builder, it);
2491 
2492       Module *M = BB->getParent()->getParent();
2493       CallInst *CI = cast<CallInst>(it);
2494       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2495       assert(ID && "Not an intrinsic call!");
2496       switch (ID) {
2497       case Intrinsic::lifetime_end:
2498       case Intrinsic::lifetime_start:
2499         scalarizeInstruction(it);
2500         break;
2501       default:
2502         for (unsigned Part = 0; Part < UF; ++Part) {
2503           SmallVector<Value *, 4> Args;
2504           for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
2505             VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
2506             Args.push_back(Arg[Part]);
2507           }
2508           Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) };
2509           Function *F = Intrinsic::getDeclaration(M, ID, Tys);
2510           Entry[Part] = Builder.CreateCall(F, Args);
2511         }
2512         break;
2513       }
2514       break;
2515     }
2516 
2517     default:
2518       // All other instructions are unsupported. Scalarize them.
2519       scalarizeInstruction(it);
2520       break;
2521     }// end of switch.
2522   }// end of for_each instr.
2523 }
2524 
updateAnalysis()2525 void InnerLoopVectorizer::updateAnalysis() {
2526   // Forget the original basic block.
2527   SE->forgetLoop(OrigLoop);
2528 
2529   // Update the dominator tree information.
2530   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2531          "Entry does not dominate exit.");
2532 
2533   for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2534     DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2535   DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2536   DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2537   DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2538   DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2539   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2540   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2541 
2542   DEBUG(DT->verifyAnalysis());
2543 }
2544 
canVectorizeWithIfConvert()2545 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2546   if (!EnableIfConversion)
2547     return false;
2548 
2549   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2550   std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
2551 
2552   // A list of pointers that we can safely read and write to.
2553   SmallPtrSet<Value *, 8> SafePointes;
2554 
2555   // Collect safe addresses.
2556   for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
2557     BasicBlock *BB = LoopBlocks[i];
2558 
2559     if (blockNeedsPredication(BB))
2560       continue;
2561 
2562     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2563       if (LoadInst *LI = dyn_cast<LoadInst>(I))
2564         SafePointes.insert(LI->getPointerOperand());
2565       else if (StoreInst *SI = dyn_cast<StoreInst>(I))
2566         SafePointes.insert(SI->getPointerOperand());
2567     }
2568   }
2569 
2570   // Collect the blocks that need predication.
2571   for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
2572     BasicBlock *BB = LoopBlocks[i];
2573 
2574     // We don't support switch statements inside loops.
2575     if (!isa<BranchInst>(BB->getTerminator()))
2576       return false;
2577 
2578     // We must be able to predicate all blocks that need to be predicated.
2579     if (blockNeedsPredication(BB) && !blockCanBePredicated(BB, SafePointes))
2580       return false;
2581   }
2582 
2583   // We can if-convert this loop.
2584   return true;
2585 }
2586 
canVectorize()2587 bool LoopVectorizationLegality::canVectorize() {
2588   // We must have a loop in canonical form. Loops with indirectbr in them cannot
2589   // be canonicalized.
2590   if (!TheLoop->getLoopPreheader())
2591     return false;
2592 
2593   // We can only vectorize innermost loops.
2594   if (TheLoop->getSubLoopsVector().size())
2595     return false;
2596 
2597   // We must have a single backedge.
2598   if (TheLoop->getNumBackEdges() != 1)
2599     return false;
2600 
2601   // We must have a single exiting block.
2602   if (!TheLoop->getExitingBlock())
2603     return false;
2604 
2605   unsigned NumBlocks = TheLoop->getNumBlocks();
2606 
2607   // Check if we can if-convert non single-bb loops.
2608   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2609     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2610     return false;
2611   }
2612 
2613   // We need to have a loop header.
2614   BasicBlock *Latch = TheLoop->getLoopLatch();
2615   DEBUG(dbgs() << "LV: Found a loop: " <<
2616         TheLoop->getHeader()->getName() << "\n");
2617 
2618   // ScalarEvolution needs to be able to find the exit count.
2619   const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
2620   if (ExitCount == SE->getCouldNotCompute()) {
2621     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2622     return false;
2623   }
2624 
2625   // Do not loop-vectorize loops with a tiny trip count.
2626   unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2627   if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2628     DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2629           "This loop is not worth vectorizing.\n");
2630     return false;
2631   }
2632 
2633   // Check if we can vectorize the instructions and CFG in this loop.
2634   if (!canVectorizeInstrs()) {
2635     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2636     return false;
2637   }
2638 
2639   // Go over each instruction and look at memory deps.
2640   if (!canVectorizeMemory()) {
2641     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2642     return false;
2643   }
2644 
2645   // Collect all of the variables that remain uniform after vectorization.
2646   collectLoopUniforms();
2647 
2648   DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2649         (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2650         <<"!\n");
2651 
2652   // Okay! We can vectorize. At this point we don't have any other mem analysis
2653   // which may limit our maximum vectorization factor, so just return true with
2654   // no restrictions.
2655   return true;
2656 }
2657 
convertPointerToIntegerType(DataLayout & DL,Type * Ty)2658 static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) {
2659   if (Ty->isPointerTy())
2660     return DL.getIntPtrType(Ty->getContext());
2661   return Ty;
2662 }
2663 
getWiderType(DataLayout & DL,Type * Ty0,Type * Ty1)2664 static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) {
2665   Ty0 = convertPointerToIntegerType(DL, Ty0);
2666   Ty1 = convertPointerToIntegerType(DL, Ty1);
2667   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
2668     return Ty0;
2669   return Ty1;
2670 }
2671 
2672 /// \brief Check that the instruction has outside loop users and is not an
2673 /// identified reduction variable.
hasOutsideLoopUser(const Loop * TheLoop,Instruction * Inst,SmallPtrSet<Value *,4> & Reductions)2674 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
2675                                SmallPtrSet<Value *, 4> &Reductions) {
2676   // Reduction instructions are allowed to have exit users. All other
2677   // instructions must not have external users.
2678   if (!Reductions.count(Inst))
2679     //Check that all of the users of the loop are inside the BB.
2680     for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
2681          I != E; ++I) {
2682       Instruction *U = cast<Instruction>(*I);
2683       // This user may be a reduction exit value.
2684       if (!TheLoop->contains(U)) {
2685         DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
2686         return true;
2687       }
2688     }
2689   return false;
2690 }
2691 
canVectorizeInstrs()2692 bool LoopVectorizationLegality::canVectorizeInstrs() {
2693   BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2694   BasicBlock *Header = TheLoop->getHeader();
2695 
2696   // Look for the attribute signaling the absence of NaNs.
2697   Function &F = *Header->getParent();
2698   if (F.hasFnAttribute("no-nans-fp-math"))
2699     HasFunNoNaNAttr = F.getAttributes().getAttribute(
2700       AttributeSet::FunctionIndex,
2701       "no-nans-fp-math").getValueAsString() == "true";
2702 
2703   // For each block in the loop.
2704   for (Loop::block_iterator bb = TheLoop->block_begin(),
2705        be = TheLoop->block_end(); bb != be; ++bb) {
2706 
2707     // Scan the instructions in the block and look for hazards.
2708     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2709          ++it) {
2710 
2711       if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2712         Type *PhiTy = Phi->getType();
2713         // Check that this PHI type is allowed.
2714         if (!PhiTy->isIntegerTy() &&
2715             !PhiTy->isFloatingPointTy() &&
2716             !PhiTy->isPointerTy()) {
2717           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2718           return false;
2719         }
2720 
2721         // If this PHINode is not in the header block, then we know that we
2722         // can convert it to select during if-conversion. No need to check if
2723         // the PHIs in this block are induction or reduction variables.
2724         if (*bb != Header) {
2725           // Check that this instruction has no outside users or is an
2726           // identified reduction value with an outside user.
2727           if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
2728             continue;
2729           return false;
2730         }
2731 
2732         // We only allow if-converted PHIs with more than two incoming values.
2733         if (Phi->getNumIncomingValues() != 2) {
2734           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2735           return false;
2736         }
2737 
2738         // This is the value coming from the preheader.
2739         Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2740         // Check if this is an induction variable.
2741         InductionKind IK = isInductionVariable(Phi);
2742 
2743         if (IK_NoInduction != IK) {
2744           // Get the widest type.
2745           if (!WidestIndTy)
2746             WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
2747           else
2748             WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
2749 
2750           // Int inductions are special because we only allow one IV.
2751           if (IK == IK_IntInduction) {
2752             // Use the phi node with the widest type as induction. Use the last
2753             // one if there are multiple (no good reason for doing this other
2754             // than it is expedient).
2755             if (!Induction || PhiTy == WidestIndTy)
2756               Induction = Phi;
2757           }
2758 
2759           DEBUG(dbgs() << "LV: Found an induction variable.\n");
2760           Inductions[Phi] = InductionInfo(StartValue, IK);
2761           continue;
2762         }
2763 
2764         if (AddReductionVar(Phi, RK_IntegerAdd)) {
2765           DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
2766           continue;
2767         }
2768         if (AddReductionVar(Phi, RK_IntegerMult)) {
2769           DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
2770           continue;
2771         }
2772         if (AddReductionVar(Phi, RK_IntegerOr)) {
2773           DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
2774           continue;
2775         }
2776         if (AddReductionVar(Phi, RK_IntegerAnd)) {
2777           DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
2778           continue;
2779         }
2780         if (AddReductionVar(Phi, RK_IntegerXor)) {
2781           DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
2782           continue;
2783         }
2784         if (AddReductionVar(Phi, RK_IntegerMinMax)) {
2785           DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
2786           continue;
2787         }
2788         if (AddReductionVar(Phi, RK_FloatMult)) {
2789           DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
2790           continue;
2791         }
2792         if (AddReductionVar(Phi, RK_FloatAdd)) {
2793           DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
2794           continue;
2795         }
2796         if (AddReductionVar(Phi, RK_FloatMinMax)) {
2797           DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
2798                 "\n");
2799           continue;
2800         }
2801 
2802         DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
2803         return false;
2804       }// end of PHI handling
2805 
2806       // We still don't handle functions. However, we can ignore dbg intrinsic
2807       // calls and we do handle certain intrinsic and libm functions.
2808       CallInst *CI = dyn_cast<CallInst>(it);
2809       if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
2810         DEBUG(dbgs() << "LV: Found a call site.\n");
2811         return false;
2812       }
2813 
2814       // Check that the instruction return type is vectorizable.
2815       if (!VectorType::isValidElementType(it->getType()) &&
2816           !it->getType()->isVoidTy()) {
2817         DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
2818         return false;
2819       }
2820 
2821       // Check that the stored type is vectorizable.
2822       if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
2823         Type *T = ST->getValueOperand()->getType();
2824         if (!VectorType::isValidElementType(T))
2825           return false;
2826       }
2827 
2828       // Reduction instructions are allowed to have exit users.
2829       // All other instructions must not have external users.
2830       if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
2831         return false;
2832 
2833     } // next instr.
2834 
2835   }
2836 
2837   if (!Induction) {
2838     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
2839     if (Inductions.empty())
2840       return false;
2841   }
2842 
2843   return true;
2844 }
2845 
collectLoopUniforms()2846 void LoopVectorizationLegality::collectLoopUniforms() {
2847   // We now know that the loop is vectorizable!
2848   // Collect variables that will remain uniform after vectorization.
2849   std::vector<Value*> Worklist;
2850   BasicBlock *Latch = TheLoop->getLoopLatch();
2851 
2852   // Start with the conditional branch and walk up the block.
2853   Worklist.push_back(Latch->getTerminator()->getOperand(0));
2854 
2855   while (Worklist.size()) {
2856     Instruction *I = dyn_cast<Instruction>(Worklist.back());
2857     Worklist.pop_back();
2858 
2859     // Look at instructions inside this loop.
2860     // Stop when reaching PHI nodes.
2861     // TODO: we need to follow values all over the loop, not only in this block.
2862     if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
2863       continue;
2864 
2865     // This is a known uniform.
2866     Uniforms.insert(I);
2867 
2868     // Insert all operands.
2869     Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
2870   }
2871 }
2872 
2873 namespace {
2874 /// \brief Analyses memory accesses in a loop.
2875 ///
2876 /// Checks whether run time pointer checks are needed and builds sets for data
2877 /// dependence checking.
2878 class AccessAnalysis {
2879 public:
2880   /// \brief Read or write access location.
2881   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
2882   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
2883 
2884   /// \brief Set of potential dependent memory accesses.
2885   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
2886 
AccessAnalysis(DataLayout * Dl,DepCandidates & DA)2887   AccessAnalysis(DataLayout *Dl, DepCandidates &DA) :
2888     DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
2889     AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
2890 
2891   /// \brief Register a load  and whether it is only read from.
addLoad(Value * Ptr,bool IsReadOnly)2892   void addLoad(Value *Ptr, bool IsReadOnly) {
2893     Accesses.insert(MemAccessInfo(Ptr, false));
2894     if (IsReadOnly)
2895       ReadOnlyPtr.insert(Ptr);
2896   }
2897 
2898   /// \brief Register a store.
addStore(Value * Ptr)2899   void addStore(Value *Ptr) {
2900     Accesses.insert(MemAccessInfo(Ptr, true));
2901   }
2902 
2903   /// \brief Check whether we can check the pointers at runtime for
2904   /// non-intersection.
2905   bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
2906                        unsigned &NumComparisons, ScalarEvolution *SE,
2907                        Loop *TheLoop);
2908 
2909   /// \brief Goes over all memory accesses, checks whether a RT check is needed
2910   /// and builds sets of dependent accesses.
buildDependenceSets()2911   void buildDependenceSets() {
2912     // Process read-write pointers first.
2913     processMemAccesses(false);
2914     // Next, process read pointers.
2915     processMemAccesses(true);
2916   }
2917 
isRTCheckNeeded()2918   bool isRTCheckNeeded() { return IsRTCheckNeeded; }
2919 
isDependencyCheckNeeded()2920   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
2921 
getDependenciesToCheck()2922   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
2923 
2924 private:
2925   typedef SetVector<MemAccessInfo> PtrAccessSet;
2926   typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
2927 
2928   /// \brief Go over all memory access or only the deferred ones if
2929   /// \p UseDeferred is true and check whether runtime pointer checks are needed
2930   /// and build sets of dependency check candidates.
2931   void processMemAccesses(bool UseDeferred);
2932 
2933   /// Set of all accesses.
2934   PtrAccessSet Accesses;
2935 
2936   /// Set of access to check after all writes have been processed.
2937   PtrAccessSet DeferredAccesses;
2938 
2939   /// Map of pointers to last access encountered.
2940   UnderlyingObjToAccessMap ObjToLastAccess;
2941 
2942   /// Set of accesses that need a further dependence check.
2943   MemAccessInfoSet CheckDeps;
2944 
2945   /// Set of pointers that are read only.
2946   SmallPtrSet<Value*, 16> ReadOnlyPtr;
2947 
2948   /// Set of underlying objects already written to.
2949   SmallPtrSet<Value*, 16> WriteObjects;
2950 
2951   DataLayout *DL;
2952 
2953   /// Sets of potentially dependent accesses - members of one set share an
2954   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
2955   /// dependence check.
2956   DepCandidates &DepCands;
2957 
2958   bool AreAllWritesIdentified;
2959   bool AreAllReadsIdentified;
2960   bool IsRTCheckNeeded;
2961 };
2962 
2963 } // end anonymous namespace
2964 
2965 /// \brief Check whether a pointer can participate in a runtime bounds check.
hasComputableBounds(ScalarEvolution * SE,Value * Ptr)2966 static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) {
2967   const SCEV *PtrScev = SE->getSCEV(Ptr);
2968   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
2969   if (!AR)
2970     return false;
2971 
2972   return AR->isAffine();
2973 }
2974 
canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck & RtCheck,unsigned & NumComparisons,ScalarEvolution * SE,Loop * TheLoop)2975 bool AccessAnalysis::canCheckPtrAtRT(
2976                        LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
2977                         unsigned &NumComparisons, ScalarEvolution *SE,
2978                         Loop *TheLoop) {
2979   // Find pointers with computable bounds. We are going to use this information
2980   // to place a runtime bound check.
2981   unsigned NumReadPtrChecks = 0;
2982   unsigned NumWritePtrChecks = 0;
2983   bool CanDoRT = true;
2984 
2985   bool IsDepCheckNeeded = isDependencyCheckNeeded();
2986   // We assign consecutive id to access from different dependence sets.
2987   // Accesses within the same set don't need a runtime check.
2988   unsigned RunningDepId = 1;
2989   DenseMap<Value *, unsigned> DepSetId;
2990 
2991   for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
2992        AI != AE; ++AI) {
2993     const MemAccessInfo &Access = *AI;
2994     Value *Ptr = Access.getPointer();
2995     bool IsWrite = Access.getInt();
2996 
2997     // Just add write checks if we have both.
2998     if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
2999       continue;
3000 
3001     if (IsWrite)
3002       ++NumWritePtrChecks;
3003     else
3004       ++NumReadPtrChecks;
3005 
3006     if (hasComputableBounds(SE, Ptr)) {
3007       // The id of the dependence set.
3008       unsigned DepId;
3009 
3010       if (IsDepCheckNeeded) {
3011         Value *Leader = DepCands.getLeaderValue(Access).getPointer();
3012         unsigned &LeaderId = DepSetId[Leader];
3013         if (!LeaderId)
3014           LeaderId = RunningDepId++;
3015         DepId = LeaderId;
3016       } else
3017         // Each access has its own dependence set.
3018         DepId = RunningDepId++;
3019 
3020       RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId);
3021 
3022       DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr <<"\n");
3023     } else {
3024       CanDoRT = false;
3025     }
3026   }
3027 
3028   if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
3029     NumComparisons = 0; // Only one dependence set.
3030   else
3031     NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
3032                                            NumWritePtrChecks - 1));
3033   return CanDoRT;
3034 }
3035 
isFunctionScopeIdentifiedObject(Value * Ptr)3036 static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
3037   return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
3038 }
3039 
processMemAccesses(bool UseDeferred)3040 void AccessAnalysis::processMemAccesses(bool UseDeferred) {
3041   // We process the set twice: first we process read-write pointers, last we
3042   // process read-only pointers. This allows us to skip dependence tests for
3043   // read-only pointers.
3044 
3045   PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
3046   for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
3047     const MemAccessInfo &Access = *AI;
3048     Value *Ptr = Access.getPointer();
3049     bool IsWrite = Access.getInt();
3050 
3051     DepCands.insert(Access);
3052 
3053     // Memorize read-only pointers for later processing and skip them in the
3054     // first round (they need to be checked after we have seen all write
3055     // pointers). Note: we also mark pointer that are not consecutive as
3056     // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
3057     // second check for "!IsWrite".
3058     bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
3059     if (!UseDeferred && IsReadOnlyPtr) {
3060       DeferredAccesses.insert(Access);
3061       continue;
3062     }
3063 
3064     bool NeedDepCheck = false;
3065     // Check whether there is the possiblity of dependency because of underlying
3066     // objects being the same.
3067     typedef SmallVector<Value*, 16> ValueVector;
3068     ValueVector TempObjects;
3069     GetUnderlyingObjects(Ptr, TempObjects, DL);
3070     for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
3071          UI != UE; ++UI) {
3072       Value *UnderlyingObj = *UI;
3073 
3074       // If this is a write then it needs to be an identified object.  If this a
3075       // read and all writes (so far) are identified function scope objects we
3076       // don't need an identified underlying object but only an Argument (the
3077       // next write is going to invalidate this assumption if it is
3078       // unidentified).
3079       // This is a micro-optimization for the case where all writes are
3080       // identified and we have one argument pointer.
3081       // Otherwise, we do need a runtime check.
3082       if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
3083           (!IsWrite && (!AreAllWritesIdentified ||
3084                         !isa<Argument>(UnderlyingObj)) &&
3085            !isIdentifiedObject(UnderlyingObj))) {
3086         DEBUG(dbgs() << "LV: Found an unidentified " <<
3087               (IsWrite ?  "write" : "read" ) << " ptr:" << *UnderlyingObj <<
3088               "\n");
3089         IsRTCheckNeeded = (IsRTCheckNeeded ||
3090                            !isIdentifiedObject(UnderlyingObj) ||
3091                            !AreAllReadsIdentified);
3092 
3093         if (IsWrite)
3094           AreAllWritesIdentified = false;
3095         if (!IsWrite)
3096           AreAllReadsIdentified = false;
3097       }
3098 
3099       // If this is a write - check other reads and writes for conflicts.  If
3100       // this is a read only check other writes for conflicts (but only if there
3101       // is no other write to the ptr - this is an optimization to catch "a[i] =
3102       // a[i] + " without having to do a dependence check).
3103       if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
3104         NeedDepCheck = true;
3105 
3106       if (IsWrite)
3107         WriteObjects.insert(UnderlyingObj);
3108 
3109       // Create sets of pointers connected by shared underlying objects.
3110       UnderlyingObjToAccessMap::iterator Prev =
3111         ObjToLastAccess.find(UnderlyingObj);
3112       if (Prev != ObjToLastAccess.end())
3113         DepCands.unionSets(Access, Prev->second);
3114 
3115       ObjToLastAccess[UnderlyingObj] = Access;
3116     }
3117 
3118     if (NeedDepCheck)
3119       CheckDeps.insert(Access);
3120   }
3121 }
3122 
3123 namespace {
3124 /// \brief Checks memory dependences among accesses to the same underlying
3125 /// object to determine whether there vectorization is legal or not (and at
3126 /// which vectorization factor).
3127 ///
3128 /// This class works under the assumption that we already checked that memory
3129 /// locations with different underlying pointers are "must-not alias".
3130 /// We use the ScalarEvolution framework to symbolically evalutate access
3131 /// functions pairs. Since we currently don't restructure the loop we can rely
3132 /// on the program order of memory accesses to determine their safety.
3133 /// At the moment we will only deem accesses as safe for:
3134 ///  * A negative constant distance assuming program order.
3135 ///
3136 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
3137 ///            a[i] = tmp;                y = a[i];
3138 ///
3139 ///   The latter case is safe because later checks guarantuee that there can't
3140 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
3141 ///   the same variable: a header phi can only be an induction or a reduction, a
3142 ///   reduction can't have a memory sink, an induction can't have a memory
3143 ///   source). This is important and must not be violated (or we have to
3144 ///   resort to checking for cycles through memory).
3145 ///
3146 ///  * A positive constant distance assuming program order that is bigger
3147 ///    than the biggest memory access.
3148 ///
3149 ///     tmp = a[i]        OR              b[i] = x
3150 ///     a[i+2] = tmp                      y = b[i+2];
3151 ///
3152 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
3153 ///
3154 ///  * Zero distances and all accesses have the same size.
3155 ///
3156 class MemoryDepChecker {
3157 public:
3158   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3159   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3160 
MemoryDepChecker(ScalarEvolution * Se,DataLayout * Dl,const Loop * L)3161   MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L) :
3162     SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0) {}
3163 
3164   /// \brief Register the location (instructions are given increasing numbers)
3165   /// of a write access.
addAccess(StoreInst * SI)3166   void addAccess(StoreInst *SI) {
3167     Value *Ptr = SI->getPointerOperand();
3168     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
3169     InstMap.push_back(SI);
3170     ++AccessIdx;
3171   }
3172 
3173   /// \brief Register the location (instructions are given increasing numbers)
3174   /// of a write access.
addAccess(LoadInst * LI)3175   void addAccess(LoadInst *LI) {
3176     Value *Ptr = LI->getPointerOperand();
3177     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
3178     InstMap.push_back(LI);
3179     ++AccessIdx;
3180   }
3181 
3182   /// \brief Check whether the dependencies between the accesses are safe.
3183   ///
3184   /// Only checks sets with elements in \p CheckDeps.
3185   bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3186                    MemAccessInfoSet &CheckDeps);
3187 
3188   /// \brief The maximum number of bytes of a vector register we can vectorize
3189   /// the accesses safely with.
getMaxSafeDepDistBytes()3190   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
3191 
3192 private:
3193   ScalarEvolution *SE;
3194   DataLayout *DL;
3195   const Loop *InnermostLoop;
3196 
3197   /// \brief Maps access locations (ptr, read/write) to program order.
3198   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
3199 
3200   /// \brief Memory access instructions in program order.
3201   SmallVector<Instruction *, 16> InstMap;
3202 
3203   /// \brief The program order index to be used for the next instruction.
3204   unsigned AccessIdx;
3205 
3206   // We can access this many bytes in parallel safely.
3207   unsigned MaxSafeDepDistBytes;
3208 
3209   /// \brief Check whether there is a plausible dependence between the two
3210   /// accesses.
3211   ///
3212   /// Access \p A must happen before \p B in program order. The two indices
3213   /// identify the index into the program order map.
3214   ///
3215   /// This function checks  whether there is a plausible dependence (or the
3216   /// absence of such can't be proved) between the two accesses. If there is a
3217   /// plausible dependence but the dependence distance is bigger than one
3218   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
3219   /// distance is smaller than any other distance encountered so far).
3220   /// Otherwise, this function returns true signaling a possible dependence.
3221   bool isDependent(const MemAccessInfo &A, unsigned AIdx,
3222                    const MemAccessInfo &B, unsigned BIdx);
3223 
3224   /// \brief Check whether the data dependence could prevent store-load
3225   /// forwarding.
3226   bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
3227 };
3228 
3229 } // end anonymous namespace
3230 
isInBoundsGep(Value * Ptr)3231 static bool isInBoundsGep(Value *Ptr) {
3232   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
3233     return GEP->isInBounds();
3234   return false;
3235 }
3236 
3237 /// \brief Check whether the access through \p Ptr has a constant stride.
isStridedPtr(ScalarEvolution * SE,DataLayout * DL,Value * Ptr,const Loop * Lp)3238 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3239                         const Loop *Lp) {
3240   const Type *Ty = Ptr->getType();
3241   assert(Ty->isPointerTy() && "Unexpected non ptr");
3242 
3243   // Make sure that the pointer does not point to aggregate types.
3244   const PointerType *PtrTy = cast<PointerType>(Ty);
3245   if (PtrTy->getElementType()->isAggregateType()) {
3246     DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
3247           "\n");
3248     return 0;
3249   }
3250 
3251   const SCEV *PtrScev = SE->getSCEV(Ptr);
3252   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3253   if (!AR) {
3254     DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
3255           << *Ptr << " SCEV: " << *PtrScev << "\n");
3256     return 0;
3257   }
3258 
3259   // The accesss function must stride over the innermost loop.
3260   if (Lp != AR->getLoop()) {
3261     DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
3262           *Ptr << " SCEV: " << *PtrScev << "\n");
3263   }
3264 
3265   // The address calculation must not wrap. Otherwise, a dependence could be
3266   // inverted.
3267   // An inbounds getelementptr that is a AddRec with a unit stride
3268   // cannot wrap per definition. The unit stride requirement is checked later.
3269   // An getelementptr without an inbounds attribute and unit stride would have
3270   // to access the pointer value "0" which is undefined behavior in address
3271   // space 0, therefore we can also vectorize this case.
3272   bool IsInBoundsGEP = isInBoundsGep(Ptr);
3273   bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
3274   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
3275   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
3276     DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
3277           << *Ptr << " SCEV: " << *PtrScev << "\n");
3278     return 0;
3279   }
3280 
3281   // Check the step is constant.
3282   const SCEV *Step = AR->getStepRecurrence(*SE);
3283 
3284   // Calculate the pointer stride and check if it is consecutive.
3285   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
3286   if (!C) {
3287     DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
3288           " SCEV: " << *PtrScev << "\n");
3289     return 0;
3290   }
3291 
3292   int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
3293   const APInt &APStepVal = C->getValue()->getValue();
3294 
3295   // Huge step value - give up.
3296   if (APStepVal.getBitWidth() > 64)
3297     return 0;
3298 
3299   int64_t StepVal = APStepVal.getSExtValue();
3300 
3301   // Strided access.
3302   int64_t Stride = StepVal / Size;
3303   int64_t Rem = StepVal % Size;
3304   if (Rem)
3305     return 0;
3306 
3307   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
3308   // know we can't "wrap around the address space". In case of address space
3309   // zero we know that this won't happen without triggering undefined behavior.
3310   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
3311       Stride != 1 && Stride != -1)
3312     return 0;
3313 
3314   return Stride;
3315 }
3316 
couldPreventStoreLoadForward(unsigned Distance,unsigned TypeByteSize)3317 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
3318                                                     unsigned TypeByteSize) {
3319   // If loads occur at a distance that is not a multiple of a feasible vector
3320   // factor store-load forwarding does not take place.
3321   // Positive dependences might cause troubles because vectorizing them might
3322   // prevent store-load forwarding making vectorized code run a lot slower.
3323   //   a[i] = a[i-3] ^ a[i-8];
3324   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
3325   //   hence on your typical architecture store-load forwarding does not take
3326   //   place. Vectorizing in such cases does not make sense.
3327   // Store-load forwarding distance.
3328   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
3329   // Maximum vector factor.
3330   unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
3331   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
3332     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
3333 
3334   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
3335        vf *= 2) {
3336     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
3337       MaxVFWithoutSLForwardIssues = (vf >>=1);
3338       break;
3339     }
3340   }
3341 
3342   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
3343     DEBUG(dbgs() << "LV: Distance " << Distance <<
3344           " that could cause a store-load forwarding conflict\n");
3345     return true;
3346   }
3347 
3348   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
3349       MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
3350     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
3351   return false;
3352 }
3353 
isDependent(const MemAccessInfo & A,unsigned AIdx,const MemAccessInfo & B,unsigned BIdx)3354 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
3355                                    const MemAccessInfo &B, unsigned BIdx) {
3356   assert (AIdx < BIdx && "Must pass arguments in program order");
3357 
3358   Value *APtr = A.getPointer();
3359   Value *BPtr = B.getPointer();
3360   bool AIsWrite = A.getInt();
3361   bool BIsWrite = B.getInt();
3362 
3363   // Two reads are independent.
3364   if (!AIsWrite && !BIsWrite)
3365     return false;
3366 
3367   const SCEV *AScev = SE->getSCEV(APtr);
3368   const SCEV *BScev = SE->getSCEV(BPtr);
3369 
3370   int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop);
3371   int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop);
3372 
3373   const SCEV *Src = AScev;
3374   const SCEV *Sink = BScev;
3375 
3376   // If the induction step is negative we have to invert source and sink of the
3377   // dependence.
3378   if (StrideAPtr < 0) {
3379     //Src = BScev;
3380     //Sink = AScev;
3381     std::swap(APtr, BPtr);
3382     std::swap(Src, Sink);
3383     std::swap(AIsWrite, BIsWrite);
3384     std::swap(AIdx, BIdx);
3385     std::swap(StrideAPtr, StrideBPtr);
3386   }
3387 
3388   const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
3389 
3390   DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
3391         << "(Induction step: " << StrideAPtr <<  ")\n");
3392   DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
3393         << *InstMap[BIdx] << ": " << *Dist << "\n");
3394 
3395   // Need consecutive accesses. We don't want to vectorize
3396   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
3397   // the address space.
3398   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
3399     DEBUG(dbgs() << "Non-consecutive pointer access\n");
3400     return true;
3401   }
3402 
3403   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
3404   if (!C) {
3405     DEBUG(dbgs() << "LV: Dependence because of non constant distance\n");
3406     return true;
3407   }
3408 
3409   Type *ATy = APtr->getType()->getPointerElementType();
3410   Type *BTy = BPtr->getType()->getPointerElementType();
3411   unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
3412 
3413   // Negative distances are not plausible dependencies.
3414   const APInt &Val = C->getValue()->getValue();
3415   if (Val.isNegative()) {
3416     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
3417     if (IsTrueDataDependence &&
3418         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
3419          ATy != BTy))
3420       return true;
3421 
3422     DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
3423     return false;
3424   }
3425 
3426   // Write to the same location with the same size.
3427   // Could be improved to assert type sizes are the same (i32 == float, etc).
3428   if (Val == 0) {
3429     if (ATy == BTy)
3430       return false;
3431     DEBUG(dbgs() << "LV: Zero dependence difference but different types");
3432     return true;
3433   }
3434 
3435   assert(Val.isStrictlyPositive() && "Expect a positive value");
3436 
3437   // Positive distance bigger than max vectorization factor.
3438   if (ATy != BTy) {
3439     DEBUG(dbgs() <<
3440           "LV: ReadWrite-Write positive dependency with different types");
3441     return false;
3442   }
3443 
3444   unsigned Distance = (unsigned) Val.getZExtValue();
3445 
3446   // Bail out early if passed-in parameters make vectorization not feasible.
3447   unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
3448   unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
3449 
3450   // The distance must be bigger than the size needed for a vectorized version
3451   // of the operation and the size of the vectorized operation must not be
3452   // bigger than the currrent maximum size.
3453   if (Distance < 2*TypeByteSize ||
3454       2*TypeByteSize > MaxSafeDepDistBytes ||
3455       Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
3456     DEBUG(dbgs() << "LV: Failure because of Positive distance "
3457         << Val.getSExtValue() << "\n");
3458     return true;
3459   }
3460 
3461   MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
3462     Distance : MaxSafeDepDistBytes;
3463 
3464   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
3465   if (IsTrueDataDependence &&
3466       couldPreventStoreLoadForward(Distance, TypeByteSize))
3467      return true;
3468 
3469   DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
3470         " with max VF=" << MaxSafeDepDistBytes/TypeByteSize << "\n");
3471 
3472   return false;
3473 }
3474 
3475 bool
areDepsSafe(AccessAnalysis::DepCandidates & AccessSets,MemAccessInfoSet & CheckDeps)3476 MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3477                               MemAccessInfoSet &CheckDeps) {
3478 
3479   MaxSafeDepDistBytes = -1U;
3480   while (!CheckDeps.empty()) {
3481     MemAccessInfo CurAccess = *CheckDeps.begin();
3482 
3483     // Get the relevant memory access set.
3484     EquivalenceClasses<MemAccessInfo>::iterator I =
3485       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
3486 
3487     // Check accesses within this set.
3488     EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
3489     AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
3490 
3491     // Check every access pair.
3492     while (AI != AE) {
3493       CheckDeps.erase(*AI);
3494       EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI);
3495       while (OI != AE) {
3496         // Check every accessing instruction pair in program order.
3497         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
3498              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
3499           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
3500                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
3501             if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2))
3502               return false;
3503             if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1))
3504               return false;
3505           }
3506         ++OI;
3507       }
3508       AI++;
3509     }
3510   }
3511   return true;
3512 }
3513 
canVectorizeMemory()3514 bool LoopVectorizationLegality::canVectorizeMemory() {
3515 
3516   typedef SmallVector<Value*, 16> ValueVector;
3517   typedef SmallPtrSet<Value*, 16> ValueSet;
3518 
3519   // Holds the Load and Store *instructions*.
3520   ValueVector Loads;
3521   ValueVector Stores;
3522 
3523   // Holds all the different accesses in the loop.
3524   unsigned NumReads = 0;
3525   unsigned NumReadWrites = 0;
3526 
3527   PtrRtCheck.Pointers.clear();
3528   PtrRtCheck.Need = false;
3529 
3530   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
3531   MemoryDepChecker DepChecker(SE, DL, TheLoop);
3532 
3533   // For each block.
3534   for (Loop::block_iterator bb = TheLoop->block_begin(),
3535        be = TheLoop->block_end(); bb != be; ++bb) {
3536 
3537     // Scan the BB and collect legal loads and stores.
3538     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3539          ++it) {
3540 
3541       // If this is a load, save it. If this instruction can read from memory
3542       // but is not a load, then we quit. Notice that we don't handle function
3543       // calls that read or write.
3544       if (it->mayReadFromMemory()) {
3545         // Many math library functions read the rounding mode. We will only
3546         // vectorize a loop if it contains known function calls that don't set
3547         // the flag. Therefore, it is safe to ignore this read from memory.
3548         CallInst *Call = dyn_cast<CallInst>(it);
3549         if (Call && getIntrinsicIDForCall(Call, TLI))
3550           continue;
3551 
3552         LoadInst *Ld = dyn_cast<LoadInst>(it);
3553         if (!Ld) return false;
3554         if (!Ld->isSimple() && !IsAnnotatedParallel) {
3555           DEBUG(dbgs() << "LV: Found a non-simple load.\n");
3556           return false;
3557         }
3558         Loads.push_back(Ld);
3559         DepChecker.addAccess(Ld);
3560         continue;
3561       }
3562 
3563       // Save 'store' instructions. Abort if other instructions write to memory.
3564       if (it->mayWriteToMemory()) {
3565         StoreInst *St = dyn_cast<StoreInst>(it);
3566         if (!St) return false;
3567         if (!St->isSimple() && !IsAnnotatedParallel) {
3568           DEBUG(dbgs() << "LV: Found a non-simple store.\n");
3569           return false;
3570         }
3571         Stores.push_back(St);
3572         DepChecker.addAccess(St);
3573       }
3574     } // next instr.
3575   } // next block.
3576 
3577   // Now we have two lists that hold the loads and the stores.
3578   // Next, we find the pointers that they use.
3579 
3580   // Check if we see any stores. If there are no stores, then we don't
3581   // care if the pointers are *restrict*.
3582   if (!Stores.size()) {
3583     DEBUG(dbgs() << "LV: Found a read-only loop!\n");
3584     return true;
3585   }
3586 
3587   AccessAnalysis::DepCandidates DependentAccesses;
3588   AccessAnalysis Accesses(DL, DependentAccesses);
3589 
3590   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
3591   // multiple times on the same object. If the ptr is accessed twice, once
3592   // for read and once for write, it will only appear once (on the write
3593   // list). This is okay, since we are going to check for conflicts between
3594   // writes and between reads and writes, but not between reads and reads.
3595   ValueSet Seen;
3596 
3597   ValueVector::iterator I, IE;
3598   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
3599     StoreInst *ST = cast<StoreInst>(*I);
3600     Value* Ptr = ST->getPointerOperand();
3601 
3602     if (isUniform(Ptr)) {
3603       DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
3604       return false;
3605     }
3606 
3607     // If we did *not* see this pointer before, insert it to  the read-write
3608     // list. At this phase it is only a 'write' list.
3609     if (Seen.insert(Ptr)) {
3610       ++NumReadWrites;
3611       Accesses.addStore(Ptr);
3612     }
3613   }
3614 
3615   if (IsAnnotatedParallel) {
3616     DEBUG(dbgs()
3617           << "LV: A loop annotated parallel, ignore memory dependency "
3618           << "checks.\n");
3619     return true;
3620   }
3621 
3622   SmallPtrSet<Value *, 16> ReadOnlyPtr;
3623   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
3624     LoadInst *LD = cast<LoadInst>(*I);
3625     Value* Ptr = LD->getPointerOperand();
3626     // If we did *not* see this pointer before, insert it to the
3627     // read list. If we *did* see it before, then it is already in
3628     // the read-write list. This allows us to vectorize expressions
3629     // such as A[i] += x;  Because the address of A[i] is a read-write
3630     // pointer. This only works if the index of A[i] is consecutive.
3631     // If the address of i is unknown (for example A[B[i]]) then we may
3632     // read a few words, modify, and write a few words, and some of the
3633     // words may be written to the same address.
3634     bool IsReadOnlyPtr = false;
3635     if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) {
3636       ++NumReads;
3637       IsReadOnlyPtr = true;
3638     }
3639     Accesses.addLoad(Ptr, IsReadOnlyPtr);
3640   }
3641 
3642   // If we write (or read-write) to a single destination and there are no
3643   // other reads in this loop then is it safe to vectorize.
3644   if (NumReadWrites == 1 && NumReads == 0) {
3645     DEBUG(dbgs() << "LV: Found a write-only loop!\n");
3646     return true;
3647   }
3648 
3649   // Build dependence sets and check whether we need a runtime pointer bounds
3650   // check.
3651   Accesses.buildDependenceSets();
3652   bool NeedRTCheck = Accesses.isRTCheckNeeded();
3653 
3654   // Find pointers with computable bounds. We are going to use this information
3655   // to place a runtime bound check.
3656   unsigned NumComparisons = 0;
3657   bool CanDoRT = false;
3658   if (NeedRTCheck)
3659     CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop);
3660 
3661 
3662   DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
3663         " pointer comparisons.\n");
3664 
3665   // If we only have one set of dependences to check pointers among we don't
3666   // need a runtime check.
3667   if (NumComparisons == 0 && NeedRTCheck)
3668     NeedRTCheck = false;
3669 
3670   // Check that we did not collect too many pointers or found a unsizeable
3671   // pointer.
3672   if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
3673     PtrRtCheck.reset();
3674     CanDoRT = false;
3675   }
3676 
3677   if (CanDoRT) {
3678     DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
3679   }
3680 
3681   if (NeedRTCheck && !CanDoRT) {
3682     DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
3683           "the array bounds.\n");
3684     PtrRtCheck.reset();
3685     return false;
3686   }
3687 
3688   PtrRtCheck.Need = NeedRTCheck;
3689 
3690   bool CanVecMem = true;
3691   if (Accesses.isDependencyCheckNeeded()) {
3692     DEBUG(dbgs() << "LV: Checking memory dependencies\n");
3693     CanVecMem = DepChecker.areDepsSafe(DependentAccesses,
3694                                        Accesses.getDependenciesToCheck());
3695     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
3696   }
3697 
3698   DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
3699         " need a runtime memory check.\n");
3700 
3701   return CanVecMem;
3702 }
3703 
hasMultipleUsesOf(Instruction * I,SmallPtrSet<Instruction *,8> & Insts)3704 static bool hasMultipleUsesOf(Instruction *I,
3705                               SmallPtrSet<Instruction *, 8> &Insts) {
3706   unsigned NumUses = 0;
3707   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
3708     if (Insts.count(dyn_cast<Instruction>(*Use)))
3709       ++NumUses;
3710     if (NumUses > 1)
3711       return true;
3712   }
3713 
3714   return false;
3715 }
3716 
areAllUsesIn(Instruction * I,SmallPtrSet<Instruction *,8> & Set)3717 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
3718   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
3719     if (!Set.count(dyn_cast<Instruction>(*Use)))
3720       return false;
3721   return true;
3722 }
3723 
AddReductionVar(PHINode * Phi,ReductionKind Kind)3724 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
3725                                                 ReductionKind Kind) {
3726   if (Phi->getNumIncomingValues() != 2)
3727     return false;
3728 
3729   // Reduction variables are only found in the loop header block.
3730   if (Phi->getParent() != TheLoop->getHeader())
3731     return false;
3732 
3733   // Obtain the reduction start value from the value that comes from the loop
3734   // preheader.
3735   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
3736 
3737   // ExitInstruction is the single value which is used outside the loop.
3738   // We only allow for a single reduction value to be used outside the loop.
3739   // This includes users of the reduction, variables (which form a cycle
3740   // which ends in the phi node).
3741   Instruction *ExitInstruction = 0;
3742   // Indicates that we found a reduction operation in our scan.
3743   bool FoundReduxOp = false;
3744 
3745   // We start with the PHI node and scan for all of the users of this
3746   // instruction. All users must be instructions that can be used as reduction
3747   // variables (such as ADD). We must have a single out-of-block user. The cycle
3748   // must include the original PHI.
3749   bool FoundStartPHI = false;
3750 
3751   // To recognize min/max patterns formed by a icmp select sequence, we store
3752   // the number of instruction we saw from the recognized min/max pattern,
3753   //  to make sure we only see exactly the two instructions.
3754   unsigned NumCmpSelectPatternInst = 0;
3755   ReductionInstDesc ReduxDesc(false, 0);
3756 
3757   SmallPtrSet<Instruction *, 8> VisitedInsts;
3758   SmallVector<Instruction *, 8> Worklist;
3759   Worklist.push_back(Phi);
3760   VisitedInsts.insert(Phi);
3761 
3762   // A value in the reduction can be used:
3763   //  - By the reduction:
3764   //      - Reduction operation:
3765   //        - One use of reduction value (safe).
3766   //        - Multiple use of reduction value (not safe).
3767   //      - PHI:
3768   //        - All uses of the PHI must be the reduction (safe).
3769   //        - Otherwise, not safe.
3770   //  - By one instruction outside of the loop (safe).
3771   //  - By further instructions outside of the loop (not safe).
3772   //  - By an instruction that is not part of the reduction (not safe).
3773   //    This is either:
3774   //      * An instruction type other than PHI or the reduction operation.
3775   //      * A PHI in the header other than the initial PHI.
3776   while (!Worklist.empty()) {
3777     Instruction *Cur = Worklist.back();
3778     Worklist.pop_back();
3779 
3780     // No Users.
3781     // If the instruction has no users then this is a broken chain and can't be
3782     // a reduction variable.
3783     if (Cur->use_empty())
3784       return false;
3785 
3786     bool IsAPhi = isa<PHINode>(Cur);
3787 
3788     // A header PHI use other than the original PHI.
3789     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
3790       return false;
3791 
3792     // Reductions of instructions such as Div, and Sub is only possible if the
3793     // LHS is the reduction variable.
3794     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
3795         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
3796         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
3797       return false;
3798 
3799     // Any reduction instruction must be of one of the allowed kinds.
3800     ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
3801     if (!ReduxDesc.IsReduction)
3802       return false;
3803 
3804     // A reduction operation must only have one use of the reduction value.
3805     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
3806         hasMultipleUsesOf(Cur, VisitedInsts))
3807       return false;
3808 
3809     // All inputs to a PHI node must be a reduction value.
3810     if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
3811       return false;
3812 
3813     if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
3814                                      isa<SelectInst>(Cur)))
3815       ++NumCmpSelectPatternInst;
3816     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
3817                                    isa<SelectInst>(Cur)))
3818       ++NumCmpSelectPatternInst;
3819 
3820     // Check  whether we found a reduction operator.
3821     FoundReduxOp |= !IsAPhi;
3822 
3823     // Process users of current instruction. Push non PHI nodes after PHI nodes
3824     // onto the stack. This way we are going to have seen all inputs to PHI
3825     // nodes once we get to them.
3826     SmallVector<Instruction *, 8> NonPHIs;
3827     SmallVector<Instruction *, 8> PHIs;
3828     for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E;
3829          ++UI) {
3830       Instruction *Usr = cast<Instruction>(*UI);
3831 
3832       // Check if we found the exit user.
3833       BasicBlock *Parent = Usr->getParent();
3834       if (!TheLoop->contains(Parent)) {
3835         // Exit if you find multiple outside users or if the header phi node is
3836         // being used. In this case the user uses the value of the previous
3837         // iteration, in which case we would loose "VF-1" iterations of the
3838         // reduction operation if we vectorize.
3839         if (ExitInstruction != 0 || Cur == Phi)
3840           return false;
3841 
3842         ExitInstruction = Cur;
3843         continue;
3844       }
3845 
3846       // Process instructions only once (termination).
3847       if (VisitedInsts.insert(Usr)) {
3848         if (isa<PHINode>(Usr))
3849           PHIs.push_back(Usr);
3850         else
3851           NonPHIs.push_back(Usr);
3852       }
3853       // Remember that we completed the cycle.
3854       if (Usr == Phi)
3855         FoundStartPHI = true;
3856     }
3857     Worklist.append(PHIs.begin(), PHIs.end());
3858     Worklist.append(NonPHIs.begin(), NonPHIs.end());
3859   }
3860 
3861   // This means we have seen one but not the other instruction of the
3862   // pattern or more than just a select and cmp.
3863   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
3864       NumCmpSelectPatternInst != 2)
3865     return false;
3866 
3867   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
3868     return false;
3869 
3870   // We found a reduction var if we have reached the original phi node and we
3871   // only have a single instruction with out-of-loop users.
3872 
3873   // This instruction is allowed to have out-of-loop users.
3874   AllowedExit.insert(ExitInstruction);
3875 
3876   // Save the description of this reduction variable.
3877   ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
3878                          ReduxDesc.MinMaxKind);
3879   Reductions[Phi] = RD;
3880   // We've ended the cycle. This is a reduction variable if we have an
3881   // outside user and it has a binary op.
3882 
3883   return true;
3884 }
3885 
3886 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
3887 /// pattern corresponding to a min(X, Y) or max(X, Y).
3888 LoopVectorizationLegality::ReductionInstDesc
isMinMaxSelectCmpPattern(Instruction * I,ReductionInstDesc & Prev)3889 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
3890                                                     ReductionInstDesc &Prev) {
3891 
3892   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
3893          "Expect a select instruction");
3894   Instruction *Cmp = 0;
3895   SelectInst *Select = 0;
3896 
3897   // We must handle the select(cmp()) as a single instruction. Advance to the
3898   // select.
3899   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
3900     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
3901       return ReductionInstDesc(false, I);
3902     return ReductionInstDesc(Select, Prev.MinMaxKind);
3903   }
3904 
3905   // Only handle single use cases for now.
3906   if (!(Select = dyn_cast<SelectInst>(I)))
3907     return ReductionInstDesc(false, I);
3908   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
3909       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
3910     return ReductionInstDesc(false, I);
3911   if (!Cmp->hasOneUse())
3912     return ReductionInstDesc(false, I);
3913 
3914   Value *CmpLeft;
3915   Value *CmpRight;
3916 
3917   // Look for a min/max pattern.
3918   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3919     return ReductionInstDesc(Select, MRK_UIntMin);
3920   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3921     return ReductionInstDesc(Select, MRK_UIntMax);
3922   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3923     return ReductionInstDesc(Select, MRK_SIntMax);
3924   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3925     return ReductionInstDesc(Select, MRK_SIntMin);
3926   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3927     return ReductionInstDesc(Select, MRK_FloatMin);
3928   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3929     return ReductionInstDesc(Select, MRK_FloatMax);
3930   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3931     return ReductionInstDesc(Select, MRK_FloatMin);
3932   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3933     return ReductionInstDesc(Select, MRK_FloatMax);
3934 
3935   return ReductionInstDesc(false, I);
3936 }
3937 
3938 LoopVectorizationLegality::ReductionInstDesc
isReductionInstr(Instruction * I,ReductionKind Kind,ReductionInstDesc & Prev)3939 LoopVectorizationLegality::isReductionInstr(Instruction *I,
3940                                             ReductionKind Kind,
3941                                             ReductionInstDesc &Prev) {
3942   bool FP = I->getType()->isFloatingPointTy();
3943   bool FastMath = (FP && I->isCommutative() && I->isAssociative());
3944   switch (I->getOpcode()) {
3945   default:
3946     return ReductionInstDesc(false, I);
3947   case Instruction::PHI:
3948       if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
3949                  Kind != RK_FloatMinMax))
3950         return ReductionInstDesc(false, I);
3951     return ReductionInstDesc(I, Prev.MinMaxKind);
3952   case Instruction::Sub:
3953   case Instruction::Add:
3954     return ReductionInstDesc(Kind == RK_IntegerAdd, I);
3955   case Instruction::Mul:
3956     return ReductionInstDesc(Kind == RK_IntegerMult, I);
3957   case Instruction::And:
3958     return ReductionInstDesc(Kind == RK_IntegerAnd, I);
3959   case Instruction::Or:
3960     return ReductionInstDesc(Kind == RK_IntegerOr, I);
3961   case Instruction::Xor:
3962     return ReductionInstDesc(Kind == RK_IntegerXor, I);
3963   case Instruction::FMul:
3964     return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
3965   case Instruction::FAdd:
3966     return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
3967   case Instruction::FCmp:
3968   case Instruction::ICmp:
3969   case Instruction::Select:
3970     if (Kind != RK_IntegerMinMax &&
3971         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
3972       return ReductionInstDesc(false, I);
3973     return isMinMaxSelectCmpPattern(I, Prev);
3974   }
3975 }
3976 
3977 LoopVectorizationLegality::InductionKind
isInductionVariable(PHINode * Phi)3978 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
3979   Type *PhiTy = Phi->getType();
3980   // We only handle integer and pointer inductions variables.
3981   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
3982     return IK_NoInduction;
3983 
3984   // Check that the PHI is consecutive.
3985   const SCEV *PhiScev = SE->getSCEV(Phi);
3986   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
3987   if (!AR) {
3988     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
3989     return IK_NoInduction;
3990   }
3991   const SCEV *Step = AR->getStepRecurrence(*SE);
3992 
3993   // Integer inductions need to have a stride of one.
3994   if (PhiTy->isIntegerTy()) {
3995     if (Step->isOne())
3996       return IK_IntInduction;
3997     if (Step->isAllOnesValue())
3998       return IK_ReverseIntInduction;
3999     return IK_NoInduction;
4000   }
4001 
4002   // Calculate the pointer stride and check if it is consecutive.
4003   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4004   if (!C)
4005     return IK_NoInduction;
4006 
4007   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
4008   uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
4009   if (C->getValue()->equalsInt(Size))
4010     return IK_PtrInduction;
4011   else if (C->getValue()->equalsInt(0 - Size))
4012     return IK_ReversePtrInduction;
4013 
4014   return IK_NoInduction;
4015 }
4016 
isInductionVariable(const Value * V)4017 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4018   Value *In0 = const_cast<Value*>(V);
4019   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4020   if (!PN)
4021     return false;
4022 
4023   return Inductions.count(PN);
4024 }
4025 
blockNeedsPredication(BasicBlock * BB)4026 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
4027   assert(TheLoop->contains(BB) && "Unknown block used");
4028 
4029   // Blocks that do not dominate the latch need predication.
4030   BasicBlock* Latch = TheLoop->getLoopLatch();
4031   return !DT->dominates(BB, Latch);
4032 }
4033 
blockCanBePredicated(BasicBlock * BB,SmallPtrSet<Value *,8> & SafePtrs)4034 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
4035                                             SmallPtrSet<Value *, 8>& SafePtrs) {
4036   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4037     // We might be able to hoist the load.
4038     if (it->mayReadFromMemory()) {
4039       LoadInst *LI = dyn_cast<LoadInst>(it);
4040       if (!LI || !SafePtrs.count(LI->getPointerOperand()))
4041         return false;
4042     }
4043 
4044     // We don't predicate stores at the moment.
4045     if (it->mayWriteToMemory() || it->mayThrow())
4046       return false;
4047 
4048     // The instructions below can trap.
4049     switch (it->getOpcode()) {
4050     default: continue;
4051     case Instruction::UDiv:
4052     case Instruction::SDiv:
4053     case Instruction::URem:
4054     case Instruction::SRem:
4055              return false;
4056     }
4057   }
4058 
4059   return true;
4060 }
4061 
4062 LoopVectorizationCostModel::VectorizationFactor
selectVectorizationFactor(bool OptForSize,unsigned UserVF)4063 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
4064                                                       unsigned UserVF) {
4065   // Width 1 means no vectorize
4066   VectorizationFactor Factor = { 1U, 0U };
4067   if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
4068     DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
4069     return Factor;
4070   }
4071 
4072   // Find the trip count.
4073   unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
4074   DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
4075 
4076   unsigned WidestType = getWidestType();
4077   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
4078   unsigned MaxSafeDepDist = -1U;
4079   if (Legal->getMaxSafeDepDistBytes() != -1U)
4080     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
4081   WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
4082                     WidestRegister : MaxSafeDepDist);
4083   unsigned MaxVectorSize = WidestRegister / WidestType;
4084   DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
4085   DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
4086 
4087   if (MaxVectorSize == 0) {
4088     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
4089     MaxVectorSize = 1;
4090   }
4091 
4092   assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
4093          " into one vector!");
4094 
4095   unsigned VF = MaxVectorSize;
4096 
4097   // If we optimize the program for size, avoid creating the tail loop.
4098   if (OptForSize) {
4099     // If we are unable to calculate the trip count then don't try to vectorize.
4100     if (TC < 2) {
4101       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4102       return Factor;
4103     }
4104 
4105     // Find the maximum SIMD width that can fit within the trip count.
4106     VF = TC % MaxVectorSize;
4107 
4108     if (VF == 0)
4109       VF = MaxVectorSize;
4110 
4111     // If the trip count that we found modulo the vectorization factor is not
4112     // zero then we require a tail.
4113     if (VF < 2) {
4114       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4115       return Factor;
4116     }
4117   }
4118 
4119   if (UserVF != 0) {
4120     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
4121     DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
4122 
4123     Factor.Width = UserVF;
4124     return Factor;
4125   }
4126 
4127   float Cost = expectedCost(1);
4128   unsigned Width = 1;
4129   DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
4130   for (unsigned i=2; i <= VF; i*=2) {
4131     // Notice that the vector loop needs to be executed less times, so
4132     // we need to divide the cost of the vector loops by the width of
4133     // the vector elements.
4134     float VectorCost = expectedCost(i) / (float)i;
4135     DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
4136           (int)VectorCost << ".\n");
4137     if (VectorCost < Cost) {
4138       Cost = VectorCost;
4139       Width = i;
4140     }
4141   }
4142 
4143   DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
4144   Factor.Width = Width;
4145   Factor.Cost = Width * Cost;
4146   return Factor;
4147 }
4148 
getWidestType()4149 unsigned LoopVectorizationCostModel::getWidestType() {
4150   unsigned MaxWidth = 8;
4151 
4152   // For each block.
4153   for (Loop::block_iterator bb = TheLoop->block_begin(),
4154        be = TheLoop->block_end(); bb != be; ++bb) {
4155     BasicBlock *BB = *bb;
4156 
4157     // For each instruction in the loop.
4158     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4159       Type *T = it->getType();
4160 
4161       // Only examine Loads, Stores and PHINodes.
4162       if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
4163         continue;
4164 
4165       // Examine PHI nodes that are reduction variables.
4166       if (PHINode *PN = dyn_cast<PHINode>(it))
4167         if (!Legal->getReductionVars()->count(PN))
4168           continue;
4169 
4170       // Examine the stored values.
4171       if (StoreInst *ST = dyn_cast<StoreInst>(it))
4172         T = ST->getValueOperand()->getType();
4173 
4174       // Ignore loaded pointer types and stored pointer types that are not
4175       // consecutive. However, we do want to take consecutive stores/loads of
4176       // pointer vectors into account.
4177       if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
4178         continue;
4179 
4180       MaxWidth = std::max(MaxWidth,
4181                           (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
4182     }
4183   }
4184 
4185   return MaxWidth;
4186 }
4187 
4188 unsigned
selectUnrollFactor(bool OptForSize,unsigned UserUF,unsigned VF,unsigned LoopCost)4189 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
4190                                                unsigned UserUF,
4191                                                unsigned VF,
4192                                                unsigned LoopCost) {
4193 
4194   // -- The unroll heuristics --
4195   // We unroll the loop in order to expose ILP and reduce the loop overhead.
4196   // There are many micro-architectural considerations that we can't predict
4197   // at this level. For example frontend pressure (on decode or fetch) due to
4198   // code size, or the number and capabilities of the execution ports.
4199   //
4200   // We use the following heuristics to select the unroll factor:
4201   // 1. If the code has reductions the we unroll in order to break the cross
4202   // iteration dependency.
4203   // 2. If the loop is really small then we unroll in order to reduce the loop
4204   // overhead.
4205   // 3. We don't unroll if we think that we will spill registers to memory due
4206   // to the increased register pressure.
4207 
4208   // Use the user preference, unless 'auto' is selected.
4209   if (UserUF != 0)
4210     return UserUF;
4211 
4212   // When we optimize for size we don't unroll.
4213   if (OptForSize)
4214     return 1;
4215 
4216   // We used the distance for the unroll factor.
4217   if (Legal->getMaxSafeDepDistBytes() != -1U)
4218     return 1;
4219 
4220   // Do not unroll loops with a relatively small trip count.
4221   unsigned TC = SE->getSmallConstantTripCount(TheLoop,
4222                                               TheLoop->getLoopLatch());
4223   if (TC > 1 && TC < TinyTripCountUnrollThreshold)
4224     return 1;
4225 
4226   unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
4227   DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
4228         " vector registers\n");
4229 
4230   LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
4231   // We divide by these constants so assume that we have at least one
4232   // instruction that uses at least one register.
4233   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
4234   R.NumInstructions = std::max(R.NumInstructions, 1U);
4235 
4236   // We calculate the unroll factor using the following formula.
4237   // Subtract the number of loop invariants from the number of available
4238   // registers. These registers are used by all of the unrolled instances.
4239   // Next, divide the remaining registers by the number of registers that is
4240   // required by the loop, in order to estimate how many parallel instances
4241   // fit without causing spills.
4242   unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
4243 
4244   // Clamp the unroll factor ranges to reasonable factors.
4245   unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
4246 
4247   // If we did not calculate the cost for VF (because the user selected the VF)
4248   // then we calculate the cost of VF here.
4249   if (LoopCost == 0)
4250     LoopCost = expectedCost(VF);
4251 
4252   // Clamp the calculated UF to be between the 1 and the max unroll factor
4253   // that the target allows.
4254   if (UF > MaxUnrollSize)
4255     UF = MaxUnrollSize;
4256   else if (UF < 1)
4257     UF = 1;
4258 
4259   if (Legal->getReductionVars()->size()) {
4260     DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
4261     return UF;
4262   }
4263 
4264   // We want to unroll tiny loops in order to reduce the loop overhead.
4265   // We assume that the cost overhead is 1 and we use the cost model
4266   // to estimate the cost of the loop and unroll until the cost of the
4267   // loop overhead is about 5% of the cost of the loop.
4268   DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
4269   if (LoopCost < 20) {
4270     DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
4271     unsigned NewUF = 20/LoopCost + 1;
4272     return std::min(NewUF, UF);
4273   }
4274 
4275   DEBUG(dbgs() << "LV: Not Unrolling. \n");
4276   return 1;
4277 }
4278 
4279 LoopVectorizationCostModel::RegisterUsage
calculateRegisterUsage()4280 LoopVectorizationCostModel::calculateRegisterUsage() {
4281   // This function calculates the register usage by measuring the highest number
4282   // of values that are alive at a single location. Obviously, this is a very
4283   // rough estimation. We scan the loop in a topological order in order and
4284   // assign a number to each instruction. We use RPO to ensure that defs are
4285   // met before their users. We assume that each instruction that has in-loop
4286   // users starts an interval. We record every time that an in-loop value is
4287   // used, so we have a list of the first and last occurrences of each
4288   // instruction. Next, we transpose this data structure into a multi map that
4289   // holds the list of intervals that *end* at a specific location. This multi
4290   // map allows us to perform a linear search. We scan the instructions linearly
4291   // and record each time that a new interval starts, by placing it in a set.
4292   // If we find this value in the multi-map then we remove it from the set.
4293   // The max register usage is the maximum size of the set.
4294   // We also search for instructions that are defined outside the loop, but are
4295   // used inside the loop. We need this number separately from the max-interval
4296   // usage number because when we unroll, loop-invariant values do not take
4297   // more register.
4298   LoopBlocksDFS DFS(TheLoop);
4299   DFS.perform(LI);
4300 
4301   RegisterUsage R;
4302   R.NumInstructions = 0;
4303 
4304   // Each 'key' in the map opens a new interval. The values
4305   // of the map are the index of the 'last seen' usage of the
4306   // instruction that is the key.
4307   typedef DenseMap<Instruction*, unsigned> IntervalMap;
4308   // Maps instruction to its index.
4309   DenseMap<unsigned, Instruction*> IdxToInstr;
4310   // Marks the end of each interval.
4311   IntervalMap EndPoint;
4312   // Saves the list of instruction indices that are used in the loop.
4313   SmallSet<Instruction*, 8> Ends;
4314   // Saves the list of values that are used in the loop but are
4315   // defined outside the loop, such as arguments and constants.
4316   SmallPtrSet<Value*, 8> LoopInvariants;
4317 
4318   unsigned Index = 0;
4319   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
4320        be = DFS.endRPO(); bb != be; ++bb) {
4321     R.NumInstructions += (*bb)->size();
4322     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4323          ++it) {
4324       Instruction *I = it;
4325       IdxToInstr[Index++] = I;
4326 
4327       // Save the end location of each USE.
4328       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
4329         Value *U = I->getOperand(i);
4330         Instruction *Instr = dyn_cast<Instruction>(U);
4331 
4332         // Ignore non-instruction values such as arguments, constants, etc.
4333         if (!Instr) continue;
4334 
4335         // If this instruction is outside the loop then record it and continue.
4336         if (!TheLoop->contains(Instr)) {
4337           LoopInvariants.insert(Instr);
4338           continue;
4339         }
4340 
4341         // Overwrite previous end points.
4342         EndPoint[Instr] = Index;
4343         Ends.insert(Instr);
4344       }
4345     }
4346   }
4347 
4348   // Saves the list of intervals that end with the index in 'key'.
4349   typedef SmallVector<Instruction*, 2> InstrList;
4350   DenseMap<unsigned, InstrList> TransposeEnds;
4351 
4352   // Transpose the EndPoints to a list of values that end at each index.
4353   for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
4354        it != e; ++it)
4355     TransposeEnds[it->second].push_back(it->first);
4356 
4357   SmallSet<Instruction*, 8> OpenIntervals;
4358   unsigned MaxUsage = 0;
4359 
4360 
4361   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
4362   for (unsigned int i = 0; i < Index; ++i) {
4363     Instruction *I = IdxToInstr[i];
4364     // Ignore instructions that are never used within the loop.
4365     if (!Ends.count(I)) continue;
4366 
4367     // Remove all of the instructions that end at this location.
4368     InstrList &List = TransposeEnds[i];
4369     for (unsigned int j=0, e = List.size(); j < e; ++j)
4370       OpenIntervals.erase(List[j]);
4371 
4372     // Count the number of live interals.
4373     MaxUsage = std::max(MaxUsage, OpenIntervals.size());
4374 
4375     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
4376           OpenIntervals.size() <<"\n");
4377 
4378     // Add the current instruction to the list of open intervals.
4379     OpenIntervals.insert(I);
4380   }
4381 
4382   unsigned Invariant = LoopInvariants.size();
4383   DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
4384   DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
4385   DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
4386 
4387   R.LoopInvariantRegs = Invariant;
4388   R.MaxLocalUsers = MaxUsage;
4389   return R;
4390 }
4391 
expectedCost(unsigned VF)4392 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
4393   unsigned Cost = 0;
4394 
4395   // For each block.
4396   for (Loop::block_iterator bb = TheLoop->block_begin(),
4397        be = TheLoop->block_end(); bb != be; ++bb) {
4398     unsigned BlockCost = 0;
4399     BasicBlock *BB = *bb;
4400 
4401     // For each instruction in the old loop.
4402     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4403       // Skip dbg intrinsics.
4404       if (isa<DbgInfoIntrinsic>(it))
4405         continue;
4406 
4407       unsigned C = getInstructionCost(it, VF);
4408       BlockCost += C;
4409       DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
4410             VF << " For instruction: "<< *it << "\n");
4411     }
4412 
4413     // We assume that if-converted blocks have a 50% chance of being executed.
4414     // When the code is scalar then some of the blocks are avoided due to CF.
4415     // When the code is vectorized we execute all code paths.
4416     if (VF == 1 && Legal->blockNeedsPredication(*bb))
4417       BlockCost /= 2;
4418 
4419     Cost += BlockCost;
4420   }
4421 
4422   return Cost;
4423 }
4424 
4425 /// \brief Check whether the address computation for a non-consecutive memory
4426 /// access looks like an unlikely candidate for being merged into the indexing
4427 /// mode.
4428 ///
4429 /// We look for a GEP which has one index that is an induction variable and all
4430 /// other indices are loop invariant. If the stride of this access is also
4431 /// within a small bound we decide that this address computation can likely be
4432 /// merged into the addressing mode.
4433 /// In all other cases, we identify the address computation as complex.
isLikelyComplexAddressComputation(Value * Ptr,LoopVectorizationLegality * Legal,ScalarEvolution * SE,const Loop * TheLoop)4434 static bool isLikelyComplexAddressComputation(Value *Ptr,
4435                                               LoopVectorizationLegality *Legal,
4436                                               ScalarEvolution *SE,
4437                                               const Loop *TheLoop) {
4438   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
4439   if (!Gep)
4440     return true;
4441 
4442   // We are looking for a gep with all loop invariant indices except for one
4443   // which should be an induction variable.
4444   unsigned NumOperands = Gep->getNumOperands();
4445   for (unsigned i = 1; i < NumOperands; ++i) {
4446     Value *Opd = Gep->getOperand(i);
4447     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
4448         !Legal->isInductionVariable(Opd))
4449       return true;
4450   }
4451 
4452   // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
4453   // can likely be merged into the address computation.
4454   unsigned MaxMergeDistance = 64;
4455 
4456   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
4457   if (!AddRec)
4458     return true;
4459 
4460   // Check the step is constant.
4461   const SCEV *Step = AddRec->getStepRecurrence(*SE);
4462   // Calculate the pointer stride and check if it is consecutive.
4463   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4464   if (!C)
4465     return true;
4466 
4467   const APInt &APStepVal = C->getValue()->getValue();
4468 
4469   // Huge step value - give up.
4470   if (APStepVal.getBitWidth() > 64)
4471     return true;
4472 
4473   int64_t StepVal = APStepVal.getSExtValue();
4474 
4475   return StepVal > MaxMergeDistance;
4476 }
4477 
4478 unsigned
getInstructionCost(Instruction * I,unsigned VF)4479 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
4480   // If we know that this instruction will remain uniform, check the cost of
4481   // the scalar version.
4482   if (Legal->isUniformAfterVectorization(I))
4483     VF = 1;
4484 
4485   Type *RetTy = I->getType();
4486   Type *VectorTy = ToVectorTy(RetTy, VF);
4487 
4488   // TODO: We need to estimate the cost of intrinsic calls.
4489   switch (I->getOpcode()) {
4490   case Instruction::GetElementPtr:
4491     // We mark this instruction as zero-cost because the cost of GEPs in
4492     // vectorized code depends on whether the corresponding memory instruction
4493     // is scalarized or not. Therefore, we handle GEPs with the memory
4494     // instruction cost.
4495     return 0;
4496   case Instruction::Br: {
4497     return TTI.getCFInstrCost(I->getOpcode());
4498   }
4499   case Instruction::PHI:
4500     //TODO: IF-converted IFs become selects.
4501     return 0;
4502   case Instruction::Add:
4503   case Instruction::FAdd:
4504   case Instruction::Sub:
4505   case Instruction::FSub:
4506   case Instruction::Mul:
4507   case Instruction::FMul:
4508   case Instruction::UDiv:
4509   case Instruction::SDiv:
4510   case Instruction::FDiv:
4511   case Instruction::URem:
4512   case Instruction::SRem:
4513   case Instruction::FRem:
4514   case Instruction::Shl:
4515   case Instruction::LShr:
4516   case Instruction::AShr:
4517   case Instruction::And:
4518   case Instruction::Or:
4519   case Instruction::Xor: {
4520     // Certain instructions can be cheaper to vectorize if they have a constant
4521     // second vector operand. One example of this are shifts on x86.
4522     TargetTransformInfo::OperandValueKind Op1VK =
4523       TargetTransformInfo::OK_AnyValue;
4524     TargetTransformInfo::OperandValueKind Op2VK =
4525       TargetTransformInfo::OK_AnyValue;
4526 
4527     if (isa<ConstantInt>(I->getOperand(1)))
4528       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
4529 
4530     return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
4531   }
4532   case Instruction::Select: {
4533     SelectInst *SI = cast<SelectInst>(I);
4534     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
4535     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
4536     Type *CondTy = SI->getCondition()->getType();
4537     if (!ScalarCond)
4538       CondTy = VectorType::get(CondTy, VF);
4539 
4540     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
4541   }
4542   case Instruction::ICmp:
4543   case Instruction::FCmp: {
4544     Type *ValTy = I->getOperand(0)->getType();
4545     VectorTy = ToVectorTy(ValTy, VF);
4546     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
4547   }
4548   case Instruction::Store:
4549   case Instruction::Load: {
4550     StoreInst *SI = dyn_cast<StoreInst>(I);
4551     LoadInst *LI = dyn_cast<LoadInst>(I);
4552     Type *ValTy = (SI ? SI->getValueOperand()->getType() :
4553                    LI->getType());
4554     VectorTy = ToVectorTy(ValTy, VF);
4555 
4556     unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
4557     unsigned AS = SI ? SI->getPointerAddressSpace() :
4558       LI->getPointerAddressSpace();
4559     Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
4560     // We add the cost of address computation here instead of with the gep
4561     // instruction because only here we know whether the operation is
4562     // scalarized.
4563     if (VF == 1)
4564       return TTI.getAddressComputationCost(VectorTy) +
4565         TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4566 
4567     // Scalarized loads/stores.
4568     int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
4569     bool Reverse = ConsecutiveStride < 0;
4570     unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
4571     unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
4572     if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
4573       bool IsComplexComputation =
4574         isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
4575       unsigned Cost = 0;
4576       // The cost of extracting from the value vector and pointer vector.
4577       Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
4578       for (unsigned i = 0; i < VF; ++i) {
4579         //  The cost of extracting the pointer operand.
4580         Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
4581         // In case of STORE, the cost of ExtractElement from the vector.
4582         // In case of LOAD, the cost of InsertElement into the returned
4583         // vector.
4584         Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
4585                                             Instruction::InsertElement,
4586                                             VectorTy, i);
4587       }
4588 
4589       // The cost of the scalar loads/stores.
4590       Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
4591       Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
4592                                        Alignment, AS);
4593       return Cost;
4594     }
4595 
4596     // Wide load/stores.
4597     unsigned Cost = TTI.getAddressComputationCost(VectorTy);
4598     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4599 
4600     if (Reverse)
4601       Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4602                                   VectorTy, 0);
4603     return Cost;
4604   }
4605   case Instruction::ZExt:
4606   case Instruction::SExt:
4607   case Instruction::FPToUI:
4608   case Instruction::FPToSI:
4609   case Instruction::FPExt:
4610   case Instruction::PtrToInt:
4611   case Instruction::IntToPtr:
4612   case Instruction::SIToFP:
4613   case Instruction::UIToFP:
4614   case Instruction::Trunc:
4615   case Instruction::FPTrunc:
4616   case Instruction::BitCast: {
4617     // We optimize the truncation of induction variable.
4618     // The cost of these is the same as the scalar operation.
4619     if (I->getOpcode() == Instruction::Trunc &&
4620         Legal->isInductionVariable(I->getOperand(0)))
4621       return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
4622                                   I->getOperand(0)->getType());
4623 
4624     Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
4625     return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
4626   }
4627   case Instruction::Call: {
4628     CallInst *CI = cast<CallInst>(I);
4629     Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
4630     assert(ID && "Not an intrinsic call!");
4631     Type *RetTy = ToVectorTy(CI->getType(), VF);
4632     SmallVector<Type*, 4> Tys;
4633     for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
4634       Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
4635     return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
4636   }
4637   default: {
4638     // We are scalarizing the instruction. Return the cost of the scalar
4639     // instruction, plus the cost of insert and extract into vector
4640     // elements, times the vector width.
4641     unsigned Cost = 0;
4642 
4643     if (!RetTy->isVoidTy() && VF != 1) {
4644       unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
4645                                                 VectorTy);
4646       unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
4647                                                 VectorTy);
4648 
4649       // The cost of inserting the results plus extracting each one of the
4650       // operands.
4651       Cost += VF * (InsCost + ExtCost * I->getNumOperands());
4652     }
4653 
4654     // The cost of executing VF copies of the scalar instruction. This opcode
4655     // is unknown. Assume that it is the same as 'mul'.
4656     Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
4657     return Cost;
4658   }
4659   }// end of switch.
4660 }
4661 
ToVectorTy(Type * Scalar,unsigned VF)4662 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
4663   if (Scalar->isVoidTy() || VF == 1)
4664     return Scalar;
4665   return VectorType::get(Scalar, VF);
4666 }
4667 
4668 char LoopVectorize::ID = 0;
4669 static const char lv_name[] = "Loop Vectorization";
4670 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
4671 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
4672 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4673 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4674 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
4675 
4676 namespace llvm {
createLoopVectorizePass()4677   Pass *createLoopVectorizePass() {
4678     return new LoopVectorize();
4679   }
4680 }
4681 
isConsecutiveLoadOrStore(Instruction * Inst)4682 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
4683   // Check for a store.
4684   if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
4685     return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
4686 
4687   // Check for a load.
4688   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
4689     return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
4690 
4691   return false;
4692 }
4693