1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 // of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 // widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 // of vectorization. It decides on the optimal vector width, which
27 // can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 // Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // Other ideas/concepts are from:
38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39 //
40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
41 // Vectorizing Compilers.
42 //
43 //===----------------------------------------------------------------------===//
44
45 #define LV_NAME "loop-vectorize"
46 #define DEBUG_TYPE LV_NAME
47
48 #include "llvm/Transforms/Vectorize.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/EquivalenceClasses.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/SetVector.h"
53 #include "llvm/ADT/SmallPtrSet.h"
54 #include "llvm/ADT/SmallSet.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/Analysis/AliasAnalysis.h"
58 #include "llvm/Analysis/Dominators.h"
59 #include "llvm/Analysis/LoopInfo.h"
60 #include "llvm/Analysis/LoopIterator.h"
61 #include "llvm/Analysis/LoopPass.h"
62 #include "llvm/Analysis/ScalarEvolution.h"
63 #include "llvm/Analysis/ScalarEvolutionExpander.h"
64 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/Analysis/ValueTracking.h"
67 #include "llvm/Analysis/Verifier.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/IRBuilder.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/LLVMContext.h"
76 #include "llvm/IR/Module.h"
77 #include "llvm/IR/Type.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/PatternMatch.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/Support/ValueHandle.h"
85 #include "llvm/Target/TargetLibraryInfo.h"
86 #include "llvm/Transforms/Scalar.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/Local.h"
89 #include <algorithm>
90 #include <map>
91
92 using namespace llvm;
93 using namespace llvm::PatternMatch;
94
95 static cl::opt<unsigned>
96 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
97 cl::desc("Sets the SIMD width. Zero is autoselect."));
98
99 static cl::opt<unsigned>
100 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
101 cl::desc("Sets the vectorization unroll count. "
102 "Zero is autoselect."));
103
104 static cl::opt<bool>
105 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
106 cl::desc("Enable if-conversion during vectorization."));
107
108 /// We don't vectorize loops with a known constant trip count below this number.
109 static cl::opt<unsigned>
110 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
111 cl::Hidden,
112 cl::desc("Don't vectorize loops with a constant "
113 "trip count that is smaller than this "
114 "value."));
115
116 /// We don't unroll loops with a known constant trip count below this number.
117 static const unsigned TinyTripCountUnrollThreshold = 128;
118
119 /// When performing memory disambiguation checks at runtime do not make more
120 /// than this number of comparisons.
121 static const unsigned RuntimeMemoryCheckThreshold = 8;
122
123 /// Maximum simd width.
124 static const unsigned MaxVectorWidth = 64;
125
126 /// Maximum vectorization unroll count.
127 static const unsigned MaxUnrollFactor = 16;
128
129 namespace {
130
131 // Forward declarations.
132 class LoopVectorizationLegality;
133 class LoopVectorizationCostModel;
134
135 /// InnerLoopVectorizer vectorizes loops which contain only one basic
136 /// block to a specified vectorization factor (VF).
137 /// This class performs the widening of scalars into vectors, or multiple
138 /// scalars. This class also implements the following features:
139 /// * It inserts an epilogue loop for handling loops that don't have iteration
140 /// counts that are known to be a multiple of the vectorization factor.
141 /// * It handles the code generation for reduction variables.
142 /// * Scalarization (implementation using scalars) of un-vectorizable
143 /// instructions.
144 /// InnerLoopVectorizer does not perform any vectorization-legality
145 /// checks, and relies on the caller to check for the different legality
146 /// aspects. The InnerLoopVectorizer relies on the
147 /// LoopVectorizationLegality class to provide information about the induction
148 /// and reduction variables that were found to a given vectorization factor.
149 class InnerLoopVectorizer {
150 public:
InnerLoopVectorizer(Loop * OrigLoop,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,DataLayout * DL,const TargetLibraryInfo * TLI,unsigned VecWidth,unsigned UnrollFactor)151 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
152 DominatorTree *DT, DataLayout *DL,
153 const TargetLibraryInfo *TLI, unsigned VecWidth,
154 unsigned UnrollFactor)
155 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
156 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
157 OldInduction(0), WidenMap(UnrollFactor) {}
158
159 // Perform the actual loop widening (vectorization).
vectorize(LoopVectorizationLegality * Legal)160 void vectorize(LoopVectorizationLegality *Legal) {
161 // Create a new empty loop. Unlink the old loop and connect the new one.
162 createEmptyLoop(Legal);
163 // Widen each instruction in the old loop to a new one in the new loop.
164 // Use the Legality module to find the induction and reduction variables.
165 vectorizeLoop(Legal);
166 // Register the new loop and update the analysis passes.
167 updateAnalysis();
168 }
169
170 private:
171 /// A small list of PHINodes.
172 typedef SmallVector<PHINode*, 4> PhiVector;
173 /// When we unroll loops we have multiple vector values for each scalar.
174 /// This data structure holds the unrolled and vectorized values that
175 /// originated from one scalar instruction.
176 typedef SmallVector<Value*, 2> VectorParts;
177
178 // When we if-convert we need create edge masks. We have to cache values so
179 // that we don't end up with exponential recursion/IR.
180 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
181 VectorParts> EdgeMaskCache;
182
183 /// Add code that checks at runtime if the accessed arrays overlap.
184 /// Returns the comparator value or NULL if no check is needed.
185 Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
186 Instruction *Loc);
187 /// Create an empty loop, based on the loop ranges of the old loop.
188 void createEmptyLoop(LoopVectorizationLegality *Legal);
189 /// Copy and widen the instructions from the old loop.
190 void vectorizeLoop(LoopVectorizationLegality *Legal);
191
192 /// A helper function that computes the predicate of the block BB, assuming
193 /// that the header block of the loop is set to True. It returns the *entry*
194 /// mask for the block BB.
195 VectorParts createBlockInMask(BasicBlock *BB);
196 /// A helper function that computes the predicate of the edge between SRC
197 /// and DST.
198 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
199
200 /// A helper function to vectorize a single BB within the innermost loop.
201 void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
202 PhiVector *PV);
203
204 /// Insert the new loop to the loop hierarchy and pass manager
205 /// and update the analysis passes.
206 void updateAnalysis();
207
208 /// This instruction is un-vectorizable. Implement it as a sequence
209 /// of scalars.
210 void scalarizeInstruction(Instruction *Instr);
211
212 /// Vectorize Load and Store instructions,
213 void vectorizeMemoryInstruction(Instruction *Instr,
214 LoopVectorizationLegality *Legal);
215
216 /// Create a broadcast instruction. This method generates a broadcast
217 /// instruction (shuffle) for loop invariant values and for the induction
218 /// value. If this is the induction variable then we extend it to N, N+1, ...
219 /// this is needed because each iteration in the loop corresponds to a SIMD
220 /// element.
221 Value *getBroadcastInstrs(Value *V);
222
223 /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
224 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
225 /// The sequence starts at StartIndex.
226 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
227
228 /// When we go over instructions in the basic block we rely on previous
229 /// values within the current basic block or on loop invariant values.
230 /// When we widen (vectorize) values we place them in the map. If the values
231 /// are not within the map, they have to be loop invariant, so we simply
232 /// broadcast them into a vector.
233 VectorParts &getVectorValue(Value *V);
234
235 /// Generate a shuffle sequence that will reverse the vector Vec.
236 Value *reverseVector(Value *Vec);
237
238 /// This is a helper class that holds the vectorizer state. It maps scalar
239 /// instructions to vector instructions. When the code is 'unrolled' then
240 /// then a single scalar value is mapped to multiple vector parts. The parts
241 /// are stored in the VectorPart type.
242 struct ValueMap {
243 /// C'tor. UnrollFactor controls the number of vectors ('parts') that
244 /// are mapped.
ValueMap__anon8ed721d90111::InnerLoopVectorizer::ValueMap245 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
246
247 /// \return True if 'Key' is saved in the Value Map.
has__anon8ed721d90111::InnerLoopVectorizer::ValueMap248 bool has(Value *Key) const { return MapStorage.count(Key); }
249
250 /// Initializes a new entry in the map. Sets all of the vector parts to the
251 /// save value in 'Val'.
252 /// \return A reference to a vector with splat values.
splat__anon8ed721d90111::InnerLoopVectorizer::ValueMap253 VectorParts &splat(Value *Key, Value *Val) {
254 VectorParts &Entry = MapStorage[Key];
255 Entry.assign(UF, Val);
256 return Entry;
257 }
258
259 ///\return A reference to the value that is stored at 'Key'.
get__anon8ed721d90111::InnerLoopVectorizer::ValueMap260 VectorParts &get(Value *Key) {
261 VectorParts &Entry = MapStorage[Key];
262 if (Entry.empty())
263 Entry.resize(UF);
264 assert(Entry.size() == UF);
265 return Entry;
266 }
267
268 private:
269 /// The unroll factor. Each entry in the map stores this number of vector
270 /// elements.
271 unsigned UF;
272
273 /// Map storage. We use std::map and not DenseMap because insertions to a
274 /// dense map invalidates its iterators.
275 std::map<Value *, VectorParts> MapStorage;
276 };
277
278 /// The original loop.
279 Loop *OrigLoop;
280 /// Scev analysis to use.
281 ScalarEvolution *SE;
282 /// Loop Info.
283 LoopInfo *LI;
284 /// Dominator Tree.
285 DominatorTree *DT;
286 /// Data Layout.
287 DataLayout *DL;
288 /// Target Library Info.
289 const TargetLibraryInfo *TLI;
290
291 /// The vectorization SIMD factor to use. Each vector will have this many
292 /// vector elements.
293 unsigned VF;
294 /// The vectorization unroll factor to use. Each scalar is vectorized to this
295 /// many different vector instructions.
296 unsigned UF;
297
298 /// The builder that we use
299 IRBuilder<> Builder;
300
301 // --- Vectorization state ---
302
303 /// The vector-loop preheader.
304 BasicBlock *LoopVectorPreHeader;
305 /// The scalar-loop preheader.
306 BasicBlock *LoopScalarPreHeader;
307 /// Middle Block between the vector and the scalar.
308 BasicBlock *LoopMiddleBlock;
309 ///The ExitBlock of the scalar loop.
310 BasicBlock *LoopExitBlock;
311 ///The vector loop body.
312 BasicBlock *LoopVectorBody;
313 ///The scalar loop body.
314 BasicBlock *LoopScalarBody;
315 /// A list of all bypass blocks. The first block is the entry of the loop.
316 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
317
318 /// The new Induction variable which was added to the new block.
319 PHINode *Induction;
320 /// The induction variable of the old basic block.
321 PHINode *OldInduction;
322 /// Holds the extended (to the widest induction type) start index.
323 Value *ExtendedIdx;
324 /// Maps scalars to widened vectors.
325 ValueMap WidenMap;
326 EdgeMaskCache MaskCache;
327 };
328
329 /// \brief Look for a meaningful debug location on the instruction or it's
330 /// operands.
getDebugLocFromInstOrOperands(Instruction * I)331 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
332 if (!I)
333 return I;
334
335 DebugLoc Empty;
336 if (I->getDebugLoc() != Empty)
337 return I;
338
339 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
340 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
341 if (OpInst->getDebugLoc() != Empty)
342 return OpInst;
343 }
344
345 return I;
346 }
347
348 /// \brief Set the debug location in the builder using the debug location in the
349 /// instruction.
setDebugLocFromInst(IRBuilder<> & B,const Value * Ptr)350 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
351 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
352 B.SetCurrentDebugLocation(Inst->getDebugLoc());
353 else
354 B.SetCurrentDebugLocation(DebugLoc());
355 }
356
357 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
358 /// to what vectorization factor.
359 /// This class does not look at the profitability of vectorization, only the
360 /// legality. This class has two main kinds of checks:
361 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
362 /// will change the order of memory accesses in a way that will change the
363 /// correctness of the program.
364 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
365 /// checks for a number of different conditions, such as the availability of a
366 /// single induction variable, that all types are supported and vectorize-able,
367 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
368 /// This class is also used by InnerLoopVectorizer for identifying
369 /// induction variable and the different reduction variables.
370 class LoopVectorizationLegality {
371 public:
LoopVectorizationLegality(Loop * L,ScalarEvolution * SE,DataLayout * DL,DominatorTree * DT,TargetLibraryInfo * TLI)372 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
373 DominatorTree *DT, TargetLibraryInfo *TLI)
374 : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI),
375 Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
376 MaxSafeDepDistBytes(-1U) {}
377
378 /// This enum represents the kinds of reductions that we support.
379 enum ReductionKind {
380 RK_NoReduction, ///< Not a reduction.
381 RK_IntegerAdd, ///< Sum of integers.
382 RK_IntegerMult, ///< Product of integers.
383 RK_IntegerOr, ///< Bitwise or logical OR of numbers.
384 RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
385 RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
386 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
387 RK_FloatAdd, ///< Sum of floats.
388 RK_FloatMult, ///< Product of floats.
389 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
390 };
391
392 /// This enum represents the kinds of inductions that we support.
393 enum InductionKind {
394 IK_NoInduction, ///< Not an induction variable.
395 IK_IntInduction, ///< Integer induction variable. Step = 1.
396 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
397 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem).
398 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem).
399 };
400
401 // This enum represents the kind of minmax reduction.
402 enum MinMaxReductionKind {
403 MRK_Invalid,
404 MRK_UIntMin,
405 MRK_UIntMax,
406 MRK_SIntMin,
407 MRK_SIntMax,
408 MRK_FloatMin,
409 MRK_FloatMax
410 };
411
412 /// This POD struct holds information about reduction variables.
413 struct ReductionDescriptor {
ReductionDescriptor__anon8ed721d90111::LoopVectorizationLegality::ReductionDescriptor414 ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
415 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
416
ReductionDescriptor__anon8ed721d90111::LoopVectorizationLegality::ReductionDescriptor417 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
418 MinMaxReductionKind MK)
419 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
420
421 // The starting value of the reduction.
422 // It does not have to be zero!
423 TrackingVH<Value> StartValue;
424 // The instruction who's value is used outside the loop.
425 Instruction *LoopExitInstr;
426 // The kind of the reduction.
427 ReductionKind Kind;
428 // If this a min/max reduction the kind of reduction.
429 MinMaxReductionKind MinMaxKind;
430 };
431
432 /// This POD struct holds information about a potential reduction operation.
433 struct ReductionInstDesc {
ReductionInstDesc__anon8ed721d90111::LoopVectorizationLegality::ReductionInstDesc434 ReductionInstDesc(bool IsRedux, Instruction *I) :
435 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
436
ReductionInstDesc__anon8ed721d90111::LoopVectorizationLegality::ReductionInstDesc437 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
438 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
439
440 // Is this instruction a reduction candidate.
441 bool IsReduction;
442 // The last instruction in a min/max pattern (select of the select(icmp())
443 // pattern), or the current reduction instruction otherwise.
444 Instruction *PatternLastInst;
445 // If this is a min/max pattern the comparison predicate.
446 MinMaxReductionKind MinMaxKind;
447 };
448
449 // This POD struct holds information about the memory runtime legality
450 // check that a group of pointers do not overlap.
451 struct RuntimePointerCheck {
RuntimePointerCheck__anon8ed721d90111::LoopVectorizationLegality::RuntimePointerCheck452 RuntimePointerCheck() : Need(false) {}
453
454 /// Reset the state of the pointer runtime information.
reset__anon8ed721d90111::LoopVectorizationLegality::RuntimePointerCheck455 void reset() {
456 Need = false;
457 Pointers.clear();
458 Starts.clear();
459 Ends.clear();
460 }
461
462 /// Insert a pointer and calculate the start and end SCEVs.
463 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
464 unsigned DepSetId);
465
466 /// This flag indicates if we need to add the runtime check.
467 bool Need;
468 /// Holds the pointers that we need to check.
469 SmallVector<TrackingVH<Value>, 2> Pointers;
470 /// Holds the pointer value at the beginning of the loop.
471 SmallVector<const SCEV*, 2> Starts;
472 /// Holds the pointer value at the end of the loop.
473 SmallVector<const SCEV*, 2> Ends;
474 /// Holds the information if this pointer is used for writing to memory.
475 SmallVector<bool, 2> IsWritePtr;
476 /// Holds the id of the set of pointers that could be dependent because of a
477 /// shared underlying object.
478 SmallVector<unsigned, 2> DependencySetId;
479 };
480
481 /// A POD for saving information about induction variables.
482 struct InductionInfo {
InductionInfo__anon8ed721d90111::LoopVectorizationLegality::InductionInfo483 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
InductionInfo__anon8ed721d90111::LoopVectorizationLegality::InductionInfo484 InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
485 /// Start value.
486 TrackingVH<Value> StartValue;
487 /// Induction kind.
488 InductionKind IK;
489 };
490
491 /// ReductionList contains the reduction descriptors for all
492 /// of the reductions that were found in the loop.
493 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
494
495 /// InductionList saves induction variables and maps them to the
496 /// induction descriptor.
497 typedef MapVector<PHINode*, InductionInfo> InductionList;
498
499 /// Returns true if it is legal to vectorize this loop.
500 /// This does not mean that it is profitable to vectorize this
501 /// loop, only that it is legal to do so.
502 bool canVectorize();
503
504 /// Returns the Induction variable.
getInduction()505 PHINode *getInduction() { return Induction; }
506
507 /// Returns the reduction variables found in the loop.
getReductionVars()508 ReductionList *getReductionVars() { return &Reductions; }
509
510 /// Returns the induction variables found in the loop.
getInductionVars()511 InductionList *getInductionVars() { return &Inductions; }
512
513 /// Returns the widest induction type.
getWidestInductionType()514 Type *getWidestInductionType() { return WidestIndTy; }
515
516 /// Returns True if V is an induction variable in this loop.
517 bool isInductionVariable(const Value *V);
518
519 /// Return true if the block BB needs to be predicated in order for the loop
520 /// to be vectorized.
521 bool blockNeedsPredication(BasicBlock *BB);
522
523 /// Check if this pointer is consecutive when vectorizing. This happens
524 /// when the last index of the GEP is the induction variable, or that the
525 /// pointer itself is an induction variable.
526 /// This check allows us to vectorize A[idx] into a wide load/store.
527 /// Returns:
528 /// 0 - Stride is unknown or non consecutive.
529 /// 1 - Address is consecutive.
530 /// -1 - Address is consecutive, and decreasing.
531 int isConsecutivePtr(Value *Ptr);
532
533 /// Returns true if the value V is uniform within the loop.
534 bool isUniform(Value *V);
535
536 /// Returns true if this instruction will remain scalar after vectorization.
isUniformAfterVectorization(Instruction * I)537 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
538
539 /// Returns the information that we collected about runtime memory check.
getRuntimePointerCheck()540 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
541
542 /// This function returns the identity element (or neutral element) for
543 /// the operation K.
544 static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
545
getMaxSafeDepDistBytes()546 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
547
548 private:
549 /// Check if a single basic block loop is vectorizable.
550 /// At this point we know that this is a loop with a constant trip count
551 /// and we only need to check individual instructions.
552 bool canVectorizeInstrs();
553
554 /// When we vectorize loops we may change the order in which
555 /// we read and write from memory. This method checks if it is
556 /// legal to vectorize the code, considering only memory constrains.
557 /// Returns true if the loop is vectorizable
558 bool canVectorizeMemory();
559
560 /// Return true if we can vectorize this loop using the IF-conversion
561 /// transformation.
562 bool canVectorizeWithIfConvert();
563
564 /// Collect the variables that need to stay uniform after vectorization.
565 void collectLoopUniforms();
566
567 /// Return true if all of the instructions in the block can be speculatively
568 /// executed. \p SafePtrs is a list of addresses that are known to be legal
569 /// and we know that we can read from them without segfault.
570 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
571
572 /// Returns True, if 'Phi' is the kind of reduction variable for type
573 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
574 bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
575 /// Returns a struct describing if the instruction 'I' can be a reduction
576 /// variable of type 'Kind'. If the reduction is a min/max pattern of
577 /// select(icmp()) this function advances the instruction pointer 'I' from the
578 /// compare instruction to the select instruction and stores this pointer in
579 /// 'PatternLastInst' member of the returned struct.
580 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
581 ReductionInstDesc &Desc);
582 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
583 /// pattern corresponding to a min(X, Y) or max(X, Y).
584 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
585 ReductionInstDesc &Prev);
586 /// Returns the induction kind of Phi. This function may return NoInduction
587 /// if the PHI is not an induction variable.
588 InductionKind isInductionVariable(PHINode *Phi);
589
590 /// The loop that we evaluate.
591 Loop *TheLoop;
592 /// Scev analysis.
593 ScalarEvolution *SE;
594 /// DataLayout analysis.
595 DataLayout *DL;
596 /// Dominators.
597 DominatorTree *DT;
598 /// Target Library Info.
599 TargetLibraryInfo *TLI;
600
601 // --- vectorization state --- //
602
603 /// Holds the integer induction variable. This is the counter of the
604 /// loop.
605 PHINode *Induction;
606 /// Holds the reduction variables.
607 ReductionList Reductions;
608 /// Holds all of the induction variables that we found in the loop.
609 /// Notice that inductions don't need to start at zero and that induction
610 /// variables can be pointers.
611 InductionList Inductions;
612 /// Holds the widest induction type encountered.
613 Type *WidestIndTy;
614
615 /// Allowed outside users. This holds the reduction
616 /// vars which can be accessed from outside the loop.
617 SmallPtrSet<Value*, 4> AllowedExit;
618 /// This set holds the variables which are known to be uniform after
619 /// vectorization.
620 SmallPtrSet<Instruction*, 4> Uniforms;
621 /// We need to check that all of the pointers in this list are disjoint
622 /// at runtime.
623 RuntimePointerCheck PtrRtCheck;
624 /// Can we assume the absence of NaNs.
625 bool HasFunNoNaNAttr;
626
627 unsigned MaxSafeDepDistBytes;
628 };
629
630 /// LoopVectorizationCostModel - estimates the expected speedups due to
631 /// vectorization.
632 /// In many cases vectorization is not profitable. This can happen because of
633 /// a number of reasons. In this class we mainly attempt to predict the
634 /// expected speedup/slowdowns due to the supported instruction set. We use the
635 /// TargetTransformInfo to query the different backends for the cost of
636 /// different operations.
637 class LoopVectorizationCostModel {
638 public:
LoopVectorizationCostModel(Loop * L,ScalarEvolution * SE,LoopInfo * LI,LoopVectorizationLegality * Legal,const TargetTransformInfo & TTI,DataLayout * DL,const TargetLibraryInfo * TLI)639 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
640 LoopVectorizationLegality *Legal,
641 const TargetTransformInfo &TTI,
642 DataLayout *DL, const TargetLibraryInfo *TLI)
643 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
644
645 /// Information about vectorization costs
646 struct VectorizationFactor {
647 unsigned Width; // Vector width with best cost
648 unsigned Cost; // Cost of the loop with that width
649 };
650 /// \return The most profitable vectorization factor and the cost of that VF.
651 /// This method checks every power of two up to VF. If UserVF is not ZERO
652 /// then this vectorization factor will be selected if vectorization is
653 /// possible.
654 VectorizationFactor selectVectorizationFactor(bool OptForSize,
655 unsigned UserVF);
656
657 /// \return The size (in bits) of the widest type in the code that
658 /// needs to be vectorized. We ignore values that remain scalar such as
659 /// 64 bit loop indices.
660 unsigned getWidestType();
661
662 /// \return The most profitable unroll factor.
663 /// If UserUF is non-zero then this method finds the best unroll-factor
664 /// based on register pressure and other parameters.
665 /// VF and LoopCost are the selected vectorization factor and the cost of the
666 /// selected VF.
667 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
668 unsigned LoopCost);
669
670 /// \brief A struct that represents some properties of the register usage
671 /// of a loop.
672 struct RegisterUsage {
673 /// Holds the number of loop invariant values that are used in the loop.
674 unsigned LoopInvariantRegs;
675 /// Holds the maximum number of concurrent live intervals in the loop.
676 unsigned MaxLocalUsers;
677 /// Holds the number of instructions in the loop.
678 unsigned NumInstructions;
679 };
680
681 /// \return information about the register usage of the loop.
682 RegisterUsage calculateRegisterUsage();
683
684 private:
685 /// Returns the expected execution cost. The unit of the cost does
686 /// not matter because we use the 'cost' units to compare different
687 /// vector widths. The cost that is returned is *not* normalized by
688 /// the factor width.
689 unsigned expectedCost(unsigned VF);
690
691 /// Returns the execution time cost of an instruction for a given vector
692 /// width. Vector width of one means scalar.
693 unsigned getInstructionCost(Instruction *I, unsigned VF);
694
695 /// A helper function for converting Scalar types to vector types.
696 /// If the incoming type is void, we return void. If the VF is 1, we return
697 /// the scalar type.
698 static Type* ToVectorTy(Type *Scalar, unsigned VF);
699
700 /// Returns whether the instruction is a load or store and will be a emitted
701 /// as a vector operation.
702 bool isConsecutiveLoadOrStore(Instruction *I);
703
704 /// The loop that we evaluate.
705 Loop *TheLoop;
706 /// Scev analysis.
707 ScalarEvolution *SE;
708 /// Loop Info analysis.
709 LoopInfo *LI;
710 /// Vectorization legality.
711 LoopVectorizationLegality *Legal;
712 /// Vector target information.
713 const TargetTransformInfo &TTI;
714 /// Target data layout information.
715 DataLayout *DL;
716 /// Target Library Info.
717 const TargetLibraryInfo *TLI;
718 };
719
720 /// Utility class for getting and setting loop vectorizer hints in the form
721 /// of loop metadata.
722 struct LoopVectorizeHints {
723 /// Vectorization width.
724 unsigned Width;
725 /// Vectorization unroll factor.
726 unsigned Unroll;
727
LoopVectorizeHints__anon8ed721d90111::LoopVectorizeHints728 LoopVectorizeHints(const Loop *L)
729 : Width(VectorizationFactor)
730 , Unroll(VectorizationUnroll)
731 , LoopID(L->getLoopID()) {
732 getHints(L);
733 // The command line options override any loop metadata except for when
734 // width == 1 which is used to indicate the loop is already vectorized.
735 if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
736 Width = VectorizationFactor;
737 if (VectorizationUnroll.getNumOccurrences() > 0)
738 Unroll = VectorizationUnroll;
739 }
740
741 /// Return the loop vectorizer metadata prefix.
Prefix__anon8ed721d90111::LoopVectorizeHints742 static StringRef Prefix() { return "llvm.vectorizer."; }
743
createHint__anon8ed721d90111::LoopVectorizeHints744 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
745 SmallVector<Value*, 2> Vals;
746 Vals.push_back(MDString::get(Context, Name));
747 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
748 return MDNode::get(Context, Vals);
749 }
750
751 /// Mark the loop L as already vectorized by setting the width to 1.
setAlreadyVectorized__anon8ed721d90111::LoopVectorizeHints752 void setAlreadyVectorized(Loop *L) {
753 LLVMContext &Context = L->getHeader()->getContext();
754
755 Width = 1;
756
757 // Create a new loop id with one more operand for the already_vectorized
758 // hint. If the loop already has a loop id then copy the existing operands.
759 SmallVector<Value*, 4> Vals(1);
760 if (LoopID)
761 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
762 Vals.push_back(LoopID->getOperand(i));
763
764 Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
765
766 MDNode *NewLoopID = MDNode::get(Context, Vals);
767 // Set operand 0 to refer to the loop id itself.
768 NewLoopID->replaceOperandWith(0, NewLoopID);
769
770 L->setLoopID(NewLoopID);
771 if (LoopID)
772 LoopID->replaceAllUsesWith(NewLoopID);
773
774 LoopID = NewLoopID;
775 }
776
777 private:
778 MDNode *LoopID;
779
780 /// Find hints specified in the loop metadata.
getHints__anon8ed721d90111::LoopVectorizeHints781 void getHints(const Loop *L) {
782 if (!LoopID)
783 return;
784
785 // First operand should refer to the loop id itself.
786 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
787 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
788
789 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
790 const MDString *S = 0;
791 SmallVector<Value*, 4> Args;
792
793 // The expected hint is either a MDString or a MDNode with the first
794 // operand a MDString.
795 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
796 if (!MD || MD->getNumOperands() == 0)
797 continue;
798 S = dyn_cast<MDString>(MD->getOperand(0));
799 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
800 Args.push_back(MD->getOperand(i));
801 } else {
802 S = dyn_cast<MDString>(LoopID->getOperand(i));
803 assert(Args.size() == 0 && "too many arguments for MDString");
804 }
805
806 if (!S)
807 continue;
808
809 // Check if the hint starts with the vectorizer prefix.
810 StringRef Hint = S->getString();
811 if (!Hint.startswith(Prefix()))
812 continue;
813 // Remove the prefix.
814 Hint = Hint.substr(Prefix().size(), StringRef::npos);
815
816 if (Args.size() == 1)
817 getHint(Hint, Args[0]);
818 }
819 }
820
821 // Check string hint with one operand.
getHint__anon8ed721d90111::LoopVectorizeHints822 void getHint(StringRef Hint, Value *Arg) {
823 const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
824 if (!C) return;
825 unsigned Val = C->getZExtValue();
826
827 if (Hint == "width") {
828 assert(isPowerOf2_32(Val) && Val <= MaxVectorWidth &&
829 "Invalid width metadata");
830 Width = Val;
831 } else if (Hint == "unroll") {
832 assert(isPowerOf2_32(Val) && Val <= MaxUnrollFactor &&
833 "Invalid unroll metadata");
834 Unroll = Val;
835 } else
836 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint);
837 }
838 };
839
840 /// The LoopVectorize Pass.
841 struct LoopVectorize : public LoopPass {
842 /// Pass identification, replacement for typeid
843 static char ID;
844
LoopVectorize__anon8ed721d90111::LoopVectorize845 explicit LoopVectorize() : LoopPass(ID) {
846 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
847 }
848
849 ScalarEvolution *SE;
850 DataLayout *DL;
851 LoopInfo *LI;
852 TargetTransformInfo *TTI;
853 DominatorTree *DT;
854 TargetLibraryInfo *TLI;
855
runOnLoop__anon8ed721d90111::LoopVectorize856 virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
857 // We only vectorize innermost loops.
858 if (!L->empty())
859 return false;
860
861 SE = &getAnalysis<ScalarEvolution>();
862 DL = getAnalysisIfAvailable<DataLayout>();
863 LI = &getAnalysis<LoopInfo>();
864 TTI = &getAnalysis<TargetTransformInfo>();
865 DT = &getAnalysis<DominatorTree>();
866 TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
867
868 if (DL == NULL) {
869 DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout");
870 return false;
871 }
872
873 DEBUG(dbgs() << "LV: Checking a loop in \"" <<
874 L->getHeader()->getParent()->getName() << "\"\n");
875
876 LoopVectorizeHints Hints(L);
877
878 if (Hints.Width == 1) {
879 DEBUG(dbgs() << "LV: Not vectorizing.\n");
880 return false;
881 }
882
883 // Check if it is legal to vectorize the loop.
884 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
885 if (!LVL.canVectorize()) {
886 DEBUG(dbgs() << "LV: Not vectorizing.\n");
887 return false;
888 }
889
890 // Use the cost model.
891 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
892
893 // Check the function attributes to find out if this function should be
894 // optimized for size.
895 Function *F = L->getHeader()->getParent();
896 Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
897 Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
898 unsigned FnIndex = AttributeSet::FunctionIndex;
899 bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
900 bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
901
902 if (NoFloat) {
903 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
904 "attribute is used.\n");
905 return false;
906 }
907
908 // Select the optimal vectorization factor.
909 LoopVectorizationCostModel::VectorizationFactor VF;
910 VF = CM.selectVectorizationFactor(OptForSize, Hints.Width);
911 // Select the unroll factor.
912 unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
913 VF.Cost);
914
915 if (VF.Width == 1) {
916 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
917 return false;
918 }
919
920 DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
921 F->getParent()->getModuleIdentifier()<<"\n");
922 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
923
924 // If we decided that it is *legal* to vectorize the loop then do it.
925 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
926 LB.vectorize(&LVL);
927
928 // Mark the loop as already vectorized to avoid vectorizing again.
929 Hints.setAlreadyVectorized(L);
930
931 DEBUG(verifyFunction(*L->getHeader()->getParent()));
932 return true;
933 }
934
getAnalysisUsage__anon8ed721d90111::LoopVectorize935 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
936 LoopPass::getAnalysisUsage(AU);
937 AU.addRequiredID(LoopSimplifyID);
938 AU.addRequiredID(LCSSAID);
939 AU.addRequired<DominatorTree>();
940 AU.addRequired<LoopInfo>();
941 AU.addRequired<ScalarEvolution>();
942 AU.addRequired<TargetTransformInfo>();
943 AU.addPreserved<LoopInfo>();
944 AU.addPreserved<DominatorTree>();
945 }
946
947 };
948
949 } // end anonymous namespace
950
951 //===----------------------------------------------------------------------===//
952 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
953 // LoopVectorizationCostModel.
954 //===----------------------------------------------------------------------===//
955
956 void
insert(ScalarEvolution * SE,Loop * Lp,Value * Ptr,bool WritePtr,unsigned DepSetId)957 LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
958 Loop *Lp, Value *Ptr,
959 bool WritePtr,
960 unsigned DepSetId) {
961 const SCEV *Sc = SE->getSCEV(Ptr);
962 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
963 assert(AR && "Invalid addrec expression");
964 const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
965 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
966 Pointers.push_back(Ptr);
967 Starts.push_back(AR->getStart());
968 Ends.push_back(ScEnd);
969 IsWritePtr.push_back(WritePtr);
970 DependencySetId.push_back(DepSetId);
971 }
972
getBroadcastInstrs(Value * V)973 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
974 // Save the current insertion location.
975 Instruction *Loc = Builder.GetInsertPoint();
976
977 // We need to place the broadcast of invariant variables outside the loop.
978 Instruction *Instr = dyn_cast<Instruction>(V);
979 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
980 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
981
982 // Place the code for broadcasting invariant variables in the new preheader.
983 if (Invariant)
984 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
985
986 // Broadcast the scalar into all locations in the vector.
987 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
988
989 // Restore the builder insertion point.
990 if (Invariant)
991 Builder.SetInsertPoint(Loc);
992
993 return Shuf;
994 }
995
getConsecutiveVector(Value * Val,int StartIdx,bool Negate)996 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
997 bool Negate) {
998 assert(Val->getType()->isVectorTy() && "Must be a vector");
999 assert(Val->getType()->getScalarType()->isIntegerTy() &&
1000 "Elem must be an integer");
1001 // Create the types.
1002 Type *ITy = Val->getType()->getScalarType();
1003 VectorType *Ty = cast<VectorType>(Val->getType());
1004 int VLen = Ty->getNumElements();
1005 SmallVector<Constant*, 8> Indices;
1006
1007 // Create a vector of consecutive numbers from zero to VF.
1008 for (int i = 0; i < VLen; ++i) {
1009 int64_t Idx = Negate ? (-i) : i;
1010 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1011 }
1012
1013 // Add the consecutive indices to the vector value.
1014 Constant *Cv = ConstantVector::get(Indices);
1015 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1016 return Builder.CreateAdd(Val, Cv, "induction");
1017 }
1018
isConsecutivePtr(Value * Ptr)1019 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1020 assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
1021 // Make sure that the pointer does not point to structs.
1022 if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType())
1023 return 0;
1024
1025 // If this value is a pointer induction variable we know it is consecutive.
1026 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1027 if (Phi && Inductions.count(Phi)) {
1028 InductionInfo II = Inductions[Phi];
1029 if (IK_PtrInduction == II.IK)
1030 return 1;
1031 else if (IK_ReversePtrInduction == II.IK)
1032 return -1;
1033 }
1034
1035 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1036 if (!Gep)
1037 return 0;
1038
1039 unsigned NumOperands = Gep->getNumOperands();
1040 Value *LastIndex = Gep->getOperand(NumOperands - 1);
1041
1042 Value *GpPtr = Gep->getPointerOperand();
1043 // If this GEP value is a consecutive pointer induction variable and all of
1044 // the indices are constant then we know it is consecutive. We can
1045 Phi = dyn_cast<PHINode>(GpPtr);
1046 if (Phi && Inductions.count(Phi)) {
1047
1048 // Make sure that the pointer does not point to structs.
1049 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1050 if (GepPtrType->getElementType()->isAggregateType())
1051 return 0;
1052
1053 // Make sure that all of the index operands are loop invariant.
1054 for (unsigned i = 1; i < NumOperands; ++i)
1055 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1056 return 0;
1057
1058 InductionInfo II = Inductions[Phi];
1059 if (IK_PtrInduction == II.IK)
1060 return 1;
1061 else if (IK_ReversePtrInduction == II.IK)
1062 return -1;
1063 }
1064
1065 // Check that all of the gep indices are uniform except for the last.
1066 for (unsigned i = 0; i < NumOperands - 1; ++i)
1067 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1068 return 0;
1069
1070 // We can emit wide load/stores only if the last index is the induction
1071 // variable.
1072 const SCEV *Last = SE->getSCEV(LastIndex);
1073 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1074 const SCEV *Step = AR->getStepRecurrence(*SE);
1075
1076 // The memory is consecutive because the last index is consecutive
1077 // and all other indices are loop invariant.
1078 if (Step->isOne())
1079 return 1;
1080 if (Step->isAllOnesValue())
1081 return -1;
1082 }
1083
1084 return 0;
1085 }
1086
isUniform(Value * V)1087 bool LoopVectorizationLegality::isUniform(Value *V) {
1088 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1089 }
1090
1091 InnerLoopVectorizer::VectorParts&
getVectorValue(Value * V)1092 InnerLoopVectorizer::getVectorValue(Value *V) {
1093 assert(V != Induction && "The new induction variable should not be used.");
1094 assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1095
1096 // If we have this scalar in the map, return it.
1097 if (WidenMap.has(V))
1098 return WidenMap.get(V);
1099
1100 // If this scalar is unknown, assume that it is a constant or that it is
1101 // loop invariant. Broadcast V and save the value for future uses.
1102 Value *B = getBroadcastInstrs(V);
1103 return WidenMap.splat(V, B);
1104 }
1105
reverseVector(Value * Vec)1106 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1107 assert(Vec->getType()->isVectorTy() && "Invalid type");
1108 SmallVector<Constant*, 8> ShuffleMask;
1109 for (unsigned i = 0; i < VF; ++i)
1110 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1111
1112 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1113 ConstantVector::get(ShuffleMask),
1114 "reverse");
1115 }
1116
1117
vectorizeMemoryInstruction(Instruction * Instr,LoopVectorizationLegality * Legal)1118 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
1119 LoopVectorizationLegality *Legal) {
1120 // Attempt to issue a wide load.
1121 LoadInst *LI = dyn_cast<LoadInst>(Instr);
1122 StoreInst *SI = dyn_cast<StoreInst>(Instr);
1123
1124 assert((LI || SI) && "Invalid Load/Store instruction");
1125
1126 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1127 Type *DataTy = VectorType::get(ScalarDataTy, VF);
1128 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1129 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1130 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1131 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1132 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1133
1134 if (ScalarAllocatedSize != VectorElementSize)
1135 return scalarizeInstruction(Instr);
1136
1137 // If the pointer is loop invariant or if it is non consecutive,
1138 // scalarize the load.
1139 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1140 bool Reverse = ConsecutiveStride < 0;
1141 bool UniformLoad = LI && Legal->isUniform(Ptr);
1142 if (!ConsecutiveStride || UniformLoad)
1143 return scalarizeInstruction(Instr);
1144
1145 Constant *Zero = Builder.getInt32(0);
1146 VectorParts &Entry = WidenMap.get(Instr);
1147
1148 // Handle consecutive loads/stores.
1149 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1150 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1151 setDebugLocFromInst(Builder, Gep);
1152 Value *PtrOperand = Gep->getPointerOperand();
1153 Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1154 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1155
1156 // Create the new GEP with the new induction variable.
1157 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1158 Gep2->setOperand(0, FirstBasePtr);
1159 Gep2->setName("gep.indvar.base");
1160 Ptr = Builder.Insert(Gep2);
1161 } else if (Gep) {
1162 setDebugLocFromInst(Builder, Gep);
1163 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1164 OrigLoop) && "Base ptr must be invariant");
1165
1166 // The last index does not have to be the induction. It can be
1167 // consecutive and be a function of the index. For example A[I+1];
1168 unsigned NumOperands = Gep->getNumOperands();
1169 unsigned LastOperand = NumOperands - 1;
1170 // Create the new GEP with the new induction variable.
1171 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1172
1173 for (unsigned i = 0; i < NumOperands; ++i) {
1174 Value *GepOperand = Gep->getOperand(i);
1175 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1176
1177 // Update last index or loop invariant instruction anchored in loop.
1178 if (i == LastOperand ||
1179 (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1180 assert((i == LastOperand ||
1181 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1182 "Must be last index or loop invariant");
1183
1184 VectorParts &GEPParts = getVectorValue(GepOperand);
1185 Value *Index = GEPParts[0];
1186 Index = Builder.CreateExtractElement(Index, Zero);
1187 Gep2->setOperand(i, Index);
1188 Gep2->setName("gep.indvar.idx");
1189 }
1190 }
1191 Ptr = Builder.Insert(Gep2);
1192 } else {
1193 // Use the induction element ptr.
1194 assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1195 setDebugLocFromInst(Builder, Ptr);
1196 VectorParts &PtrVal = getVectorValue(Ptr);
1197 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1198 }
1199
1200 // Handle Stores:
1201 if (SI) {
1202 assert(!Legal->isUniform(SI->getPointerOperand()) &&
1203 "We do not allow storing to uniform addresses");
1204 setDebugLocFromInst(Builder, SI);
1205 // We don't want to update the value in the map as it might be used in
1206 // another expression. So don't use a reference type for "StoredVal".
1207 VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1208
1209 for (unsigned Part = 0; Part < UF; ++Part) {
1210 // Calculate the pointer for the specific unroll-part.
1211 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1212
1213 if (Reverse) {
1214 // If we store to reverse consecutive memory locations then we need
1215 // to reverse the order of elements in the stored value.
1216 StoredVal[Part] = reverseVector(StoredVal[Part]);
1217 // If the address is consecutive but reversed, then the
1218 // wide store needs to start at the last vector element.
1219 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1220 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1221 }
1222
1223 Value *VecPtr = Builder.CreateBitCast(PartPtr,
1224 DataTy->getPointerTo(AddressSpace));
1225 Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1226 }
1227 return;
1228 }
1229
1230 // Handle loads.
1231 assert(LI && "Must have a load instruction");
1232 setDebugLocFromInst(Builder, LI);
1233 for (unsigned Part = 0; Part < UF; ++Part) {
1234 // Calculate the pointer for the specific unroll-part.
1235 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1236
1237 if (Reverse) {
1238 // If the address is consecutive but reversed, then the
1239 // wide store needs to start at the last vector element.
1240 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1241 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1242 }
1243
1244 Value *VecPtr = Builder.CreateBitCast(PartPtr,
1245 DataTy->getPointerTo(AddressSpace));
1246 Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1247 cast<LoadInst>(LI)->setAlignment(Alignment);
1248 Entry[Part] = Reverse ? reverseVector(LI) : LI;
1249 }
1250 }
1251
scalarizeInstruction(Instruction * Instr)1252 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
1253 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1254 // Holds vector parameters or scalars, in case of uniform vals.
1255 SmallVector<VectorParts, 4> Params;
1256
1257 setDebugLocFromInst(Builder, Instr);
1258
1259 // Find all of the vectorized parameters.
1260 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1261 Value *SrcOp = Instr->getOperand(op);
1262
1263 // If we are accessing the old induction variable, use the new one.
1264 if (SrcOp == OldInduction) {
1265 Params.push_back(getVectorValue(SrcOp));
1266 continue;
1267 }
1268
1269 // Try using previously calculated values.
1270 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1271
1272 // If the src is an instruction that appeared earlier in the basic block
1273 // then it should already be vectorized.
1274 if (SrcInst && OrigLoop->contains(SrcInst)) {
1275 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1276 // The parameter is a vector value from earlier.
1277 Params.push_back(WidenMap.get(SrcInst));
1278 } else {
1279 // The parameter is a scalar from outside the loop. Maybe even a constant.
1280 VectorParts Scalars;
1281 Scalars.append(UF, SrcOp);
1282 Params.push_back(Scalars);
1283 }
1284 }
1285
1286 assert(Params.size() == Instr->getNumOperands() &&
1287 "Invalid number of operands");
1288
1289 // Does this instruction return a value ?
1290 bool IsVoidRetTy = Instr->getType()->isVoidTy();
1291
1292 Value *UndefVec = IsVoidRetTy ? 0 :
1293 UndefValue::get(VectorType::get(Instr->getType(), VF));
1294 // Create a new entry in the WidenMap and initialize it to Undef or Null.
1295 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1296
1297 // For each vector unroll 'part':
1298 for (unsigned Part = 0; Part < UF; ++Part) {
1299 // For each scalar that we create:
1300 for (unsigned Width = 0; Width < VF; ++Width) {
1301 Instruction *Cloned = Instr->clone();
1302 if (!IsVoidRetTy)
1303 Cloned->setName(Instr->getName() + ".cloned");
1304 // Replace the operands of the cloned instrucions with extracted scalars.
1305 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1306 Value *Op = Params[op][Part];
1307 // Param is a vector. Need to extract the right lane.
1308 if (Op->getType()->isVectorTy())
1309 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1310 Cloned->setOperand(op, Op);
1311 }
1312
1313 // Place the cloned scalar in the new loop.
1314 Builder.Insert(Cloned);
1315
1316 // If the original scalar returns a value we need to place it in a vector
1317 // so that future users will be able to use it.
1318 if (!IsVoidRetTy)
1319 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1320 Builder.getInt32(Width));
1321 }
1322 }
1323 }
1324
1325 Instruction *
addRuntimeCheck(LoopVectorizationLegality * Legal,Instruction * Loc)1326 InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1327 Instruction *Loc) {
1328 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1329 Legal->getRuntimePointerCheck();
1330
1331 if (!PtrRtCheck->Need)
1332 return NULL;
1333
1334 unsigned NumPointers = PtrRtCheck->Pointers.size();
1335 SmallVector<TrackingVH<Value> , 2> Starts;
1336 SmallVector<TrackingVH<Value> , 2> Ends;
1337
1338 SCEVExpander Exp(*SE, "induction");
1339
1340 // Use this type for pointer arithmetic.
1341 Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
1342
1343 for (unsigned i = 0; i < NumPointers; ++i) {
1344 Value *Ptr = PtrRtCheck->Pointers[i];
1345 const SCEV *Sc = SE->getSCEV(Ptr);
1346
1347 if (SE->isLoopInvariant(Sc, OrigLoop)) {
1348 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1349 *Ptr <<"\n");
1350 Starts.push_back(Ptr);
1351 Ends.push_back(Ptr);
1352 } else {
1353 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
1354
1355 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1356 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1357 Starts.push_back(Start);
1358 Ends.push_back(End);
1359 }
1360 }
1361
1362 IRBuilder<> ChkBuilder(Loc);
1363 // Our instructions might fold to a constant.
1364 Value *MemoryRuntimeCheck = 0;
1365 for (unsigned i = 0; i < NumPointers; ++i) {
1366 for (unsigned j = i+1; j < NumPointers; ++j) {
1367 // No need to check if two readonly pointers intersect.
1368 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1369 continue;
1370
1371 // Only need to check pointers between two different dependency sets.
1372 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
1373 continue;
1374
1375 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc");
1376 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc");
1377 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy, "bc");
1378 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy, "bc");
1379
1380 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1381 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1382 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1383 if (MemoryRuntimeCheck)
1384 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1385 "conflict.rdx");
1386 MemoryRuntimeCheck = IsConflict;
1387 }
1388 }
1389
1390 // We have to do this trickery because the IRBuilder might fold the check to a
1391 // constant expression in which case there is no Instruction anchored in a
1392 // the block.
1393 LLVMContext &Ctx = Loc->getContext();
1394 Instruction * Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1395 ConstantInt::getTrue(Ctx));
1396 ChkBuilder.Insert(Check, "memcheck.conflict");
1397 return Check;
1398 }
1399
1400 void
createEmptyLoop(LoopVectorizationLegality * Legal)1401 InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1402 /*
1403 In this function we generate a new loop. The new loop will contain
1404 the vectorized instructions while the old loop will continue to run the
1405 scalar remainder.
1406
1407 [ ] <-- vector loop bypass (may consist of multiple blocks).
1408 / |
1409 / v
1410 | [ ] <-- vector pre header.
1411 | |
1412 | v
1413 | [ ] \
1414 | [ ]_| <-- vector loop.
1415 | |
1416 \ v
1417 >[ ] <--- middle-block.
1418 / |
1419 / v
1420 | [ ] <--- new preheader.
1421 | |
1422 | v
1423 | [ ] \
1424 | [ ]_| <-- old scalar loop to handle remainder.
1425 \ |
1426 \ v
1427 >[ ] <-- exit block.
1428 ...
1429 */
1430
1431 BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1432 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1433 BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1434 assert(ExitBlock && "Must have an exit block");
1435
1436 // Some loops have a single integer induction variable, while other loops
1437 // don't. One example is c++ iterators that often have multiple pointer
1438 // induction variables. In the code below we also support a case where we
1439 // don't have a single induction variable.
1440 OldInduction = Legal->getInduction();
1441 Type *IdxTy = Legal->getWidestInductionType();
1442
1443 // Find the loop boundaries.
1444 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
1445 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1446
1447 // Get the total trip count from the count by adding 1.
1448 ExitCount = SE->getAddExpr(ExitCount,
1449 SE->getConstant(ExitCount->getType(), 1));
1450
1451 // Expand the trip count and place the new instructions in the preheader.
1452 // Notice that the pre-header does not change, only the loop body.
1453 SCEVExpander Exp(*SE, "induction");
1454
1455 // Count holds the overall loop count (N).
1456 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1457 BypassBlock->getTerminator());
1458
1459 // The loop index does not have to start at Zero. Find the original start
1460 // value from the induction PHI node. If we don't have an induction variable
1461 // then we know that it starts at zero.
1462 Builder.SetInsertPoint(BypassBlock->getTerminator());
1463 Value *StartIdx = ExtendedIdx = OldInduction ?
1464 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
1465 IdxTy):
1466 ConstantInt::get(IdxTy, 0);
1467
1468 assert(BypassBlock && "Invalid loop structure");
1469 LoopBypassBlocks.push_back(BypassBlock);
1470
1471 // Split the single block loop into the two loop structure described above.
1472 BasicBlock *VectorPH =
1473 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1474 BasicBlock *VecBody =
1475 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1476 BasicBlock *MiddleBlock =
1477 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1478 BasicBlock *ScalarPH =
1479 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1480
1481 // Create and register the new vector loop.
1482 Loop* Lp = new Loop();
1483 Loop *ParentLoop = OrigLoop->getParentLoop();
1484
1485 // Insert the new loop into the loop nest and register the new basic blocks
1486 // before calling any utilities such as SCEV that require valid LoopInfo.
1487 if (ParentLoop) {
1488 ParentLoop->addChildLoop(Lp);
1489 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1490 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1491 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1492 } else {
1493 LI->addTopLevelLoop(Lp);
1494 }
1495 Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1496
1497 // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1498 // inside the loop.
1499 Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1500
1501 // Generate the induction variable.
1502 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
1503 Induction = Builder.CreatePHI(IdxTy, 2, "index");
1504 // The loop step is equal to the vectorization factor (num of SIMD elements)
1505 // times the unroll factor (num of SIMD instructions).
1506 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1507
1508 // This is the IR builder that we use to add all of the logic for bypassing
1509 // the new vector loop.
1510 IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1511 setDebugLocFromInst(BypassBuilder,
1512 getDebugLocFromInstOrOperands(OldInduction));
1513
1514 // We may need to extend the index in case there is a type mismatch.
1515 // We know that the count starts at zero and does not overflow.
1516 if (Count->getType() != IdxTy) {
1517 // The exit count can be of pointer type. Convert it to the correct
1518 // integer type.
1519 if (ExitCount->getType()->isPointerTy())
1520 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1521 else
1522 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1523 }
1524
1525 // Add the start index to the loop count to get the new end index.
1526 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1527
1528 // Now we need to generate the expression for N - (N % VF), which is
1529 // the part that the vectorized body will execute.
1530 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1531 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1532 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1533 "end.idx.rnd.down");
1534
1535 // Now, compare the new count to zero. If it is zero skip the vector loop and
1536 // jump to the scalar loop.
1537 Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1538 "cmp.zero");
1539
1540 BasicBlock *LastBypassBlock = BypassBlock;
1541
1542 // Generate the code that checks in runtime if arrays overlap. We put the
1543 // checks into a separate block to make the more common case of few elements
1544 // faster.
1545 Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1546 BypassBlock->getTerminator());
1547 if (MemRuntimeCheck) {
1548 // Create a new block containing the memory check.
1549 BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1550 "vector.memcheck");
1551 if (ParentLoop)
1552 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
1553 LoopBypassBlocks.push_back(CheckBlock);
1554
1555 // Replace the branch into the memory check block with a conditional branch
1556 // for the "few elements case".
1557 Instruction *OldTerm = BypassBlock->getTerminator();
1558 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1559 OldTerm->eraseFromParent();
1560
1561 Cmp = MemRuntimeCheck;
1562 LastBypassBlock = CheckBlock;
1563 }
1564
1565 LastBypassBlock->getTerminator()->eraseFromParent();
1566 BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1567 LastBypassBlock);
1568
1569 // We are going to resume the execution of the scalar loop.
1570 // Go over all of the induction variables that we found and fix the
1571 // PHIs that are left in the scalar version of the loop.
1572 // The starting values of PHI nodes depend on the counter of the last
1573 // iteration in the vectorized loop.
1574 // If we come from a bypass edge then we need to start from the original
1575 // start value.
1576
1577 // This variable saves the new starting index for the scalar loop.
1578 PHINode *ResumeIndex = 0;
1579 LoopVectorizationLegality::InductionList::iterator I, E;
1580 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1581 // Set builder to point to last bypass block.
1582 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
1583 for (I = List->begin(), E = List->end(); I != E; ++I) {
1584 PHINode *OrigPhi = I->first;
1585 LoopVectorizationLegality::InductionInfo II = I->second;
1586
1587 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
1588 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
1589 MiddleBlock->getTerminator());
1590 // We might have extended the type of the induction variable but we need a
1591 // truncated version for the scalar loop.
1592 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
1593 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
1594 MiddleBlock->getTerminator()) : 0;
1595
1596 Value *EndValue = 0;
1597 switch (II.IK) {
1598 case LoopVectorizationLegality::IK_NoInduction:
1599 llvm_unreachable("Unknown induction");
1600 case LoopVectorizationLegality::IK_IntInduction: {
1601 // Handle the integer induction counter.
1602 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1603
1604 // We have the canonical induction variable.
1605 if (OrigPhi == OldInduction) {
1606 // Create a truncated version of the resume value for the scalar loop,
1607 // we might have promoted the type to a larger width.
1608 EndValue =
1609 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
1610 // The new PHI merges the original incoming value, in case of a bypass,
1611 // or the value at the end of the vectorized loop.
1612 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1613 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1614 TruncResumeVal->addIncoming(EndValue, VecBody);
1615
1616 // We know what the end value is.
1617 EndValue = IdxEndRoundDown;
1618 // We also know which PHI node holds it.
1619 ResumeIndex = ResumeVal;
1620 break;
1621 }
1622
1623 // Not the canonical induction variable - add the vector loop count to the
1624 // start value.
1625 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1626 II.StartValue->getType(),
1627 "cast.crd");
1628 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
1629 break;
1630 }
1631 case LoopVectorizationLegality::IK_ReverseIntInduction: {
1632 // Convert the CountRoundDown variable to the PHI size.
1633 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1634 II.StartValue->getType(),
1635 "cast.crd");
1636 // Handle reverse integer induction counter.
1637 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
1638 break;
1639 }
1640 case LoopVectorizationLegality::IK_PtrInduction: {
1641 // For pointer induction variables, calculate the offset using
1642 // the end index.
1643 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
1644 "ptr.ind.end");
1645 break;
1646 }
1647 case LoopVectorizationLegality::IK_ReversePtrInduction: {
1648 // The value at the end of the loop for the reverse pointer is calculated
1649 // by creating a GEP with a negative index starting from the start value.
1650 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1651 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
1652 "rev.ind.end");
1653 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
1654 "rev.ptr.ind.end");
1655 break;
1656 }
1657 }// end of case
1658
1659 // The new PHI merges the original incoming value, in case of a bypass,
1660 // or the value at the end of the vectorized loop.
1661 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) {
1662 if (OrigPhi == OldInduction)
1663 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
1664 else
1665 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1666 }
1667 ResumeVal->addIncoming(EndValue, VecBody);
1668
1669 // Fix the scalar body counter (PHI node).
1670 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1671 // The old inductions phi node in the scalar body needs the truncated value.
1672 if (OrigPhi == OldInduction)
1673 OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal);
1674 else
1675 OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1676 }
1677
1678 // If we are generating a new induction variable then we also need to
1679 // generate the code that calculates the exit value. This value is not
1680 // simply the end of the counter because we may skip the vectorized body
1681 // in case of a runtime check.
1682 if (!OldInduction){
1683 assert(!ResumeIndex && "Unexpected resume value found");
1684 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1685 MiddleBlock->getTerminator());
1686 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1687 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1688 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1689 }
1690
1691 // Make sure that we found the index where scalar loop needs to continue.
1692 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1693 "Invalid resume Index");
1694
1695 // Add a check in the middle block to see if we have completed
1696 // all of the iterations in the first vector loop.
1697 // If (N - N%VF) == N, then we *don't* need to run the remainder.
1698 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1699 ResumeIndex, "cmp.n",
1700 MiddleBlock->getTerminator());
1701
1702 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1703 // Remove the old terminator.
1704 MiddleBlock->getTerminator()->eraseFromParent();
1705
1706 // Create i+1 and fill the PHINode.
1707 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1708 Induction->addIncoming(StartIdx, VectorPH);
1709 Induction->addIncoming(NextIdx, VecBody);
1710 // Create the compare.
1711 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1712 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1713
1714 // Now we have two terminators. Remove the old one from the block.
1715 VecBody->getTerminator()->eraseFromParent();
1716
1717 // Get ready to start creating new instructions into the vectorized body.
1718 Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1719
1720 // Save the state.
1721 LoopVectorPreHeader = VectorPH;
1722 LoopScalarPreHeader = ScalarPH;
1723 LoopMiddleBlock = MiddleBlock;
1724 LoopExitBlock = ExitBlock;
1725 LoopVectorBody = VecBody;
1726 LoopScalarBody = OldBasicBlock;
1727 }
1728
1729 /// This function returns the identity element (or neutral element) for
1730 /// the operation K.
1731 Constant*
getReductionIdentity(ReductionKind K,Type * Tp)1732 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
1733 switch (K) {
1734 case RK_IntegerXor:
1735 case RK_IntegerAdd:
1736 case RK_IntegerOr:
1737 // Adding, Xoring, Oring zero to a number does not change it.
1738 return ConstantInt::get(Tp, 0);
1739 case RK_IntegerMult:
1740 // Multiplying a number by 1 does not change it.
1741 return ConstantInt::get(Tp, 1);
1742 case RK_IntegerAnd:
1743 // AND-ing a number with an all-1 value does not change it.
1744 return ConstantInt::get(Tp, -1, true);
1745 case RK_FloatMult:
1746 // Multiplying a number by 1 does not change it.
1747 return ConstantFP::get(Tp, 1.0L);
1748 case RK_FloatAdd:
1749 // Adding zero to a number does not change it.
1750 return ConstantFP::get(Tp, 0.0L);
1751 default:
1752 llvm_unreachable("Unknown reduction kind");
1753 }
1754 }
1755
1756 static Intrinsic::ID
getIntrinsicIDForCall(CallInst * CI,const TargetLibraryInfo * TLI)1757 getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
1758 // If we have an intrinsic call, check if it is trivially vectorizable.
1759 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1760 switch (II->getIntrinsicID()) {
1761 case Intrinsic::sqrt:
1762 case Intrinsic::sin:
1763 case Intrinsic::cos:
1764 case Intrinsic::exp:
1765 case Intrinsic::exp2:
1766 case Intrinsic::log:
1767 case Intrinsic::log10:
1768 case Intrinsic::log2:
1769 case Intrinsic::fabs:
1770 case Intrinsic::floor:
1771 case Intrinsic::ceil:
1772 case Intrinsic::trunc:
1773 case Intrinsic::rint:
1774 case Intrinsic::nearbyint:
1775 case Intrinsic::pow:
1776 case Intrinsic::fma:
1777 case Intrinsic::fmuladd:
1778 case Intrinsic::lifetime_start:
1779 case Intrinsic::lifetime_end:
1780 return II->getIntrinsicID();
1781 default:
1782 return Intrinsic::not_intrinsic;
1783 }
1784 }
1785
1786 if (!TLI)
1787 return Intrinsic::not_intrinsic;
1788
1789 LibFunc::Func Func;
1790 Function *F = CI->getCalledFunction();
1791 // We're going to make assumptions on the semantics of the functions, check
1792 // that the target knows that it's available in this environment.
1793 if (!F || !TLI->getLibFunc(F->getName(), Func))
1794 return Intrinsic::not_intrinsic;
1795
1796 // Otherwise check if we have a call to a function that can be turned into a
1797 // vector intrinsic.
1798 switch (Func) {
1799 default:
1800 break;
1801 case LibFunc::sin:
1802 case LibFunc::sinf:
1803 case LibFunc::sinl:
1804 return Intrinsic::sin;
1805 case LibFunc::cos:
1806 case LibFunc::cosf:
1807 case LibFunc::cosl:
1808 return Intrinsic::cos;
1809 case LibFunc::exp:
1810 case LibFunc::expf:
1811 case LibFunc::expl:
1812 return Intrinsic::exp;
1813 case LibFunc::exp2:
1814 case LibFunc::exp2f:
1815 case LibFunc::exp2l:
1816 return Intrinsic::exp2;
1817 case LibFunc::log:
1818 case LibFunc::logf:
1819 case LibFunc::logl:
1820 return Intrinsic::log;
1821 case LibFunc::log10:
1822 case LibFunc::log10f:
1823 case LibFunc::log10l:
1824 return Intrinsic::log10;
1825 case LibFunc::log2:
1826 case LibFunc::log2f:
1827 case LibFunc::log2l:
1828 return Intrinsic::log2;
1829 case LibFunc::fabs:
1830 case LibFunc::fabsf:
1831 case LibFunc::fabsl:
1832 return Intrinsic::fabs;
1833 case LibFunc::floor:
1834 case LibFunc::floorf:
1835 case LibFunc::floorl:
1836 return Intrinsic::floor;
1837 case LibFunc::ceil:
1838 case LibFunc::ceilf:
1839 case LibFunc::ceill:
1840 return Intrinsic::ceil;
1841 case LibFunc::trunc:
1842 case LibFunc::truncf:
1843 case LibFunc::truncl:
1844 return Intrinsic::trunc;
1845 case LibFunc::rint:
1846 case LibFunc::rintf:
1847 case LibFunc::rintl:
1848 return Intrinsic::rint;
1849 case LibFunc::nearbyint:
1850 case LibFunc::nearbyintf:
1851 case LibFunc::nearbyintl:
1852 return Intrinsic::nearbyint;
1853 case LibFunc::pow:
1854 case LibFunc::powf:
1855 case LibFunc::powl:
1856 return Intrinsic::pow;
1857 }
1858
1859 return Intrinsic::not_intrinsic;
1860 }
1861
1862 /// This function translates the reduction kind to an LLVM binary operator.
1863 static unsigned
getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind)1864 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
1865 switch (Kind) {
1866 case LoopVectorizationLegality::RK_IntegerAdd:
1867 return Instruction::Add;
1868 case LoopVectorizationLegality::RK_IntegerMult:
1869 return Instruction::Mul;
1870 case LoopVectorizationLegality::RK_IntegerOr:
1871 return Instruction::Or;
1872 case LoopVectorizationLegality::RK_IntegerAnd:
1873 return Instruction::And;
1874 case LoopVectorizationLegality::RK_IntegerXor:
1875 return Instruction::Xor;
1876 case LoopVectorizationLegality::RK_FloatMult:
1877 return Instruction::FMul;
1878 case LoopVectorizationLegality::RK_FloatAdd:
1879 return Instruction::FAdd;
1880 case LoopVectorizationLegality::RK_IntegerMinMax:
1881 return Instruction::ICmp;
1882 case LoopVectorizationLegality::RK_FloatMinMax:
1883 return Instruction::FCmp;
1884 default:
1885 llvm_unreachable("Unknown reduction operation");
1886 }
1887 }
1888
createMinMaxOp(IRBuilder<> & Builder,LoopVectorizationLegality::MinMaxReductionKind RK,Value * Left,Value * Right)1889 Value *createMinMaxOp(IRBuilder<> &Builder,
1890 LoopVectorizationLegality::MinMaxReductionKind RK,
1891 Value *Left,
1892 Value *Right) {
1893 CmpInst::Predicate P = CmpInst::ICMP_NE;
1894 switch (RK) {
1895 default:
1896 llvm_unreachable("Unknown min/max reduction kind");
1897 case LoopVectorizationLegality::MRK_UIntMin:
1898 P = CmpInst::ICMP_ULT;
1899 break;
1900 case LoopVectorizationLegality::MRK_UIntMax:
1901 P = CmpInst::ICMP_UGT;
1902 break;
1903 case LoopVectorizationLegality::MRK_SIntMin:
1904 P = CmpInst::ICMP_SLT;
1905 break;
1906 case LoopVectorizationLegality::MRK_SIntMax:
1907 P = CmpInst::ICMP_SGT;
1908 break;
1909 case LoopVectorizationLegality::MRK_FloatMin:
1910 P = CmpInst::FCMP_OLT;
1911 break;
1912 case LoopVectorizationLegality::MRK_FloatMax:
1913 P = CmpInst::FCMP_OGT;
1914 break;
1915 }
1916
1917 Value *Cmp;
1918 if (RK == LoopVectorizationLegality::MRK_FloatMin ||
1919 RK == LoopVectorizationLegality::MRK_FloatMax)
1920 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
1921 else
1922 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
1923
1924 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
1925 return Select;
1926 }
1927
1928 void
vectorizeLoop(LoopVectorizationLegality * Legal)1929 InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
1930 //===------------------------------------------------===//
1931 //
1932 // Notice: any optimization or new instruction that go
1933 // into the code below should be also be implemented in
1934 // the cost-model.
1935 //
1936 //===------------------------------------------------===//
1937 Constant *Zero = Builder.getInt32(0);
1938
1939 // In order to support reduction variables we need to be able to vectorize
1940 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
1941 // stages. First, we create a new vector PHI node with no incoming edges.
1942 // We use this value when we vectorize all of the instructions that use the
1943 // PHI. Next, after all of the instructions in the block are complete we
1944 // add the new incoming edges to the PHI. At this point all of the
1945 // instructions in the basic block are vectorized, so we can use them to
1946 // construct the PHI.
1947 PhiVector RdxPHIsToFix;
1948
1949 // Scan the loop in a topological order to ensure that defs are vectorized
1950 // before users.
1951 LoopBlocksDFS DFS(OrigLoop);
1952 DFS.perform(LI);
1953
1954 // Vectorize all of the blocks in the original loop.
1955 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
1956 be = DFS.endRPO(); bb != be; ++bb)
1957 vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
1958
1959 // At this point every instruction in the original loop is widened to
1960 // a vector form. We are almost done. Now, we need to fix the PHI nodes
1961 // that we vectorized. The PHI nodes are currently empty because we did
1962 // not want to introduce cycles. Notice that the remaining PHI nodes
1963 // that we need to fix are reduction variables.
1964
1965 // Create the 'reduced' values for each of the induction vars.
1966 // The reduced values are the vector values that we scalarize and combine
1967 // after the loop is finished.
1968 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
1969 it != e; ++it) {
1970 PHINode *RdxPhi = *it;
1971 assert(RdxPhi && "Unable to recover vectorized PHI");
1972
1973 // Find the reduction variable descriptor.
1974 assert(Legal->getReductionVars()->count(RdxPhi) &&
1975 "Unable to find the reduction variable");
1976 LoopVectorizationLegality::ReductionDescriptor RdxDesc =
1977 (*Legal->getReductionVars())[RdxPhi];
1978
1979 setDebugLocFromInst(Builder, RdxDesc.StartValue);
1980
1981 // We need to generate a reduction vector from the incoming scalar.
1982 // To do so, we need to generate the 'identity' vector and overide
1983 // one of the elements with the incoming scalar reduction. We need
1984 // to do it in the vector-loop preheader.
1985 Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
1986
1987 // This is the vector-clone of the value that leaves the loop.
1988 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
1989 Type *VecTy = VectorExit[0]->getType();
1990
1991 // Find the reduction identity variable. Zero for addition, or, xor,
1992 // one for multiplication, -1 for And.
1993 Value *Identity;
1994 Value *VectorStart;
1995 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
1996 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
1997 // MinMax reduction have the start value as their identify.
1998 VectorStart = Identity = Builder.CreateVectorSplat(VF, RdxDesc.StartValue,
1999 "minmax.ident");
2000 } else {
2001 Constant *Iden =
2002 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2003 VecTy->getScalarType());
2004 Identity = ConstantVector::getSplat(VF, Iden);
2005
2006 // This vector is the Identity vector where the first element is the
2007 // incoming scalar reduction.
2008 VectorStart = Builder.CreateInsertElement(Identity,
2009 RdxDesc.StartValue, Zero);
2010 }
2011
2012 // Fix the vector-loop phi.
2013 // We created the induction variable so we know that the
2014 // preheader is the first entry.
2015 BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
2016
2017 // Reductions do not have to start at zero. They can start with
2018 // any loop invariant values.
2019 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2020 BasicBlock *Latch = OrigLoop->getLoopLatch();
2021 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2022 VectorParts &Val = getVectorValue(LoopVal);
2023 for (unsigned part = 0; part < UF; ++part) {
2024 // Make sure to add the reduction stat value only to the
2025 // first unroll part.
2026 Value *StartVal = (part == 0) ? VectorStart : Identity;
2027 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
2028 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
2029 }
2030
2031 // Before each round, move the insertion point right between
2032 // the PHIs and the values we are going to write.
2033 // This allows us to write both PHINodes and the extractelement
2034 // instructions.
2035 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2036
2037 VectorParts RdxParts;
2038 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2039 for (unsigned part = 0; part < UF; ++part) {
2040 // This PHINode contains the vectorized reduction variable, or
2041 // the initial value vector, if we bypass the vector loop.
2042 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2043 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2044 Value *StartVal = (part == 0) ? VectorStart : Identity;
2045 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
2046 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2047 NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
2048 RdxParts.push_back(NewPhi);
2049 }
2050
2051 // Reduce all of the unrolled parts into a single vector.
2052 Value *ReducedPartRdx = RdxParts[0];
2053 unsigned Op = getReductionBinOp(RdxDesc.Kind);
2054 setDebugLocFromInst(Builder, ReducedPartRdx);
2055 for (unsigned part = 1; part < UF; ++part) {
2056 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2057 ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
2058 RdxParts[part], ReducedPartRdx,
2059 "bin.rdx");
2060 else
2061 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2062 ReducedPartRdx, RdxParts[part]);
2063 }
2064
2065 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2066 // and vector ops, reducing the set of values being computed by half each
2067 // round.
2068 assert(isPowerOf2_32(VF) &&
2069 "Reduction emission only supported for pow2 vectors!");
2070 Value *TmpVec = ReducedPartRdx;
2071 SmallVector<Constant*, 32> ShuffleMask(VF, 0);
2072 for (unsigned i = VF; i != 1; i >>= 1) {
2073 // Move the upper half of the vector to the lower half.
2074 for (unsigned j = 0; j != i/2; ++j)
2075 ShuffleMask[j] = Builder.getInt32(i/2 + j);
2076
2077 // Fill the rest of the mask with undef.
2078 std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2079 UndefValue::get(Builder.getInt32Ty()));
2080
2081 Value *Shuf =
2082 Builder.CreateShuffleVector(TmpVec,
2083 UndefValue::get(TmpVec->getType()),
2084 ConstantVector::get(ShuffleMask),
2085 "rdx.shuf");
2086
2087 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2088 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
2089 "bin.rdx");
2090 else
2091 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2092 }
2093
2094 // The result is in the first element of the vector.
2095 Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
2096
2097 // Now, we need to fix the users of the reduction variable
2098 // inside and outside of the scalar remainder loop.
2099 // We know that the loop is in LCSSA form. We need to update the
2100 // PHI nodes in the exit blocks.
2101 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2102 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2103 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2104 if (!LCSSAPhi) continue;
2105
2106 // All PHINodes need to have a single entry edge, or two if
2107 // we already fixed them.
2108 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2109
2110 // We found our reduction value exit-PHI. Update it with the
2111 // incoming bypass edge.
2112 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2113 // Add an edge coming from the bypass.
2114 LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
2115 break;
2116 }
2117 }// end of the LCSSA phi scan.
2118
2119 // Fix the scalar loop reduction variable with the incoming reduction sum
2120 // from the vector body and from the backedge value.
2121 int IncomingEdgeBlockIdx =
2122 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2123 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2124 // Pick the other block.
2125 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2126 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
2127 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2128 }// end of for each redux variable.
2129
2130 // The Loop exit block may have single value PHI nodes where the incoming
2131 // value is 'undef'. While vectorizing we only handled real values that
2132 // were defined inside the loop. Here we handle the 'undef case'.
2133 // See PR14725.
2134 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2135 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2136 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2137 if (!LCSSAPhi) continue;
2138 if (LCSSAPhi->getNumIncomingValues() == 1)
2139 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2140 LoopMiddleBlock);
2141 }
2142 }
2143
2144 InnerLoopVectorizer::VectorParts
createEdgeMask(BasicBlock * Src,BasicBlock * Dst)2145 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2146 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2147 "Invalid edge");
2148
2149 // Look for cached value.
2150 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
2151 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
2152 if (ECEntryIt != MaskCache.end())
2153 return ECEntryIt->second;
2154
2155 VectorParts SrcMask = createBlockInMask(Src);
2156
2157 // The terminator has to be a branch inst!
2158 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
2159 assert(BI && "Unexpected terminator found");
2160
2161 if (BI->isConditional()) {
2162 VectorParts EdgeMask = getVectorValue(BI->getCondition());
2163
2164 if (BI->getSuccessor(0) != Dst)
2165 for (unsigned part = 0; part < UF; ++part)
2166 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
2167
2168 for (unsigned part = 0; part < UF; ++part)
2169 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
2170
2171 MaskCache[Edge] = EdgeMask;
2172 return EdgeMask;
2173 }
2174
2175 MaskCache[Edge] = SrcMask;
2176 return SrcMask;
2177 }
2178
2179 InnerLoopVectorizer::VectorParts
createBlockInMask(BasicBlock * BB)2180 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
2181 assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
2182
2183 // Loop incoming mask is all-one.
2184 if (OrigLoop->getHeader() == BB) {
2185 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
2186 return getVectorValue(C);
2187 }
2188
2189 // This is the block mask. We OR all incoming edges, and with zero.
2190 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
2191 VectorParts BlockMask = getVectorValue(Zero);
2192
2193 // For each pred:
2194 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
2195 VectorParts EM = createEdgeMask(*it, BB);
2196 for (unsigned part = 0; part < UF; ++part)
2197 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
2198 }
2199
2200 return BlockMask;
2201 }
2202
2203 void
vectorizeBlockInLoop(LoopVectorizationLegality * Legal,BasicBlock * BB,PhiVector * PV)2204 InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
2205 BasicBlock *BB, PhiVector *PV) {
2206 // For each instruction in the old loop.
2207 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2208 VectorParts &Entry = WidenMap.get(it);
2209 switch (it->getOpcode()) {
2210 case Instruction::Br:
2211 // Nothing to do for PHIs and BR, since we already took care of the
2212 // loop control flow instructions.
2213 continue;
2214 case Instruction::PHI:{
2215 PHINode* P = cast<PHINode>(it);
2216 // Handle reduction variables:
2217 if (Legal->getReductionVars()->count(P)) {
2218 for (unsigned part = 0; part < UF; ++part) {
2219 // This is phase one of vectorizing PHIs.
2220 Type *VecTy = VectorType::get(it->getType(), VF);
2221 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
2222 LoopVectorBody-> getFirstInsertionPt());
2223 }
2224 PV->push_back(P);
2225 continue;
2226 }
2227
2228 setDebugLocFromInst(Builder, P);
2229 // Check for PHI nodes that are lowered to vector selects.
2230 if (P->getParent() != OrigLoop->getHeader()) {
2231 // We know that all PHIs in non header blocks are converted into
2232 // selects, so we don't have to worry about the insertion order and we
2233 // can just use the builder.
2234 // At this point we generate the predication tree. There may be
2235 // duplications since this is a simple recursive scan, but future
2236 // optimizations will clean it up.
2237
2238 unsigned NumIncoming = P->getNumIncomingValues();
2239
2240 // Generate a sequence of selects of the form:
2241 // SELECT(Mask3, In3,
2242 // SELECT(Mask2, In2,
2243 // ( ...)))
2244 for (unsigned In = 0; In < NumIncoming; In++) {
2245 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
2246 P->getParent());
2247 VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2248
2249 for (unsigned part = 0; part < UF; ++part) {
2250 // We might have single edge PHIs (blocks) - use an identity
2251 // 'select' for the first PHI operand.
2252 if (In == 0)
2253 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2254 In0[part]);
2255 else
2256 // Select between the current value and the previous incoming edge
2257 // based on the incoming mask.
2258 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2259 Entry[part], "predphi");
2260 }
2261 }
2262 continue;
2263 }
2264
2265 // This PHINode must be an induction variable.
2266 // Make sure that we know about it.
2267 assert(Legal->getInductionVars()->count(P) &&
2268 "Not an induction variable");
2269
2270 LoopVectorizationLegality::InductionInfo II =
2271 Legal->getInductionVars()->lookup(P);
2272
2273 switch (II.IK) {
2274 case LoopVectorizationLegality::IK_NoInduction:
2275 llvm_unreachable("Unknown induction");
2276 case LoopVectorizationLegality::IK_IntInduction: {
2277 assert(P->getType() == II.StartValue->getType() && "Types must match");
2278 Type *PhiTy = P->getType();
2279 Value *Broadcasted;
2280 if (P == OldInduction) {
2281 // Handle the canonical induction variable. We might have had to
2282 // extend the type.
2283 Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
2284 } else {
2285 // Handle other induction variables that are now based on the
2286 // canonical one.
2287 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
2288 "normalized.idx");
2289 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
2290 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
2291 "offset.idx");
2292 }
2293 Broadcasted = getBroadcastInstrs(Broadcasted);
2294 // After broadcasting the induction variable we need to make the vector
2295 // consecutive by adding 0, 1, 2, etc.
2296 for (unsigned part = 0; part < UF; ++part)
2297 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2298 continue;
2299 }
2300 case LoopVectorizationLegality::IK_ReverseIntInduction:
2301 case LoopVectorizationLegality::IK_PtrInduction:
2302 case LoopVectorizationLegality::IK_ReversePtrInduction:
2303 // Handle reverse integer and pointer inductions.
2304 Value *StartIdx = ExtendedIdx;
2305 // This is the normalized GEP that starts counting at zero.
2306 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2307 "normalized.idx");
2308
2309 // Handle the reverse integer induction variable case.
2310 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
2311 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
2312 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
2313 "resize.norm.idx");
2314 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI,
2315 "reverse.idx");
2316
2317 // This is a new value so do not hoist it out.
2318 Value *Broadcasted = getBroadcastInstrs(ReverseInd);
2319 // After broadcasting the induction variable we need to make the
2320 // vector consecutive by adding ... -3, -2, -1, 0.
2321 for (unsigned part = 0; part < UF; ++part)
2322 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
2323 true);
2324 continue;
2325 }
2326
2327 // Handle the pointer induction variable case.
2328 assert(P->getType()->isPointerTy() && "Unexpected type.");
2329
2330 // Is this a reverse induction ptr or a consecutive induction ptr.
2331 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
2332 II.IK);
2333
2334 // This is the vector of results. Notice that we don't generate
2335 // vector geps because scalar geps result in better code.
2336 for (unsigned part = 0; part < UF; ++part) {
2337 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
2338 for (unsigned int i = 0; i < VF; ++i) {
2339 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
2340 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2341 Value *GlobalIdx;
2342 if (!Reverse)
2343 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2344 else
2345 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2346
2347 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2348 "next.gep");
2349 VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
2350 Builder.getInt32(i),
2351 "insert.gep");
2352 }
2353 Entry[part] = VecVal;
2354 }
2355 continue;
2356 }
2357
2358 }// End of PHI.
2359
2360 case Instruction::Add:
2361 case Instruction::FAdd:
2362 case Instruction::Sub:
2363 case Instruction::FSub:
2364 case Instruction::Mul:
2365 case Instruction::FMul:
2366 case Instruction::UDiv:
2367 case Instruction::SDiv:
2368 case Instruction::FDiv:
2369 case Instruction::URem:
2370 case Instruction::SRem:
2371 case Instruction::FRem:
2372 case Instruction::Shl:
2373 case Instruction::LShr:
2374 case Instruction::AShr:
2375 case Instruction::And:
2376 case Instruction::Or:
2377 case Instruction::Xor: {
2378 // Just widen binops.
2379 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
2380 setDebugLocFromInst(Builder, BinOp);
2381 VectorParts &A = getVectorValue(it->getOperand(0));
2382 VectorParts &B = getVectorValue(it->getOperand(1));
2383
2384 // Use this vector value for all users of the original instruction.
2385 for (unsigned Part = 0; Part < UF; ++Part) {
2386 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
2387
2388 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
2389 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
2390 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
2391 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
2392 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
2393 }
2394 if (VecOp && isa<PossiblyExactOperator>(VecOp))
2395 VecOp->setIsExact(BinOp->isExact());
2396
2397 Entry[Part] = V;
2398 }
2399 break;
2400 }
2401 case Instruction::Select: {
2402 // Widen selects.
2403 // If the selector is loop invariant we can create a select
2404 // instruction with a scalar condition. Otherwise, use vector-select.
2405 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
2406 OrigLoop);
2407 setDebugLocFromInst(Builder, it);
2408
2409 // The condition can be loop invariant but still defined inside the
2410 // loop. This means that we can't just use the original 'cond' value.
2411 // We have to take the 'vectorized' value and pick the first lane.
2412 // Instcombine will make this a no-op.
2413 VectorParts &Cond = getVectorValue(it->getOperand(0));
2414 VectorParts &Op0 = getVectorValue(it->getOperand(1));
2415 VectorParts &Op1 = getVectorValue(it->getOperand(2));
2416 Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
2417 Builder.getInt32(0));
2418 for (unsigned Part = 0; Part < UF; ++Part) {
2419 Entry[Part] = Builder.CreateSelect(
2420 InvariantCond ? ScalarCond : Cond[Part],
2421 Op0[Part],
2422 Op1[Part]);
2423 }
2424 break;
2425 }
2426
2427 case Instruction::ICmp:
2428 case Instruction::FCmp: {
2429 // Widen compares. Generate vector compares.
2430 bool FCmp = (it->getOpcode() == Instruction::FCmp);
2431 CmpInst *Cmp = dyn_cast<CmpInst>(it);
2432 setDebugLocFromInst(Builder, it);
2433 VectorParts &A = getVectorValue(it->getOperand(0));
2434 VectorParts &B = getVectorValue(it->getOperand(1));
2435 for (unsigned Part = 0; Part < UF; ++Part) {
2436 Value *C = 0;
2437 if (FCmp)
2438 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
2439 else
2440 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
2441 Entry[Part] = C;
2442 }
2443 break;
2444 }
2445
2446 case Instruction::Store:
2447 case Instruction::Load:
2448 vectorizeMemoryInstruction(it, Legal);
2449 break;
2450 case Instruction::ZExt:
2451 case Instruction::SExt:
2452 case Instruction::FPToUI:
2453 case Instruction::FPToSI:
2454 case Instruction::FPExt:
2455 case Instruction::PtrToInt:
2456 case Instruction::IntToPtr:
2457 case Instruction::SIToFP:
2458 case Instruction::UIToFP:
2459 case Instruction::Trunc:
2460 case Instruction::FPTrunc:
2461 case Instruction::BitCast: {
2462 CastInst *CI = dyn_cast<CastInst>(it);
2463 setDebugLocFromInst(Builder, it);
2464 /// Optimize the special case where the source is the induction
2465 /// variable. Notice that we can only optimize the 'trunc' case
2466 /// because: a. FP conversions lose precision, b. sext/zext may wrap,
2467 /// c. other casts depend on pointer size.
2468 if (CI->getOperand(0) == OldInduction &&
2469 it->getOpcode() == Instruction::Trunc) {
2470 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
2471 CI->getType());
2472 Value *Broadcasted = getBroadcastInstrs(ScalarCast);
2473 for (unsigned Part = 0; Part < UF; ++Part)
2474 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
2475 break;
2476 }
2477 /// Vectorize casts.
2478 Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
2479
2480 VectorParts &A = getVectorValue(it->getOperand(0));
2481 for (unsigned Part = 0; Part < UF; ++Part)
2482 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
2483 break;
2484 }
2485
2486 case Instruction::Call: {
2487 // Ignore dbg intrinsics.
2488 if (isa<DbgInfoIntrinsic>(it))
2489 break;
2490 setDebugLocFromInst(Builder, it);
2491
2492 Module *M = BB->getParent()->getParent();
2493 CallInst *CI = cast<CallInst>(it);
2494 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2495 assert(ID && "Not an intrinsic call!");
2496 switch (ID) {
2497 case Intrinsic::lifetime_end:
2498 case Intrinsic::lifetime_start:
2499 scalarizeInstruction(it);
2500 break;
2501 default:
2502 for (unsigned Part = 0; Part < UF; ++Part) {
2503 SmallVector<Value *, 4> Args;
2504 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
2505 VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
2506 Args.push_back(Arg[Part]);
2507 }
2508 Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) };
2509 Function *F = Intrinsic::getDeclaration(M, ID, Tys);
2510 Entry[Part] = Builder.CreateCall(F, Args);
2511 }
2512 break;
2513 }
2514 break;
2515 }
2516
2517 default:
2518 // All other instructions are unsupported. Scalarize them.
2519 scalarizeInstruction(it);
2520 break;
2521 }// end of switch.
2522 }// end of for_each instr.
2523 }
2524
updateAnalysis()2525 void InnerLoopVectorizer::updateAnalysis() {
2526 // Forget the original basic block.
2527 SE->forgetLoop(OrigLoop);
2528
2529 // Update the dominator tree information.
2530 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2531 "Entry does not dominate exit.");
2532
2533 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2534 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2535 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2536 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2537 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2538 DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2539 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2540 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2541
2542 DEBUG(DT->verifyAnalysis());
2543 }
2544
canVectorizeWithIfConvert()2545 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2546 if (!EnableIfConversion)
2547 return false;
2548
2549 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2550 std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
2551
2552 // A list of pointers that we can safely read and write to.
2553 SmallPtrSet<Value *, 8> SafePointes;
2554
2555 // Collect safe addresses.
2556 for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
2557 BasicBlock *BB = LoopBlocks[i];
2558
2559 if (blockNeedsPredication(BB))
2560 continue;
2561
2562 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2563 if (LoadInst *LI = dyn_cast<LoadInst>(I))
2564 SafePointes.insert(LI->getPointerOperand());
2565 else if (StoreInst *SI = dyn_cast<StoreInst>(I))
2566 SafePointes.insert(SI->getPointerOperand());
2567 }
2568 }
2569
2570 // Collect the blocks that need predication.
2571 for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
2572 BasicBlock *BB = LoopBlocks[i];
2573
2574 // We don't support switch statements inside loops.
2575 if (!isa<BranchInst>(BB->getTerminator()))
2576 return false;
2577
2578 // We must be able to predicate all blocks that need to be predicated.
2579 if (blockNeedsPredication(BB) && !blockCanBePredicated(BB, SafePointes))
2580 return false;
2581 }
2582
2583 // We can if-convert this loop.
2584 return true;
2585 }
2586
canVectorize()2587 bool LoopVectorizationLegality::canVectorize() {
2588 // We must have a loop in canonical form. Loops with indirectbr in them cannot
2589 // be canonicalized.
2590 if (!TheLoop->getLoopPreheader())
2591 return false;
2592
2593 // We can only vectorize innermost loops.
2594 if (TheLoop->getSubLoopsVector().size())
2595 return false;
2596
2597 // We must have a single backedge.
2598 if (TheLoop->getNumBackEdges() != 1)
2599 return false;
2600
2601 // We must have a single exiting block.
2602 if (!TheLoop->getExitingBlock())
2603 return false;
2604
2605 unsigned NumBlocks = TheLoop->getNumBlocks();
2606
2607 // Check if we can if-convert non single-bb loops.
2608 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2609 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2610 return false;
2611 }
2612
2613 // We need to have a loop header.
2614 BasicBlock *Latch = TheLoop->getLoopLatch();
2615 DEBUG(dbgs() << "LV: Found a loop: " <<
2616 TheLoop->getHeader()->getName() << "\n");
2617
2618 // ScalarEvolution needs to be able to find the exit count.
2619 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
2620 if (ExitCount == SE->getCouldNotCompute()) {
2621 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2622 return false;
2623 }
2624
2625 // Do not loop-vectorize loops with a tiny trip count.
2626 unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2627 if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2628 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2629 "This loop is not worth vectorizing.\n");
2630 return false;
2631 }
2632
2633 // Check if we can vectorize the instructions and CFG in this loop.
2634 if (!canVectorizeInstrs()) {
2635 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2636 return false;
2637 }
2638
2639 // Go over each instruction and look at memory deps.
2640 if (!canVectorizeMemory()) {
2641 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2642 return false;
2643 }
2644
2645 // Collect all of the variables that remain uniform after vectorization.
2646 collectLoopUniforms();
2647
2648 DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2649 (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2650 <<"!\n");
2651
2652 // Okay! We can vectorize. At this point we don't have any other mem analysis
2653 // which may limit our maximum vectorization factor, so just return true with
2654 // no restrictions.
2655 return true;
2656 }
2657
convertPointerToIntegerType(DataLayout & DL,Type * Ty)2658 static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) {
2659 if (Ty->isPointerTy())
2660 return DL.getIntPtrType(Ty->getContext());
2661 return Ty;
2662 }
2663
getWiderType(DataLayout & DL,Type * Ty0,Type * Ty1)2664 static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) {
2665 Ty0 = convertPointerToIntegerType(DL, Ty0);
2666 Ty1 = convertPointerToIntegerType(DL, Ty1);
2667 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
2668 return Ty0;
2669 return Ty1;
2670 }
2671
2672 /// \brief Check that the instruction has outside loop users and is not an
2673 /// identified reduction variable.
hasOutsideLoopUser(const Loop * TheLoop,Instruction * Inst,SmallPtrSet<Value *,4> & Reductions)2674 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
2675 SmallPtrSet<Value *, 4> &Reductions) {
2676 // Reduction instructions are allowed to have exit users. All other
2677 // instructions must not have external users.
2678 if (!Reductions.count(Inst))
2679 //Check that all of the users of the loop are inside the BB.
2680 for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
2681 I != E; ++I) {
2682 Instruction *U = cast<Instruction>(*I);
2683 // This user may be a reduction exit value.
2684 if (!TheLoop->contains(U)) {
2685 DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
2686 return true;
2687 }
2688 }
2689 return false;
2690 }
2691
canVectorizeInstrs()2692 bool LoopVectorizationLegality::canVectorizeInstrs() {
2693 BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2694 BasicBlock *Header = TheLoop->getHeader();
2695
2696 // Look for the attribute signaling the absence of NaNs.
2697 Function &F = *Header->getParent();
2698 if (F.hasFnAttribute("no-nans-fp-math"))
2699 HasFunNoNaNAttr = F.getAttributes().getAttribute(
2700 AttributeSet::FunctionIndex,
2701 "no-nans-fp-math").getValueAsString() == "true";
2702
2703 // For each block in the loop.
2704 for (Loop::block_iterator bb = TheLoop->block_begin(),
2705 be = TheLoop->block_end(); bb != be; ++bb) {
2706
2707 // Scan the instructions in the block and look for hazards.
2708 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2709 ++it) {
2710
2711 if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2712 Type *PhiTy = Phi->getType();
2713 // Check that this PHI type is allowed.
2714 if (!PhiTy->isIntegerTy() &&
2715 !PhiTy->isFloatingPointTy() &&
2716 !PhiTy->isPointerTy()) {
2717 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2718 return false;
2719 }
2720
2721 // If this PHINode is not in the header block, then we know that we
2722 // can convert it to select during if-conversion. No need to check if
2723 // the PHIs in this block are induction or reduction variables.
2724 if (*bb != Header) {
2725 // Check that this instruction has no outside users or is an
2726 // identified reduction value with an outside user.
2727 if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
2728 continue;
2729 return false;
2730 }
2731
2732 // We only allow if-converted PHIs with more than two incoming values.
2733 if (Phi->getNumIncomingValues() != 2) {
2734 DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2735 return false;
2736 }
2737
2738 // This is the value coming from the preheader.
2739 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2740 // Check if this is an induction variable.
2741 InductionKind IK = isInductionVariable(Phi);
2742
2743 if (IK_NoInduction != IK) {
2744 // Get the widest type.
2745 if (!WidestIndTy)
2746 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
2747 else
2748 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
2749
2750 // Int inductions are special because we only allow one IV.
2751 if (IK == IK_IntInduction) {
2752 // Use the phi node with the widest type as induction. Use the last
2753 // one if there are multiple (no good reason for doing this other
2754 // than it is expedient).
2755 if (!Induction || PhiTy == WidestIndTy)
2756 Induction = Phi;
2757 }
2758
2759 DEBUG(dbgs() << "LV: Found an induction variable.\n");
2760 Inductions[Phi] = InductionInfo(StartValue, IK);
2761 continue;
2762 }
2763
2764 if (AddReductionVar(Phi, RK_IntegerAdd)) {
2765 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
2766 continue;
2767 }
2768 if (AddReductionVar(Phi, RK_IntegerMult)) {
2769 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
2770 continue;
2771 }
2772 if (AddReductionVar(Phi, RK_IntegerOr)) {
2773 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
2774 continue;
2775 }
2776 if (AddReductionVar(Phi, RK_IntegerAnd)) {
2777 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
2778 continue;
2779 }
2780 if (AddReductionVar(Phi, RK_IntegerXor)) {
2781 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
2782 continue;
2783 }
2784 if (AddReductionVar(Phi, RK_IntegerMinMax)) {
2785 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
2786 continue;
2787 }
2788 if (AddReductionVar(Phi, RK_FloatMult)) {
2789 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
2790 continue;
2791 }
2792 if (AddReductionVar(Phi, RK_FloatAdd)) {
2793 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
2794 continue;
2795 }
2796 if (AddReductionVar(Phi, RK_FloatMinMax)) {
2797 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
2798 "\n");
2799 continue;
2800 }
2801
2802 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
2803 return false;
2804 }// end of PHI handling
2805
2806 // We still don't handle functions. However, we can ignore dbg intrinsic
2807 // calls and we do handle certain intrinsic and libm functions.
2808 CallInst *CI = dyn_cast<CallInst>(it);
2809 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
2810 DEBUG(dbgs() << "LV: Found a call site.\n");
2811 return false;
2812 }
2813
2814 // Check that the instruction return type is vectorizable.
2815 if (!VectorType::isValidElementType(it->getType()) &&
2816 !it->getType()->isVoidTy()) {
2817 DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
2818 return false;
2819 }
2820
2821 // Check that the stored type is vectorizable.
2822 if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
2823 Type *T = ST->getValueOperand()->getType();
2824 if (!VectorType::isValidElementType(T))
2825 return false;
2826 }
2827
2828 // Reduction instructions are allowed to have exit users.
2829 // All other instructions must not have external users.
2830 if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
2831 return false;
2832
2833 } // next instr.
2834
2835 }
2836
2837 if (!Induction) {
2838 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
2839 if (Inductions.empty())
2840 return false;
2841 }
2842
2843 return true;
2844 }
2845
collectLoopUniforms()2846 void LoopVectorizationLegality::collectLoopUniforms() {
2847 // We now know that the loop is vectorizable!
2848 // Collect variables that will remain uniform after vectorization.
2849 std::vector<Value*> Worklist;
2850 BasicBlock *Latch = TheLoop->getLoopLatch();
2851
2852 // Start with the conditional branch and walk up the block.
2853 Worklist.push_back(Latch->getTerminator()->getOperand(0));
2854
2855 while (Worklist.size()) {
2856 Instruction *I = dyn_cast<Instruction>(Worklist.back());
2857 Worklist.pop_back();
2858
2859 // Look at instructions inside this loop.
2860 // Stop when reaching PHI nodes.
2861 // TODO: we need to follow values all over the loop, not only in this block.
2862 if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
2863 continue;
2864
2865 // This is a known uniform.
2866 Uniforms.insert(I);
2867
2868 // Insert all operands.
2869 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
2870 }
2871 }
2872
2873 namespace {
2874 /// \brief Analyses memory accesses in a loop.
2875 ///
2876 /// Checks whether run time pointer checks are needed and builds sets for data
2877 /// dependence checking.
2878 class AccessAnalysis {
2879 public:
2880 /// \brief Read or write access location.
2881 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
2882 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
2883
2884 /// \brief Set of potential dependent memory accesses.
2885 typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
2886
AccessAnalysis(DataLayout * Dl,DepCandidates & DA)2887 AccessAnalysis(DataLayout *Dl, DepCandidates &DA) :
2888 DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
2889 AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
2890
2891 /// \brief Register a load and whether it is only read from.
addLoad(Value * Ptr,bool IsReadOnly)2892 void addLoad(Value *Ptr, bool IsReadOnly) {
2893 Accesses.insert(MemAccessInfo(Ptr, false));
2894 if (IsReadOnly)
2895 ReadOnlyPtr.insert(Ptr);
2896 }
2897
2898 /// \brief Register a store.
addStore(Value * Ptr)2899 void addStore(Value *Ptr) {
2900 Accesses.insert(MemAccessInfo(Ptr, true));
2901 }
2902
2903 /// \brief Check whether we can check the pointers at runtime for
2904 /// non-intersection.
2905 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
2906 unsigned &NumComparisons, ScalarEvolution *SE,
2907 Loop *TheLoop);
2908
2909 /// \brief Goes over all memory accesses, checks whether a RT check is needed
2910 /// and builds sets of dependent accesses.
buildDependenceSets()2911 void buildDependenceSets() {
2912 // Process read-write pointers first.
2913 processMemAccesses(false);
2914 // Next, process read pointers.
2915 processMemAccesses(true);
2916 }
2917
isRTCheckNeeded()2918 bool isRTCheckNeeded() { return IsRTCheckNeeded; }
2919
isDependencyCheckNeeded()2920 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
2921
getDependenciesToCheck()2922 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
2923
2924 private:
2925 typedef SetVector<MemAccessInfo> PtrAccessSet;
2926 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
2927
2928 /// \brief Go over all memory access or only the deferred ones if
2929 /// \p UseDeferred is true and check whether runtime pointer checks are needed
2930 /// and build sets of dependency check candidates.
2931 void processMemAccesses(bool UseDeferred);
2932
2933 /// Set of all accesses.
2934 PtrAccessSet Accesses;
2935
2936 /// Set of access to check after all writes have been processed.
2937 PtrAccessSet DeferredAccesses;
2938
2939 /// Map of pointers to last access encountered.
2940 UnderlyingObjToAccessMap ObjToLastAccess;
2941
2942 /// Set of accesses that need a further dependence check.
2943 MemAccessInfoSet CheckDeps;
2944
2945 /// Set of pointers that are read only.
2946 SmallPtrSet<Value*, 16> ReadOnlyPtr;
2947
2948 /// Set of underlying objects already written to.
2949 SmallPtrSet<Value*, 16> WriteObjects;
2950
2951 DataLayout *DL;
2952
2953 /// Sets of potentially dependent accesses - members of one set share an
2954 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
2955 /// dependence check.
2956 DepCandidates &DepCands;
2957
2958 bool AreAllWritesIdentified;
2959 bool AreAllReadsIdentified;
2960 bool IsRTCheckNeeded;
2961 };
2962
2963 } // end anonymous namespace
2964
2965 /// \brief Check whether a pointer can participate in a runtime bounds check.
hasComputableBounds(ScalarEvolution * SE,Value * Ptr)2966 static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) {
2967 const SCEV *PtrScev = SE->getSCEV(Ptr);
2968 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
2969 if (!AR)
2970 return false;
2971
2972 return AR->isAffine();
2973 }
2974
canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck & RtCheck,unsigned & NumComparisons,ScalarEvolution * SE,Loop * TheLoop)2975 bool AccessAnalysis::canCheckPtrAtRT(
2976 LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
2977 unsigned &NumComparisons, ScalarEvolution *SE,
2978 Loop *TheLoop) {
2979 // Find pointers with computable bounds. We are going to use this information
2980 // to place a runtime bound check.
2981 unsigned NumReadPtrChecks = 0;
2982 unsigned NumWritePtrChecks = 0;
2983 bool CanDoRT = true;
2984
2985 bool IsDepCheckNeeded = isDependencyCheckNeeded();
2986 // We assign consecutive id to access from different dependence sets.
2987 // Accesses within the same set don't need a runtime check.
2988 unsigned RunningDepId = 1;
2989 DenseMap<Value *, unsigned> DepSetId;
2990
2991 for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
2992 AI != AE; ++AI) {
2993 const MemAccessInfo &Access = *AI;
2994 Value *Ptr = Access.getPointer();
2995 bool IsWrite = Access.getInt();
2996
2997 // Just add write checks if we have both.
2998 if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
2999 continue;
3000
3001 if (IsWrite)
3002 ++NumWritePtrChecks;
3003 else
3004 ++NumReadPtrChecks;
3005
3006 if (hasComputableBounds(SE, Ptr)) {
3007 // The id of the dependence set.
3008 unsigned DepId;
3009
3010 if (IsDepCheckNeeded) {
3011 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
3012 unsigned &LeaderId = DepSetId[Leader];
3013 if (!LeaderId)
3014 LeaderId = RunningDepId++;
3015 DepId = LeaderId;
3016 } else
3017 // Each access has its own dependence set.
3018 DepId = RunningDepId++;
3019
3020 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId);
3021
3022 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr <<"\n");
3023 } else {
3024 CanDoRT = false;
3025 }
3026 }
3027
3028 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
3029 NumComparisons = 0; // Only one dependence set.
3030 else
3031 NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
3032 NumWritePtrChecks - 1));
3033 return CanDoRT;
3034 }
3035
isFunctionScopeIdentifiedObject(Value * Ptr)3036 static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
3037 return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
3038 }
3039
processMemAccesses(bool UseDeferred)3040 void AccessAnalysis::processMemAccesses(bool UseDeferred) {
3041 // We process the set twice: first we process read-write pointers, last we
3042 // process read-only pointers. This allows us to skip dependence tests for
3043 // read-only pointers.
3044
3045 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
3046 for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
3047 const MemAccessInfo &Access = *AI;
3048 Value *Ptr = Access.getPointer();
3049 bool IsWrite = Access.getInt();
3050
3051 DepCands.insert(Access);
3052
3053 // Memorize read-only pointers for later processing and skip them in the
3054 // first round (they need to be checked after we have seen all write
3055 // pointers). Note: we also mark pointer that are not consecutive as
3056 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
3057 // second check for "!IsWrite".
3058 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
3059 if (!UseDeferred && IsReadOnlyPtr) {
3060 DeferredAccesses.insert(Access);
3061 continue;
3062 }
3063
3064 bool NeedDepCheck = false;
3065 // Check whether there is the possiblity of dependency because of underlying
3066 // objects being the same.
3067 typedef SmallVector<Value*, 16> ValueVector;
3068 ValueVector TempObjects;
3069 GetUnderlyingObjects(Ptr, TempObjects, DL);
3070 for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
3071 UI != UE; ++UI) {
3072 Value *UnderlyingObj = *UI;
3073
3074 // If this is a write then it needs to be an identified object. If this a
3075 // read and all writes (so far) are identified function scope objects we
3076 // don't need an identified underlying object but only an Argument (the
3077 // next write is going to invalidate this assumption if it is
3078 // unidentified).
3079 // This is a micro-optimization for the case where all writes are
3080 // identified and we have one argument pointer.
3081 // Otherwise, we do need a runtime check.
3082 if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
3083 (!IsWrite && (!AreAllWritesIdentified ||
3084 !isa<Argument>(UnderlyingObj)) &&
3085 !isIdentifiedObject(UnderlyingObj))) {
3086 DEBUG(dbgs() << "LV: Found an unidentified " <<
3087 (IsWrite ? "write" : "read" ) << " ptr:" << *UnderlyingObj <<
3088 "\n");
3089 IsRTCheckNeeded = (IsRTCheckNeeded ||
3090 !isIdentifiedObject(UnderlyingObj) ||
3091 !AreAllReadsIdentified);
3092
3093 if (IsWrite)
3094 AreAllWritesIdentified = false;
3095 if (!IsWrite)
3096 AreAllReadsIdentified = false;
3097 }
3098
3099 // If this is a write - check other reads and writes for conflicts. If
3100 // this is a read only check other writes for conflicts (but only if there
3101 // is no other write to the ptr - this is an optimization to catch "a[i] =
3102 // a[i] + " without having to do a dependence check).
3103 if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
3104 NeedDepCheck = true;
3105
3106 if (IsWrite)
3107 WriteObjects.insert(UnderlyingObj);
3108
3109 // Create sets of pointers connected by shared underlying objects.
3110 UnderlyingObjToAccessMap::iterator Prev =
3111 ObjToLastAccess.find(UnderlyingObj);
3112 if (Prev != ObjToLastAccess.end())
3113 DepCands.unionSets(Access, Prev->second);
3114
3115 ObjToLastAccess[UnderlyingObj] = Access;
3116 }
3117
3118 if (NeedDepCheck)
3119 CheckDeps.insert(Access);
3120 }
3121 }
3122
3123 namespace {
3124 /// \brief Checks memory dependences among accesses to the same underlying
3125 /// object to determine whether there vectorization is legal or not (and at
3126 /// which vectorization factor).
3127 ///
3128 /// This class works under the assumption that we already checked that memory
3129 /// locations with different underlying pointers are "must-not alias".
3130 /// We use the ScalarEvolution framework to symbolically evalutate access
3131 /// functions pairs. Since we currently don't restructure the loop we can rely
3132 /// on the program order of memory accesses to determine their safety.
3133 /// At the moment we will only deem accesses as safe for:
3134 /// * A negative constant distance assuming program order.
3135 ///
3136 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
3137 /// a[i] = tmp; y = a[i];
3138 ///
3139 /// The latter case is safe because later checks guarantuee that there can't
3140 /// be a cycle through a phi node (that is, we check that "x" and "y" is not
3141 /// the same variable: a header phi can only be an induction or a reduction, a
3142 /// reduction can't have a memory sink, an induction can't have a memory
3143 /// source). This is important and must not be violated (or we have to
3144 /// resort to checking for cycles through memory).
3145 ///
3146 /// * A positive constant distance assuming program order that is bigger
3147 /// than the biggest memory access.
3148 ///
3149 /// tmp = a[i] OR b[i] = x
3150 /// a[i+2] = tmp y = b[i+2];
3151 ///
3152 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
3153 ///
3154 /// * Zero distances and all accesses have the same size.
3155 ///
3156 class MemoryDepChecker {
3157 public:
3158 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3159 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3160
MemoryDepChecker(ScalarEvolution * Se,DataLayout * Dl,const Loop * L)3161 MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L) :
3162 SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0) {}
3163
3164 /// \brief Register the location (instructions are given increasing numbers)
3165 /// of a write access.
addAccess(StoreInst * SI)3166 void addAccess(StoreInst *SI) {
3167 Value *Ptr = SI->getPointerOperand();
3168 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
3169 InstMap.push_back(SI);
3170 ++AccessIdx;
3171 }
3172
3173 /// \brief Register the location (instructions are given increasing numbers)
3174 /// of a write access.
addAccess(LoadInst * LI)3175 void addAccess(LoadInst *LI) {
3176 Value *Ptr = LI->getPointerOperand();
3177 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
3178 InstMap.push_back(LI);
3179 ++AccessIdx;
3180 }
3181
3182 /// \brief Check whether the dependencies between the accesses are safe.
3183 ///
3184 /// Only checks sets with elements in \p CheckDeps.
3185 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3186 MemAccessInfoSet &CheckDeps);
3187
3188 /// \brief The maximum number of bytes of a vector register we can vectorize
3189 /// the accesses safely with.
getMaxSafeDepDistBytes()3190 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
3191
3192 private:
3193 ScalarEvolution *SE;
3194 DataLayout *DL;
3195 const Loop *InnermostLoop;
3196
3197 /// \brief Maps access locations (ptr, read/write) to program order.
3198 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
3199
3200 /// \brief Memory access instructions in program order.
3201 SmallVector<Instruction *, 16> InstMap;
3202
3203 /// \brief The program order index to be used for the next instruction.
3204 unsigned AccessIdx;
3205
3206 // We can access this many bytes in parallel safely.
3207 unsigned MaxSafeDepDistBytes;
3208
3209 /// \brief Check whether there is a plausible dependence between the two
3210 /// accesses.
3211 ///
3212 /// Access \p A must happen before \p B in program order. The two indices
3213 /// identify the index into the program order map.
3214 ///
3215 /// This function checks whether there is a plausible dependence (or the
3216 /// absence of such can't be proved) between the two accesses. If there is a
3217 /// plausible dependence but the dependence distance is bigger than one
3218 /// element access it records this distance in \p MaxSafeDepDistBytes (if this
3219 /// distance is smaller than any other distance encountered so far).
3220 /// Otherwise, this function returns true signaling a possible dependence.
3221 bool isDependent(const MemAccessInfo &A, unsigned AIdx,
3222 const MemAccessInfo &B, unsigned BIdx);
3223
3224 /// \brief Check whether the data dependence could prevent store-load
3225 /// forwarding.
3226 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
3227 };
3228
3229 } // end anonymous namespace
3230
isInBoundsGep(Value * Ptr)3231 static bool isInBoundsGep(Value *Ptr) {
3232 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
3233 return GEP->isInBounds();
3234 return false;
3235 }
3236
3237 /// \brief Check whether the access through \p Ptr has a constant stride.
isStridedPtr(ScalarEvolution * SE,DataLayout * DL,Value * Ptr,const Loop * Lp)3238 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3239 const Loop *Lp) {
3240 const Type *Ty = Ptr->getType();
3241 assert(Ty->isPointerTy() && "Unexpected non ptr");
3242
3243 // Make sure that the pointer does not point to aggregate types.
3244 const PointerType *PtrTy = cast<PointerType>(Ty);
3245 if (PtrTy->getElementType()->isAggregateType()) {
3246 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
3247 "\n");
3248 return 0;
3249 }
3250
3251 const SCEV *PtrScev = SE->getSCEV(Ptr);
3252 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3253 if (!AR) {
3254 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
3255 << *Ptr << " SCEV: " << *PtrScev << "\n");
3256 return 0;
3257 }
3258
3259 // The accesss function must stride over the innermost loop.
3260 if (Lp != AR->getLoop()) {
3261 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
3262 *Ptr << " SCEV: " << *PtrScev << "\n");
3263 }
3264
3265 // The address calculation must not wrap. Otherwise, a dependence could be
3266 // inverted.
3267 // An inbounds getelementptr that is a AddRec with a unit stride
3268 // cannot wrap per definition. The unit stride requirement is checked later.
3269 // An getelementptr without an inbounds attribute and unit stride would have
3270 // to access the pointer value "0" which is undefined behavior in address
3271 // space 0, therefore we can also vectorize this case.
3272 bool IsInBoundsGEP = isInBoundsGep(Ptr);
3273 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
3274 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
3275 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
3276 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
3277 << *Ptr << " SCEV: " << *PtrScev << "\n");
3278 return 0;
3279 }
3280
3281 // Check the step is constant.
3282 const SCEV *Step = AR->getStepRecurrence(*SE);
3283
3284 // Calculate the pointer stride and check if it is consecutive.
3285 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
3286 if (!C) {
3287 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
3288 " SCEV: " << *PtrScev << "\n");
3289 return 0;
3290 }
3291
3292 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
3293 const APInt &APStepVal = C->getValue()->getValue();
3294
3295 // Huge step value - give up.
3296 if (APStepVal.getBitWidth() > 64)
3297 return 0;
3298
3299 int64_t StepVal = APStepVal.getSExtValue();
3300
3301 // Strided access.
3302 int64_t Stride = StepVal / Size;
3303 int64_t Rem = StepVal % Size;
3304 if (Rem)
3305 return 0;
3306
3307 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
3308 // know we can't "wrap around the address space". In case of address space
3309 // zero we know that this won't happen without triggering undefined behavior.
3310 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
3311 Stride != 1 && Stride != -1)
3312 return 0;
3313
3314 return Stride;
3315 }
3316
couldPreventStoreLoadForward(unsigned Distance,unsigned TypeByteSize)3317 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
3318 unsigned TypeByteSize) {
3319 // If loads occur at a distance that is not a multiple of a feasible vector
3320 // factor store-load forwarding does not take place.
3321 // Positive dependences might cause troubles because vectorizing them might
3322 // prevent store-load forwarding making vectorized code run a lot slower.
3323 // a[i] = a[i-3] ^ a[i-8];
3324 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
3325 // hence on your typical architecture store-load forwarding does not take
3326 // place. Vectorizing in such cases does not make sense.
3327 // Store-load forwarding distance.
3328 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
3329 // Maximum vector factor.
3330 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
3331 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
3332 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
3333
3334 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
3335 vf *= 2) {
3336 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
3337 MaxVFWithoutSLForwardIssues = (vf >>=1);
3338 break;
3339 }
3340 }
3341
3342 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
3343 DEBUG(dbgs() << "LV: Distance " << Distance <<
3344 " that could cause a store-load forwarding conflict\n");
3345 return true;
3346 }
3347
3348 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
3349 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
3350 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
3351 return false;
3352 }
3353
isDependent(const MemAccessInfo & A,unsigned AIdx,const MemAccessInfo & B,unsigned BIdx)3354 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
3355 const MemAccessInfo &B, unsigned BIdx) {
3356 assert (AIdx < BIdx && "Must pass arguments in program order");
3357
3358 Value *APtr = A.getPointer();
3359 Value *BPtr = B.getPointer();
3360 bool AIsWrite = A.getInt();
3361 bool BIsWrite = B.getInt();
3362
3363 // Two reads are independent.
3364 if (!AIsWrite && !BIsWrite)
3365 return false;
3366
3367 const SCEV *AScev = SE->getSCEV(APtr);
3368 const SCEV *BScev = SE->getSCEV(BPtr);
3369
3370 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop);
3371 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop);
3372
3373 const SCEV *Src = AScev;
3374 const SCEV *Sink = BScev;
3375
3376 // If the induction step is negative we have to invert source and sink of the
3377 // dependence.
3378 if (StrideAPtr < 0) {
3379 //Src = BScev;
3380 //Sink = AScev;
3381 std::swap(APtr, BPtr);
3382 std::swap(Src, Sink);
3383 std::swap(AIsWrite, BIsWrite);
3384 std::swap(AIdx, BIdx);
3385 std::swap(StrideAPtr, StrideBPtr);
3386 }
3387
3388 const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
3389
3390 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
3391 << "(Induction step: " << StrideAPtr << ")\n");
3392 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
3393 << *InstMap[BIdx] << ": " << *Dist << "\n");
3394
3395 // Need consecutive accesses. We don't want to vectorize
3396 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
3397 // the address space.
3398 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
3399 DEBUG(dbgs() << "Non-consecutive pointer access\n");
3400 return true;
3401 }
3402
3403 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
3404 if (!C) {
3405 DEBUG(dbgs() << "LV: Dependence because of non constant distance\n");
3406 return true;
3407 }
3408
3409 Type *ATy = APtr->getType()->getPointerElementType();
3410 Type *BTy = BPtr->getType()->getPointerElementType();
3411 unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
3412
3413 // Negative distances are not plausible dependencies.
3414 const APInt &Val = C->getValue()->getValue();
3415 if (Val.isNegative()) {
3416 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
3417 if (IsTrueDataDependence &&
3418 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
3419 ATy != BTy))
3420 return true;
3421
3422 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
3423 return false;
3424 }
3425
3426 // Write to the same location with the same size.
3427 // Could be improved to assert type sizes are the same (i32 == float, etc).
3428 if (Val == 0) {
3429 if (ATy == BTy)
3430 return false;
3431 DEBUG(dbgs() << "LV: Zero dependence difference but different types");
3432 return true;
3433 }
3434
3435 assert(Val.isStrictlyPositive() && "Expect a positive value");
3436
3437 // Positive distance bigger than max vectorization factor.
3438 if (ATy != BTy) {
3439 DEBUG(dbgs() <<
3440 "LV: ReadWrite-Write positive dependency with different types");
3441 return false;
3442 }
3443
3444 unsigned Distance = (unsigned) Val.getZExtValue();
3445
3446 // Bail out early if passed-in parameters make vectorization not feasible.
3447 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
3448 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
3449
3450 // The distance must be bigger than the size needed for a vectorized version
3451 // of the operation and the size of the vectorized operation must not be
3452 // bigger than the currrent maximum size.
3453 if (Distance < 2*TypeByteSize ||
3454 2*TypeByteSize > MaxSafeDepDistBytes ||
3455 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
3456 DEBUG(dbgs() << "LV: Failure because of Positive distance "
3457 << Val.getSExtValue() << "\n");
3458 return true;
3459 }
3460
3461 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
3462 Distance : MaxSafeDepDistBytes;
3463
3464 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
3465 if (IsTrueDataDependence &&
3466 couldPreventStoreLoadForward(Distance, TypeByteSize))
3467 return true;
3468
3469 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
3470 " with max VF=" << MaxSafeDepDistBytes/TypeByteSize << "\n");
3471
3472 return false;
3473 }
3474
3475 bool
areDepsSafe(AccessAnalysis::DepCandidates & AccessSets,MemAccessInfoSet & CheckDeps)3476 MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3477 MemAccessInfoSet &CheckDeps) {
3478
3479 MaxSafeDepDistBytes = -1U;
3480 while (!CheckDeps.empty()) {
3481 MemAccessInfo CurAccess = *CheckDeps.begin();
3482
3483 // Get the relevant memory access set.
3484 EquivalenceClasses<MemAccessInfo>::iterator I =
3485 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
3486
3487 // Check accesses within this set.
3488 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
3489 AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
3490
3491 // Check every access pair.
3492 while (AI != AE) {
3493 CheckDeps.erase(*AI);
3494 EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI);
3495 while (OI != AE) {
3496 // Check every accessing instruction pair in program order.
3497 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
3498 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
3499 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
3500 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
3501 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2))
3502 return false;
3503 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1))
3504 return false;
3505 }
3506 ++OI;
3507 }
3508 AI++;
3509 }
3510 }
3511 return true;
3512 }
3513
canVectorizeMemory()3514 bool LoopVectorizationLegality::canVectorizeMemory() {
3515
3516 typedef SmallVector<Value*, 16> ValueVector;
3517 typedef SmallPtrSet<Value*, 16> ValueSet;
3518
3519 // Holds the Load and Store *instructions*.
3520 ValueVector Loads;
3521 ValueVector Stores;
3522
3523 // Holds all the different accesses in the loop.
3524 unsigned NumReads = 0;
3525 unsigned NumReadWrites = 0;
3526
3527 PtrRtCheck.Pointers.clear();
3528 PtrRtCheck.Need = false;
3529
3530 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
3531 MemoryDepChecker DepChecker(SE, DL, TheLoop);
3532
3533 // For each block.
3534 for (Loop::block_iterator bb = TheLoop->block_begin(),
3535 be = TheLoop->block_end(); bb != be; ++bb) {
3536
3537 // Scan the BB and collect legal loads and stores.
3538 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3539 ++it) {
3540
3541 // If this is a load, save it. If this instruction can read from memory
3542 // but is not a load, then we quit. Notice that we don't handle function
3543 // calls that read or write.
3544 if (it->mayReadFromMemory()) {
3545 // Many math library functions read the rounding mode. We will only
3546 // vectorize a loop if it contains known function calls that don't set
3547 // the flag. Therefore, it is safe to ignore this read from memory.
3548 CallInst *Call = dyn_cast<CallInst>(it);
3549 if (Call && getIntrinsicIDForCall(Call, TLI))
3550 continue;
3551
3552 LoadInst *Ld = dyn_cast<LoadInst>(it);
3553 if (!Ld) return false;
3554 if (!Ld->isSimple() && !IsAnnotatedParallel) {
3555 DEBUG(dbgs() << "LV: Found a non-simple load.\n");
3556 return false;
3557 }
3558 Loads.push_back(Ld);
3559 DepChecker.addAccess(Ld);
3560 continue;
3561 }
3562
3563 // Save 'store' instructions. Abort if other instructions write to memory.
3564 if (it->mayWriteToMemory()) {
3565 StoreInst *St = dyn_cast<StoreInst>(it);
3566 if (!St) return false;
3567 if (!St->isSimple() && !IsAnnotatedParallel) {
3568 DEBUG(dbgs() << "LV: Found a non-simple store.\n");
3569 return false;
3570 }
3571 Stores.push_back(St);
3572 DepChecker.addAccess(St);
3573 }
3574 } // next instr.
3575 } // next block.
3576
3577 // Now we have two lists that hold the loads and the stores.
3578 // Next, we find the pointers that they use.
3579
3580 // Check if we see any stores. If there are no stores, then we don't
3581 // care if the pointers are *restrict*.
3582 if (!Stores.size()) {
3583 DEBUG(dbgs() << "LV: Found a read-only loop!\n");
3584 return true;
3585 }
3586
3587 AccessAnalysis::DepCandidates DependentAccesses;
3588 AccessAnalysis Accesses(DL, DependentAccesses);
3589
3590 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
3591 // multiple times on the same object. If the ptr is accessed twice, once
3592 // for read and once for write, it will only appear once (on the write
3593 // list). This is okay, since we are going to check for conflicts between
3594 // writes and between reads and writes, but not between reads and reads.
3595 ValueSet Seen;
3596
3597 ValueVector::iterator I, IE;
3598 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
3599 StoreInst *ST = cast<StoreInst>(*I);
3600 Value* Ptr = ST->getPointerOperand();
3601
3602 if (isUniform(Ptr)) {
3603 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
3604 return false;
3605 }
3606
3607 // If we did *not* see this pointer before, insert it to the read-write
3608 // list. At this phase it is only a 'write' list.
3609 if (Seen.insert(Ptr)) {
3610 ++NumReadWrites;
3611 Accesses.addStore(Ptr);
3612 }
3613 }
3614
3615 if (IsAnnotatedParallel) {
3616 DEBUG(dbgs()
3617 << "LV: A loop annotated parallel, ignore memory dependency "
3618 << "checks.\n");
3619 return true;
3620 }
3621
3622 SmallPtrSet<Value *, 16> ReadOnlyPtr;
3623 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
3624 LoadInst *LD = cast<LoadInst>(*I);
3625 Value* Ptr = LD->getPointerOperand();
3626 // If we did *not* see this pointer before, insert it to the
3627 // read list. If we *did* see it before, then it is already in
3628 // the read-write list. This allows us to vectorize expressions
3629 // such as A[i] += x; Because the address of A[i] is a read-write
3630 // pointer. This only works if the index of A[i] is consecutive.
3631 // If the address of i is unknown (for example A[B[i]]) then we may
3632 // read a few words, modify, and write a few words, and some of the
3633 // words may be written to the same address.
3634 bool IsReadOnlyPtr = false;
3635 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) {
3636 ++NumReads;
3637 IsReadOnlyPtr = true;
3638 }
3639 Accesses.addLoad(Ptr, IsReadOnlyPtr);
3640 }
3641
3642 // If we write (or read-write) to a single destination and there are no
3643 // other reads in this loop then is it safe to vectorize.
3644 if (NumReadWrites == 1 && NumReads == 0) {
3645 DEBUG(dbgs() << "LV: Found a write-only loop!\n");
3646 return true;
3647 }
3648
3649 // Build dependence sets and check whether we need a runtime pointer bounds
3650 // check.
3651 Accesses.buildDependenceSets();
3652 bool NeedRTCheck = Accesses.isRTCheckNeeded();
3653
3654 // Find pointers with computable bounds. We are going to use this information
3655 // to place a runtime bound check.
3656 unsigned NumComparisons = 0;
3657 bool CanDoRT = false;
3658 if (NeedRTCheck)
3659 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop);
3660
3661
3662 DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
3663 " pointer comparisons.\n");
3664
3665 // If we only have one set of dependences to check pointers among we don't
3666 // need a runtime check.
3667 if (NumComparisons == 0 && NeedRTCheck)
3668 NeedRTCheck = false;
3669
3670 // Check that we did not collect too many pointers or found a unsizeable
3671 // pointer.
3672 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
3673 PtrRtCheck.reset();
3674 CanDoRT = false;
3675 }
3676
3677 if (CanDoRT) {
3678 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
3679 }
3680
3681 if (NeedRTCheck && !CanDoRT) {
3682 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
3683 "the array bounds.\n");
3684 PtrRtCheck.reset();
3685 return false;
3686 }
3687
3688 PtrRtCheck.Need = NeedRTCheck;
3689
3690 bool CanVecMem = true;
3691 if (Accesses.isDependencyCheckNeeded()) {
3692 DEBUG(dbgs() << "LV: Checking memory dependencies\n");
3693 CanVecMem = DepChecker.areDepsSafe(DependentAccesses,
3694 Accesses.getDependenciesToCheck());
3695 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
3696 }
3697
3698 DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
3699 " need a runtime memory check.\n");
3700
3701 return CanVecMem;
3702 }
3703
hasMultipleUsesOf(Instruction * I,SmallPtrSet<Instruction *,8> & Insts)3704 static bool hasMultipleUsesOf(Instruction *I,
3705 SmallPtrSet<Instruction *, 8> &Insts) {
3706 unsigned NumUses = 0;
3707 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
3708 if (Insts.count(dyn_cast<Instruction>(*Use)))
3709 ++NumUses;
3710 if (NumUses > 1)
3711 return true;
3712 }
3713
3714 return false;
3715 }
3716
areAllUsesIn(Instruction * I,SmallPtrSet<Instruction *,8> & Set)3717 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
3718 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
3719 if (!Set.count(dyn_cast<Instruction>(*Use)))
3720 return false;
3721 return true;
3722 }
3723
AddReductionVar(PHINode * Phi,ReductionKind Kind)3724 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
3725 ReductionKind Kind) {
3726 if (Phi->getNumIncomingValues() != 2)
3727 return false;
3728
3729 // Reduction variables are only found in the loop header block.
3730 if (Phi->getParent() != TheLoop->getHeader())
3731 return false;
3732
3733 // Obtain the reduction start value from the value that comes from the loop
3734 // preheader.
3735 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
3736
3737 // ExitInstruction is the single value which is used outside the loop.
3738 // We only allow for a single reduction value to be used outside the loop.
3739 // This includes users of the reduction, variables (which form a cycle
3740 // which ends in the phi node).
3741 Instruction *ExitInstruction = 0;
3742 // Indicates that we found a reduction operation in our scan.
3743 bool FoundReduxOp = false;
3744
3745 // We start with the PHI node and scan for all of the users of this
3746 // instruction. All users must be instructions that can be used as reduction
3747 // variables (such as ADD). We must have a single out-of-block user. The cycle
3748 // must include the original PHI.
3749 bool FoundStartPHI = false;
3750
3751 // To recognize min/max patterns formed by a icmp select sequence, we store
3752 // the number of instruction we saw from the recognized min/max pattern,
3753 // to make sure we only see exactly the two instructions.
3754 unsigned NumCmpSelectPatternInst = 0;
3755 ReductionInstDesc ReduxDesc(false, 0);
3756
3757 SmallPtrSet<Instruction *, 8> VisitedInsts;
3758 SmallVector<Instruction *, 8> Worklist;
3759 Worklist.push_back(Phi);
3760 VisitedInsts.insert(Phi);
3761
3762 // A value in the reduction can be used:
3763 // - By the reduction:
3764 // - Reduction operation:
3765 // - One use of reduction value (safe).
3766 // - Multiple use of reduction value (not safe).
3767 // - PHI:
3768 // - All uses of the PHI must be the reduction (safe).
3769 // - Otherwise, not safe.
3770 // - By one instruction outside of the loop (safe).
3771 // - By further instructions outside of the loop (not safe).
3772 // - By an instruction that is not part of the reduction (not safe).
3773 // This is either:
3774 // * An instruction type other than PHI or the reduction operation.
3775 // * A PHI in the header other than the initial PHI.
3776 while (!Worklist.empty()) {
3777 Instruction *Cur = Worklist.back();
3778 Worklist.pop_back();
3779
3780 // No Users.
3781 // If the instruction has no users then this is a broken chain and can't be
3782 // a reduction variable.
3783 if (Cur->use_empty())
3784 return false;
3785
3786 bool IsAPhi = isa<PHINode>(Cur);
3787
3788 // A header PHI use other than the original PHI.
3789 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
3790 return false;
3791
3792 // Reductions of instructions such as Div, and Sub is only possible if the
3793 // LHS is the reduction variable.
3794 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
3795 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
3796 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
3797 return false;
3798
3799 // Any reduction instruction must be of one of the allowed kinds.
3800 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
3801 if (!ReduxDesc.IsReduction)
3802 return false;
3803
3804 // A reduction operation must only have one use of the reduction value.
3805 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
3806 hasMultipleUsesOf(Cur, VisitedInsts))
3807 return false;
3808
3809 // All inputs to a PHI node must be a reduction value.
3810 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
3811 return false;
3812
3813 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
3814 isa<SelectInst>(Cur)))
3815 ++NumCmpSelectPatternInst;
3816 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
3817 isa<SelectInst>(Cur)))
3818 ++NumCmpSelectPatternInst;
3819
3820 // Check whether we found a reduction operator.
3821 FoundReduxOp |= !IsAPhi;
3822
3823 // Process users of current instruction. Push non PHI nodes after PHI nodes
3824 // onto the stack. This way we are going to have seen all inputs to PHI
3825 // nodes once we get to them.
3826 SmallVector<Instruction *, 8> NonPHIs;
3827 SmallVector<Instruction *, 8> PHIs;
3828 for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E;
3829 ++UI) {
3830 Instruction *Usr = cast<Instruction>(*UI);
3831
3832 // Check if we found the exit user.
3833 BasicBlock *Parent = Usr->getParent();
3834 if (!TheLoop->contains(Parent)) {
3835 // Exit if you find multiple outside users or if the header phi node is
3836 // being used. In this case the user uses the value of the previous
3837 // iteration, in which case we would loose "VF-1" iterations of the
3838 // reduction operation if we vectorize.
3839 if (ExitInstruction != 0 || Cur == Phi)
3840 return false;
3841
3842 ExitInstruction = Cur;
3843 continue;
3844 }
3845
3846 // Process instructions only once (termination).
3847 if (VisitedInsts.insert(Usr)) {
3848 if (isa<PHINode>(Usr))
3849 PHIs.push_back(Usr);
3850 else
3851 NonPHIs.push_back(Usr);
3852 }
3853 // Remember that we completed the cycle.
3854 if (Usr == Phi)
3855 FoundStartPHI = true;
3856 }
3857 Worklist.append(PHIs.begin(), PHIs.end());
3858 Worklist.append(NonPHIs.begin(), NonPHIs.end());
3859 }
3860
3861 // This means we have seen one but not the other instruction of the
3862 // pattern or more than just a select and cmp.
3863 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
3864 NumCmpSelectPatternInst != 2)
3865 return false;
3866
3867 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
3868 return false;
3869
3870 // We found a reduction var if we have reached the original phi node and we
3871 // only have a single instruction with out-of-loop users.
3872
3873 // This instruction is allowed to have out-of-loop users.
3874 AllowedExit.insert(ExitInstruction);
3875
3876 // Save the description of this reduction variable.
3877 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
3878 ReduxDesc.MinMaxKind);
3879 Reductions[Phi] = RD;
3880 // We've ended the cycle. This is a reduction variable if we have an
3881 // outside user and it has a binary op.
3882
3883 return true;
3884 }
3885
3886 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
3887 /// pattern corresponding to a min(X, Y) or max(X, Y).
3888 LoopVectorizationLegality::ReductionInstDesc
isMinMaxSelectCmpPattern(Instruction * I,ReductionInstDesc & Prev)3889 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
3890 ReductionInstDesc &Prev) {
3891
3892 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
3893 "Expect a select instruction");
3894 Instruction *Cmp = 0;
3895 SelectInst *Select = 0;
3896
3897 // We must handle the select(cmp()) as a single instruction. Advance to the
3898 // select.
3899 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
3900 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
3901 return ReductionInstDesc(false, I);
3902 return ReductionInstDesc(Select, Prev.MinMaxKind);
3903 }
3904
3905 // Only handle single use cases for now.
3906 if (!(Select = dyn_cast<SelectInst>(I)))
3907 return ReductionInstDesc(false, I);
3908 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
3909 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
3910 return ReductionInstDesc(false, I);
3911 if (!Cmp->hasOneUse())
3912 return ReductionInstDesc(false, I);
3913
3914 Value *CmpLeft;
3915 Value *CmpRight;
3916
3917 // Look for a min/max pattern.
3918 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3919 return ReductionInstDesc(Select, MRK_UIntMin);
3920 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3921 return ReductionInstDesc(Select, MRK_UIntMax);
3922 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3923 return ReductionInstDesc(Select, MRK_SIntMax);
3924 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3925 return ReductionInstDesc(Select, MRK_SIntMin);
3926 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3927 return ReductionInstDesc(Select, MRK_FloatMin);
3928 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3929 return ReductionInstDesc(Select, MRK_FloatMax);
3930 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3931 return ReductionInstDesc(Select, MRK_FloatMin);
3932 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3933 return ReductionInstDesc(Select, MRK_FloatMax);
3934
3935 return ReductionInstDesc(false, I);
3936 }
3937
3938 LoopVectorizationLegality::ReductionInstDesc
isReductionInstr(Instruction * I,ReductionKind Kind,ReductionInstDesc & Prev)3939 LoopVectorizationLegality::isReductionInstr(Instruction *I,
3940 ReductionKind Kind,
3941 ReductionInstDesc &Prev) {
3942 bool FP = I->getType()->isFloatingPointTy();
3943 bool FastMath = (FP && I->isCommutative() && I->isAssociative());
3944 switch (I->getOpcode()) {
3945 default:
3946 return ReductionInstDesc(false, I);
3947 case Instruction::PHI:
3948 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
3949 Kind != RK_FloatMinMax))
3950 return ReductionInstDesc(false, I);
3951 return ReductionInstDesc(I, Prev.MinMaxKind);
3952 case Instruction::Sub:
3953 case Instruction::Add:
3954 return ReductionInstDesc(Kind == RK_IntegerAdd, I);
3955 case Instruction::Mul:
3956 return ReductionInstDesc(Kind == RK_IntegerMult, I);
3957 case Instruction::And:
3958 return ReductionInstDesc(Kind == RK_IntegerAnd, I);
3959 case Instruction::Or:
3960 return ReductionInstDesc(Kind == RK_IntegerOr, I);
3961 case Instruction::Xor:
3962 return ReductionInstDesc(Kind == RK_IntegerXor, I);
3963 case Instruction::FMul:
3964 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
3965 case Instruction::FAdd:
3966 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
3967 case Instruction::FCmp:
3968 case Instruction::ICmp:
3969 case Instruction::Select:
3970 if (Kind != RK_IntegerMinMax &&
3971 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
3972 return ReductionInstDesc(false, I);
3973 return isMinMaxSelectCmpPattern(I, Prev);
3974 }
3975 }
3976
3977 LoopVectorizationLegality::InductionKind
isInductionVariable(PHINode * Phi)3978 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
3979 Type *PhiTy = Phi->getType();
3980 // We only handle integer and pointer inductions variables.
3981 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
3982 return IK_NoInduction;
3983
3984 // Check that the PHI is consecutive.
3985 const SCEV *PhiScev = SE->getSCEV(Phi);
3986 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
3987 if (!AR) {
3988 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
3989 return IK_NoInduction;
3990 }
3991 const SCEV *Step = AR->getStepRecurrence(*SE);
3992
3993 // Integer inductions need to have a stride of one.
3994 if (PhiTy->isIntegerTy()) {
3995 if (Step->isOne())
3996 return IK_IntInduction;
3997 if (Step->isAllOnesValue())
3998 return IK_ReverseIntInduction;
3999 return IK_NoInduction;
4000 }
4001
4002 // Calculate the pointer stride and check if it is consecutive.
4003 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4004 if (!C)
4005 return IK_NoInduction;
4006
4007 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
4008 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
4009 if (C->getValue()->equalsInt(Size))
4010 return IK_PtrInduction;
4011 else if (C->getValue()->equalsInt(0 - Size))
4012 return IK_ReversePtrInduction;
4013
4014 return IK_NoInduction;
4015 }
4016
isInductionVariable(const Value * V)4017 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4018 Value *In0 = const_cast<Value*>(V);
4019 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4020 if (!PN)
4021 return false;
4022
4023 return Inductions.count(PN);
4024 }
4025
blockNeedsPredication(BasicBlock * BB)4026 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
4027 assert(TheLoop->contains(BB) && "Unknown block used");
4028
4029 // Blocks that do not dominate the latch need predication.
4030 BasicBlock* Latch = TheLoop->getLoopLatch();
4031 return !DT->dominates(BB, Latch);
4032 }
4033
blockCanBePredicated(BasicBlock * BB,SmallPtrSet<Value *,8> & SafePtrs)4034 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
4035 SmallPtrSet<Value *, 8>& SafePtrs) {
4036 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4037 // We might be able to hoist the load.
4038 if (it->mayReadFromMemory()) {
4039 LoadInst *LI = dyn_cast<LoadInst>(it);
4040 if (!LI || !SafePtrs.count(LI->getPointerOperand()))
4041 return false;
4042 }
4043
4044 // We don't predicate stores at the moment.
4045 if (it->mayWriteToMemory() || it->mayThrow())
4046 return false;
4047
4048 // The instructions below can trap.
4049 switch (it->getOpcode()) {
4050 default: continue;
4051 case Instruction::UDiv:
4052 case Instruction::SDiv:
4053 case Instruction::URem:
4054 case Instruction::SRem:
4055 return false;
4056 }
4057 }
4058
4059 return true;
4060 }
4061
4062 LoopVectorizationCostModel::VectorizationFactor
selectVectorizationFactor(bool OptForSize,unsigned UserVF)4063 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
4064 unsigned UserVF) {
4065 // Width 1 means no vectorize
4066 VectorizationFactor Factor = { 1U, 0U };
4067 if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
4068 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
4069 return Factor;
4070 }
4071
4072 // Find the trip count.
4073 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
4074 DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
4075
4076 unsigned WidestType = getWidestType();
4077 unsigned WidestRegister = TTI.getRegisterBitWidth(true);
4078 unsigned MaxSafeDepDist = -1U;
4079 if (Legal->getMaxSafeDepDistBytes() != -1U)
4080 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
4081 WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
4082 WidestRegister : MaxSafeDepDist);
4083 unsigned MaxVectorSize = WidestRegister / WidestType;
4084 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
4085 DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
4086
4087 if (MaxVectorSize == 0) {
4088 DEBUG(dbgs() << "LV: The target has no vector registers.\n");
4089 MaxVectorSize = 1;
4090 }
4091
4092 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
4093 " into one vector!");
4094
4095 unsigned VF = MaxVectorSize;
4096
4097 // If we optimize the program for size, avoid creating the tail loop.
4098 if (OptForSize) {
4099 // If we are unable to calculate the trip count then don't try to vectorize.
4100 if (TC < 2) {
4101 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4102 return Factor;
4103 }
4104
4105 // Find the maximum SIMD width that can fit within the trip count.
4106 VF = TC % MaxVectorSize;
4107
4108 if (VF == 0)
4109 VF = MaxVectorSize;
4110
4111 // If the trip count that we found modulo the vectorization factor is not
4112 // zero then we require a tail.
4113 if (VF < 2) {
4114 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4115 return Factor;
4116 }
4117 }
4118
4119 if (UserVF != 0) {
4120 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
4121 DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
4122
4123 Factor.Width = UserVF;
4124 return Factor;
4125 }
4126
4127 float Cost = expectedCost(1);
4128 unsigned Width = 1;
4129 DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
4130 for (unsigned i=2; i <= VF; i*=2) {
4131 // Notice that the vector loop needs to be executed less times, so
4132 // we need to divide the cost of the vector loops by the width of
4133 // the vector elements.
4134 float VectorCost = expectedCost(i) / (float)i;
4135 DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
4136 (int)VectorCost << ".\n");
4137 if (VectorCost < Cost) {
4138 Cost = VectorCost;
4139 Width = i;
4140 }
4141 }
4142
4143 DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
4144 Factor.Width = Width;
4145 Factor.Cost = Width * Cost;
4146 return Factor;
4147 }
4148
getWidestType()4149 unsigned LoopVectorizationCostModel::getWidestType() {
4150 unsigned MaxWidth = 8;
4151
4152 // For each block.
4153 for (Loop::block_iterator bb = TheLoop->block_begin(),
4154 be = TheLoop->block_end(); bb != be; ++bb) {
4155 BasicBlock *BB = *bb;
4156
4157 // For each instruction in the loop.
4158 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4159 Type *T = it->getType();
4160
4161 // Only examine Loads, Stores and PHINodes.
4162 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
4163 continue;
4164
4165 // Examine PHI nodes that are reduction variables.
4166 if (PHINode *PN = dyn_cast<PHINode>(it))
4167 if (!Legal->getReductionVars()->count(PN))
4168 continue;
4169
4170 // Examine the stored values.
4171 if (StoreInst *ST = dyn_cast<StoreInst>(it))
4172 T = ST->getValueOperand()->getType();
4173
4174 // Ignore loaded pointer types and stored pointer types that are not
4175 // consecutive. However, we do want to take consecutive stores/loads of
4176 // pointer vectors into account.
4177 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
4178 continue;
4179
4180 MaxWidth = std::max(MaxWidth,
4181 (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
4182 }
4183 }
4184
4185 return MaxWidth;
4186 }
4187
4188 unsigned
selectUnrollFactor(bool OptForSize,unsigned UserUF,unsigned VF,unsigned LoopCost)4189 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
4190 unsigned UserUF,
4191 unsigned VF,
4192 unsigned LoopCost) {
4193
4194 // -- The unroll heuristics --
4195 // We unroll the loop in order to expose ILP and reduce the loop overhead.
4196 // There are many micro-architectural considerations that we can't predict
4197 // at this level. For example frontend pressure (on decode or fetch) due to
4198 // code size, or the number and capabilities of the execution ports.
4199 //
4200 // We use the following heuristics to select the unroll factor:
4201 // 1. If the code has reductions the we unroll in order to break the cross
4202 // iteration dependency.
4203 // 2. If the loop is really small then we unroll in order to reduce the loop
4204 // overhead.
4205 // 3. We don't unroll if we think that we will spill registers to memory due
4206 // to the increased register pressure.
4207
4208 // Use the user preference, unless 'auto' is selected.
4209 if (UserUF != 0)
4210 return UserUF;
4211
4212 // When we optimize for size we don't unroll.
4213 if (OptForSize)
4214 return 1;
4215
4216 // We used the distance for the unroll factor.
4217 if (Legal->getMaxSafeDepDistBytes() != -1U)
4218 return 1;
4219
4220 // Do not unroll loops with a relatively small trip count.
4221 unsigned TC = SE->getSmallConstantTripCount(TheLoop,
4222 TheLoop->getLoopLatch());
4223 if (TC > 1 && TC < TinyTripCountUnrollThreshold)
4224 return 1;
4225
4226 unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
4227 DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
4228 " vector registers\n");
4229
4230 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
4231 // We divide by these constants so assume that we have at least one
4232 // instruction that uses at least one register.
4233 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
4234 R.NumInstructions = std::max(R.NumInstructions, 1U);
4235
4236 // We calculate the unroll factor using the following formula.
4237 // Subtract the number of loop invariants from the number of available
4238 // registers. These registers are used by all of the unrolled instances.
4239 // Next, divide the remaining registers by the number of registers that is
4240 // required by the loop, in order to estimate how many parallel instances
4241 // fit without causing spills.
4242 unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
4243
4244 // Clamp the unroll factor ranges to reasonable factors.
4245 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
4246
4247 // If we did not calculate the cost for VF (because the user selected the VF)
4248 // then we calculate the cost of VF here.
4249 if (LoopCost == 0)
4250 LoopCost = expectedCost(VF);
4251
4252 // Clamp the calculated UF to be between the 1 and the max unroll factor
4253 // that the target allows.
4254 if (UF > MaxUnrollSize)
4255 UF = MaxUnrollSize;
4256 else if (UF < 1)
4257 UF = 1;
4258
4259 if (Legal->getReductionVars()->size()) {
4260 DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
4261 return UF;
4262 }
4263
4264 // We want to unroll tiny loops in order to reduce the loop overhead.
4265 // We assume that the cost overhead is 1 and we use the cost model
4266 // to estimate the cost of the loop and unroll until the cost of the
4267 // loop overhead is about 5% of the cost of the loop.
4268 DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
4269 if (LoopCost < 20) {
4270 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
4271 unsigned NewUF = 20/LoopCost + 1;
4272 return std::min(NewUF, UF);
4273 }
4274
4275 DEBUG(dbgs() << "LV: Not Unrolling. \n");
4276 return 1;
4277 }
4278
4279 LoopVectorizationCostModel::RegisterUsage
calculateRegisterUsage()4280 LoopVectorizationCostModel::calculateRegisterUsage() {
4281 // This function calculates the register usage by measuring the highest number
4282 // of values that are alive at a single location. Obviously, this is a very
4283 // rough estimation. We scan the loop in a topological order in order and
4284 // assign a number to each instruction. We use RPO to ensure that defs are
4285 // met before their users. We assume that each instruction that has in-loop
4286 // users starts an interval. We record every time that an in-loop value is
4287 // used, so we have a list of the first and last occurrences of each
4288 // instruction. Next, we transpose this data structure into a multi map that
4289 // holds the list of intervals that *end* at a specific location. This multi
4290 // map allows us to perform a linear search. We scan the instructions linearly
4291 // and record each time that a new interval starts, by placing it in a set.
4292 // If we find this value in the multi-map then we remove it from the set.
4293 // The max register usage is the maximum size of the set.
4294 // We also search for instructions that are defined outside the loop, but are
4295 // used inside the loop. We need this number separately from the max-interval
4296 // usage number because when we unroll, loop-invariant values do not take
4297 // more register.
4298 LoopBlocksDFS DFS(TheLoop);
4299 DFS.perform(LI);
4300
4301 RegisterUsage R;
4302 R.NumInstructions = 0;
4303
4304 // Each 'key' in the map opens a new interval. The values
4305 // of the map are the index of the 'last seen' usage of the
4306 // instruction that is the key.
4307 typedef DenseMap<Instruction*, unsigned> IntervalMap;
4308 // Maps instruction to its index.
4309 DenseMap<unsigned, Instruction*> IdxToInstr;
4310 // Marks the end of each interval.
4311 IntervalMap EndPoint;
4312 // Saves the list of instruction indices that are used in the loop.
4313 SmallSet<Instruction*, 8> Ends;
4314 // Saves the list of values that are used in the loop but are
4315 // defined outside the loop, such as arguments and constants.
4316 SmallPtrSet<Value*, 8> LoopInvariants;
4317
4318 unsigned Index = 0;
4319 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
4320 be = DFS.endRPO(); bb != be; ++bb) {
4321 R.NumInstructions += (*bb)->size();
4322 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4323 ++it) {
4324 Instruction *I = it;
4325 IdxToInstr[Index++] = I;
4326
4327 // Save the end location of each USE.
4328 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
4329 Value *U = I->getOperand(i);
4330 Instruction *Instr = dyn_cast<Instruction>(U);
4331
4332 // Ignore non-instruction values such as arguments, constants, etc.
4333 if (!Instr) continue;
4334
4335 // If this instruction is outside the loop then record it and continue.
4336 if (!TheLoop->contains(Instr)) {
4337 LoopInvariants.insert(Instr);
4338 continue;
4339 }
4340
4341 // Overwrite previous end points.
4342 EndPoint[Instr] = Index;
4343 Ends.insert(Instr);
4344 }
4345 }
4346 }
4347
4348 // Saves the list of intervals that end with the index in 'key'.
4349 typedef SmallVector<Instruction*, 2> InstrList;
4350 DenseMap<unsigned, InstrList> TransposeEnds;
4351
4352 // Transpose the EndPoints to a list of values that end at each index.
4353 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
4354 it != e; ++it)
4355 TransposeEnds[it->second].push_back(it->first);
4356
4357 SmallSet<Instruction*, 8> OpenIntervals;
4358 unsigned MaxUsage = 0;
4359
4360
4361 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
4362 for (unsigned int i = 0; i < Index; ++i) {
4363 Instruction *I = IdxToInstr[i];
4364 // Ignore instructions that are never used within the loop.
4365 if (!Ends.count(I)) continue;
4366
4367 // Remove all of the instructions that end at this location.
4368 InstrList &List = TransposeEnds[i];
4369 for (unsigned int j=0, e = List.size(); j < e; ++j)
4370 OpenIntervals.erase(List[j]);
4371
4372 // Count the number of live interals.
4373 MaxUsage = std::max(MaxUsage, OpenIntervals.size());
4374
4375 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
4376 OpenIntervals.size() <<"\n");
4377
4378 // Add the current instruction to the list of open intervals.
4379 OpenIntervals.insert(I);
4380 }
4381
4382 unsigned Invariant = LoopInvariants.size();
4383 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
4384 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
4385 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
4386
4387 R.LoopInvariantRegs = Invariant;
4388 R.MaxLocalUsers = MaxUsage;
4389 return R;
4390 }
4391
expectedCost(unsigned VF)4392 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
4393 unsigned Cost = 0;
4394
4395 // For each block.
4396 for (Loop::block_iterator bb = TheLoop->block_begin(),
4397 be = TheLoop->block_end(); bb != be; ++bb) {
4398 unsigned BlockCost = 0;
4399 BasicBlock *BB = *bb;
4400
4401 // For each instruction in the old loop.
4402 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4403 // Skip dbg intrinsics.
4404 if (isa<DbgInfoIntrinsic>(it))
4405 continue;
4406
4407 unsigned C = getInstructionCost(it, VF);
4408 BlockCost += C;
4409 DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
4410 VF << " For instruction: "<< *it << "\n");
4411 }
4412
4413 // We assume that if-converted blocks have a 50% chance of being executed.
4414 // When the code is scalar then some of the blocks are avoided due to CF.
4415 // When the code is vectorized we execute all code paths.
4416 if (VF == 1 && Legal->blockNeedsPredication(*bb))
4417 BlockCost /= 2;
4418
4419 Cost += BlockCost;
4420 }
4421
4422 return Cost;
4423 }
4424
4425 /// \brief Check whether the address computation for a non-consecutive memory
4426 /// access looks like an unlikely candidate for being merged into the indexing
4427 /// mode.
4428 ///
4429 /// We look for a GEP which has one index that is an induction variable and all
4430 /// other indices are loop invariant. If the stride of this access is also
4431 /// within a small bound we decide that this address computation can likely be
4432 /// merged into the addressing mode.
4433 /// In all other cases, we identify the address computation as complex.
isLikelyComplexAddressComputation(Value * Ptr,LoopVectorizationLegality * Legal,ScalarEvolution * SE,const Loop * TheLoop)4434 static bool isLikelyComplexAddressComputation(Value *Ptr,
4435 LoopVectorizationLegality *Legal,
4436 ScalarEvolution *SE,
4437 const Loop *TheLoop) {
4438 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
4439 if (!Gep)
4440 return true;
4441
4442 // We are looking for a gep with all loop invariant indices except for one
4443 // which should be an induction variable.
4444 unsigned NumOperands = Gep->getNumOperands();
4445 for (unsigned i = 1; i < NumOperands; ++i) {
4446 Value *Opd = Gep->getOperand(i);
4447 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
4448 !Legal->isInductionVariable(Opd))
4449 return true;
4450 }
4451
4452 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
4453 // can likely be merged into the address computation.
4454 unsigned MaxMergeDistance = 64;
4455
4456 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
4457 if (!AddRec)
4458 return true;
4459
4460 // Check the step is constant.
4461 const SCEV *Step = AddRec->getStepRecurrence(*SE);
4462 // Calculate the pointer stride and check if it is consecutive.
4463 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4464 if (!C)
4465 return true;
4466
4467 const APInt &APStepVal = C->getValue()->getValue();
4468
4469 // Huge step value - give up.
4470 if (APStepVal.getBitWidth() > 64)
4471 return true;
4472
4473 int64_t StepVal = APStepVal.getSExtValue();
4474
4475 return StepVal > MaxMergeDistance;
4476 }
4477
4478 unsigned
getInstructionCost(Instruction * I,unsigned VF)4479 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
4480 // If we know that this instruction will remain uniform, check the cost of
4481 // the scalar version.
4482 if (Legal->isUniformAfterVectorization(I))
4483 VF = 1;
4484
4485 Type *RetTy = I->getType();
4486 Type *VectorTy = ToVectorTy(RetTy, VF);
4487
4488 // TODO: We need to estimate the cost of intrinsic calls.
4489 switch (I->getOpcode()) {
4490 case Instruction::GetElementPtr:
4491 // We mark this instruction as zero-cost because the cost of GEPs in
4492 // vectorized code depends on whether the corresponding memory instruction
4493 // is scalarized or not. Therefore, we handle GEPs with the memory
4494 // instruction cost.
4495 return 0;
4496 case Instruction::Br: {
4497 return TTI.getCFInstrCost(I->getOpcode());
4498 }
4499 case Instruction::PHI:
4500 //TODO: IF-converted IFs become selects.
4501 return 0;
4502 case Instruction::Add:
4503 case Instruction::FAdd:
4504 case Instruction::Sub:
4505 case Instruction::FSub:
4506 case Instruction::Mul:
4507 case Instruction::FMul:
4508 case Instruction::UDiv:
4509 case Instruction::SDiv:
4510 case Instruction::FDiv:
4511 case Instruction::URem:
4512 case Instruction::SRem:
4513 case Instruction::FRem:
4514 case Instruction::Shl:
4515 case Instruction::LShr:
4516 case Instruction::AShr:
4517 case Instruction::And:
4518 case Instruction::Or:
4519 case Instruction::Xor: {
4520 // Certain instructions can be cheaper to vectorize if they have a constant
4521 // second vector operand. One example of this are shifts on x86.
4522 TargetTransformInfo::OperandValueKind Op1VK =
4523 TargetTransformInfo::OK_AnyValue;
4524 TargetTransformInfo::OperandValueKind Op2VK =
4525 TargetTransformInfo::OK_AnyValue;
4526
4527 if (isa<ConstantInt>(I->getOperand(1)))
4528 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
4529
4530 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
4531 }
4532 case Instruction::Select: {
4533 SelectInst *SI = cast<SelectInst>(I);
4534 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
4535 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
4536 Type *CondTy = SI->getCondition()->getType();
4537 if (!ScalarCond)
4538 CondTy = VectorType::get(CondTy, VF);
4539
4540 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
4541 }
4542 case Instruction::ICmp:
4543 case Instruction::FCmp: {
4544 Type *ValTy = I->getOperand(0)->getType();
4545 VectorTy = ToVectorTy(ValTy, VF);
4546 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
4547 }
4548 case Instruction::Store:
4549 case Instruction::Load: {
4550 StoreInst *SI = dyn_cast<StoreInst>(I);
4551 LoadInst *LI = dyn_cast<LoadInst>(I);
4552 Type *ValTy = (SI ? SI->getValueOperand()->getType() :
4553 LI->getType());
4554 VectorTy = ToVectorTy(ValTy, VF);
4555
4556 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
4557 unsigned AS = SI ? SI->getPointerAddressSpace() :
4558 LI->getPointerAddressSpace();
4559 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
4560 // We add the cost of address computation here instead of with the gep
4561 // instruction because only here we know whether the operation is
4562 // scalarized.
4563 if (VF == 1)
4564 return TTI.getAddressComputationCost(VectorTy) +
4565 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4566
4567 // Scalarized loads/stores.
4568 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
4569 bool Reverse = ConsecutiveStride < 0;
4570 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
4571 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
4572 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
4573 bool IsComplexComputation =
4574 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
4575 unsigned Cost = 0;
4576 // The cost of extracting from the value vector and pointer vector.
4577 Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
4578 for (unsigned i = 0; i < VF; ++i) {
4579 // The cost of extracting the pointer operand.
4580 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
4581 // In case of STORE, the cost of ExtractElement from the vector.
4582 // In case of LOAD, the cost of InsertElement into the returned
4583 // vector.
4584 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
4585 Instruction::InsertElement,
4586 VectorTy, i);
4587 }
4588
4589 // The cost of the scalar loads/stores.
4590 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
4591 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
4592 Alignment, AS);
4593 return Cost;
4594 }
4595
4596 // Wide load/stores.
4597 unsigned Cost = TTI.getAddressComputationCost(VectorTy);
4598 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4599
4600 if (Reverse)
4601 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4602 VectorTy, 0);
4603 return Cost;
4604 }
4605 case Instruction::ZExt:
4606 case Instruction::SExt:
4607 case Instruction::FPToUI:
4608 case Instruction::FPToSI:
4609 case Instruction::FPExt:
4610 case Instruction::PtrToInt:
4611 case Instruction::IntToPtr:
4612 case Instruction::SIToFP:
4613 case Instruction::UIToFP:
4614 case Instruction::Trunc:
4615 case Instruction::FPTrunc:
4616 case Instruction::BitCast: {
4617 // We optimize the truncation of induction variable.
4618 // The cost of these is the same as the scalar operation.
4619 if (I->getOpcode() == Instruction::Trunc &&
4620 Legal->isInductionVariable(I->getOperand(0)))
4621 return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
4622 I->getOperand(0)->getType());
4623
4624 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
4625 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
4626 }
4627 case Instruction::Call: {
4628 CallInst *CI = cast<CallInst>(I);
4629 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
4630 assert(ID && "Not an intrinsic call!");
4631 Type *RetTy = ToVectorTy(CI->getType(), VF);
4632 SmallVector<Type*, 4> Tys;
4633 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
4634 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
4635 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
4636 }
4637 default: {
4638 // We are scalarizing the instruction. Return the cost of the scalar
4639 // instruction, plus the cost of insert and extract into vector
4640 // elements, times the vector width.
4641 unsigned Cost = 0;
4642
4643 if (!RetTy->isVoidTy() && VF != 1) {
4644 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
4645 VectorTy);
4646 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
4647 VectorTy);
4648
4649 // The cost of inserting the results plus extracting each one of the
4650 // operands.
4651 Cost += VF * (InsCost + ExtCost * I->getNumOperands());
4652 }
4653
4654 // The cost of executing VF copies of the scalar instruction. This opcode
4655 // is unknown. Assume that it is the same as 'mul'.
4656 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
4657 return Cost;
4658 }
4659 }// end of switch.
4660 }
4661
ToVectorTy(Type * Scalar,unsigned VF)4662 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
4663 if (Scalar->isVoidTy() || VF == 1)
4664 return Scalar;
4665 return VectorType::get(Scalar, VF);
4666 }
4667
4668 char LoopVectorize::ID = 0;
4669 static const char lv_name[] = "Loop Vectorization";
4670 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
4671 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
4672 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4673 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4674 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
4675
4676 namespace llvm {
createLoopVectorizePass()4677 Pass *createLoopVectorizePass() {
4678 return new LoopVectorize();
4679 }
4680 }
4681
isConsecutiveLoadOrStore(Instruction * Inst)4682 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
4683 // Check for a store.
4684 if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
4685 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
4686
4687 // Check for a load.
4688 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
4689 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
4690
4691 return false;
4692 }
4693