1 //===--- PTHLexer.cpp - Lex from a token stream ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PTHLexer interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Lex/PTHLexer.h"
15 #include "clang/Basic/FileManager.h"
16 #include "clang/Basic/FileSystemStatCache.h"
17 #include "clang/Basic/IdentifierTable.h"
18 #include "clang/Basic/OnDiskHashTable.h"
19 #include "clang/Basic/TokenKinds.h"
20 #include "clang/Lex/LexDiagnostic.h"
21 #include "clang/Lex/PTHManager.h"
22 #include "clang/Lex/Preprocessor.h"
23 #include "clang/Lex/Token.h"
24 #include "llvm/ADT/OwningPtr.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include "llvm/Support/system_error.h"
29 using namespace clang;
30 using namespace clang::io;
31
32 #define DISK_TOKEN_SIZE (1+1+2+4+4)
33
34 //===----------------------------------------------------------------------===//
35 // PTHLexer methods.
36 //===----------------------------------------------------------------------===//
37
PTHLexer(Preprocessor & PP,FileID FID,const unsigned char * D,const unsigned char * ppcond,PTHManager & PM)38 PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D,
39 const unsigned char *ppcond, PTHManager &PM)
40 : PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(0),
41 PPCond(ppcond), CurPPCondPtr(ppcond), PTHMgr(PM) {
42
43 FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID);
44 }
45
Lex(Token & Tok)46 void PTHLexer::Lex(Token& Tok) {
47 LexNextToken:
48
49 //===--------------------------------------==//
50 // Read the raw token data.
51 //===--------------------------------------==//
52
53 // Shadow CurPtr into an automatic variable.
54 const unsigned char *CurPtrShadow = CurPtr;
55
56 // Read in the data for the token.
57 unsigned Word0 = ReadLE32(CurPtrShadow);
58 uint32_t IdentifierID = ReadLE32(CurPtrShadow);
59 uint32_t FileOffset = ReadLE32(CurPtrShadow);
60
61 tok::TokenKind TKind = (tok::TokenKind) (Word0 & 0xFF);
62 Token::TokenFlags TFlags = (Token::TokenFlags) ((Word0 >> 8) & 0xFF);
63 uint32_t Len = Word0 >> 16;
64
65 CurPtr = CurPtrShadow;
66
67 //===--------------------------------------==//
68 // Construct the token itself.
69 //===--------------------------------------==//
70
71 Tok.startToken();
72 Tok.setKind(TKind);
73 Tok.setFlag(TFlags);
74 assert(!LexingRawMode);
75 Tok.setLocation(FileStartLoc.getLocWithOffset(FileOffset));
76 Tok.setLength(Len);
77
78 // Handle identifiers.
79 if (Tok.isLiteral()) {
80 Tok.setLiteralData((const char*) (PTHMgr.SpellingBase + IdentifierID));
81 }
82 else if (IdentifierID) {
83 MIOpt.ReadToken();
84 IdentifierInfo *II = PTHMgr.GetIdentifierInfo(IdentifierID-1);
85
86 Tok.setIdentifierInfo(II);
87
88 // Change the kind of this identifier to the appropriate token kind, e.g.
89 // turning "for" into a keyword.
90 Tok.setKind(II->getTokenID());
91
92 if (II->isHandleIdentifierCase())
93 PP->HandleIdentifier(Tok);
94 return;
95 }
96
97 //===--------------------------------------==//
98 // Process the token.
99 //===--------------------------------------==//
100 if (TKind == tok::eof) {
101 // Save the end-of-file token.
102 EofToken = Tok;
103
104 // Save 'PP' to 'PPCache' as LexEndOfFile can delete 'this'.
105 Preprocessor *PPCache = PP;
106
107 assert(!ParsingPreprocessorDirective);
108 assert(!LexingRawMode);
109
110 if (LexEndOfFile(Tok))
111 return;
112
113 return PPCache->Lex(Tok);
114 }
115
116 if (TKind == tok::hash && Tok.isAtStartOfLine()) {
117 LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE;
118 assert(!LexingRawMode);
119 PP->HandleDirective(Tok);
120
121 if (PP->isCurrentLexer(this))
122 goto LexNextToken;
123
124 return PP->Lex(Tok);
125 }
126
127 if (TKind == tok::eod) {
128 assert(ParsingPreprocessorDirective);
129 ParsingPreprocessorDirective = false;
130 return;
131 }
132
133 MIOpt.ReadToken();
134 }
135
LexEndOfFile(Token & Result)136 bool PTHLexer::LexEndOfFile(Token &Result) {
137 // If we hit the end of the file while parsing a preprocessor directive,
138 // end the preprocessor directive first. The next token returned will
139 // then be the end of file.
140 if (ParsingPreprocessorDirective) {
141 ParsingPreprocessorDirective = false; // Done parsing the "line".
142 return true; // Have a token.
143 }
144
145 assert(!LexingRawMode);
146
147 // If we are in a #if directive, emit an error.
148 while (!ConditionalStack.empty()) {
149 if (PP->getCodeCompletionFileLoc() != FileStartLoc)
150 PP->Diag(ConditionalStack.back().IfLoc,
151 diag::err_pp_unterminated_conditional);
152 ConditionalStack.pop_back();
153 }
154
155 // Finally, let the preprocessor handle this.
156 return PP->HandleEndOfFile(Result);
157 }
158
159 // FIXME: We can just grab the last token instead of storing a copy
160 // into EofToken.
getEOF(Token & Tok)161 void PTHLexer::getEOF(Token& Tok) {
162 assert(EofToken.is(tok::eof));
163 Tok = EofToken;
164 }
165
DiscardToEndOfLine()166 void PTHLexer::DiscardToEndOfLine() {
167 assert(ParsingPreprocessorDirective && ParsingFilename == false &&
168 "Must be in a preprocessing directive!");
169
170 // We assume that if the preprocessor wishes to discard to the end of
171 // the line that it also means to end the current preprocessor directive.
172 ParsingPreprocessorDirective = false;
173
174 // Skip tokens by only peeking at their token kind and the flags.
175 // We don't need to actually reconstruct full tokens from the token buffer.
176 // This saves some copies and it also reduces IdentifierInfo* lookup.
177 const unsigned char* p = CurPtr;
178 while (1) {
179 // Read the token kind. Are we at the end of the file?
180 tok::TokenKind x = (tok::TokenKind) (uint8_t) *p;
181 if (x == tok::eof) break;
182
183 // Read the token flags. Are we at the start of the next line?
184 Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1];
185 if (y & Token::StartOfLine) break;
186
187 // Skip to the next token.
188 p += DISK_TOKEN_SIZE;
189 }
190
191 CurPtr = p;
192 }
193
194 /// SkipBlock - Used by Preprocessor to skip the current conditional block.
SkipBlock()195 bool PTHLexer::SkipBlock() {
196 assert(CurPPCondPtr && "No cached PP conditional information.");
197 assert(LastHashTokPtr && "No known '#' token.");
198
199 const unsigned char* HashEntryI = 0;
200 uint32_t TableIdx;
201
202 do {
203 // Read the token offset from the side-table.
204 uint32_t Offset = ReadLE32(CurPPCondPtr);
205
206 // Read the target table index from the side-table.
207 TableIdx = ReadLE32(CurPPCondPtr);
208
209 // Compute the actual memory address of the '#' token data for this entry.
210 HashEntryI = TokBuf + Offset;
211
212 // Optmization: "Sibling jumping". #if...#else...#endif blocks can
213 // contain nested blocks. In the side-table we can jump over these
214 // nested blocks instead of doing a linear search if the next "sibling"
215 // entry is not at a location greater than LastHashTokPtr.
216 if (HashEntryI < LastHashTokPtr && TableIdx) {
217 // In the side-table we are still at an entry for a '#' token that
218 // is earlier than the last one we saw. Check if the location we would
219 // stride gets us closer.
220 const unsigned char* NextPPCondPtr =
221 PPCond + TableIdx*(sizeof(uint32_t)*2);
222 assert(NextPPCondPtr >= CurPPCondPtr);
223 // Read where we should jump to.
224 const unsigned char* HashEntryJ = TokBuf + ReadLE32(NextPPCondPtr);
225
226 if (HashEntryJ <= LastHashTokPtr) {
227 // Jump directly to the next entry in the side table.
228 HashEntryI = HashEntryJ;
229 TableIdx = ReadLE32(NextPPCondPtr);
230 CurPPCondPtr = NextPPCondPtr;
231 }
232 }
233 }
234 while (HashEntryI < LastHashTokPtr);
235 assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'");
236 assert(TableIdx && "No jumping from #endifs.");
237
238 // Update our side-table iterator.
239 const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2);
240 assert(NextPPCondPtr >= CurPPCondPtr);
241 CurPPCondPtr = NextPPCondPtr;
242
243 // Read where we should jump to.
244 HashEntryI = TokBuf + ReadLE32(NextPPCondPtr);
245 uint32_t NextIdx = ReadLE32(NextPPCondPtr);
246
247 // By construction NextIdx will be zero if this is a #endif. This is useful
248 // to know to obviate lexing another token.
249 bool isEndif = NextIdx == 0;
250
251 // This case can occur when we see something like this:
252 //
253 // #if ...
254 // /* a comment or nothing */
255 // #elif
256 //
257 // If we are skipping the first #if block it will be the case that CurPtr
258 // already points 'elif'. Just return.
259
260 if (CurPtr > HashEntryI) {
261 assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE);
262 // Did we reach a #endif? If so, go ahead and consume that token as well.
263 if (isEndif)
264 CurPtr += DISK_TOKEN_SIZE*2;
265 else
266 LastHashTokPtr = HashEntryI;
267
268 return isEndif;
269 }
270
271 // Otherwise, we need to advance. Update CurPtr to point to the '#' token.
272 CurPtr = HashEntryI;
273
274 // Update the location of the last observed '#'. This is useful if we
275 // are skipping multiple blocks.
276 LastHashTokPtr = CurPtr;
277
278 // Skip the '#' token.
279 assert(((tok::TokenKind)*CurPtr) == tok::hash);
280 CurPtr += DISK_TOKEN_SIZE;
281
282 // Did we reach a #endif? If so, go ahead and consume that token as well.
283 if (isEndif) { CurPtr += DISK_TOKEN_SIZE*2; }
284
285 return isEndif;
286 }
287
getSourceLocation()288 SourceLocation PTHLexer::getSourceLocation() {
289 // getSourceLocation is not on the hot path. It is used to get the location
290 // of the next token when transitioning back to this lexer when done
291 // handling a #included file. Just read the necessary data from the token
292 // data buffer to construct the SourceLocation object.
293 // NOTE: This is a virtual function; hence it is defined out-of-line.
294 const unsigned char *OffsetPtr = CurPtr + (DISK_TOKEN_SIZE - 4);
295 uint32_t Offset = ReadLE32(OffsetPtr);
296 return FileStartLoc.getLocWithOffset(Offset);
297 }
298
299 //===----------------------------------------------------------------------===//
300 // PTH file lookup: map from strings to file data.
301 //===----------------------------------------------------------------------===//
302
303 /// PTHFileLookup - This internal data structure is used by the PTHManager
304 /// to map from FileEntry objects managed by FileManager to offsets within
305 /// the PTH file.
306 namespace {
307 class PTHFileData {
308 const uint32_t TokenOff;
309 const uint32_t PPCondOff;
310 public:
PTHFileData(uint32_t tokenOff,uint32_t ppCondOff)311 PTHFileData(uint32_t tokenOff, uint32_t ppCondOff)
312 : TokenOff(tokenOff), PPCondOff(ppCondOff) {}
313
getTokenOffset() const314 uint32_t getTokenOffset() const { return TokenOff; }
getPPCondOffset() const315 uint32_t getPPCondOffset() const { return PPCondOff; }
316 };
317
318
319 class PTHFileLookupCommonTrait {
320 public:
321 typedef std::pair<unsigned char, const char*> internal_key_type;
322
ComputeHash(internal_key_type x)323 static unsigned ComputeHash(internal_key_type x) {
324 return llvm::HashString(x.second);
325 }
326
327 static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char * & d)328 ReadKeyDataLength(const unsigned char*& d) {
329 unsigned keyLen = (unsigned) ReadUnalignedLE16(d);
330 unsigned dataLen = (unsigned) *(d++);
331 return std::make_pair(keyLen, dataLen);
332 }
333
ReadKey(const unsigned char * d,unsigned)334 static internal_key_type ReadKey(const unsigned char* d, unsigned) {
335 unsigned char k = *(d++); // Read the entry kind.
336 return std::make_pair(k, (const char*) d);
337 }
338 };
339
340 class PTHFileLookupTrait : public PTHFileLookupCommonTrait {
341 public:
342 typedef const FileEntry* external_key_type;
343 typedef PTHFileData data_type;
344
GetInternalKey(const FileEntry * FE)345 static internal_key_type GetInternalKey(const FileEntry* FE) {
346 return std::make_pair((unsigned char) 0x1, FE->getName());
347 }
348
EqualKey(internal_key_type a,internal_key_type b)349 static bool EqualKey(internal_key_type a, internal_key_type b) {
350 return a.first == b.first && strcmp(a.second, b.second) == 0;
351 }
352
ReadData(const internal_key_type & k,const unsigned char * d,unsigned)353 static PTHFileData ReadData(const internal_key_type& k,
354 const unsigned char* d, unsigned) {
355 assert(k.first == 0x1 && "Only file lookups can match!");
356 uint32_t x = ::ReadUnalignedLE32(d);
357 uint32_t y = ::ReadUnalignedLE32(d);
358 return PTHFileData(x, y);
359 }
360 };
361
362 class PTHStringLookupTrait {
363 public:
364 typedef uint32_t
365 data_type;
366
367 typedef const std::pair<const char*, unsigned>
368 external_key_type;
369
370 typedef external_key_type internal_key_type;
371
EqualKey(const internal_key_type & a,const internal_key_type & b)372 static bool EqualKey(const internal_key_type& a,
373 const internal_key_type& b) {
374 return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0
375 : false;
376 }
377
ComputeHash(const internal_key_type & a)378 static unsigned ComputeHash(const internal_key_type& a) {
379 return llvm::HashString(StringRef(a.first, a.second));
380 }
381
382 // This hopefully will just get inlined and removed by the optimizer.
383 static const internal_key_type&
GetInternalKey(const external_key_type & x)384 GetInternalKey(const external_key_type& x) { return x; }
385
386 static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char * & d)387 ReadKeyDataLength(const unsigned char*& d) {
388 return std::make_pair((unsigned) ReadUnalignedLE16(d), sizeof(uint32_t));
389 }
390
391 static std::pair<const char*, unsigned>
ReadKey(const unsigned char * d,unsigned n)392 ReadKey(const unsigned char* d, unsigned n) {
393 assert(n >= 2 && d[n-1] == '\0');
394 return std::make_pair((const char*) d, n-1);
395 }
396
ReadData(const internal_key_type & k,const unsigned char * d,unsigned)397 static uint32_t ReadData(const internal_key_type& k, const unsigned char* d,
398 unsigned) {
399 return ::ReadUnalignedLE32(d);
400 }
401 };
402
403 } // end anonymous namespace
404
405 typedef OnDiskChainedHashTable<PTHFileLookupTrait> PTHFileLookup;
406 typedef OnDiskChainedHashTable<PTHStringLookupTrait> PTHStringIdLookup;
407
408 //===----------------------------------------------------------------------===//
409 // PTHManager methods.
410 //===----------------------------------------------------------------------===//
411
PTHManager(const llvm::MemoryBuffer * buf,void * fileLookup,const unsigned char * idDataTable,IdentifierInfo ** perIDCache,void * stringIdLookup,unsigned numIds,const unsigned char * spellingBase,const char * originalSourceFile)412 PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup,
413 const unsigned char* idDataTable,
414 IdentifierInfo** perIDCache,
415 void* stringIdLookup, unsigned numIds,
416 const unsigned char* spellingBase,
417 const char* originalSourceFile)
418 : Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup),
419 IdDataTable(idDataTable), StringIdLookup(stringIdLookup),
420 NumIds(numIds), PP(0), SpellingBase(spellingBase),
421 OriginalSourceFile(originalSourceFile) {}
422
~PTHManager()423 PTHManager::~PTHManager() {
424 delete Buf;
425 delete (PTHFileLookup*) FileLookup;
426 delete (PTHStringIdLookup*) StringIdLookup;
427 free(PerIDCache);
428 }
429
InvalidPTH(DiagnosticsEngine & Diags,const char * Msg)430 static void InvalidPTH(DiagnosticsEngine &Diags, const char *Msg) {
431 Diags.Report(Diags.getCustomDiagID(DiagnosticsEngine::Error, Msg));
432 }
433
Create(const std::string & file,DiagnosticsEngine & Diags)434 PTHManager *PTHManager::Create(const std::string &file,
435 DiagnosticsEngine &Diags) {
436 // Memory map the PTH file.
437 OwningPtr<llvm::MemoryBuffer> File;
438
439 if (llvm::MemoryBuffer::getFile(file, File)) {
440 // FIXME: Add ec.message() to this diag.
441 Diags.Report(diag::err_invalid_pth_file) << file;
442 return 0;
443 }
444
445 // Get the buffer ranges and check if there are at least three 32-bit
446 // words at the end of the file.
447 const unsigned char *BufBeg = (const unsigned char*)File->getBufferStart();
448 const unsigned char *BufEnd = (const unsigned char*)File->getBufferEnd();
449
450 // Check the prologue of the file.
451 if ((BufEnd - BufBeg) < (signed)(sizeof("cfe-pth") + 4 + 4) ||
452 memcmp(BufBeg, "cfe-pth", sizeof("cfe-pth")) != 0) {
453 Diags.Report(diag::err_invalid_pth_file) << file;
454 return 0;
455 }
456
457 // Read the PTH version.
458 const unsigned char *p = BufBeg + (sizeof("cfe-pth"));
459 unsigned Version = ReadLE32(p);
460
461 if (Version < PTHManager::Version) {
462 InvalidPTH(Diags,
463 Version < PTHManager::Version
464 ? "PTH file uses an older PTH format that is no longer supported"
465 : "PTH file uses a newer PTH format that cannot be read");
466 return 0;
467 }
468
469 // Compute the address of the index table at the end of the PTH file.
470 const unsigned char *PrologueOffset = p;
471
472 if (PrologueOffset >= BufEnd) {
473 Diags.Report(diag::err_invalid_pth_file) << file;
474 return 0;
475 }
476
477 // Construct the file lookup table. This will be used for mapping from
478 // FileEntry*'s to cached tokens.
479 const unsigned char* FileTableOffset = PrologueOffset + sizeof(uint32_t)*2;
480 const unsigned char* FileTable = BufBeg + ReadLE32(FileTableOffset);
481
482 if (!(FileTable > BufBeg && FileTable < BufEnd)) {
483 Diags.Report(diag::err_invalid_pth_file) << file;
484 return 0; // FIXME: Proper error diagnostic?
485 }
486
487 OwningPtr<PTHFileLookup> FL(PTHFileLookup::Create(FileTable, BufBeg));
488
489 // Warn if the PTH file is empty. We still want to create a PTHManager
490 // as the PTH could be used with -include-pth.
491 if (FL->isEmpty())
492 InvalidPTH(Diags, "PTH file contains no cached source data");
493
494 // Get the location of the table mapping from persistent ids to the
495 // data needed to reconstruct identifiers.
496 const unsigned char* IDTableOffset = PrologueOffset + sizeof(uint32_t)*0;
497 const unsigned char* IData = BufBeg + ReadLE32(IDTableOffset);
498
499 if (!(IData >= BufBeg && IData < BufEnd)) {
500 Diags.Report(diag::err_invalid_pth_file) << file;
501 return 0;
502 }
503
504 // Get the location of the hashtable mapping between strings and
505 // persistent IDs.
506 const unsigned char* StringIdTableOffset = PrologueOffset + sizeof(uint32_t)*1;
507 const unsigned char* StringIdTable = BufBeg + ReadLE32(StringIdTableOffset);
508 if (!(StringIdTable >= BufBeg && StringIdTable < BufEnd)) {
509 Diags.Report(diag::err_invalid_pth_file) << file;
510 return 0;
511 }
512
513 OwningPtr<PTHStringIdLookup> SL(PTHStringIdLookup::Create(StringIdTable,
514 BufBeg));
515
516 // Get the location of the spelling cache.
517 const unsigned char* spellingBaseOffset = PrologueOffset + sizeof(uint32_t)*3;
518 const unsigned char* spellingBase = BufBeg + ReadLE32(spellingBaseOffset);
519 if (!(spellingBase >= BufBeg && spellingBase < BufEnd)) {
520 Diags.Report(diag::err_invalid_pth_file) << file;
521 return 0;
522 }
523
524 // Get the number of IdentifierInfos and pre-allocate the identifier cache.
525 uint32_t NumIds = ReadLE32(IData);
526
527 // Pre-allocate the persistent ID -> IdentifierInfo* cache. We use calloc()
528 // so that we in the best case only zero out memory once when the OS returns
529 // us new pages.
530 IdentifierInfo** PerIDCache = 0;
531
532 if (NumIds) {
533 PerIDCache = (IdentifierInfo**)calloc(NumIds, sizeof(*PerIDCache));
534 if (!PerIDCache) {
535 InvalidPTH(Diags, "Could not allocate memory for processing PTH file");
536 return 0;
537 }
538 }
539
540 // Compute the address of the original source file.
541 const unsigned char* originalSourceBase = PrologueOffset + sizeof(uint32_t)*4;
542 unsigned len = ReadUnalignedLE16(originalSourceBase);
543 if (!len) originalSourceBase = 0;
544
545 // Create the new PTHManager.
546 return new PTHManager(File.take(), FL.take(), IData, PerIDCache,
547 SL.take(), NumIds, spellingBase,
548 (const char*) originalSourceBase);
549 }
550
LazilyCreateIdentifierInfo(unsigned PersistentID)551 IdentifierInfo* PTHManager::LazilyCreateIdentifierInfo(unsigned PersistentID) {
552 // Look in the PTH file for the string data for the IdentifierInfo object.
553 const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*PersistentID;
554 const unsigned char* IDData =
555 (const unsigned char*)Buf->getBufferStart() + ReadLE32(TableEntry);
556 assert(IDData < (const unsigned char*)Buf->getBufferEnd());
557
558 // Allocate the object.
559 std::pair<IdentifierInfo,const unsigned char*> *Mem =
560 Alloc.Allocate<std::pair<IdentifierInfo,const unsigned char*> >();
561
562 Mem->second = IDData;
563 assert(IDData[0] != '\0');
564 IdentifierInfo *II = new ((void*) Mem) IdentifierInfo();
565
566 // Store the new IdentifierInfo in the cache.
567 PerIDCache[PersistentID] = II;
568 assert(II->getNameStart() && II->getNameStart()[0] != '\0');
569 return II;
570 }
571
get(StringRef Name)572 IdentifierInfo* PTHManager::get(StringRef Name) {
573 PTHStringIdLookup& SL = *((PTHStringIdLookup*)StringIdLookup);
574 // Double check our assumption that the last character isn't '\0'.
575 assert(Name.empty() || Name.back() != '\0');
576 PTHStringIdLookup::iterator I = SL.find(std::make_pair(Name.data(),
577 Name.size()));
578 if (I == SL.end()) // No identifier found?
579 return 0;
580
581 // Match found. Return the identifier!
582 assert(*I > 0);
583 return GetIdentifierInfo(*I-1);
584 }
585
CreateLexer(FileID FID)586 PTHLexer *PTHManager::CreateLexer(FileID FID) {
587 const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID);
588 if (!FE)
589 return 0;
590
591 // Lookup the FileEntry object in our file lookup data structure. It will
592 // return a variant that indicates whether or not there is an offset within
593 // the PTH file that contains cached tokens.
594 PTHFileLookup& PFL = *((PTHFileLookup*)FileLookup);
595 PTHFileLookup::iterator I = PFL.find(FE);
596
597 if (I == PFL.end()) // No tokens available?
598 return 0;
599
600 const PTHFileData& FileData = *I;
601
602 const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart();
603 // Compute the offset of the token data within the buffer.
604 const unsigned char* data = BufStart + FileData.getTokenOffset();
605
606 // Get the location of pp-conditional table.
607 const unsigned char* ppcond = BufStart + FileData.getPPCondOffset();
608 uint32_t Len = ReadLE32(ppcond);
609 if (Len == 0) ppcond = 0;
610
611 assert(PP && "No preprocessor set yet!");
612 return new PTHLexer(*PP, FID, data, ppcond, *this);
613 }
614
615 //===----------------------------------------------------------------------===//
616 // 'stat' caching.
617 //===----------------------------------------------------------------------===//
618
619 namespace {
620 class PTHStatData {
621 public:
622 const bool HasData;
623 uint64_t Size;
624 time_t ModTime;
625 llvm::sys::fs::UniqueID UniqueID;
626 bool IsDirectory;
627
PTHStatData(uint64_t Size,time_t ModTime,llvm::sys::fs::UniqueID UniqueID,bool IsDirectory)628 PTHStatData(uint64_t Size, time_t ModTime, llvm::sys::fs::UniqueID UniqueID,
629 bool IsDirectory)
630 : HasData(true), Size(Size), ModTime(ModTime), UniqueID(UniqueID),
631 IsDirectory(IsDirectory) {}
632
PTHStatData()633 PTHStatData() : HasData(false) {}
634 };
635
636 class PTHStatLookupTrait : public PTHFileLookupCommonTrait {
637 public:
638 typedef const char* external_key_type; // const char*
639 typedef PTHStatData data_type;
640
GetInternalKey(const char * path)641 static internal_key_type GetInternalKey(const char *path) {
642 // The key 'kind' doesn't matter here because it is ignored in EqualKey.
643 return std::make_pair((unsigned char) 0x0, path);
644 }
645
EqualKey(internal_key_type a,internal_key_type b)646 static bool EqualKey(internal_key_type a, internal_key_type b) {
647 // When doing 'stat' lookups we don't care about the kind of 'a' and 'b',
648 // just the paths.
649 return strcmp(a.second, b.second) == 0;
650 }
651
ReadData(const internal_key_type & k,const unsigned char * d,unsigned)652 static data_type ReadData(const internal_key_type& k, const unsigned char* d,
653 unsigned) {
654
655 if (k.first /* File or Directory */) {
656 bool IsDirectory = true;
657 if (k.first == 0x1 /* File */) {
658 IsDirectory = false;
659 d += 4 * 2; // Skip the first 2 words.
660 }
661
662 uint64_t File = ReadUnalignedLE64(d);
663 uint64_t Device = ReadUnalignedLE64(d);
664 llvm::sys::fs::UniqueID UniqueID(File, Device);
665 time_t ModTime = ReadUnalignedLE64(d);
666 uint64_t Size = ReadUnalignedLE64(d);
667 return data_type(Size, ModTime, UniqueID, IsDirectory);
668 }
669
670 // Negative stat. Don't read anything.
671 return data_type();
672 }
673 };
674
675 class PTHStatCache : public FileSystemStatCache {
676 typedef OnDiskChainedHashTable<PTHStatLookupTrait> CacheTy;
677 CacheTy Cache;
678
679 public:
PTHStatCache(PTHFileLookup & FL)680 PTHStatCache(PTHFileLookup &FL) :
681 Cache(FL.getNumBuckets(), FL.getNumEntries(), FL.getBuckets(),
682 FL.getBase()) {}
683
~PTHStatCache()684 ~PTHStatCache() {}
685
getStat(const char * Path,FileData & Data,bool isFile,int * FileDescriptor)686 LookupResult getStat(const char *Path, FileData &Data, bool isFile,
687 int *FileDescriptor) {
688 // Do the lookup for the file's data in the PTH file.
689 CacheTy::iterator I = Cache.find(Path);
690
691 // If we don't get a hit in the PTH file just forward to 'stat'.
692 if (I == Cache.end())
693 return statChained(Path, Data, isFile, FileDescriptor);
694
695 const PTHStatData &D = *I;
696
697 if (!D.HasData)
698 return CacheMissing;
699
700 Data.Size = D.Size;
701 Data.ModTime = D.ModTime;
702 Data.UniqueID = D.UniqueID;
703 Data.IsDirectory = D.IsDirectory;
704 Data.IsNamedPipe = false;
705 Data.InPCH = true;
706
707 return CacheExists;
708 }
709 };
710 } // end anonymous namespace
711
createStatCache()712 FileSystemStatCache *PTHManager::createStatCache() {
713 return new PTHStatCache(*((PTHFileLookup*) FileLookup));
714 }
715