1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17
18 using namespace clang;
19 using namespace ento;
20
21 namespace {
22 class SimpleSValBuilder : public SValBuilder {
23 protected:
24 virtual SVal dispatchCast(SVal val, QualType castTy);
25 virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
26 virtual SVal evalCastFromLoc(Loc val, QualType castTy);
27
28 public:
SimpleSValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)29 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
30 ProgramStateManager &stateMgr)
31 : SValBuilder(alloc, context, stateMgr) {}
~SimpleSValBuilder()32 virtual ~SimpleSValBuilder() {}
33
34 virtual SVal evalMinus(NonLoc val);
35 virtual SVal evalComplement(NonLoc val);
36 virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
37 NonLoc lhs, NonLoc rhs, QualType resultTy);
38 virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
39 Loc lhs, Loc rhs, QualType resultTy);
40 virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
41 Loc lhs, NonLoc rhs, QualType resultTy);
42
43 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
44 /// (integer) value, that value is returned. Otherwise, returns NULL.
45 virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V);
46
47 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
48 const llvm::APSInt &RHS, QualType resultTy);
49 };
50 } // end anonymous namespace
51
createSimpleSValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)52 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
53 ASTContext &context,
54 ProgramStateManager &stateMgr) {
55 return new SimpleSValBuilder(alloc, context, stateMgr);
56 }
57
58 //===----------------------------------------------------------------------===//
59 // Transfer function for Casts.
60 //===----------------------------------------------------------------------===//
61
dispatchCast(SVal Val,QualType CastTy)62 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
63 assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
64 return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
65 : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
66 }
67
evalCastFromNonLoc(NonLoc val,QualType castTy)68 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
69
70 bool isLocType = Loc::isLocType(castTy);
71
72 if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
73 if (isLocType)
74 return LI->getLoc();
75
76 // FIXME: Correctly support promotions/truncations.
77 unsigned castSize = Context.getTypeSize(castTy);
78 if (castSize == LI->getNumBits())
79 return val;
80 return makeLocAsInteger(LI->getLoc(), castSize);
81 }
82
83 if (const SymExpr *se = val.getAsSymbolicExpression()) {
84 QualType T = Context.getCanonicalType(se->getType());
85 // If types are the same or both are integers, ignore the cast.
86 // FIXME: Remove this hack when we support symbolic truncation/extension.
87 // HACK: If both castTy and T are integers, ignore the cast. This is
88 // not a permanent solution. Eventually we want to precisely handle
89 // extension/truncation of symbolic integers. This prevents us from losing
90 // precision when we assign 'x = y' and 'y' is symbolic and x and y are
91 // different integer types.
92 if (haveSameType(T, castTy))
93 return val;
94
95 if (!isLocType)
96 return makeNonLoc(se, T, castTy);
97 return UnknownVal();
98 }
99
100 // If value is a non integer constant, produce unknown.
101 if (!val.getAs<nonloc::ConcreteInt>())
102 return UnknownVal();
103
104 // Handle casts to a boolean type.
105 if (castTy->isBooleanType()) {
106 bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
107 return makeTruthVal(b, castTy);
108 }
109
110 // Only handle casts from integers to integers - if val is an integer constant
111 // being cast to a non integer type, produce unknown.
112 if (!isLocType && !castTy->isIntegralOrEnumerationType())
113 return UnknownVal();
114
115 llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
116 BasicVals.getAPSIntType(castTy).apply(i);
117
118 if (isLocType)
119 return makeIntLocVal(i);
120 else
121 return makeIntVal(i);
122 }
123
evalCastFromLoc(Loc val,QualType castTy)124 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
125
126 // Casts from pointers -> pointers, just return the lval.
127 //
128 // Casts from pointers -> references, just return the lval. These
129 // can be introduced by the frontend for corner cases, e.g
130 // casting from va_list* to __builtin_va_list&.
131 //
132 if (Loc::isLocType(castTy) || castTy->isReferenceType())
133 return val;
134
135 // FIXME: Handle transparent unions where a value can be "transparently"
136 // lifted into a union type.
137 if (castTy->isUnionType())
138 return UnknownVal();
139
140 if (castTy->isIntegralOrEnumerationType()) {
141 unsigned BitWidth = Context.getTypeSize(castTy);
142
143 if (!val.getAs<loc::ConcreteInt>())
144 return makeLocAsInteger(val, BitWidth);
145
146 llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
147 BasicVals.getAPSIntType(castTy).apply(i);
148 return makeIntVal(i);
149 }
150
151 // All other cases: return 'UnknownVal'. This includes casting pointers
152 // to floats, which is probably badness it itself, but this is a good
153 // intermediate solution until we do something better.
154 return UnknownVal();
155 }
156
157 //===----------------------------------------------------------------------===//
158 // Transfer function for unary operators.
159 //===----------------------------------------------------------------------===//
160
evalMinus(NonLoc val)161 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
162 switch (val.getSubKind()) {
163 case nonloc::ConcreteIntKind:
164 return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
165 default:
166 return UnknownVal();
167 }
168 }
169
evalComplement(NonLoc X)170 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
171 switch (X.getSubKind()) {
172 case nonloc::ConcreteIntKind:
173 return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
174 default:
175 return UnknownVal();
176 }
177 }
178
179 //===----------------------------------------------------------------------===//
180 // Transfer function for binary operators.
181 //===----------------------------------------------------------------------===//
182
MakeSymIntVal(const SymExpr * LHS,BinaryOperator::Opcode op,const llvm::APSInt & RHS,QualType resultTy)183 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
184 BinaryOperator::Opcode op,
185 const llvm::APSInt &RHS,
186 QualType resultTy) {
187 bool isIdempotent = false;
188
189 // Check for a few special cases with known reductions first.
190 switch (op) {
191 default:
192 // We can't reduce this case; just treat it normally.
193 break;
194 case BO_Mul:
195 // a*0 and a*1
196 if (RHS == 0)
197 return makeIntVal(0, resultTy);
198 else if (RHS == 1)
199 isIdempotent = true;
200 break;
201 case BO_Div:
202 // a/0 and a/1
203 if (RHS == 0)
204 // This is also handled elsewhere.
205 return UndefinedVal();
206 else if (RHS == 1)
207 isIdempotent = true;
208 break;
209 case BO_Rem:
210 // a%0 and a%1
211 if (RHS == 0)
212 // This is also handled elsewhere.
213 return UndefinedVal();
214 else if (RHS == 1)
215 return makeIntVal(0, resultTy);
216 break;
217 case BO_Add:
218 case BO_Sub:
219 case BO_Shl:
220 case BO_Shr:
221 case BO_Xor:
222 // a+0, a-0, a<<0, a>>0, a^0
223 if (RHS == 0)
224 isIdempotent = true;
225 break;
226 case BO_And:
227 // a&0 and a&(~0)
228 if (RHS == 0)
229 return makeIntVal(0, resultTy);
230 else if (RHS.isAllOnesValue())
231 isIdempotent = true;
232 break;
233 case BO_Or:
234 // a|0 and a|(~0)
235 if (RHS == 0)
236 isIdempotent = true;
237 else if (RHS.isAllOnesValue()) {
238 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
239 return nonloc::ConcreteInt(Result);
240 }
241 break;
242 }
243
244 // Idempotent ops (like a*1) can still change the type of an expression.
245 // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
246 // dirty work.
247 if (isIdempotent)
248 return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
249
250 // If we reach this point, the expression cannot be simplified.
251 // Make a SymbolVal for the entire expression, after converting the RHS.
252 const llvm::APSInt *ConvertedRHS = &RHS;
253 if (BinaryOperator::isComparisonOp(op)) {
254 // We're looking for a type big enough to compare the symbolic value
255 // with the given constant.
256 // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
257 ASTContext &Ctx = getContext();
258 QualType SymbolType = LHS->getType();
259 uint64_t ValWidth = RHS.getBitWidth();
260 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
261
262 if (ValWidth < TypeWidth) {
263 // If the value is too small, extend it.
264 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
265 } else if (ValWidth == TypeWidth) {
266 // If the value is signed but the symbol is unsigned, do the comparison
267 // in unsigned space. [C99 6.3.1.8]
268 // (For the opposite case, the value is already unsigned.)
269 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
270 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
271 }
272 } else
273 ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
274
275 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
276 }
277
evalBinOpNN(ProgramStateRef state,BinaryOperator::Opcode op,NonLoc lhs,NonLoc rhs,QualType resultTy)278 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
279 BinaryOperator::Opcode op,
280 NonLoc lhs, NonLoc rhs,
281 QualType resultTy) {
282 NonLoc InputLHS = lhs;
283 NonLoc InputRHS = rhs;
284
285 // Handle trivial case where left-side and right-side are the same.
286 if (lhs == rhs)
287 switch (op) {
288 default:
289 break;
290 case BO_EQ:
291 case BO_LE:
292 case BO_GE:
293 return makeTruthVal(true, resultTy);
294 case BO_LT:
295 case BO_GT:
296 case BO_NE:
297 return makeTruthVal(false, resultTy);
298 case BO_Xor:
299 case BO_Sub:
300 if (resultTy->isIntegralOrEnumerationType())
301 return makeIntVal(0, resultTy);
302 return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
303 case BO_Or:
304 case BO_And:
305 return evalCastFromNonLoc(lhs, resultTy);
306 }
307
308 while (1) {
309 switch (lhs.getSubKind()) {
310 default:
311 return makeSymExprValNN(state, op, lhs, rhs, resultTy);
312 case nonloc::LocAsIntegerKind: {
313 Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
314 switch (rhs.getSubKind()) {
315 case nonloc::LocAsIntegerKind:
316 return evalBinOpLL(state, op, lhsL,
317 rhs.castAs<nonloc::LocAsInteger>().getLoc(),
318 resultTy);
319 case nonloc::ConcreteIntKind: {
320 // Transform the integer into a location and compare.
321 llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
322 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
323 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
324 }
325 default:
326 switch (op) {
327 case BO_EQ:
328 return makeTruthVal(false, resultTy);
329 case BO_NE:
330 return makeTruthVal(true, resultTy);
331 default:
332 // This case also handles pointer arithmetic.
333 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
334 }
335 }
336 }
337 case nonloc::ConcreteIntKind: {
338 llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
339
340 // If we're dealing with two known constants, just perform the operation.
341 if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
342 llvm::APSInt RHSValue = *KnownRHSValue;
343 if (BinaryOperator::isComparisonOp(op)) {
344 // We're looking for a type big enough to compare the two values.
345 // FIXME: This is not correct. char + short will result in a promotion
346 // to int. Unfortunately we have lost types by this point.
347 APSIntType CompareType = std::max(APSIntType(LHSValue),
348 APSIntType(RHSValue));
349 CompareType.apply(LHSValue);
350 CompareType.apply(RHSValue);
351 } else if (!BinaryOperator::isShiftOp(op)) {
352 APSIntType IntType = BasicVals.getAPSIntType(resultTy);
353 IntType.apply(LHSValue);
354 IntType.apply(RHSValue);
355 }
356
357 const llvm::APSInt *Result =
358 BasicVals.evalAPSInt(op, LHSValue, RHSValue);
359 if (!Result)
360 return UndefinedVal();
361
362 return nonloc::ConcreteInt(*Result);
363 }
364
365 // Swap the left and right sides and flip the operator if doing so
366 // allows us to better reason about the expression (this is a form
367 // of expression canonicalization).
368 // While we're at it, catch some special cases for non-commutative ops.
369 switch (op) {
370 case BO_LT:
371 case BO_GT:
372 case BO_LE:
373 case BO_GE:
374 op = BinaryOperator::reverseComparisonOp(op);
375 // FALL-THROUGH
376 case BO_EQ:
377 case BO_NE:
378 case BO_Add:
379 case BO_Mul:
380 case BO_And:
381 case BO_Xor:
382 case BO_Or:
383 std::swap(lhs, rhs);
384 continue;
385 case BO_Shr:
386 // (~0)>>a
387 if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
388 return evalCastFromNonLoc(lhs, resultTy);
389 // FALL-THROUGH
390 case BO_Shl:
391 // 0<<a and 0>>a
392 if (LHSValue == 0)
393 return evalCastFromNonLoc(lhs, resultTy);
394 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
395 default:
396 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
397 }
398 }
399 case nonloc::SymbolValKind: {
400 // We only handle LHS as simple symbols or SymIntExprs.
401 SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
402
403 // LHS is a symbolic expression.
404 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
405
406 // Is this a logical not? (!x is represented as x == 0.)
407 if (op == BO_EQ && rhs.isZeroConstant()) {
408 // We know how to negate certain expressions. Simplify them here.
409
410 BinaryOperator::Opcode opc = symIntExpr->getOpcode();
411 switch (opc) {
412 default:
413 // We don't know how to negate this operation.
414 // Just handle it as if it were a normal comparison to 0.
415 break;
416 case BO_LAnd:
417 case BO_LOr:
418 llvm_unreachable("Logical operators handled by branching logic.");
419 case BO_Assign:
420 case BO_MulAssign:
421 case BO_DivAssign:
422 case BO_RemAssign:
423 case BO_AddAssign:
424 case BO_SubAssign:
425 case BO_ShlAssign:
426 case BO_ShrAssign:
427 case BO_AndAssign:
428 case BO_XorAssign:
429 case BO_OrAssign:
430 case BO_Comma:
431 llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
432 case BO_PtrMemD:
433 case BO_PtrMemI:
434 llvm_unreachable("Pointer arithmetic not handled here.");
435 case BO_LT:
436 case BO_GT:
437 case BO_LE:
438 case BO_GE:
439 case BO_EQ:
440 case BO_NE:
441 assert(resultTy->isBooleanType() ||
442 resultTy == getConditionType());
443 assert(symIntExpr->getType()->isBooleanType() ||
444 getContext().hasSameUnqualifiedType(symIntExpr->getType(),
445 getConditionType()));
446 // Negate the comparison and make a value.
447 opc = BinaryOperator::negateComparisonOp(opc);
448 return makeNonLoc(symIntExpr->getLHS(), opc,
449 symIntExpr->getRHS(), resultTy);
450 }
451 }
452
453 // For now, only handle expressions whose RHS is a constant.
454 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
455 // If both the LHS and the current expression are additive,
456 // fold their constants and try again.
457 if (BinaryOperator::isAdditiveOp(op)) {
458 BinaryOperator::Opcode lop = symIntExpr->getOpcode();
459 if (BinaryOperator::isAdditiveOp(lop)) {
460 // Convert the two constants to a common type, then combine them.
461
462 // resultTy may not be the best type to convert to, but it's
463 // probably the best choice in expressions with mixed type
464 // (such as x+1U+2LL). The rules for implicit conversions should
465 // choose a reasonable type to preserve the expression, and will
466 // at least match how the value is going to be used.
467 APSIntType IntType = BasicVals.getAPSIntType(resultTy);
468 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
469 const llvm::APSInt &second = IntType.convert(*RHSValue);
470
471 const llvm::APSInt *newRHS;
472 if (lop == op)
473 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
474 else
475 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
476
477 assert(newRHS && "Invalid operation despite common type!");
478 rhs = nonloc::ConcreteInt(*newRHS);
479 lhs = nonloc::SymbolVal(symIntExpr->getLHS());
480 op = lop;
481 continue;
482 }
483 }
484
485 // Otherwise, make a SymIntExpr out of the expression.
486 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
487 }
488 }
489
490 // Does the symbolic expression simplify to a constant?
491 // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
492 // and try again.
493 ConstraintManager &CMgr = state->getConstraintManager();
494 if (const llvm::APSInt *Constant = CMgr.getSymVal(state, Sym)) {
495 lhs = nonloc::ConcreteInt(*Constant);
496 continue;
497 }
498
499 // Is the RHS a constant?
500 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
501 return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
502
503 // Give up -- this is not a symbolic expression we can handle.
504 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
505 }
506 }
507 }
508 }
509
evalBinOpFieldRegionFieldRegion(const FieldRegion * LeftFR,const FieldRegion * RightFR,BinaryOperator::Opcode op,QualType resultTy,SimpleSValBuilder & SVB)510 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
511 const FieldRegion *RightFR,
512 BinaryOperator::Opcode op,
513 QualType resultTy,
514 SimpleSValBuilder &SVB) {
515 // Only comparisons are meaningful here!
516 if (!BinaryOperator::isComparisonOp(op))
517 return UnknownVal();
518
519 // Next, see if the two FRs have the same super-region.
520 // FIXME: This doesn't handle casts yet, and simply stripping the casts
521 // doesn't help.
522 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
523 return UnknownVal();
524
525 const FieldDecl *LeftFD = LeftFR->getDecl();
526 const FieldDecl *RightFD = RightFR->getDecl();
527 const RecordDecl *RD = LeftFD->getParent();
528
529 // Make sure the two FRs are from the same kind of record. Just in case!
530 // FIXME: This is probably where inheritance would be a problem.
531 if (RD != RightFD->getParent())
532 return UnknownVal();
533
534 // We know for sure that the two fields are not the same, since that
535 // would have given us the same SVal.
536 if (op == BO_EQ)
537 return SVB.makeTruthVal(false, resultTy);
538 if (op == BO_NE)
539 return SVB.makeTruthVal(true, resultTy);
540
541 // Iterate through the fields and see which one comes first.
542 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
543 // members and the units in which bit-fields reside have addresses that
544 // increase in the order in which they are declared."
545 bool leftFirst = (op == BO_LT || op == BO_LE);
546 for (RecordDecl::field_iterator I = RD->field_begin(),
547 E = RD->field_end(); I!=E; ++I) {
548 if (*I == LeftFD)
549 return SVB.makeTruthVal(leftFirst, resultTy);
550 if (*I == RightFD)
551 return SVB.makeTruthVal(!leftFirst, resultTy);
552 }
553
554 llvm_unreachable("Fields not found in parent record's definition");
555 }
556
557 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
evalBinOpLL(ProgramStateRef state,BinaryOperator::Opcode op,Loc lhs,Loc rhs,QualType resultTy)558 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
559 BinaryOperator::Opcode op,
560 Loc lhs, Loc rhs,
561 QualType resultTy) {
562 // Only comparisons and subtractions are valid operations on two pointers.
563 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
564 // However, if a pointer is casted to an integer, evalBinOpNN may end up
565 // calling this function with another operation (PR7527). We don't attempt to
566 // model this for now, but it could be useful, particularly when the
567 // "location" is actually an integer value that's been passed through a void*.
568 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
569 return UnknownVal();
570
571 // Special cases for when both sides are identical.
572 if (lhs == rhs) {
573 switch (op) {
574 default:
575 llvm_unreachable("Unimplemented operation for two identical values");
576 case BO_Sub:
577 return makeZeroVal(resultTy);
578 case BO_EQ:
579 case BO_LE:
580 case BO_GE:
581 return makeTruthVal(true, resultTy);
582 case BO_NE:
583 case BO_LT:
584 case BO_GT:
585 return makeTruthVal(false, resultTy);
586 }
587 }
588
589 switch (lhs.getSubKind()) {
590 default:
591 llvm_unreachable("Ordering not implemented for this Loc.");
592
593 case loc::GotoLabelKind:
594 // The only thing we know about labels is that they're non-null.
595 if (rhs.isZeroConstant()) {
596 switch (op) {
597 default:
598 break;
599 case BO_Sub:
600 return evalCastFromLoc(lhs, resultTy);
601 case BO_EQ:
602 case BO_LE:
603 case BO_LT:
604 return makeTruthVal(false, resultTy);
605 case BO_NE:
606 case BO_GT:
607 case BO_GE:
608 return makeTruthVal(true, resultTy);
609 }
610 }
611 // There may be two labels for the same location, and a function region may
612 // have the same address as a label at the start of the function (depending
613 // on the ABI).
614 // FIXME: we can probably do a comparison against other MemRegions, though.
615 // FIXME: is there a way to tell if two labels refer to the same location?
616 return UnknownVal();
617
618 case loc::ConcreteIntKind: {
619 // If one of the operands is a symbol and the other is a constant,
620 // build an expression for use by the constraint manager.
621 if (SymbolRef rSym = rhs.getAsLocSymbol()) {
622 // We can only build expressions with symbols on the left,
623 // so we need a reversible operator.
624 if (!BinaryOperator::isComparisonOp(op))
625 return UnknownVal();
626
627 const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
628 op = BinaryOperator::reverseComparisonOp(op);
629 return makeNonLoc(rSym, op, lVal, resultTy);
630 }
631
632 // If both operands are constants, just perform the operation.
633 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
634 SVal ResultVal =
635 lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
636 if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
637 return evalCastFromNonLoc(*Result, resultTy);
638
639 assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
640 return UnknownVal();
641 }
642
643 // Special case comparisons against NULL.
644 // This must come after the test if the RHS is a symbol, which is used to
645 // build constraints. The address of any non-symbolic region is guaranteed
646 // to be non-NULL, as is any label.
647 assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
648 if (lhs.isZeroConstant()) {
649 switch (op) {
650 default:
651 break;
652 case BO_EQ:
653 case BO_GT:
654 case BO_GE:
655 return makeTruthVal(false, resultTy);
656 case BO_NE:
657 case BO_LT:
658 case BO_LE:
659 return makeTruthVal(true, resultTy);
660 }
661 }
662
663 // Comparing an arbitrary integer to a region or label address is
664 // completely unknowable.
665 return UnknownVal();
666 }
667 case loc::MemRegionKind: {
668 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
669 // If one of the operands is a symbol and the other is a constant,
670 // build an expression for use by the constraint manager.
671 if (SymbolRef lSym = lhs.getAsLocSymbol())
672 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
673
674 // Special case comparisons to NULL.
675 // This must come after the test if the LHS is a symbol, which is used to
676 // build constraints. The address of any non-symbolic region is guaranteed
677 // to be non-NULL.
678 if (rInt->isZeroConstant()) {
679 switch (op) {
680 default:
681 break;
682 case BO_Sub:
683 return evalCastFromLoc(lhs, resultTy);
684 case BO_EQ:
685 case BO_LT:
686 case BO_LE:
687 return makeTruthVal(false, resultTy);
688 case BO_NE:
689 case BO_GT:
690 case BO_GE:
691 return makeTruthVal(true, resultTy);
692 }
693 }
694
695 // Comparing a region to an arbitrary integer is completely unknowable.
696 return UnknownVal();
697 }
698
699 // Get both values as regions, if possible.
700 const MemRegion *LeftMR = lhs.getAsRegion();
701 assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
702
703 const MemRegion *RightMR = rhs.getAsRegion();
704 if (!RightMR)
705 // The RHS is probably a label, which in theory could address a region.
706 // FIXME: we can probably make a more useful statement about non-code
707 // regions, though.
708 return UnknownVal();
709
710 const MemRegion *LeftBase = LeftMR->getBaseRegion();
711 const MemRegion *RightBase = RightMR->getBaseRegion();
712 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
713 const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
714 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
715
716 // If the two regions are from different known memory spaces they cannot be
717 // equal. Also, assume that no symbolic region (whose memory space is
718 // unknown) is on the stack.
719 if (LeftMS != RightMS &&
720 ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
721 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
722 switch (op) {
723 default:
724 return UnknownVal();
725 case BO_EQ:
726 return makeTruthVal(false, resultTy);
727 case BO_NE:
728 return makeTruthVal(true, resultTy);
729 }
730 }
731
732 // If both values wrap regions, see if they're from different base regions.
733 // Note, heap base symbolic regions are assumed to not alias with
734 // each other; for example, we assume that malloc returns different address
735 // on each invocation.
736 if (LeftBase != RightBase &&
737 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
738 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
739 switch (op) {
740 default:
741 return UnknownVal();
742 case BO_EQ:
743 return makeTruthVal(false, resultTy);
744 case BO_NE:
745 return makeTruthVal(true, resultTy);
746 }
747 }
748
749 // Handle special cases for when both regions are element regions.
750 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
751 const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
752 if (RightER && LeftER) {
753 // Next, see if the two ERs have the same super-region and matching types.
754 // FIXME: This should do something useful even if the types don't match,
755 // though if both indexes are constant the RegionRawOffset path will
756 // give the correct answer.
757 if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
758 LeftER->getElementType() == RightER->getElementType()) {
759 // Get the left index and cast it to the correct type.
760 // If the index is unknown or undefined, bail out here.
761 SVal LeftIndexVal = LeftER->getIndex();
762 Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
763 if (!LeftIndex)
764 return UnknownVal();
765 LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
766 LeftIndex = LeftIndexVal.getAs<NonLoc>();
767 if (!LeftIndex)
768 return UnknownVal();
769
770 // Do the same for the right index.
771 SVal RightIndexVal = RightER->getIndex();
772 Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
773 if (!RightIndex)
774 return UnknownVal();
775 RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
776 RightIndex = RightIndexVal.getAs<NonLoc>();
777 if (!RightIndex)
778 return UnknownVal();
779
780 // Actually perform the operation.
781 // evalBinOpNN expects the two indexes to already be the right type.
782 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
783 }
784 }
785
786 // Special handling of the FieldRegions, even with symbolic offsets.
787 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
788 const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
789 if (RightFR && LeftFR) {
790 SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
791 *this);
792 if (!R.isUnknown())
793 return R;
794 }
795
796 // Compare the regions using the raw offsets.
797 RegionOffset LeftOffset = LeftMR->getAsOffset();
798 RegionOffset RightOffset = RightMR->getAsOffset();
799
800 if (LeftOffset.getRegion() != NULL &&
801 LeftOffset.getRegion() == RightOffset.getRegion() &&
802 !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
803 int64_t left = LeftOffset.getOffset();
804 int64_t right = RightOffset.getOffset();
805
806 switch (op) {
807 default:
808 return UnknownVal();
809 case BO_LT:
810 return makeTruthVal(left < right, resultTy);
811 case BO_GT:
812 return makeTruthVal(left > right, resultTy);
813 case BO_LE:
814 return makeTruthVal(left <= right, resultTy);
815 case BO_GE:
816 return makeTruthVal(left >= right, resultTy);
817 case BO_EQ:
818 return makeTruthVal(left == right, resultTy);
819 case BO_NE:
820 return makeTruthVal(left != right, resultTy);
821 }
822 }
823
824 // At this point we're not going to get a good answer, but we can try
825 // conjuring an expression instead.
826 SymbolRef LHSSym = lhs.getAsLocSymbol();
827 SymbolRef RHSSym = rhs.getAsLocSymbol();
828 if (LHSSym && RHSSym)
829 return makeNonLoc(LHSSym, op, RHSSym, resultTy);
830
831 // If we get here, we have no way of comparing the regions.
832 return UnknownVal();
833 }
834 }
835 }
836
evalBinOpLN(ProgramStateRef state,BinaryOperator::Opcode op,Loc lhs,NonLoc rhs,QualType resultTy)837 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
838 BinaryOperator::Opcode op,
839 Loc lhs, NonLoc rhs, QualType resultTy) {
840 assert(!BinaryOperator::isComparisonOp(op) &&
841 "arguments to comparison ops must be of the same type");
842
843 // Special case: rhs is a zero constant.
844 if (rhs.isZeroConstant())
845 return lhs;
846
847 // We are dealing with pointer arithmetic.
848
849 // Handle pointer arithmetic on constant values.
850 if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
851 if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
852 const llvm::APSInt &leftI = lhsInt->getValue();
853 assert(leftI.isUnsigned());
854 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
855
856 // Convert the bitwidth of rightI. This should deal with overflow
857 // since we are dealing with concrete values.
858 rightI = rightI.extOrTrunc(leftI.getBitWidth());
859
860 // Offset the increment by the pointer size.
861 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
862 rightI *= Multiplicand;
863
864 // Compute the adjusted pointer.
865 switch (op) {
866 case BO_Add:
867 rightI = leftI + rightI;
868 break;
869 case BO_Sub:
870 rightI = leftI - rightI;
871 break;
872 default:
873 llvm_unreachable("Invalid pointer arithmetic operation");
874 }
875 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
876 }
877 }
878
879 // Handle cases where 'lhs' is a region.
880 if (const MemRegion *region = lhs.getAsRegion()) {
881 rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
882 SVal index = UnknownVal();
883 const MemRegion *superR = 0;
884 QualType elementType;
885
886 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
887 assert(op == BO_Add || op == BO_Sub);
888 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
889 getArrayIndexType());
890 superR = elemReg->getSuperRegion();
891 elementType = elemReg->getElementType();
892 }
893 else if (isa<SubRegion>(region)) {
894 superR = region;
895 index = rhs;
896 if (resultTy->isAnyPointerType())
897 elementType = resultTy->getPointeeType();
898 }
899
900 if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
901 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
902 superR, getContext()));
903 }
904 }
905 return UnknownVal();
906 }
907
getKnownValue(ProgramStateRef state,SVal V)908 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
909 SVal V) {
910 if (V.isUnknownOrUndef())
911 return NULL;
912
913 if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
914 return &X->getValue();
915
916 if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
917 return &X->getValue();
918
919 if (SymbolRef Sym = V.getAsSymbol())
920 return state->getConstraintManager().getSymVal(state, Sym);
921
922 // FIXME: Add support for SymExprs.
923 return NULL;
924 }
925