• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <sys/mman.h>  /* for PROT_* */
18 
19 #include "Dalvik.h"
20 #include "alloc/HeapBitmap.h"
21 #include "alloc/HeapBitmapInlines.h"
22 #include "alloc/HeapSource.h"
23 #include "alloc/Visit.h"
24 
25 /*
26  * Maintain a card table from the the write barrier. All writes of
27  * non-NULL values to heap addresses should go through an entry in
28  * WriteBarrier, and from there to here.
29  *
30  * The heap is divided into "cards" of GC_CARD_SIZE bytes, as
31  * determined by GC_CARD_SHIFT. The card table contains one byte of
32  * data per card, to be used by the GC. The value of the byte will be
33  * one of GC_CARD_CLEAN or GC_CARD_DIRTY.
34  *
35  * After any store of a non-NULL object pointer into a heap object,
36  * code is obliged to mark the card dirty. The setters in
37  * ObjectInlines.h [such as dvmSetFieldObject] do this for you. The
38  * JIT and fast interpreters also contain code to mark cards as dirty.
39  *
40  * The card table's base [the "biased card table"] gets set to a
41  * rather strange value.  In order to keep the JIT from having to
42  * fabricate or load GC_DIRTY_CARD to store into the card table,
43  * biased base is within the mmap allocation at a point where it's low
44  * byte is equal to GC_DIRTY_CARD. See dvmCardTableStartup for details.
45  */
46 
47 /*
48  * Initializes the card table; must be called before any other
49  * dvmCardTable*() functions.
50  */
dvmCardTableStartup(size_t heapMaximumSize,size_t growthLimit)51 bool dvmCardTableStartup(size_t heapMaximumSize, size_t growthLimit)
52 {
53     size_t length;
54     void *allocBase;
55     u1 *biasedBase;
56     GcHeap *gcHeap = gDvm.gcHeap;
57     int offset;
58     void *heapBase = dvmHeapSourceGetBase();
59     assert(gcHeap != NULL);
60     assert(heapBase != NULL);
61     /* All zeros is the correct initial value; all clean. */
62     assert(GC_CARD_CLEAN == 0);
63 
64     /* Set up the card table */
65     length = heapMaximumSize / GC_CARD_SIZE;
66     /* Allocate an extra 256 bytes to allow fixed low-byte of base */
67     allocBase = dvmAllocRegion(length + 0x100, PROT_READ | PROT_WRITE,
68                             "dalvik-card-table");
69     if (allocBase == NULL) {
70         return false;
71     }
72     gcHeap->cardTableBase = (u1*)allocBase;
73     gcHeap->cardTableLength = growthLimit / GC_CARD_SIZE;
74     gcHeap->cardTableMaxLength = length;
75     biasedBase = (u1 *)((uintptr_t)allocBase -
76                        ((uintptr_t)heapBase >> GC_CARD_SHIFT));
77     offset = GC_CARD_DIRTY - ((uintptr_t)biasedBase & 0xff);
78     gcHeap->cardTableOffset = offset + (offset < 0 ? 0x100 : 0);
79     biasedBase += gcHeap->cardTableOffset;
80     assert(((uintptr_t)biasedBase & 0xff) == GC_CARD_DIRTY);
81     gDvm.biasedCardTableBase = biasedBase;
82 
83     return true;
84 }
85 
86 /*
87  * Tears down the entire CardTable.
88  */
dvmCardTableShutdown()89 void dvmCardTableShutdown()
90 {
91     gDvm.biasedCardTableBase = NULL;
92     munmap(gDvm.gcHeap->cardTableBase, gDvm.gcHeap->cardTableLength);
93 }
94 
dvmClearCardTable()95 void dvmClearCardTable()
96 {
97     /*
98      * The goal is to zero out some mmap-allocated pages.  We can accomplish
99      * this with memset() or madvise(MADV_DONTNEED).  The latter has some
100      * useful properties, notably that the pages are returned to the system,
101      * so cards for parts of the heap we haven't expanded into won't be
102      * allocated physical pages.  On the other hand, if we un-map the card
103      * area, we'll have to fault it back in as we resume dirtying objects,
104      * which reduces performance.
105      *
106      * We don't cause any correctness issues by failing to clear cards; we
107      * just take a performance hit during the second pause of the concurrent
108      * collection.  The "advisory" nature of madvise() isn't a big problem.
109      *
110      * What we really want to do is:
111      * (1) zero out all cards that were touched
112      * (2) use madvise() to release any pages that won't be used in the near
113      *     future
114      *
115      * For #1, we don't really know which cards were touched, but we can
116      * approximate it with the "live bits max" value, which tells us the
117      * highest start address at which an object was allocated.  This may
118      * leave vestigial nonzero entries at the end if temporary objects are
119      * created during a concurrent GC, but that should be harmless.  (We
120      * can round up to the end of the card table page to reduce this.)
121      *
122      * For #2, we don't know which pages will be used in the future.  Some
123      * simple experiments suggested that a "typical" app will touch about
124      * 60KB of pages while initializing, but drops down to 20-24KB while
125      * idle.  We can save a few hundred KB system-wide with aggressive
126      * use of madvise().  The cost of mapping those pages back in is paid
127      * outside of the GC pause, which reduces the impact.  (We might be
128      * able to get the benefits by only doing this occasionally, e.g. if
129      * the heap shrinks a lot or we somehow notice that we've been idle.)
130      *
131      * Note that cardTableLength is initially set to the growth limit, and
132      * on request will be expanded to the heap maximum.
133      */
134     assert(gDvm.gcHeap->cardTableBase != NULL);
135 
136     if (gDvm.lowMemoryMode) {
137       // zero out cards with madvise(), discarding all pages in the card table
138       madvise(gDvm.gcHeap->cardTableBase, gDvm.gcHeap->cardTableLength, MADV_DONTNEED);
139     } else {
140       // zero out cards with memset(), using liveBits as an estimate
141       const HeapBitmap* liveBits = dvmHeapSourceGetLiveBits();
142       size_t maxLiveCard = (liveBits->max - liveBits->base) / GC_CARD_SIZE;
143       maxLiveCard = ALIGN_UP_TO_PAGE_SIZE(maxLiveCard);
144       if (maxLiveCard > gDvm.gcHeap->cardTableLength) {
145           maxLiveCard = gDvm.gcHeap->cardTableLength;
146       }
147 
148       memset(gDvm.gcHeap->cardTableBase, GC_CARD_CLEAN, maxLiveCard);
149     }
150 }
151 
152 /*
153  * Returns true iff the address is within the bounds of the card table.
154  */
dvmIsValidCard(const u1 * cardAddr)155 bool dvmIsValidCard(const u1 *cardAddr)
156 {
157     GcHeap *h = gDvm.gcHeap;
158     u1* begin = h->cardTableBase + h->cardTableOffset;
159     u1* end = &begin[h->cardTableLength];
160     return cardAddr >= begin && cardAddr < end;
161 }
162 
163 /*
164  * Returns the address of the relevant byte in the card table, given
165  * an address on the heap.
166  */
dvmCardFromAddr(const void * addr)167 u1 *dvmCardFromAddr(const void *addr)
168 {
169     u1 *biasedBase = gDvm.biasedCardTableBase;
170     u1 *cardAddr = biasedBase + ((uintptr_t)addr >> GC_CARD_SHIFT);
171     assert(dvmIsValidCard(cardAddr));
172     return cardAddr;
173 }
174 
175 /*
176  * Returns the first address in the heap which maps to this card.
177  */
dvmAddrFromCard(const u1 * cardAddr)178 void *dvmAddrFromCard(const u1 *cardAddr)
179 {
180     assert(dvmIsValidCard(cardAddr));
181     uintptr_t offset = cardAddr - gDvm.biasedCardTableBase;
182     return (void *)(offset << GC_CARD_SHIFT);
183 }
184 
185 /*
186  * Dirties the card for the given address.
187  */
dvmMarkCard(const void * addr)188 void dvmMarkCard(const void *addr)
189 {
190     u1 *cardAddr = dvmCardFromAddr(addr);
191     *cardAddr = GC_CARD_DIRTY;
192 }
193 
194 /*
195  * Returns true if the object is on a dirty card.
196  */
isObjectDirty(const Object * obj)197 static bool isObjectDirty(const Object *obj)
198 {
199     assert(obj != NULL);
200     assert(dvmIsValidObject(obj));
201     u1 *card = dvmCardFromAddr(obj);
202     return *card == GC_CARD_DIRTY;
203 }
204 
205 /*
206  * Context structure for verifying the card table.
207  */
208 struct WhiteReferenceCounter {
209     HeapBitmap *markBits;
210     size_t whiteRefs;
211 };
212 
213 /*
214  * Visitor that counts white referents.
215  */
countWhiteReferenceVisitor(void * addr,void * arg)216 static void countWhiteReferenceVisitor(void *addr, void *arg)
217 {
218     WhiteReferenceCounter *ctx;
219     Object *obj;
220 
221     assert(addr != NULL);
222     assert(arg != NULL);
223     obj = *(Object **)addr;
224     if (obj == NULL) {
225         return;
226     }
227     assert(dvmIsValidObject(obj));
228     ctx = (WhiteReferenceCounter *)arg;
229     if (dvmHeapBitmapIsObjectBitSet(ctx->markBits, obj)) {
230         return;
231     }
232     ctx->whiteRefs += 1;
233 }
234 
235 /*
236  * Visitor that logs white references.
237  */
dumpWhiteReferenceVisitor(void * addr,void * arg)238 static void dumpWhiteReferenceVisitor(void *addr, void *arg)
239 {
240     WhiteReferenceCounter *ctx;
241     Object *obj;
242 
243     assert(addr != NULL);
244     assert(arg != NULL);
245     obj = *(Object **)addr;
246     if (obj == NULL) {
247         return;
248     }
249     assert(dvmIsValidObject(obj));
250     ctx = (WhiteReferenceCounter*)arg;
251     if (dvmHeapBitmapIsObjectBitSet(ctx->markBits, obj)) {
252         return;
253     }
254     ALOGE("object %p is white", obj);
255 }
256 
257 /*
258  * Visitor that signals the caller when a matching reference is found.
259  */
dumpReferencesVisitor(void * pObj,void * arg)260 static void dumpReferencesVisitor(void *pObj, void *arg)
261 {
262     Object *obj = *(Object **)pObj;
263     Object *lookingFor = *(Object **)arg;
264     if (lookingFor != NULL && lookingFor == obj) {
265         *(Object **)arg = NULL;
266     }
267 }
268 
dumpReferencesCallback(Object * obj,void * arg)269 static void dumpReferencesCallback(Object *obj, void *arg)
270 {
271     if (obj == (Object *)arg) {
272         return;
273     }
274     dvmVisitObject(dumpReferencesVisitor, obj, &arg);
275     if (arg == NULL) {
276         ALOGD("Found %p in the heap @ %p", arg, obj);
277         dvmDumpObject(obj);
278     }
279 }
280 
281 /*
282  * Root visitor that looks for matching references.
283  */
dumpReferencesRootVisitor(void * ptr,u4 threadId,RootType type,void * arg)284 static void dumpReferencesRootVisitor(void *ptr, u4 threadId,
285                                       RootType type, void *arg)
286 {
287     Object *obj = *(Object **)ptr;
288     Object *lookingFor = *(Object **)arg;
289     if (obj == lookingFor) {
290         ALOGD("Found %p in a root @ %p", arg, ptr);
291     }
292 }
293 
294 /*
295  * Invokes visitors to search for references to an object.
296  */
dumpReferences(const Object * obj)297 static void dumpReferences(const Object *obj)
298 {
299     HeapBitmap *bitmap = dvmHeapSourceGetLiveBits();
300     void *arg = (void *)obj;
301     dvmVisitRoots(dumpReferencesRootVisitor, arg);
302     dvmHeapBitmapWalk(bitmap, dumpReferencesCallback, arg);
303 }
304 
305 /*
306  * Returns true if the given object is a reference object and the
307  * just the referent is unmarked.
308  */
isReferentUnmarked(const Object * obj,const WhiteReferenceCounter * ctx)309 static bool isReferentUnmarked(const Object *obj,
310                                const WhiteReferenceCounter* ctx)
311 {
312     assert(obj != NULL);
313     assert(obj->clazz != NULL);
314     assert(ctx != NULL);
315     if (ctx->whiteRefs != 1) {
316         return false;
317     } else if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISREFERENCE)) {
318         size_t offset = gDvm.offJavaLangRefReference_referent;
319         const Object *referent = dvmGetFieldObject(obj, offset);
320         return !dvmHeapBitmapIsObjectBitSet(ctx->markBits, referent);
321     } else {
322         return false;
323     }
324 }
325 
326 /*
327  * Returns true if the given object is a string and has been interned
328  * by the user.
329  */
isWeakInternedString(const Object * obj)330 static bool isWeakInternedString(const Object *obj)
331 {
332     assert(obj != NULL);
333     if (obj->clazz == gDvm.classJavaLangString) {
334         return dvmIsWeakInternedString((StringObject *)obj);
335     } else {
336         return false;
337     }
338 }
339 
340 /*
341  * Returns true if the given object has been pushed on the mark stack
342  * by root marking.
343  */
isPushedOnMarkStack(const Object * obj)344 static bool isPushedOnMarkStack(const Object *obj)
345 {
346     GcMarkStack *stack = &gDvm.gcHeap->markContext.stack;
347     for (const Object **ptr = stack->base; ptr < stack->top; ++ptr) {
348         if (*ptr == obj) {
349             return true;
350         }
351     }
352     return false;
353 }
354 
355 /*
356  * Callback applied to marked objects.  If the object is gray and on
357  * an unmarked card an error is logged and the VM is aborted.  Card
358  * table verification occurs between root marking and weak reference
359  * processing.  We treat objects marked from the roots and weak
360  * references specially as it is permissible for these objects to be
361  * gray and on an unmarked card.
362  */
verifyCardTableCallback(Object * obj,void * arg)363 static void verifyCardTableCallback(Object *obj, void *arg)
364 {
365     WhiteReferenceCounter ctx = { (HeapBitmap *)arg, 0 };
366 
367     dvmVisitObject(countWhiteReferenceVisitor, obj, &ctx);
368     if (ctx.whiteRefs == 0) {
369         return;
370     } else if (isObjectDirty(obj)) {
371         return;
372     } else if (isReferentUnmarked(obj, &ctx)) {
373         return;
374     } else if (isWeakInternedString(obj)) {
375         return;
376     } else if (isPushedOnMarkStack(obj)) {
377         return;
378     } else {
379         ALOGE("Verify failed, object %p is gray and on an unmarked card", obj);
380         dvmDumpObject(obj);
381         dvmVisitObject(dumpWhiteReferenceVisitor, obj, &ctx);
382         dumpReferences(obj);
383         dvmAbort();
384     }
385 }
386 
387 /*
388  * Verifies that gray objects are on a dirty card.
389  */
dvmVerifyCardTable()390 void dvmVerifyCardTable()
391 {
392     HeapBitmap *markBits = gDvm.gcHeap->markContext.bitmap;
393     dvmHeapBitmapWalk(markBits, verifyCardTableCallback, markBits);
394 }
395