1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <sys/mman.h> /* for PROT_* */
18
19 #include "Dalvik.h"
20 #include "alloc/HeapBitmap.h"
21 #include "alloc/HeapBitmapInlines.h"
22 #include "alloc/HeapSource.h"
23 #include "alloc/Visit.h"
24
25 /*
26 * Maintain a card table from the the write barrier. All writes of
27 * non-NULL values to heap addresses should go through an entry in
28 * WriteBarrier, and from there to here.
29 *
30 * The heap is divided into "cards" of GC_CARD_SIZE bytes, as
31 * determined by GC_CARD_SHIFT. The card table contains one byte of
32 * data per card, to be used by the GC. The value of the byte will be
33 * one of GC_CARD_CLEAN or GC_CARD_DIRTY.
34 *
35 * After any store of a non-NULL object pointer into a heap object,
36 * code is obliged to mark the card dirty. The setters in
37 * ObjectInlines.h [such as dvmSetFieldObject] do this for you. The
38 * JIT and fast interpreters also contain code to mark cards as dirty.
39 *
40 * The card table's base [the "biased card table"] gets set to a
41 * rather strange value. In order to keep the JIT from having to
42 * fabricate or load GC_DIRTY_CARD to store into the card table,
43 * biased base is within the mmap allocation at a point where it's low
44 * byte is equal to GC_DIRTY_CARD. See dvmCardTableStartup for details.
45 */
46
47 /*
48 * Initializes the card table; must be called before any other
49 * dvmCardTable*() functions.
50 */
dvmCardTableStartup(size_t heapMaximumSize,size_t growthLimit)51 bool dvmCardTableStartup(size_t heapMaximumSize, size_t growthLimit)
52 {
53 size_t length;
54 void *allocBase;
55 u1 *biasedBase;
56 GcHeap *gcHeap = gDvm.gcHeap;
57 int offset;
58 void *heapBase = dvmHeapSourceGetBase();
59 assert(gcHeap != NULL);
60 assert(heapBase != NULL);
61 /* All zeros is the correct initial value; all clean. */
62 assert(GC_CARD_CLEAN == 0);
63
64 /* Set up the card table */
65 length = heapMaximumSize / GC_CARD_SIZE;
66 /* Allocate an extra 256 bytes to allow fixed low-byte of base */
67 allocBase = dvmAllocRegion(length + 0x100, PROT_READ | PROT_WRITE,
68 "dalvik-card-table");
69 if (allocBase == NULL) {
70 return false;
71 }
72 gcHeap->cardTableBase = (u1*)allocBase;
73 gcHeap->cardTableLength = growthLimit / GC_CARD_SIZE;
74 gcHeap->cardTableMaxLength = length;
75 biasedBase = (u1 *)((uintptr_t)allocBase -
76 ((uintptr_t)heapBase >> GC_CARD_SHIFT));
77 offset = GC_CARD_DIRTY - ((uintptr_t)biasedBase & 0xff);
78 gcHeap->cardTableOffset = offset + (offset < 0 ? 0x100 : 0);
79 biasedBase += gcHeap->cardTableOffset;
80 assert(((uintptr_t)biasedBase & 0xff) == GC_CARD_DIRTY);
81 gDvm.biasedCardTableBase = biasedBase;
82
83 return true;
84 }
85
86 /*
87 * Tears down the entire CardTable.
88 */
dvmCardTableShutdown()89 void dvmCardTableShutdown()
90 {
91 gDvm.biasedCardTableBase = NULL;
92 munmap(gDvm.gcHeap->cardTableBase, gDvm.gcHeap->cardTableLength);
93 }
94
dvmClearCardTable()95 void dvmClearCardTable()
96 {
97 /*
98 * The goal is to zero out some mmap-allocated pages. We can accomplish
99 * this with memset() or madvise(MADV_DONTNEED). The latter has some
100 * useful properties, notably that the pages are returned to the system,
101 * so cards for parts of the heap we haven't expanded into won't be
102 * allocated physical pages. On the other hand, if we un-map the card
103 * area, we'll have to fault it back in as we resume dirtying objects,
104 * which reduces performance.
105 *
106 * We don't cause any correctness issues by failing to clear cards; we
107 * just take a performance hit during the second pause of the concurrent
108 * collection. The "advisory" nature of madvise() isn't a big problem.
109 *
110 * What we really want to do is:
111 * (1) zero out all cards that were touched
112 * (2) use madvise() to release any pages that won't be used in the near
113 * future
114 *
115 * For #1, we don't really know which cards were touched, but we can
116 * approximate it with the "live bits max" value, which tells us the
117 * highest start address at which an object was allocated. This may
118 * leave vestigial nonzero entries at the end if temporary objects are
119 * created during a concurrent GC, but that should be harmless. (We
120 * can round up to the end of the card table page to reduce this.)
121 *
122 * For #2, we don't know which pages will be used in the future. Some
123 * simple experiments suggested that a "typical" app will touch about
124 * 60KB of pages while initializing, but drops down to 20-24KB while
125 * idle. We can save a few hundred KB system-wide with aggressive
126 * use of madvise(). The cost of mapping those pages back in is paid
127 * outside of the GC pause, which reduces the impact. (We might be
128 * able to get the benefits by only doing this occasionally, e.g. if
129 * the heap shrinks a lot or we somehow notice that we've been idle.)
130 *
131 * Note that cardTableLength is initially set to the growth limit, and
132 * on request will be expanded to the heap maximum.
133 */
134 assert(gDvm.gcHeap->cardTableBase != NULL);
135
136 if (gDvm.lowMemoryMode) {
137 // zero out cards with madvise(), discarding all pages in the card table
138 madvise(gDvm.gcHeap->cardTableBase, gDvm.gcHeap->cardTableLength, MADV_DONTNEED);
139 } else {
140 // zero out cards with memset(), using liveBits as an estimate
141 const HeapBitmap* liveBits = dvmHeapSourceGetLiveBits();
142 size_t maxLiveCard = (liveBits->max - liveBits->base) / GC_CARD_SIZE;
143 maxLiveCard = ALIGN_UP_TO_PAGE_SIZE(maxLiveCard);
144 if (maxLiveCard > gDvm.gcHeap->cardTableLength) {
145 maxLiveCard = gDvm.gcHeap->cardTableLength;
146 }
147
148 memset(gDvm.gcHeap->cardTableBase, GC_CARD_CLEAN, maxLiveCard);
149 }
150 }
151
152 /*
153 * Returns true iff the address is within the bounds of the card table.
154 */
dvmIsValidCard(const u1 * cardAddr)155 bool dvmIsValidCard(const u1 *cardAddr)
156 {
157 GcHeap *h = gDvm.gcHeap;
158 u1* begin = h->cardTableBase + h->cardTableOffset;
159 u1* end = &begin[h->cardTableLength];
160 return cardAddr >= begin && cardAddr < end;
161 }
162
163 /*
164 * Returns the address of the relevant byte in the card table, given
165 * an address on the heap.
166 */
dvmCardFromAddr(const void * addr)167 u1 *dvmCardFromAddr(const void *addr)
168 {
169 u1 *biasedBase = gDvm.biasedCardTableBase;
170 u1 *cardAddr = biasedBase + ((uintptr_t)addr >> GC_CARD_SHIFT);
171 assert(dvmIsValidCard(cardAddr));
172 return cardAddr;
173 }
174
175 /*
176 * Returns the first address in the heap which maps to this card.
177 */
dvmAddrFromCard(const u1 * cardAddr)178 void *dvmAddrFromCard(const u1 *cardAddr)
179 {
180 assert(dvmIsValidCard(cardAddr));
181 uintptr_t offset = cardAddr - gDvm.biasedCardTableBase;
182 return (void *)(offset << GC_CARD_SHIFT);
183 }
184
185 /*
186 * Dirties the card for the given address.
187 */
dvmMarkCard(const void * addr)188 void dvmMarkCard(const void *addr)
189 {
190 u1 *cardAddr = dvmCardFromAddr(addr);
191 *cardAddr = GC_CARD_DIRTY;
192 }
193
194 /*
195 * Returns true if the object is on a dirty card.
196 */
isObjectDirty(const Object * obj)197 static bool isObjectDirty(const Object *obj)
198 {
199 assert(obj != NULL);
200 assert(dvmIsValidObject(obj));
201 u1 *card = dvmCardFromAddr(obj);
202 return *card == GC_CARD_DIRTY;
203 }
204
205 /*
206 * Context structure for verifying the card table.
207 */
208 struct WhiteReferenceCounter {
209 HeapBitmap *markBits;
210 size_t whiteRefs;
211 };
212
213 /*
214 * Visitor that counts white referents.
215 */
countWhiteReferenceVisitor(void * addr,void * arg)216 static void countWhiteReferenceVisitor(void *addr, void *arg)
217 {
218 WhiteReferenceCounter *ctx;
219 Object *obj;
220
221 assert(addr != NULL);
222 assert(arg != NULL);
223 obj = *(Object **)addr;
224 if (obj == NULL) {
225 return;
226 }
227 assert(dvmIsValidObject(obj));
228 ctx = (WhiteReferenceCounter *)arg;
229 if (dvmHeapBitmapIsObjectBitSet(ctx->markBits, obj)) {
230 return;
231 }
232 ctx->whiteRefs += 1;
233 }
234
235 /*
236 * Visitor that logs white references.
237 */
dumpWhiteReferenceVisitor(void * addr,void * arg)238 static void dumpWhiteReferenceVisitor(void *addr, void *arg)
239 {
240 WhiteReferenceCounter *ctx;
241 Object *obj;
242
243 assert(addr != NULL);
244 assert(arg != NULL);
245 obj = *(Object **)addr;
246 if (obj == NULL) {
247 return;
248 }
249 assert(dvmIsValidObject(obj));
250 ctx = (WhiteReferenceCounter*)arg;
251 if (dvmHeapBitmapIsObjectBitSet(ctx->markBits, obj)) {
252 return;
253 }
254 ALOGE("object %p is white", obj);
255 }
256
257 /*
258 * Visitor that signals the caller when a matching reference is found.
259 */
dumpReferencesVisitor(void * pObj,void * arg)260 static void dumpReferencesVisitor(void *pObj, void *arg)
261 {
262 Object *obj = *(Object **)pObj;
263 Object *lookingFor = *(Object **)arg;
264 if (lookingFor != NULL && lookingFor == obj) {
265 *(Object **)arg = NULL;
266 }
267 }
268
dumpReferencesCallback(Object * obj,void * arg)269 static void dumpReferencesCallback(Object *obj, void *arg)
270 {
271 if (obj == (Object *)arg) {
272 return;
273 }
274 dvmVisitObject(dumpReferencesVisitor, obj, &arg);
275 if (arg == NULL) {
276 ALOGD("Found %p in the heap @ %p", arg, obj);
277 dvmDumpObject(obj);
278 }
279 }
280
281 /*
282 * Root visitor that looks for matching references.
283 */
dumpReferencesRootVisitor(void * ptr,u4 threadId,RootType type,void * arg)284 static void dumpReferencesRootVisitor(void *ptr, u4 threadId,
285 RootType type, void *arg)
286 {
287 Object *obj = *(Object **)ptr;
288 Object *lookingFor = *(Object **)arg;
289 if (obj == lookingFor) {
290 ALOGD("Found %p in a root @ %p", arg, ptr);
291 }
292 }
293
294 /*
295 * Invokes visitors to search for references to an object.
296 */
dumpReferences(const Object * obj)297 static void dumpReferences(const Object *obj)
298 {
299 HeapBitmap *bitmap = dvmHeapSourceGetLiveBits();
300 void *arg = (void *)obj;
301 dvmVisitRoots(dumpReferencesRootVisitor, arg);
302 dvmHeapBitmapWalk(bitmap, dumpReferencesCallback, arg);
303 }
304
305 /*
306 * Returns true if the given object is a reference object and the
307 * just the referent is unmarked.
308 */
isReferentUnmarked(const Object * obj,const WhiteReferenceCounter * ctx)309 static bool isReferentUnmarked(const Object *obj,
310 const WhiteReferenceCounter* ctx)
311 {
312 assert(obj != NULL);
313 assert(obj->clazz != NULL);
314 assert(ctx != NULL);
315 if (ctx->whiteRefs != 1) {
316 return false;
317 } else if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISREFERENCE)) {
318 size_t offset = gDvm.offJavaLangRefReference_referent;
319 const Object *referent = dvmGetFieldObject(obj, offset);
320 return !dvmHeapBitmapIsObjectBitSet(ctx->markBits, referent);
321 } else {
322 return false;
323 }
324 }
325
326 /*
327 * Returns true if the given object is a string and has been interned
328 * by the user.
329 */
isWeakInternedString(const Object * obj)330 static bool isWeakInternedString(const Object *obj)
331 {
332 assert(obj != NULL);
333 if (obj->clazz == gDvm.classJavaLangString) {
334 return dvmIsWeakInternedString((StringObject *)obj);
335 } else {
336 return false;
337 }
338 }
339
340 /*
341 * Returns true if the given object has been pushed on the mark stack
342 * by root marking.
343 */
isPushedOnMarkStack(const Object * obj)344 static bool isPushedOnMarkStack(const Object *obj)
345 {
346 GcMarkStack *stack = &gDvm.gcHeap->markContext.stack;
347 for (const Object **ptr = stack->base; ptr < stack->top; ++ptr) {
348 if (*ptr == obj) {
349 return true;
350 }
351 }
352 return false;
353 }
354
355 /*
356 * Callback applied to marked objects. If the object is gray and on
357 * an unmarked card an error is logged and the VM is aborted. Card
358 * table verification occurs between root marking and weak reference
359 * processing. We treat objects marked from the roots and weak
360 * references specially as it is permissible for these objects to be
361 * gray and on an unmarked card.
362 */
verifyCardTableCallback(Object * obj,void * arg)363 static void verifyCardTableCallback(Object *obj, void *arg)
364 {
365 WhiteReferenceCounter ctx = { (HeapBitmap *)arg, 0 };
366
367 dvmVisitObject(countWhiteReferenceVisitor, obj, &ctx);
368 if (ctx.whiteRefs == 0) {
369 return;
370 } else if (isObjectDirty(obj)) {
371 return;
372 } else if (isReferentUnmarked(obj, &ctx)) {
373 return;
374 } else if (isWeakInternedString(obj)) {
375 return;
376 } else if (isPushedOnMarkStack(obj)) {
377 return;
378 } else {
379 ALOGE("Verify failed, object %p is gray and on an unmarked card", obj);
380 dvmDumpObject(obj);
381 dvmVisitObject(dumpWhiteReferenceVisitor, obj, &ctx);
382 dumpReferences(obj);
383 dvmAbort();
384 }
385 }
386
387 /*
388 * Verifies that gray objects are on a dirty card.
389 */
dvmVerifyCardTable()390 void dvmVerifyCardTable()
391 {
392 HeapBitmap *markBits = gDvm.gcHeap->markContext.bitmap;
393 dvmHeapBitmapWalk(markBits, verifyCardTableCallback, markBits);
394 }
395