1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /*
18 * Class loading, including bootstrap class loader, linking, and
19 * initialization.
20 */
21
22 #define LOG_CLASS_LOADING 0
23
24 #include "Dalvik.h"
25 #include "libdex/DexClass.h"
26 #include "analysis/Optimize.h"
27
28 #include <stdlib.h>
29 #include <stddef.h>
30 #include <sys/stat.h>
31
32 #if LOG_CLASS_LOADING
33 #include <unistd.h>
34 #include <pthread.h>
35 #include <cutils/process_name.h>
36 #include <sys/types.h>
37 #endif
38
39 /*
40 Notes on Linking and Verification
41
42 The basic way to retrieve a class is to load it, make sure its superclass
43 and interfaces are available, prepare its fields, and return it. This gets
44 a little more complicated when multiple threads can be trying to retrieve
45 the class simultaneously, requiring that we use the class object's monitor
46 to keep things orderly.
47
48 The linking (preparing, resolving) of a class can cause us to recursively
49 load superclasses and interfaces. Barring circular references (e.g. two
50 classes that are superclasses of each other), this will complete without
51 the loader attempting to access the partially-linked class.
52
53 With verification, the situation is different. If we try to verify
54 every class as we load it, we quickly run into trouble. Even the lowly
55 java.lang.Object requires CloneNotSupportedException; follow the list
56 of referenced classes and you can head down quite a trail. The trail
57 eventually leads back to Object, which is officially not fully-formed yet.
58
59 The VM spec (specifically, v2 5.4.1) notes that classes pulled in during
60 verification do not need to be prepared or verified. This means that we
61 are allowed to have loaded but unverified classes. It further notes that
62 the class must be verified before it is initialized, which allows us to
63 defer verification for all classes until class init. You can't execute
64 code or access fields in an uninitialized class, so this is safe.
65
66 It also allows a more peaceful coexistence between verified and
67 unverifiable code. If class A refers to B, and B has a method that
68 refers to a bogus class C, should we allow class A to be verified?
69 If A only exercises parts of B that don't use class C, then there is
70 nothing wrong with running code in A. We can fully verify both A and B,
71 and allow execution to continue until B causes initialization of C. The
72 VerifyError is thrown close to the point of use.
73
74 This gets a little weird with java.lang.Class, which is the only class
75 that can be instantiated before it is initialized. We have to force
76 initialization right after the class is created, because by definition we
77 have instances of it on the heap, and somebody might get a class object and
78 start making virtual calls on it. We can end up going recursive during
79 verification of java.lang.Class, but we avoid that by checking to see if
80 verification is already in progress before we try to initialize it.
81 */
82
83 /*
84 Notes on class loaders and interaction with optimization / verification
85
86 In what follows, "pre-verification" and "optimization" are the steps
87 performed by the dexopt command, which attempts to verify and optimize
88 classes as part of unpacking jar files and storing the DEX data in the
89 dalvik-cache directory. These steps are performed by loading the DEX
90 files directly, without any assistance from ClassLoader instances.
91
92 When we pre-verify and optimize a class in a DEX file, we make some
93 assumptions about where the class loader will go to look for classes.
94 If we can't guarantee those assumptions, e.g. because a class ("AppClass")
95 references something not defined in the bootstrap jars or the AppClass jar,
96 we can't pre-verify or optimize the class.
97
98 The VM doesn't define the behavior of user-defined class loaders.
99 For example, suppose application class AppClass, loaded by UserLoader,
100 has a method that creates a java.lang.String. The first time
101 AppClass.stringyMethod tries to do something with java.lang.String, it
102 asks UserLoader to find it. UserLoader is expected to defer to its parent
103 loader, but isn't required to. UserLoader might provide a replacement
104 for String.
105
106 We can run into trouble if we pre-verify AppClass with the assumption that
107 java.lang.String will come from core.jar, and don't verify this assumption
108 at runtime. There are two places that an alternate implementation of
109 java.lang.String can come from: the AppClass jar, or from some other jar
110 that UserLoader knows about. (Someday UserLoader will be able to generate
111 some bytecode and call DefineClass, but not yet.)
112
113 To handle the first situation, the pre-verifier will explicitly check for
114 conflicts between the class being optimized/verified and the bootstrap
115 classes. If an app jar contains a class that has the same package and
116 class name as a class in a bootstrap jar, the verification resolver refuses
117 to find either, which will block pre-verification and optimization on
118 classes that reference ambiguity. The VM will postpone verification of
119 the app class until first load.
120
121 For the second situation, we need to ensure that all references from a
122 pre-verified class are satisified by the class' jar or earlier bootstrap
123 jars. In concrete terms: when resolving a reference to NewClass,
124 which was caused by a reference in class AppClass, we check to see if
125 AppClass was pre-verified. If so, we require that NewClass comes out
126 of either the AppClass jar or one of the jars in the bootstrap path.
127 (We may not control the class loaders, but we do manage the DEX files.
128 We can verify that it's either (loader==null && dexFile==a_boot_dex)
129 or (loader==UserLoader && dexFile==AppClass.dexFile). Classes from
130 DefineClass can't be pre-verified, so this doesn't apply.)
131
132 This should ensure that you can't "fake out" the pre-verifier by creating
133 a user-defined class loader that replaces system classes. It should
134 also ensure that you can write such a loader and have it work in the
135 expected fashion; all you lose is some performance due to "just-in-time
136 verification" and the lack of DEX optimizations.
137
138 There is a "back door" of sorts in the class resolution check, due to
139 the fact that the "class ref" entries are shared between the bytecode
140 and meta-data references (e.g. annotations and exception handler lists).
141 The class references in annotations have no bearing on class verification,
142 so when a class does an annotation query that causes a class reference
143 index to be resolved, we don't want to fail just because the calling
144 class was pre-verified and the resolved class is in some random DEX file.
145 The successful resolution adds the class to the "resolved classes" table,
146 so when optimized bytecode references it we don't repeat the resolve-time
147 check. We can avoid this by not updating the "resolved classes" table
148 when the class reference doesn't come out of something that has been
149 checked by the verifier, but that has a nonzero performance impact.
150 Since the ultimate goal of this test is to catch an unusual situation
151 (user-defined class loaders redefining core classes), the added caution
152 may not be worth the performance hit.
153 */
154
155 /*
156 * Class serial numbers start at this value. We use a nonzero initial
157 * value so they stand out in binary dumps (e.g. hprof output).
158 */
159 #define INITIAL_CLASS_SERIAL_NUMBER 0x50000000
160
161 /*
162 * Constant used to size an auxillary class object data structure.
163 * For optimum memory use this should be equal to or slightly larger than
164 * the number of classes loaded when the zygote finishes initializing.
165 */
166 #define ZYGOTE_CLASS_CUTOFF 2304
167
168 #define CLASS_SFIELD_SLOTS 1
169
170 static ClassPathEntry* processClassPath(const char* pathStr, bool isBootstrap);
171 static void freeCpeArray(ClassPathEntry* cpe);
172
173 static ClassObject* findClassFromLoaderNoInit(
174 const char* descriptor, Object* loader);
175 static ClassObject* findClassNoInit(const char* descriptor, Object* loader,\
176 DvmDex* pDvmDex);
177 static ClassObject* loadClassFromDex(DvmDex* pDvmDex,
178 const DexClassDef* pClassDef, Object* loader);
179 static void loadMethodFromDex(ClassObject* clazz, const DexMethod* pDexMethod,\
180 Method* meth);
181 static int computeJniArgInfo(const DexProto* proto);
182 static void loadSFieldFromDex(ClassObject* clazz,
183 const DexField* pDexSField, StaticField* sfield);
184 static void loadIFieldFromDex(ClassObject* clazz,
185 const DexField* pDexIField, InstField* field);
186 static bool precacheReferenceOffsets(ClassObject* clazz);
187 static void computeRefOffsets(ClassObject* clazz);
188 static void freeMethodInnards(Method* meth);
189 static bool createVtable(ClassObject* clazz);
190 static bool createIftable(ClassObject* clazz);
191 static bool insertMethodStubs(ClassObject* clazz);
192 static bool computeFieldOffsets(ClassObject* clazz);
193 static void throwEarlierClassFailure(ClassObject* clazz);
194
195 #if LOG_CLASS_LOADING
196 /*
197 * Logs information about a class loading with given timestamp.
198 *
199 * TODO: In the case where we fail in dvmLinkClass() and log the class as closing (type='<'),
200 * it would probably be better to use a new type code to indicate the failure. This change would
201 * require a matching change in the parser and analysis code in frameworks/base/tools/preload.
202 */
logClassLoadWithTime(char type,ClassObject * clazz,u8 time)203 static void logClassLoadWithTime(char type, ClassObject* clazz, u8 time) {
204 pid_t ppid = getppid();
205 pid_t pid = getpid();
206 unsigned int tid = (unsigned int) pthread_self();
207
208 ALOG(LOG_INFO, "PRELOAD", "%c%d:%d:%d:%s:%d:%s:%lld", type, ppid, pid, tid,
209 get_process_name(), (int) clazz->classLoader, clazz->descriptor,
210 time);
211 }
212
213 /*
214 * Logs information about a class loading.
215 */
logClassLoad(char type,ClassObject * clazz)216 static void logClassLoad(char type, ClassObject* clazz) {
217 logClassLoadWithTime(type, clazz, dvmGetThreadCpuTimeNsec());
218 }
219 #endif
220
221 /*
222 * Some LinearAlloc unit tests.
223 */
linearAllocTests()224 static void linearAllocTests()
225 {
226 char* fiddle;
227 int test = 1;
228
229 switch (test) {
230 case 0:
231 fiddle = (char*)dvmLinearAlloc(NULL, 3200-28);
232 dvmLinearReadOnly(NULL, (char*)fiddle);
233 break;
234 case 1:
235 fiddle = (char*)dvmLinearAlloc(NULL, 3200-24);
236 dvmLinearReadOnly(NULL, (char*)fiddle);
237 break;
238 case 2:
239 fiddle = (char*)dvmLinearAlloc(NULL, 3200-20);
240 dvmLinearReadOnly(NULL, (char*)fiddle);
241 break;
242 case 3:
243 fiddle = (char*)dvmLinearAlloc(NULL, 3200-16);
244 dvmLinearReadOnly(NULL, (char*)fiddle);
245 break;
246 case 4:
247 fiddle = (char*)dvmLinearAlloc(NULL, 3200-12);
248 dvmLinearReadOnly(NULL, (char*)fiddle);
249 break;
250 }
251 fiddle = (char*)dvmLinearAlloc(NULL, 896);
252 dvmLinearReadOnly(NULL, (char*)fiddle);
253 fiddle = (char*)dvmLinearAlloc(NULL, 20); // watch addr of this alloc
254 dvmLinearReadOnly(NULL, (char*)fiddle);
255
256 fiddle = (char*)dvmLinearAlloc(NULL, 1);
257 fiddle[0] = 'q';
258 dvmLinearReadOnly(NULL, fiddle);
259 fiddle = (char*)dvmLinearAlloc(NULL, 4096);
260 fiddle[0] = 'x';
261 fiddle[4095] = 'y';
262 dvmLinearReadOnly(NULL, fiddle);
263 dvmLinearFree(NULL, fiddle);
264 fiddle = (char*)dvmLinearAlloc(NULL, 0);
265 dvmLinearReadOnly(NULL, fiddle);
266 fiddle = (char*)dvmLinearRealloc(NULL, fiddle, 12);
267 fiddle[11] = 'z';
268 dvmLinearReadOnly(NULL, (char*)fiddle);
269 fiddle = (char*)dvmLinearRealloc(NULL, fiddle, 5);
270 dvmLinearReadOnly(NULL, fiddle);
271 fiddle = (char*)dvmLinearAlloc(NULL, 17001);
272 fiddle[0] = 'x';
273 fiddle[17000] = 'y';
274 dvmLinearReadOnly(NULL, (char*)fiddle);
275
276 char* str = (char*)dvmLinearStrdup(NULL, "This is a test!");
277 ALOGI("GOT: '%s'", str);
278
279 /* try to check the bounds; allocator may round allocation size up */
280 fiddle = (char*)dvmLinearAlloc(NULL, 12);
281 ALOGI("Should be 1: %d", dvmLinearAllocContains(fiddle, 12));
282 ALOGI("Should be 0: %d", dvmLinearAllocContains(fiddle, 13));
283 ALOGI("Should be 0: %d", dvmLinearAllocContains(fiddle - 128*1024, 1));
284
285 dvmLinearAllocDump(NULL);
286 dvmLinearFree(NULL, (char*)str);
287 }
288
classObjectSize(size_t sfieldCount)289 static size_t classObjectSize(size_t sfieldCount)
290 {
291 size_t offset = OFFSETOF_MEMBER(ClassObject, sfields);
292 return offset + sizeof(StaticField) * sfieldCount;
293 }
294
dvmClassObjectSize(const ClassObject * clazz)295 size_t dvmClassObjectSize(const ClassObject *clazz)
296 {
297 assert(clazz != NULL);
298 return classObjectSize(clazz->sfieldCount);
299 }
300
301 /* (documented in header) */
dvmFindPrimitiveClass(char type)302 ClassObject* dvmFindPrimitiveClass(char type)
303 {
304 PrimitiveType primitiveType = dexGetPrimitiveTypeFromDescriptorChar(type);
305
306 switch (primitiveType) {
307 case PRIM_VOID: return gDvm.typeVoid;
308 case PRIM_BOOLEAN: return gDvm.typeBoolean;
309 case PRIM_BYTE: return gDvm.typeByte;
310 case PRIM_SHORT: return gDvm.typeShort;
311 case PRIM_CHAR: return gDvm.typeChar;
312 case PRIM_INT: return gDvm.typeInt;
313 case PRIM_LONG: return gDvm.typeLong;
314 case PRIM_FLOAT: return gDvm.typeFloat;
315 case PRIM_DOUBLE: return gDvm.typeDouble;
316 default: {
317 ALOGW("Unknown primitive type '%c'", type);
318 return NULL;
319 }
320 }
321 }
322
323 /*
324 * Synthesize a primitive class.
325 *
326 * Just creates the class and returns it (does not add it to the class list).
327 */
createPrimitiveType(PrimitiveType primitiveType,ClassObject ** pClass)328 static bool createPrimitiveType(PrimitiveType primitiveType, ClassObject** pClass)
329 {
330 /*
331 * Fill out a few fields in the ClassObject.
332 *
333 * Note that primitive classes do not sub-class the class Object.
334 * This matters for "instanceof" checks. Also, we assume that the
335 * primitive class does not override finalize().
336 */
337
338 const char* descriptor = dexGetPrimitiveTypeDescriptor(primitiveType);
339 assert(descriptor != NULL);
340
341 ClassObject* newClass = (ClassObject*) dvmMalloc(sizeof(*newClass), ALLOC_NON_MOVING);
342 if (newClass == NULL) {
343 return false;
344 }
345
346 DVM_OBJECT_INIT(newClass, gDvm.classJavaLangClass);
347 dvmSetClassSerialNumber(newClass);
348 SET_CLASS_FLAG(newClass, ACC_PUBLIC | ACC_FINAL | ACC_ABSTRACT);
349 newClass->primitiveType = primitiveType;
350 newClass->descriptorAlloc = NULL;
351 newClass->descriptor = descriptor;
352 newClass->super = NULL;
353 newClass->status = CLASS_INITIALIZED;
354
355 /* don't need to set newClass->objectSize */
356
357 LOGVV("Constructed class for primitive type '%s'", newClass->descriptor);
358
359 *pClass = newClass;
360 dvmReleaseTrackedAlloc((Object*) newClass, NULL);
361
362 return true;
363 }
364
365 /*
366 * Create the initial class instances. These consist of the class
367 * Class and all of the classes representing primitive types.
368 */
createInitialClasses()369 static bool createInitialClasses() {
370 /*
371 * Initialize the class Class. This has to be done specially, particularly
372 * because it is an instance of itself.
373 */
374 ClassObject* clazz = (ClassObject*)
375 dvmMalloc(classObjectSize(CLASS_SFIELD_SLOTS), ALLOC_NON_MOVING);
376 if (clazz == NULL) {
377 return false;
378 }
379 DVM_OBJECT_INIT(clazz, clazz);
380 SET_CLASS_FLAG(clazz, ACC_PUBLIC | ACC_FINAL | CLASS_ISCLASS);
381 clazz->descriptor = "Ljava/lang/Class;";
382 gDvm.classJavaLangClass = clazz;
383 LOGVV("Constructed the class Class.");
384
385 /*
386 * Initialize the classes representing primitive types. These are
387 * instances of the class Class, but other than that they're fairly
388 * different from regular classes.
389 */
390 bool ok = true;
391 ok &= createPrimitiveType(PRIM_VOID, &gDvm.typeVoid);
392 ok &= createPrimitiveType(PRIM_BOOLEAN, &gDvm.typeBoolean);
393 ok &= createPrimitiveType(PRIM_BYTE, &gDvm.typeByte);
394 ok &= createPrimitiveType(PRIM_SHORT, &gDvm.typeShort);
395 ok &= createPrimitiveType(PRIM_CHAR, &gDvm.typeChar);
396 ok &= createPrimitiveType(PRIM_INT, &gDvm.typeInt);
397 ok &= createPrimitiveType(PRIM_LONG, &gDvm.typeLong);
398 ok &= createPrimitiveType(PRIM_FLOAT, &gDvm.typeFloat);
399 ok &= createPrimitiveType(PRIM_DOUBLE, &gDvm.typeDouble);
400
401 return ok;
402 }
403
404 /*
405 * Initialize the bootstrap class loader.
406 *
407 * Call this after the bootclasspath string has been finalized.
408 */
dvmClassStartup()409 bool dvmClassStartup()
410 {
411 /* make this a requirement -- don't currently support dirs in path */
412 if (strcmp(gDvm.bootClassPathStr, ".") == 0) {
413 ALOGE("ERROR: must specify non-'.' bootclasspath");
414 return false;
415 }
416
417 gDvm.loadedClasses =
418 dvmHashTableCreate(256, (HashFreeFunc) dvmFreeClassInnards);
419
420 gDvm.pBootLoaderAlloc = dvmLinearAllocCreate(NULL);
421 if (gDvm.pBootLoaderAlloc == NULL)
422 return false;
423
424 if (false) {
425 linearAllocTests();
426 exit(0);
427 }
428
429 /*
430 * Class serial number. We start with a high value to make it distinct
431 * in binary dumps (e.g. hprof).
432 */
433 gDvm.classSerialNumber = INITIAL_CLASS_SERIAL_NUMBER;
434
435 /*
436 * Set up the table we'll use for tracking initiating loaders for
437 * early classes.
438 * If it's NULL, we just fall back to the InitiatingLoaderList in the
439 * ClassObject, so it's not fatal to fail this allocation.
440 */
441 gDvm.initiatingLoaderList = (InitiatingLoaderList*)
442 calloc(ZYGOTE_CLASS_CUTOFF, sizeof(InitiatingLoaderList));
443
444 /*
445 * Create the initial classes. These are the first objects constructed
446 * within the nascent VM.
447 */
448 if (!createInitialClasses()) {
449 return false;
450 }
451
452 /*
453 * Process the bootstrap class path. This means opening the specified
454 * DEX or Jar files and possibly running them through the optimizer.
455 */
456 assert(gDvm.bootClassPath == NULL);
457 processClassPath(gDvm.bootClassPathStr, true);
458
459 if (gDvm.bootClassPath == NULL)
460 return false;
461
462 return true;
463 }
464
465 /*
466 * Clean up.
467 */
dvmClassShutdown()468 void dvmClassShutdown()
469 {
470 /* discard all system-loaded classes */
471 dvmHashTableFree(gDvm.loadedClasses);
472 gDvm.loadedClasses = NULL;
473
474 /* discard primitive classes created for arrays */
475 dvmFreeClassInnards(gDvm.typeVoid);
476 dvmFreeClassInnards(gDvm.typeBoolean);
477 dvmFreeClassInnards(gDvm.typeByte);
478 dvmFreeClassInnards(gDvm.typeShort);
479 dvmFreeClassInnards(gDvm.typeChar);
480 dvmFreeClassInnards(gDvm.typeInt);
481 dvmFreeClassInnards(gDvm.typeLong);
482 dvmFreeClassInnards(gDvm.typeFloat);
483 dvmFreeClassInnards(gDvm.typeDouble);
484
485 /* this closes DEX files, JAR files, etc. */
486 freeCpeArray(gDvm.bootClassPath);
487 gDvm.bootClassPath = NULL;
488
489 dvmLinearAllocDestroy(NULL);
490
491 free(gDvm.initiatingLoaderList);
492 }
493
494
495 /*
496 * ===========================================================================
497 * Bootstrap class loader
498 * ===========================================================================
499 */
500
501 /*
502 * Dump the contents of a ClassPathEntry array.
503 */
dumpClassPath(const ClassPathEntry * cpe)504 static void dumpClassPath(const ClassPathEntry* cpe)
505 {
506 int idx = 0;
507
508 while (cpe->kind != kCpeLastEntry) {
509 const char* kindStr;
510
511 switch (cpe->kind) {
512 case kCpeJar: kindStr = "jar"; break;
513 case kCpeDex: kindStr = "dex"; break;
514 default: kindStr = "???"; break;
515 }
516
517 ALOGI(" %2d: type=%s %s %p", idx, kindStr, cpe->fileName, cpe->ptr);
518 if (CALC_CACHE_STATS && cpe->kind == kCpeJar) {
519 JarFile* pJarFile = (JarFile*) cpe->ptr;
520 DvmDex* pDvmDex = dvmGetJarFileDex(pJarFile);
521 dvmDumpAtomicCacheStats(pDvmDex->pInterfaceCache);
522 }
523
524 cpe++;
525 idx++;
526 }
527 }
528
529 /*
530 * Dump the contents of the bootstrap class path.
531 */
dvmDumpBootClassPath()532 void dvmDumpBootClassPath()
533 {
534 dumpClassPath(gDvm.bootClassPath);
535 }
536
537 /*
538 * Returns "true" if the class path contains the specified path.
539 */
dvmClassPathContains(const ClassPathEntry * cpe,const char * path)540 bool dvmClassPathContains(const ClassPathEntry* cpe, const char* path)
541 {
542 while (cpe->kind != kCpeLastEntry) {
543 if (strcmp(cpe->fileName, path) == 0)
544 return true;
545
546 cpe++;
547 }
548 return false;
549 }
550
551 /*
552 * Free an array of ClassPathEntry structs.
553 *
554 * We release the contents of each entry, then free the array itself.
555 */
freeCpeArray(ClassPathEntry * cpe)556 static void freeCpeArray(ClassPathEntry* cpe)
557 {
558 ClassPathEntry* cpeStart = cpe;
559
560 if (cpe == NULL)
561 return;
562
563 while (cpe->kind != kCpeLastEntry) {
564 switch (cpe->kind) {
565 case kCpeJar:
566 /* free JarFile */
567 dvmJarFileFree((JarFile*) cpe->ptr);
568 break;
569 case kCpeDex:
570 /* free RawDexFile */
571 dvmRawDexFileFree((RawDexFile*) cpe->ptr);
572 break;
573 default:
574 assert(false);
575 break;
576 }
577
578 free(cpe->fileName);
579 cpe++;
580 }
581
582 free(cpeStart);
583 }
584
585 /*
586 * Get the filename suffix of the given file (everything after the
587 * last "." if any, or "<none>" if there's no apparent suffix). The
588 * passed-in buffer will always be '\0' terminated.
589 */
getFileNameSuffix(const char * fileName,char * suffixBuf,size_t suffixBufLen)590 static void getFileNameSuffix(const char* fileName, char* suffixBuf, size_t suffixBufLen)
591 {
592 const char* lastDot = strrchr(fileName, '.');
593
594 strlcpy(suffixBuf, (lastDot == NULL) ? "<none>" : (lastDot + 1), suffixBufLen);
595 }
596
597 /*
598 * Prepare a ClassPathEntry struct, which at this point only has a valid
599 * filename. We need to figure out what kind of file it is, and for
600 * everything other than directories we need to open it up and see
601 * what's inside.
602 */
prepareCpe(ClassPathEntry * cpe,bool isBootstrap)603 static bool prepareCpe(ClassPathEntry* cpe, bool isBootstrap)
604 {
605 struct stat sb;
606
607 if (stat(cpe->fileName, &sb) < 0) {
608 ALOGD("Unable to stat classpath element '%s'", cpe->fileName);
609 return false;
610 }
611 if (S_ISDIR(sb.st_mode)) {
612 ALOGE("Directory classpath elements are not supported: %s", cpe->fileName);
613 return false;
614 }
615
616 char suffix[10];
617 getFileNameSuffix(cpe->fileName, suffix, sizeof(suffix));
618
619 if ((strcmp(suffix, "jar") == 0) || (strcmp(suffix, "zip") == 0) ||
620 (strcmp(suffix, "apk") == 0)) {
621 JarFile* pJarFile = NULL;
622 if (dvmJarFileOpen(cpe->fileName, NULL, &pJarFile, isBootstrap) == 0) {
623 cpe->kind = kCpeJar;
624 cpe->ptr = pJarFile;
625 return true;
626 }
627 } else if (strcmp(suffix, "dex") == 0) {
628 RawDexFile* pRawDexFile = NULL;
629 if (dvmRawDexFileOpen(cpe->fileName, NULL, &pRawDexFile, isBootstrap) == 0) {
630 cpe->kind = kCpeDex;
631 cpe->ptr = pRawDexFile;
632 return true;
633 }
634 } else {
635 ALOGE("Unknown type suffix '%s'", suffix);
636 }
637
638 ALOGD("Unable to process classpath element '%s'", cpe->fileName);
639 return false;
640 }
641
642 /*
643 * Convert a colon-separated list of directories, Zip files, and DEX files
644 * into an array of ClassPathEntry structs.
645 *
646 * During normal startup we fail if there are no entries, because we won't
647 * get very far without the basic language support classes, but if we're
648 * optimizing a DEX file we allow it.
649 *
650 * If entries are added or removed from the bootstrap class path, the
651 * dependencies in the DEX files will break, and everything except the
652 * very first entry will need to be regenerated.
653 */
processClassPath(const char * pathStr,bool isBootstrap)654 static ClassPathEntry* processClassPath(const char* pathStr, bool isBootstrap)
655 {
656 ClassPathEntry* cpe = NULL;
657 char* mangle;
658 char* cp;
659 const char* end;
660 int idx, count;
661
662 assert(pathStr != NULL);
663
664 mangle = strdup(pathStr);
665
666 /*
667 * Run through and essentially strtok() the string. Get a count of
668 * the #of elements while we're at it.
669 *
670 * If the path was constructed strangely (e.g. ":foo::bar:") this will
671 * over-allocate, which isn't ideal but is mostly harmless.
672 */
673 count = 1;
674 for (cp = mangle; *cp != '\0'; cp++) {
675 if (*cp == ':') { /* separates two entries */
676 count++;
677 *cp = '\0';
678 }
679 }
680 end = cp;
681
682 /*
683 * Allocate storage. We over-alloc by one so we can set an "end" marker.
684 */
685 cpe = (ClassPathEntry*) calloc(count+1, sizeof(ClassPathEntry));
686
687 /*
688 * Set the global pointer so the DEX file dependency stuff can find it.
689 */
690 gDvm.bootClassPath = cpe;
691
692 /*
693 * Go through a second time, pulling stuff out.
694 */
695 cp = mangle;
696 idx = 0;
697 while (cp < end) {
698 if (*cp == '\0') {
699 /* leading, trailing, or doubled ':'; ignore it */
700 } else {
701 if (isBootstrap &&
702 dvmPathToAbsolutePortion(cp) == NULL) {
703 ALOGE("Non-absolute bootclasspath entry '%s'", cp);
704 free(cpe);
705 cpe = NULL;
706 goto bail;
707 }
708
709 ClassPathEntry tmp;
710 tmp.kind = kCpeUnknown;
711 tmp.fileName = strdup(cp);
712 tmp.ptr = NULL;
713
714 /*
715 * Drop an end marker here so DEX loader can walk unfinished
716 * list.
717 */
718 cpe[idx].kind = kCpeLastEntry;
719 cpe[idx].fileName = NULL;
720 cpe[idx].ptr = NULL;
721
722 if (!prepareCpe(&tmp, isBootstrap)) {
723 /* drop from list and continue on */
724 free(tmp.fileName);
725 } else {
726 /* copy over, pointers and all */
727 cpe[idx] = tmp;
728 idx++;
729 }
730 }
731
732 cp += strlen(cp) +1;
733 }
734 assert(idx <= count);
735 if (idx == 0 && !gDvm.optimizing) {
736 /*
737 * There's no way the vm will be doing anything if this is the
738 * case, so just bail out (reasonably) gracefully.
739 */
740 ALOGE("No valid entries found in bootclasspath '%s'", pathStr);
741 gDvm.lastMessage = pathStr;
742 dvmAbort();
743 }
744
745 LOGVV(" (filled %d of %d slots)", idx, count);
746
747 /* put end marker in over-alloc slot */
748 cpe[idx].kind = kCpeLastEntry;
749 cpe[idx].fileName = NULL;
750 cpe[idx].ptr = NULL;
751
752 //dumpClassPath(cpe);
753
754 bail:
755 free(mangle);
756 gDvm.bootClassPath = cpe;
757 return cpe;
758 }
759
760 /*
761 * Search the DEX files we loaded from the bootstrap class path for a DEX
762 * file that has the class with the matching descriptor.
763 *
764 * Returns the matching DEX file and DexClassDef entry if found, otherwise
765 * returns NULL.
766 */
searchBootPathForClass(const char * descriptor,const DexClassDef ** ppClassDef)767 static DvmDex* searchBootPathForClass(const char* descriptor,
768 const DexClassDef** ppClassDef)
769 {
770 const ClassPathEntry* cpe = gDvm.bootClassPath;
771 const DexClassDef* pFoundDef = NULL;
772 DvmDex* pFoundFile = NULL;
773
774 LOGVV("+++ class '%s' not yet loaded, scanning bootclasspath...",
775 descriptor);
776
777 while (cpe->kind != kCpeLastEntry) {
778 //ALOGV("+++ checking '%s' (%d)", cpe->fileName, cpe->kind);
779
780 switch (cpe->kind) {
781 case kCpeJar:
782 {
783 JarFile* pJarFile = (JarFile*) cpe->ptr;
784 const DexClassDef* pClassDef;
785 DvmDex* pDvmDex;
786
787 pDvmDex = dvmGetJarFileDex(pJarFile);
788 pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor);
789 if (pClassDef != NULL) {
790 /* found */
791 pFoundDef = pClassDef;
792 pFoundFile = pDvmDex;
793 goto found;
794 }
795 }
796 break;
797 case kCpeDex:
798 {
799 RawDexFile* pRawDexFile = (RawDexFile*) cpe->ptr;
800 const DexClassDef* pClassDef;
801 DvmDex* pDvmDex;
802
803 pDvmDex = dvmGetRawDexFileDex(pRawDexFile);
804 pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor);
805 if (pClassDef != NULL) {
806 /* found */
807 pFoundDef = pClassDef;
808 pFoundFile = pDvmDex;
809 goto found;
810 }
811 }
812 break;
813 default:
814 ALOGE("Unknown kind %d", cpe->kind);
815 assert(false);
816 break;
817 }
818
819 cpe++;
820 }
821
822 /*
823 * Special handling during verification + optimization.
824 *
825 * The DEX optimizer needs to load classes from the DEX file it's working
826 * on. Rather than trying to insert it into the bootstrap class path
827 * or synthesizing a class loader to manage it, we just make it available
828 * here. It logically comes after all existing entries in the bootstrap
829 * class path.
830 */
831 if (gDvm.bootClassPathOptExtra != NULL) {
832 const DexClassDef* pClassDef;
833
834 pClassDef =
835 dexFindClass(gDvm.bootClassPathOptExtra->pDexFile, descriptor);
836 if (pClassDef != NULL) {
837 /* found */
838 pFoundDef = pClassDef;
839 pFoundFile = gDvm.bootClassPathOptExtra;
840 }
841 }
842
843 found:
844 *ppClassDef = pFoundDef;
845 return pFoundFile;
846 }
847
848 /*
849 * Set the "extra" DEX, which becomes a de facto member of the bootstrap
850 * class set.
851 */
dvmSetBootPathExtraDex(DvmDex * pDvmDex)852 void dvmSetBootPathExtraDex(DvmDex* pDvmDex)
853 {
854 gDvm.bootClassPathOptExtra = pDvmDex;
855 }
856
857
858 /*
859 * Return the #of entries in the bootstrap class path.
860 *
861 * (Used for ClassLoader.getResources().)
862 */
dvmGetBootPathSize()863 int dvmGetBootPathSize()
864 {
865 const ClassPathEntry* cpe = gDvm.bootClassPath;
866
867 while (cpe->kind != kCpeLastEntry)
868 cpe++;
869
870 return cpe - gDvm.bootClassPath;
871 }
872
873 /*
874 * Find a resource with the specified name in entry N of the boot class path.
875 *
876 * We return a newly-allocated String of one of these forms:
877 * file://path/name
878 * jar:file://path!/name
879 * Where "path" is the bootstrap class path entry and "name" is the string
880 * passed into this method. "path" needs to be an absolute path (starting
881 * with '/'); if it's not we'd need to "absolutify" it as part of forming
882 * the URL string.
883 */
dvmGetBootPathResource(const char * name,int idx)884 StringObject* dvmGetBootPathResource(const char* name, int idx)
885 {
886 const int kUrlOverhead = 13; // worst case for Jar URL
887 const ClassPathEntry* cpe = gDvm.bootClassPath;
888 StringObject* urlObj = NULL;
889
890 ALOGV("+++ searching for resource '%s' in %d(%s)",
891 name, idx, cpe[idx].fileName);
892
893 /* we could use direct array index, but I don't entirely trust "idx" */
894 while (idx-- && cpe->kind != kCpeLastEntry)
895 cpe++;
896 if (cpe->kind == kCpeLastEntry) {
897 assert(false);
898 return NULL;
899 }
900
901 char urlBuf[strlen(name) + strlen(cpe->fileName) + kUrlOverhead +1];
902
903 switch (cpe->kind) {
904 case kCpeJar:
905 {
906 JarFile* pJarFile = (JarFile*) cpe->ptr;
907 if (dexZipFindEntry(&pJarFile->archive, name) == NULL)
908 goto bail;
909 sprintf(urlBuf, "jar:file://%s!/%s", cpe->fileName, name);
910 }
911 break;
912 case kCpeDex:
913 ALOGV("No resources in DEX files");
914 goto bail;
915 default:
916 assert(false);
917 goto bail;
918 }
919
920 ALOGV("+++ using URL='%s'", urlBuf);
921 urlObj = dvmCreateStringFromCstr(urlBuf);
922
923 bail:
924 return urlObj;
925 }
926
927
928 /*
929 * ===========================================================================
930 * Class list management
931 * ===========================================================================
932 */
933
934 /* search for these criteria in the Class hash table */
935 struct ClassMatchCriteria {
936 const char* descriptor;
937 Object* loader;
938 };
939
940 #define kInitLoaderInc 4 /* must be power of 2 */
941
dvmGetInitiatingLoaderList(ClassObject * clazz)942 static InitiatingLoaderList *dvmGetInitiatingLoaderList(ClassObject* clazz)
943 {
944 assert(clazz->serialNumber >= INITIAL_CLASS_SERIAL_NUMBER);
945 int classIndex = clazz->serialNumber-INITIAL_CLASS_SERIAL_NUMBER;
946 if (gDvm.initiatingLoaderList != NULL &&
947 classIndex < ZYGOTE_CLASS_CUTOFF) {
948 return &(gDvm.initiatingLoaderList[classIndex]);
949 } else {
950 return &(clazz->initiatingLoaderList);
951 }
952 }
953
954 /*
955 * Determine if "loader" appears in clazz' initiating loader list.
956 *
957 * The class hash table lock must be held when calling here, since
958 * it's also used when updating a class' initiating loader list.
959 *
960 * TODO: switch to some sort of lock-free data structure so we don't have
961 * to grab the lock to do a lookup. Among other things, this would improve
962 * the speed of compareDescriptorClasses().
963 */
dvmLoaderInInitiatingList(const ClassObject * clazz,const Object * loader)964 bool dvmLoaderInInitiatingList(const ClassObject* clazz, const Object* loader)
965 {
966 /*
967 * The bootstrap class loader can't be just an initiating loader for
968 * anything (it's always the defining loader if the class is visible
969 * to it). We don't put defining loaders in the initiating list.
970 */
971 if (loader == NULL)
972 return false;
973
974 /*
975 * Scan the list for a match. The list is expected to be short.
976 */
977 /* Cast to remove the const from clazz, but use const loaderList */
978 ClassObject* nonConstClazz = (ClassObject*) clazz;
979 const InitiatingLoaderList *loaderList =
980 dvmGetInitiatingLoaderList(nonConstClazz);
981 int i;
982 for (i = loaderList->initiatingLoaderCount-1; i >= 0; --i) {
983 if (loaderList->initiatingLoaders[i] == loader) {
984 //ALOGI("+++ found initiating match %p in %s",
985 // loader, clazz->descriptor);
986 return true;
987 }
988 }
989 return false;
990 }
991
992 /*
993 * Add "loader" to clazz's initiating loader set, unless it's the defining
994 * class loader.
995 *
996 * In the common case this will be a short list, so we don't need to do
997 * anything too fancy here.
998 *
999 * This locks gDvm.loadedClasses for synchronization, so don't hold it
1000 * when calling here.
1001 */
dvmAddInitiatingLoader(ClassObject * clazz,Object * loader)1002 void dvmAddInitiatingLoader(ClassObject* clazz, Object* loader)
1003 {
1004 if (loader != clazz->classLoader) {
1005 assert(loader != NULL);
1006
1007 LOGVV("Adding %p to '%s' init list", loader, clazz->descriptor);
1008 dvmHashTableLock(gDvm.loadedClasses);
1009
1010 /*
1011 * Make sure nobody snuck in. The penalty for adding twice is
1012 * pretty minor, and probably outweighs the O(n^2) hit for
1013 * checking before every add, so we may not want to do this.
1014 */
1015 //if (dvmLoaderInInitiatingList(clazz, loader)) {
1016 // ALOGW("WOW: simultaneous add of initiating class loader");
1017 // goto bail_unlock;
1018 //}
1019
1020 /*
1021 * The list never shrinks, so we just keep a count of the
1022 * number of elements in it, and reallocate the buffer when
1023 * we run off the end.
1024 *
1025 * The pointer is initially NULL, so we *do* want to call realloc
1026 * when count==0.
1027 */
1028 InitiatingLoaderList *loaderList = dvmGetInitiatingLoaderList(clazz);
1029 if ((loaderList->initiatingLoaderCount & (kInitLoaderInc-1)) == 0) {
1030 Object** newList;
1031
1032 newList = (Object**) realloc(loaderList->initiatingLoaders,
1033 (loaderList->initiatingLoaderCount + kInitLoaderInc)
1034 * sizeof(Object*));
1035 if (newList == NULL) {
1036 /* this is mainly a cache, so it's not the EotW */
1037 assert(false);
1038 goto bail_unlock;
1039 }
1040 loaderList->initiatingLoaders = newList;
1041
1042 //ALOGI("Expanded init list to %d (%s)",
1043 // loaderList->initiatingLoaderCount+kInitLoaderInc,
1044 // clazz->descriptor);
1045 }
1046 loaderList->initiatingLoaders[loaderList->initiatingLoaderCount++] =
1047 loader;
1048
1049 bail_unlock:
1050 dvmHashTableUnlock(gDvm.loadedClasses);
1051 }
1052 }
1053
1054 /*
1055 * (This is a dvmHashTableLookup callback.)
1056 *
1057 * Entries in the class hash table are stored as { descriptor, d-loader }
1058 * tuples. If the hashed class descriptor matches the requested descriptor,
1059 * and the hashed defining class loader matches the requested class
1060 * loader, we're good. If only the descriptor matches, we check to see if the
1061 * loader is in the hashed class' initiating loader list. If so, we
1062 * can return "true" immediately and skip some of the loadClass melodrama.
1063 *
1064 * The caller must lock the hash table before calling here.
1065 *
1066 * Returns 0 if a matching entry is found, nonzero otherwise.
1067 */
hashcmpClassByCrit(const void * vclazz,const void * vcrit)1068 static int hashcmpClassByCrit(const void* vclazz, const void* vcrit)
1069 {
1070 const ClassObject* clazz = (const ClassObject*) vclazz;
1071 const ClassMatchCriteria* pCrit = (const ClassMatchCriteria*) vcrit;
1072 bool match;
1073
1074 match = (strcmp(clazz->descriptor, pCrit->descriptor) == 0 &&
1075 (clazz->classLoader == pCrit->loader ||
1076 (pCrit->loader != NULL &&
1077 dvmLoaderInInitiatingList(clazz, pCrit->loader)) ));
1078 //if (match)
1079 // ALOGI("+++ %s %p matches existing %s %p",
1080 // pCrit->descriptor, pCrit->loader,
1081 // clazz->descriptor, clazz->classLoader);
1082 return !match;
1083 }
1084
1085 /*
1086 * Like hashcmpClassByCrit, but passing in a fully-formed ClassObject
1087 * instead of a ClassMatchCriteria.
1088 */
hashcmpClassByClass(const void * vclazz,const void * vaddclazz)1089 static int hashcmpClassByClass(const void* vclazz, const void* vaddclazz)
1090 {
1091 const ClassObject* clazz = (const ClassObject*) vclazz;
1092 const ClassObject* addClazz = (const ClassObject*) vaddclazz;
1093 bool match;
1094
1095 match = (strcmp(clazz->descriptor, addClazz->descriptor) == 0 &&
1096 (clazz->classLoader == addClazz->classLoader ||
1097 (addClazz->classLoader != NULL &&
1098 dvmLoaderInInitiatingList(clazz, addClazz->classLoader)) ));
1099 return !match;
1100 }
1101
1102 /*
1103 * Search through the hash table to find an entry with a matching descriptor
1104 * and an initiating class loader that matches "loader".
1105 *
1106 * The table entries are hashed on descriptor only, because they're unique
1107 * on *defining* class loader, not *initiating* class loader. This isn't
1108 * great, because it guarantees we will have to probe when multiple
1109 * class loaders are used.
1110 *
1111 * Note this does NOT try to load a class; it just finds a class that
1112 * has already been loaded.
1113 *
1114 * If "unprepOkay" is set, this will return classes that have been added
1115 * to the hash table but are not yet fully loaded and linked. Otherwise,
1116 * such classes are ignored. (The only place that should set "unprepOkay"
1117 * is findClassNoInit(), which will wait for the prep to finish.)
1118 *
1119 * Returns NULL if not found.
1120 */
dvmLookupClass(const char * descriptor,Object * loader,bool unprepOkay)1121 ClassObject* dvmLookupClass(const char* descriptor, Object* loader,
1122 bool unprepOkay)
1123 {
1124 ClassMatchCriteria crit;
1125 void* found;
1126 u4 hash;
1127
1128 crit.descriptor = descriptor;
1129 crit.loader = loader;
1130 hash = dvmComputeUtf8Hash(descriptor);
1131
1132 LOGVV("threadid=%d: dvmLookupClass searching for '%s' %p",
1133 dvmThreadSelf()->threadId, descriptor, loader);
1134
1135 dvmHashTableLock(gDvm.loadedClasses);
1136 found = dvmHashTableLookup(gDvm.loadedClasses, hash, &crit,
1137 hashcmpClassByCrit, false);
1138 dvmHashTableUnlock(gDvm.loadedClasses);
1139
1140 /*
1141 * The class has been added to the hash table but isn't ready for use.
1142 * We're going to act like we didn't see it, so that the caller will
1143 * go through the full "find class" path, which includes locking the
1144 * object and waiting until it's ready. We could do that lock/wait
1145 * here, but this is an extremely rare case, and it's simpler to have
1146 * the wait-for-class code centralized.
1147 */
1148 if (found && !unprepOkay && !dvmIsClassLinked((ClassObject*)found)) {
1149 ALOGV("Ignoring not-yet-ready %s, using slow path",
1150 ((ClassObject*)found)->descriptor);
1151 found = NULL;
1152 }
1153
1154 return (ClassObject*) found;
1155 }
1156
1157 /*
1158 * Add a new class to the hash table.
1159 *
1160 * The class is considered "new" if it doesn't match on both the class
1161 * descriptor and the defining class loader.
1162 *
1163 * TODO: we should probably have separate hash tables for each
1164 * ClassLoader. This could speed up dvmLookupClass and
1165 * other common operations. It does imply a VM-visible data structure
1166 * for each ClassLoader object with loaded classes, which we don't
1167 * have yet.
1168 */
dvmAddClassToHash(ClassObject * clazz)1169 bool dvmAddClassToHash(ClassObject* clazz)
1170 {
1171 void* found;
1172 u4 hash;
1173
1174 hash = dvmComputeUtf8Hash(clazz->descriptor);
1175
1176 dvmHashTableLock(gDvm.loadedClasses);
1177 found = dvmHashTableLookup(gDvm.loadedClasses, hash, clazz,
1178 hashcmpClassByClass, true);
1179 dvmHashTableUnlock(gDvm.loadedClasses);
1180
1181 ALOGV("+++ dvmAddClassToHash '%s' %p (isnew=%d) --> %p",
1182 clazz->descriptor, clazz->classLoader,
1183 (found == (void*) clazz), clazz);
1184
1185 //dvmCheckClassTablePerf();
1186
1187 /* can happen if two threads load the same class simultaneously */
1188 return (found == (void*) clazz);
1189 }
1190
1191 #if 0
1192 /*
1193 * Compute hash value for a class.
1194 */
1195 u4 hashcalcClass(const void* item)
1196 {
1197 return dvmComputeUtf8Hash(((const ClassObject*) item)->descriptor);
1198 }
1199
1200 /*
1201 * Check the performance of the "loadedClasses" hash table.
1202 */
1203 void dvmCheckClassTablePerf()
1204 {
1205 dvmHashTableLock(gDvm.loadedClasses);
1206 dvmHashTableProbeCount(gDvm.loadedClasses, hashcalcClass,
1207 hashcmpClassByClass);
1208 dvmHashTableUnlock(gDvm.loadedClasses);
1209 }
1210 #endif
1211
1212 /*
1213 * Remove a class object from the hash table.
1214 */
removeClassFromHash(ClassObject * clazz)1215 static void removeClassFromHash(ClassObject* clazz)
1216 {
1217 ALOGV("+++ removeClassFromHash '%s'", clazz->descriptor);
1218
1219 u4 hash = dvmComputeUtf8Hash(clazz->descriptor);
1220
1221 dvmHashTableLock(gDvm.loadedClasses);
1222 if (!dvmHashTableRemove(gDvm.loadedClasses, hash, clazz))
1223 ALOGW("Hash table remove failed on class '%s'", clazz->descriptor);
1224 dvmHashTableUnlock(gDvm.loadedClasses);
1225 }
1226
1227
1228 /*
1229 * ===========================================================================
1230 * Class creation
1231 * ===========================================================================
1232 */
1233
1234 /*
1235 * Set clazz->serialNumber to the next available value.
1236 *
1237 * This usually happens *very* early in class creation, so don't expect
1238 * anything else in the class to be ready.
1239 */
dvmSetClassSerialNumber(ClassObject * clazz)1240 void dvmSetClassSerialNumber(ClassObject* clazz)
1241 {
1242 assert(clazz->serialNumber == 0);
1243 clazz->serialNumber = android_atomic_inc(&gDvm.classSerialNumber);
1244 }
1245
1246
1247 /*
1248 * Find the named class (by descriptor), using the specified
1249 * initiating ClassLoader.
1250 *
1251 * The class will be loaded and initialized if it has not already been.
1252 * If necessary, the superclass will be loaded.
1253 *
1254 * If the class can't be found, returns NULL with an appropriate exception
1255 * raised.
1256 */
dvmFindClass(const char * descriptor,Object * loader)1257 ClassObject* dvmFindClass(const char* descriptor, Object* loader)
1258 {
1259 ClassObject* clazz;
1260
1261 clazz = dvmFindClassNoInit(descriptor, loader);
1262 if (clazz != NULL && clazz->status < CLASS_INITIALIZED) {
1263 /* initialize class */
1264 if (!dvmInitClass(clazz)) {
1265 /* init failed; leave it in the list, marked as bad */
1266 assert(dvmCheckException(dvmThreadSelf()));
1267 assert(clazz->status == CLASS_ERROR);
1268 return NULL;
1269 }
1270 }
1271
1272 return clazz;
1273 }
1274
1275 /*
1276 * Find the named class (by descriptor), using the specified
1277 * initiating ClassLoader.
1278 *
1279 * The class will be loaded if it has not already been, as will its
1280 * superclass. It will not be initialized.
1281 *
1282 * If the class can't be found, returns NULL with an appropriate exception
1283 * raised.
1284 */
dvmFindClassNoInit(const char * descriptor,Object * loader)1285 ClassObject* dvmFindClassNoInit(const char* descriptor,
1286 Object* loader)
1287 {
1288 assert(descriptor != NULL);
1289 //assert(loader != NULL);
1290
1291 LOGVV("FindClassNoInit '%s' %p", descriptor, loader);
1292
1293 if (*descriptor == '[') {
1294 /*
1295 * Array class. Find in table, generate if not found.
1296 */
1297 return dvmFindArrayClass(descriptor, loader);
1298 } else {
1299 /*
1300 * Regular class. Find in table, load if not found.
1301 */
1302 if (loader != NULL) {
1303 return findClassFromLoaderNoInit(descriptor, loader);
1304 } else {
1305 return dvmFindSystemClassNoInit(descriptor);
1306 }
1307 }
1308 }
1309
1310 /*
1311 * Load the named class (by descriptor) from the specified class
1312 * loader. This calls out to let the ClassLoader object do its thing.
1313 *
1314 * Returns with NULL and an exception raised on error.
1315 */
findClassFromLoaderNoInit(const char * descriptor,Object * loader)1316 static ClassObject* findClassFromLoaderNoInit(const char* descriptor,
1317 Object* loader)
1318 {
1319 //ALOGI("##### findClassFromLoaderNoInit (%s,%p)",
1320 // descriptor, loader);
1321
1322 Thread* self = dvmThreadSelf();
1323
1324 assert(loader != NULL);
1325
1326 /*
1327 * Do we already have it?
1328 *
1329 * The class loader code does the "is it already loaded" check as
1330 * well. However, this call is much faster than calling through
1331 * interpreted code. Doing this does mean that in the common case
1332 * (365 out of 420 calls booting the sim) we're doing the
1333 * lookup-by-descriptor twice. It appears this is still a win, so
1334 * I'm keeping it in.
1335 */
1336 ClassObject* clazz = dvmLookupClass(descriptor, loader, false);
1337 if (clazz != NULL) {
1338 LOGVV("Already loaded: %s %p", descriptor, loader);
1339 return clazz;
1340 } else {
1341 LOGVV("Not already loaded: %s %p", descriptor, loader);
1342 }
1343
1344 char* dotName = NULL;
1345 StringObject* nameObj = NULL;
1346
1347 /* convert "Landroid/debug/Stuff;" to "android.debug.Stuff" */
1348 dotName = dvmDescriptorToDot(descriptor);
1349 if (dotName == NULL) {
1350 dvmThrowOutOfMemoryError(NULL);
1351 return NULL;
1352 }
1353 nameObj = dvmCreateStringFromCstr(dotName);
1354 if (nameObj == NULL) {
1355 assert(dvmCheckException(self));
1356 goto bail;
1357 }
1358
1359 dvmMethodTraceClassPrepBegin();
1360
1361 /*
1362 * Invoke loadClass(). This will probably result in a couple of
1363 * exceptions being thrown, because the ClassLoader.loadClass()
1364 * implementation eventually calls VMClassLoader.loadClass to see if
1365 * the bootstrap class loader can find it before doing its own load.
1366 */
1367 LOGVV("--- Invoking loadClass(%s, %p)", dotName, loader);
1368 {
1369 const Method* loadClass =
1370 loader->clazz->vtable[gDvm.voffJavaLangClassLoader_loadClass];
1371 JValue result;
1372 dvmCallMethod(self, loadClass, loader, &result, nameObj);
1373 clazz = (ClassObject*) result.l;
1374
1375 dvmMethodTraceClassPrepEnd();
1376 Object* excep = dvmGetException(self);
1377 if (excep != NULL) {
1378 #if DVM_SHOW_EXCEPTION >= 2
1379 ALOGD("NOTE: loadClass '%s' %p threw exception %s",
1380 dotName, loader, excep->clazz->descriptor);
1381 #endif
1382 dvmAddTrackedAlloc(excep, self);
1383 dvmClearException(self);
1384 dvmThrowChainedNoClassDefFoundError(descriptor, excep);
1385 dvmReleaseTrackedAlloc(excep, self);
1386 clazz = NULL;
1387 goto bail;
1388 } else if (clazz == NULL) {
1389 ALOGW("ClassLoader returned NULL w/o exception pending");
1390 dvmThrowNullPointerException("ClassLoader returned null");
1391 goto bail;
1392 }
1393 }
1394
1395 /* not adding clazz to tracked-alloc list, because it's a ClassObject */
1396
1397 dvmAddInitiatingLoader(clazz, loader);
1398
1399 LOGVV("--- Successfully loaded %s %p (thisldr=%p clazz=%p)",
1400 descriptor, clazz->classLoader, loader, clazz);
1401
1402 bail:
1403 dvmReleaseTrackedAlloc((Object*)nameObj, NULL);
1404 free(dotName);
1405 return clazz;
1406 }
1407
1408 /*
1409 * Load the named class (by descriptor) from the specified DEX file.
1410 * Used by class loaders to instantiate a class object from a
1411 * VM-managed DEX.
1412 */
dvmDefineClass(DvmDex * pDvmDex,const char * descriptor,Object * classLoader)1413 ClassObject* dvmDefineClass(DvmDex* pDvmDex, const char* descriptor,
1414 Object* classLoader)
1415 {
1416 assert(pDvmDex != NULL);
1417
1418 return findClassNoInit(descriptor, classLoader, pDvmDex);
1419 }
1420
1421
1422 /*
1423 * Find the named class (by descriptor), scanning through the
1424 * bootclasspath if it hasn't already been loaded.
1425 *
1426 * "descriptor" looks like "Landroid/debug/Stuff;".
1427 *
1428 * Uses NULL as the defining class loader.
1429 */
dvmFindSystemClass(const char * descriptor)1430 ClassObject* dvmFindSystemClass(const char* descriptor)
1431 {
1432 ClassObject* clazz;
1433
1434 clazz = dvmFindSystemClassNoInit(descriptor);
1435 if (clazz != NULL && clazz->status < CLASS_INITIALIZED) {
1436 /* initialize class */
1437 if (!dvmInitClass(clazz)) {
1438 /* init failed; leave it in the list, marked as bad */
1439 assert(dvmCheckException(dvmThreadSelf()));
1440 assert(clazz->status == CLASS_ERROR);
1441 return NULL;
1442 }
1443 }
1444
1445 return clazz;
1446 }
1447
1448 /*
1449 * Find the named class (by descriptor), searching for it in the
1450 * bootclasspath.
1451 *
1452 * On failure, this returns NULL with an exception raised.
1453 */
dvmFindSystemClassNoInit(const char * descriptor)1454 ClassObject* dvmFindSystemClassNoInit(const char* descriptor)
1455 {
1456 return findClassNoInit(descriptor, NULL, NULL);
1457 }
1458
1459 /*
1460 * Find the named class (by descriptor). If it's not already loaded,
1461 * we load it and link it, but don't execute <clinit>. (The VM has
1462 * specific limitations on which events can cause initialization.)
1463 *
1464 * If "pDexFile" is NULL, we will search the bootclasspath for an entry.
1465 *
1466 * On failure, this returns NULL with an exception raised.
1467 *
1468 * TODO: we need to return an indication of whether we loaded the class or
1469 * used an existing definition. If somebody deliberately tries to load a
1470 * class twice in the same class loader, they should get a LinkageError,
1471 * but inadvertent simultaneous class references should "just work".
1472 */
findClassNoInit(const char * descriptor,Object * loader,DvmDex * pDvmDex)1473 static ClassObject* findClassNoInit(const char* descriptor, Object* loader,
1474 DvmDex* pDvmDex)
1475 {
1476 Thread* self = dvmThreadSelf();
1477 ClassObject* clazz;
1478 bool profilerNotified = false;
1479
1480 if (loader != NULL) {
1481 LOGVV("#### findClassNoInit(%s,%p,%p)", descriptor, loader,
1482 pDvmDex->pDexFile);
1483 }
1484
1485 /*
1486 * We don't expect an exception to be raised at this point. The
1487 * exception handling code is good about managing this. This *can*
1488 * happen if a JNI lookup fails and the JNI code doesn't do any
1489 * error checking before doing another class lookup, so we may just
1490 * want to clear this and restore it on exit. If we don't, some kinds
1491 * of failures can't be detected without rearranging other stuff.
1492 *
1493 * Most often when we hit this situation it means that something is
1494 * broken in the VM or in JNI code, so I'm keeping it in place (and
1495 * making it an informative abort rather than an assert).
1496 */
1497 if (dvmCheckException(self)) {
1498 ALOGE("Class lookup %s attempted with exception pending", descriptor);
1499 ALOGW("Pending exception is:");
1500 dvmLogExceptionStackTrace();
1501 dvmDumpAllThreads(false);
1502 dvmAbort();
1503 }
1504
1505 clazz = dvmLookupClass(descriptor, loader, true);
1506 if (clazz == NULL) {
1507 const DexClassDef* pClassDef;
1508
1509 dvmMethodTraceClassPrepBegin();
1510 profilerNotified = true;
1511
1512 #if LOG_CLASS_LOADING
1513 u8 startTime = dvmGetThreadCpuTimeNsec();
1514 #endif
1515
1516 if (pDvmDex == NULL) {
1517 assert(loader == NULL); /* shouldn't be here otherwise */
1518 pDvmDex = searchBootPathForClass(descriptor, &pClassDef);
1519 } else {
1520 pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor);
1521 }
1522
1523 if (pDvmDex == NULL || pClassDef == NULL) {
1524 if (gDvm.noClassDefFoundErrorObj != NULL) {
1525 /* usual case -- use prefabricated object */
1526 dvmSetException(self, gDvm.noClassDefFoundErrorObj);
1527 } else {
1528 /* dexopt case -- can't guarantee prefab (core.jar) */
1529 dvmThrowNoClassDefFoundError(descriptor);
1530 }
1531 goto bail;
1532 }
1533
1534 /* found a match, try to load it */
1535 clazz = loadClassFromDex(pDvmDex, pClassDef, loader);
1536 if (dvmCheckException(self)) {
1537 /* class was found but had issues */
1538 if (clazz != NULL) {
1539 dvmFreeClassInnards(clazz);
1540 dvmReleaseTrackedAlloc((Object*) clazz, NULL);
1541 }
1542 goto bail;
1543 }
1544
1545 /*
1546 * Lock the class while we link it so other threads must wait for us
1547 * to finish. Set the "initThreadId" so we can identify recursive
1548 * invocation. (Note all accesses to initThreadId here are
1549 * guarded by the class object's lock.)
1550 */
1551 dvmLockObject(self, (Object*) clazz);
1552 clazz->initThreadId = self->threadId;
1553
1554 /*
1555 * Add to hash table so lookups succeed.
1556 *
1557 * [Are circular references possible when linking a class?]
1558 */
1559 assert(clazz->classLoader == loader);
1560 if (!dvmAddClassToHash(clazz)) {
1561 /*
1562 * Another thread must have loaded the class after we
1563 * started but before we finished. Discard what we've
1564 * done and leave some hints for the GC.
1565 *
1566 * (Yes, this happens.)
1567 */
1568 //ALOGW("WOW: somebody loaded %s simultaneously", descriptor);
1569 clazz->initThreadId = 0;
1570 dvmUnlockObject(self, (Object*) clazz);
1571
1572 /* Let the GC free the class.
1573 */
1574 dvmFreeClassInnards(clazz);
1575 dvmReleaseTrackedAlloc((Object*) clazz, NULL);
1576
1577 /* Grab the winning class.
1578 */
1579 clazz = dvmLookupClass(descriptor, loader, true);
1580 assert(clazz != NULL);
1581 goto got_class;
1582 }
1583 dvmReleaseTrackedAlloc((Object*) clazz, NULL);
1584
1585 #if LOG_CLASS_LOADING
1586 logClassLoadWithTime('>', clazz, startTime);
1587 #endif
1588 /*
1589 * Prepare and resolve.
1590 */
1591 if (!dvmLinkClass(clazz)) {
1592 assert(dvmCheckException(self));
1593
1594 /* Make note of the error and clean up the class.
1595 */
1596 removeClassFromHash(clazz);
1597 clazz->status = CLASS_ERROR;
1598 dvmFreeClassInnards(clazz);
1599
1600 /* Let any waiters know.
1601 */
1602 clazz->initThreadId = 0;
1603 dvmObjectNotifyAll(self, (Object*) clazz);
1604 dvmUnlockObject(self, (Object*) clazz);
1605
1606 #if LOG_CLASS_LOADING
1607 ALOG(LOG_INFO, "DVMLINK FAILED FOR CLASS ", "%s in %s",
1608 clazz->descriptor, get_process_name());
1609
1610 /*
1611 * TODO: It would probably be better to use a new type code here (instead of '<') to
1612 * indicate the failure. This change would require a matching change in the parser
1613 * and analysis code in frameworks/base/tools/preload.
1614 */
1615 logClassLoad('<', clazz);
1616 #endif
1617 clazz = NULL;
1618 if (gDvm.optimizing) {
1619 /* happens with "external" libs */
1620 ALOGV("Link of class '%s' failed", descriptor);
1621 } else {
1622 ALOGW("Link of class '%s' failed", descriptor);
1623 }
1624 goto bail;
1625 }
1626 dvmObjectNotifyAll(self, (Object*) clazz);
1627 dvmUnlockObject(self, (Object*) clazz);
1628
1629 /*
1630 * Add class stats to global counters.
1631 *
1632 * TODO: these should probably be atomic ops.
1633 */
1634 gDvm.numLoadedClasses++;
1635 gDvm.numDeclaredMethods +=
1636 clazz->virtualMethodCount + clazz->directMethodCount;
1637 gDvm.numDeclaredInstFields += clazz->ifieldCount;
1638 gDvm.numDeclaredStaticFields += clazz->sfieldCount;
1639
1640 /*
1641 * Cache pointers to basic classes. We want to use these in
1642 * various places, and it's easiest to initialize them on first
1643 * use rather than trying to force them to initialize (startup
1644 * ordering makes it weird).
1645 */
1646 if (gDvm.classJavaLangObject == NULL &&
1647 strcmp(descriptor, "Ljava/lang/Object;") == 0)
1648 {
1649 /* It should be impossible to get here with anything
1650 * but the bootclasspath loader.
1651 */
1652 assert(loader == NULL);
1653 gDvm.classJavaLangObject = clazz;
1654 }
1655
1656 #if LOG_CLASS_LOADING
1657 logClassLoad('<', clazz);
1658 #endif
1659
1660 } else {
1661 got_class:
1662 if (!dvmIsClassLinked(clazz) && clazz->status != CLASS_ERROR) {
1663 /*
1664 * We can race with other threads for class linking. We should
1665 * never get here recursively; doing so indicates that two
1666 * classes have circular dependencies.
1667 *
1668 * One exception: we force discovery of java.lang.Class in
1669 * dvmLinkClass(), and Class has Object as its superclass. So
1670 * if the first thing we ever load is Object, we will init
1671 * Object->Class->Object. The easiest way to avoid this is to
1672 * ensure that Object is never the first thing we look up, so
1673 * we get Foo->Class->Object instead.
1674 */
1675 dvmLockObject(self, (Object*) clazz);
1676 if (!dvmIsClassLinked(clazz) &&
1677 clazz->initThreadId == self->threadId)
1678 {
1679 ALOGW("Recursive link on class %s", clazz->descriptor);
1680 dvmUnlockObject(self, (Object*) clazz);
1681 dvmThrowClassCircularityError(clazz->descriptor);
1682 clazz = NULL;
1683 goto bail;
1684 }
1685 //ALOGI("WAITING for '%s' (owner=%d)",
1686 // clazz->descriptor, clazz->initThreadId);
1687 while (!dvmIsClassLinked(clazz) && clazz->status != CLASS_ERROR) {
1688 dvmObjectWait(self, (Object*) clazz, 0, 0, false);
1689 }
1690 dvmUnlockObject(self, (Object*) clazz);
1691 }
1692 if (clazz->status == CLASS_ERROR) {
1693 /*
1694 * Somebody else tried to load this and failed. We need to raise
1695 * an exception and report failure.
1696 */
1697 throwEarlierClassFailure(clazz);
1698 clazz = NULL;
1699 goto bail;
1700 }
1701 }
1702
1703 /* check some invariants */
1704 assert(dvmIsClassLinked(clazz));
1705 assert(gDvm.classJavaLangClass != NULL);
1706 assert(clazz->clazz == gDvm.classJavaLangClass);
1707 assert(dvmIsClassObject(clazz));
1708 assert(clazz == gDvm.classJavaLangObject || clazz->super != NULL);
1709 if (!dvmIsInterfaceClass(clazz)) {
1710 //ALOGI("class=%s vtableCount=%d, virtualMeth=%d",
1711 // clazz->descriptor, clazz->vtableCount,
1712 // clazz->virtualMethodCount);
1713 assert(clazz->vtableCount >= clazz->virtualMethodCount);
1714 }
1715
1716 bail:
1717 if (profilerNotified)
1718 dvmMethodTraceClassPrepEnd();
1719 assert(clazz != NULL || dvmCheckException(self));
1720 return clazz;
1721 }
1722
1723 /*
1724 * Helper for loadClassFromDex, which takes a DexClassDataHeader and
1725 * encoded data pointer in addition to the other arguments.
1726 */
loadClassFromDex0(DvmDex * pDvmDex,const DexClassDef * pClassDef,const DexClassDataHeader * pHeader,const u1 * pEncodedData,Object * classLoader)1727 static ClassObject* loadClassFromDex0(DvmDex* pDvmDex,
1728 const DexClassDef* pClassDef, const DexClassDataHeader* pHeader,
1729 const u1* pEncodedData, Object* classLoader)
1730 {
1731 ClassObject* newClass = NULL;
1732 const DexFile* pDexFile;
1733 const char* descriptor;
1734 int i;
1735
1736 pDexFile = pDvmDex->pDexFile;
1737 descriptor = dexGetClassDescriptor(pDexFile, pClassDef);
1738
1739 /*
1740 * Make sure the aren't any "bonus" flags set, since we use them for
1741 * runtime state.
1742 */
1743 /* bits we can reasonably expect to see set in a DEX access flags field */
1744 const uint32_t EXPECTED_FILE_FLAGS = (ACC_CLASS_MASK | CLASS_ISPREVERIFIED |
1745 CLASS_ISOPTIMIZED);
1746 if ((pClassDef->accessFlags & ~EXPECTED_FILE_FLAGS) != 0) {
1747 ALOGW("Invalid file flags in class %s: %04x",
1748 descriptor, pClassDef->accessFlags);
1749 return NULL;
1750 }
1751
1752 /*
1753 * Allocate storage for the class object on the GC heap, so that other
1754 * objects can have references to it. We bypass the usual mechanism
1755 * (allocObject), because we don't have all the bits and pieces yet.
1756 *
1757 * Note that we assume that java.lang.Class does not override
1758 * finalize().
1759 */
1760 /* TODO: Can there be fewer special checks in the usual path? */
1761 assert(descriptor != NULL);
1762 if (classLoader == NULL &&
1763 strcmp(descriptor, "Ljava/lang/Class;") == 0) {
1764 assert(gDvm.classJavaLangClass != NULL);
1765 newClass = gDvm.classJavaLangClass;
1766 } else {
1767 size_t size = classObjectSize(pHeader->staticFieldsSize);
1768 newClass = (ClassObject*) dvmMalloc(size, ALLOC_NON_MOVING);
1769 }
1770 if (newClass == NULL)
1771 return NULL;
1772
1773 DVM_OBJECT_INIT(newClass, gDvm.classJavaLangClass);
1774 dvmSetClassSerialNumber(newClass);
1775 newClass->descriptor = descriptor;
1776 assert(newClass->descriptorAlloc == NULL);
1777 SET_CLASS_FLAG(newClass, pClassDef->accessFlags);
1778 dvmSetFieldObject((Object *)newClass,
1779 OFFSETOF_MEMBER(ClassObject, classLoader),
1780 (Object *)classLoader);
1781 newClass->pDvmDex = pDvmDex;
1782 newClass->primitiveType = PRIM_NOT;
1783 newClass->status = CLASS_IDX;
1784
1785 /*
1786 * Stuff the superclass index into the object pointer field. The linker
1787 * pulls it out and replaces it with a resolved ClassObject pointer.
1788 * I'm doing it this way (rather than having a dedicated superclassIdx
1789 * field) to save a few bytes of overhead per class.
1790 *
1791 * newClass->super is not traversed or freed by dvmFreeClassInnards, so
1792 * this is safe.
1793 */
1794 assert(sizeof(u4) == sizeof(ClassObject*)); /* 32-bit check */
1795 newClass->super = (ClassObject*) pClassDef->superclassIdx;
1796
1797 /*
1798 * Stuff class reference indices into the pointer fields.
1799 *
1800 * The elements of newClass->interfaces are not traversed or freed by
1801 * dvmFreeClassInnards, so this is GC-safe.
1802 */
1803 const DexTypeList* pInterfacesList;
1804 pInterfacesList = dexGetInterfacesList(pDexFile, pClassDef);
1805 if (pInterfacesList != NULL) {
1806 newClass->interfaceCount = pInterfacesList->size;
1807 newClass->interfaces = (ClassObject**) dvmLinearAlloc(classLoader,
1808 newClass->interfaceCount * sizeof(ClassObject*));
1809
1810 for (i = 0; i < newClass->interfaceCount; i++) {
1811 const DexTypeItem* pType = dexGetTypeItem(pInterfacesList, i);
1812 newClass->interfaces[i] = (ClassObject*)(u4) pType->typeIdx;
1813 }
1814 dvmLinearReadOnly(classLoader, newClass->interfaces);
1815 }
1816
1817 /* load field definitions */
1818
1819 /*
1820 * Over-allocate the class object and append static field info
1821 * onto the end. It's fixed-size and known at alloc time. This
1822 * seems to increase zygote sharing. Heap compaction will have to
1823 * be careful if it ever tries to move ClassObject instances,
1824 * because we pass Field pointers around internally. But at least
1825 * now these Field pointers are in the object heap.
1826 */
1827
1828 if (pHeader->staticFieldsSize != 0) {
1829 /* static fields stay on system heap; field data isn't "write once" */
1830 int count = (int) pHeader->staticFieldsSize;
1831 u4 lastIndex = 0;
1832 DexField field;
1833
1834 newClass->sfieldCount = count;
1835 for (i = 0; i < count; i++) {
1836 dexReadClassDataField(&pEncodedData, &field, &lastIndex);
1837 loadSFieldFromDex(newClass, &field, &newClass->sfields[i]);
1838 }
1839 }
1840
1841 if (pHeader->instanceFieldsSize != 0) {
1842 int count = (int) pHeader->instanceFieldsSize;
1843 u4 lastIndex = 0;
1844 DexField field;
1845
1846 newClass->ifieldCount = count;
1847 newClass->ifields = (InstField*) dvmLinearAlloc(classLoader,
1848 count * sizeof(InstField));
1849 for (i = 0; i < count; i++) {
1850 dexReadClassDataField(&pEncodedData, &field, &lastIndex);
1851 loadIFieldFromDex(newClass, &field, &newClass->ifields[i]);
1852 }
1853 dvmLinearReadOnly(classLoader, newClass->ifields);
1854 }
1855
1856 /*
1857 * Load method definitions. We do this in two batches, direct then
1858 * virtual.
1859 *
1860 * If register maps have already been generated for this class, and
1861 * precise GC is enabled, we pull out pointers to them. We know that
1862 * they were streamed to the DEX file in the same order in which the
1863 * methods appear.
1864 *
1865 * If the class wasn't pre-verified, the maps will be generated when
1866 * the class is verified during class initialization.
1867 */
1868 u4 classDefIdx = dexGetIndexForClassDef(pDexFile, pClassDef);
1869 const void* classMapData;
1870 u4 numMethods;
1871
1872 if (gDvm.preciseGc) {
1873 classMapData =
1874 dvmRegisterMapGetClassData(pDexFile, classDefIdx, &numMethods);
1875
1876 /* sanity check */
1877 if (classMapData != NULL &&
1878 pHeader->directMethodsSize + pHeader->virtualMethodsSize != numMethods)
1879 {
1880 ALOGE("ERROR: in %s, direct=%d virtual=%d, maps have %d",
1881 newClass->descriptor, pHeader->directMethodsSize,
1882 pHeader->virtualMethodsSize, numMethods);
1883 assert(false);
1884 classMapData = NULL; /* abandon */
1885 }
1886 } else {
1887 classMapData = NULL;
1888 }
1889
1890 if (pHeader->directMethodsSize != 0) {
1891 int count = (int) pHeader->directMethodsSize;
1892 u4 lastIndex = 0;
1893 DexMethod method;
1894
1895 newClass->directMethodCount = count;
1896 newClass->directMethods = (Method*) dvmLinearAlloc(classLoader,
1897 count * sizeof(Method));
1898 for (i = 0; i < count; i++) {
1899 dexReadClassDataMethod(&pEncodedData, &method, &lastIndex);
1900 loadMethodFromDex(newClass, &method, &newClass->directMethods[i]);
1901 if (classMapData != NULL) {
1902 const RegisterMap* pMap = dvmRegisterMapGetNext(&classMapData);
1903 if (dvmRegisterMapGetFormat(pMap) != kRegMapFormatNone) {
1904 newClass->directMethods[i].registerMap = pMap;
1905 /* TODO: add rigorous checks */
1906 assert((newClass->directMethods[i].registersSize+7) / 8 ==
1907 newClass->directMethods[i].registerMap->regWidth);
1908 }
1909 }
1910 }
1911 dvmLinearReadOnly(classLoader, newClass->directMethods);
1912 }
1913
1914 if (pHeader->virtualMethodsSize != 0) {
1915 int count = (int) pHeader->virtualMethodsSize;
1916 u4 lastIndex = 0;
1917 DexMethod method;
1918
1919 newClass->virtualMethodCount = count;
1920 newClass->virtualMethods = (Method*) dvmLinearAlloc(classLoader,
1921 count * sizeof(Method));
1922 for (i = 0; i < count; i++) {
1923 dexReadClassDataMethod(&pEncodedData, &method, &lastIndex);
1924 loadMethodFromDex(newClass, &method, &newClass->virtualMethods[i]);
1925 if (classMapData != NULL) {
1926 const RegisterMap* pMap = dvmRegisterMapGetNext(&classMapData);
1927 if (dvmRegisterMapGetFormat(pMap) != kRegMapFormatNone) {
1928 newClass->virtualMethods[i].registerMap = pMap;
1929 /* TODO: add rigorous checks */
1930 assert((newClass->virtualMethods[i].registersSize+7) / 8 ==
1931 newClass->virtualMethods[i].registerMap->regWidth);
1932 }
1933 }
1934 }
1935 dvmLinearReadOnly(classLoader, newClass->virtualMethods);
1936 }
1937
1938 newClass->sourceFile = dexGetSourceFile(pDexFile, pClassDef);
1939
1940 /* caller must call dvmReleaseTrackedAlloc */
1941 return newClass;
1942 }
1943
1944 /*
1945 * Try to load the indicated class from the specified DEX file.
1946 *
1947 * This is effectively loadClass()+defineClass() for a DexClassDef. The
1948 * loading was largely done when we crunched through the DEX.
1949 *
1950 * Returns NULL on failure. If we locate the class but encounter an error
1951 * while processing it, an appropriate exception is thrown.
1952 */
loadClassFromDex(DvmDex * pDvmDex,const DexClassDef * pClassDef,Object * classLoader)1953 static ClassObject* loadClassFromDex(DvmDex* pDvmDex,
1954 const DexClassDef* pClassDef, Object* classLoader)
1955 {
1956 ClassObject* result;
1957 DexClassDataHeader header;
1958 const u1* pEncodedData;
1959 const DexFile* pDexFile;
1960
1961 assert((pDvmDex != NULL) && (pClassDef != NULL));
1962 pDexFile = pDvmDex->pDexFile;
1963
1964 if (gDvm.verboseClass) {
1965 ALOGV("CLASS: loading '%s'...",
1966 dexGetClassDescriptor(pDexFile, pClassDef));
1967 }
1968
1969 pEncodedData = dexGetClassData(pDexFile, pClassDef);
1970
1971 if (pEncodedData != NULL) {
1972 dexReadClassDataHeader(&pEncodedData, &header);
1973 } else {
1974 // Provide an all-zeroes header for the rest of the loading.
1975 memset(&header, 0, sizeof(header));
1976 }
1977
1978 result = loadClassFromDex0(pDvmDex, pClassDef, &header, pEncodedData,
1979 classLoader);
1980
1981 if (gDvm.verboseClass && (result != NULL)) {
1982 ALOGI("[Loaded %s from DEX %p (cl=%p)]",
1983 result->descriptor, pDvmDex, classLoader);
1984 }
1985
1986 return result;
1987 }
1988
1989 /*
1990 * Free anything in a ClassObject that was allocated on the system heap.
1991 *
1992 * The ClassObject itself is allocated on the GC heap, so we leave it for
1993 * the garbage collector.
1994 *
1995 * NOTE: this may be called with a partially-constructed object.
1996 * NOTE: there is no particular ordering imposed, so don't go poking at
1997 * superclasses.
1998 */
dvmFreeClassInnards(ClassObject * clazz)1999 void dvmFreeClassInnards(ClassObject* clazz)
2000 {
2001 void *tp;
2002 int i;
2003
2004 if (clazz == NULL)
2005 return;
2006
2007 assert(clazz->clazz == gDvm.classJavaLangClass);
2008 assert(dvmIsClassObject(clazz));
2009
2010 /* Guarantee that dvmFreeClassInnards can be called on a given
2011 * class multiple times by clearing things out as we free them.
2012 * We don't make any attempt at real atomicity here; higher
2013 * levels need to make sure that no two threads can free the
2014 * same ClassObject at the same time.
2015 *
2016 * TODO: maybe just make it so the GC will never free the
2017 * innards of an already-freed class.
2018 *
2019 * TODO: this #define isn't MT-safe -- the compiler could rearrange it.
2020 */
2021 #define NULL_AND_FREE(p) \
2022 do { \
2023 if ((p) != NULL) { \
2024 tp = (p); \
2025 (p) = NULL; \
2026 free(tp); \
2027 } \
2028 } while (0)
2029 #define NULL_AND_LINEAR_FREE(p) \
2030 do { \
2031 if ((p) != NULL) { \
2032 tp = (p); \
2033 (p) = NULL; \
2034 dvmLinearFree(clazz->classLoader, tp); \
2035 } \
2036 } while (0)
2037
2038 /* arrays just point at Object's vtable; don't free vtable in this case.
2039 */
2040 clazz->vtableCount = -1;
2041 if (clazz->vtable == gDvm.classJavaLangObject->vtable) {
2042 clazz->vtable = NULL;
2043 } else {
2044 NULL_AND_LINEAR_FREE(clazz->vtable);
2045 }
2046
2047 clazz->descriptor = NULL;
2048 NULL_AND_FREE(clazz->descriptorAlloc);
2049
2050 if (clazz->directMethods != NULL) {
2051 Method *directMethods = clazz->directMethods;
2052 int directMethodCount = clazz->directMethodCount;
2053 clazz->directMethods = NULL;
2054 clazz->directMethodCount = -1;
2055 dvmLinearReadWrite(clazz->classLoader, directMethods);
2056 for (i = 0; i < directMethodCount; i++) {
2057 freeMethodInnards(&directMethods[i]);
2058 }
2059 dvmLinearReadOnly(clazz->classLoader, directMethods);
2060 dvmLinearFree(clazz->classLoader, directMethods);
2061 }
2062 if (clazz->virtualMethods != NULL) {
2063 Method *virtualMethods = clazz->virtualMethods;
2064 int virtualMethodCount = clazz->virtualMethodCount;
2065 clazz->virtualMethodCount = -1;
2066 clazz->virtualMethods = NULL;
2067 dvmLinearReadWrite(clazz->classLoader, virtualMethods);
2068 for (i = 0; i < virtualMethodCount; i++) {
2069 freeMethodInnards(&virtualMethods[i]);
2070 }
2071 dvmLinearReadOnly(clazz->classLoader, virtualMethods);
2072 dvmLinearFree(clazz->classLoader, virtualMethods);
2073 }
2074
2075 InitiatingLoaderList *loaderList = dvmGetInitiatingLoaderList(clazz);
2076 loaderList->initiatingLoaderCount = -1;
2077 NULL_AND_FREE(loaderList->initiatingLoaders);
2078
2079 clazz->interfaceCount = -1;
2080 NULL_AND_LINEAR_FREE(clazz->interfaces);
2081
2082 clazz->iftableCount = -1;
2083 NULL_AND_LINEAR_FREE(clazz->iftable);
2084
2085 clazz->ifviPoolCount = -1;
2086 NULL_AND_LINEAR_FREE(clazz->ifviPool);
2087
2088 clazz->sfieldCount = -1;
2089 /* The sfields are attached to the ClassObject, and will be freed
2090 * with it. */
2091
2092 clazz->ifieldCount = -1;
2093 NULL_AND_LINEAR_FREE(clazz->ifields);
2094
2095 #undef NULL_AND_FREE
2096 #undef NULL_AND_LINEAR_FREE
2097 }
2098
2099 /*
2100 * Free anything in a Method that was allocated on the system heap.
2101 *
2102 * The containing class is largely torn down by this point.
2103 */
freeMethodInnards(Method * meth)2104 static void freeMethodInnards(Method* meth)
2105 {
2106 #if 0
2107 free(meth->exceptions);
2108 free(meth->lines);
2109 free(meth->locals);
2110 #endif
2111
2112 /*
2113 * Some register maps are allocated on the heap, either because of late
2114 * verification or because we're caching an uncompressed form.
2115 */
2116 const RegisterMap* pMap = meth->registerMap;
2117 if (pMap != NULL && dvmRegisterMapGetOnHeap(pMap)) {
2118 dvmFreeRegisterMap((RegisterMap*) pMap);
2119 meth->registerMap = NULL;
2120 }
2121
2122 /*
2123 * We may have copied the instructions.
2124 */
2125 if (IS_METHOD_FLAG_SET(meth, METHOD_ISWRITABLE)) {
2126 DexCode* methodDexCode = (DexCode*) dvmGetMethodCode(meth);
2127 dvmLinearFree(meth->clazz->classLoader, methodDexCode);
2128 }
2129 }
2130
2131 /*
2132 * Clone a Method, making new copies of anything that will be freed up
2133 * by freeMethodInnards(). This is used for "miranda" methods.
2134 */
cloneMethod(Method * dst,const Method * src)2135 static void cloneMethod(Method* dst, const Method* src)
2136 {
2137 if (src->registerMap != NULL) {
2138 ALOGE("GLITCH: only expected abstract methods here");
2139 ALOGE(" cloning %s.%s", src->clazz->descriptor, src->name);
2140 dvmAbort();
2141 }
2142 memcpy(dst, src, sizeof(Method));
2143 }
2144
2145 /*
2146 * Pull the interesting pieces out of a DexMethod.
2147 *
2148 * The DEX file isn't going anywhere, so we don't need to make copies of
2149 * the code area.
2150 */
loadMethodFromDex(ClassObject * clazz,const DexMethod * pDexMethod,Method * meth)2151 static void loadMethodFromDex(ClassObject* clazz, const DexMethod* pDexMethod,
2152 Method* meth)
2153 {
2154 DexFile* pDexFile = clazz->pDvmDex->pDexFile;
2155 const DexMethodId* pMethodId;
2156 const DexCode* pDexCode;
2157
2158 pMethodId = dexGetMethodId(pDexFile, pDexMethod->methodIdx);
2159
2160 meth->name = dexStringById(pDexFile, pMethodId->nameIdx);
2161 dexProtoSetFromMethodId(&meth->prototype, pDexFile, pMethodId);
2162 meth->shorty = dexProtoGetShorty(&meth->prototype);
2163 meth->accessFlags = pDexMethod->accessFlags;
2164 meth->clazz = clazz;
2165 meth->jniArgInfo = 0;
2166
2167 if (dvmCompareNameDescriptorAndMethod("finalize", "()V", meth) == 0) {
2168 /*
2169 * The Enum class declares a "final" finalize() method to
2170 * prevent subclasses from introducing a finalizer. We don't
2171 * want to set the finalizable flag for Enum or its subclasses,
2172 * so we check for it here.
2173 *
2174 * We also want to avoid setting it on Object, but it's easier
2175 * to just strip that out later.
2176 */
2177 if (clazz->classLoader != NULL ||
2178 strcmp(clazz->descriptor, "Ljava/lang/Enum;") != 0)
2179 {
2180 SET_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE);
2181 }
2182 }
2183
2184 pDexCode = dexGetCode(pDexFile, pDexMethod);
2185 if (pDexCode != NULL) {
2186 /* integer constants, copy over for faster access */
2187 meth->registersSize = pDexCode->registersSize;
2188 meth->insSize = pDexCode->insSize;
2189 meth->outsSize = pDexCode->outsSize;
2190
2191 /* pointer to code area */
2192 meth->insns = pDexCode->insns;
2193 } else {
2194 /*
2195 * We don't have a DexCode block, but we still want to know how
2196 * much space is needed for the arguments (so we don't have to
2197 * compute it later). We also take this opportunity to compute
2198 * JNI argument info.
2199 *
2200 * We do this for abstract methods as well, because we want to
2201 * be able to substitute our exception-throwing "stub" in.
2202 */
2203 int argsSize = dvmComputeMethodArgsSize(meth);
2204 if (!dvmIsStaticMethod(meth))
2205 argsSize++;
2206 meth->registersSize = meth->insSize = argsSize;
2207 assert(meth->outsSize == 0);
2208 assert(meth->insns == NULL);
2209
2210 if (dvmIsNativeMethod(meth)) {
2211 meth->nativeFunc = dvmResolveNativeMethod;
2212 meth->jniArgInfo = computeJniArgInfo(&meth->prototype);
2213 }
2214 }
2215 }
2216
2217 #if 0 /* replaced with private/read-write mapping */
2218 /*
2219 * We usually map bytecode directly out of the DEX file, which is mapped
2220 * shared read-only. If we want to be able to modify it, we have to make
2221 * a new copy.
2222 *
2223 * Once copied, the code will be in the LinearAlloc region, which may be
2224 * marked read-only.
2225 *
2226 * The bytecode instructions are embedded inside a DexCode structure, so we
2227 * need to copy all of that. (The dvmGetMethodCode function backs up the
2228 * instruction pointer to find the start of the DexCode.)
2229 */
2230 void dvmMakeCodeReadWrite(Method* meth)
2231 {
2232 DexCode* methodDexCode = (DexCode*) dvmGetMethodCode(meth);
2233
2234 if (IS_METHOD_FLAG_SET(meth, METHOD_ISWRITABLE)) {
2235 dvmLinearReadWrite(meth->clazz->classLoader, methodDexCode);
2236 return;
2237 }
2238
2239 assert(!dvmIsNativeMethod(meth) && !dvmIsAbstractMethod(meth));
2240
2241 size_t dexCodeSize = dexGetDexCodeSize(methodDexCode);
2242 ALOGD("Making a copy of %s.%s code (%d bytes)",
2243 meth->clazz->descriptor, meth->name, dexCodeSize);
2244
2245 DexCode* newCode =
2246 (DexCode*) dvmLinearAlloc(meth->clazz->classLoader, dexCodeSize);
2247 memcpy(newCode, methodDexCode, dexCodeSize);
2248
2249 meth->insns = newCode->insns;
2250 SET_METHOD_FLAG(meth, METHOD_ISWRITABLE);
2251 }
2252
2253 /*
2254 * Mark the bytecode read-only.
2255 *
2256 * If the contents of the DexCode haven't actually changed, we could revert
2257 * to the original shared page.
2258 */
2259 void dvmMakeCodeReadOnly(Method* meth)
2260 {
2261 DexCode* methodDexCode = (DexCode*) dvmGetMethodCode(meth);
2262 ALOGV("+++ marking %p read-only", methodDexCode);
2263 dvmLinearReadOnly(meth->clazz->classLoader, methodDexCode);
2264 }
2265 #endif
2266
2267
2268 /*
2269 * jniArgInfo (32-bit int) layout:
2270 * SRRRHHHH HHHHHHHH HHHHHHHH HHHHHHHH
2271 *
2272 * S - if set, do things the hard way (scan the signature)
2273 * R - return-type enumeration
2274 * H - target-specific hints
2275 *
2276 * This info is used at invocation time by dvmPlatformInvoke. In most
2277 * cases, the target-specific hints allow dvmPlatformInvoke to avoid
2278 * having to fully parse the signature.
2279 *
2280 * The return-type bits are always set, even if target-specific hint bits
2281 * are unavailable.
2282 */
computeJniArgInfo(const DexProto * proto)2283 static int computeJniArgInfo(const DexProto* proto)
2284 {
2285 const char* sig = dexProtoGetShorty(proto);
2286 int returnType, jniArgInfo;
2287 u4 hints;
2288
2289 /* The first shorty character is the return type. */
2290 switch (*(sig++)) {
2291 case 'V':
2292 returnType = DALVIK_JNI_RETURN_VOID;
2293 break;
2294 case 'F':
2295 returnType = DALVIK_JNI_RETURN_FLOAT;
2296 break;
2297 case 'D':
2298 returnType = DALVIK_JNI_RETURN_DOUBLE;
2299 break;
2300 case 'J':
2301 returnType = DALVIK_JNI_RETURN_S8;
2302 break;
2303 case 'Z':
2304 case 'B':
2305 returnType = DALVIK_JNI_RETURN_S1;
2306 break;
2307 case 'C':
2308 returnType = DALVIK_JNI_RETURN_U2;
2309 break;
2310 case 'S':
2311 returnType = DALVIK_JNI_RETURN_S2;
2312 break;
2313 default:
2314 returnType = DALVIK_JNI_RETURN_S4;
2315 break;
2316 }
2317
2318 jniArgInfo = returnType << DALVIK_JNI_RETURN_SHIFT;
2319
2320 hints = dvmPlatformInvokeHints(proto);
2321
2322 if (hints & DALVIK_JNI_NO_ARG_INFO) {
2323 jniArgInfo |= DALVIK_JNI_NO_ARG_INFO;
2324 } else {
2325 assert((hints & DALVIK_JNI_RETURN_MASK) == 0);
2326 jniArgInfo |= hints;
2327 }
2328
2329 return jniArgInfo;
2330 }
2331
2332 /*
2333 * Load information about a static field.
2334 *
2335 * This also "prepares" static fields by initializing them
2336 * to their "standard default values".
2337 */
loadSFieldFromDex(ClassObject * clazz,const DexField * pDexSField,StaticField * sfield)2338 static void loadSFieldFromDex(ClassObject* clazz,
2339 const DexField* pDexSField, StaticField* sfield)
2340 {
2341 DexFile* pDexFile = clazz->pDvmDex->pDexFile;
2342 const DexFieldId* pFieldId;
2343
2344 pFieldId = dexGetFieldId(pDexFile, pDexSField->fieldIdx);
2345
2346 sfield->clazz = clazz;
2347 sfield->name = dexStringById(pDexFile, pFieldId->nameIdx);
2348 sfield->signature = dexStringByTypeIdx(pDexFile, pFieldId->typeIdx);
2349 sfield->accessFlags = pDexSField->accessFlags;
2350
2351 /* Static object field values are set to "standard default values"
2352 * (null or 0) until the class is initialized. We delay loading
2353 * constant values from the class until that time.
2354 */
2355 //sfield->value.j = 0;
2356 assert(sfield->value.j == 0LL); // cleared earlier with calloc
2357 }
2358
2359 /*
2360 * Load information about an instance field.
2361 */
loadIFieldFromDex(ClassObject * clazz,const DexField * pDexIField,InstField * ifield)2362 static void loadIFieldFromDex(ClassObject* clazz,
2363 const DexField* pDexIField, InstField* ifield)
2364 {
2365 DexFile* pDexFile = clazz->pDvmDex->pDexFile;
2366 const DexFieldId* pFieldId;
2367
2368 pFieldId = dexGetFieldId(pDexFile, pDexIField->fieldIdx);
2369
2370 ifield->clazz = clazz;
2371 ifield->name = dexStringById(pDexFile, pFieldId->nameIdx);
2372 ifield->signature = dexStringByTypeIdx(pDexFile, pFieldId->typeIdx);
2373 ifield->accessFlags = pDexIField->accessFlags;
2374 #ifndef NDEBUG
2375 assert(ifield->byteOffset == 0); // cleared earlier with calloc
2376 ifield->byteOffset = -1; // make it obvious if we fail to set later
2377 #endif
2378 }
2379
2380 /*
2381 * Cache java.lang.ref.Reference fields and methods.
2382 */
precacheReferenceOffsets(ClassObject * clazz)2383 static bool precacheReferenceOffsets(ClassObject* clazz)
2384 {
2385 int i;
2386
2387 /* We trick the GC object scanner by not counting
2388 * java.lang.ref.Reference.referent as an object
2389 * field. It will get explicitly scanned as part
2390 * of the reference-walking process.
2391 *
2392 * Find the object field named "referent" and put it
2393 * just after the list of object reference fields.
2394 */
2395 dvmLinearReadWrite(clazz->classLoader, clazz->ifields);
2396 for (i = 0; i < clazz->ifieldRefCount; i++) {
2397 InstField *pField = &clazz->ifields[i];
2398 if (strcmp(pField->name, "referent") == 0) {
2399 int targetIndex;
2400
2401 /* Swap this field with the last object field.
2402 */
2403 targetIndex = clazz->ifieldRefCount - 1;
2404 if (i != targetIndex) {
2405 InstField *swapField = &clazz->ifields[targetIndex];
2406 InstField tmpField;
2407 int tmpByteOffset;
2408
2409 /* It's not currently strictly necessary
2410 * for the fields to be in byteOffset order,
2411 * but it's more predictable that way.
2412 */
2413 tmpByteOffset = swapField->byteOffset;
2414 swapField->byteOffset = pField->byteOffset;
2415 pField->byteOffset = tmpByteOffset;
2416
2417 tmpField = *swapField;
2418 *swapField = *pField;
2419 *pField = tmpField;
2420 }
2421
2422 /* One fewer object field (wink wink).
2423 */
2424 clazz->ifieldRefCount--;
2425 i--; /* don't trip "didn't find it" test if field was last */
2426 break;
2427 }
2428 }
2429 dvmLinearReadOnly(clazz->classLoader, clazz->ifields);
2430 if (i == clazz->ifieldRefCount) {
2431 ALOGE("Unable to reorder 'referent' in %s", clazz->descriptor);
2432 return false;
2433 }
2434
2435 /*
2436 * Now that the above has been done, it is safe to cache
2437 * info about the class.
2438 */
2439 if (!dvmFindReferenceMembers(clazz)) {
2440 ALOGE("Trouble with Reference setup");
2441 return false;
2442 }
2443
2444 return true;
2445 }
2446
2447
2448 /*
2449 * Set the bitmap of reference offsets, refOffsets, from the ifields
2450 * list.
2451 */
computeRefOffsets(ClassObject * clazz)2452 static void computeRefOffsets(ClassObject* clazz)
2453 {
2454 if (clazz->super != NULL) {
2455 clazz->refOffsets = clazz->super->refOffsets;
2456 } else {
2457 clazz->refOffsets = 0;
2458 }
2459 /*
2460 * If our superclass overflowed, we don't stand a chance.
2461 */
2462 if (clazz->refOffsets != CLASS_WALK_SUPER) {
2463 InstField *f;
2464 int i;
2465
2466 /* All of the fields that contain object references
2467 * are guaranteed to be at the beginning of the ifields list.
2468 */
2469 f = clazz->ifields;
2470 const int ifieldRefCount = clazz->ifieldRefCount;
2471 for (i = 0; i < ifieldRefCount; i++) {
2472 /*
2473 * Note that, per the comment on struct InstField,
2474 * f->byteOffset is the offset from the beginning of
2475 * obj, not the offset into obj->instanceData.
2476 */
2477 assert(f->byteOffset >= (int) CLASS_SMALLEST_OFFSET);
2478 assert((f->byteOffset & (CLASS_OFFSET_ALIGNMENT - 1)) == 0);
2479 if (CLASS_CAN_ENCODE_OFFSET(f->byteOffset)) {
2480 u4 newBit = CLASS_BIT_FROM_OFFSET(f->byteOffset);
2481 assert(newBit != 0);
2482 clazz->refOffsets |= newBit;
2483 } else {
2484 clazz->refOffsets = CLASS_WALK_SUPER;
2485 break;
2486 }
2487 f++;
2488 }
2489 }
2490 }
2491
2492
2493 /*
2494 * Link (prepare and resolve). Verification is deferred until later.
2495 *
2496 * This converts symbolic references into pointers. It's independent of
2497 * the source file format.
2498 *
2499 * If clazz->status is CLASS_IDX, then clazz->super and interfaces[] are
2500 * holding class reference indices rather than pointers. The class
2501 * references will be resolved during link. (This is done when
2502 * loading from DEX to avoid having to create additional storage to
2503 * pass the indices around.)
2504 *
2505 * Returns "false" with an exception pending on failure.
2506 */
dvmLinkClass(ClassObject * clazz)2507 bool dvmLinkClass(ClassObject* clazz)
2508 {
2509 u4 superclassIdx = 0;
2510 u4 *interfaceIdxArray = NULL;
2511 bool okay = false;
2512 int i;
2513
2514 assert(clazz != NULL);
2515 assert(clazz->descriptor != NULL);
2516 assert(clazz->status == CLASS_IDX || clazz->status == CLASS_LOADED);
2517 if (gDvm.verboseClass)
2518 ALOGV("CLASS: linking '%s'...", clazz->descriptor);
2519
2520 assert(gDvm.classJavaLangClass != NULL);
2521 assert(clazz->clazz == gDvm.classJavaLangClass);
2522 assert(dvmIsClassObject(clazz));
2523 if (clazz->classLoader == NULL &&
2524 (strcmp(clazz->descriptor, "Ljava/lang/Class;") == 0))
2525 {
2526 if (gDvm.classJavaLangClass->ifieldCount > CLASS_FIELD_SLOTS) {
2527 ALOGE("java.lang.Class has %d instance fields (expected at most %d)",
2528 gDvm.classJavaLangClass->ifieldCount, CLASS_FIELD_SLOTS);
2529 dvmAbort();
2530 }
2531 if (gDvm.classJavaLangClass->sfieldCount != CLASS_SFIELD_SLOTS) {
2532 ALOGE("java.lang.Class has %d static fields (expected %d)",
2533 gDvm.classJavaLangClass->sfieldCount, CLASS_SFIELD_SLOTS);
2534 dvmAbort();
2535 }
2536 }
2537
2538 /* "Resolve" the class.
2539 *
2540 * At this point, clazz's reference fields may contain Dex file
2541 * indices instead of direct object references. Proxy objects are
2542 * an exception, and may be the only exception. We need to
2543 * translate those indices into real references, and let the GC
2544 * look inside this ClassObject.
2545 */
2546 if (clazz->status == CLASS_IDX) {
2547 if (clazz->interfaceCount > 0) {
2548 /* Copy u4 DEX idx values out of the ClassObject* array
2549 * where we stashed them.
2550 */
2551 assert(sizeof(*interfaceIdxArray) == sizeof(*clazz->interfaces));
2552 size_t len = clazz->interfaceCount * sizeof(*interfaceIdxArray);
2553 interfaceIdxArray = (u4*)malloc(len);
2554 if (interfaceIdxArray == NULL) {
2555 ALOGW("Unable to allocate memory to link %s", clazz->descriptor);
2556 goto bail;
2557 }
2558 memcpy(interfaceIdxArray, clazz->interfaces, len);
2559
2560 dvmLinearReadWrite(clazz->classLoader, clazz->interfaces);
2561 memset(clazz->interfaces, 0, len);
2562 dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
2563 }
2564
2565 assert(sizeof(superclassIdx) == sizeof(clazz->super));
2566 superclassIdx = (u4) clazz->super;
2567 clazz->super = NULL;
2568 /* After this line, clazz will be fair game for the GC. The
2569 * superclass and interfaces are all NULL.
2570 */
2571 clazz->status = CLASS_LOADED;
2572
2573 if (superclassIdx != kDexNoIndex) {
2574 ClassObject* super = dvmResolveClass(clazz, superclassIdx, false);
2575 if (super == NULL) {
2576 assert(dvmCheckException(dvmThreadSelf()));
2577 if (gDvm.optimizing) {
2578 /* happens with "external" libs */
2579 ALOGV("Unable to resolve superclass of %s (%d)",
2580 clazz->descriptor, superclassIdx);
2581 } else {
2582 ALOGW("Unable to resolve superclass of %s (%d)",
2583 clazz->descriptor, superclassIdx);
2584 }
2585 goto bail;
2586 }
2587 dvmSetFieldObject((Object *)clazz,
2588 OFFSETOF_MEMBER(ClassObject, super),
2589 (Object *)super);
2590 }
2591
2592 if (clazz->interfaceCount > 0) {
2593 /* Resolve the interfaces implemented directly by this class. */
2594 assert(interfaceIdxArray != NULL);
2595 dvmLinearReadWrite(clazz->classLoader, clazz->interfaces);
2596 for (i = 0; i < clazz->interfaceCount; i++) {
2597 assert(interfaceIdxArray[i] != kDexNoIndex);
2598 clazz->interfaces[i] =
2599 dvmResolveClass(clazz, interfaceIdxArray[i], false);
2600 if (clazz->interfaces[i] == NULL) {
2601 const DexFile* pDexFile = clazz->pDvmDex->pDexFile;
2602
2603 assert(dvmCheckException(dvmThreadSelf()));
2604 dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
2605
2606 const char* classDescriptor;
2607 classDescriptor =
2608 dexStringByTypeIdx(pDexFile, interfaceIdxArray[i]);
2609 if (gDvm.optimizing) {
2610 /* happens with "external" libs */
2611 ALOGV("Failed resolving %s interface %d '%s'",
2612 clazz->descriptor, interfaceIdxArray[i],
2613 classDescriptor);
2614 } else {
2615 ALOGI("Failed resolving %s interface %d '%s'",
2616 clazz->descriptor, interfaceIdxArray[i],
2617 classDescriptor);
2618 }
2619 goto bail;
2620 }
2621
2622 /* are we allowed to implement this interface? */
2623 if (!dvmCheckClassAccess(clazz, clazz->interfaces[i])) {
2624 dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
2625 ALOGW("Interface '%s' is not accessible to '%s'",
2626 clazz->interfaces[i]->descriptor, clazz->descriptor);
2627 dvmThrowIllegalAccessError("interface not accessible");
2628 goto bail;
2629 }
2630 LOGVV("+++ found interface '%s'",
2631 clazz->interfaces[i]->descriptor);
2632 }
2633 dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
2634 }
2635 }
2636 /*
2637 * There are now Class references visible to the GC in super and
2638 * interfaces.
2639 */
2640
2641 /*
2642 * All classes have a direct superclass, except for
2643 * java/lang/Object and primitive classes. Primitive classes are
2644 * are created CLASS_INITIALIZED, so won't get here.
2645 */
2646 assert(clazz->primitiveType == PRIM_NOT);
2647 if (strcmp(clazz->descriptor, "Ljava/lang/Object;") == 0) {
2648 if (clazz->super != NULL) {
2649 /* TODO: is this invariant true for all java/lang/Objects,
2650 * regardless of the class loader? For now, assume it is.
2651 */
2652 dvmThrowClassFormatError("java.lang.Object has a superclass");
2653 goto bail;
2654 }
2655
2656 /* Don't finalize objects whose classes use the
2657 * default (empty) Object.finalize().
2658 */
2659 CLEAR_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE);
2660 } else {
2661 if (clazz->super == NULL) {
2662 dvmThrowLinkageError("no superclass defined");
2663 goto bail;
2664 }
2665 /* verify */
2666 if (dvmIsFinalClass(clazz->super)) {
2667 ALOGW("Superclass of '%s' is final '%s'",
2668 clazz->descriptor, clazz->super->descriptor);
2669 dvmThrowIncompatibleClassChangeError("superclass is final");
2670 goto bail;
2671 } else if (dvmIsInterfaceClass(clazz->super)) {
2672 ALOGW("Superclass of '%s' is interface '%s'",
2673 clazz->descriptor, clazz->super->descriptor);
2674 dvmThrowIncompatibleClassChangeError("superclass is an interface");
2675 goto bail;
2676 } else if (!dvmCheckClassAccess(clazz, clazz->super)) {
2677 ALOGW("Superclass of '%s' (%s) is not accessible",
2678 clazz->descriptor, clazz->super->descriptor);
2679 dvmThrowIllegalAccessError("superclass not accessible");
2680 goto bail;
2681 }
2682
2683 /* Inherit finalizability from the superclass. If this
2684 * class also overrides finalize(), its CLASS_ISFINALIZABLE
2685 * bit will already be set.
2686 */
2687 if (IS_CLASS_FLAG_SET(clazz->super, CLASS_ISFINALIZABLE)) {
2688 SET_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE);
2689 }
2690
2691 /* See if this class descends from java.lang.Reference
2692 * and set the class flags appropriately.
2693 */
2694 if (IS_CLASS_FLAG_SET(clazz->super, CLASS_ISREFERENCE)) {
2695 u4 superRefFlags;
2696
2697 /* We've already determined the reference type of this
2698 * inheritance chain. Inherit reference-ness from the superclass.
2699 */
2700 superRefFlags = GET_CLASS_FLAG_GROUP(clazz->super,
2701 CLASS_ISREFERENCE |
2702 CLASS_ISWEAKREFERENCE |
2703 CLASS_ISFINALIZERREFERENCE |
2704 CLASS_ISPHANTOMREFERENCE);
2705 SET_CLASS_FLAG(clazz, superRefFlags);
2706 } else if (clazz->classLoader == NULL &&
2707 clazz->super->classLoader == NULL &&
2708 strcmp(clazz->super->descriptor,
2709 "Ljava/lang/ref/Reference;") == 0)
2710 {
2711 u4 refFlags;
2712
2713 /* This class extends Reference, which means it should
2714 * be one of the magic Soft/Weak/PhantomReference classes.
2715 */
2716 refFlags = CLASS_ISREFERENCE;
2717 if (strcmp(clazz->descriptor,
2718 "Ljava/lang/ref/SoftReference;") == 0)
2719 {
2720 /* Only CLASS_ISREFERENCE is set for soft references.
2721 */
2722 } else if (strcmp(clazz->descriptor,
2723 "Ljava/lang/ref/WeakReference;") == 0)
2724 {
2725 refFlags |= CLASS_ISWEAKREFERENCE;
2726 } else if (strcmp(clazz->descriptor,
2727 "Ljava/lang/ref/FinalizerReference;") == 0)
2728 {
2729 refFlags |= CLASS_ISFINALIZERREFERENCE;
2730 } else if (strcmp(clazz->descriptor,
2731 "Ljava/lang/ref/PhantomReference;") == 0)
2732 {
2733 refFlags |= CLASS_ISPHANTOMREFERENCE;
2734 } else {
2735 /* No-one else is allowed to inherit directly
2736 * from Reference.
2737 */
2738 //xxx is this the right exception? better than an assertion.
2739 dvmThrowLinkageError("illegal inheritance from Reference");
2740 goto bail;
2741 }
2742
2743 /* The class should not have any reference bits set yet.
2744 */
2745 assert(GET_CLASS_FLAG_GROUP(clazz,
2746 CLASS_ISREFERENCE |
2747 CLASS_ISWEAKREFERENCE |
2748 CLASS_ISFINALIZERREFERENCE |
2749 CLASS_ISPHANTOMREFERENCE) == 0);
2750
2751 SET_CLASS_FLAG(clazz, refFlags);
2752 }
2753 }
2754
2755 /*
2756 * Populate vtable.
2757 */
2758 if (dvmIsInterfaceClass(clazz)) {
2759 /* no vtable; just set the method indices */
2760 int count = clazz->virtualMethodCount;
2761
2762 if (count != (u2) count) {
2763 ALOGE("Too many methods (%d) in interface '%s'", count,
2764 clazz->descriptor);
2765 goto bail;
2766 }
2767
2768 dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
2769
2770 for (i = 0; i < count; i++)
2771 clazz->virtualMethods[i].methodIndex = (u2) i;
2772
2773 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
2774 } else {
2775 if (!createVtable(clazz)) {
2776 ALOGW("failed creating vtable");
2777 goto bail;
2778 }
2779 }
2780
2781 /*
2782 * Populate interface method tables. Can alter the vtable.
2783 */
2784 if (!createIftable(clazz))
2785 goto bail;
2786
2787 /*
2788 * Insert special-purpose "stub" method implementations.
2789 */
2790 if (!insertMethodStubs(clazz))
2791 goto bail;
2792
2793 /*
2794 * Compute instance field offsets and, hence, the size of the object.
2795 */
2796 if (!computeFieldOffsets(clazz))
2797 goto bail;
2798
2799 /*
2800 * Cache field and method info for the class Reference (as loaded
2801 * by the boot classloader). This has to happen after the call to
2802 * computeFieldOffsets().
2803 */
2804 if ((clazz->classLoader == NULL)
2805 && (strcmp(clazz->descriptor, "Ljava/lang/ref/Reference;") == 0)) {
2806 if (!precacheReferenceOffsets(clazz)) {
2807 ALOGE("failed pre-caching Reference offsets");
2808 dvmThrowInternalError(NULL);
2809 goto bail;
2810 }
2811 }
2812
2813 /*
2814 * Compact the offsets the GC has to examine into a bitmap, if
2815 * possible. (This has to happen after Reference.referent is
2816 * massaged in precacheReferenceOffsets.)
2817 */
2818 computeRefOffsets(clazz);
2819
2820 /*
2821 * Done!
2822 */
2823 if (IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED))
2824 clazz->status = CLASS_VERIFIED;
2825 else
2826 clazz->status = CLASS_RESOLVED;
2827 okay = true;
2828 if (gDvm.verboseClass)
2829 ALOGV("CLASS: linked '%s'", clazz->descriptor);
2830
2831 /*
2832 * We send CLASS_PREPARE events to the debugger from here. The
2833 * definition of "preparation" is creating the static fields for a
2834 * class and initializing them to the standard default values, but not
2835 * executing any code (that comes later, during "initialization").
2836 *
2837 * We did the static prep in loadSFieldFromDex() while loading the class.
2838 *
2839 * The class has been prepared and resolved but possibly not yet verified
2840 * at this point.
2841 */
2842 if (gDvm.debuggerActive) {
2843 dvmDbgPostClassPrepare(clazz);
2844 }
2845
2846 bail:
2847 if (!okay) {
2848 clazz->status = CLASS_ERROR;
2849 if (!dvmCheckException(dvmThreadSelf())) {
2850 dvmThrowVirtualMachineError(NULL);
2851 }
2852 }
2853 if (interfaceIdxArray != NULL) {
2854 free(interfaceIdxArray);
2855 }
2856
2857 return okay;
2858 }
2859
2860 /*
2861 * Create the virtual method table.
2862 *
2863 * The top part of the table is a copy of the table from our superclass,
2864 * with our local methods overriding theirs. The bottom part of the table
2865 * has any new methods we defined.
2866 */
createVtable(ClassObject * clazz)2867 static bool createVtable(ClassObject* clazz)
2868 {
2869 bool result = false;
2870 int maxCount;
2871 int i;
2872
2873 if (clazz->super != NULL) {
2874 //ALOGI("SUPER METHODS %d %s->%s", clazz->super->vtableCount,
2875 // clazz->descriptor, clazz->super->descriptor);
2876 }
2877
2878 /* the virtual methods we define, plus the superclass vtable size */
2879 maxCount = clazz->virtualMethodCount;
2880 if (clazz->super != NULL) {
2881 maxCount += clazz->super->vtableCount;
2882 } else {
2883 /* TODO: is this invariant true for all java/lang/Objects,
2884 * regardless of the class loader? For now, assume it is.
2885 */
2886 assert(strcmp(clazz->descriptor, "Ljava/lang/Object;") == 0);
2887 }
2888 //ALOGD("+++ max vmethods for '%s' is %d", clazz->descriptor, maxCount);
2889
2890 /*
2891 * Over-allocate the table, then realloc it down if necessary. So
2892 * long as we don't allocate anything in between we won't cause
2893 * fragmentation, and reducing the size should be unlikely to cause
2894 * a buffer copy.
2895 */
2896 dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
2897 clazz->vtable = (Method**) dvmLinearAlloc(clazz->classLoader,
2898 sizeof(Method*) * maxCount);
2899 if (clazz->vtable == NULL)
2900 goto bail;
2901
2902 if (clazz->super != NULL) {
2903 int actualCount;
2904
2905 memcpy(clazz->vtable, clazz->super->vtable,
2906 sizeof(*(clazz->vtable)) * clazz->super->vtableCount);
2907 actualCount = clazz->super->vtableCount;
2908
2909 /*
2910 * See if any of our virtual methods override the superclass.
2911 */
2912 for (i = 0; i < clazz->virtualMethodCount; i++) {
2913 Method* localMeth = &clazz->virtualMethods[i];
2914 int si;
2915
2916 for (si = 0; si < clazz->super->vtableCount; si++) {
2917 Method* superMeth = clazz->vtable[si];
2918
2919 if (dvmCompareMethodNamesAndProtos(localMeth, superMeth) == 0) {
2920 // We should have an access check here, but some apps rely on us not
2921 // checking access: http://b/7301030
2922 bool isAccessible = dvmCheckMethodAccess(clazz, superMeth);
2923 if (dvmIsFinalMethod(superMeth)) {
2924 ALOGE("Method %s.%s overrides final %s.%s",
2925 localMeth->clazz->descriptor, localMeth->name,
2926 superMeth->clazz->descriptor, superMeth->name);
2927 goto bail;
2928 }
2929
2930 // Warn if we just spotted code relying on this bug...
2931 if (!isAccessible) {
2932 ALOGW("method %s.%s incorrectly overrides "
2933 "package-private method with same name in %s",
2934 localMeth->clazz->descriptor, localMeth->name,
2935 superMeth->clazz->descriptor);
2936 }
2937
2938 clazz->vtable[si] = localMeth;
2939 localMeth->methodIndex = (u2) si;
2940 //ALOGV("+++ override %s.%s (slot %d)",
2941 // clazz->descriptor, localMeth->name, si);
2942 break;
2943 }
2944 }
2945
2946 if (si == clazz->super->vtableCount) {
2947 /* not an override, add to end */
2948 clazz->vtable[actualCount] = localMeth;
2949 localMeth->methodIndex = (u2) actualCount;
2950 actualCount++;
2951
2952 //ALOGV("+++ add method %s.%s",
2953 // clazz->descriptor, localMeth->name);
2954 }
2955 }
2956
2957 if (actualCount != (u2) actualCount) {
2958 ALOGE("Too many methods (%d) in class '%s'", actualCount,
2959 clazz->descriptor);
2960 goto bail;
2961 }
2962
2963 assert(actualCount <= maxCount);
2964
2965 if (actualCount < maxCount) {
2966 assert(clazz->vtable != NULL);
2967 dvmLinearReadOnly(clazz->classLoader, clazz->vtable);
2968 clazz->vtable = (Method **)dvmLinearRealloc(clazz->classLoader,
2969 clazz->vtable, sizeof(*(clazz->vtable)) * actualCount);
2970 if (clazz->vtable == NULL) {
2971 ALOGE("vtable realloc failed");
2972 goto bail;
2973 } else {
2974 LOGVV("+++ reduced vtable from %d to %d",
2975 maxCount, actualCount);
2976 }
2977 }
2978
2979 clazz->vtableCount = actualCount;
2980 } else {
2981 /* java/lang/Object case */
2982 int count = clazz->virtualMethodCount;
2983 if (count != (u2) count) {
2984 ALOGE("Too many methods (%d) in base class '%s'", count,
2985 clazz->descriptor);
2986 goto bail;
2987 }
2988
2989 for (i = 0; i < count; i++) {
2990 clazz->vtable[i] = &clazz->virtualMethods[i];
2991 clazz->virtualMethods[i].methodIndex = (u2) i;
2992 }
2993 clazz->vtableCount = clazz->virtualMethodCount;
2994 }
2995
2996 result = true;
2997
2998 bail:
2999 dvmLinearReadOnly(clazz->classLoader, clazz->vtable);
3000 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3001 return result;
3002 }
3003
3004 /*
3005 * Create and populate "iftable".
3006 *
3007 * The set of interfaces we support is the combination of the interfaces
3008 * we implement directly and those implemented by our superclass. Each
3009 * interface can have one or more "superinterfaces", which we must also
3010 * support. For speed we flatten the tree out.
3011 *
3012 * We might be able to speed this up when there are lots of interfaces
3013 * by merge-sorting the class pointers and binary-searching when removing
3014 * duplicates. We could also drop the duplicate removal -- it's only
3015 * there to reduce the memory footprint.
3016 *
3017 * Because of "Miranda methods", this may reallocate clazz->virtualMethods.
3018 *
3019 * Returns "true" on success.
3020 */
createIftable(ClassObject * clazz)3021 static bool createIftable(ClassObject* clazz)
3022 {
3023 bool result = false;
3024 bool zapIftable = false;
3025 bool zapVtable = false;
3026 bool zapIfvipool = false;
3027 int poolOffset = 0, poolSize = 0;
3028 Method** mirandaList = NULL;
3029 int mirandaCount = 0, mirandaAlloc = 0;
3030
3031 int superIfCount;
3032 if (clazz->super != NULL)
3033 superIfCount = clazz->super->iftableCount;
3034 else
3035 superIfCount = 0;
3036
3037 int ifCount = superIfCount;
3038 ifCount += clazz->interfaceCount;
3039 for (int i = 0; i < clazz->interfaceCount; i++)
3040 ifCount += clazz->interfaces[i]->iftableCount;
3041
3042 LOGVV("INTF: class '%s' direct w/supra=%d super=%d total=%d",
3043 clazz->descriptor, ifCount - superIfCount, superIfCount, ifCount);
3044
3045 if (ifCount == 0) {
3046 assert(clazz->iftableCount == 0);
3047 assert(clazz->iftable == NULL);
3048 return true;
3049 }
3050
3051 /*
3052 * Create a table with enough space for all interfaces, and copy the
3053 * superclass' table in.
3054 */
3055 clazz->iftable = (InterfaceEntry*) dvmLinearAlloc(clazz->classLoader,
3056 sizeof(InterfaceEntry) * ifCount);
3057 zapIftable = true;
3058 memset(clazz->iftable, 0x00, sizeof(InterfaceEntry) * ifCount);
3059 if (superIfCount != 0) {
3060 memcpy(clazz->iftable, clazz->super->iftable,
3061 sizeof(InterfaceEntry) * superIfCount);
3062 }
3063
3064 /*
3065 * Create a flattened interface hierarchy of our immediate interfaces.
3066 */
3067 int idx = superIfCount;
3068
3069 for (int i = 0; i < clazz->interfaceCount; i++) {
3070 ClassObject* interf = clazz->interfaces[i];
3071 assert(interf != NULL);
3072
3073 /* make sure this is still an interface class */
3074 if (!dvmIsInterfaceClass(interf)) {
3075 ALOGW("Class '%s' implements non-interface '%s'",
3076 clazz->descriptor, interf->descriptor);
3077 dvmThrowIncompatibleClassChangeErrorWithClassMessage(
3078 clazz->descriptor);
3079 goto bail;
3080 }
3081
3082 /* add entry for this interface */
3083 clazz->iftable[idx++].clazz = interf;
3084
3085 /* add entries for the interface's superinterfaces */
3086 for (int j = 0; j < interf->iftableCount; j++) {
3087 int k;
3088 ClassObject *cand;
3089
3090 cand = interf->iftable[j].clazz;
3091
3092 /*
3093 * Check if this interface was already added and add only if new.
3094 * This is to avoid a potential blowup in the number of
3095 * interfaces for sufficiently complicated interface hierarchies.
3096 * This has quadratic runtime in the number of interfaces.
3097 * However, in common cases with little interface inheritance, this
3098 * doesn't make much of a difference.
3099 */
3100 for (k = 0; k < idx; k++)
3101 if (clazz->iftable[k].clazz == cand)
3102 break;
3103
3104 if (k == idx)
3105 clazz->iftable[idx++].clazz = cand;
3106 }
3107 }
3108
3109 assert(idx <= ifCount);
3110
3111 /*
3112 * Adjust the ifCount. We could reallocate the interface memory here,
3113 * but it's probably not worth the effort, the important thing here
3114 * is to avoid the interface blowup and keep the ifCount low.
3115 */
3116 if (false) {
3117 if (idx != ifCount) {
3118 int newIfCount = idx;
3119 InterfaceEntry* oldmem = clazz->iftable;
3120
3121 clazz->iftable = (InterfaceEntry*) dvmLinearAlloc(clazz->classLoader,
3122 sizeof(InterfaceEntry) * newIfCount);
3123 memcpy(clazz->iftable, oldmem, sizeof(InterfaceEntry) * newIfCount);
3124 dvmLinearFree(clazz->classLoader, oldmem);
3125 }
3126 }
3127
3128 ifCount = idx;
3129 clazz->iftableCount = ifCount;
3130
3131 /*
3132 * If we're an interface, we don't need the vtable pointers, so
3133 * we're done. If this class doesn't implement an interface that our
3134 * superclass doesn't have, then we again have nothing to do.
3135 */
3136 if (dvmIsInterfaceClass(clazz) || superIfCount == ifCount) {
3137 //dvmDumpClass(clazz, kDumpClassFullDetail);
3138 result = true;
3139 goto bail;
3140 }
3141
3142 /*
3143 * When we're handling invokeinterface, we probably have an object
3144 * whose type is an interface class rather than a concrete class. We
3145 * need to convert the method reference into a vtable index. So, for
3146 * every entry in "iftable", we create a list of vtable indices.
3147 *
3148 * Because our vtable encompasses the superclass vtable, we can use
3149 * the vtable indices from our superclass for all of the interfaces
3150 * that weren't directly implemented by us.
3151 *
3152 * Each entry in "iftable" has a pointer to the start of its set of
3153 * vtable offsets. The iftable entries in the superclass point to
3154 * storage allocated in the superclass, and the iftable entries added
3155 * for this class point to storage allocated in this class. "iftable"
3156 * is flat for fast access in a class and all of its subclasses, but
3157 * "ifviPool" is only created for the topmost implementor.
3158 */
3159 for (int i = superIfCount; i < ifCount; i++) {
3160 /*
3161 * Note it's valid for an interface to have no methods (e.g.
3162 * java/io/Serializable).
3163 */
3164 LOGVV("INTF: pool: %d from %s",
3165 clazz->iftable[i].clazz->virtualMethodCount,
3166 clazz->iftable[i].clazz->descriptor);
3167 poolSize += clazz->iftable[i].clazz->virtualMethodCount;
3168 }
3169
3170 if (poolSize == 0) {
3171 LOGVV("INTF: didn't find any new interfaces with methods");
3172 result = true;
3173 goto bail;
3174 }
3175
3176 clazz->ifviPoolCount = poolSize;
3177 clazz->ifviPool = (int*) dvmLinearAlloc(clazz->classLoader,
3178 poolSize * sizeof(int*));
3179 zapIfvipool = true;
3180
3181 /*
3182 * Fill in the vtable offsets for the interfaces that weren't part of
3183 * our superclass.
3184 */
3185 for (int i = superIfCount; i < ifCount; i++) {
3186 ClassObject* interface;
3187 int methIdx;
3188
3189 clazz->iftable[i].methodIndexArray = clazz->ifviPool + poolOffset;
3190 interface = clazz->iftable[i].clazz;
3191 poolOffset += interface->virtualMethodCount; // end here
3192
3193 /*
3194 * For each method listed in the interface's method list, find the
3195 * matching method in our class's method list. We want to favor the
3196 * subclass over the superclass, which just requires walking
3197 * back from the end of the vtable. (This only matters if the
3198 * superclass defines a private method and this class redefines
3199 * it -- otherwise it would use the same vtable slot. In Dalvik
3200 * those don't end up in the virtual method table, so it shouldn't
3201 * matter which direction we go. We walk it backward anyway.)
3202 *
3203 *
3204 * Suppose we have the following arrangement:
3205 * public interface MyInterface
3206 * public boolean inInterface();
3207 * public abstract class MirandaAbstract implements MirandaInterface
3208 * //public abstract boolean inInterface(); // not declared!
3209 * public boolean inAbstract() { stuff } // in vtable
3210 * public class MirandClass extends MirandaAbstract
3211 * public boolean inInterface() { stuff }
3212 * public boolean inAbstract() { stuff } // in vtable
3213 *
3214 * The javac compiler happily compiles MirandaAbstract even though
3215 * it doesn't declare all methods from its interface. When we try
3216 * to set up a vtable for MirandaAbstract, we find that we don't
3217 * have an slot for inInterface. To prevent this, we synthesize
3218 * abstract method declarations in MirandaAbstract.
3219 *
3220 * We have to expand vtable and update some things that point at it,
3221 * so we accumulate the method list and do it all at once below.
3222 */
3223 for (methIdx = 0; methIdx < interface->virtualMethodCount; methIdx++) {
3224 Method* imeth = &interface->virtualMethods[methIdx];
3225 int j;
3226
3227 IF_LOGVV() {
3228 char* desc = dexProtoCopyMethodDescriptor(&imeth->prototype);
3229 LOGVV("INTF: matching '%s' '%s'", imeth->name, desc);
3230 free(desc);
3231 }
3232
3233 for (j = clazz->vtableCount-1; j >= 0; j--) {
3234 if (dvmCompareMethodNamesAndProtos(imeth, clazz->vtable[j])
3235 == 0)
3236 {
3237 LOGVV("INTF: matched at %d", j);
3238 if (!dvmIsAbstractMethod(clazz->vtable[j]) &&
3239 !dvmIsPublicMethod(clazz->vtable[j]))
3240 {
3241 ALOGW("Implementation of %s.%s is not public",
3242 clazz->descriptor, clazz->vtable[j]->name);
3243 dvmThrowIllegalAccessError(
3244 "interface implementation not public");
3245 goto bail;
3246 }
3247 clazz->iftable[i].methodIndexArray[methIdx] = j;
3248 break;
3249 }
3250 }
3251 if (j < 0) {
3252 IF_ALOGV() {
3253 char* desc =
3254 dexProtoCopyMethodDescriptor(&imeth->prototype);
3255 ALOGV("No match for '%s' '%s' in '%s' (creating miranda)",
3256 imeth->name, desc, clazz->descriptor);
3257 free(desc);
3258 }
3259 //dvmThrowRuntimeException("Miranda!");
3260 //return false;
3261
3262 if (mirandaCount == mirandaAlloc) {
3263 mirandaAlloc += 8;
3264 if (mirandaList == NULL) {
3265 mirandaList = (Method**)dvmLinearAlloc(
3266 clazz->classLoader,
3267 mirandaAlloc * sizeof(Method*));
3268 } else {
3269 dvmLinearReadOnly(clazz->classLoader, mirandaList);
3270 mirandaList = (Method**)dvmLinearRealloc(
3271 clazz->classLoader,
3272 mirandaList, mirandaAlloc * sizeof(Method*));
3273 }
3274 assert(mirandaList != NULL); // mem failed + we leaked
3275 }
3276
3277 /*
3278 * These may be redundant (e.g. method with same name and
3279 * signature declared in two interfaces implemented by the
3280 * same abstract class). We can squeeze the duplicates
3281 * out here.
3282 */
3283 int mir;
3284 for (mir = 0; mir < mirandaCount; mir++) {
3285 if (dvmCompareMethodNamesAndProtos(
3286 mirandaList[mir], imeth) == 0)
3287 {
3288 IF_LOGVV() {
3289 char* desc = dexProtoCopyMethodDescriptor(
3290 &imeth->prototype);
3291 LOGVV("MIRANDA dupe: %s and %s %s%s",
3292 mirandaList[mir]->clazz->descriptor,
3293 imeth->clazz->descriptor,
3294 imeth->name, desc);
3295 free(desc);
3296 }
3297 break;
3298 }
3299 }
3300
3301 /* point the iftable at a phantom slot index */
3302 clazz->iftable[i].methodIndexArray[methIdx] =
3303 clazz->vtableCount + mir;
3304 LOGVV("MIRANDA: %s points at slot %d",
3305 imeth->name, clazz->vtableCount + mir);
3306
3307 /* if non-duplicate among Mirandas, add to Miranda list */
3308 if (mir == mirandaCount) {
3309 //ALOGV("MIRANDA: holding '%s' in slot %d",
3310 // imeth->name, mir);
3311 mirandaList[mirandaCount++] = imeth;
3312 }
3313 }
3314 }
3315 }
3316
3317 if (mirandaCount != 0) {
3318 static const int kManyMirandas = 150; /* arbitrary */
3319 Method* newVirtualMethods;
3320 Method* meth;
3321 int oldMethodCount, oldVtableCount;
3322
3323 for (int i = 0; i < mirandaCount; i++) {
3324 LOGVV("MIRANDA %d: %s.%s", i,
3325 mirandaList[i]->clazz->descriptor, mirandaList[i]->name);
3326 }
3327 if (mirandaCount > kManyMirandas) {
3328 /*
3329 * Some obfuscators like to create an interface with a huge
3330 * pile of methods, declare classes as implementing it, and then
3331 * only define a couple of methods. This leads to a rather
3332 * massive collection of Miranda methods and a lot of wasted
3333 * space, sometimes enough to blow out the LinearAlloc cap.
3334 */
3335 ALOGD("Note: class %s has %d unimplemented (abstract) methods",
3336 clazz->descriptor, mirandaCount);
3337 }
3338
3339 /*
3340 * We found methods in one or more interfaces for which we do not
3341 * have vtable entries. We have to expand our virtualMethods
3342 * table (which might be empty) to hold some new entries.
3343 */
3344 if (clazz->virtualMethods == NULL) {
3345 newVirtualMethods = (Method*) dvmLinearAlloc(clazz->classLoader,
3346 sizeof(Method) * (clazz->virtualMethodCount + mirandaCount));
3347 } else {
3348 //dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3349 newVirtualMethods = (Method*) dvmLinearRealloc(clazz->classLoader,
3350 clazz->virtualMethods,
3351 sizeof(Method) * (clazz->virtualMethodCount + mirandaCount));
3352 }
3353 if (newVirtualMethods != clazz->virtualMethods) {
3354 /*
3355 * Table was moved in memory. We have to run through the
3356 * vtable and fix the pointers. The vtable entries might be
3357 * pointing at superclasses, so we flip it around: run through
3358 * all locally-defined virtual methods, and fix their entries
3359 * in the vtable. (This would get really messy if sub-classes
3360 * had already been loaded.)
3361 *
3362 * Reminder: clazz->virtualMethods and clazz->virtualMethodCount
3363 * hold the virtual methods declared by this class. The
3364 * method's methodIndex is the vtable index, and is the same
3365 * for all sub-classes (and all super classes in which it is
3366 * defined). We're messing with these because the Miranda
3367 * stuff makes it look like the class actually has an abstract
3368 * method declaration in it.
3369 */
3370 LOGVV("MIRANDA fixing vtable pointers");
3371 dvmLinearReadWrite(clazz->classLoader, clazz->vtable);
3372 Method* meth = newVirtualMethods;
3373 for (int i = 0; i < clazz->virtualMethodCount; i++, meth++)
3374 clazz->vtable[meth->methodIndex] = meth;
3375 dvmLinearReadOnly(clazz->classLoader, clazz->vtable);
3376 }
3377
3378 oldMethodCount = clazz->virtualMethodCount;
3379 clazz->virtualMethods = newVirtualMethods;
3380 clazz->virtualMethodCount += mirandaCount;
3381
3382 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3383
3384 /*
3385 * We also have to expand the vtable.
3386 */
3387 assert(clazz->vtable != NULL);
3388 clazz->vtable = (Method**) dvmLinearRealloc(clazz->classLoader,
3389 clazz->vtable,
3390 sizeof(Method*) * (clazz->vtableCount + mirandaCount));
3391 if (clazz->vtable == NULL) {
3392 assert(false);
3393 goto bail;
3394 }
3395 zapVtable = true;
3396
3397 oldVtableCount = clazz->vtableCount;
3398 clazz->vtableCount += mirandaCount;
3399
3400 /*
3401 * Now we need to create the fake methods. We clone the abstract
3402 * method definition from the interface and then replace a few
3403 * things.
3404 *
3405 * The Method will be an "abstract native", with nativeFunc set to
3406 * dvmAbstractMethodStub().
3407 */
3408 meth = clazz->virtualMethods + oldMethodCount;
3409 for (int i = 0; i < mirandaCount; i++, meth++) {
3410 dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
3411 cloneMethod(meth, mirandaList[i]);
3412 meth->clazz = clazz;
3413 meth->accessFlags |= ACC_MIRANDA;
3414 meth->methodIndex = (u2) (oldVtableCount + i);
3415 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3416
3417 /* point the new vtable entry at the new method */
3418 clazz->vtable[oldVtableCount + i] = meth;
3419 }
3420
3421 dvmLinearReadOnly(clazz->classLoader, mirandaList);
3422 dvmLinearFree(clazz->classLoader, mirandaList);
3423
3424 }
3425
3426 /*
3427 * TODO?
3428 * Sort the interfaces by number of declared methods. All we really
3429 * want is to get the interfaces with zero methods at the end of the
3430 * list, so that when we walk through the list during invoke-interface
3431 * we don't examine interfaces that can't possibly be useful.
3432 *
3433 * The set will usually be small, so a simple insertion sort works.
3434 *
3435 * We have to be careful not to change the order of two interfaces
3436 * that define the same method. (Not a problem if we only move the
3437 * zero-method interfaces to the end.)
3438 *
3439 * PROBLEM:
3440 * If we do this, we will no longer be able to identify super vs.
3441 * current class interfaces by comparing clazz->super->iftableCount. This
3442 * breaks anything that only wants to find interfaces declared directly
3443 * by the class (dvmFindStaticFieldHier, ReferenceType.Interfaces,
3444 * dvmDbgOutputAllInterfaces, etc). Need to provide a workaround.
3445 *
3446 * We can sort just the interfaces implemented directly by this class,
3447 * but that doesn't seem like it would provide much of an advantage. I'm
3448 * not sure this is worthwhile.
3449 *
3450 * (This has been made largely obsolete by the interface cache mechanism.)
3451 */
3452
3453 //dvmDumpClass(clazz);
3454
3455 result = true;
3456
3457 bail:
3458 if (zapIftable)
3459 dvmLinearReadOnly(clazz->classLoader, clazz->iftable);
3460 if (zapVtable)
3461 dvmLinearReadOnly(clazz->classLoader, clazz->vtable);
3462 if (zapIfvipool)
3463 dvmLinearReadOnly(clazz->classLoader, clazz->ifviPool);
3464 return result;
3465 }
3466
3467
3468 /*
3469 * Provide "stub" implementations for methods without them.
3470 *
3471 * Currently we provide an implementation for all abstract methods that
3472 * throws an AbstractMethodError exception. This allows us to avoid an
3473 * explicit check for abstract methods in every virtual call.
3474 *
3475 * NOTE: for Miranda methods, the method declaration is a clone of what
3476 * was found in the interface class. That copy may already have had the
3477 * function pointer filled in, so don't be surprised if it's not NULL.
3478 *
3479 * NOTE: this sets the "native" flag, giving us an "abstract native" method,
3480 * which is nonsensical. Need to make sure that this doesn't escape the
3481 * VM. We can either mask it out in reflection calls, or copy "native"
3482 * into the high 16 bits of accessFlags and check that internally.
3483 */
insertMethodStubs(ClassObject * clazz)3484 static bool insertMethodStubs(ClassObject* clazz)
3485 {
3486 dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
3487
3488 Method* meth;
3489 int i;
3490
3491 meth = clazz->virtualMethods;
3492 for (i = 0; i < clazz->virtualMethodCount; i++, meth++) {
3493 if (dvmIsAbstractMethod(meth)) {
3494 assert(meth->insns == NULL);
3495 assert(meth->nativeFunc == NULL ||
3496 meth->nativeFunc == (DalvikBridgeFunc)dvmAbstractMethodStub);
3497
3498 meth->accessFlags |= ACC_NATIVE;
3499 meth->nativeFunc = (DalvikBridgeFunc) dvmAbstractMethodStub;
3500 }
3501 }
3502
3503 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3504 return true;
3505 }
3506
3507
3508 /*
3509 * Swap two instance fields.
3510 */
swapField(InstField * pOne,InstField * pTwo)3511 static inline void swapField(InstField* pOne, InstField* pTwo)
3512 {
3513 InstField swap;
3514
3515 LOGVV(" --- swap '%s' and '%s'", pOne->name, pTwo->name);
3516 swap = *pOne;
3517 *pOne = *pTwo;
3518 *pTwo = swap;
3519 }
3520
3521 /*
3522 * Assign instance fields to u4 slots.
3523 *
3524 * The top portion of the instance field area is occupied by the superclass
3525 * fields, the bottom by the fields for this class.
3526 *
3527 * "long" and "double" fields occupy two adjacent slots. On some
3528 * architectures, 64-bit quantities must be 64-bit aligned, so we need to
3529 * arrange fields (or introduce padding) to ensure this. We assume the
3530 * fields of the topmost superclass (i.e. Object) are 64-bit aligned, so
3531 * we can just ensure that the offset is "even". To avoid wasting space,
3532 * we want to move non-reference 32-bit fields into gaps rather than
3533 * creating pad words.
3534 *
3535 * In the worst case we will waste 4 bytes, but because objects are
3536 * allocated on >= 64-bit boundaries, those bytes may well be wasted anyway
3537 * (assuming this is the most-derived class).
3538 *
3539 * Pad words are not represented in the field table, so the field table
3540 * itself does not change size.
3541 *
3542 * The number of field slots determines the size of the object, so we
3543 * set that here too.
3544 *
3545 * This function feels a little more complicated than I'd like, but it
3546 * has the property of moving the smallest possible set of fields, which
3547 * should reduce the time required to load a class.
3548 *
3549 * NOTE: reference fields *must* come first, or precacheReferenceOffsets()
3550 * will break.
3551 */
computeFieldOffsets(ClassObject * clazz)3552 static bool computeFieldOffsets(ClassObject* clazz)
3553 {
3554 int fieldOffset;
3555 int i, j;
3556
3557 dvmLinearReadWrite(clazz->classLoader, clazz->ifields);
3558
3559 if (clazz->super != NULL)
3560 fieldOffset = clazz->super->objectSize;
3561 else
3562 fieldOffset = OFFSETOF_MEMBER(DataObject, instanceData);
3563
3564 LOGVV("--- computeFieldOffsets '%s'", clazz->descriptor);
3565
3566 //ALOGI("OFFSETS fieldCount=%d", clazz->ifieldCount);
3567 //ALOGI("dataobj, instance: %d", offsetof(DataObject, instanceData));
3568 //ALOGI("classobj, access: %d", offsetof(ClassObject, accessFlags));
3569 //ALOGI("super=%p, fieldOffset=%d", clazz->super, fieldOffset);
3570
3571 /*
3572 * Start by moving all reference fields to the front.
3573 */
3574 clazz->ifieldRefCount = 0;
3575 j = clazz->ifieldCount - 1;
3576 for (i = 0; i < clazz->ifieldCount; i++) {
3577 InstField* pField = &clazz->ifields[i];
3578 char c = pField->signature[0];
3579
3580 if (c != '[' && c != 'L') {
3581 /* This isn't a reference field; see if any reference fields
3582 * follow this one. If so, we'll move it to this position.
3583 * (quicksort-style partitioning)
3584 */
3585 while (j > i) {
3586 InstField* refField = &clazz->ifields[j--];
3587 char rc = refField->signature[0];
3588
3589 if (rc == '[' || rc == 'L') {
3590 /* Here's a reference field that follows at least one
3591 * non-reference field. Swap it with the current field.
3592 * (When this returns, "pField" points to the reference
3593 * field, and "refField" points to the non-ref field.)
3594 */
3595 swapField(pField, refField);
3596
3597 /* Fix the signature.
3598 */
3599 c = rc;
3600
3601 clazz->ifieldRefCount++;
3602 break;
3603 }
3604 }
3605 /* We may or may not have swapped a field.
3606 */
3607 } else {
3608 /* This is a reference field.
3609 */
3610 clazz->ifieldRefCount++;
3611 }
3612
3613 /*
3614 * If we've hit the end of the reference fields, break.
3615 */
3616 if (c != '[' && c != 'L')
3617 break;
3618
3619 pField->byteOffset = fieldOffset;
3620 fieldOffset += sizeof(u4);
3621 LOGVV(" --- offset1 '%s'=%d", pField->name,pField->byteOffset);
3622 }
3623
3624 /*
3625 * Now we want to pack all of the double-wide fields together. If we're
3626 * not aligned, though, we want to shuffle one 32-bit field into place.
3627 * If we can't find one, we'll have to pad it.
3628 */
3629 if (i != clazz->ifieldCount && (fieldOffset & 0x04) != 0) {
3630 LOGVV(" +++ not aligned");
3631
3632 InstField* pField = &clazz->ifields[i];
3633 char c = pField->signature[0];
3634
3635 if (c != 'J' && c != 'D') {
3636 /*
3637 * The field that comes next is 32-bit, so just advance past it.
3638 */
3639 assert(c != '[' && c != 'L');
3640 pField->byteOffset = fieldOffset;
3641 fieldOffset += sizeof(u4);
3642 i++;
3643 LOGVV(" --- offset2 '%s'=%d",
3644 pField->name, pField->byteOffset);
3645 } else {
3646 /*
3647 * Next field is 64-bit, so search for a 32-bit field we can
3648 * swap into it.
3649 */
3650 bool found = false;
3651 j = clazz->ifieldCount - 1;
3652 while (j > i) {
3653 InstField* singleField = &clazz->ifields[j--];
3654 char rc = singleField->signature[0];
3655
3656 if (rc != 'J' && rc != 'D') {
3657 swapField(pField, singleField);
3658 //c = rc;
3659 LOGVV(" +++ swapped '%s' for alignment",
3660 pField->name);
3661 pField->byteOffset = fieldOffset;
3662 fieldOffset += sizeof(u4);
3663 LOGVV(" --- offset3 '%s'=%d",
3664 pField->name, pField->byteOffset);
3665 found = true;
3666 i++;
3667 break;
3668 }
3669 }
3670 if (!found) {
3671 ALOGV(" +++ inserting pad field in '%s'", clazz->descriptor);
3672 fieldOffset += sizeof(u4);
3673 }
3674 }
3675 }
3676
3677 /*
3678 * Alignment is good, shuffle any double-wide fields forward, and
3679 * finish assigning field offsets to all fields.
3680 */
3681 assert(i == clazz->ifieldCount || (fieldOffset & 0x04) == 0);
3682 j = clazz->ifieldCount - 1;
3683 for ( ; i < clazz->ifieldCount; i++) {
3684 InstField* pField = &clazz->ifields[i];
3685 char c = pField->signature[0];
3686
3687 if (c != 'D' && c != 'J') {
3688 /* This isn't a double-wide field; see if any double fields
3689 * follow this one. If so, we'll move it to this position.
3690 * (quicksort-style partitioning)
3691 */
3692 while (j > i) {
3693 InstField* doubleField = &clazz->ifields[j--];
3694 char rc = doubleField->signature[0];
3695
3696 if (rc == 'D' || rc == 'J') {
3697 /* Here's a double-wide field that follows at least one
3698 * non-double field. Swap it with the current field.
3699 * (When this returns, "pField" points to the reference
3700 * field, and "doubleField" points to the non-double field.)
3701 */
3702 swapField(pField, doubleField);
3703 c = rc;
3704
3705 break;
3706 }
3707 }
3708 /* We may or may not have swapped a field.
3709 */
3710 } else {
3711 /* This is a double-wide field, leave it be.
3712 */
3713 }
3714
3715 pField->byteOffset = fieldOffset;
3716 LOGVV(" --- offset4 '%s'=%d", pField->name,pField->byteOffset);
3717 fieldOffset += sizeof(u4);
3718 if (c == 'J' || c == 'D')
3719 fieldOffset += sizeof(u4);
3720 }
3721
3722 #ifndef NDEBUG
3723 /* Make sure that all reference fields appear before
3724 * non-reference fields, and all double-wide fields are aligned.
3725 */
3726 j = 0; // seen non-ref
3727 for (i = 0; i < clazz->ifieldCount; i++) {
3728 InstField *pField = &clazz->ifields[i];
3729 char c = pField->signature[0];
3730
3731 if (c == 'D' || c == 'J') {
3732 assert((pField->byteOffset & 0x07) == 0);
3733 }
3734
3735 if (c != '[' && c != 'L') {
3736 if (!j) {
3737 assert(i == clazz->ifieldRefCount);
3738 j = 1;
3739 }
3740 } else if (j) {
3741 assert(false);
3742 }
3743 }
3744 if (!j) {
3745 assert(clazz->ifieldRefCount == clazz->ifieldCount);
3746 }
3747 #endif
3748
3749 /*
3750 * We map a C struct directly on top of java/lang/Class objects. Make
3751 * sure we left enough room for the instance fields.
3752 */
3753 assert(!dvmIsTheClassClass(clazz) || (size_t)fieldOffset <
3754 OFFSETOF_MEMBER(ClassObject, instanceData) + sizeof(clazz->instanceData));
3755
3756 clazz->objectSize = fieldOffset;
3757
3758 dvmLinearReadOnly(clazz->classLoader, clazz->ifields);
3759 return true;
3760 }
3761
3762 /*
3763 * The class failed to initialize on a previous attempt, so we want to throw
3764 * a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we
3765 * failed in verification, in which case v2 5.4.1 says we need to re-throw
3766 * the previous error.
3767 */
throwEarlierClassFailure(ClassObject * clazz)3768 static void throwEarlierClassFailure(ClassObject* clazz)
3769 {
3770 ALOGI("Rejecting re-init on previously-failed class %s v=%p",
3771 clazz->descriptor, clazz->verifyErrorClass);
3772
3773 if (clazz->verifyErrorClass == NULL) {
3774 dvmThrowNoClassDefFoundError(clazz->descriptor);
3775 } else {
3776 dvmThrowExceptionWithClassMessage(clazz->verifyErrorClass,
3777 clazz->descriptor);
3778 }
3779 }
3780
3781 /*
3782 * Initialize any static fields whose values are stored in
3783 * the DEX file. This must be done during class initialization.
3784 */
initSFields(ClassObject * clazz)3785 static void initSFields(ClassObject* clazz)
3786 {
3787 Thread* self = dvmThreadSelf(); /* for dvmReleaseTrackedAlloc() */
3788 DexFile* pDexFile;
3789 const DexClassDef* pClassDef;
3790 const DexEncodedArray* pValueList;
3791 EncodedArrayIterator iterator;
3792 int i;
3793
3794 if (clazz->sfieldCount == 0) {
3795 return;
3796 }
3797 if (clazz->pDvmDex == NULL) {
3798 /* generated class; any static fields should already be set up */
3799 ALOGV("Not initializing static fields in %s", clazz->descriptor);
3800 return;
3801 }
3802 pDexFile = clazz->pDvmDex->pDexFile;
3803
3804 pClassDef = dexFindClass(pDexFile, clazz->descriptor);
3805 assert(pClassDef != NULL);
3806
3807 pValueList = dexGetStaticValuesList(pDexFile, pClassDef);
3808 if (pValueList == NULL) {
3809 return;
3810 }
3811
3812 dvmEncodedArrayIteratorInitialize(&iterator, pValueList, clazz);
3813
3814 /*
3815 * Iterate over the initial values array, setting the corresponding
3816 * static field for each array element.
3817 */
3818
3819 for (i = 0; dvmEncodedArrayIteratorHasNext(&iterator); i++) {
3820 AnnotationValue value;
3821 bool parsed = dvmEncodedArrayIteratorGetNext(&iterator, &value);
3822 StaticField* sfield = &clazz->sfields[i];
3823 const char* descriptor = sfield->signature;
3824 bool isObj = false;
3825
3826 if (! parsed) {
3827 /*
3828 * TODO: Eventually verification should attempt to ensure
3829 * that this can't happen at least due to a data integrity
3830 * problem.
3831 */
3832 ALOGE("Static initializer parse failed for %s at index %d",
3833 clazz->descriptor, i);
3834 dvmAbort();
3835 }
3836
3837 /* Verify that the value we got was of a valid type. */
3838
3839 switch (descriptor[0]) {
3840 case 'Z': parsed = (value.type == kDexAnnotationBoolean); break;
3841 case 'B': parsed = (value.type == kDexAnnotationByte); break;
3842 case 'C': parsed = (value.type == kDexAnnotationChar); break;
3843 case 'S': parsed = (value.type == kDexAnnotationShort); break;
3844 case 'I': parsed = (value.type == kDexAnnotationInt); break;
3845 case 'J': parsed = (value.type == kDexAnnotationLong); break;
3846 case 'F': parsed = (value.type == kDexAnnotationFloat); break;
3847 case 'D': parsed = (value.type == kDexAnnotationDouble); break;
3848 case '[': parsed = (value.type == kDexAnnotationNull); break;
3849 case 'L': {
3850 switch (value.type) {
3851 case kDexAnnotationNull: {
3852 /* No need for further tests. */
3853 break;
3854 }
3855 case kDexAnnotationString: {
3856 parsed =
3857 (strcmp(descriptor, "Ljava/lang/String;") == 0);
3858 isObj = true;
3859 break;
3860 }
3861 case kDexAnnotationType: {
3862 parsed =
3863 (strcmp(descriptor, "Ljava/lang/Class;") == 0);
3864 isObj = true;
3865 break;
3866 }
3867 default: {
3868 parsed = false;
3869 break;
3870 }
3871 }
3872 break;
3873 }
3874 default: {
3875 parsed = false;
3876 break;
3877 }
3878 }
3879
3880 if (parsed) {
3881 /*
3882 * All's well, so store the value.
3883 */
3884 if (isObj) {
3885 dvmSetStaticFieldObject(sfield, (Object*)value.value.l);
3886 dvmReleaseTrackedAlloc((Object*)value.value.l, self);
3887 } else {
3888 /*
3889 * Note: This always stores the full width of a
3890 * JValue, even though most of the time only the first
3891 * word is needed.
3892 */
3893 sfield->value = value.value;
3894 }
3895 } else {
3896 /*
3897 * Something up above had a problem. TODO: See comment
3898 * above the switch about verfication.
3899 */
3900 ALOGE("Bogus static initialization: value type %d in field type "
3901 "%s for %s at index %d",
3902 value.type, descriptor, clazz->descriptor, i);
3903 dvmAbort();
3904 }
3905 }
3906 }
3907
3908
3909 /*
3910 * Determine whether "descriptor" yields the same class object in the
3911 * context of clazz1 and clazz2.
3912 *
3913 * The caller must hold gDvm.loadedClasses.
3914 *
3915 * Returns "true" if they match.
3916 */
compareDescriptorClasses(const char * descriptor,const ClassObject * clazz1,const ClassObject * clazz2)3917 static bool compareDescriptorClasses(const char* descriptor,
3918 const ClassObject* clazz1, const ClassObject* clazz2)
3919 {
3920 ClassObject* result1;
3921 ClassObject* result2;
3922
3923 /*
3924 * Do the first lookup by name.
3925 */
3926 result1 = dvmFindClassNoInit(descriptor, clazz1->classLoader);
3927
3928 /*
3929 * We can skip a second lookup by name if the second class loader is
3930 * in the initiating loader list of the class object we retrieved.
3931 * (This means that somebody already did a lookup of this class through
3932 * the second loader, and it resolved to the same class.) If it's not
3933 * there, we may simply not have had an opportunity to add it yet, so
3934 * we do the full lookup.
3935 *
3936 * The initiating loader test should catch the majority of cases
3937 * (in particular, the zillions of references to String/Object).
3938 *
3939 * Unfortunately we're still stuck grabbing a mutex to do the lookup.
3940 *
3941 * For this to work, the superclass/interface should be the first
3942 * argument, so that way if it's from the bootstrap loader this test
3943 * will work. (The bootstrap loader, by definition, never shows up
3944 * as the initiating loader of a class defined by some other loader.)
3945 */
3946 dvmHashTableLock(gDvm.loadedClasses);
3947 bool isInit = dvmLoaderInInitiatingList(result1, clazz2->classLoader);
3948 dvmHashTableUnlock(gDvm.loadedClasses);
3949
3950 if (isInit) {
3951 //printf("%s(obj=%p) / %s(cl=%p): initiating\n",
3952 // result1->descriptor, result1,
3953 // clazz2->descriptor, clazz2->classLoader);
3954 return true;
3955 } else {
3956 //printf("%s(obj=%p) / %s(cl=%p): RAW\n",
3957 // result1->descriptor, result1,
3958 // clazz2->descriptor, clazz2->classLoader);
3959 result2 = dvmFindClassNoInit(descriptor, clazz2->classLoader);
3960 }
3961
3962 if (result1 == NULL || result2 == NULL) {
3963 dvmClearException(dvmThreadSelf());
3964 if (result1 == result2) {
3965 /*
3966 * Neither class loader could find this class. Apparently it
3967 * doesn't exist.
3968 *
3969 * We can either throw some sort of exception now, or just
3970 * assume that it'll fail later when something actually tries
3971 * to use the class. For strict handling we should throw now,
3972 * because a "tricky" class loader could start returning
3973 * something later, and a pair of "tricky" loaders could set
3974 * us up for confusion.
3975 *
3976 * I'm not sure if we're allowed to complain about nonexistent
3977 * classes in method signatures during class init, so for now
3978 * this will just return "true" and let nature take its course.
3979 */
3980 return true;
3981 } else {
3982 /* only one was found, so clearly they're not the same */
3983 return false;
3984 }
3985 }
3986
3987 return result1 == result2;
3988 }
3989
3990 /*
3991 * For every component in the method descriptor, resolve the class in the
3992 * context of the two classes and compare the results.
3993 *
3994 * For best results, the "superclass" class should be first.
3995 *
3996 * Returns "true" if the classes match, "false" otherwise.
3997 */
checkMethodDescriptorClasses(const Method * meth,const ClassObject * clazz1,const ClassObject * clazz2)3998 static bool checkMethodDescriptorClasses(const Method* meth,
3999 const ClassObject* clazz1, const ClassObject* clazz2)
4000 {
4001 DexParameterIterator iterator;
4002 const char* descriptor;
4003
4004 /* walk through the list of parameters */
4005 dexParameterIteratorInit(&iterator, &meth->prototype);
4006 while (true) {
4007 descriptor = dexParameterIteratorNextDescriptor(&iterator);
4008
4009 if (descriptor == NULL)
4010 break;
4011
4012 if (descriptor[0] == 'L' || descriptor[0] == '[') {
4013 /* non-primitive type */
4014 if (!compareDescriptorClasses(descriptor, clazz1, clazz2))
4015 return false;
4016 }
4017 }
4018
4019 /* check the return type */
4020 descriptor = dexProtoGetReturnType(&meth->prototype);
4021 if (descriptor[0] == 'L' || descriptor[0] == '[') {
4022 if (!compareDescriptorClasses(descriptor, clazz1, clazz2))
4023 return false;
4024 }
4025 return true;
4026 }
4027
4028 /*
4029 * Validate the descriptors in the superclass and interfaces.
4030 *
4031 * What we need to do is ensure that the classes named in the method
4032 * descriptors in our ancestors and ourselves resolve to the same class
4033 * objects. We can get conflicts when the classes come from different
4034 * class loaders, and the resolver comes up with different results for
4035 * the same class name in different contexts.
4036 *
4037 * An easy way to cause the problem is to declare a base class that uses
4038 * class Foo in a method signature (e.g. as the return type). Then,
4039 * define a subclass and a different version of Foo, and load them from a
4040 * different class loader. If the subclass overrides the method, it will
4041 * have a different concept of what Foo is than its parent does, so even
4042 * though the method signature strings are identical, they actually mean
4043 * different things.
4044 *
4045 * A call to the method through a base-class reference would be treated
4046 * differently than a call to the method through a subclass reference, which
4047 * isn't the way polymorphism works, so we have to reject the subclass.
4048 * If the subclass doesn't override the base method, then there's no
4049 * problem, because calls through base-class references and subclass
4050 * references end up in the same place.
4051 *
4052 * We don't need to check to see if an interface's methods match with its
4053 * superinterface's methods, because you can't instantiate an interface
4054 * and do something inappropriate with it. If interface I1 extends I2
4055 * and is implemented by C, and I1 and I2 are in separate class loaders
4056 * and have conflicting views of other classes, we will catch the conflict
4057 * when we process C. Anything that implements I1 is doomed to failure,
4058 * but we don't need to catch that while processing I1.
4059 *
4060 * On failure, throws an exception and returns "false".
4061 */
validateSuperDescriptors(const ClassObject * clazz)4062 static bool validateSuperDescriptors(const ClassObject* clazz)
4063 {
4064 int i;
4065
4066 if (dvmIsInterfaceClass(clazz))
4067 return true;
4068
4069 /*
4070 * Start with the superclass-declared methods.
4071 */
4072 if (clazz->super != NULL &&
4073 clazz->classLoader != clazz->super->classLoader)
4074 {
4075 /*
4076 * Walk through every overridden method and compare resolved
4077 * descriptor components. We pull the Method structs out of
4078 * the vtable. It doesn't matter whether we get the struct from
4079 * the parent or child, since we just need the UTF-8 descriptor,
4080 * which must match.
4081 *
4082 * We need to do this even for the stuff inherited from Object,
4083 * because it's possible that the new class loader has redefined
4084 * a basic class like String.
4085 *
4086 * We don't need to check stuff defined in a superclass because
4087 * it was checked when the superclass was loaded.
4088 */
4089 const Method* meth;
4090
4091 //printf("Checking %s %p vs %s %p\n",
4092 // clazz->descriptor, clazz->classLoader,
4093 // clazz->super->descriptor, clazz->super->classLoader);
4094 for (i = clazz->super->vtableCount - 1; i >= 0; i--) {
4095 meth = clazz->vtable[i];
4096 if (meth != clazz->super->vtable[i] &&
4097 !checkMethodDescriptorClasses(meth, clazz->super, clazz))
4098 {
4099 ALOGW("Method mismatch: %s in %s (cl=%p) and super %s (cl=%p)",
4100 meth->name, clazz->descriptor, clazz->classLoader,
4101 clazz->super->descriptor, clazz->super->classLoader);
4102 dvmThrowLinkageError(
4103 "Classes resolve differently in superclass");
4104 return false;
4105 }
4106 }
4107 }
4108
4109 /*
4110 * Check the methods defined by this class against the interfaces it
4111 * implements. If we inherited the implementation from a superclass,
4112 * we have to check it against the superclass (which might be in a
4113 * different class loader). If the superclass also implements the
4114 * interface, we could skip the check since by definition it was
4115 * performed when the class was loaded.
4116 */
4117 for (i = 0; i < clazz->iftableCount; i++) {
4118 const InterfaceEntry* iftable = &clazz->iftable[i];
4119
4120 if (clazz->classLoader != iftable->clazz->classLoader) {
4121 const ClassObject* iface = iftable->clazz;
4122 int j;
4123
4124 for (j = 0; j < iface->virtualMethodCount; j++) {
4125 const Method* meth;
4126 int vtableIndex;
4127
4128 vtableIndex = iftable->methodIndexArray[j];
4129 meth = clazz->vtable[vtableIndex];
4130
4131 if (!checkMethodDescriptorClasses(meth, iface, meth->clazz)) {
4132 ALOGW("Method mismatch: %s in %s (cl=%p) and "
4133 "iface %s (cl=%p)",
4134 meth->name, clazz->descriptor, clazz->classLoader,
4135 iface->descriptor, iface->classLoader);
4136 dvmThrowLinkageError(
4137 "Classes resolve differently in interface");
4138 return false;
4139 }
4140 }
4141 }
4142 }
4143
4144 return true;
4145 }
4146
4147 /*
4148 * Returns true if the class is being initialized by us (which means that
4149 * calling dvmInitClass will return immediately after fiddling with locks).
4150 * Returns false if it's not being initialized, or if it's being
4151 * initialized by another thread.
4152 *
4153 * The value for initThreadId is always set to "self->threadId", by the
4154 * thread doing the initializing. If it was done by the current thread,
4155 * we are guaranteed to see "initializing" and our thread ID, even on SMP.
4156 * If it was done by another thread, the only bad situation is one in
4157 * which we see "initializing" and a stale copy of our own thread ID
4158 * while another thread is actually handling init.
4159 *
4160 * The initThreadId field is used during class linking, so it *is*
4161 * possible to have a stale value floating around. We need to ensure
4162 * that memory accesses happen in the correct order.
4163 */
dvmIsClassInitializing(const ClassObject * clazz)4164 bool dvmIsClassInitializing(const ClassObject* clazz)
4165 {
4166 const int32_t* addr = (const int32_t*)(const void*)&clazz->status;
4167 int32_t value = android_atomic_acquire_load(addr);
4168 ClassStatus status = static_cast<ClassStatus>(value);
4169 return (status == CLASS_INITIALIZING &&
4170 clazz->initThreadId == dvmThreadSelf()->threadId);
4171 }
4172
4173 /*
4174 * If a class has not been initialized, do so by executing the code in
4175 * <clinit>. The sequence is described in the VM spec v2 2.17.5.
4176 *
4177 * It is possible for multiple threads to arrive here simultaneously, so
4178 * we need to lock the class while we check stuff. We know that no
4179 * interpreted code has access to the class yet, so we can use the class's
4180 * monitor lock.
4181 *
4182 * We will often be called recursively, e.g. when the <clinit> code resolves
4183 * one of its fields, the field resolution will try to initialize the class.
4184 * In that case we will return "true" even though the class isn't actually
4185 * ready to go. The ambiguity can be resolved with dvmIsClassInitializing().
4186 * (TODO: consider having this return an enum to avoid the extra call --
4187 * return -1 on failure, 0 on success, 1 on still-initializing. Looks like
4188 * dvmIsClassInitializing() is always paired with *Initialized())
4189 *
4190 * This can get very interesting if a class has a static field initialized
4191 * to a new instance of itself. <clinit> will end up calling <init> on
4192 * the members it is initializing, which is fine unless it uses the contents
4193 * of static fields to initialize instance fields. This will leave the
4194 * static-referenced objects in a partially initialized state. This is
4195 * reasonably rare and can sometimes be cured with proper field ordering.
4196 *
4197 * On failure, returns "false" with an exception raised.
4198 *
4199 * -----
4200 *
4201 * It is possible to cause a deadlock by having a situation like this:
4202 * class A { static { sleep(10000); new B(); } }
4203 * class B { static { sleep(10000); new A(); } }
4204 * new Thread() { public void run() { new A(); } }.start();
4205 * new Thread() { public void run() { new B(); } }.start();
4206 * This appears to be expected under the spec.
4207 *
4208 * The interesting question is what to do if somebody calls Thread.interrupt()
4209 * on one of the deadlocked threads. According to the VM spec, they're both
4210 * sitting in "wait". Should the interrupt code quietly raise the
4211 * "interrupted" flag, or should the "wait" return immediately with an
4212 * exception raised?
4213 *
4214 * This gets a little murky. The VM spec says we call "wait", and the
4215 * spec for Thread.interrupt says Object.wait is interruptible. So it
4216 * seems that, if we get unlucky and interrupt class initialization, we
4217 * are expected to throw (which gets converted to ExceptionInInitializerError
4218 * since InterruptedException is checked).
4219 *
4220 * There are a couple of problems here. First, all threads are expected to
4221 * present a consistent view of class initialization, so we can't have it
4222 * fail in one thread and succeed in another. Second, once a class fails
4223 * to initialize, it must *always* fail. This means that a stray interrupt()
4224 * call could render a class unusable for the lifetime of the VM.
4225 *
4226 * In most cases -- the deadlock example above being a counter-example --
4227 * the interrupting thread can't tell whether the target thread handled
4228 * the initialization itself or had to wait while another thread did the
4229 * work. Refusing to interrupt class initialization is, in most cases,
4230 * not something that a program can reliably detect.
4231 *
4232 * On the assumption that interrupting class initialization is highly
4233 * undesirable in most circumstances, and that failing to do so does not
4234 * deviate from the spec in a meaningful way, we don't allow class init
4235 * to be interrupted by Thread.interrupt().
4236 */
dvmInitClass(ClassObject * clazz)4237 bool dvmInitClass(ClassObject* clazz)
4238 {
4239 u8 startWhen = 0;
4240
4241 #if LOG_CLASS_LOADING
4242 bool initializedByUs = false;
4243 #endif
4244
4245 Thread* self = dvmThreadSelf();
4246 const Method* method;
4247
4248 dvmLockObject(self, (Object*) clazz);
4249 assert(dvmIsClassLinked(clazz) || clazz->status == CLASS_ERROR);
4250
4251 /*
4252 * If the class hasn't been verified yet, do so now.
4253 */
4254 if (clazz->status < CLASS_VERIFIED) {
4255 /*
4256 * If we're in an "erroneous" state, throw an exception and bail.
4257 */
4258 if (clazz->status == CLASS_ERROR) {
4259 throwEarlierClassFailure(clazz);
4260 goto bail_unlock;
4261 }
4262
4263 assert(clazz->status == CLASS_RESOLVED);
4264 assert(!IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED));
4265
4266 if (gDvm.classVerifyMode == VERIFY_MODE_NONE ||
4267 (gDvm.classVerifyMode == VERIFY_MODE_REMOTE &&
4268 clazz->classLoader == NULL))
4269 {
4270 /* advance to "verified" state */
4271 ALOGV("+++ not verifying class %s (cl=%p)",
4272 clazz->descriptor, clazz->classLoader);
4273 clazz->status = CLASS_VERIFIED;
4274 goto noverify;
4275 }
4276
4277 if (!gDvm.optimizing)
4278 ALOGV("+++ late verify on %s", clazz->descriptor);
4279
4280 /*
4281 * We're not supposed to optimize an unverified class, but during
4282 * development this mode was useful. We can't verify an optimized
4283 * class because the optimization process discards information.
4284 */
4285 if (IS_CLASS_FLAG_SET(clazz, CLASS_ISOPTIMIZED)) {
4286 ALOGW("Class '%s' was optimized without verification; "
4287 "not verifying now",
4288 clazz->descriptor);
4289 ALOGW(" ('rm /data/dalvik-cache/*' and restart to fix this)");
4290 goto verify_failed;
4291 }
4292
4293 clazz->status = CLASS_VERIFYING;
4294 if (!dvmVerifyClass(clazz)) {
4295 verify_failed:
4296 dvmThrowVerifyError(clazz->descriptor);
4297 dvmSetFieldObject((Object*) clazz,
4298 OFFSETOF_MEMBER(ClassObject, verifyErrorClass),
4299 (Object*) dvmGetException(self)->clazz);
4300 clazz->status = CLASS_ERROR;
4301 goto bail_unlock;
4302 }
4303
4304 clazz->status = CLASS_VERIFIED;
4305 }
4306 noverify:
4307
4308 /*
4309 * We need to ensure that certain instructions, notably accesses to
4310 * volatile fields, are replaced before any code is executed. This
4311 * must happen even if DEX optimizations are disabled.
4312 *
4313 * The only exception to this rule is that we don't want to do this
4314 * during dexopt. We don't generally initialize classes at all
4315 * during dexopt, but because we're loading classes we need Class and
4316 * Object (and possibly some Throwable stuff if a class isn't found).
4317 * If optimizations are disabled, we don't want to output optimized
4318 * instructions at this time. This means we will be executing <clinit>
4319 * code with un-fixed volatiles, but we're only doing it for a few
4320 * system classes, and dexopt runs single-threaded.
4321 */
4322 if (!IS_CLASS_FLAG_SET(clazz, CLASS_ISOPTIMIZED) && !gDvm.optimizing) {
4323 ALOGV("+++ late optimize on %s (pv=%d)",
4324 clazz->descriptor, IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED));
4325 bool essentialOnly = (gDvm.dexOptMode != OPTIMIZE_MODE_FULL);
4326 dvmOptimizeClass(clazz, essentialOnly);
4327 SET_CLASS_FLAG(clazz, CLASS_ISOPTIMIZED);
4328 }
4329
4330 /* update instruction stream now that verification + optimization is done */
4331 dvmFlushBreakpoints(clazz);
4332
4333 if (clazz->status == CLASS_INITIALIZED)
4334 goto bail_unlock;
4335
4336 while (clazz->status == CLASS_INITIALIZING) {
4337 /* we caught somebody else in the act; was it us? */
4338 if (clazz->initThreadId == self->threadId) {
4339 //ALOGV("HEY: found a recursive <clinit>");
4340 goto bail_unlock;
4341 }
4342
4343 if (dvmCheckException(self)) {
4344 ALOGW("GLITCH: exception pending at start of class init");
4345 dvmAbort();
4346 }
4347
4348 /*
4349 * Wait for the other thread to finish initialization. We pass
4350 * "false" for the "interruptShouldThrow" arg so it doesn't throw
4351 * an exception on interrupt.
4352 */
4353 dvmObjectWait(self, (Object*) clazz, 0, 0, false);
4354
4355 /*
4356 * When we wake up, repeat the test for init-in-progress. If there's
4357 * an exception pending (only possible if "interruptShouldThrow"
4358 * was set), bail out.
4359 */
4360 if (dvmCheckException(self)) {
4361 ALOGI("Class init of '%s' failing with wait() exception",
4362 clazz->descriptor);
4363 /*
4364 * TODO: this is bogus, because it means the two threads have a
4365 * different idea of the class status. We need to flag the
4366 * class as bad and ensure that the initializer thread respects
4367 * our notice. If we get lucky and wake up after the class has
4368 * finished initialization but before being woken, we have to
4369 * swallow the exception, perhaps raising thread->interrupted
4370 * to preserve semantics.
4371 *
4372 * Since we're not currently allowing interrupts, this should
4373 * never happen and we don't need to fix this.
4374 */
4375 assert(false);
4376 dvmThrowExceptionInInitializerError();
4377 clazz->status = CLASS_ERROR;
4378 goto bail_unlock;
4379 }
4380 if (clazz->status == CLASS_INITIALIZING) {
4381 ALOGI("Waiting again for class init");
4382 continue;
4383 }
4384 assert(clazz->status == CLASS_INITIALIZED ||
4385 clazz->status == CLASS_ERROR);
4386 if (clazz->status == CLASS_ERROR) {
4387 /*
4388 * The caller wants an exception, but it was thrown in a
4389 * different thread. Synthesize one here.
4390 */
4391 dvmThrowUnsatisfiedLinkError(
4392 "(<clinit> failed, see exception in other thread)");
4393 }
4394 goto bail_unlock;
4395 }
4396
4397 /* see if we failed previously */
4398 if (clazz->status == CLASS_ERROR) {
4399 // might be wise to unlock before throwing; depends on which class
4400 // it is that we have locked
4401 dvmUnlockObject(self, (Object*) clazz);
4402 throwEarlierClassFailure(clazz);
4403 return false;
4404 }
4405
4406 if (gDvm.allocProf.enabled) {
4407 startWhen = dvmGetRelativeTimeNsec();
4408 }
4409
4410 /*
4411 * We're ready to go, and have exclusive access to the class.
4412 *
4413 * Before we start initialization, we need to do one extra bit of
4414 * validation: make sure that the methods declared here match up
4415 * with our superclass and interfaces. We know that the UTF-8
4416 * descriptors match, but classes from different class loaders can
4417 * have the same name.
4418 *
4419 * We do this now, rather than at load/link time, for the same reason
4420 * that we defer verification.
4421 *
4422 * It's unfortunate that we need to do this at all, but we risk
4423 * mixing reference types with identical names (see Dalvik test 068).
4424 */
4425 if (!validateSuperDescriptors(clazz)) {
4426 assert(dvmCheckException(self));
4427 clazz->status = CLASS_ERROR;
4428 goto bail_unlock;
4429 }
4430
4431 /*
4432 * Let's initialize this thing.
4433 *
4434 * We unlock the object so that other threads can politely sleep on
4435 * our mutex with Object.wait(), instead of hanging or spinning trying
4436 * to grab our mutex.
4437 */
4438 assert(clazz->status < CLASS_INITIALIZING);
4439
4440 #if LOG_CLASS_LOADING
4441 // We started initializing.
4442 logClassLoad('+', clazz);
4443 initializedByUs = true;
4444 #endif
4445
4446 /* order matters here, esp. interaction with dvmIsClassInitializing */
4447 clazz->initThreadId = self->threadId;
4448 android_atomic_release_store(CLASS_INITIALIZING,
4449 (int32_t*)(void*)&clazz->status);
4450 dvmUnlockObject(self, (Object*) clazz);
4451
4452 /* init our superclass */
4453 if (clazz->super != NULL && clazz->super->status != CLASS_INITIALIZED) {
4454 assert(!dvmIsInterfaceClass(clazz));
4455 if (!dvmInitClass(clazz->super)) {
4456 assert(dvmCheckException(self));
4457 clazz->status = CLASS_ERROR;
4458 /* wake up anybody who started waiting while we were unlocked */
4459 dvmLockObject(self, (Object*) clazz);
4460 goto bail_notify;
4461 }
4462 }
4463
4464 /* Initialize any static fields whose values are
4465 * stored in the Dex file. This should include all of the
4466 * simple "final static" fields, which are required to
4467 * be initialized first. (vmspec 2 sec 2.17.5 item 8)
4468 * More-complicated final static fields should be set
4469 * at the beginning of <clinit>; all we can do is trust
4470 * that the compiler did the right thing.
4471 */
4472 initSFields(clazz);
4473
4474 /* Execute any static initialization code.
4475 */
4476 method = dvmFindDirectMethodByDescriptor(clazz, "<clinit>", "()V");
4477 if (method == NULL) {
4478 LOGVV("No <clinit> found for %s", clazz->descriptor);
4479 } else {
4480 LOGVV("Invoking %s.<clinit>", clazz->descriptor);
4481 JValue unused;
4482 dvmCallMethod(self, method, NULL, &unused);
4483 }
4484
4485 if (dvmCheckException(self)) {
4486 /*
4487 * We've had an exception thrown during static initialization. We
4488 * need to throw an ExceptionInInitializerError, but we want to
4489 * tuck the original exception into the "cause" field.
4490 */
4491 ALOGW("Exception %s thrown while initializing %s",
4492 (dvmGetException(self)->clazz)->descriptor, clazz->descriptor);
4493 dvmThrowExceptionInInitializerError();
4494 //ALOGW("+++ replaced");
4495
4496 dvmLockObject(self, (Object*) clazz);
4497 clazz->status = CLASS_ERROR;
4498 } else {
4499 /* success! */
4500 dvmLockObject(self, (Object*) clazz);
4501 clazz->status = CLASS_INITIALIZED;
4502 LOGVV("Initialized class: %s", clazz->descriptor);
4503
4504 /*
4505 * Update alloc counters. TODO: guard with mutex.
4506 */
4507 if (gDvm.allocProf.enabled && startWhen != 0) {
4508 u8 initDuration = dvmGetRelativeTimeNsec() - startWhen;
4509 gDvm.allocProf.classInitTime += initDuration;
4510 self->allocProf.classInitTime += initDuration;
4511 gDvm.allocProf.classInitCount++;
4512 self->allocProf.classInitCount++;
4513 }
4514 }
4515
4516 bail_notify:
4517 /*
4518 * Notify anybody waiting on the object.
4519 */
4520 dvmObjectNotifyAll(self, (Object*) clazz);
4521
4522 bail_unlock:
4523
4524 #if LOG_CLASS_LOADING
4525 if (initializedByUs) {
4526 // We finished initializing.
4527 logClassLoad('-', clazz);
4528 }
4529 #endif
4530
4531 dvmUnlockObject(self, (Object*) clazz);
4532
4533 return (clazz->status != CLASS_ERROR);
4534 }
4535
4536 /*
4537 * Replace method->nativeFunc and method->insns with new values. This is
4538 * commonly performed after successful resolution of a native method.
4539 *
4540 * There are three basic states:
4541 * (1) (initial) nativeFunc = dvmResolveNativeMethod, insns = NULL
4542 * (2) (internal native) nativeFunc = <impl>, insns = NULL
4543 * (3) (JNI) nativeFunc = JNI call bridge, insns = <impl>
4544 *
4545 * nativeFunc must never be NULL for a native method.
4546 *
4547 * The most common transitions are (1)->(2) and (1)->(3). The former is
4548 * atomic, since only one field is updated; the latter is not, but since
4549 * dvmResolveNativeMethod ignores the "insns" field we just need to make
4550 * sure the update happens in the correct order.
4551 *
4552 * A transition from (2)->(1) would work fine, but (3)->(1) will not,
4553 * because both fields change. If we did this while a thread was executing
4554 * in the call bridge, we could null out the "insns" field right before
4555 * the bridge tried to call through it. So, once "insns" is set, we do
4556 * not allow it to be cleared. A NULL value for the "insns" argument is
4557 * treated as "do not change existing value".
4558 */
dvmSetNativeFunc(Method * method,DalvikBridgeFunc func,const u2 * insns)4559 void dvmSetNativeFunc(Method* method, DalvikBridgeFunc func,
4560 const u2* insns)
4561 {
4562 ClassObject* clazz = method->clazz;
4563
4564 assert(func != NULL);
4565
4566 /* just open up both; easier that way */
4567 dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
4568 dvmLinearReadWrite(clazz->classLoader, clazz->directMethods);
4569
4570 if (insns != NULL) {
4571 /* update both, ensuring that "insns" is observed first */
4572 method->insns = insns;
4573 android_atomic_release_store((int32_t) func,
4574 (volatile int32_t*)(void*) &method->nativeFunc);
4575 } else {
4576 /* only update nativeFunc */
4577 method->nativeFunc = func;
4578 }
4579
4580 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
4581 dvmLinearReadOnly(clazz->classLoader, clazz->directMethods);
4582 }
4583
4584 /*
4585 * Add a RegisterMap to a Method. This is done when we verify the class
4586 * and compute the register maps at class initialization time (i.e. when
4587 * we don't have a pre-generated map). This means "pMap" is on the heap
4588 * and should be freed when the Method is discarded.
4589 */
dvmSetRegisterMap(Method * method,const RegisterMap * pMap)4590 void dvmSetRegisterMap(Method* method, const RegisterMap* pMap)
4591 {
4592 ClassObject* clazz = method->clazz;
4593
4594 if (method->registerMap != NULL) {
4595 /* unexpected during class loading, okay on first use (uncompress) */
4596 ALOGV("NOTE: registerMap already set for %s.%s",
4597 method->clazz->descriptor, method->name);
4598 /* keep going */
4599 }
4600 assert(!dvmIsNativeMethod(method) && !dvmIsAbstractMethod(method));
4601
4602 /* might be virtual or direct */
4603 dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
4604 dvmLinearReadWrite(clazz->classLoader, clazz->directMethods);
4605
4606 method->registerMap = pMap;
4607
4608 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
4609 dvmLinearReadOnly(clazz->classLoader, clazz->directMethods);
4610 }
4611
4612 /*
4613 * dvmHashForeach callback. A nonzero return value causes foreach to
4614 * bail out.
4615 */
findClassCallback(void * vclazz,void * arg)4616 static int findClassCallback(void* vclazz, void* arg)
4617 {
4618 ClassObject* clazz = (ClassObject*)vclazz;
4619 const char* descriptor = (const char*) arg;
4620
4621 if (strcmp(clazz->descriptor, descriptor) == 0)
4622 return (int) clazz;
4623 return 0;
4624 }
4625
4626 /*
4627 * Find a loaded class by descriptor. Returns the first one found.
4628 * Because there can be more than one if class loaders are involved,
4629 * this is not an especially good API. (Currently only used by the
4630 * debugger and "checking" JNI.)
4631 *
4632 * "descriptor" should have the form "Ljava/lang/Class;" or
4633 * "[Ljava/lang/Class;", i.e. a descriptor and not an internal-form
4634 * class name.
4635 */
dvmFindLoadedClass(const char * descriptor)4636 ClassObject* dvmFindLoadedClass(const char* descriptor)
4637 {
4638 int result;
4639
4640 dvmHashTableLock(gDvm.loadedClasses);
4641 result = dvmHashForeach(gDvm.loadedClasses, findClassCallback,
4642 (void*) descriptor);
4643 dvmHashTableUnlock(gDvm.loadedClasses);
4644
4645 return (ClassObject*) result;
4646 }
4647
4648 /*
4649 * Retrieve the system (a/k/a application) class loader.
4650 *
4651 * The caller must call dvmReleaseTrackedAlloc on the result.
4652 */
dvmGetSystemClassLoader()4653 Object* dvmGetSystemClassLoader()
4654 {
4655 Thread* self = dvmThreadSelf();
4656 ClassObject* clClass = gDvm.classJavaLangClassLoader;
4657
4658 if (!dvmIsClassInitialized(clClass) && !dvmInitClass(clClass))
4659 return NULL;
4660
4661 JValue result;
4662 dvmCallMethod(self, gDvm.methJavaLangClassLoader_getSystemClassLoader,
4663 NULL, &result);
4664 Object* loader = (Object*)result.l;
4665 dvmAddTrackedAlloc(loader, self);
4666 return loader;
4667 }
4668
4669
4670 /*
4671 * This is a dvmHashForeach callback.
4672 */
dumpClass(void * vclazz,void * varg)4673 static int dumpClass(void* vclazz, void* varg)
4674 {
4675 const ClassObject* clazz = (const ClassObject*) vclazz;
4676 const ClassObject* super;
4677 int flags = (int) varg;
4678 char* desc;
4679 int i;
4680
4681 if (clazz == NULL) {
4682 ALOGI("dumpClass: ignoring request to dump null class");
4683 return 0;
4684 }
4685
4686 if ((flags & kDumpClassFullDetail) == 0) {
4687 bool showInit = (flags & kDumpClassInitialized) != 0;
4688 bool showLoader = (flags & kDumpClassClassLoader) != 0;
4689 const char* initStr;
4690
4691 initStr = dvmIsClassInitialized(clazz) ? "true" : "false";
4692
4693 if (showInit && showLoader)
4694 ALOGI("%s %p %s", clazz->descriptor, clazz->classLoader, initStr);
4695 else if (showInit)
4696 ALOGI("%s %s", clazz->descriptor, initStr);
4697 else if (showLoader)
4698 ALOGI("%s %p", clazz->descriptor, clazz->classLoader);
4699 else
4700 ALOGI("%s", clazz->descriptor);
4701
4702 return 0;
4703 }
4704
4705 /* clazz->super briefly holds the superclass index during class prep */
4706 if ((u4)clazz->super > 0x10000 && (u4) clazz->super != (u4)-1)
4707 super = clazz->super;
4708 else
4709 super = NULL;
4710
4711 ALOGI("----- %s '%s' cl=%p ser=0x%08x -----",
4712 dvmIsInterfaceClass(clazz) ? "interface" : "class",
4713 clazz->descriptor, clazz->classLoader, clazz->serialNumber);
4714 ALOGI(" objectSize=%d (%d from super)", (int) clazz->objectSize,
4715 super != NULL ? (int) super->objectSize : -1);
4716 ALOGI(" access=0x%04x.%04x", clazz->accessFlags >> 16,
4717 clazz->accessFlags & JAVA_FLAGS_MASK);
4718 if (super != NULL)
4719 ALOGI(" super='%s' (cl=%p)", super->descriptor, super->classLoader);
4720 if (dvmIsArrayClass(clazz)) {
4721 ALOGI(" dimensions=%d elementClass=%s",
4722 clazz->arrayDim, clazz->elementClass->descriptor);
4723 }
4724 if (clazz->iftableCount > 0) {
4725 ALOGI(" interfaces (%d):", clazz->iftableCount);
4726 for (i = 0; i < clazz->iftableCount; i++) {
4727 InterfaceEntry* ent = &clazz->iftable[i];
4728 int j;
4729
4730 ALOGI(" %2d: %s (cl=%p)",
4731 i, ent->clazz->descriptor, ent->clazz->classLoader);
4732
4733 /* enable when needed */
4734 if (false && ent->methodIndexArray != NULL) {
4735 for (j = 0; j < ent->clazz->virtualMethodCount; j++)
4736 ALOGI(" %2d: %d %s %s",
4737 j, ent->methodIndexArray[j],
4738 ent->clazz->virtualMethods[j].name,
4739 clazz->vtable[ent->methodIndexArray[j]]->name);
4740 }
4741 }
4742 }
4743 if (!dvmIsInterfaceClass(clazz)) {
4744 ALOGI(" vtable (%d entries, %d in super):", clazz->vtableCount,
4745 super != NULL ? super->vtableCount : 0);
4746 for (i = 0; i < clazz->vtableCount; i++) {
4747 desc = dexProtoCopyMethodDescriptor(&clazz->vtable[i]->prototype);
4748 ALOGI(" %s%2d: %p %20s %s",
4749 (i != clazz->vtable[i]->methodIndex) ? "*** " : "",
4750 (u4) clazz->vtable[i]->methodIndex, clazz->vtable[i],
4751 clazz->vtable[i]->name, desc);
4752 free(desc);
4753 }
4754 ALOGI(" direct methods (%d entries):", clazz->directMethodCount);
4755 for (i = 0; i < clazz->directMethodCount; i++) {
4756 desc = dexProtoCopyMethodDescriptor(
4757 &clazz->directMethods[i].prototype);
4758 ALOGI(" %2d: %20s %s", i, clazz->directMethods[i].name,
4759 desc);
4760 free(desc);
4761 }
4762 } else {
4763 ALOGI(" interface methods (%d):", clazz->virtualMethodCount);
4764 for (i = 0; i < clazz->virtualMethodCount; i++) {
4765 desc = dexProtoCopyMethodDescriptor(
4766 &clazz->virtualMethods[i].prototype);
4767 ALOGI(" %2d: %2d %20s %s", i,
4768 (u4) clazz->virtualMethods[i].methodIndex,
4769 clazz->virtualMethods[i].name,
4770 desc);
4771 free(desc);
4772 }
4773 }
4774 if (clazz->sfieldCount > 0) {
4775 ALOGI(" static fields (%d entries):", clazz->sfieldCount);
4776 for (i = 0; i < clazz->sfieldCount; i++) {
4777 ALOGI(" %2d: %20s %s", i, clazz->sfields[i].name,
4778 clazz->sfields[i].signature);
4779 }
4780 }
4781 if (clazz->ifieldCount > 0) {
4782 ALOGI(" instance fields (%d entries):", clazz->ifieldCount);
4783 for (i = 0; i < clazz->ifieldCount; i++) {
4784 ALOGI(" %2d: %20s %s", i, clazz->ifields[i].name,
4785 clazz->ifields[i].signature);
4786 }
4787 }
4788 return 0;
4789 }
4790
4791 /*
4792 * Dump the contents of a single class.
4793 *
4794 * Pass kDumpClassFullDetail into "flags" to get lots of detail.
4795 */
dvmDumpClass(const ClassObject * clazz,int flags)4796 void dvmDumpClass(const ClassObject* clazz, int flags)
4797 {
4798 dumpClass((void*) clazz, (void*) flags);
4799 }
4800
4801 /*
4802 * Dump the contents of all classes.
4803 */
dvmDumpAllClasses(int flags)4804 void dvmDumpAllClasses(int flags)
4805 {
4806 dvmHashTableLock(gDvm.loadedClasses);
4807 dvmHashForeach(gDvm.loadedClasses, dumpClass, (void*) flags);
4808 dvmHashTableUnlock(gDvm.loadedClasses);
4809 }
4810
4811 /*
4812 * Get the number of loaded classes
4813 */
dvmGetNumLoadedClasses()4814 int dvmGetNumLoadedClasses()
4815 {
4816 int count;
4817 dvmHashTableLock(gDvm.loadedClasses);
4818 count = dvmHashTableNumEntries(gDvm.loadedClasses);
4819 dvmHashTableUnlock(gDvm.loadedClasses);
4820 return count;
4821 }
4822
4823 /*
4824 * Write some statistics to the log file.
4825 */
dvmDumpLoaderStats(const char * msg)4826 void dvmDumpLoaderStats(const char* msg)
4827 {
4828 ALOGV("VM stats (%s): cls=%d/%d meth=%d ifld=%d sfld=%d linear=%d",
4829 msg, gDvm.numLoadedClasses, dvmHashTableNumEntries(gDvm.loadedClasses),
4830 gDvm.numDeclaredMethods, gDvm.numDeclaredInstFields,
4831 gDvm.numDeclaredStaticFields, gDvm.pBootLoaderAlloc->curOffset);
4832 #ifdef COUNT_PRECISE_METHODS
4833 ALOGI("GC precise methods: %d",
4834 dvmPointerSetGetCount(gDvm.preciseMethods));
4835 #endif
4836 }
4837
4838 /*
4839 * ===========================================================================
4840 * Method Prototypes and Descriptors
4841 * ===========================================================================
4842 */
4843
4844 /*
4845 * Compare the two method names and prototypes, a la strcmp(). The
4846 * name is considered the "major" order and the prototype the "minor"
4847 * order. The prototypes are compared as if by dvmCompareMethodProtos().
4848 */
dvmCompareMethodNamesAndProtos(const Method * method1,const Method * method2)4849 int dvmCompareMethodNamesAndProtos(const Method* method1,
4850 const Method* method2)
4851 {
4852 int result = strcmp(method1->name, method2->name);
4853
4854 if (result != 0) {
4855 return result;
4856 }
4857
4858 return dvmCompareMethodProtos(method1, method2);
4859 }
4860
4861 /*
4862 * Compare the two method names and prototypes, a la strcmp(), ignoring
4863 * the return value. The name is considered the "major" order and the
4864 * prototype the "minor" order. The prototypes are compared as if by
4865 * dvmCompareMethodArgProtos().
4866 */
dvmCompareMethodNamesAndParameterProtos(const Method * method1,const Method * method2)4867 int dvmCompareMethodNamesAndParameterProtos(const Method* method1,
4868 const Method* method2)
4869 {
4870 int result = strcmp(method1->name, method2->name);
4871
4872 if (result != 0) {
4873 return result;
4874 }
4875
4876 return dvmCompareMethodParameterProtos(method1, method2);
4877 }
4878
4879 /*
4880 * Compare a (name, prototype) pair with the (name, prototype) of
4881 * a method, a la strcmp(). The name is considered the "major" order and
4882 * the prototype the "minor" order. The descriptor and prototype are
4883 * compared as if by dvmCompareDescriptorAndMethodProto().
4884 */
dvmCompareNameProtoAndMethod(const char * name,const DexProto * proto,const Method * method)4885 int dvmCompareNameProtoAndMethod(const char* name,
4886 const DexProto* proto, const Method* method)
4887 {
4888 int result = strcmp(name, method->name);
4889
4890 if (result != 0) {
4891 return result;
4892 }
4893
4894 return dexProtoCompare(proto, &method->prototype);
4895 }
4896
4897 /*
4898 * Compare a (name, method descriptor) pair with the (name, prototype) of
4899 * a method, a la strcmp(). The name is considered the "major" order and
4900 * the prototype the "minor" order. The descriptor and prototype are
4901 * compared as if by dvmCompareDescriptorAndMethodProto().
4902 */
dvmCompareNameDescriptorAndMethod(const char * name,const char * descriptor,const Method * method)4903 int dvmCompareNameDescriptorAndMethod(const char* name,
4904 const char* descriptor, const Method* method)
4905 {
4906 int result = strcmp(name, method->name);
4907
4908 if (result != 0) {
4909 return result;
4910 }
4911
4912 return dvmCompareDescriptorAndMethodProto(descriptor, method);
4913 }
4914