• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * Class loading, including bootstrap class loader, linking, and
19  * initialization.
20  */
21 
22 #define LOG_CLASS_LOADING 0
23 
24 #include "Dalvik.h"
25 #include "libdex/DexClass.h"
26 #include "analysis/Optimize.h"
27 
28 #include <stdlib.h>
29 #include <stddef.h>
30 #include <sys/stat.h>
31 
32 #if LOG_CLASS_LOADING
33 #include <unistd.h>
34 #include <pthread.h>
35 #include <cutils/process_name.h>
36 #include <sys/types.h>
37 #endif
38 
39 /*
40 Notes on Linking and Verification
41 
42 The basic way to retrieve a class is to load it, make sure its superclass
43 and interfaces are available, prepare its fields, and return it.  This gets
44 a little more complicated when multiple threads can be trying to retrieve
45 the class simultaneously, requiring that we use the class object's monitor
46 to keep things orderly.
47 
48 The linking (preparing, resolving) of a class can cause us to recursively
49 load superclasses and interfaces.  Barring circular references (e.g. two
50 classes that are superclasses of each other), this will complete without
51 the loader attempting to access the partially-linked class.
52 
53 With verification, the situation is different.  If we try to verify
54 every class as we load it, we quickly run into trouble.  Even the lowly
55 java.lang.Object requires CloneNotSupportedException; follow the list
56 of referenced classes and you can head down quite a trail.  The trail
57 eventually leads back to Object, which is officially not fully-formed yet.
58 
59 The VM spec (specifically, v2 5.4.1) notes that classes pulled in during
60 verification do not need to be prepared or verified.  This means that we
61 are allowed to have loaded but unverified classes.  It further notes that
62 the class must be verified before it is initialized, which allows us to
63 defer verification for all classes until class init.  You can't execute
64 code or access fields in an uninitialized class, so this is safe.
65 
66 It also allows a more peaceful coexistence between verified and
67 unverifiable code.  If class A refers to B, and B has a method that
68 refers to a bogus class C, should we allow class A to be verified?
69 If A only exercises parts of B that don't use class C, then there is
70 nothing wrong with running code in A.  We can fully verify both A and B,
71 and allow execution to continue until B causes initialization of C.  The
72 VerifyError is thrown close to the point of use.
73 
74 This gets a little weird with java.lang.Class, which is the only class
75 that can be instantiated before it is initialized.  We have to force
76 initialization right after the class is created, because by definition we
77 have instances of it on the heap, and somebody might get a class object and
78 start making virtual calls on it.  We can end up going recursive during
79 verification of java.lang.Class, but we avoid that by checking to see if
80 verification is already in progress before we try to initialize it.
81 */
82 
83 /*
84 Notes on class loaders and interaction with optimization / verification
85 
86 In what follows, "pre-verification" and "optimization" are the steps
87 performed by the dexopt command, which attempts to verify and optimize
88 classes as part of unpacking jar files and storing the DEX data in the
89 dalvik-cache directory.  These steps are performed by loading the DEX
90 files directly, without any assistance from ClassLoader instances.
91 
92 When we pre-verify and optimize a class in a DEX file, we make some
93 assumptions about where the class loader will go to look for classes.
94 If we can't guarantee those assumptions, e.g. because a class ("AppClass")
95 references something not defined in the bootstrap jars or the AppClass jar,
96 we can't pre-verify or optimize the class.
97 
98 The VM doesn't define the behavior of user-defined class loaders.
99 For example, suppose application class AppClass, loaded by UserLoader,
100 has a method that creates a java.lang.String.  The first time
101 AppClass.stringyMethod tries to do something with java.lang.String, it
102 asks UserLoader to find it.  UserLoader is expected to defer to its parent
103 loader, but isn't required to.  UserLoader might provide a replacement
104 for String.
105 
106 We can run into trouble if we pre-verify AppClass with the assumption that
107 java.lang.String will come from core.jar, and don't verify this assumption
108 at runtime.  There are two places that an alternate implementation of
109 java.lang.String can come from: the AppClass jar, or from some other jar
110 that UserLoader knows about.  (Someday UserLoader will be able to generate
111 some bytecode and call DefineClass, but not yet.)
112 
113 To handle the first situation, the pre-verifier will explicitly check for
114 conflicts between the class being optimized/verified and the bootstrap
115 classes.  If an app jar contains a class that has the same package and
116 class name as a class in a bootstrap jar, the verification resolver refuses
117 to find either, which will block pre-verification and optimization on
118 classes that reference ambiguity.  The VM will postpone verification of
119 the app class until first load.
120 
121 For the second situation, we need to ensure that all references from a
122 pre-verified class are satisified by the class' jar or earlier bootstrap
123 jars.  In concrete terms: when resolving a reference to NewClass,
124 which was caused by a reference in class AppClass, we check to see if
125 AppClass was pre-verified.  If so, we require that NewClass comes out
126 of either the AppClass jar or one of the jars in the bootstrap path.
127 (We may not control the class loaders, but we do manage the DEX files.
128 We can verify that it's either (loader==null && dexFile==a_boot_dex)
129 or (loader==UserLoader && dexFile==AppClass.dexFile).  Classes from
130 DefineClass can't be pre-verified, so this doesn't apply.)
131 
132 This should ensure that you can't "fake out" the pre-verifier by creating
133 a user-defined class loader that replaces system classes.  It should
134 also ensure that you can write such a loader and have it work in the
135 expected fashion; all you lose is some performance due to "just-in-time
136 verification" and the lack of DEX optimizations.
137 
138 There is a "back door" of sorts in the class resolution check, due to
139 the fact that the "class ref" entries are shared between the bytecode
140 and meta-data references (e.g. annotations and exception handler lists).
141 The class references in annotations have no bearing on class verification,
142 so when a class does an annotation query that causes a class reference
143 index to be resolved, we don't want to fail just because the calling
144 class was pre-verified and the resolved class is in some random DEX file.
145 The successful resolution adds the class to the "resolved classes" table,
146 so when optimized bytecode references it we don't repeat the resolve-time
147 check.  We can avoid this by not updating the "resolved classes" table
148 when the class reference doesn't come out of something that has been
149 checked by the verifier, but that has a nonzero performance impact.
150 Since the ultimate goal of this test is to catch an unusual situation
151 (user-defined class loaders redefining core classes), the added caution
152 may not be worth the performance hit.
153 */
154 
155 /*
156  * Class serial numbers start at this value.  We use a nonzero initial
157  * value so they stand out in binary dumps (e.g. hprof output).
158  */
159 #define INITIAL_CLASS_SERIAL_NUMBER 0x50000000
160 
161 /*
162  * Constant used to size an auxillary class object data structure.
163  * For optimum memory use this should be equal to or slightly larger than
164  * the number of classes loaded when the zygote finishes initializing.
165  */
166 #define ZYGOTE_CLASS_CUTOFF 2304
167 
168 #define CLASS_SFIELD_SLOTS 1
169 
170 static ClassPathEntry* processClassPath(const char* pathStr, bool isBootstrap);
171 static void freeCpeArray(ClassPathEntry* cpe);
172 
173 static ClassObject* findClassFromLoaderNoInit(
174     const char* descriptor, Object* loader);
175 static ClassObject* findClassNoInit(const char* descriptor, Object* loader,\
176     DvmDex* pDvmDex);
177 static ClassObject* loadClassFromDex(DvmDex* pDvmDex,
178     const DexClassDef* pClassDef, Object* loader);
179 static void loadMethodFromDex(ClassObject* clazz, const DexMethod* pDexMethod,\
180     Method* meth);
181 static int computeJniArgInfo(const DexProto* proto);
182 static void loadSFieldFromDex(ClassObject* clazz,
183     const DexField* pDexSField, StaticField* sfield);
184 static void loadIFieldFromDex(ClassObject* clazz,
185     const DexField* pDexIField, InstField* field);
186 static bool precacheReferenceOffsets(ClassObject* clazz);
187 static void computeRefOffsets(ClassObject* clazz);
188 static void freeMethodInnards(Method* meth);
189 static bool createVtable(ClassObject* clazz);
190 static bool createIftable(ClassObject* clazz);
191 static bool insertMethodStubs(ClassObject* clazz);
192 static bool computeFieldOffsets(ClassObject* clazz);
193 static void throwEarlierClassFailure(ClassObject* clazz);
194 
195 #if LOG_CLASS_LOADING
196 /*
197  * Logs information about a class loading with given timestamp.
198  *
199  * TODO: In the case where we fail in dvmLinkClass() and log the class as closing (type='<'),
200  * it would probably be better to use a new type code to indicate the failure.  This change would
201  * require a matching change in the parser and analysis code in frameworks/base/tools/preload.
202  */
logClassLoadWithTime(char type,ClassObject * clazz,u8 time)203 static void logClassLoadWithTime(char type, ClassObject* clazz, u8 time) {
204     pid_t ppid = getppid();
205     pid_t pid = getpid();
206     unsigned int tid = (unsigned int) pthread_self();
207 
208     ALOG(LOG_INFO, "PRELOAD", "%c%d:%d:%d:%s:%d:%s:%lld", type, ppid, pid, tid,
209         get_process_name(), (int) clazz->classLoader, clazz->descriptor,
210         time);
211 }
212 
213 /*
214  * Logs information about a class loading.
215  */
logClassLoad(char type,ClassObject * clazz)216 static void logClassLoad(char type, ClassObject* clazz) {
217     logClassLoadWithTime(type, clazz, dvmGetThreadCpuTimeNsec());
218 }
219 #endif
220 
221 /*
222  * Some LinearAlloc unit tests.
223  */
linearAllocTests()224 static void linearAllocTests()
225 {
226     char* fiddle;
227     int test = 1;
228 
229     switch (test) {
230     case 0:
231         fiddle = (char*)dvmLinearAlloc(NULL, 3200-28);
232         dvmLinearReadOnly(NULL, (char*)fiddle);
233         break;
234     case 1:
235         fiddle = (char*)dvmLinearAlloc(NULL, 3200-24);
236         dvmLinearReadOnly(NULL, (char*)fiddle);
237         break;
238     case 2:
239         fiddle = (char*)dvmLinearAlloc(NULL, 3200-20);
240         dvmLinearReadOnly(NULL, (char*)fiddle);
241         break;
242     case 3:
243         fiddle = (char*)dvmLinearAlloc(NULL, 3200-16);
244         dvmLinearReadOnly(NULL, (char*)fiddle);
245         break;
246     case 4:
247         fiddle = (char*)dvmLinearAlloc(NULL, 3200-12);
248         dvmLinearReadOnly(NULL, (char*)fiddle);
249         break;
250     }
251     fiddle = (char*)dvmLinearAlloc(NULL, 896);
252     dvmLinearReadOnly(NULL, (char*)fiddle);
253     fiddle = (char*)dvmLinearAlloc(NULL, 20);      // watch addr of this alloc
254     dvmLinearReadOnly(NULL, (char*)fiddle);
255 
256     fiddle = (char*)dvmLinearAlloc(NULL, 1);
257     fiddle[0] = 'q';
258     dvmLinearReadOnly(NULL, fiddle);
259     fiddle = (char*)dvmLinearAlloc(NULL, 4096);
260     fiddle[0] = 'x';
261     fiddle[4095] = 'y';
262     dvmLinearReadOnly(NULL, fiddle);
263     dvmLinearFree(NULL, fiddle);
264     fiddle = (char*)dvmLinearAlloc(NULL, 0);
265     dvmLinearReadOnly(NULL, fiddle);
266     fiddle = (char*)dvmLinearRealloc(NULL, fiddle, 12);
267     fiddle[11] = 'z';
268     dvmLinearReadOnly(NULL, (char*)fiddle);
269     fiddle = (char*)dvmLinearRealloc(NULL, fiddle, 5);
270     dvmLinearReadOnly(NULL, fiddle);
271     fiddle = (char*)dvmLinearAlloc(NULL, 17001);
272     fiddle[0] = 'x';
273     fiddle[17000] = 'y';
274     dvmLinearReadOnly(NULL, (char*)fiddle);
275 
276     char* str = (char*)dvmLinearStrdup(NULL, "This is a test!");
277     ALOGI("GOT: '%s'", str);
278 
279     /* try to check the bounds; allocator may round allocation size up */
280     fiddle = (char*)dvmLinearAlloc(NULL, 12);
281     ALOGI("Should be 1: %d", dvmLinearAllocContains(fiddle, 12));
282     ALOGI("Should be 0: %d", dvmLinearAllocContains(fiddle, 13));
283     ALOGI("Should be 0: %d", dvmLinearAllocContains(fiddle - 128*1024, 1));
284 
285     dvmLinearAllocDump(NULL);
286     dvmLinearFree(NULL, (char*)str);
287 }
288 
classObjectSize(size_t sfieldCount)289 static size_t classObjectSize(size_t sfieldCount)
290 {
291     size_t offset = OFFSETOF_MEMBER(ClassObject, sfields);
292     return offset + sizeof(StaticField) * sfieldCount;
293 }
294 
dvmClassObjectSize(const ClassObject * clazz)295 size_t dvmClassObjectSize(const ClassObject *clazz)
296 {
297     assert(clazz != NULL);
298     return classObjectSize(clazz->sfieldCount);
299 }
300 
301 /* (documented in header) */
dvmFindPrimitiveClass(char type)302 ClassObject* dvmFindPrimitiveClass(char type)
303 {
304     PrimitiveType primitiveType = dexGetPrimitiveTypeFromDescriptorChar(type);
305 
306     switch (primitiveType) {
307         case PRIM_VOID:    return gDvm.typeVoid;
308         case PRIM_BOOLEAN: return gDvm.typeBoolean;
309         case PRIM_BYTE:    return gDvm.typeByte;
310         case PRIM_SHORT:   return gDvm.typeShort;
311         case PRIM_CHAR:    return gDvm.typeChar;
312         case PRIM_INT:     return gDvm.typeInt;
313         case PRIM_LONG:    return gDvm.typeLong;
314         case PRIM_FLOAT:   return gDvm.typeFloat;
315         case PRIM_DOUBLE:  return gDvm.typeDouble;
316         default: {
317             ALOGW("Unknown primitive type '%c'", type);
318             return NULL;
319         }
320     }
321 }
322 
323 /*
324  * Synthesize a primitive class.
325  *
326  * Just creates the class and returns it (does not add it to the class list).
327  */
createPrimitiveType(PrimitiveType primitiveType,ClassObject ** pClass)328 static bool createPrimitiveType(PrimitiveType primitiveType, ClassObject** pClass)
329 {
330     /*
331      * Fill out a few fields in the ClassObject.
332      *
333      * Note that primitive classes do not sub-class the class Object.
334      * This matters for "instanceof" checks. Also, we assume that the
335      * primitive class does not override finalize().
336      */
337 
338     const char* descriptor = dexGetPrimitiveTypeDescriptor(primitiveType);
339     assert(descriptor != NULL);
340 
341     ClassObject* newClass = (ClassObject*) dvmMalloc(sizeof(*newClass), ALLOC_NON_MOVING);
342     if (newClass == NULL) {
343         return false;
344     }
345 
346     DVM_OBJECT_INIT(newClass, gDvm.classJavaLangClass);
347     dvmSetClassSerialNumber(newClass);
348     SET_CLASS_FLAG(newClass, ACC_PUBLIC | ACC_FINAL | ACC_ABSTRACT);
349     newClass->primitiveType = primitiveType;
350     newClass->descriptorAlloc = NULL;
351     newClass->descriptor = descriptor;
352     newClass->super = NULL;
353     newClass->status = CLASS_INITIALIZED;
354 
355     /* don't need to set newClass->objectSize */
356 
357     LOGVV("Constructed class for primitive type '%s'", newClass->descriptor);
358 
359     *pClass = newClass;
360     dvmReleaseTrackedAlloc((Object*) newClass, NULL);
361 
362     return true;
363 }
364 
365 /*
366  * Create the initial class instances. These consist of the class
367  * Class and all of the classes representing primitive types.
368  */
createInitialClasses()369 static bool createInitialClasses() {
370     /*
371      * Initialize the class Class. This has to be done specially, particularly
372      * because it is an instance of itself.
373      */
374     ClassObject* clazz = (ClassObject*)
375         dvmMalloc(classObjectSize(CLASS_SFIELD_SLOTS), ALLOC_NON_MOVING);
376     if (clazz == NULL) {
377         return false;
378     }
379     DVM_OBJECT_INIT(clazz, clazz);
380     SET_CLASS_FLAG(clazz, ACC_PUBLIC | ACC_FINAL | CLASS_ISCLASS);
381     clazz->descriptor = "Ljava/lang/Class;";
382     gDvm.classJavaLangClass = clazz;
383     LOGVV("Constructed the class Class.");
384 
385     /*
386      * Initialize the classes representing primitive types. These are
387      * instances of the class Class, but other than that they're fairly
388      * different from regular classes.
389      */
390     bool ok = true;
391     ok &= createPrimitiveType(PRIM_VOID,    &gDvm.typeVoid);
392     ok &= createPrimitiveType(PRIM_BOOLEAN, &gDvm.typeBoolean);
393     ok &= createPrimitiveType(PRIM_BYTE,    &gDvm.typeByte);
394     ok &= createPrimitiveType(PRIM_SHORT,   &gDvm.typeShort);
395     ok &= createPrimitiveType(PRIM_CHAR,    &gDvm.typeChar);
396     ok &= createPrimitiveType(PRIM_INT,     &gDvm.typeInt);
397     ok &= createPrimitiveType(PRIM_LONG,    &gDvm.typeLong);
398     ok &= createPrimitiveType(PRIM_FLOAT,   &gDvm.typeFloat);
399     ok &= createPrimitiveType(PRIM_DOUBLE,  &gDvm.typeDouble);
400 
401     return ok;
402 }
403 
404 /*
405  * Initialize the bootstrap class loader.
406  *
407  * Call this after the bootclasspath string has been finalized.
408  */
dvmClassStartup()409 bool dvmClassStartup()
410 {
411     /* make this a requirement -- don't currently support dirs in path */
412     if (strcmp(gDvm.bootClassPathStr, ".") == 0) {
413         ALOGE("ERROR: must specify non-'.' bootclasspath");
414         return false;
415     }
416 
417     gDvm.loadedClasses =
418         dvmHashTableCreate(256, (HashFreeFunc) dvmFreeClassInnards);
419 
420     gDvm.pBootLoaderAlloc = dvmLinearAllocCreate(NULL);
421     if (gDvm.pBootLoaderAlloc == NULL)
422         return false;
423 
424     if (false) {
425         linearAllocTests();
426         exit(0);
427     }
428 
429     /*
430      * Class serial number.  We start with a high value to make it distinct
431      * in binary dumps (e.g. hprof).
432      */
433     gDvm.classSerialNumber = INITIAL_CLASS_SERIAL_NUMBER;
434 
435     /*
436      * Set up the table we'll use for tracking initiating loaders for
437      * early classes.
438      * If it's NULL, we just fall back to the InitiatingLoaderList in the
439      * ClassObject, so it's not fatal to fail this allocation.
440      */
441     gDvm.initiatingLoaderList = (InitiatingLoaderList*)
442         calloc(ZYGOTE_CLASS_CUTOFF, sizeof(InitiatingLoaderList));
443 
444     /*
445      * Create the initial classes. These are the first objects constructed
446      * within the nascent VM.
447      */
448     if (!createInitialClasses()) {
449         return false;
450     }
451 
452     /*
453      * Process the bootstrap class path.  This means opening the specified
454      * DEX or Jar files and possibly running them through the optimizer.
455      */
456     assert(gDvm.bootClassPath == NULL);
457     processClassPath(gDvm.bootClassPathStr, true);
458 
459     if (gDvm.bootClassPath == NULL)
460         return false;
461 
462     return true;
463 }
464 
465 /*
466  * Clean up.
467  */
dvmClassShutdown()468 void dvmClassShutdown()
469 {
470     /* discard all system-loaded classes */
471     dvmHashTableFree(gDvm.loadedClasses);
472     gDvm.loadedClasses = NULL;
473 
474     /* discard primitive classes created for arrays */
475     dvmFreeClassInnards(gDvm.typeVoid);
476     dvmFreeClassInnards(gDvm.typeBoolean);
477     dvmFreeClassInnards(gDvm.typeByte);
478     dvmFreeClassInnards(gDvm.typeShort);
479     dvmFreeClassInnards(gDvm.typeChar);
480     dvmFreeClassInnards(gDvm.typeInt);
481     dvmFreeClassInnards(gDvm.typeLong);
482     dvmFreeClassInnards(gDvm.typeFloat);
483     dvmFreeClassInnards(gDvm.typeDouble);
484 
485     /* this closes DEX files, JAR files, etc. */
486     freeCpeArray(gDvm.bootClassPath);
487     gDvm.bootClassPath = NULL;
488 
489     dvmLinearAllocDestroy(NULL);
490 
491     free(gDvm.initiatingLoaderList);
492 }
493 
494 
495 /*
496  * ===========================================================================
497  *      Bootstrap class loader
498  * ===========================================================================
499  */
500 
501 /*
502  * Dump the contents of a ClassPathEntry array.
503  */
dumpClassPath(const ClassPathEntry * cpe)504 static void dumpClassPath(const ClassPathEntry* cpe)
505 {
506     int idx = 0;
507 
508     while (cpe->kind != kCpeLastEntry) {
509         const char* kindStr;
510 
511         switch (cpe->kind) {
512         case kCpeJar:       kindStr = "jar";    break;
513         case kCpeDex:       kindStr = "dex";    break;
514         default:            kindStr = "???";    break;
515         }
516 
517         ALOGI("  %2d: type=%s %s %p", idx, kindStr, cpe->fileName, cpe->ptr);
518         if (CALC_CACHE_STATS && cpe->kind == kCpeJar) {
519             JarFile* pJarFile = (JarFile*) cpe->ptr;
520             DvmDex* pDvmDex = dvmGetJarFileDex(pJarFile);
521             dvmDumpAtomicCacheStats(pDvmDex->pInterfaceCache);
522         }
523 
524         cpe++;
525         idx++;
526     }
527 }
528 
529 /*
530  * Dump the contents of the bootstrap class path.
531  */
dvmDumpBootClassPath()532 void dvmDumpBootClassPath()
533 {
534     dumpClassPath(gDvm.bootClassPath);
535 }
536 
537 /*
538  * Returns "true" if the class path contains the specified path.
539  */
dvmClassPathContains(const ClassPathEntry * cpe,const char * path)540 bool dvmClassPathContains(const ClassPathEntry* cpe, const char* path)
541 {
542     while (cpe->kind != kCpeLastEntry) {
543         if (strcmp(cpe->fileName, path) == 0)
544             return true;
545 
546         cpe++;
547     }
548     return false;
549 }
550 
551 /*
552  * Free an array of ClassPathEntry structs.
553  *
554  * We release the contents of each entry, then free the array itself.
555  */
freeCpeArray(ClassPathEntry * cpe)556 static void freeCpeArray(ClassPathEntry* cpe)
557 {
558     ClassPathEntry* cpeStart = cpe;
559 
560     if (cpe == NULL)
561         return;
562 
563     while (cpe->kind != kCpeLastEntry) {
564         switch (cpe->kind) {
565         case kCpeJar:
566             /* free JarFile */
567             dvmJarFileFree((JarFile*) cpe->ptr);
568             break;
569         case kCpeDex:
570             /* free RawDexFile */
571             dvmRawDexFileFree((RawDexFile*) cpe->ptr);
572             break;
573         default:
574             assert(false);
575             break;
576         }
577 
578         free(cpe->fileName);
579         cpe++;
580     }
581 
582     free(cpeStart);
583 }
584 
585 /*
586  * Get the filename suffix of the given file (everything after the
587  * last "." if any, or "<none>" if there's no apparent suffix). The
588  * passed-in buffer will always be '\0' terminated.
589  */
getFileNameSuffix(const char * fileName,char * suffixBuf,size_t suffixBufLen)590 static void getFileNameSuffix(const char* fileName, char* suffixBuf, size_t suffixBufLen)
591 {
592     const char* lastDot = strrchr(fileName, '.');
593 
594     strlcpy(suffixBuf, (lastDot == NULL) ? "<none>" : (lastDot + 1), suffixBufLen);
595 }
596 
597 /*
598  * Prepare a ClassPathEntry struct, which at this point only has a valid
599  * filename.  We need to figure out what kind of file it is, and for
600  * everything other than directories we need to open it up and see
601  * what's inside.
602  */
prepareCpe(ClassPathEntry * cpe,bool isBootstrap)603 static bool prepareCpe(ClassPathEntry* cpe, bool isBootstrap)
604 {
605     struct stat sb;
606 
607     if (stat(cpe->fileName, &sb) < 0) {
608         ALOGD("Unable to stat classpath element '%s'", cpe->fileName);
609         return false;
610     }
611     if (S_ISDIR(sb.st_mode)) {
612         ALOGE("Directory classpath elements are not supported: %s", cpe->fileName);
613         return false;
614     }
615 
616     char suffix[10];
617     getFileNameSuffix(cpe->fileName, suffix, sizeof(suffix));
618 
619     if ((strcmp(suffix, "jar") == 0) || (strcmp(suffix, "zip") == 0) ||
620             (strcmp(suffix, "apk") == 0)) {
621         JarFile* pJarFile = NULL;
622         if (dvmJarFileOpen(cpe->fileName, NULL, &pJarFile, isBootstrap) == 0) {
623             cpe->kind = kCpeJar;
624             cpe->ptr = pJarFile;
625             return true;
626         }
627     } else if (strcmp(suffix, "dex") == 0) {
628         RawDexFile* pRawDexFile = NULL;
629         if (dvmRawDexFileOpen(cpe->fileName, NULL, &pRawDexFile, isBootstrap) == 0) {
630             cpe->kind = kCpeDex;
631             cpe->ptr = pRawDexFile;
632             return true;
633         }
634     } else {
635         ALOGE("Unknown type suffix '%s'", suffix);
636     }
637 
638     ALOGD("Unable to process classpath element '%s'", cpe->fileName);
639     return false;
640 }
641 
642 /*
643  * Convert a colon-separated list of directories, Zip files, and DEX files
644  * into an array of ClassPathEntry structs.
645  *
646  * During normal startup we fail if there are no entries, because we won't
647  * get very far without the basic language support classes, but if we're
648  * optimizing a DEX file we allow it.
649  *
650  * If entries are added or removed from the bootstrap class path, the
651  * dependencies in the DEX files will break, and everything except the
652  * very first entry will need to be regenerated.
653  */
processClassPath(const char * pathStr,bool isBootstrap)654 static ClassPathEntry* processClassPath(const char* pathStr, bool isBootstrap)
655 {
656     ClassPathEntry* cpe = NULL;
657     char* mangle;
658     char* cp;
659     const char* end;
660     int idx, count;
661 
662     assert(pathStr != NULL);
663 
664     mangle = strdup(pathStr);
665 
666     /*
667      * Run through and essentially strtok() the string.  Get a count of
668      * the #of elements while we're at it.
669      *
670      * If the path was constructed strangely (e.g. ":foo::bar:") this will
671      * over-allocate, which isn't ideal but is mostly harmless.
672      */
673     count = 1;
674     for (cp = mangle; *cp != '\0'; cp++) {
675         if (*cp == ':') {   /* separates two entries */
676             count++;
677             *cp = '\0';
678         }
679     }
680     end = cp;
681 
682     /*
683      * Allocate storage.  We over-alloc by one so we can set an "end" marker.
684      */
685     cpe = (ClassPathEntry*) calloc(count+1, sizeof(ClassPathEntry));
686 
687     /*
688      * Set the global pointer so the DEX file dependency stuff can find it.
689      */
690     gDvm.bootClassPath = cpe;
691 
692     /*
693      * Go through a second time, pulling stuff out.
694      */
695     cp = mangle;
696     idx = 0;
697     while (cp < end) {
698         if (*cp == '\0') {
699             /* leading, trailing, or doubled ':'; ignore it */
700         } else {
701             if (isBootstrap &&
702                     dvmPathToAbsolutePortion(cp) == NULL) {
703                 ALOGE("Non-absolute bootclasspath entry '%s'", cp);
704                 free(cpe);
705                 cpe = NULL;
706                 goto bail;
707             }
708 
709             ClassPathEntry tmp;
710             tmp.kind = kCpeUnknown;
711             tmp.fileName = strdup(cp);
712             tmp.ptr = NULL;
713 
714             /*
715              * Drop an end marker here so DEX loader can walk unfinished
716              * list.
717              */
718             cpe[idx].kind = kCpeLastEntry;
719             cpe[idx].fileName = NULL;
720             cpe[idx].ptr = NULL;
721 
722             if (!prepareCpe(&tmp, isBootstrap)) {
723                 /* drop from list and continue on */
724                 free(tmp.fileName);
725             } else {
726                 /* copy over, pointers and all */
727                 cpe[idx] = tmp;
728                 idx++;
729             }
730         }
731 
732         cp += strlen(cp) +1;
733     }
734     assert(idx <= count);
735     if (idx == 0 && !gDvm.optimizing) {
736         /*
737          * There's no way the vm will be doing anything if this is the
738          * case, so just bail out (reasonably) gracefully.
739          */
740         ALOGE("No valid entries found in bootclasspath '%s'", pathStr);
741         gDvm.lastMessage = pathStr;
742         dvmAbort();
743     }
744 
745     LOGVV("  (filled %d of %d slots)", idx, count);
746 
747     /* put end marker in over-alloc slot */
748     cpe[idx].kind = kCpeLastEntry;
749     cpe[idx].fileName = NULL;
750     cpe[idx].ptr = NULL;
751 
752     //dumpClassPath(cpe);
753 
754 bail:
755     free(mangle);
756     gDvm.bootClassPath = cpe;
757     return cpe;
758 }
759 
760 /*
761  * Search the DEX files we loaded from the bootstrap class path for a DEX
762  * file that has the class with the matching descriptor.
763  *
764  * Returns the matching DEX file and DexClassDef entry if found, otherwise
765  * returns NULL.
766  */
searchBootPathForClass(const char * descriptor,const DexClassDef ** ppClassDef)767 static DvmDex* searchBootPathForClass(const char* descriptor,
768     const DexClassDef** ppClassDef)
769 {
770     const ClassPathEntry* cpe = gDvm.bootClassPath;
771     const DexClassDef* pFoundDef = NULL;
772     DvmDex* pFoundFile = NULL;
773 
774     LOGVV("+++ class '%s' not yet loaded, scanning bootclasspath...",
775         descriptor);
776 
777     while (cpe->kind != kCpeLastEntry) {
778         //ALOGV("+++  checking '%s' (%d)", cpe->fileName, cpe->kind);
779 
780         switch (cpe->kind) {
781         case kCpeJar:
782             {
783                 JarFile* pJarFile = (JarFile*) cpe->ptr;
784                 const DexClassDef* pClassDef;
785                 DvmDex* pDvmDex;
786 
787                 pDvmDex = dvmGetJarFileDex(pJarFile);
788                 pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor);
789                 if (pClassDef != NULL) {
790                     /* found */
791                     pFoundDef = pClassDef;
792                     pFoundFile = pDvmDex;
793                     goto found;
794                 }
795             }
796             break;
797         case kCpeDex:
798             {
799                 RawDexFile* pRawDexFile = (RawDexFile*) cpe->ptr;
800                 const DexClassDef* pClassDef;
801                 DvmDex* pDvmDex;
802 
803                 pDvmDex = dvmGetRawDexFileDex(pRawDexFile);
804                 pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor);
805                 if (pClassDef != NULL) {
806                     /* found */
807                     pFoundDef = pClassDef;
808                     pFoundFile = pDvmDex;
809                     goto found;
810                 }
811             }
812             break;
813         default:
814             ALOGE("Unknown kind %d", cpe->kind);
815             assert(false);
816             break;
817         }
818 
819         cpe++;
820     }
821 
822     /*
823      * Special handling during verification + optimization.
824      *
825      * The DEX optimizer needs to load classes from the DEX file it's working
826      * on.  Rather than trying to insert it into the bootstrap class path
827      * or synthesizing a class loader to manage it, we just make it available
828      * here.  It logically comes after all existing entries in the bootstrap
829      * class path.
830      */
831     if (gDvm.bootClassPathOptExtra != NULL) {
832         const DexClassDef* pClassDef;
833 
834         pClassDef =
835             dexFindClass(gDvm.bootClassPathOptExtra->pDexFile, descriptor);
836         if (pClassDef != NULL) {
837             /* found */
838             pFoundDef = pClassDef;
839             pFoundFile = gDvm.bootClassPathOptExtra;
840         }
841     }
842 
843 found:
844     *ppClassDef = pFoundDef;
845     return pFoundFile;
846 }
847 
848 /*
849  * Set the "extra" DEX, which becomes a de facto member of the bootstrap
850  * class set.
851  */
dvmSetBootPathExtraDex(DvmDex * pDvmDex)852 void dvmSetBootPathExtraDex(DvmDex* pDvmDex)
853 {
854     gDvm.bootClassPathOptExtra = pDvmDex;
855 }
856 
857 
858 /*
859  * Return the #of entries in the bootstrap class path.
860  *
861  * (Used for ClassLoader.getResources().)
862  */
dvmGetBootPathSize()863 int dvmGetBootPathSize()
864 {
865     const ClassPathEntry* cpe = gDvm.bootClassPath;
866 
867     while (cpe->kind != kCpeLastEntry)
868         cpe++;
869 
870     return cpe - gDvm.bootClassPath;
871 }
872 
873 /*
874  * Find a resource with the specified name in entry N of the boot class path.
875  *
876  * We return a newly-allocated String of one of these forms:
877  *   file://path/name
878  *   jar:file://path!/name
879  * Where "path" is the bootstrap class path entry and "name" is the string
880  * passed into this method.  "path" needs to be an absolute path (starting
881  * with '/'); if it's not we'd need to "absolutify" it as part of forming
882  * the URL string.
883  */
dvmGetBootPathResource(const char * name,int idx)884 StringObject* dvmGetBootPathResource(const char* name, int idx)
885 {
886     const int kUrlOverhead = 13;        // worst case for Jar URL
887     const ClassPathEntry* cpe = gDvm.bootClassPath;
888     StringObject* urlObj = NULL;
889 
890     ALOGV("+++ searching for resource '%s' in %d(%s)",
891         name, idx, cpe[idx].fileName);
892 
893     /* we could use direct array index, but I don't entirely trust "idx" */
894     while (idx-- && cpe->kind != kCpeLastEntry)
895         cpe++;
896     if (cpe->kind == kCpeLastEntry) {
897         assert(false);
898         return NULL;
899     }
900 
901     char urlBuf[strlen(name) + strlen(cpe->fileName) + kUrlOverhead +1];
902 
903     switch (cpe->kind) {
904     case kCpeJar:
905         {
906             JarFile* pJarFile = (JarFile*) cpe->ptr;
907             if (dexZipFindEntry(&pJarFile->archive, name) == NULL)
908                 goto bail;
909             sprintf(urlBuf, "jar:file://%s!/%s", cpe->fileName, name);
910         }
911         break;
912     case kCpeDex:
913         ALOGV("No resources in DEX files");
914         goto bail;
915     default:
916         assert(false);
917         goto bail;
918     }
919 
920     ALOGV("+++ using URL='%s'", urlBuf);
921     urlObj = dvmCreateStringFromCstr(urlBuf);
922 
923 bail:
924     return urlObj;
925 }
926 
927 
928 /*
929  * ===========================================================================
930  *      Class list management
931  * ===========================================================================
932  */
933 
934 /* search for these criteria in the Class hash table */
935 struct ClassMatchCriteria {
936     const char* descriptor;
937     Object*     loader;
938 };
939 
940 #define kInitLoaderInc  4       /* must be power of 2 */
941 
dvmGetInitiatingLoaderList(ClassObject * clazz)942 static InitiatingLoaderList *dvmGetInitiatingLoaderList(ClassObject* clazz)
943 {
944     assert(clazz->serialNumber >= INITIAL_CLASS_SERIAL_NUMBER);
945     int classIndex = clazz->serialNumber-INITIAL_CLASS_SERIAL_NUMBER;
946     if (gDvm.initiatingLoaderList != NULL &&
947         classIndex < ZYGOTE_CLASS_CUTOFF) {
948         return &(gDvm.initiatingLoaderList[classIndex]);
949     } else {
950         return &(clazz->initiatingLoaderList);
951     }
952 }
953 
954 /*
955  * Determine if "loader" appears in clazz' initiating loader list.
956  *
957  * The class hash table lock must be held when calling here, since
958  * it's also used when updating a class' initiating loader list.
959  *
960  * TODO: switch to some sort of lock-free data structure so we don't have
961  * to grab the lock to do a lookup.  Among other things, this would improve
962  * the speed of compareDescriptorClasses().
963  */
dvmLoaderInInitiatingList(const ClassObject * clazz,const Object * loader)964 bool dvmLoaderInInitiatingList(const ClassObject* clazz, const Object* loader)
965 {
966     /*
967      * The bootstrap class loader can't be just an initiating loader for
968      * anything (it's always the defining loader if the class is visible
969      * to it).  We don't put defining loaders in the initiating list.
970      */
971     if (loader == NULL)
972         return false;
973 
974     /*
975      * Scan the list for a match.  The list is expected to be short.
976      */
977     /* Cast to remove the const from clazz, but use const loaderList */
978     ClassObject* nonConstClazz = (ClassObject*) clazz;
979     const InitiatingLoaderList *loaderList =
980         dvmGetInitiatingLoaderList(nonConstClazz);
981     int i;
982     for (i = loaderList->initiatingLoaderCount-1; i >= 0; --i) {
983         if (loaderList->initiatingLoaders[i] == loader) {
984             //ALOGI("+++ found initiating match %p in %s",
985             //    loader, clazz->descriptor);
986             return true;
987         }
988     }
989     return false;
990 }
991 
992 /*
993  * Add "loader" to clazz's initiating loader set, unless it's the defining
994  * class loader.
995  *
996  * In the common case this will be a short list, so we don't need to do
997  * anything too fancy here.
998  *
999  * This locks gDvm.loadedClasses for synchronization, so don't hold it
1000  * when calling here.
1001  */
dvmAddInitiatingLoader(ClassObject * clazz,Object * loader)1002 void dvmAddInitiatingLoader(ClassObject* clazz, Object* loader)
1003 {
1004     if (loader != clazz->classLoader) {
1005         assert(loader != NULL);
1006 
1007         LOGVV("Adding %p to '%s' init list", loader, clazz->descriptor);
1008         dvmHashTableLock(gDvm.loadedClasses);
1009 
1010         /*
1011          * Make sure nobody snuck in.  The penalty for adding twice is
1012          * pretty minor, and probably outweighs the O(n^2) hit for
1013          * checking before every add, so we may not want to do this.
1014          */
1015         //if (dvmLoaderInInitiatingList(clazz, loader)) {
1016         //    ALOGW("WOW: simultaneous add of initiating class loader");
1017         //    goto bail_unlock;
1018         //}
1019 
1020         /*
1021          * The list never shrinks, so we just keep a count of the
1022          * number of elements in it, and reallocate the buffer when
1023          * we run off the end.
1024          *
1025          * The pointer is initially NULL, so we *do* want to call realloc
1026          * when count==0.
1027          */
1028         InitiatingLoaderList *loaderList = dvmGetInitiatingLoaderList(clazz);
1029         if ((loaderList->initiatingLoaderCount & (kInitLoaderInc-1)) == 0) {
1030             Object** newList;
1031 
1032             newList = (Object**) realloc(loaderList->initiatingLoaders,
1033                         (loaderList->initiatingLoaderCount + kInitLoaderInc)
1034                          * sizeof(Object*));
1035             if (newList == NULL) {
1036                 /* this is mainly a cache, so it's not the EotW */
1037                 assert(false);
1038                 goto bail_unlock;
1039             }
1040             loaderList->initiatingLoaders = newList;
1041 
1042             //ALOGI("Expanded init list to %d (%s)",
1043             //    loaderList->initiatingLoaderCount+kInitLoaderInc,
1044             //    clazz->descriptor);
1045         }
1046         loaderList->initiatingLoaders[loaderList->initiatingLoaderCount++] =
1047             loader;
1048 
1049 bail_unlock:
1050         dvmHashTableUnlock(gDvm.loadedClasses);
1051     }
1052 }
1053 
1054 /*
1055  * (This is a dvmHashTableLookup callback.)
1056  *
1057  * Entries in the class hash table are stored as { descriptor, d-loader }
1058  * tuples.  If the hashed class descriptor matches the requested descriptor,
1059  * and the hashed defining class loader matches the requested class
1060  * loader, we're good.  If only the descriptor matches, we check to see if the
1061  * loader is in the hashed class' initiating loader list.  If so, we
1062  * can return "true" immediately and skip some of the loadClass melodrama.
1063  *
1064  * The caller must lock the hash table before calling here.
1065  *
1066  * Returns 0 if a matching entry is found, nonzero otherwise.
1067  */
hashcmpClassByCrit(const void * vclazz,const void * vcrit)1068 static int hashcmpClassByCrit(const void* vclazz, const void* vcrit)
1069 {
1070     const ClassObject* clazz = (const ClassObject*) vclazz;
1071     const ClassMatchCriteria* pCrit = (const ClassMatchCriteria*) vcrit;
1072     bool match;
1073 
1074     match = (strcmp(clazz->descriptor, pCrit->descriptor) == 0 &&
1075              (clazz->classLoader == pCrit->loader ||
1076               (pCrit->loader != NULL &&
1077                dvmLoaderInInitiatingList(clazz, pCrit->loader)) ));
1078     //if (match)
1079     //    ALOGI("+++ %s %p matches existing %s %p",
1080     //        pCrit->descriptor, pCrit->loader,
1081     //        clazz->descriptor, clazz->classLoader);
1082     return !match;
1083 }
1084 
1085 /*
1086  * Like hashcmpClassByCrit, but passing in a fully-formed ClassObject
1087  * instead of a ClassMatchCriteria.
1088  */
hashcmpClassByClass(const void * vclazz,const void * vaddclazz)1089 static int hashcmpClassByClass(const void* vclazz, const void* vaddclazz)
1090 {
1091     const ClassObject* clazz = (const ClassObject*) vclazz;
1092     const ClassObject* addClazz = (const ClassObject*) vaddclazz;
1093     bool match;
1094 
1095     match = (strcmp(clazz->descriptor, addClazz->descriptor) == 0 &&
1096              (clazz->classLoader == addClazz->classLoader ||
1097               (addClazz->classLoader != NULL &&
1098                dvmLoaderInInitiatingList(clazz, addClazz->classLoader)) ));
1099     return !match;
1100 }
1101 
1102 /*
1103  * Search through the hash table to find an entry with a matching descriptor
1104  * and an initiating class loader that matches "loader".
1105  *
1106  * The table entries are hashed on descriptor only, because they're unique
1107  * on *defining* class loader, not *initiating* class loader.  This isn't
1108  * great, because it guarantees we will have to probe when multiple
1109  * class loaders are used.
1110  *
1111  * Note this does NOT try to load a class; it just finds a class that
1112  * has already been loaded.
1113  *
1114  * If "unprepOkay" is set, this will return classes that have been added
1115  * to the hash table but are not yet fully loaded and linked.  Otherwise,
1116  * such classes are ignored.  (The only place that should set "unprepOkay"
1117  * is findClassNoInit(), which will wait for the prep to finish.)
1118  *
1119  * Returns NULL if not found.
1120  */
dvmLookupClass(const char * descriptor,Object * loader,bool unprepOkay)1121 ClassObject* dvmLookupClass(const char* descriptor, Object* loader,
1122     bool unprepOkay)
1123 {
1124     ClassMatchCriteria crit;
1125     void* found;
1126     u4 hash;
1127 
1128     crit.descriptor = descriptor;
1129     crit.loader = loader;
1130     hash = dvmComputeUtf8Hash(descriptor);
1131 
1132     LOGVV("threadid=%d: dvmLookupClass searching for '%s' %p",
1133         dvmThreadSelf()->threadId, descriptor, loader);
1134 
1135     dvmHashTableLock(gDvm.loadedClasses);
1136     found = dvmHashTableLookup(gDvm.loadedClasses, hash, &crit,
1137                 hashcmpClassByCrit, false);
1138     dvmHashTableUnlock(gDvm.loadedClasses);
1139 
1140     /*
1141      * The class has been added to the hash table but isn't ready for use.
1142      * We're going to act like we didn't see it, so that the caller will
1143      * go through the full "find class" path, which includes locking the
1144      * object and waiting until it's ready.  We could do that lock/wait
1145      * here, but this is an extremely rare case, and it's simpler to have
1146      * the wait-for-class code centralized.
1147      */
1148     if (found && !unprepOkay && !dvmIsClassLinked((ClassObject*)found)) {
1149         ALOGV("Ignoring not-yet-ready %s, using slow path",
1150             ((ClassObject*)found)->descriptor);
1151         found = NULL;
1152     }
1153 
1154     return (ClassObject*) found;
1155 }
1156 
1157 /*
1158  * Add a new class to the hash table.
1159  *
1160  * The class is considered "new" if it doesn't match on both the class
1161  * descriptor and the defining class loader.
1162  *
1163  * TODO: we should probably have separate hash tables for each
1164  * ClassLoader. This could speed up dvmLookupClass and
1165  * other common operations. It does imply a VM-visible data structure
1166  * for each ClassLoader object with loaded classes, which we don't
1167  * have yet.
1168  */
dvmAddClassToHash(ClassObject * clazz)1169 bool dvmAddClassToHash(ClassObject* clazz)
1170 {
1171     void* found;
1172     u4 hash;
1173 
1174     hash = dvmComputeUtf8Hash(clazz->descriptor);
1175 
1176     dvmHashTableLock(gDvm.loadedClasses);
1177     found = dvmHashTableLookup(gDvm.loadedClasses, hash, clazz,
1178                 hashcmpClassByClass, true);
1179     dvmHashTableUnlock(gDvm.loadedClasses);
1180 
1181     ALOGV("+++ dvmAddClassToHash '%s' %p (isnew=%d) --> %p",
1182         clazz->descriptor, clazz->classLoader,
1183         (found == (void*) clazz), clazz);
1184 
1185     //dvmCheckClassTablePerf();
1186 
1187     /* can happen if two threads load the same class simultaneously */
1188     return (found == (void*) clazz);
1189 }
1190 
1191 #if 0
1192 /*
1193  * Compute hash value for a class.
1194  */
1195 u4 hashcalcClass(const void* item)
1196 {
1197     return dvmComputeUtf8Hash(((const ClassObject*) item)->descriptor);
1198 }
1199 
1200 /*
1201  * Check the performance of the "loadedClasses" hash table.
1202  */
1203 void dvmCheckClassTablePerf()
1204 {
1205     dvmHashTableLock(gDvm.loadedClasses);
1206     dvmHashTableProbeCount(gDvm.loadedClasses, hashcalcClass,
1207         hashcmpClassByClass);
1208     dvmHashTableUnlock(gDvm.loadedClasses);
1209 }
1210 #endif
1211 
1212 /*
1213  * Remove a class object from the hash table.
1214  */
removeClassFromHash(ClassObject * clazz)1215 static void removeClassFromHash(ClassObject* clazz)
1216 {
1217     ALOGV("+++ removeClassFromHash '%s'", clazz->descriptor);
1218 
1219     u4 hash = dvmComputeUtf8Hash(clazz->descriptor);
1220 
1221     dvmHashTableLock(gDvm.loadedClasses);
1222     if (!dvmHashTableRemove(gDvm.loadedClasses, hash, clazz))
1223         ALOGW("Hash table remove failed on class '%s'", clazz->descriptor);
1224     dvmHashTableUnlock(gDvm.loadedClasses);
1225 }
1226 
1227 
1228 /*
1229  * ===========================================================================
1230  *      Class creation
1231  * ===========================================================================
1232  */
1233 
1234 /*
1235  * Set clazz->serialNumber to the next available value.
1236  *
1237  * This usually happens *very* early in class creation, so don't expect
1238  * anything else in the class to be ready.
1239  */
dvmSetClassSerialNumber(ClassObject * clazz)1240 void dvmSetClassSerialNumber(ClassObject* clazz)
1241 {
1242     assert(clazz->serialNumber == 0);
1243     clazz->serialNumber = android_atomic_inc(&gDvm.classSerialNumber);
1244 }
1245 
1246 
1247 /*
1248  * Find the named class (by descriptor), using the specified
1249  * initiating ClassLoader.
1250  *
1251  * The class will be loaded and initialized if it has not already been.
1252  * If necessary, the superclass will be loaded.
1253  *
1254  * If the class can't be found, returns NULL with an appropriate exception
1255  * raised.
1256  */
dvmFindClass(const char * descriptor,Object * loader)1257 ClassObject* dvmFindClass(const char* descriptor, Object* loader)
1258 {
1259     ClassObject* clazz;
1260 
1261     clazz = dvmFindClassNoInit(descriptor, loader);
1262     if (clazz != NULL && clazz->status < CLASS_INITIALIZED) {
1263         /* initialize class */
1264         if (!dvmInitClass(clazz)) {
1265             /* init failed; leave it in the list, marked as bad */
1266             assert(dvmCheckException(dvmThreadSelf()));
1267             assert(clazz->status == CLASS_ERROR);
1268             return NULL;
1269         }
1270     }
1271 
1272     return clazz;
1273 }
1274 
1275 /*
1276  * Find the named class (by descriptor), using the specified
1277  * initiating ClassLoader.
1278  *
1279  * The class will be loaded if it has not already been, as will its
1280  * superclass.  It will not be initialized.
1281  *
1282  * If the class can't be found, returns NULL with an appropriate exception
1283  * raised.
1284  */
dvmFindClassNoInit(const char * descriptor,Object * loader)1285 ClassObject* dvmFindClassNoInit(const char* descriptor,
1286         Object* loader)
1287 {
1288     assert(descriptor != NULL);
1289     //assert(loader != NULL);
1290 
1291     LOGVV("FindClassNoInit '%s' %p", descriptor, loader);
1292 
1293     if (*descriptor == '[') {
1294         /*
1295          * Array class.  Find in table, generate if not found.
1296          */
1297         return dvmFindArrayClass(descriptor, loader);
1298     } else {
1299         /*
1300          * Regular class.  Find in table, load if not found.
1301          */
1302         if (loader != NULL) {
1303             return findClassFromLoaderNoInit(descriptor, loader);
1304         } else {
1305             return dvmFindSystemClassNoInit(descriptor);
1306         }
1307     }
1308 }
1309 
1310 /*
1311  * Load the named class (by descriptor) from the specified class
1312  * loader.  This calls out to let the ClassLoader object do its thing.
1313  *
1314  * Returns with NULL and an exception raised on error.
1315  */
findClassFromLoaderNoInit(const char * descriptor,Object * loader)1316 static ClassObject* findClassFromLoaderNoInit(const char* descriptor,
1317     Object* loader)
1318 {
1319     //ALOGI("##### findClassFromLoaderNoInit (%s,%p)",
1320     //        descriptor, loader);
1321 
1322     Thread* self = dvmThreadSelf();
1323 
1324     assert(loader != NULL);
1325 
1326     /*
1327      * Do we already have it?
1328      *
1329      * The class loader code does the "is it already loaded" check as
1330      * well.  However, this call is much faster than calling through
1331      * interpreted code.  Doing this does mean that in the common case
1332      * (365 out of 420 calls booting the sim) we're doing the
1333      * lookup-by-descriptor twice.  It appears this is still a win, so
1334      * I'm keeping it in.
1335      */
1336     ClassObject* clazz = dvmLookupClass(descriptor, loader, false);
1337     if (clazz != NULL) {
1338         LOGVV("Already loaded: %s %p", descriptor, loader);
1339         return clazz;
1340     } else {
1341         LOGVV("Not already loaded: %s %p", descriptor, loader);
1342     }
1343 
1344     char* dotName = NULL;
1345     StringObject* nameObj = NULL;
1346 
1347     /* convert "Landroid/debug/Stuff;" to "android.debug.Stuff" */
1348     dotName = dvmDescriptorToDot(descriptor);
1349     if (dotName == NULL) {
1350         dvmThrowOutOfMemoryError(NULL);
1351         return NULL;
1352     }
1353     nameObj = dvmCreateStringFromCstr(dotName);
1354     if (nameObj == NULL) {
1355         assert(dvmCheckException(self));
1356         goto bail;
1357     }
1358 
1359     dvmMethodTraceClassPrepBegin();
1360 
1361     /*
1362      * Invoke loadClass().  This will probably result in a couple of
1363      * exceptions being thrown, because the ClassLoader.loadClass()
1364      * implementation eventually calls VMClassLoader.loadClass to see if
1365      * the bootstrap class loader can find it before doing its own load.
1366      */
1367     LOGVV("--- Invoking loadClass(%s, %p)", dotName, loader);
1368     {
1369         const Method* loadClass =
1370             loader->clazz->vtable[gDvm.voffJavaLangClassLoader_loadClass];
1371         JValue result;
1372         dvmCallMethod(self, loadClass, loader, &result, nameObj);
1373         clazz = (ClassObject*) result.l;
1374 
1375         dvmMethodTraceClassPrepEnd();
1376         Object* excep = dvmGetException(self);
1377         if (excep != NULL) {
1378 #if DVM_SHOW_EXCEPTION >= 2
1379             ALOGD("NOTE: loadClass '%s' %p threw exception %s",
1380                  dotName, loader, excep->clazz->descriptor);
1381 #endif
1382             dvmAddTrackedAlloc(excep, self);
1383             dvmClearException(self);
1384             dvmThrowChainedNoClassDefFoundError(descriptor, excep);
1385             dvmReleaseTrackedAlloc(excep, self);
1386             clazz = NULL;
1387             goto bail;
1388         } else if (clazz == NULL) {
1389             ALOGW("ClassLoader returned NULL w/o exception pending");
1390             dvmThrowNullPointerException("ClassLoader returned null");
1391             goto bail;
1392         }
1393     }
1394 
1395     /* not adding clazz to tracked-alloc list, because it's a ClassObject */
1396 
1397     dvmAddInitiatingLoader(clazz, loader);
1398 
1399     LOGVV("--- Successfully loaded %s %p (thisldr=%p clazz=%p)",
1400         descriptor, clazz->classLoader, loader, clazz);
1401 
1402 bail:
1403     dvmReleaseTrackedAlloc((Object*)nameObj, NULL);
1404     free(dotName);
1405     return clazz;
1406 }
1407 
1408 /*
1409  * Load the named class (by descriptor) from the specified DEX file.
1410  * Used by class loaders to instantiate a class object from a
1411  * VM-managed DEX.
1412  */
dvmDefineClass(DvmDex * pDvmDex,const char * descriptor,Object * classLoader)1413 ClassObject* dvmDefineClass(DvmDex* pDvmDex, const char* descriptor,
1414     Object* classLoader)
1415 {
1416     assert(pDvmDex != NULL);
1417 
1418     return findClassNoInit(descriptor, classLoader, pDvmDex);
1419 }
1420 
1421 
1422 /*
1423  * Find the named class (by descriptor), scanning through the
1424  * bootclasspath if it hasn't already been loaded.
1425  *
1426  * "descriptor" looks like "Landroid/debug/Stuff;".
1427  *
1428  * Uses NULL as the defining class loader.
1429  */
dvmFindSystemClass(const char * descriptor)1430 ClassObject* dvmFindSystemClass(const char* descriptor)
1431 {
1432     ClassObject* clazz;
1433 
1434     clazz = dvmFindSystemClassNoInit(descriptor);
1435     if (clazz != NULL && clazz->status < CLASS_INITIALIZED) {
1436         /* initialize class */
1437         if (!dvmInitClass(clazz)) {
1438             /* init failed; leave it in the list, marked as bad */
1439             assert(dvmCheckException(dvmThreadSelf()));
1440             assert(clazz->status == CLASS_ERROR);
1441             return NULL;
1442         }
1443     }
1444 
1445     return clazz;
1446 }
1447 
1448 /*
1449  * Find the named class (by descriptor), searching for it in the
1450  * bootclasspath.
1451  *
1452  * On failure, this returns NULL with an exception raised.
1453  */
dvmFindSystemClassNoInit(const char * descriptor)1454 ClassObject* dvmFindSystemClassNoInit(const char* descriptor)
1455 {
1456     return findClassNoInit(descriptor, NULL, NULL);
1457 }
1458 
1459 /*
1460  * Find the named class (by descriptor). If it's not already loaded,
1461  * we load it and link it, but don't execute <clinit>. (The VM has
1462  * specific limitations on which events can cause initialization.)
1463  *
1464  * If "pDexFile" is NULL, we will search the bootclasspath for an entry.
1465  *
1466  * On failure, this returns NULL with an exception raised.
1467  *
1468  * TODO: we need to return an indication of whether we loaded the class or
1469  * used an existing definition.  If somebody deliberately tries to load a
1470  * class twice in the same class loader, they should get a LinkageError,
1471  * but inadvertent simultaneous class references should "just work".
1472  */
findClassNoInit(const char * descriptor,Object * loader,DvmDex * pDvmDex)1473 static ClassObject* findClassNoInit(const char* descriptor, Object* loader,
1474     DvmDex* pDvmDex)
1475 {
1476     Thread* self = dvmThreadSelf();
1477     ClassObject* clazz;
1478     bool profilerNotified = false;
1479 
1480     if (loader != NULL) {
1481         LOGVV("#### findClassNoInit(%s,%p,%p)", descriptor, loader,
1482             pDvmDex->pDexFile);
1483     }
1484 
1485     /*
1486      * We don't expect an exception to be raised at this point.  The
1487      * exception handling code is good about managing this.  This *can*
1488      * happen if a JNI lookup fails and the JNI code doesn't do any
1489      * error checking before doing another class lookup, so we may just
1490      * want to clear this and restore it on exit.  If we don't, some kinds
1491      * of failures can't be detected without rearranging other stuff.
1492      *
1493      * Most often when we hit this situation it means that something is
1494      * broken in the VM or in JNI code, so I'm keeping it in place (and
1495      * making it an informative abort rather than an assert).
1496      */
1497     if (dvmCheckException(self)) {
1498         ALOGE("Class lookup %s attempted with exception pending", descriptor);
1499         ALOGW("Pending exception is:");
1500         dvmLogExceptionStackTrace();
1501         dvmDumpAllThreads(false);
1502         dvmAbort();
1503     }
1504 
1505     clazz = dvmLookupClass(descriptor, loader, true);
1506     if (clazz == NULL) {
1507         const DexClassDef* pClassDef;
1508 
1509         dvmMethodTraceClassPrepBegin();
1510         profilerNotified = true;
1511 
1512 #if LOG_CLASS_LOADING
1513         u8 startTime = dvmGetThreadCpuTimeNsec();
1514 #endif
1515 
1516         if (pDvmDex == NULL) {
1517             assert(loader == NULL);     /* shouldn't be here otherwise */
1518             pDvmDex = searchBootPathForClass(descriptor, &pClassDef);
1519         } else {
1520             pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor);
1521         }
1522 
1523         if (pDvmDex == NULL || pClassDef == NULL) {
1524             if (gDvm.noClassDefFoundErrorObj != NULL) {
1525                 /* usual case -- use prefabricated object */
1526                 dvmSetException(self, gDvm.noClassDefFoundErrorObj);
1527             } else {
1528                 /* dexopt case -- can't guarantee prefab (core.jar) */
1529                 dvmThrowNoClassDefFoundError(descriptor);
1530             }
1531             goto bail;
1532         }
1533 
1534         /* found a match, try to load it */
1535         clazz = loadClassFromDex(pDvmDex, pClassDef, loader);
1536         if (dvmCheckException(self)) {
1537             /* class was found but had issues */
1538             if (clazz != NULL) {
1539                 dvmFreeClassInnards(clazz);
1540                 dvmReleaseTrackedAlloc((Object*) clazz, NULL);
1541             }
1542             goto bail;
1543         }
1544 
1545         /*
1546          * Lock the class while we link it so other threads must wait for us
1547          * to finish.  Set the "initThreadId" so we can identify recursive
1548          * invocation.  (Note all accesses to initThreadId here are
1549          * guarded by the class object's lock.)
1550          */
1551         dvmLockObject(self, (Object*) clazz);
1552         clazz->initThreadId = self->threadId;
1553 
1554         /*
1555          * Add to hash table so lookups succeed.
1556          *
1557          * [Are circular references possible when linking a class?]
1558          */
1559         assert(clazz->classLoader == loader);
1560         if (!dvmAddClassToHash(clazz)) {
1561             /*
1562              * Another thread must have loaded the class after we
1563              * started but before we finished.  Discard what we've
1564              * done and leave some hints for the GC.
1565              *
1566              * (Yes, this happens.)
1567              */
1568             //ALOGW("WOW: somebody loaded %s simultaneously", descriptor);
1569             clazz->initThreadId = 0;
1570             dvmUnlockObject(self, (Object*) clazz);
1571 
1572             /* Let the GC free the class.
1573              */
1574             dvmFreeClassInnards(clazz);
1575             dvmReleaseTrackedAlloc((Object*) clazz, NULL);
1576 
1577             /* Grab the winning class.
1578              */
1579             clazz = dvmLookupClass(descriptor, loader, true);
1580             assert(clazz != NULL);
1581             goto got_class;
1582         }
1583         dvmReleaseTrackedAlloc((Object*) clazz, NULL);
1584 
1585 #if LOG_CLASS_LOADING
1586         logClassLoadWithTime('>', clazz, startTime);
1587 #endif
1588         /*
1589          * Prepare and resolve.
1590          */
1591         if (!dvmLinkClass(clazz)) {
1592             assert(dvmCheckException(self));
1593 
1594             /* Make note of the error and clean up the class.
1595              */
1596             removeClassFromHash(clazz);
1597             clazz->status = CLASS_ERROR;
1598             dvmFreeClassInnards(clazz);
1599 
1600             /* Let any waiters know.
1601              */
1602             clazz->initThreadId = 0;
1603             dvmObjectNotifyAll(self, (Object*) clazz);
1604             dvmUnlockObject(self, (Object*) clazz);
1605 
1606 #if LOG_CLASS_LOADING
1607             ALOG(LOG_INFO, "DVMLINK FAILED FOR CLASS ", "%s in %s",
1608                 clazz->descriptor, get_process_name());
1609 
1610             /*
1611              * TODO: It would probably be better to use a new type code here (instead of '<') to
1612              * indicate the failure.  This change would require a matching change in the parser
1613              * and analysis code in frameworks/base/tools/preload.
1614              */
1615             logClassLoad('<', clazz);
1616 #endif
1617             clazz = NULL;
1618             if (gDvm.optimizing) {
1619                 /* happens with "external" libs */
1620                 ALOGV("Link of class '%s' failed", descriptor);
1621             } else {
1622                 ALOGW("Link of class '%s' failed", descriptor);
1623             }
1624             goto bail;
1625         }
1626         dvmObjectNotifyAll(self, (Object*) clazz);
1627         dvmUnlockObject(self, (Object*) clazz);
1628 
1629         /*
1630          * Add class stats to global counters.
1631          *
1632          * TODO: these should probably be atomic ops.
1633          */
1634         gDvm.numLoadedClasses++;
1635         gDvm.numDeclaredMethods +=
1636             clazz->virtualMethodCount + clazz->directMethodCount;
1637         gDvm.numDeclaredInstFields += clazz->ifieldCount;
1638         gDvm.numDeclaredStaticFields += clazz->sfieldCount;
1639 
1640         /*
1641          * Cache pointers to basic classes.  We want to use these in
1642          * various places, and it's easiest to initialize them on first
1643          * use rather than trying to force them to initialize (startup
1644          * ordering makes it weird).
1645          */
1646         if (gDvm.classJavaLangObject == NULL &&
1647             strcmp(descriptor, "Ljava/lang/Object;") == 0)
1648         {
1649             /* It should be impossible to get here with anything
1650              * but the bootclasspath loader.
1651              */
1652             assert(loader == NULL);
1653             gDvm.classJavaLangObject = clazz;
1654         }
1655 
1656 #if LOG_CLASS_LOADING
1657         logClassLoad('<', clazz);
1658 #endif
1659 
1660     } else {
1661 got_class:
1662         if (!dvmIsClassLinked(clazz) && clazz->status != CLASS_ERROR) {
1663             /*
1664              * We can race with other threads for class linking.  We should
1665              * never get here recursively; doing so indicates that two
1666              * classes have circular dependencies.
1667              *
1668              * One exception: we force discovery of java.lang.Class in
1669              * dvmLinkClass(), and Class has Object as its superclass.  So
1670              * if the first thing we ever load is Object, we will init
1671              * Object->Class->Object.  The easiest way to avoid this is to
1672              * ensure that Object is never the first thing we look up, so
1673              * we get Foo->Class->Object instead.
1674              */
1675             dvmLockObject(self, (Object*) clazz);
1676             if (!dvmIsClassLinked(clazz) &&
1677                 clazz->initThreadId == self->threadId)
1678             {
1679                 ALOGW("Recursive link on class %s", clazz->descriptor);
1680                 dvmUnlockObject(self, (Object*) clazz);
1681                 dvmThrowClassCircularityError(clazz->descriptor);
1682                 clazz = NULL;
1683                 goto bail;
1684             }
1685             //ALOGI("WAITING  for '%s' (owner=%d)",
1686             //    clazz->descriptor, clazz->initThreadId);
1687             while (!dvmIsClassLinked(clazz) && clazz->status != CLASS_ERROR) {
1688                 dvmObjectWait(self, (Object*) clazz, 0, 0, false);
1689             }
1690             dvmUnlockObject(self, (Object*) clazz);
1691         }
1692         if (clazz->status == CLASS_ERROR) {
1693             /*
1694              * Somebody else tried to load this and failed.  We need to raise
1695              * an exception and report failure.
1696              */
1697             throwEarlierClassFailure(clazz);
1698             clazz = NULL;
1699             goto bail;
1700         }
1701     }
1702 
1703     /* check some invariants */
1704     assert(dvmIsClassLinked(clazz));
1705     assert(gDvm.classJavaLangClass != NULL);
1706     assert(clazz->clazz == gDvm.classJavaLangClass);
1707     assert(dvmIsClassObject(clazz));
1708     assert(clazz == gDvm.classJavaLangObject || clazz->super != NULL);
1709     if (!dvmIsInterfaceClass(clazz)) {
1710         //ALOGI("class=%s vtableCount=%d, virtualMeth=%d",
1711         //    clazz->descriptor, clazz->vtableCount,
1712         //    clazz->virtualMethodCount);
1713         assert(clazz->vtableCount >= clazz->virtualMethodCount);
1714     }
1715 
1716 bail:
1717     if (profilerNotified)
1718         dvmMethodTraceClassPrepEnd();
1719     assert(clazz != NULL || dvmCheckException(self));
1720     return clazz;
1721 }
1722 
1723 /*
1724  * Helper for loadClassFromDex, which takes a DexClassDataHeader and
1725  * encoded data pointer in addition to the other arguments.
1726  */
loadClassFromDex0(DvmDex * pDvmDex,const DexClassDef * pClassDef,const DexClassDataHeader * pHeader,const u1 * pEncodedData,Object * classLoader)1727 static ClassObject* loadClassFromDex0(DvmDex* pDvmDex,
1728     const DexClassDef* pClassDef, const DexClassDataHeader* pHeader,
1729     const u1* pEncodedData, Object* classLoader)
1730 {
1731     ClassObject* newClass = NULL;
1732     const DexFile* pDexFile;
1733     const char* descriptor;
1734     int i;
1735 
1736     pDexFile = pDvmDex->pDexFile;
1737     descriptor = dexGetClassDescriptor(pDexFile, pClassDef);
1738 
1739     /*
1740      * Make sure the aren't any "bonus" flags set, since we use them for
1741      * runtime state.
1742      */
1743     /* bits we can reasonably expect to see set in a DEX access flags field */
1744     const uint32_t EXPECTED_FILE_FLAGS = (ACC_CLASS_MASK | CLASS_ISPREVERIFIED |
1745                                           CLASS_ISOPTIMIZED);
1746     if ((pClassDef->accessFlags & ~EXPECTED_FILE_FLAGS) != 0) {
1747         ALOGW("Invalid file flags in class %s: %04x",
1748             descriptor, pClassDef->accessFlags);
1749         return NULL;
1750     }
1751 
1752     /*
1753      * Allocate storage for the class object on the GC heap, so that other
1754      * objects can have references to it.  We bypass the usual mechanism
1755      * (allocObject), because we don't have all the bits and pieces yet.
1756      *
1757      * Note that we assume that java.lang.Class does not override
1758      * finalize().
1759      */
1760     /* TODO: Can there be fewer special checks in the usual path? */
1761     assert(descriptor != NULL);
1762     if (classLoader == NULL &&
1763         strcmp(descriptor, "Ljava/lang/Class;") == 0) {
1764         assert(gDvm.classJavaLangClass != NULL);
1765         newClass = gDvm.classJavaLangClass;
1766     } else {
1767         size_t size = classObjectSize(pHeader->staticFieldsSize);
1768         newClass = (ClassObject*) dvmMalloc(size, ALLOC_NON_MOVING);
1769     }
1770     if (newClass == NULL)
1771         return NULL;
1772 
1773     DVM_OBJECT_INIT(newClass, gDvm.classJavaLangClass);
1774     dvmSetClassSerialNumber(newClass);
1775     newClass->descriptor = descriptor;
1776     assert(newClass->descriptorAlloc == NULL);
1777     SET_CLASS_FLAG(newClass, pClassDef->accessFlags);
1778     dvmSetFieldObject((Object *)newClass,
1779                       OFFSETOF_MEMBER(ClassObject, classLoader),
1780                       (Object *)classLoader);
1781     newClass->pDvmDex = pDvmDex;
1782     newClass->primitiveType = PRIM_NOT;
1783     newClass->status = CLASS_IDX;
1784 
1785     /*
1786      * Stuff the superclass index into the object pointer field.  The linker
1787      * pulls it out and replaces it with a resolved ClassObject pointer.
1788      * I'm doing it this way (rather than having a dedicated superclassIdx
1789      * field) to save a few bytes of overhead per class.
1790      *
1791      * newClass->super is not traversed or freed by dvmFreeClassInnards, so
1792      * this is safe.
1793      */
1794     assert(sizeof(u4) == sizeof(ClassObject*)); /* 32-bit check */
1795     newClass->super = (ClassObject*) pClassDef->superclassIdx;
1796 
1797     /*
1798      * Stuff class reference indices into the pointer fields.
1799      *
1800      * The elements of newClass->interfaces are not traversed or freed by
1801      * dvmFreeClassInnards, so this is GC-safe.
1802      */
1803     const DexTypeList* pInterfacesList;
1804     pInterfacesList = dexGetInterfacesList(pDexFile, pClassDef);
1805     if (pInterfacesList != NULL) {
1806         newClass->interfaceCount = pInterfacesList->size;
1807         newClass->interfaces = (ClassObject**) dvmLinearAlloc(classLoader,
1808                 newClass->interfaceCount * sizeof(ClassObject*));
1809 
1810         for (i = 0; i < newClass->interfaceCount; i++) {
1811             const DexTypeItem* pType = dexGetTypeItem(pInterfacesList, i);
1812             newClass->interfaces[i] = (ClassObject*)(u4) pType->typeIdx;
1813         }
1814         dvmLinearReadOnly(classLoader, newClass->interfaces);
1815     }
1816 
1817     /* load field definitions */
1818 
1819     /*
1820      * Over-allocate the class object and append static field info
1821      * onto the end.  It's fixed-size and known at alloc time.  This
1822      * seems to increase zygote sharing.  Heap compaction will have to
1823      * be careful if it ever tries to move ClassObject instances,
1824      * because we pass Field pointers around internally. But at least
1825      * now these Field pointers are in the object heap.
1826      */
1827 
1828     if (pHeader->staticFieldsSize != 0) {
1829         /* static fields stay on system heap; field data isn't "write once" */
1830         int count = (int) pHeader->staticFieldsSize;
1831         u4 lastIndex = 0;
1832         DexField field;
1833 
1834         newClass->sfieldCount = count;
1835         for (i = 0; i < count; i++) {
1836             dexReadClassDataField(&pEncodedData, &field, &lastIndex);
1837             loadSFieldFromDex(newClass, &field, &newClass->sfields[i]);
1838         }
1839     }
1840 
1841     if (pHeader->instanceFieldsSize != 0) {
1842         int count = (int) pHeader->instanceFieldsSize;
1843         u4 lastIndex = 0;
1844         DexField field;
1845 
1846         newClass->ifieldCount = count;
1847         newClass->ifields = (InstField*) dvmLinearAlloc(classLoader,
1848                 count * sizeof(InstField));
1849         for (i = 0; i < count; i++) {
1850             dexReadClassDataField(&pEncodedData, &field, &lastIndex);
1851             loadIFieldFromDex(newClass, &field, &newClass->ifields[i]);
1852         }
1853         dvmLinearReadOnly(classLoader, newClass->ifields);
1854     }
1855 
1856     /*
1857      * Load method definitions.  We do this in two batches, direct then
1858      * virtual.
1859      *
1860      * If register maps have already been generated for this class, and
1861      * precise GC is enabled, we pull out pointers to them.  We know that
1862      * they were streamed to the DEX file in the same order in which the
1863      * methods appear.
1864      *
1865      * If the class wasn't pre-verified, the maps will be generated when
1866      * the class is verified during class initialization.
1867      */
1868     u4 classDefIdx = dexGetIndexForClassDef(pDexFile, pClassDef);
1869     const void* classMapData;
1870     u4 numMethods;
1871 
1872     if (gDvm.preciseGc) {
1873         classMapData =
1874             dvmRegisterMapGetClassData(pDexFile, classDefIdx, &numMethods);
1875 
1876         /* sanity check */
1877         if (classMapData != NULL &&
1878             pHeader->directMethodsSize + pHeader->virtualMethodsSize != numMethods)
1879         {
1880             ALOGE("ERROR: in %s, direct=%d virtual=%d, maps have %d",
1881                 newClass->descriptor, pHeader->directMethodsSize,
1882                 pHeader->virtualMethodsSize, numMethods);
1883             assert(false);
1884             classMapData = NULL;        /* abandon */
1885         }
1886     } else {
1887         classMapData = NULL;
1888     }
1889 
1890     if (pHeader->directMethodsSize != 0) {
1891         int count = (int) pHeader->directMethodsSize;
1892         u4 lastIndex = 0;
1893         DexMethod method;
1894 
1895         newClass->directMethodCount = count;
1896         newClass->directMethods = (Method*) dvmLinearAlloc(classLoader,
1897                 count * sizeof(Method));
1898         for (i = 0; i < count; i++) {
1899             dexReadClassDataMethod(&pEncodedData, &method, &lastIndex);
1900             loadMethodFromDex(newClass, &method, &newClass->directMethods[i]);
1901             if (classMapData != NULL) {
1902                 const RegisterMap* pMap = dvmRegisterMapGetNext(&classMapData);
1903                 if (dvmRegisterMapGetFormat(pMap) != kRegMapFormatNone) {
1904                     newClass->directMethods[i].registerMap = pMap;
1905                     /* TODO: add rigorous checks */
1906                     assert((newClass->directMethods[i].registersSize+7) / 8 ==
1907                         newClass->directMethods[i].registerMap->regWidth);
1908                 }
1909             }
1910         }
1911         dvmLinearReadOnly(classLoader, newClass->directMethods);
1912     }
1913 
1914     if (pHeader->virtualMethodsSize != 0) {
1915         int count = (int) pHeader->virtualMethodsSize;
1916         u4 lastIndex = 0;
1917         DexMethod method;
1918 
1919         newClass->virtualMethodCount = count;
1920         newClass->virtualMethods = (Method*) dvmLinearAlloc(classLoader,
1921                 count * sizeof(Method));
1922         for (i = 0; i < count; i++) {
1923             dexReadClassDataMethod(&pEncodedData, &method, &lastIndex);
1924             loadMethodFromDex(newClass, &method, &newClass->virtualMethods[i]);
1925             if (classMapData != NULL) {
1926                 const RegisterMap* pMap = dvmRegisterMapGetNext(&classMapData);
1927                 if (dvmRegisterMapGetFormat(pMap) != kRegMapFormatNone) {
1928                     newClass->virtualMethods[i].registerMap = pMap;
1929                     /* TODO: add rigorous checks */
1930                     assert((newClass->virtualMethods[i].registersSize+7) / 8 ==
1931                         newClass->virtualMethods[i].registerMap->regWidth);
1932                 }
1933             }
1934         }
1935         dvmLinearReadOnly(classLoader, newClass->virtualMethods);
1936     }
1937 
1938     newClass->sourceFile = dexGetSourceFile(pDexFile, pClassDef);
1939 
1940     /* caller must call dvmReleaseTrackedAlloc */
1941     return newClass;
1942 }
1943 
1944 /*
1945  * Try to load the indicated class from the specified DEX file.
1946  *
1947  * This is effectively loadClass()+defineClass() for a DexClassDef.  The
1948  * loading was largely done when we crunched through the DEX.
1949  *
1950  * Returns NULL on failure.  If we locate the class but encounter an error
1951  * while processing it, an appropriate exception is thrown.
1952  */
loadClassFromDex(DvmDex * pDvmDex,const DexClassDef * pClassDef,Object * classLoader)1953 static ClassObject* loadClassFromDex(DvmDex* pDvmDex,
1954     const DexClassDef* pClassDef, Object* classLoader)
1955 {
1956     ClassObject* result;
1957     DexClassDataHeader header;
1958     const u1* pEncodedData;
1959     const DexFile* pDexFile;
1960 
1961     assert((pDvmDex != NULL) && (pClassDef != NULL));
1962     pDexFile = pDvmDex->pDexFile;
1963 
1964     if (gDvm.verboseClass) {
1965         ALOGV("CLASS: loading '%s'...",
1966             dexGetClassDescriptor(pDexFile, pClassDef));
1967     }
1968 
1969     pEncodedData = dexGetClassData(pDexFile, pClassDef);
1970 
1971     if (pEncodedData != NULL) {
1972         dexReadClassDataHeader(&pEncodedData, &header);
1973     } else {
1974         // Provide an all-zeroes header for the rest of the loading.
1975         memset(&header, 0, sizeof(header));
1976     }
1977 
1978     result = loadClassFromDex0(pDvmDex, pClassDef, &header, pEncodedData,
1979             classLoader);
1980 
1981     if (gDvm.verboseClass && (result != NULL)) {
1982         ALOGI("[Loaded %s from DEX %p (cl=%p)]",
1983             result->descriptor, pDvmDex, classLoader);
1984     }
1985 
1986     return result;
1987 }
1988 
1989 /*
1990  * Free anything in a ClassObject that was allocated on the system heap.
1991  *
1992  * The ClassObject itself is allocated on the GC heap, so we leave it for
1993  * the garbage collector.
1994  *
1995  * NOTE: this may be called with a partially-constructed object.
1996  * NOTE: there is no particular ordering imposed, so don't go poking at
1997  * superclasses.
1998  */
dvmFreeClassInnards(ClassObject * clazz)1999 void dvmFreeClassInnards(ClassObject* clazz)
2000 {
2001     void *tp;
2002     int i;
2003 
2004     if (clazz == NULL)
2005         return;
2006 
2007     assert(clazz->clazz == gDvm.classJavaLangClass);
2008     assert(dvmIsClassObject(clazz));
2009 
2010     /* Guarantee that dvmFreeClassInnards can be called on a given
2011      * class multiple times by clearing things out as we free them.
2012      * We don't make any attempt at real atomicity here; higher
2013      * levels need to make sure that no two threads can free the
2014      * same ClassObject at the same time.
2015      *
2016      * TODO: maybe just make it so the GC will never free the
2017      * innards of an already-freed class.
2018      *
2019      * TODO: this #define isn't MT-safe -- the compiler could rearrange it.
2020      */
2021 #define NULL_AND_FREE(p) \
2022     do { \
2023         if ((p) != NULL) { \
2024             tp = (p); \
2025             (p) = NULL; \
2026             free(tp); \
2027         } \
2028     } while (0)
2029 #define NULL_AND_LINEAR_FREE(p) \
2030     do { \
2031         if ((p) != NULL) { \
2032             tp = (p); \
2033             (p) = NULL; \
2034             dvmLinearFree(clazz->classLoader, tp); \
2035         } \
2036     } while (0)
2037 
2038     /* arrays just point at Object's vtable; don't free vtable in this case.
2039      */
2040     clazz->vtableCount = -1;
2041     if (clazz->vtable == gDvm.classJavaLangObject->vtable) {
2042         clazz->vtable = NULL;
2043     } else {
2044         NULL_AND_LINEAR_FREE(clazz->vtable);
2045     }
2046 
2047     clazz->descriptor = NULL;
2048     NULL_AND_FREE(clazz->descriptorAlloc);
2049 
2050     if (clazz->directMethods != NULL) {
2051         Method *directMethods = clazz->directMethods;
2052         int directMethodCount = clazz->directMethodCount;
2053         clazz->directMethods = NULL;
2054         clazz->directMethodCount = -1;
2055         dvmLinearReadWrite(clazz->classLoader, directMethods);
2056         for (i = 0; i < directMethodCount; i++) {
2057             freeMethodInnards(&directMethods[i]);
2058         }
2059         dvmLinearReadOnly(clazz->classLoader, directMethods);
2060         dvmLinearFree(clazz->classLoader, directMethods);
2061     }
2062     if (clazz->virtualMethods != NULL) {
2063         Method *virtualMethods = clazz->virtualMethods;
2064         int virtualMethodCount = clazz->virtualMethodCount;
2065         clazz->virtualMethodCount = -1;
2066         clazz->virtualMethods = NULL;
2067         dvmLinearReadWrite(clazz->classLoader, virtualMethods);
2068         for (i = 0; i < virtualMethodCount; i++) {
2069             freeMethodInnards(&virtualMethods[i]);
2070         }
2071         dvmLinearReadOnly(clazz->classLoader, virtualMethods);
2072         dvmLinearFree(clazz->classLoader, virtualMethods);
2073     }
2074 
2075     InitiatingLoaderList *loaderList = dvmGetInitiatingLoaderList(clazz);
2076     loaderList->initiatingLoaderCount = -1;
2077     NULL_AND_FREE(loaderList->initiatingLoaders);
2078 
2079     clazz->interfaceCount = -1;
2080     NULL_AND_LINEAR_FREE(clazz->interfaces);
2081 
2082     clazz->iftableCount = -1;
2083     NULL_AND_LINEAR_FREE(clazz->iftable);
2084 
2085     clazz->ifviPoolCount = -1;
2086     NULL_AND_LINEAR_FREE(clazz->ifviPool);
2087 
2088     clazz->sfieldCount = -1;
2089     /* The sfields are attached to the ClassObject, and will be freed
2090      * with it. */
2091 
2092     clazz->ifieldCount = -1;
2093     NULL_AND_LINEAR_FREE(clazz->ifields);
2094 
2095 #undef NULL_AND_FREE
2096 #undef NULL_AND_LINEAR_FREE
2097 }
2098 
2099 /*
2100  * Free anything in a Method that was allocated on the system heap.
2101  *
2102  * The containing class is largely torn down by this point.
2103  */
freeMethodInnards(Method * meth)2104 static void freeMethodInnards(Method* meth)
2105 {
2106 #if 0
2107     free(meth->exceptions);
2108     free(meth->lines);
2109     free(meth->locals);
2110 #endif
2111 
2112     /*
2113      * Some register maps are allocated on the heap, either because of late
2114      * verification or because we're caching an uncompressed form.
2115      */
2116     const RegisterMap* pMap = meth->registerMap;
2117     if (pMap != NULL && dvmRegisterMapGetOnHeap(pMap)) {
2118         dvmFreeRegisterMap((RegisterMap*) pMap);
2119         meth->registerMap = NULL;
2120     }
2121 
2122     /*
2123      * We may have copied the instructions.
2124      */
2125     if (IS_METHOD_FLAG_SET(meth, METHOD_ISWRITABLE)) {
2126         DexCode* methodDexCode = (DexCode*) dvmGetMethodCode(meth);
2127         dvmLinearFree(meth->clazz->classLoader, methodDexCode);
2128     }
2129 }
2130 
2131 /*
2132  * Clone a Method, making new copies of anything that will be freed up
2133  * by freeMethodInnards().  This is used for "miranda" methods.
2134  */
cloneMethod(Method * dst,const Method * src)2135 static void cloneMethod(Method* dst, const Method* src)
2136 {
2137     if (src->registerMap != NULL) {
2138         ALOGE("GLITCH: only expected abstract methods here");
2139         ALOGE("        cloning %s.%s", src->clazz->descriptor, src->name);
2140         dvmAbort();
2141     }
2142     memcpy(dst, src, sizeof(Method));
2143 }
2144 
2145 /*
2146  * Pull the interesting pieces out of a DexMethod.
2147  *
2148  * The DEX file isn't going anywhere, so we don't need to make copies of
2149  * the code area.
2150  */
loadMethodFromDex(ClassObject * clazz,const DexMethod * pDexMethod,Method * meth)2151 static void loadMethodFromDex(ClassObject* clazz, const DexMethod* pDexMethod,
2152     Method* meth)
2153 {
2154     DexFile* pDexFile = clazz->pDvmDex->pDexFile;
2155     const DexMethodId* pMethodId;
2156     const DexCode* pDexCode;
2157 
2158     pMethodId = dexGetMethodId(pDexFile, pDexMethod->methodIdx);
2159 
2160     meth->name = dexStringById(pDexFile, pMethodId->nameIdx);
2161     dexProtoSetFromMethodId(&meth->prototype, pDexFile, pMethodId);
2162     meth->shorty = dexProtoGetShorty(&meth->prototype);
2163     meth->accessFlags = pDexMethod->accessFlags;
2164     meth->clazz = clazz;
2165     meth->jniArgInfo = 0;
2166 
2167     if (dvmCompareNameDescriptorAndMethod("finalize", "()V", meth) == 0) {
2168         /*
2169          * The Enum class declares a "final" finalize() method to
2170          * prevent subclasses from introducing a finalizer.  We don't
2171          * want to set the finalizable flag for Enum or its subclasses,
2172          * so we check for it here.
2173          *
2174          * We also want to avoid setting it on Object, but it's easier
2175          * to just strip that out later.
2176          */
2177         if (clazz->classLoader != NULL ||
2178             strcmp(clazz->descriptor, "Ljava/lang/Enum;") != 0)
2179         {
2180             SET_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE);
2181         }
2182     }
2183 
2184     pDexCode = dexGetCode(pDexFile, pDexMethod);
2185     if (pDexCode != NULL) {
2186         /* integer constants, copy over for faster access */
2187         meth->registersSize = pDexCode->registersSize;
2188         meth->insSize = pDexCode->insSize;
2189         meth->outsSize = pDexCode->outsSize;
2190 
2191         /* pointer to code area */
2192         meth->insns = pDexCode->insns;
2193     } else {
2194         /*
2195          * We don't have a DexCode block, but we still want to know how
2196          * much space is needed for the arguments (so we don't have to
2197          * compute it later).  We also take this opportunity to compute
2198          * JNI argument info.
2199          *
2200          * We do this for abstract methods as well, because we want to
2201          * be able to substitute our exception-throwing "stub" in.
2202          */
2203         int argsSize = dvmComputeMethodArgsSize(meth);
2204         if (!dvmIsStaticMethod(meth))
2205             argsSize++;
2206         meth->registersSize = meth->insSize = argsSize;
2207         assert(meth->outsSize == 0);
2208         assert(meth->insns == NULL);
2209 
2210         if (dvmIsNativeMethod(meth)) {
2211             meth->nativeFunc = dvmResolveNativeMethod;
2212             meth->jniArgInfo = computeJniArgInfo(&meth->prototype);
2213         }
2214     }
2215 }
2216 
2217 #if 0       /* replaced with private/read-write mapping */
2218 /*
2219  * We usually map bytecode directly out of the DEX file, which is mapped
2220  * shared read-only.  If we want to be able to modify it, we have to make
2221  * a new copy.
2222  *
2223  * Once copied, the code will be in the LinearAlloc region, which may be
2224  * marked read-only.
2225  *
2226  * The bytecode instructions are embedded inside a DexCode structure, so we
2227  * need to copy all of that.  (The dvmGetMethodCode function backs up the
2228  * instruction pointer to find the start of the DexCode.)
2229  */
2230 void dvmMakeCodeReadWrite(Method* meth)
2231 {
2232     DexCode* methodDexCode = (DexCode*) dvmGetMethodCode(meth);
2233 
2234     if (IS_METHOD_FLAG_SET(meth, METHOD_ISWRITABLE)) {
2235         dvmLinearReadWrite(meth->clazz->classLoader, methodDexCode);
2236         return;
2237     }
2238 
2239     assert(!dvmIsNativeMethod(meth) && !dvmIsAbstractMethod(meth));
2240 
2241     size_t dexCodeSize = dexGetDexCodeSize(methodDexCode);
2242     ALOGD("Making a copy of %s.%s code (%d bytes)",
2243         meth->clazz->descriptor, meth->name, dexCodeSize);
2244 
2245     DexCode* newCode =
2246         (DexCode*) dvmLinearAlloc(meth->clazz->classLoader, dexCodeSize);
2247     memcpy(newCode, methodDexCode, dexCodeSize);
2248 
2249     meth->insns = newCode->insns;
2250     SET_METHOD_FLAG(meth, METHOD_ISWRITABLE);
2251 }
2252 
2253 /*
2254  * Mark the bytecode read-only.
2255  *
2256  * If the contents of the DexCode haven't actually changed, we could revert
2257  * to the original shared page.
2258  */
2259 void dvmMakeCodeReadOnly(Method* meth)
2260 {
2261     DexCode* methodDexCode = (DexCode*) dvmGetMethodCode(meth);
2262     ALOGV("+++ marking %p read-only", methodDexCode);
2263     dvmLinearReadOnly(meth->clazz->classLoader, methodDexCode);
2264 }
2265 #endif
2266 
2267 
2268 /*
2269  * jniArgInfo (32-bit int) layout:
2270  *   SRRRHHHH HHHHHHHH HHHHHHHH HHHHHHHH
2271  *
2272  *   S - if set, do things the hard way (scan the signature)
2273  *   R - return-type enumeration
2274  *   H - target-specific hints
2275  *
2276  * This info is used at invocation time by dvmPlatformInvoke.  In most
2277  * cases, the target-specific hints allow dvmPlatformInvoke to avoid
2278  * having to fully parse the signature.
2279  *
2280  * The return-type bits are always set, even if target-specific hint bits
2281  * are unavailable.
2282  */
computeJniArgInfo(const DexProto * proto)2283 static int computeJniArgInfo(const DexProto* proto)
2284 {
2285     const char* sig = dexProtoGetShorty(proto);
2286     int returnType, jniArgInfo;
2287     u4 hints;
2288 
2289     /* The first shorty character is the return type. */
2290     switch (*(sig++)) {
2291     case 'V':
2292         returnType = DALVIK_JNI_RETURN_VOID;
2293         break;
2294     case 'F':
2295         returnType = DALVIK_JNI_RETURN_FLOAT;
2296         break;
2297     case 'D':
2298         returnType = DALVIK_JNI_RETURN_DOUBLE;
2299         break;
2300     case 'J':
2301         returnType = DALVIK_JNI_RETURN_S8;
2302         break;
2303     case 'Z':
2304     case 'B':
2305         returnType = DALVIK_JNI_RETURN_S1;
2306         break;
2307     case 'C':
2308         returnType = DALVIK_JNI_RETURN_U2;
2309         break;
2310     case 'S':
2311         returnType = DALVIK_JNI_RETURN_S2;
2312         break;
2313     default:
2314         returnType = DALVIK_JNI_RETURN_S4;
2315         break;
2316     }
2317 
2318     jniArgInfo = returnType << DALVIK_JNI_RETURN_SHIFT;
2319 
2320     hints = dvmPlatformInvokeHints(proto);
2321 
2322     if (hints & DALVIK_JNI_NO_ARG_INFO) {
2323         jniArgInfo |= DALVIK_JNI_NO_ARG_INFO;
2324     } else {
2325         assert((hints & DALVIK_JNI_RETURN_MASK) == 0);
2326         jniArgInfo |= hints;
2327     }
2328 
2329     return jniArgInfo;
2330 }
2331 
2332 /*
2333  * Load information about a static field.
2334  *
2335  * This also "prepares" static fields by initializing them
2336  * to their "standard default values".
2337  */
loadSFieldFromDex(ClassObject * clazz,const DexField * pDexSField,StaticField * sfield)2338 static void loadSFieldFromDex(ClassObject* clazz,
2339     const DexField* pDexSField, StaticField* sfield)
2340 {
2341     DexFile* pDexFile = clazz->pDvmDex->pDexFile;
2342     const DexFieldId* pFieldId;
2343 
2344     pFieldId = dexGetFieldId(pDexFile, pDexSField->fieldIdx);
2345 
2346     sfield->clazz = clazz;
2347     sfield->name = dexStringById(pDexFile, pFieldId->nameIdx);
2348     sfield->signature = dexStringByTypeIdx(pDexFile, pFieldId->typeIdx);
2349     sfield->accessFlags = pDexSField->accessFlags;
2350 
2351     /* Static object field values are set to "standard default values"
2352      * (null or 0) until the class is initialized.  We delay loading
2353      * constant values from the class until that time.
2354      */
2355     //sfield->value.j = 0;
2356     assert(sfield->value.j == 0LL);     // cleared earlier with calloc
2357 }
2358 
2359 /*
2360  * Load information about an instance field.
2361  */
loadIFieldFromDex(ClassObject * clazz,const DexField * pDexIField,InstField * ifield)2362 static void loadIFieldFromDex(ClassObject* clazz,
2363     const DexField* pDexIField, InstField* ifield)
2364 {
2365     DexFile* pDexFile = clazz->pDvmDex->pDexFile;
2366     const DexFieldId* pFieldId;
2367 
2368     pFieldId = dexGetFieldId(pDexFile, pDexIField->fieldIdx);
2369 
2370     ifield->clazz = clazz;
2371     ifield->name = dexStringById(pDexFile, pFieldId->nameIdx);
2372     ifield->signature = dexStringByTypeIdx(pDexFile, pFieldId->typeIdx);
2373     ifield->accessFlags = pDexIField->accessFlags;
2374 #ifndef NDEBUG
2375     assert(ifield->byteOffset == 0);    // cleared earlier with calloc
2376     ifield->byteOffset = -1;    // make it obvious if we fail to set later
2377 #endif
2378 }
2379 
2380 /*
2381  * Cache java.lang.ref.Reference fields and methods.
2382  */
precacheReferenceOffsets(ClassObject * clazz)2383 static bool precacheReferenceOffsets(ClassObject* clazz)
2384 {
2385     int i;
2386 
2387     /* We trick the GC object scanner by not counting
2388      * java.lang.ref.Reference.referent as an object
2389      * field.  It will get explicitly scanned as part
2390      * of the reference-walking process.
2391      *
2392      * Find the object field named "referent" and put it
2393      * just after the list of object reference fields.
2394      */
2395     dvmLinearReadWrite(clazz->classLoader, clazz->ifields);
2396     for (i = 0; i < clazz->ifieldRefCount; i++) {
2397         InstField *pField = &clazz->ifields[i];
2398         if (strcmp(pField->name, "referent") == 0) {
2399             int targetIndex;
2400 
2401             /* Swap this field with the last object field.
2402              */
2403             targetIndex = clazz->ifieldRefCount - 1;
2404             if (i != targetIndex) {
2405                 InstField *swapField = &clazz->ifields[targetIndex];
2406                 InstField tmpField;
2407                 int tmpByteOffset;
2408 
2409                 /* It's not currently strictly necessary
2410                  * for the fields to be in byteOffset order,
2411                  * but it's more predictable that way.
2412                  */
2413                 tmpByteOffset = swapField->byteOffset;
2414                 swapField->byteOffset = pField->byteOffset;
2415                 pField->byteOffset = tmpByteOffset;
2416 
2417                 tmpField = *swapField;
2418                 *swapField = *pField;
2419                 *pField = tmpField;
2420             }
2421 
2422             /* One fewer object field (wink wink).
2423              */
2424             clazz->ifieldRefCount--;
2425             i--;        /* don't trip "didn't find it" test if field was last */
2426             break;
2427         }
2428     }
2429     dvmLinearReadOnly(clazz->classLoader, clazz->ifields);
2430     if (i == clazz->ifieldRefCount) {
2431         ALOGE("Unable to reorder 'referent' in %s", clazz->descriptor);
2432         return false;
2433     }
2434 
2435     /*
2436      * Now that the above has been done, it is safe to cache
2437      * info about the class.
2438      */
2439     if (!dvmFindReferenceMembers(clazz)) {
2440         ALOGE("Trouble with Reference setup");
2441         return false;
2442     }
2443 
2444     return true;
2445 }
2446 
2447 
2448 /*
2449  * Set the bitmap of reference offsets, refOffsets, from the ifields
2450  * list.
2451  */
computeRefOffsets(ClassObject * clazz)2452 static void computeRefOffsets(ClassObject* clazz)
2453 {
2454     if (clazz->super != NULL) {
2455         clazz->refOffsets = clazz->super->refOffsets;
2456     } else {
2457         clazz->refOffsets = 0;
2458     }
2459     /*
2460      * If our superclass overflowed, we don't stand a chance.
2461      */
2462     if (clazz->refOffsets != CLASS_WALK_SUPER) {
2463         InstField *f;
2464         int i;
2465 
2466         /* All of the fields that contain object references
2467          * are guaranteed to be at the beginning of the ifields list.
2468          */
2469         f = clazz->ifields;
2470         const int ifieldRefCount = clazz->ifieldRefCount;
2471         for (i = 0; i < ifieldRefCount; i++) {
2472           /*
2473            * Note that, per the comment on struct InstField,
2474            * f->byteOffset is the offset from the beginning of
2475            * obj, not the offset into obj->instanceData.
2476            */
2477           assert(f->byteOffset >= (int) CLASS_SMALLEST_OFFSET);
2478           assert((f->byteOffset & (CLASS_OFFSET_ALIGNMENT - 1)) == 0);
2479           if (CLASS_CAN_ENCODE_OFFSET(f->byteOffset)) {
2480               u4 newBit = CLASS_BIT_FROM_OFFSET(f->byteOffset);
2481               assert(newBit != 0);
2482               clazz->refOffsets |= newBit;
2483           } else {
2484               clazz->refOffsets = CLASS_WALK_SUPER;
2485               break;
2486           }
2487           f++;
2488         }
2489     }
2490 }
2491 
2492 
2493 /*
2494  * Link (prepare and resolve).  Verification is deferred until later.
2495  *
2496  * This converts symbolic references into pointers.  It's independent of
2497  * the source file format.
2498  *
2499  * If clazz->status is CLASS_IDX, then clazz->super and interfaces[] are
2500  * holding class reference indices rather than pointers.  The class
2501  * references will be resolved during link.  (This is done when
2502  * loading from DEX to avoid having to create additional storage to
2503  * pass the indices around.)
2504  *
2505  * Returns "false" with an exception pending on failure.
2506  */
dvmLinkClass(ClassObject * clazz)2507 bool dvmLinkClass(ClassObject* clazz)
2508 {
2509     u4 superclassIdx = 0;
2510     u4 *interfaceIdxArray = NULL;
2511     bool okay = false;
2512     int i;
2513 
2514     assert(clazz != NULL);
2515     assert(clazz->descriptor != NULL);
2516     assert(clazz->status == CLASS_IDX || clazz->status == CLASS_LOADED);
2517     if (gDvm.verboseClass)
2518         ALOGV("CLASS: linking '%s'...", clazz->descriptor);
2519 
2520     assert(gDvm.classJavaLangClass != NULL);
2521     assert(clazz->clazz == gDvm.classJavaLangClass);
2522     assert(dvmIsClassObject(clazz));
2523     if (clazz->classLoader == NULL &&
2524         (strcmp(clazz->descriptor, "Ljava/lang/Class;") == 0))
2525     {
2526         if (gDvm.classJavaLangClass->ifieldCount > CLASS_FIELD_SLOTS) {
2527             ALOGE("java.lang.Class has %d instance fields (expected at most %d)",
2528                  gDvm.classJavaLangClass->ifieldCount, CLASS_FIELD_SLOTS);
2529             dvmAbort();
2530         }
2531         if (gDvm.classJavaLangClass->sfieldCount != CLASS_SFIELD_SLOTS) {
2532             ALOGE("java.lang.Class has %d static fields (expected %d)",
2533                  gDvm.classJavaLangClass->sfieldCount, CLASS_SFIELD_SLOTS);
2534             dvmAbort();
2535         }
2536     }
2537 
2538     /* "Resolve" the class.
2539      *
2540      * At this point, clazz's reference fields may contain Dex file
2541      * indices instead of direct object references.  Proxy objects are
2542      * an exception, and may be the only exception.  We need to
2543      * translate those indices into real references, and let the GC
2544      * look inside this ClassObject.
2545      */
2546     if (clazz->status == CLASS_IDX) {
2547         if (clazz->interfaceCount > 0) {
2548             /* Copy u4 DEX idx values out of the ClassObject* array
2549              * where we stashed them.
2550              */
2551             assert(sizeof(*interfaceIdxArray) == sizeof(*clazz->interfaces));
2552             size_t len = clazz->interfaceCount * sizeof(*interfaceIdxArray);
2553             interfaceIdxArray = (u4*)malloc(len);
2554             if (interfaceIdxArray == NULL) {
2555                 ALOGW("Unable to allocate memory to link %s", clazz->descriptor);
2556                 goto bail;
2557             }
2558             memcpy(interfaceIdxArray, clazz->interfaces, len);
2559 
2560             dvmLinearReadWrite(clazz->classLoader, clazz->interfaces);
2561             memset(clazz->interfaces, 0, len);
2562             dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
2563         }
2564 
2565         assert(sizeof(superclassIdx) == sizeof(clazz->super));
2566         superclassIdx = (u4) clazz->super;
2567         clazz->super = NULL;
2568         /* After this line, clazz will be fair game for the GC. The
2569          * superclass and interfaces are all NULL.
2570          */
2571         clazz->status = CLASS_LOADED;
2572 
2573         if (superclassIdx != kDexNoIndex) {
2574             ClassObject* super = dvmResolveClass(clazz, superclassIdx, false);
2575             if (super == NULL) {
2576                 assert(dvmCheckException(dvmThreadSelf()));
2577                 if (gDvm.optimizing) {
2578                     /* happens with "external" libs */
2579                     ALOGV("Unable to resolve superclass of %s (%d)",
2580                          clazz->descriptor, superclassIdx);
2581                 } else {
2582                     ALOGW("Unable to resolve superclass of %s (%d)",
2583                          clazz->descriptor, superclassIdx);
2584                 }
2585                 goto bail;
2586             }
2587             dvmSetFieldObject((Object *)clazz,
2588                               OFFSETOF_MEMBER(ClassObject, super),
2589                               (Object *)super);
2590         }
2591 
2592         if (clazz->interfaceCount > 0) {
2593             /* Resolve the interfaces implemented directly by this class. */
2594             assert(interfaceIdxArray != NULL);
2595             dvmLinearReadWrite(clazz->classLoader, clazz->interfaces);
2596             for (i = 0; i < clazz->interfaceCount; i++) {
2597                 assert(interfaceIdxArray[i] != kDexNoIndex);
2598                 clazz->interfaces[i] =
2599                     dvmResolveClass(clazz, interfaceIdxArray[i], false);
2600                 if (clazz->interfaces[i] == NULL) {
2601                     const DexFile* pDexFile = clazz->pDvmDex->pDexFile;
2602 
2603                     assert(dvmCheckException(dvmThreadSelf()));
2604                     dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
2605 
2606                     const char* classDescriptor;
2607                     classDescriptor =
2608                         dexStringByTypeIdx(pDexFile, interfaceIdxArray[i]);
2609                     if (gDvm.optimizing) {
2610                         /* happens with "external" libs */
2611                         ALOGV("Failed resolving %s interface %d '%s'",
2612                              clazz->descriptor, interfaceIdxArray[i],
2613                              classDescriptor);
2614                     } else {
2615                         ALOGI("Failed resolving %s interface %d '%s'",
2616                              clazz->descriptor, interfaceIdxArray[i],
2617                              classDescriptor);
2618                     }
2619                     goto bail;
2620                 }
2621 
2622                 /* are we allowed to implement this interface? */
2623                 if (!dvmCheckClassAccess(clazz, clazz->interfaces[i])) {
2624                     dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
2625                     ALOGW("Interface '%s' is not accessible to '%s'",
2626                          clazz->interfaces[i]->descriptor, clazz->descriptor);
2627                     dvmThrowIllegalAccessError("interface not accessible");
2628                     goto bail;
2629                 }
2630                 LOGVV("+++  found interface '%s'",
2631                       clazz->interfaces[i]->descriptor);
2632             }
2633             dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
2634         }
2635     }
2636     /*
2637      * There are now Class references visible to the GC in super and
2638      * interfaces.
2639      */
2640 
2641     /*
2642      * All classes have a direct superclass, except for
2643      * java/lang/Object and primitive classes. Primitive classes are
2644      * are created CLASS_INITIALIZED, so won't get here.
2645      */
2646     assert(clazz->primitiveType == PRIM_NOT);
2647     if (strcmp(clazz->descriptor, "Ljava/lang/Object;") == 0) {
2648         if (clazz->super != NULL) {
2649             /* TODO: is this invariant true for all java/lang/Objects,
2650              * regardless of the class loader?  For now, assume it is.
2651              */
2652             dvmThrowClassFormatError("java.lang.Object has a superclass");
2653             goto bail;
2654         }
2655 
2656         /* Don't finalize objects whose classes use the
2657          * default (empty) Object.finalize().
2658          */
2659         CLEAR_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE);
2660     } else {
2661         if (clazz->super == NULL) {
2662             dvmThrowLinkageError("no superclass defined");
2663             goto bail;
2664         }
2665         /* verify */
2666         if (dvmIsFinalClass(clazz->super)) {
2667             ALOGW("Superclass of '%s' is final '%s'",
2668                 clazz->descriptor, clazz->super->descriptor);
2669             dvmThrowIncompatibleClassChangeError("superclass is final");
2670             goto bail;
2671         } else if (dvmIsInterfaceClass(clazz->super)) {
2672             ALOGW("Superclass of '%s' is interface '%s'",
2673                 clazz->descriptor, clazz->super->descriptor);
2674             dvmThrowIncompatibleClassChangeError("superclass is an interface");
2675             goto bail;
2676         } else if (!dvmCheckClassAccess(clazz, clazz->super)) {
2677             ALOGW("Superclass of '%s' (%s) is not accessible",
2678                 clazz->descriptor, clazz->super->descriptor);
2679             dvmThrowIllegalAccessError("superclass not accessible");
2680             goto bail;
2681         }
2682 
2683         /* Inherit finalizability from the superclass.  If this
2684          * class also overrides finalize(), its CLASS_ISFINALIZABLE
2685          * bit will already be set.
2686          */
2687         if (IS_CLASS_FLAG_SET(clazz->super, CLASS_ISFINALIZABLE)) {
2688             SET_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE);
2689         }
2690 
2691         /* See if this class descends from java.lang.Reference
2692          * and set the class flags appropriately.
2693          */
2694         if (IS_CLASS_FLAG_SET(clazz->super, CLASS_ISREFERENCE)) {
2695             u4 superRefFlags;
2696 
2697             /* We've already determined the reference type of this
2698              * inheritance chain.  Inherit reference-ness from the superclass.
2699              */
2700             superRefFlags = GET_CLASS_FLAG_GROUP(clazz->super,
2701                     CLASS_ISREFERENCE |
2702                     CLASS_ISWEAKREFERENCE |
2703                     CLASS_ISFINALIZERREFERENCE |
2704                     CLASS_ISPHANTOMREFERENCE);
2705             SET_CLASS_FLAG(clazz, superRefFlags);
2706         } else if (clazz->classLoader == NULL &&
2707                 clazz->super->classLoader == NULL &&
2708                 strcmp(clazz->super->descriptor,
2709                        "Ljava/lang/ref/Reference;") == 0)
2710         {
2711             u4 refFlags;
2712 
2713             /* This class extends Reference, which means it should
2714              * be one of the magic Soft/Weak/PhantomReference classes.
2715              */
2716             refFlags = CLASS_ISREFERENCE;
2717             if (strcmp(clazz->descriptor,
2718                        "Ljava/lang/ref/SoftReference;") == 0)
2719             {
2720                 /* Only CLASS_ISREFERENCE is set for soft references.
2721                  */
2722             } else if (strcmp(clazz->descriptor,
2723                        "Ljava/lang/ref/WeakReference;") == 0)
2724             {
2725                 refFlags |= CLASS_ISWEAKREFERENCE;
2726             } else if (strcmp(clazz->descriptor,
2727                        "Ljava/lang/ref/FinalizerReference;") == 0)
2728             {
2729                 refFlags |= CLASS_ISFINALIZERREFERENCE;
2730             }  else if (strcmp(clazz->descriptor,
2731                        "Ljava/lang/ref/PhantomReference;") == 0)
2732             {
2733                 refFlags |= CLASS_ISPHANTOMREFERENCE;
2734             } else {
2735                 /* No-one else is allowed to inherit directly
2736                  * from Reference.
2737                  */
2738 //xxx is this the right exception?  better than an assertion.
2739                 dvmThrowLinkageError("illegal inheritance from Reference");
2740                 goto bail;
2741             }
2742 
2743             /* The class should not have any reference bits set yet.
2744              */
2745             assert(GET_CLASS_FLAG_GROUP(clazz,
2746                     CLASS_ISREFERENCE |
2747                     CLASS_ISWEAKREFERENCE |
2748                     CLASS_ISFINALIZERREFERENCE |
2749                     CLASS_ISPHANTOMREFERENCE) == 0);
2750 
2751             SET_CLASS_FLAG(clazz, refFlags);
2752         }
2753     }
2754 
2755     /*
2756      * Populate vtable.
2757      */
2758     if (dvmIsInterfaceClass(clazz)) {
2759         /* no vtable; just set the method indices */
2760         int count = clazz->virtualMethodCount;
2761 
2762         if (count != (u2) count) {
2763             ALOGE("Too many methods (%d) in interface '%s'", count,
2764                  clazz->descriptor);
2765             goto bail;
2766         }
2767 
2768         dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
2769 
2770         for (i = 0; i < count; i++)
2771             clazz->virtualMethods[i].methodIndex = (u2) i;
2772 
2773         dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
2774     } else {
2775         if (!createVtable(clazz)) {
2776             ALOGW("failed creating vtable");
2777             goto bail;
2778         }
2779     }
2780 
2781     /*
2782      * Populate interface method tables.  Can alter the vtable.
2783      */
2784     if (!createIftable(clazz))
2785         goto bail;
2786 
2787     /*
2788      * Insert special-purpose "stub" method implementations.
2789      */
2790     if (!insertMethodStubs(clazz))
2791         goto bail;
2792 
2793     /*
2794      * Compute instance field offsets and, hence, the size of the object.
2795      */
2796     if (!computeFieldOffsets(clazz))
2797         goto bail;
2798 
2799     /*
2800      * Cache field and method info for the class Reference (as loaded
2801      * by the boot classloader). This has to happen after the call to
2802      * computeFieldOffsets().
2803      */
2804     if ((clazz->classLoader == NULL)
2805             && (strcmp(clazz->descriptor, "Ljava/lang/ref/Reference;") == 0)) {
2806         if (!precacheReferenceOffsets(clazz)) {
2807             ALOGE("failed pre-caching Reference offsets");
2808             dvmThrowInternalError(NULL);
2809             goto bail;
2810         }
2811     }
2812 
2813     /*
2814      * Compact the offsets the GC has to examine into a bitmap, if
2815      * possible.  (This has to happen after Reference.referent is
2816      * massaged in precacheReferenceOffsets.)
2817      */
2818     computeRefOffsets(clazz);
2819 
2820     /*
2821      * Done!
2822      */
2823     if (IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED))
2824         clazz->status = CLASS_VERIFIED;
2825     else
2826         clazz->status = CLASS_RESOLVED;
2827     okay = true;
2828     if (gDvm.verboseClass)
2829         ALOGV("CLASS: linked '%s'", clazz->descriptor);
2830 
2831     /*
2832      * We send CLASS_PREPARE events to the debugger from here.  The
2833      * definition of "preparation" is creating the static fields for a
2834      * class and initializing them to the standard default values, but not
2835      * executing any code (that comes later, during "initialization").
2836      *
2837      * We did the static prep in loadSFieldFromDex() while loading the class.
2838      *
2839      * The class has been prepared and resolved but possibly not yet verified
2840      * at this point.
2841      */
2842     if (gDvm.debuggerActive) {
2843         dvmDbgPostClassPrepare(clazz);
2844     }
2845 
2846 bail:
2847     if (!okay) {
2848         clazz->status = CLASS_ERROR;
2849         if (!dvmCheckException(dvmThreadSelf())) {
2850             dvmThrowVirtualMachineError(NULL);
2851         }
2852     }
2853     if (interfaceIdxArray != NULL) {
2854         free(interfaceIdxArray);
2855     }
2856 
2857     return okay;
2858 }
2859 
2860 /*
2861  * Create the virtual method table.
2862  *
2863  * The top part of the table is a copy of the table from our superclass,
2864  * with our local methods overriding theirs.  The bottom part of the table
2865  * has any new methods we defined.
2866  */
createVtable(ClassObject * clazz)2867 static bool createVtable(ClassObject* clazz)
2868 {
2869     bool result = false;
2870     int maxCount;
2871     int i;
2872 
2873     if (clazz->super != NULL) {
2874         //ALOGI("SUPER METHODS %d %s->%s", clazz->super->vtableCount,
2875         //    clazz->descriptor, clazz->super->descriptor);
2876     }
2877 
2878     /* the virtual methods we define, plus the superclass vtable size */
2879     maxCount = clazz->virtualMethodCount;
2880     if (clazz->super != NULL) {
2881         maxCount += clazz->super->vtableCount;
2882     } else {
2883         /* TODO: is this invariant true for all java/lang/Objects,
2884          * regardless of the class loader?  For now, assume it is.
2885          */
2886         assert(strcmp(clazz->descriptor, "Ljava/lang/Object;") == 0);
2887     }
2888     //ALOGD("+++ max vmethods for '%s' is %d", clazz->descriptor, maxCount);
2889 
2890     /*
2891      * Over-allocate the table, then realloc it down if necessary.  So
2892      * long as we don't allocate anything in between we won't cause
2893      * fragmentation, and reducing the size should be unlikely to cause
2894      * a buffer copy.
2895      */
2896     dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
2897     clazz->vtable = (Method**) dvmLinearAlloc(clazz->classLoader,
2898                         sizeof(Method*) * maxCount);
2899     if (clazz->vtable == NULL)
2900         goto bail;
2901 
2902     if (clazz->super != NULL) {
2903         int actualCount;
2904 
2905         memcpy(clazz->vtable, clazz->super->vtable,
2906             sizeof(*(clazz->vtable)) * clazz->super->vtableCount);
2907         actualCount = clazz->super->vtableCount;
2908 
2909         /*
2910          * See if any of our virtual methods override the superclass.
2911          */
2912         for (i = 0; i < clazz->virtualMethodCount; i++) {
2913             Method* localMeth = &clazz->virtualMethods[i];
2914             int si;
2915 
2916             for (si = 0; si < clazz->super->vtableCount; si++) {
2917                 Method* superMeth = clazz->vtable[si];
2918 
2919                 if (dvmCompareMethodNamesAndProtos(localMeth, superMeth) == 0) {
2920                     // We should have an access check here, but some apps rely on us not
2921                     // checking access: http://b/7301030
2922                     bool isAccessible = dvmCheckMethodAccess(clazz, superMeth);
2923                     if (dvmIsFinalMethod(superMeth)) {
2924                         ALOGE("Method %s.%s overrides final %s.%s",
2925                               localMeth->clazz->descriptor, localMeth->name,
2926                               superMeth->clazz->descriptor, superMeth->name);
2927                         goto bail;
2928                     }
2929 
2930                     // Warn if we just spotted code relying on this bug...
2931                     if (!isAccessible) {
2932                         ALOGW("method %s.%s incorrectly overrides "
2933                               "package-private method with same name in %s",
2934                               localMeth->clazz->descriptor, localMeth->name,
2935                               superMeth->clazz->descriptor);
2936                     }
2937 
2938                     clazz->vtable[si] = localMeth;
2939                     localMeth->methodIndex = (u2) si;
2940                     //ALOGV("+++   override %s.%s (slot %d)",
2941                     //    clazz->descriptor, localMeth->name, si);
2942                     break;
2943                 }
2944             }
2945 
2946             if (si == clazz->super->vtableCount) {
2947                 /* not an override, add to end */
2948                 clazz->vtable[actualCount] = localMeth;
2949                 localMeth->methodIndex = (u2) actualCount;
2950                 actualCount++;
2951 
2952                 //ALOGV("+++   add method %s.%s",
2953                 //    clazz->descriptor, localMeth->name);
2954             }
2955         }
2956 
2957         if (actualCount != (u2) actualCount) {
2958             ALOGE("Too many methods (%d) in class '%s'", actualCount,
2959                  clazz->descriptor);
2960             goto bail;
2961         }
2962 
2963         assert(actualCount <= maxCount);
2964 
2965         if (actualCount < maxCount) {
2966             assert(clazz->vtable != NULL);
2967             dvmLinearReadOnly(clazz->classLoader, clazz->vtable);
2968             clazz->vtable = (Method **)dvmLinearRealloc(clazz->classLoader,
2969                 clazz->vtable, sizeof(*(clazz->vtable)) * actualCount);
2970             if (clazz->vtable == NULL) {
2971                 ALOGE("vtable realloc failed");
2972                 goto bail;
2973             } else {
2974                 LOGVV("+++  reduced vtable from %d to %d",
2975                     maxCount, actualCount);
2976             }
2977         }
2978 
2979         clazz->vtableCount = actualCount;
2980     } else {
2981         /* java/lang/Object case */
2982         int count = clazz->virtualMethodCount;
2983         if (count != (u2) count) {
2984             ALOGE("Too many methods (%d) in base class '%s'", count,
2985                  clazz->descriptor);
2986             goto bail;
2987         }
2988 
2989         for (i = 0; i < count; i++) {
2990             clazz->vtable[i] = &clazz->virtualMethods[i];
2991             clazz->virtualMethods[i].methodIndex = (u2) i;
2992         }
2993         clazz->vtableCount = clazz->virtualMethodCount;
2994     }
2995 
2996     result = true;
2997 
2998 bail:
2999     dvmLinearReadOnly(clazz->classLoader, clazz->vtable);
3000     dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3001     return result;
3002 }
3003 
3004 /*
3005  * Create and populate "iftable".
3006  *
3007  * The set of interfaces we support is the combination of the interfaces
3008  * we implement directly and those implemented by our superclass.  Each
3009  * interface can have one or more "superinterfaces", which we must also
3010  * support.  For speed we flatten the tree out.
3011  *
3012  * We might be able to speed this up when there are lots of interfaces
3013  * by merge-sorting the class pointers and binary-searching when removing
3014  * duplicates.  We could also drop the duplicate removal -- it's only
3015  * there to reduce the memory footprint.
3016  *
3017  * Because of "Miranda methods", this may reallocate clazz->virtualMethods.
3018  *
3019  * Returns "true" on success.
3020  */
createIftable(ClassObject * clazz)3021 static bool createIftable(ClassObject* clazz)
3022 {
3023     bool result = false;
3024     bool zapIftable = false;
3025     bool zapVtable = false;
3026     bool zapIfvipool = false;
3027     int poolOffset = 0, poolSize = 0;
3028     Method** mirandaList = NULL;
3029     int mirandaCount = 0, mirandaAlloc = 0;
3030 
3031     int superIfCount;
3032     if (clazz->super != NULL)
3033         superIfCount = clazz->super->iftableCount;
3034     else
3035         superIfCount = 0;
3036 
3037     int ifCount = superIfCount;
3038     ifCount += clazz->interfaceCount;
3039     for (int i = 0; i < clazz->interfaceCount; i++)
3040         ifCount += clazz->interfaces[i]->iftableCount;
3041 
3042     LOGVV("INTF: class '%s' direct w/supra=%d super=%d total=%d",
3043         clazz->descriptor, ifCount - superIfCount, superIfCount, ifCount);
3044 
3045     if (ifCount == 0) {
3046         assert(clazz->iftableCount == 0);
3047         assert(clazz->iftable == NULL);
3048         return true;
3049     }
3050 
3051     /*
3052      * Create a table with enough space for all interfaces, and copy the
3053      * superclass' table in.
3054      */
3055     clazz->iftable = (InterfaceEntry*) dvmLinearAlloc(clazz->classLoader,
3056                         sizeof(InterfaceEntry) * ifCount);
3057     zapIftable = true;
3058     memset(clazz->iftable, 0x00, sizeof(InterfaceEntry) * ifCount);
3059     if (superIfCount != 0) {
3060         memcpy(clazz->iftable, clazz->super->iftable,
3061             sizeof(InterfaceEntry) * superIfCount);
3062     }
3063 
3064     /*
3065      * Create a flattened interface hierarchy of our immediate interfaces.
3066      */
3067     int idx = superIfCount;
3068 
3069     for (int i = 0; i < clazz->interfaceCount; i++) {
3070         ClassObject* interf = clazz->interfaces[i];
3071         assert(interf != NULL);
3072 
3073         /* make sure this is still an interface class */
3074         if (!dvmIsInterfaceClass(interf)) {
3075             ALOGW("Class '%s' implements non-interface '%s'",
3076                 clazz->descriptor, interf->descriptor);
3077             dvmThrowIncompatibleClassChangeErrorWithClassMessage(
3078                 clazz->descriptor);
3079             goto bail;
3080         }
3081 
3082         /* add entry for this interface */
3083         clazz->iftable[idx++].clazz = interf;
3084 
3085         /* add entries for the interface's superinterfaces */
3086         for (int j = 0; j < interf->iftableCount; j++) {
3087             int k;
3088             ClassObject *cand;
3089 
3090             cand = interf->iftable[j].clazz;
3091 
3092             /*
3093              * Check if this interface was already added and add only if new.
3094              * This is to avoid a potential blowup in the number of
3095              * interfaces for sufficiently complicated interface hierarchies.
3096              * This has quadratic runtime in the number of interfaces.
3097              * However, in common cases with little interface inheritance, this
3098              * doesn't make much of a difference.
3099              */
3100             for (k = 0; k < idx; k++)
3101                 if (clazz->iftable[k].clazz == cand)
3102                     break;
3103 
3104             if (k == idx)
3105                 clazz->iftable[idx++].clazz = cand;
3106         }
3107     }
3108 
3109     assert(idx <= ifCount);
3110 
3111     /*
3112      * Adjust the ifCount. We could reallocate the interface memory here,
3113      * but it's probably not worth the effort, the important thing here
3114      * is to avoid the interface blowup and keep the ifCount low.
3115      */
3116     if (false) {
3117         if (idx != ifCount) {
3118             int newIfCount = idx;
3119             InterfaceEntry* oldmem = clazz->iftable;
3120 
3121             clazz->iftable = (InterfaceEntry*) dvmLinearAlloc(clazz->classLoader,
3122                             sizeof(InterfaceEntry) * newIfCount);
3123             memcpy(clazz->iftable, oldmem, sizeof(InterfaceEntry) * newIfCount);
3124             dvmLinearFree(clazz->classLoader, oldmem);
3125         }
3126     }
3127 
3128     ifCount = idx;
3129     clazz->iftableCount = ifCount;
3130 
3131     /*
3132      * If we're an interface, we don't need the vtable pointers, so
3133      * we're done.  If this class doesn't implement an interface that our
3134      * superclass doesn't have, then we again have nothing to do.
3135      */
3136     if (dvmIsInterfaceClass(clazz) || superIfCount == ifCount) {
3137         //dvmDumpClass(clazz, kDumpClassFullDetail);
3138         result = true;
3139         goto bail;
3140     }
3141 
3142     /*
3143      * When we're handling invokeinterface, we probably have an object
3144      * whose type is an interface class rather than a concrete class.  We
3145      * need to convert the method reference into a vtable index.  So, for
3146      * every entry in "iftable", we create a list of vtable indices.
3147      *
3148      * Because our vtable encompasses the superclass vtable, we can use
3149      * the vtable indices from our superclass for all of the interfaces
3150      * that weren't directly implemented by us.
3151      *
3152      * Each entry in "iftable" has a pointer to the start of its set of
3153      * vtable offsets.  The iftable entries in the superclass point to
3154      * storage allocated in the superclass, and the iftable entries added
3155      * for this class point to storage allocated in this class.  "iftable"
3156      * is flat for fast access in a class and all of its subclasses, but
3157      * "ifviPool" is only created for the topmost implementor.
3158      */
3159     for (int i = superIfCount; i < ifCount; i++) {
3160         /*
3161          * Note it's valid for an interface to have no methods (e.g.
3162          * java/io/Serializable).
3163          */
3164         LOGVV("INTF: pool: %d from %s",
3165             clazz->iftable[i].clazz->virtualMethodCount,
3166             clazz->iftable[i].clazz->descriptor);
3167         poolSize += clazz->iftable[i].clazz->virtualMethodCount;
3168     }
3169 
3170     if (poolSize == 0) {
3171         LOGVV("INTF: didn't find any new interfaces with methods");
3172         result = true;
3173         goto bail;
3174     }
3175 
3176     clazz->ifviPoolCount = poolSize;
3177     clazz->ifviPool = (int*) dvmLinearAlloc(clazz->classLoader,
3178                         poolSize * sizeof(int*));
3179     zapIfvipool = true;
3180 
3181     /*
3182      * Fill in the vtable offsets for the interfaces that weren't part of
3183      * our superclass.
3184      */
3185     for (int i = superIfCount; i < ifCount; i++) {
3186         ClassObject* interface;
3187         int methIdx;
3188 
3189         clazz->iftable[i].methodIndexArray = clazz->ifviPool + poolOffset;
3190         interface = clazz->iftable[i].clazz;
3191         poolOffset += interface->virtualMethodCount;    // end here
3192 
3193         /*
3194          * For each method listed in the interface's method list, find the
3195          * matching method in our class's method list.  We want to favor the
3196          * subclass over the superclass, which just requires walking
3197          * back from the end of the vtable.  (This only matters if the
3198          * superclass defines a private method and this class redefines
3199          * it -- otherwise it would use the same vtable slot.  In Dalvik
3200          * those don't end up in the virtual method table, so it shouldn't
3201          * matter which direction we go.  We walk it backward anyway.)
3202          *
3203          *
3204          * Suppose we have the following arrangement:
3205          *   public interface MyInterface
3206          *     public boolean inInterface();
3207          *   public abstract class MirandaAbstract implements MirandaInterface
3208          *     //public abstract boolean inInterface(); // not declared!
3209          *     public boolean inAbstract() { stuff }    // in vtable
3210          *   public class MirandClass extends MirandaAbstract
3211          *     public boolean inInterface() { stuff }
3212          *     public boolean inAbstract() { stuff }    // in vtable
3213          *
3214          * The javac compiler happily compiles MirandaAbstract even though
3215          * it doesn't declare all methods from its interface.  When we try
3216          * to set up a vtable for MirandaAbstract, we find that we don't
3217          * have an slot for inInterface.  To prevent this, we synthesize
3218          * abstract method declarations in MirandaAbstract.
3219          *
3220          * We have to expand vtable and update some things that point at it,
3221          * so we accumulate the method list and do it all at once below.
3222          */
3223         for (methIdx = 0; methIdx < interface->virtualMethodCount; methIdx++) {
3224             Method* imeth = &interface->virtualMethods[methIdx];
3225             int j;
3226 
3227             IF_LOGVV() {
3228                 char* desc = dexProtoCopyMethodDescriptor(&imeth->prototype);
3229                 LOGVV("INTF:  matching '%s' '%s'", imeth->name, desc);
3230                 free(desc);
3231             }
3232 
3233             for (j = clazz->vtableCount-1; j >= 0; j--) {
3234                 if (dvmCompareMethodNamesAndProtos(imeth, clazz->vtable[j])
3235                     == 0)
3236                 {
3237                     LOGVV("INTF:   matched at %d", j);
3238                     if (!dvmIsAbstractMethod(clazz->vtable[j]) &&
3239                         !dvmIsPublicMethod(clazz->vtable[j]))
3240                     {
3241                         ALOGW("Implementation of %s.%s is not public",
3242                             clazz->descriptor, clazz->vtable[j]->name);
3243                         dvmThrowIllegalAccessError(
3244                             "interface implementation not public");
3245                         goto bail;
3246                     }
3247                     clazz->iftable[i].methodIndexArray[methIdx] = j;
3248                     break;
3249                 }
3250             }
3251             if (j < 0) {
3252                 IF_ALOGV() {
3253                     char* desc =
3254                         dexProtoCopyMethodDescriptor(&imeth->prototype);
3255                     ALOGV("No match for '%s' '%s' in '%s' (creating miranda)",
3256                             imeth->name, desc, clazz->descriptor);
3257                     free(desc);
3258                 }
3259                 //dvmThrowRuntimeException("Miranda!");
3260                 //return false;
3261 
3262                 if (mirandaCount == mirandaAlloc) {
3263                     mirandaAlloc += 8;
3264                     if (mirandaList == NULL) {
3265                         mirandaList = (Method**)dvmLinearAlloc(
3266                                         clazz->classLoader,
3267                                         mirandaAlloc * sizeof(Method*));
3268                     } else {
3269                         dvmLinearReadOnly(clazz->classLoader, mirandaList);
3270                         mirandaList = (Method**)dvmLinearRealloc(
3271                                 clazz->classLoader,
3272                                 mirandaList, mirandaAlloc * sizeof(Method*));
3273                     }
3274                     assert(mirandaList != NULL);    // mem failed + we leaked
3275                 }
3276 
3277                 /*
3278                  * These may be redundant (e.g. method with same name and
3279                  * signature declared in two interfaces implemented by the
3280                  * same abstract class).  We can squeeze the duplicates
3281                  * out here.
3282                  */
3283                 int mir;
3284                 for (mir = 0; mir < mirandaCount; mir++) {
3285                     if (dvmCompareMethodNamesAndProtos(
3286                             mirandaList[mir], imeth) == 0)
3287                     {
3288                         IF_LOGVV() {
3289                             char* desc = dexProtoCopyMethodDescriptor(
3290                                     &imeth->prototype);
3291                             LOGVV("MIRANDA dupe: %s and %s %s%s",
3292                                 mirandaList[mir]->clazz->descriptor,
3293                                 imeth->clazz->descriptor,
3294                                 imeth->name, desc);
3295                             free(desc);
3296                         }
3297                         break;
3298                     }
3299                 }
3300 
3301                 /* point the iftable at a phantom slot index */
3302                 clazz->iftable[i].methodIndexArray[methIdx] =
3303                     clazz->vtableCount + mir;
3304                 LOGVV("MIRANDA: %s points at slot %d",
3305                     imeth->name, clazz->vtableCount + mir);
3306 
3307                 /* if non-duplicate among Mirandas, add to Miranda list */
3308                 if (mir == mirandaCount) {
3309                     //ALOGV("MIRANDA: holding '%s' in slot %d",
3310                     //    imeth->name, mir);
3311                     mirandaList[mirandaCount++] = imeth;
3312                 }
3313             }
3314         }
3315     }
3316 
3317     if (mirandaCount != 0) {
3318         static const int kManyMirandas = 150;   /* arbitrary */
3319         Method* newVirtualMethods;
3320         Method* meth;
3321         int oldMethodCount, oldVtableCount;
3322 
3323         for (int i = 0; i < mirandaCount; i++) {
3324             LOGVV("MIRANDA %d: %s.%s", i,
3325                 mirandaList[i]->clazz->descriptor, mirandaList[i]->name);
3326         }
3327         if (mirandaCount > kManyMirandas) {
3328             /*
3329              * Some obfuscators like to create an interface with a huge
3330              * pile of methods, declare classes as implementing it, and then
3331              * only define a couple of methods.  This leads to a rather
3332              * massive collection of Miranda methods and a lot of wasted
3333              * space, sometimes enough to blow out the LinearAlloc cap.
3334              */
3335             ALOGD("Note: class %s has %d unimplemented (abstract) methods",
3336                 clazz->descriptor, mirandaCount);
3337         }
3338 
3339         /*
3340          * We found methods in one or more interfaces for which we do not
3341          * have vtable entries.  We have to expand our virtualMethods
3342          * table (which might be empty) to hold some new entries.
3343          */
3344         if (clazz->virtualMethods == NULL) {
3345             newVirtualMethods = (Method*) dvmLinearAlloc(clazz->classLoader,
3346                 sizeof(Method) * (clazz->virtualMethodCount + mirandaCount));
3347         } else {
3348             //dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3349             newVirtualMethods = (Method*) dvmLinearRealloc(clazz->classLoader,
3350                 clazz->virtualMethods,
3351                 sizeof(Method) * (clazz->virtualMethodCount + mirandaCount));
3352         }
3353         if (newVirtualMethods != clazz->virtualMethods) {
3354             /*
3355              * Table was moved in memory.  We have to run through the
3356              * vtable and fix the pointers.  The vtable entries might be
3357              * pointing at superclasses, so we flip it around: run through
3358              * all locally-defined virtual methods, and fix their entries
3359              * in the vtable.  (This would get really messy if sub-classes
3360              * had already been loaded.)
3361              *
3362              * Reminder: clazz->virtualMethods and clazz->virtualMethodCount
3363              * hold the virtual methods declared by this class.  The
3364              * method's methodIndex is the vtable index, and is the same
3365              * for all sub-classes (and all super classes in which it is
3366              * defined).  We're messing with these because the Miranda
3367              * stuff makes it look like the class actually has an abstract
3368              * method declaration in it.
3369              */
3370             LOGVV("MIRANDA fixing vtable pointers");
3371             dvmLinearReadWrite(clazz->classLoader, clazz->vtable);
3372             Method* meth = newVirtualMethods;
3373             for (int i = 0; i < clazz->virtualMethodCount; i++, meth++)
3374                 clazz->vtable[meth->methodIndex] = meth;
3375             dvmLinearReadOnly(clazz->classLoader, clazz->vtable);
3376         }
3377 
3378         oldMethodCount = clazz->virtualMethodCount;
3379         clazz->virtualMethods = newVirtualMethods;
3380         clazz->virtualMethodCount += mirandaCount;
3381 
3382         dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3383 
3384         /*
3385          * We also have to expand the vtable.
3386          */
3387         assert(clazz->vtable != NULL);
3388         clazz->vtable = (Method**) dvmLinearRealloc(clazz->classLoader,
3389                         clazz->vtable,
3390                         sizeof(Method*) * (clazz->vtableCount + mirandaCount));
3391         if (clazz->vtable == NULL) {
3392             assert(false);
3393             goto bail;
3394         }
3395         zapVtable = true;
3396 
3397         oldVtableCount = clazz->vtableCount;
3398         clazz->vtableCount += mirandaCount;
3399 
3400         /*
3401          * Now we need to create the fake methods.  We clone the abstract
3402          * method definition from the interface and then replace a few
3403          * things.
3404          *
3405          * The Method will be an "abstract native", with nativeFunc set to
3406          * dvmAbstractMethodStub().
3407          */
3408         meth = clazz->virtualMethods + oldMethodCount;
3409         for (int i = 0; i < mirandaCount; i++, meth++) {
3410             dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
3411             cloneMethod(meth, mirandaList[i]);
3412             meth->clazz = clazz;
3413             meth->accessFlags |= ACC_MIRANDA;
3414             meth->methodIndex = (u2) (oldVtableCount + i);
3415             dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3416 
3417             /* point the new vtable entry at the new method */
3418             clazz->vtable[oldVtableCount + i] = meth;
3419         }
3420 
3421         dvmLinearReadOnly(clazz->classLoader, mirandaList);
3422         dvmLinearFree(clazz->classLoader, mirandaList);
3423 
3424     }
3425 
3426     /*
3427      * TODO?
3428      * Sort the interfaces by number of declared methods.  All we really
3429      * want is to get the interfaces with zero methods at the end of the
3430      * list, so that when we walk through the list during invoke-interface
3431      * we don't examine interfaces that can't possibly be useful.
3432      *
3433      * The set will usually be small, so a simple insertion sort works.
3434      *
3435      * We have to be careful not to change the order of two interfaces
3436      * that define the same method.  (Not a problem if we only move the
3437      * zero-method interfaces to the end.)
3438      *
3439      * PROBLEM:
3440      * If we do this, we will no longer be able to identify super vs.
3441      * current class interfaces by comparing clazz->super->iftableCount.  This
3442      * breaks anything that only wants to find interfaces declared directly
3443      * by the class (dvmFindStaticFieldHier, ReferenceType.Interfaces,
3444      * dvmDbgOutputAllInterfaces, etc).  Need to provide a workaround.
3445      *
3446      * We can sort just the interfaces implemented directly by this class,
3447      * but that doesn't seem like it would provide much of an advantage.  I'm
3448      * not sure this is worthwhile.
3449      *
3450      * (This has been made largely obsolete by the interface cache mechanism.)
3451      */
3452 
3453     //dvmDumpClass(clazz);
3454 
3455     result = true;
3456 
3457 bail:
3458     if (zapIftable)
3459         dvmLinearReadOnly(clazz->classLoader, clazz->iftable);
3460     if (zapVtable)
3461         dvmLinearReadOnly(clazz->classLoader, clazz->vtable);
3462     if (zapIfvipool)
3463         dvmLinearReadOnly(clazz->classLoader, clazz->ifviPool);
3464     return result;
3465 }
3466 
3467 
3468 /*
3469  * Provide "stub" implementations for methods without them.
3470  *
3471  * Currently we provide an implementation for all abstract methods that
3472  * throws an AbstractMethodError exception.  This allows us to avoid an
3473  * explicit check for abstract methods in every virtual call.
3474  *
3475  * NOTE: for Miranda methods, the method declaration is a clone of what
3476  * was found in the interface class.  That copy may already have had the
3477  * function pointer filled in, so don't be surprised if it's not NULL.
3478  *
3479  * NOTE: this sets the "native" flag, giving us an "abstract native" method,
3480  * which is nonsensical.  Need to make sure that this doesn't escape the
3481  * VM.  We can either mask it out in reflection calls, or copy "native"
3482  * into the high 16 bits of accessFlags and check that internally.
3483  */
insertMethodStubs(ClassObject * clazz)3484 static bool insertMethodStubs(ClassObject* clazz)
3485 {
3486     dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
3487 
3488     Method* meth;
3489     int i;
3490 
3491     meth = clazz->virtualMethods;
3492     for (i = 0; i < clazz->virtualMethodCount; i++, meth++) {
3493         if (dvmIsAbstractMethod(meth)) {
3494             assert(meth->insns == NULL);
3495             assert(meth->nativeFunc == NULL ||
3496                 meth->nativeFunc == (DalvikBridgeFunc)dvmAbstractMethodStub);
3497 
3498             meth->accessFlags |= ACC_NATIVE;
3499             meth->nativeFunc = (DalvikBridgeFunc) dvmAbstractMethodStub;
3500         }
3501     }
3502 
3503     dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3504     return true;
3505 }
3506 
3507 
3508 /*
3509  * Swap two instance fields.
3510  */
swapField(InstField * pOne,InstField * pTwo)3511 static inline void swapField(InstField* pOne, InstField* pTwo)
3512 {
3513     InstField swap;
3514 
3515     LOGVV("  --- swap '%s' and '%s'", pOne->name, pTwo->name);
3516     swap = *pOne;
3517     *pOne = *pTwo;
3518     *pTwo = swap;
3519 }
3520 
3521 /*
3522  * Assign instance fields to u4 slots.
3523  *
3524  * The top portion of the instance field area is occupied by the superclass
3525  * fields, the bottom by the fields for this class.
3526  *
3527  * "long" and "double" fields occupy two adjacent slots.  On some
3528  * architectures, 64-bit quantities must be 64-bit aligned, so we need to
3529  * arrange fields (or introduce padding) to ensure this.  We assume the
3530  * fields of the topmost superclass (i.e. Object) are 64-bit aligned, so
3531  * we can just ensure that the offset is "even".  To avoid wasting space,
3532  * we want to move non-reference 32-bit fields into gaps rather than
3533  * creating pad words.
3534  *
3535  * In the worst case we will waste 4 bytes, but because objects are
3536  * allocated on >= 64-bit boundaries, those bytes may well be wasted anyway
3537  * (assuming this is the most-derived class).
3538  *
3539  * Pad words are not represented in the field table, so the field table
3540  * itself does not change size.
3541  *
3542  * The number of field slots determines the size of the object, so we
3543  * set that here too.
3544  *
3545  * This function feels a little more complicated than I'd like, but it
3546  * has the property of moving the smallest possible set of fields, which
3547  * should reduce the time required to load a class.
3548  *
3549  * NOTE: reference fields *must* come first, or precacheReferenceOffsets()
3550  * will break.
3551  */
computeFieldOffsets(ClassObject * clazz)3552 static bool computeFieldOffsets(ClassObject* clazz)
3553 {
3554     int fieldOffset;
3555     int i, j;
3556 
3557     dvmLinearReadWrite(clazz->classLoader, clazz->ifields);
3558 
3559     if (clazz->super != NULL)
3560         fieldOffset = clazz->super->objectSize;
3561     else
3562         fieldOffset = OFFSETOF_MEMBER(DataObject, instanceData);
3563 
3564     LOGVV("--- computeFieldOffsets '%s'", clazz->descriptor);
3565 
3566     //ALOGI("OFFSETS fieldCount=%d", clazz->ifieldCount);
3567     //ALOGI("dataobj, instance: %d", offsetof(DataObject, instanceData));
3568     //ALOGI("classobj, access: %d", offsetof(ClassObject, accessFlags));
3569     //ALOGI("super=%p, fieldOffset=%d", clazz->super, fieldOffset);
3570 
3571     /*
3572      * Start by moving all reference fields to the front.
3573      */
3574     clazz->ifieldRefCount = 0;
3575     j = clazz->ifieldCount - 1;
3576     for (i = 0; i < clazz->ifieldCount; i++) {
3577         InstField* pField = &clazz->ifields[i];
3578         char c = pField->signature[0];
3579 
3580         if (c != '[' && c != 'L') {
3581             /* This isn't a reference field; see if any reference fields
3582              * follow this one.  If so, we'll move it to this position.
3583              * (quicksort-style partitioning)
3584              */
3585             while (j > i) {
3586                 InstField* refField = &clazz->ifields[j--];
3587                 char rc = refField->signature[0];
3588 
3589                 if (rc == '[' || rc == 'L') {
3590                     /* Here's a reference field that follows at least one
3591                      * non-reference field.  Swap it with the current field.
3592                      * (When this returns, "pField" points to the reference
3593                      * field, and "refField" points to the non-ref field.)
3594                      */
3595                     swapField(pField, refField);
3596 
3597                     /* Fix the signature.
3598                      */
3599                     c = rc;
3600 
3601                     clazz->ifieldRefCount++;
3602                     break;
3603                 }
3604             }
3605             /* We may or may not have swapped a field.
3606              */
3607         } else {
3608             /* This is a reference field.
3609              */
3610             clazz->ifieldRefCount++;
3611         }
3612 
3613         /*
3614          * If we've hit the end of the reference fields, break.
3615          */
3616         if (c != '[' && c != 'L')
3617             break;
3618 
3619         pField->byteOffset = fieldOffset;
3620         fieldOffset += sizeof(u4);
3621         LOGVV("  --- offset1 '%s'=%d", pField->name,pField->byteOffset);
3622     }
3623 
3624     /*
3625      * Now we want to pack all of the double-wide fields together.  If we're
3626      * not aligned, though, we want to shuffle one 32-bit field into place.
3627      * If we can't find one, we'll have to pad it.
3628      */
3629     if (i != clazz->ifieldCount && (fieldOffset & 0x04) != 0) {
3630         LOGVV("  +++ not aligned");
3631 
3632         InstField* pField = &clazz->ifields[i];
3633         char c = pField->signature[0];
3634 
3635         if (c != 'J' && c != 'D') {
3636             /*
3637              * The field that comes next is 32-bit, so just advance past it.
3638              */
3639             assert(c != '[' && c != 'L');
3640             pField->byteOffset = fieldOffset;
3641             fieldOffset += sizeof(u4);
3642             i++;
3643             LOGVV("  --- offset2 '%s'=%d",
3644                 pField->name, pField->byteOffset);
3645         } else {
3646             /*
3647              * Next field is 64-bit, so search for a 32-bit field we can
3648              * swap into it.
3649              */
3650             bool found = false;
3651             j = clazz->ifieldCount - 1;
3652             while (j > i) {
3653                 InstField* singleField = &clazz->ifields[j--];
3654                 char rc = singleField->signature[0];
3655 
3656                 if (rc != 'J' && rc != 'D') {
3657                     swapField(pField, singleField);
3658                     //c = rc;
3659                     LOGVV("  +++ swapped '%s' for alignment",
3660                         pField->name);
3661                     pField->byteOffset = fieldOffset;
3662                     fieldOffset += sizeof(u4);
3663                     LOGVV("  --- offset3 '%s'=%d",
3664                         pField->name, pField->byteOffset);
3665                     found = true;
3666                     i++;
3667                     break;
3668                 }
3669             }
3670             if (!found) {
3671                 ALOGV("  +++ inserting pad field in '%s'", clazz->descriptor);
3672                 fieldOffset += sizeof(u4);
3673             }
3674         }
3675     }
3676 
3677     /*
3678      * Alignment is good, shuffle any double-wide fields forward, and
3679      * finish assigning field offsets to all fields.
3680      */
3681     assert(i == clazz->ifieldCount || (fieldOffset & 0x04) == 0);
3682     j = clazz->ifieldCount - 1;
3683     for ( ; i < clazz->ifieldCount; i++) {
3684         InstField* pField = &clazz->ifields[i];
3685         char c = pField->signature[0];
3686 
3687         if (c != 'D' && c != 'J') {
3688             /* This isn't a double-wide field; see if any double fields
3689              * follow this one.  If so, we'll move it to this position.
3690              * (quicksort-style partitioning)
3691              */
3692             while (j > i) {
3693                 InstField* doubleField = &clazz->ifields[j--];
3694                 char rc = doubleField->signature[0];
3695 
3696                 if (rc == 'D' || rc == 'J') {
3697                     /* Here's a double-wide field that follows at least one
3698                      * non-double field.  Swap it with the current field.
3699                      * (When this returns, "pField" points to the reference
3700                      * field, and "doubleField" points to the non-double field.)
3701                      */
3702                     swapField(pField, doubleField);
3703                     c = rc;
3704 
3705                     break;
3706                 }
3707             }
3708             /* We may or may not have swapped a field.
3709              */
3710         } else {
3711             /* This is a double-wide field, leave it be.
3712              */
3713         }
3714 
3715         pField->byteOffset = fieldOffset;
3716         LOGVV("  --- offset4 '%s'=%d", pField->name,pField->byteOffset);
3717         fieldOffset += sizeof(u4);
3718         if (c == 'J' || c == 'D')
3719             fieldOffset += sizeof(u4);
3720     }
3721 
3722 #ifndef NDEBUG
3723     /* Make sure that all reference fields appear before
3724      * non-reference fields, and all double-wide fields are aligned.
3725      */
3726     j = 0;  // seen non-ref
3727     for (i = 0; i < clazz->ifieldCount; i++) {
3728         InstField *pField = &clazz->ifields[i];
3729         char c = pField->signature[0];
3730 
3731         if (c == 'D' || c == 'J') {
3732             assert((pField->byteOffset & 0x07) == 0);
3733         }
3734 
3735         if (c != '[' && c != 'L') {
3736             if (!j) {
3737                 assert(i == clazz->ifieldRefCount);
3738                 j = 1;
3739             }
3740         } else if (j) {
3741             assert(false);
3742         }
3743     }
3744     if (!j) {
3745         assert(clazz->ifieldRefCount == clazz->ifieldCount);
3746     }
3747 #endif
3748 
3749     /*
3750      * We map a C struct directly on top of java/lang/Class objects.  Make
3751      * sure we left enough room for the instance fields.
3752      */
3753     assert(!dvmIsTheClassClass(clazz) || (size_t)fieldOffset <
3754         OFFSETOF_MEMBER(ClassObject, instanceData) + sizeof(clazz->instanceData));
3755 
3756     clazz->objectSize = fieldOffset;
3757 
3758     dvmLinearReadOnly(clazz->classLoader, clazz->ifields);
3759     return true;
3760 }
3761 
3762 /*
3763  * The class failed to initialize on a previous attempt, so we want to throw
3764  * a NoClassDefFoundError (v2 2.17.5).  The exception to this rule is if we
3765  * failed in verification, in which case v2 5.4.1 says we need to re-throw
3766  * the previous error.
3767  */
throwEarlierClassFailure(ClassObject * clazz)3768 static void throwEarlierClassFailure(ClassObject* clazz)
3769 {
3770     ALOGI("Rejecting re-init on previously-failed class %s v=%p",
3771         clazz->descriptor, clazz->verifyErrorClass);
3772 
3773     if (clazz->verifyErrorClass == NULL) {
3774         dvmThrowNoClassDefFoundError(clazz->descriptor);
3775     } else {
3776         dvmThrowExceptionWithClassMessage(clazz->verifyErrorClass,
3777             clazz->descriptor);
3778     }
3779 }
3780 
3781 /*
3782  * Initialize any static fields whose values are stored in
3783  * the DEX file.  This must be done during class initialization.
3784  */
initSFields(ClassObject * clazz)3785 static void initSFields(ClassObject* clazz)
3786 {
3787     Thread* self = dvmThreadSelf(); /* for dvmReleaseTrackedAlloc() */
3788     DexFile* pDexFile;
3789     const DexClassDef* pClassDef;
3790     const DexEncodedArray* pValueList;
3791     EncodedArrayIterator iterator;
3792     int i;
3793 
3794     if (clazz->sfieldCount == 0) {
3795         return;
3796     }
3797     if (clazz->pDvmDex == NULL) {
3798         /* generated class; any static fields should already be set up */
3799         ALOGV("Not initializing static fields in %s", clazz->descriptor);
3800         return;
3801     }
3802     pDexFile = clazz->pDvmDex->pDexFile;
3803 
3804     pClassDef = dexFindClass(pDexFile, clazz->descriptor);
3805     assert(pClassDef != NULL);
3806 
3807     pValueList = dexGetStaticValuesList(pDexFile, pClassDef);
3808     if (pValueList == NULL) {
3809         return;
3810     }
3811 
3812     dvmEncodedArrayIteratorInitialize(&iterator, pValueList, clazz);
3813 
3814     /*
3815      * Iterate over the initial values array, setting the corresponding
3816      * static field for each array element.
3817      */
3818 
3819     for (i = 0; dvmEncodedArrayIteratorHasNext(&iterator); i++) {
3820         AnnotationValue value;
3821         bool parsed = dvmEncodedArrayIteratorGetNext(&iterator, &value);
3822         StaticField* sfield = &clazz->sfields[i];
3823         const char* descriptor = sfield->signature;
3824         bool isObj = false;
3825 
3826         if (! parsed) {
3827             /*
3828              * TODO: Eventually verification should attempt to ensure
3829              * that this can't happen at least due to a data integrity
3830              * problem.
3831              */
3832             ALOGE("Static initializer parse failed for %s at index %d",
3833                     clazz->descriptor, i);
3834             dvmAbort();
3835         }
3836 
3837         /* Verify that the value we got was of a valid type. */
3838 
3839         switch (descriptor[0]) {
3840             case 'Z': parsed = (value.type == kDexAnnotationBoolean); break;
3841             case 'B': parsed = (value.type == kDexAnnotationByte);    break;
3842             case 'C': parsed = (value.type == kDexAnnotationChar);    break;
3843             case 'S': parsed = (value.type == kDexAnnotationShort);   break;
3844             case 'I': parsed = (value.type == kDexAnnotationInt);     break;
3845             case 'J': parsed = (value.type == kDexAnnotationLong);    break;
3846             case 'F': parsed = (value.type == kDexAnnotationFloat);   break;
3847             case 'D': parsed = (value.type == kDexAnnotationDouble);  break;
3848             case '[': parsed = (value.type == kDexAnnotationNull);    break;
3849             case 'L': {
3850                 switch (value.type) {
3851                     case kDexAnnotationNull: {
3852                         /* No need for further tests. */
3853                         break;
3854                     }
3855                     case kDexAnnotationString: {
3856                         parsed =
3857                             (strcmp(descriptor, "Ljava/lang/String;") == 0);
3858                         isObj = true;
3859                         break;
3860                     }
3861                     case kDexAnnotationType: {
3862                         parsed =
3863                             (strcmp(descriptor, "Ljava/lang/Class;") == 0);
3864                         isObj = true;
3865                         break;
3866                     }
3867                     default: {
3868                         parsed = false;
3869                         break;
3870                     }
3871                 }
3872                 break;
3873             }
3874             default: {
3875                 parsed = false;
3876                 break;
3877             }
3878         }
3879 
3880         if (parsed) {
3881             /*
3882              * All's well, so store the value.
3883              */
3884             if (isObj) {
3885                 dvmSetStaticFieldObject(sfield, (Object*)value.value.l);
3886                 dvmReleaseTrackedAlloc((Object*)value.value.l, self);
3887             } else {
3888                 /*
3889                  * Note: This always stores the full width of a
3890                  * JValue, even though most of the time only the first
3891                  * word is needed.
3892                  */
3893                 sfield->value = value.value;
3894             }
3895         } else {
3896             /*
3897              * Something up above had a problem. TODO: See comment
3898              * above the switch about verfication.
3899              */
3900             ALOGE("Bogus static initialization: value type %d in field type "
3901                     "%s for %s at index %d",
3902                 value.type, descriptor, clazz->descriptor, i);
3903             dvmAbort();
3904         }
3905     }
3906 }
3907 
3908 
3909 /*
3910  * Determine whether "descriptor" yields the same class object in the
3911  * context of clazz1 and clazz2.
3912  *
3913  * The caller must hold gDvm.loadedClasses.
3914  *
3915  * Returns "true" if they match.
3916  */
compareDescriptorClasses(const char * descriptor,const ClassObject * clazz1,const ClassObject * clazz2)3917 static bool compareDescriptorClasses(const char* descriptor,
3918     const ClassObject* clazz1, const ClassObject* clazz2)
3919 {
3920     ClassObject* result1;
3921     ClassObject* result2;
3922 
3923     /*
3924      * Do the first lookup by name.
3925      */
3926     result1 = dvmFindClassNoInit(descriptor, clazz1->classLoader);
3927 
3928     /*
3929      * We can skip a second lookup by name if the second class loader is
3930      * in the initiating loader list of the class object we retrieved.
3931      * (This means that somebody already did a lookup of this class through
3932      * the second loader, and it resolved to the same class.)  If it's not
3933      * there, we may simply not have had an opportunity to add it yet, so
3934      * we do the full lookup.
3935      *
3936      * The initiating loader test should catch the majority of cases
3937      * (in particular, the zillions of references to String/Object).
3938      *
3939      * Unfortunately we're still stuck grabbing a mutex to do the lookup.
3940      *
3941      * For this to work, the superclass/interface should be the first
3942      * argument, so that way if it's from the bootstrap loader this test
3943      * will work.  (The bootstrap loader, by definition, never shows up
3944      * as the initiating loader of a class defined by some other loader.)
3945      */
3946     dvmHashTableLock(gDvm.loadedClasses);
3947     bool isInit = dvmLoaderInInitiatingList(result1, clazz2->classLoader);
3948     dvmHashTableUnlock(gDvm.loadedClasses);
3949 
3950     if (isInit) {
3951         //printf("%s(obj=%p) / %s(cl=%p): initiating\n",
3952         //    result1->descriptor, result1,
3953         //    clazz2->descriptor, clazz2->classLoader);
3954         return true;
3955     } else {
3956         //printf("%s(obj=%p) / %s(cl=%p): RAW\n",
3957         //    result1->descriptor, result1,
3958         //    clazz2->descriptor, clazz2->classLoader);
3959         result2 = dvmFindClassNoInit(descriptor, clazz2->classLoader);
3960     }
3961 
3962     if (result1 == NULL || result2 == NULL) {
3963         dvmClearException(dvmThreadSelf());
3964         if (result1 == result2) {
3965             /*
3966              * Neither class loader could find this class.  Apparently it
3967              * doesn't exist.
3968              *
3969              * We can either throw some sort of exception now, or just
3970              * assume that it'll fail later when something actually tries
3971              * to use the class.  For strict handling we should throw now,
3972              * because a "tricky" class loader could start returning
3973              * something later, and a pair of "tricky" loaders could set
3974              * us up for confusion.
3975              *
3976              * I'm not sure if we're allowed to complain about nonexistent
3977              * classes in method signatures during class init, so for now
3978              * this will just return "true" and let nature take its course.
3979              */
3980             return true;
3981         } else {
3982             /* only one was found, so clearly they're not the same */
3983             return false;
3984         }
3985     }
3986 
3987     return result1 == result2;
3988 }
3989 
3990 /*
3991  * For every component in the method descriptor, resolve the class in the
3992  * context of the two classes and compare the results.
3993  *
3994  * For best results, the "superclass" class should be first.
3995  *
3996  * Returns "true" if the classes match, "false" otherwise.
3997  */
checkMethodDescriptorClasses(const Method * meth,const ClassObject * clazz1,const ClassObject * clazz2)3998 static bool checkMethodDescriptorClasses(const Method* meth,
3999     const ClassObject* clazz1, const ClassObject* clazz2)
4000 {
4001     DexParameterIterator iterator;
4002     const char* descriptor;
4003 
4004     /* walk through the list of parameters */
4005     dexParameterIteratorInit(&iterator, &meth->prototype);
4006     while (true) {
4007         descriptor = dexParameterIteratorNextDescriptor(&iterator);
4008 
4009         if (descriptor == NULL)
4010             break;
4011 
4012         if (descriptor[0] == 'L' || descriptor[0] == '[') {
4013             /* non-primitive type */
4014             if (!compareDescriptorClasses(descriptor, clazz1, clazz2))
4015                 return false;
4016         }
4017     }
4018 
4019     /* check the return type */
4020     descriptor = dexProtoGetReturnType(&meth->prototype);
4021     if (descriptor[0] == 'L' || descriptor[0] == '[') {
4022         if (!compareDescriptorClasses(descriptor, clazz1, clazz2))
4023             return false;
4024     }
4025     return true;
4026 }
4027 
4028 /*
4029  * Validate the descriptors in the superclass and interfaces.
4030  *
4031  * What we need to do is ensure that the classes named in the method
4032  * descriptors in our ancestors and ourselves resolve to the same class
4033  * objects.  We can get conflicts when the classes come from different
4034  * class loaders, and the resolver comes up with different results for
4035  * the same class name in different contexts.
4036  *
4037  * An easy way to cause the problem is to declare a base class that uses
4038  * class Foo in a method signature (e.g. as the return type).  Then,
4039  * define a subclass and a different version of Foo, and load them from a
4040  * different class loader.  If the subclass overrides the method, it will
4041  * have a different concept of what Foo is than its parent does, so even
4042  * though the method signature strings are identical, they actually mean
4043  * different things.
4044  *
4045  * A call to the method through a base-class reference would be treated
4046  * differently than a call to the method through a subclass reference, which
4047  * isn't the way polymorphism works, so we have to reject the subclass.
4048  * If the subclass doesn't override the base method, then there's no
4049  * problem, because calls through base-class references and subclass
4050  * references end up in the same place.
4051  *
4052  * We don't need to check to see if an interface's methods match with its
4053  * superinterface's methods, because you can't instantiate an interface
4054  * and do something inappropriate with it.  If interface I1 extends I2
4055  * and is implemented by C, and I1 and I2 are in separate class loaders
4056  * and have conflicting views of other classes, we will catch the conflict
4057  * when we process C.  Anything that implements I1 is doomed to failure,
4058  * but we don't need to catch that while processing I1.
4059  *
4060  * On failure, throws an exception and returns "false".
4061  */
validateSuperDescriptors(const ClassObject * clazz)4062 static bool validateSuperDescriptors(const ClassObject* clazz)
4063 {
4064     int i;
4065 
4066     if (dvmIsInterfaceClass(clazz))
4067         return true;
4068 
4069     /*
4070      * Start with the superclass-declared methods.
4071      */
4072     if (clazz->super != NULL &&
4073         clazz->classLoader != clazz->super->classLoader)
4074     {
4075         /*
4076          * Walk through every overridden method and compare resolved
4077          * descriptor components.  We pull the Method structs out of
4078          * the vtable.  It doesn't matter whether we get the struct from
4079          * the parent or child, since we just need the UTF-8 descriptor,
4080          * which must match.
4081          *
4082          * We need to do this even for the stuff inherited from Object,
4083          * because it's possible that the new class loader has redefined
4084          * a basic class like String.
4085          *
4086          * We don't need to check stuff defined in a superclass because
4087          * it was checked when the superclass was loaded.
4088          */
4089         const Method* meth;
4090 
4091         //printf("Checking %s %p vs %s %p\n",
4092         //    clazz->descriptor, clazz->classLoader,
4093         //    clazz->super->descriptor, clazz->super->classLoader);
4094         for (i = clazz->super->vtableCount - 1; i >= 0; i--) {
4095             meth = clazz->vtable[i];
4096             if (meth != clazz->super->vtable[i] &&
4097                 !checkMethodDescriptorClasses(meth, clazz->super, clazz))
4098             {
4099                 ALOGW("Method mismatch: %s in %s (cl=%p) and super %s (cl=%p)",
4100                     meth->name, clazz->descriptor, clazz->classLoader,
4101                     clazz->super->descriptor, clazz->super->classLoader);
4102                 dvmThrowLinkageError(
4103                     "Classes resolve differently in superclass");
4104                 return false;
4105             }
4106         }
4107     }
4108 
4109     /*
4110      * Check the methods defined by this class against the interfaces it
4111      * implements.  If we inherited the implementation from a superclass,
4112      * we have to check it against the superclass (which might be in a
4113      * different class loader).  If the superclass also implements the
4114      * interface, we could skip the check since by definition it was
4115      * performed when the class was loaded.
4116      */
4117     for (i = 0; i < clazz->iftableCount; i++) {
4118         const InterfaceEntry* iftable = &clazz->iftable[i];
4119 
4120         if (clazz->classLoader != iftable->clazz->classLoader) {
4121             const ClassObject* iface = iftable->clazz;
4122             int j;
4123 
4124             for (j = 0; j < iface->virtualMethodCount; j++) {
4125                 const Method* meth;
4126                 int vtableIndex;
4127 
4128                 vtableIndex = iftable->methodIndexArray[j];
4129                 meth = clazz->vtable[vtableIndex];
4130 
4131                 if (!checkMethodDescriptorClasses(meth, iface, meth->clazz)) {
4132                     ALOGW("Method mismatch: %s in %s (cl=%p) and "
4133                             "iface %s (cl=%p)",
4134                         meth->name, clazz->descriptor, clazz->classLoader,
4135                         iface->descriptor, iface->classLoader);
4136                     dvmThrowLinkageError(
4137                         "Classes resolve differently in interface");
4138                     return false;
4139                 }
4140             }
4141         }
4142     }
4143 
4144     return true;
4145 }
4146 
4147 /*
4148  * Returns true if the class is being initialized by us (which means that
4149  * calling dvmInitClass will return immediately after fiddling with locks).
4150  * Returns false if it's not being initialized, or if it's being
4151  * initialized by another thread.
4152  *
4153  * The value for initThreadId is always set to "self->threadId", by the
4154  * thread doing the initializing.  If it was done by the current thread,
4155  * we are guaranteed to see "initializing" and our thread ID, even on SMP.
4156  * If it was done by another thread, the only bad situation is one in
4157  * which we see "initializing" and a stale copy of our own thread ID
4158  * while another thread is actually handling init.
4159  *
4160  * The initThreadId field is used during class linking, so it *is*
4161  * possible to have a stale value floating around.  We need to ensure
4162  * that memory accesses happen in the correct order.
4163  */
dvmIsClassInitializing(const ClassObject * clazz)4164 bool dvmIsClassInitializing(const ClassObject* clazz)
4165 {
4166     const int32_t* addr = (const int32_t*)(const void*)&clazz->status;
4167     int32_t value = android_atomic_acquire_load(addr);
4168     ClassStatus status = static_cast<ClassStatus>(value);
4169     return (status == CLASS_INITIALIZING &&
4170             clazz->initThreadId == dvmThreadSelf()->threadId);
4171 }
4172 
4173 /*
4174  * If a class has not been initialized, do so by executing the code in
4175  * <clinit>.  The sequence is described in the VM spec v2 2.17.5.
4176  *
4177  * It is possible for multiple threads to arrive here simultaneously, so
4178  * we need to lock the class while we check stuff.  We know that no
4179  * interpreted code has access to the class yet, so we can use the class's
4180  * monitor lock.
4181  *
4182  * We will often be called recursively, e.g. when the <clinit> code resolves
4183  * one of its fields, the field resolution will try to initialize the class.
4184  * In that case we will return "true" even though the class isn't actually
4185  * ready to go.  The ambiguity can be resolved with dvmIsClassInitializing().
4186  * (TODO: consider having this return an enum to avoid the extra call --
4187  * return -1 on failure, 0 on success, 1 on still-initializing.  Looks like
4188  * dvmIsClassInitializing() is always paired with *Initialized())
4189  *
4190  * This can get very interesting if a class has a static field initialized
4191  * to a new instance of itself.  <clinit> will end up calling <init> on
4192  * the members it is initializing, which is fine unless it uses the contents
4193  * of static fields to initialize instance fields.  This will leave the
4194  * static-referenced objects in a partially initialized state.  This is
4195  * reasonably rare and can sometimes be cured with proper field ordering.
4196  *
4197  * On failure, returns "false" with an exception raised.
4198  *
4199  * -----
4200  *
4201  * It is possible to cause a deadlock by having a situation like this:
4202  *   class A { static { sleep(10000); new B(); } }
4203  *   class B { static { sleep(10000); new A(); } }
4204  *   new Thread() { public void run() { new A(); } }.start();
4205  *   new Thread() { public void run() { new B(); } }.start();
4206  * This appears to be expected under the spec.
4207  *
4208  * The interesting question is what to do if somebody calls Thread.interrupt()
4209  * on one of the deadlocked threads.  According to the VM spec, they're both
4210  * sitting in "wait".  Should the interrupt code quietly raise the
4211  * "interrupted" flag, or should the "wait" return immediately with an
4212  * exception raised?
4213  *
4214  * This gets a little murky.  The VM spec says we call "wait", and the
4215  * spec for Thread.interrupt says Object.wait is interruptible.  So it
4216  * seems that, if we get unlucky and interrupt class initialization, we
4217  * are expected to throw (which gets converted to ExceptionInInitializerError
4218  * since InterruptedException is checked).
4219  *
4220  * There are a couple of problems here.  First, all threads are expected to
4221  * present a consistent view of class initialization, so we can't have it
4222  * fail in one thread and succeed in another.  Second, once a class fails
4223  * to initialize, it must *always* fail.  This means that a stray interrupt()
4224  * call could render a class unusable for the lifetime of the VM.
4225  *
4226  * In most cases -- the deadlock example above being a counter-example --
4227  * the interrupting thread can't tell whether the target thread handled
4228  * the initialization itself or had to wait while another thread did the
4229  * work.  Refusing to interrupt class initialization is, in most cases,
4230  * not something that a program can reliably detect.
4231  *
4232  * On the assumption that interrupting class initialization is highly
4233  * undesirable in most circumstances, and that failing to do so does not
4234  * deviate from the spec in a meaningful way, we don't allow class init
4235  * to be interrupted by Thread.interrupt().
4236  */
dvmInitClass(ClassObject * clazz)4237 bool dvmInitClass(ClassObject* clazz)
4238 {
4239     u8 startWhen = 0;
4240 
4241 #if LOG_CLASS_LOADING
4242     bool initializedByUs = false;
4243 #endif
4244 
4245     Thread* self = dvmThreadSelf();
4246     const Method* method;
4247 
4248     dvmLockObject(self, (Object*) clazz);
4249     assert(dvmIsClassLinked(clazz) || clazz->status == CLASS_ERROR);
4250 
4251     /*
4252      * If the class hasn't been verified yet, do so now.
4253      */
4254     if (clazz->status < CLASS_VERIFIED) {
4255         /*
4256          * If we're in an "erroneous" state, throw an exception and bail.
4257          */
4258         if (clazz->status == CLASS_ERROR) {
4259             throwEarlierClassFailure(clazz);
4260             goto bail_unlock;
4261         }
4262 
4263         assert(clazz->status == CLASS_RESOLVED);
4264         assert(!IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED));
4265 
4266         if (gDvm.classVerifyMode == VERIFY_MODE_NONE ||
4267             (gDvm.classVerifyMode == VERIFY_MODE_REMOTE &&
4268              clazz->classLoader == NULL))
4269         {
4270             /* advance to "verified" state */
4271             ALOGV("+++ not verifying class %s (cl=%p)",
4272                 clazz->descriptor, clazz->classLoader);
4273             clazz->status = CLASS_VERIFIED;
4274             goto noverify;
4275         }
4276 
4277         if (!gDvm.optimizing)
4278             ALOGV("+++ late verify on %s", clazz->descriptor);
4279 
4280         /*
4281          * We're not supposed to optimize an unverified class, but during
4282          * development this mode was useful.  We can't verify an optimized
4283          * class because the optimization process discards information.
4284          */
4285         if (IS_CLASS_FLAG_SET(clazz, CLASS_ISOPTIMIZED)) {
4286             ALOGW("Class '%s' was optimized without verification; "
4287                  "not verifying now",
4288                 clazz->descriptor);
4289             ALOGW("  ('rm /data/dalvik-cache/*' and restart to fix this)");
4290             goto verify_failed;
4291         }
4292 
4293         clazz->status = CLASS_VERIFYING;
4294         if (!dvmVerifyClass(clazz)) {
4295 verify_failed:
4296             dvmThrowVerifyError(clazz->descriptor);
4297             dvmSetFieldObject((Object*) clazz,
4298                 OFFSETOF_MEMBER(ClassObject, verifyErrorClass),
4299                 (Object*) dvmGetException(self)->clazz);
4300             clazz->status = CLASS_ERROR;
4301             goto bail_unlock;
4302         }
4303 
4304         clazz->status = CLASS_VERIFIED;
4305     }
4306 noverify:
4307 
4308     /*
4309      * We need to ensure that certain instructions, notably accesses to
4310      * volatile fields, are replaced before any code is executed.  This
4311      * must happen even if DEX optimizations are disabled.
4312      *
4313      * The only exception to this rule is that we don't want to do this
4314      * during dexopt.  We don't generally initialize classes at all
4315      * during dexopt, but because we're loading classes we need Class and
4316      * Object (and possibly some Throwable stuff if a class isn't found).
4317      * If optimizations are disabled, we don't want to output optimized
4318      * instructions at this time.  This means we will be executing <clinit>
4319      * code with un-fixed volatiles, but we're only doing it for a few
4320      * system classes, and dexopt runs single-threaded.
4321      */
4322     if (!IS_CLASS_FLAG_SET(clazz, CLASS_ISOPTIMIZED) && !gDvm.optimizing) {
4323         ALOGV("+++ late optimize on %s (pv=%d)",
4324             clazz->descriptor, IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED));
4325         bool essentialOnly = (gDvm.dexOptMode != OPTIMIZE_MODE_FULL);
4326         dvmOptimizeClass(clazz, essentialOnly);
4327         SET_CLASS_FLAG(clazz, CLASS_ISOPTIMIZED);
4328     }
4329 
4330     /* update instruction stream now that verification + optimization is done */
4331     dvmFlushBreakpoints(clazz);
4332 
4333     if (clazz->status == CLASS_INITIALIZED)
4334         goto bail_unlock;
4335 
4336     while (clazz->status == CLASS_INITIALIZING) {
4337         /* we caught somebody else in the act; was it us? */
4338         if (clazz->initThreadId == self->threadId) {
4339             //ALOGV("HEY: found a recursive <clinit>");
4340             goto bail_unlock;
4341         }
4342 
4343         if (dvmCheckException(self)) {
4344             ALOGW("GLITCH: exception pending at start of class init");
4345             dvmAbort();
4346         }
4347 
4348         /*
4349          * Wait for the other thread to finish initialization.  We pass
4350          * "false" for the "interruptShouldThrow" arg so it doesn't throw
4351          * an exception on interrupt.
4352          */
4353         dvmObjectWait(self, (Object*) clazz, 0, 0, false);
4354 
4355         /*
4356          * When we wake up, repeat the test for init-in-progress.  If there's
4357          * an exception pending (only possible if "interruptShouldThrow"
4358          * was set), bail out.
4359          */
4360         if (dvmCheckException(self)) {
4361             ALOGI("Class init of '%s' failing with wait() exception",
4362                 clazz->descriptor);
4363             /*
4364              * TODO: this is bogus, because it means the two threads have a
4365              * different idea of the class status.  We need to flag the
4366              * class as bad and ensure that the initializer thread respects
4367              * our notice.  If we get lucky and wake up after the class has
4368              * finished initialization but before being woken, we have to
4369              * swallow the exception, perhaps raising thread->interrupted
4370              * to preserve semantics.
4371              *
4372              * Since we're not currently allowing interrupts, this should
4373              * never happen and we don't need to fix this.
4374              */
4375             assert(false);
4376             dvmThrowExceptionInInitializerError();
4377             clazz->status = CLASS_ERROR;
4378             goto bail_unlock;
4379         }
4380         if (clazz->status == CLASS_INITIALIZING) {
4381             ALOGI("Waiting again for class init");
4382             continue;
4383         }
4384         assert(clazz->status == CLASS_INITIALIZED ||
4385                clazz->status == CLASS_ERROR);
4386         if (clazz->status == CLASS_ERROR) {
4387             /*
4388              * The caller wants an exception, but it was thrown in a
4389              * different thread.  Synthesize one here.
4390              */
4391             dvmThrowUnsatisfiedLinkError(
4392                 "(<clinit> failed, see exception in other thread)");
4393         }
4394         goto bail_unlock;
4395     }
4396 
4397     /* see if we failed previously */
4398     if (clazz->status == CLASS_ERROR) {
4399         // might be wise to unlock before throwing; depends on which class
4400         // it is that we have locked
4401         dvmUnlockObject(self, (Object*) clazz);
4402         throwEarlierClassFailure(clazz);
4403         return false;
4404     }
4405 
4406     if (gDvm.allocProf.enabled) {
4407         startWhen = dvmGetRelativeTimeNsec();
4408     }
4409 
4410     /*
4411      * We're ready to go, and have exclusive access to the class.
4412      *
4413      * Before we start initialization, we need to do one extra bit of
4414      * validation: make sure that the methods declared here match up
4415      * with our superclass and interfaces.  We know that the UTF-8
4416      * descriptors match, but classes from different class loaders can
4417      * have the same name.
4418      *
4419      * We do this now, rather than at load/link time, for the same reason
4420      * that we defer verification.
4421      *
4422      * It's unfortunate that we need to do this at all, but we risk
4423      * mixing reference types with identical names (see Dalvik test 068).
4424      */
4425     if (!validateSuperDescriptors(clazz)) {
4426         assert(dvmCheckException(self));
4427         clazz->status = CLASS_ERROR;
4428         goto bail_unlock;
4429     }
4430 
4431     /*
4432      * Let's initialize this thing.
4433      *
4434      * We unlock the object so that other threads can politely sleep on
4435      * our mutex with Object.wait(), instead of hanging or spinning trying
4436      * to grab our mutex.
4437      */
4438     assert(clazz->status < CLASS_INITIALIZING);
4439 
4440 #if LOG_CLASS_LOADING
4441     // We started initializing.
4442     logClassLoad('+', clazz);
4443     initializedByUs = true;
4444 #endif
4445 
4446     /* order matters here, esp. interaction with dvmIsClassInitializing */
4447     clazz->initThreadId = self->threadId;
4448     android_atomic_release_store(CLASS_INITIALIZING,
4449                                  (int32_t*)(void*)&clazz->status);
4450     dvmUnlockObject(self, (Object*) clazz);
4451 
4452     /* init our superclass */
4453     if (clazz->super != NULL && clazz->super->status != CLASS_INITIALIZED) {
4454         assert(!dvmIsInterfaceClass(clazz));
4455         if (!dvmInitClass(clazz->super)) {
4456             assert(dvmCheckException(self));
4457             clazz->status = CLASS_ERROR;
4458             /* wake up anybody who started waiting while we were unlocked */
4459             dvmLockObject(self, (Object*) clazz);
4460             goto bail_notify;
4461         }
4462     }
4463 
4464     /* Initialize any static fields whose values are
4465      * stored in the Dex file.  This should include all of the
4466      * simple "final static" fields, which are required to
4467      * be initialized first. (vmspec 2 sec 2.17.5 item 8)
4468      * More-complicated final static fields should be set
4469      * at the beginning of <clinit>;  all we can do is trust
4470      * that the compiler did the right thing.
4471      */
4472     initSFields(clazz);
4473 
4474     /* Execute any static initialization code.
4475      */
4476     method = dvmFindDirectMethodByDescriptor(clazz, "<clinit>", "()V");
4477     if (method == NULL) {
4478         LOGVV("No <clinit> found for %s", clazz->descriptor);
4479     } else {
4480         LOGVV("Invoking %s.<clinit>", clazz->descriptor);
4481         JValue unused;
4482         dvmCallMethod(self, method, NULL, &unused);
4483     }
4484 
4485     if (dvmCheckException(self)) {
4486         /*
4487          * We've had an exception thrown during static initialization.  We
4488          * need to throw an ExceptionInInitializerError, but we want to
4489          * tuck the original exception into the "cause" field.
4490          */
4491         ALOGW("Exception %s thrown while initializing %s",
4492             (dvmGetException(self)->clazz)->descriptor, clazz->descriptor);
4493         dvmThrowExceptionInInitializerError();
4494         //ALOGW("+++ replaced");
4495 
4496         dvmLockObject(self, (Object*) clazz);
4497         clazz->status = CLASS_ERROR;
4498     } else {
4499         /* success! */
4500         dvmLockObject(self, (Object*) clazz);
4501         clazz->status = CLASS_INITIALIZED;
4502         LOGVV("Initialized class: %s", clazz->descriptor);
4503 
4504         /*
4505          * Update alloc counters.  TODO: guard with mutex.
4506          */
4507         if (gDvm.allocProf.enabled && startWhen != 0) {
4508             u8 initDuration = dvmGetRelativeTimeNsec() - startWhen;
4509             gDvm.allocProf.classInitTime += initDuration;
4510             self->allocProf.classInitTime += initDuration;
4511             gDvm.allocProf.classInitCount++;
4512             self->allocProf.classInitCount++;
4513         }
4514     }
4515 
4516 bail_notify:
4517     /*
4518      * Notify anybody waiting on the object.
4519      */
4520     dvmObjectNotifyAll(self, (Object*) clazz);
4521 
4522 bail_unlock:
4523 
4524 #if LOG_CLASS_LOADING
4525     if (initializedByUs) {
4526         // We finished initializing.
4527         logClassLoad('-', clazz);
4528     }
4529 #endif
4530 
4531     dvmUnlockObject(self, (Object*) clazz);
4532 
4533     return (clazz->status != CLASS_ERROR);
4534 }
4535 
4536 /*
4537  * Replace method->nativeFunc and method->insns with new values.  This is
4538  * commonly performed after successful resolution of a native method.
4539  *
4540  * There are three basic states:
4541  *  (1) (initial) nativeFunc = dvmResolveNativeMethod, insns = NULL
4542  *  (2) (internal native) nativeFunc = <impl>, insns = NULL
4543  *  (3) (JNI) nativeFunc = JNI call bridge, insns = <impl>
4544  *
4545  * nativeFunc must never be NULL for a native method.
4546  *
4547  * The most common transitions are (1)->(2) and (1)->(3).  The former is
4548  * atomic, since only one field is updated; the latter is not, but since
4549  * dvmResolveNativeMethod ignores the "insns" field we just need to make
4550  * sure the update happens in the correct order.
4551  *
4552  * A transition from (2)->(1) would work fine, but (3)->(1) will not,
4553  * because both fields change.  If we did this while a thread was executing
4554  * in the call bridge, we could null out the "insns" field right before
4555  * the bridge tried to call through it.  So, once "insns" is set, we do
4556  * not allow it to be cleared.  A NULL value for the "insns" argument is
4557  * treated as "do not change existing value".
4558  */
dvmSetNativeFunc(Method * method,DalvikBridgeFunc func,const u2 * insns)4559 void dvmSetNativeFunc(Method* method, DalvikBridgeFunc func,
4560     const u2* insns)
4561 {
4562     ClassObject* clazz = method->clazz;
4563 
4564     assert(func != NULL);
4565 
4566     /* just open up both; easier that way */
4567     dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
4568     dvmLinearReadWrite(clazz->classLoader, clazz->directMethods);
4569 
4570     if (insns != NULL) {
4571         /* update both, ensuring that "insns" is observed first */
4572         method->insns = insns;
4573         android_atomic_release_store((int32_t) func,
4574             (volatile int32_t*)(void*) &method->nativeFunc);
4575     } else {
4576         /* only update nativeFunc */
4577         method->nativeFunc = func;
4578     }
4579 
4580     dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
4581     dvmLinearReadOnly(clazz->classLoader, clazz->directMethods);
4582 }
4583 
4584 /*
4585  * Add a RegisterMap to a Method.  This is done when we verify the class
4586  * and compute the register maps at class initialization time (i.e. when
4587  * we don't have a pre-generated map).  This means "pMap" is on the heap
4588  * and should be freed when the Method is discarded.
4589  */
dvmSetRegisterMap(Method * method,const RegisterMap * pMap)4590 void dvmSetRegisterMap(Method* method, const RegisterMap* pMap)
4591 {
4592     ClassObject* clazz = method->clazz;
4593 
4594     if (method->registerMap != NULL) {
4595         /* unexpected during class loading, okay on first use (uncompress) */
4596         ALOGV("NOTE: registerMap already set for %s.%s",
4597             method->clazz->descriptor, method->name);
4598         /* keep going */
4599     }
4600     assert(!dvmIsNativeMethod(method) && !dvmIsAbstractMethod(method));
4601 
4602     /* might be virtual or direct */
4603     dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
4604     dvmLinearReadWrite(clazz->classLoader, clazz->directMethods);
4605 
4606     method->registerMap = pMap;
4607 
4608     dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
4609     dvmLinearReadOnly(clazz->classLoader, clazz->directMethods);
4610 }
4611 
4612 /*
4613  * dvmHashForeach callback.  A nonzero return value causes foreach to
4614  * bail out.
4615  */
findClassCallback(void * vclazz,void * arg)4616 static int findClassCallback(void* vclazz, void* arg)
4617 {
4618     ClassObject* clazz = (ClassObject*)vclazz;
4619     const char* descriptor = (const char*) arg;
4620 
4621     if (strcmp(clazz->descriptor, descriptor) == 0)
4622         return (int) clazz;
4623     return 0;
4624 }
4625 
4626 /*
4627  * Find a loaded class by descriptor. Returns the first one found.
4628  * Because there can be more than one if class loaders are involved,
4629  * this is not an especially good API. (Currently only used by the
4630  * debugger and "checking" JNI.)
4631  *
4632  * "descriptor" should have the form "Ljava/lang/Class;" or
4633  * "[Ljava/lang/Class;", i.e. a descriptor and not an internal-form
4634  * class name.
4635  */
dvmFindLoadedClass(const char * descriptor)4636 ClassObject* dvmFindLoadedClass(const char* descriptor)
4637 {
4638     int result;
4639 
4640     dvmHashTableLock(gDvm.loadedClasses);
4641     result = dvmHashForeach(gDvm.loadedClasses, findClassCallback,
4642             (void*) descriptor);
4643     dvmHashTableUnlock(gDvm.loadedClasses);
4644 
4645     return (ClassObject*) result;
4646 }
4647 
4648 /*
4649  * Retrieve the system (a/k/a application) class loader.
4650  *
4651  * The caller must call dvmReleaseTrackedAlloc on the result.
4652  */
dvmGetSystemClassLoader()4653 Object* dvmGetSystemClassLoader()
4654 {
4655     Thread* self = dvmThreadSelf();
4656     ClassObject* clClass = gDvm.classJavaLangClassLoader;
4657 
4658     if (!dvmIsClassInitialized(clClass) && !dvmInitClass(clClass))
4659         return NULL;
4660 
4661     JValue result;
4662     dvmCallMethod(self, gDvm.methJavaLangClassLoader_getSystemClassLoader,
4663         NULL, &result);
4664     Object* loader = (Object*)result.l;
4665     dvmAddTrackedAlloc(loader, self);
4666     return loader;
4667 }
4668 
4669 
4670 /*
4671  * This is a dvmHashForeach callback.
4672  */
dumpClass(void * vclazz,void * varg)4673 static int dumpClass(void* vclazz, void* varg)
4674 {
4675     const ClassObject* clazz = (const ClassObject*) vclazz;
4676     const ClassObject* super;
4677     int flags = (int) varg;
4678     char* desc;
4679     int i;
4680 
4681     if (clazz == NULL) {
4682         ALOGI("dumpClass: ignoring request to dump null class");
4683         return 0;
4684     }
4685 
4686     if ((flags & kDumpClassFullDetail) == 0) {
4687         bool showInit = (flags & kDumpClassInitialized) != 0;
4688         bool showLoader = (flags & kDumpClassClassLoader) != 0;
4689         const char* initStr;
4690 
4691         initStr = dvmIsClassInitialized(clazz) ? "true" : "false";
4692 
4693         if (showInit && showLoader)
4694             ALOGI("%s %p %s", clazz->descriptor, clazz->classLoader, initStr);
4695         else if (showInit)
4696             ALOGI("%s %s", clazz->descriptor, initStr);
4697         else if (showLoader)
4698             ALOGI("%s %p", clazz->descriptor, clazz->classLoader);
4699         else
4700             ALOGI("%s", clazz->descriptor);
4701 
4702         return 0;
4703     }
4704 
4705     /* clazz->super briefly holds the superclass index during class prep */
4706     if ((u4)clazz->super > 0x10000 && (u4) clazz->super != (u4)-1)
4707         super = clazz->super;
4708     else
4709         super = NULL;
4710 
4711     ALOGI("----- %s '%s' cl=%p ser=0x%08x -----",
4712         dvmIsInterfaceClass(clazz) ? "interface" : "class",
4713         clazz->descriptor, clazz->classLoader, clazz->serialNumber);
4714     ALOGI("  objectSize=%d (%d from super)", (int) clazz->objectSize,
4715         super != NULL ? (int) super->objectSize : -1);
4716     ALOGI("  access=0x%04x.%04x", clazz->accessFlags >> 16,
4717         clazz->accessFlags & JAVA_FLAGS_MASK);
4718     if (super != NULL)
4719         ALOGI("  super='%s' (cl=%p)", super->descriptor, super->classLoader);
4720     if (dvmIsArrayClass(clazz)) {
4721         ALOGI("  dimensions=%d elementClass=%s",
4722             clazz->arrayDim, clazz->elementClass->descriptor);
4723     }
4724     if (clazz->iftableCount > 0) {
4725         ALOGI("  interfaces (%d):", clazz->iftableCount);
4726         for (i = 0; i < clazz->iftableCount; i++) {
4727             InterfaceEntry* ent = &clazz->iftable[i];
4728             int j;
4729 
4730             ALOGI("    %2d: %s (cl=%p)",
4731                 i, ent->clazz->descriptor, ent->clazz->classLoader);
4732 
4733             /* enable when needed */
4734             if (false && ent->methodIndexArray != NULL) {
4735                 for (j = 0; j < ent->clazz->virtualMethodCount; j++)
4736                     ALOGI("      %2d: %d %s %s",
4737                         j, ent->methodIndexArray[j],
4738                         ent->clazz->virtualMethods[j].name,
4739                         clazz->vtable[ent->methodIndexArray[j]]->name);
4740             }
4741         }
4742     }
4743     if (!dvmIsInterfaceClass(clazz)) {
4744         ALOGI("  vtable (%d entries, %d in super):", clazz->vtableCount,
4745             super != NULL ? super->vtableCount : 0);
4746         for (i = 0; i < clazz->vtableCount; i++) {
4747             desc = dexProtoCopyMethodDescriptor(&clazz->vtable[i]->prototype);
4748             ALOGI("    %s%2d: %p %20s %s",
4749                 (i != clazz->vtable[i]->methodIndex) ? "*** " : "",
4750                 (u4) clazz->vtable[i]->methodIndex, clazz->vtable[i],
4751                 clazz->vtable[i]->name, desc);
4752             free(desc);
4753         }
4754         ALOGI("  direct methods (%d entries):", clazz->directMethodCount);
4755         for (i = 0; i < clazz->directMethodCount; i++) {
4756             desc = dexProtoCopyMethodDescriptor(
4757                     &clazz->directMethods[i].prototype);
4758             ALOGI("    %2d: %20s %s", i, clazz->directMethods[i].name,
4759                 desc);
4760             free(desc);
4761         }
4762     } else {
4763         ALOGI("  interface methods (%d):", clazz->virtualMethodCount);
4764         for (i = 0; i < clazz->virtualMethodCount; i++) {
4765             desc = dexProtoCopyMethodDescriptor(
4766                     &clazz->virtualMethods[i].prototype);
4767             ALOGI("    %2d: %2d %20s %s", i,
4768                 (u4) clazz->virtualMethods[i].methodIndex,
4769                 clazz->virtualMethods[i].name,
4770                 desc);
4771             free(desc);
4772         }
4773     }
4774     if (clazz->sfieldCount > 0) {
4775         ALOGI("  static fields (%d entries):", clazz->sfieldCount);
4776         for (i = 0; i < clazz->sfieldCount; i++) {
4777             ALOGI("    %2d: %20s %s", i, clazz->sfields[i].name,
4778                 clazz->sfields[i].signature);
4779         }
4780     }
4781     if (clazz->ifieldCount > 0) {
4782         ALOGI("  instance fields (%d entries):", clazz->ifieldCount);
4783         for (i = 0; i < clazz->ifieldCount; i++) {
4784             ALOGI("    %2d: %20s %s", i, clazz->ifields[i].name,
4785                 clazz->ifields[i].signature);
4786         }
4787     }
4788     return 0;
4789 }
4790 
4791 /*
4792  * Dump the contents of a single class.
4793  *
4794  * Pass kDumpClassFullDetail into "flags" to get lots of detail.
4795  */
dvmDumpClass(const ClassObject * clazz,int flags)4796 void dvmDumpClass(const ClassObject* clazz, int flags)
4797 {
4798     dumpClass((void*) clazz, (void*) flags);
4799 }
4800 
4801 /*
4802  * Dump the contents of all classes.
4803  */
dvmDumpAllClasses(int flags)4804 void dvmDumpAllClasses(int flags)
4805 {
4806     dvmHashTableLock(gDvm.loadedClasses);
4807     dvmHashForeach(gDvm.loadedClasses, dumpClass, (void*) flags);
4808     dvmHashTableUnlock(gDvm.loadedClasses);
4809 }
4810 
4811 /*
4812  * Get the number of loaded classes
4813  */
dvmGetNumLoadedClasses()4814 int dvmGetNumLoadedClasses()
4815 {
4816     int count;
4817     dvmHashTableLock(gDvm.loadedClasses);
4818     count = dvmHashTableNumEntries(gDvm.loadedClasses);
4819     dvmHashTableUnlock(gDvm.loadedClasses);
4820     return count;
4821 }
4822 
4823 /*
4824  * Write some statistics to the log file.
4825  */
dvmDumpLoaderStats(const char * msg)4826 void dvmDumpLoaderStats(const char* msg)
4827 {
4828     ALOGV("VM stats (%s): cls=%d/%d meth=%d ifld=%d sfld=%d linear=%d",
4829         msg, gDvm.numLoadedClasses, dvmHashTableNumEntries(gDvm.loadedClasses),
4830         gDvm.numDeclaredMethods, gDvm.numDeclaredInstFields,
4831         gDvm.numDeclaredStaticFields, gDvm.pBootLoaderAlloc->curOffset);
4832 #ifdef COUNT_PRECISE_METHODS
4833     ALOGI("GC precise methods: %d",
4834         dvmPointerSetGetCount(gDvm.preciseMethods));
4835 #endif
4836 }
4837 
4838 /*
4839  * ===========================================================================
4840  *      Method Prototypes and Descriptors
4841  * ===========================================================================
4842  */
4843 
4844 /*
4845  * Compare the two method names and prototypes, a la strcmp(). The
4846  * name is considered the "major" order and the prototype the "minor"
4847  * order. The prototypes are compared as if by dvmCompareMethodProtos().
4848  */
dvmCompareMethodNamesAndProtos(const Method * method1,const Method * method2)4849 int dvmCompareMethodNamesAndProtos(const Method* method1,
4850         const Method* method2)
4851 {
4852     int result = strcmp(method1->name, method2->name);
4853 
4854     if (result != 0) {
4855         return result;
4856     }
4857 
4858     return dvmCompareMethodProtos(method1, method2);
4859 }
4860 
4861 /*
4862  * Compare the two method names and prototypes, a la strcmp(), ignoring
4863  * the return value. The name is considered the "major" order and the
4864  * prototype the "minor" order. The prototypes are compared as if by
4865  * dvmCompareMethodArgProtos().
4866  */
dvmCompareMethodNamesAndParameterProtos(const Method * method1,const Method * method2)4867 int dvmCompareMethodNamesAndParameterProtos(const Method* method1,
4868         const Method* method2)
4869 {
4870     int result = strcmp(method1->name, method2->name);
4871 
4872     if (result != 0) {
4873         return result;
4874     }
4875 
4876     return dvmCompareMethodParameterProtos(method1, method2);
4877 }
4878 
4879 /*
4880  * Compare a (name, prototype) pair with the (name, prototype) of
4881  * a method, a la strcmp(). The name is considered the "major" order and
4882  * the prototype the "minor" order. The descriptor and prototype are
4883  * compared as if by dvmCompareDescriptorAndMethodProto().
4884  */
dvmCompareNameProtoAndMethod(const char * name,const DexProto * proto,const Method * method)4885 int dvmCompareNameProtoAndMethod(const char* name,
4886     const DexProto* proto, const Method* method)
4887 {
4888     int result = strcmp(name, method->name);
4889 
4890     if (result != 0) {
4891         return result;
4892     }
4893 
4894     return dexProtoCompare(proto, &method->prototype);
4895 }
4896 
4897 /*
4898  * Compare a (name, method descriptor) pair with the (name, prototype) of
4899  * a method, a la strcmp(). The name is considered the "major" order and
4900  * the prototype the "minor" order. The descriptor and prototype are
4901  * compared as if by dvmCompareDescriptorAndMethodProto().
4902  */
dvmCompareNameDescriptorAndMethod(const char * name,const char * descriptor,const Method * method)4903 int dvmCompareNameDescriptorAndMethod(const char* name,
4904     const char* descriptor, const Method* method)
4905 {
4906     int result = strcmp(name, method->name);
4907 
4908     if (result != 0) {
4909         return result;
4910     }
4911 
4912     return dvmCompareDescriptorAndMethodProto(descriptor, method);
4913 }
4914