• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define ATRACE_TAG ATRACE_TAG_DALVIK
18 
19 /*
20  * Garbage-collecting memory allocator.
21  */
22 #include "Dalvik.h"
23 #include "alloc/HeapBitmap.h"
24 #include "alloc/Verify.h"
25 #include "alloc/Heap.h"
26 #include "alloc/HeapInternal.h"
27 #include "alloc/DdmHeap.h"
28 #include "alloc/HeapSource.h"
29 #include "alloc/MarkSweep.h"
30 #include "os/os.h"
31 
32 #include <sys/mman.h>
33 #include <sys/resource.h>
34 #include <sys/time.h>
35 #include <limits.h>
36 #include <errno.h>
37 
38 #include <cutils/trace.h>
39 
40 static const GcSpec kGcForMallocSpec = {
41     true,  /* isPartial */
42     false,  /* isConcurrent */
43     true,  /* doPreserve */
44     "GC_FOR_ALLOC"
45 };
46 
47 const GcSpec *GC_FOR_MALLOC = &kGcForMallocSpec;
48 
49 static const GcSpec kGcConcurrentSpec  = {
50     true,  /* isPartial */
51     true,  /* isConcurrent */
52     true,  /* doPreserve */
53     "GC_CONCURRENT"
54 };
55 
56 const GcSpec *GC_CONCURRENT = &kGcConcurrentSpec;
57 
58 static const GcSpec kGcExplicitSpec = {
59     false,  /* isPartial */
60     true,  /* isConcurrent */
61     true,  /* doPreserve */
62     "GC_EXPLICIT"
63 };
64 
65 const GcSpec *GC_EXPLICIT = &kGcExplicitSpec;
66 
67 static const GcSpec kGcBeforeOomSpec = {
68     false,  /* isPartial */
69     false,  /* isConcurrent */
70     false,  /* doPreserve */
71     "GC_BEFORE_OOM"
72 };
73 
74 const GcSpec *GC_BEFORE_OOM = &kGcBeforeOomSpec;
75 
76 /*
77  * Initialize the GC heap.
78  *
79  * Returns true if successful, false otherwise.
80  */
dvmHeapStartup()81 bool dvmHeapStartup()
82 {
83     GcHeap *gcHeap;
84 
85     if (gDvm.heapGrowthLimit == 0) {
86         gDvm.heapGrowthLimit = gDvm.heapMaximumSize;
87     }
88 
89     gcHeap = dvmHeapSourceStartup(gDvm.heapStartingSize,
90                                   gDvm.heapMaximumSize,
91                                   gDvm.heapGrowthLimit);
92     if (gcHeap == NULL) {
93         return false;
94     }
95     gcHeap->ddmHpifWhen = 0;
96     gcHeap->ddmHpsgWhen = 0;
97     gcHeap->ddmHpsgWhat = 0;
98     gcHeap->ddmNhsgWhen = 0;
99     gcHeap->ddmNhsgWhat = 0;
100     gDvm.gcHeap = gcHeap;
101 
102     /* Set up the lists we'll use for cleared reference objects.
103      */
104     gcHeap->clearedReferences = NULL;
105 
106     if (!dvmCardTableStartup(gDvm.heapMaximumSize, gDvm.heapGrowthLimit)) {
107         LOGE_HEAP("card table startup failed.");
108         return false;
109     }
110 
111     return true;
112 }
113 
dvmHeapStartupAfterZygote()114 bool dvmHeapStartupAfterZygote()
115 {
116     return dvmHeapSourceStartupAfterZygote();
117 }
118 
dvmHeapShutdown()119 void dvmHeapShutdown()
120 {
121 //TODO: make sure we're locked
122     if (gDvm.gcHeap != NULL) {
123         dvmCardTableShutdown();
124         /* Destroy the heap.  Any outstanding pointers will point to
125          * unmapped memory (unless/until someone else maps it).  This
126          * frees gDvm.gcHeap as a side-effect.
127          */
128         dvmHeapSourceShutdown(&gDvm.gcHeap);
129     }
130 }
131 
132 /*
133  * Shutdown any threads internal to the heap.
134  */
dvmHeapThreadShutdown()135 void dvmHeapThreadShutdown()
136 {
137     dvmHeapSourceThreadShutdown();
138 }
139 
140 /*
141  * Grab the lock, but put ourselves into THREAD_VMWAIT if it looks like
142  * we're going to have to wait on the mutex.
143  */
dvmLockHeap()144 bool dvmLockHeap()
145 {
146     if (dvmTryLockMutex(&gDvm.gcHeapLock) != 0) {
147         Thread *self;
148         ThreadStatus oldStatus;
149 
150         self = dvmThreadSelf();
151         oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
152         dvmLockMutex(&gDvm.gcHeapLock);
153         dvmChangeStatus(self, oldStatus);
154     }
155 
156     return true;
157 }
158 
dvmUnlockHeap()159 void dvmUnlockHeap()
160 {
161     dvmUnlockMutex(&gDvm.gcHeapLock);
162 }
163 
164 /* Do a full garbage collection, which may grow the
165  * heap as a side-effect if the live set is large.
166  */
gcForMalloc(bool clearSoftReferences)167 static void gcForMalloc(bool clearSoftReferences)
168 {
169     if (gDvm.allocProf.enabled) {
170         Thread* self = dvmThreadSelf();
171         gDvm.allocProf.gcCount++;
172         if (self != NULL) {
173             self->allocProf.gcCount++;
174         }
175     }
176     /* This may adjust the soft limit as a side-effect.
177      */
178     const GcSpec *spec = clearSoftReferences ? GC_BEFORE_OOM : GC_FOR_MALLOC;
179     dvmCollectGarbageInternal(spec);
180 }
181 
182 /* Try as hard as possible to allocate some memory.
183  */
tryMalloc(size_t size)184 static void *tryMalloc(size_t size)
185 {
186     void *ptr;
187 
188 //TODO: figure out better heuristics
189 //    There will be a lot of churn if someone allocates a bunch of
190 //    big objects in a row, and we hit the frag case each time.
191 //    A full GC for each.
192 //    Maybe we grow the heap in bigger leaps
193 //    Maybe we skip the GC if the size is large and we did one recently
194 //      (number of allocations ago) (watch for thread effects)
195 //    DeflateTest allocs a bunch of ~128k buffers w/in 0-5 allocs of each other
196 //      (or, at least, there are only 0-5 objects swept each time)
197 
198     ptr = dvmHeapSourceAlloc(size);
199     if (ptr != NULL) {
200         return ptr;
201     }
202 
203     /*
204      * The allocation failed.  If the GC is running, block until it
205      * completes and retry.
206      */
207     if (gDvm.gcHeap->gcRunning) {
208         /*
209          * The GC is concurrently tracing the heap.  Release the heap
210          * lock, wait for the GC to complete, and retrying allocating.
211          */
212         dvmWaitForConcurrentGcToComplete();
213     } else {
214       /*
215        * Try a foreground GC since a concurrent GC is not currently running.
216        */
217       gcForMalloc(false);
218     }
219 
220     ptr = dvmHeapSourceAlloc(size);
221     if (ptr != NULL) {
222         return ptr;
223     }
224 
225     /* Even that didn't work;  this is an exceptional state.
226      * Try harder, growing the heap if necessary.
227      */
228     ptr = dvmHeapSourceAllocAndGrow(size);
229     if (ptr != NULL) {
230         size_t newHeapSize;
231 
232         newHeapSize = dvmHeapSourceGetIdealFootprint();
233 //TODO: may want to grow a little bit more so that the amount of free
234 //      space is equal to the old free space + the utilization slop for
235 //      the new allocation.
236         LOGI_HEAP("Grow heap (frag case) to "
237                 "%zu.%03zuMB for %zu-byte allocation",
238                 FRACTIONAL_MB(newHeapSize), size);
239         return ptr;
240     }
241 
242     /* Most allocations should have succeeded by now, so the heap
243      * is really full, really fragmented, or the requested size is
244      * really big.  Do another GC, collecting SoftReferences this
245      * time.  The VM spec requires that all SoftReferences have
246      * been collected and cleared before throwing an OOME.
247      */
248 //TODO: wait for the finalizers from the previous GC to finish
249     LOGI_HEAP("Forcing collection of SoftReferences for %zu-byte allocation",
250             size);
251     gcForMalloc(true);
252     ptr = dvmHeapSourceAllocAndGrow(size);
253     if (ptr != NULL) {
254         return ptr;
255     }
256 //TODO: maybe wait for finalizers and try one last time
257 
258     LOGE_HEAP("Out of memory on a %zd-byte allocation.", size);
259 //TODO: tell the HeapSource to dump its state
260     dvmDumpThread(dvmThreadSelf(), false);
261 
262     return NULL;
263 }
264 
265 /* Throw an OutOfMemoryError if there's a thread to attach it to.
266  * Avoid recursing.
267  *
268  * The caller must not be holding the heap lock, or else the allocations
269  * in dvmThrowException() will deadlock.
270  */
throwOOME()271 static void throwOOME()
272 {
273     Thread *self;
274 
275     if ((self = dvmThreadSelf()) != NULL) {
276         /* If the current (failing) dvmMalloc() happened as part of thread
277          * creation/attachment before the thread became part of the root set,
278          * we can't rely on the thread-local trackedAlloc table, so
279          * we can't keep track of a real allocated OOME object.  But, since
280          * the thread is in the process of being created, it won't have
281          * a useful stack anyway, so we may as well make things easier
282          * by throwing the (stackless) pre-built OOME.
283          */
284         if (dvmIsOnThreadList(self) && !self->throwingOOME) {
285             /* Let ourselves know that we tried to throw an OOM
286              * error in the normal way in case we run out of
287              * memory trying to allocate it inside dvmThrowException().
288              */
289             self->throwingOOME = true;
290 
291             /* Don't include a description string;
292              * one fewer allocation.
293              */
294             dvmThrowOutOfMemoryError(NULL);
295         } else {
296             /*
297              * This thread has already tried to throw an OutOfMemoryError,
298              * which probably means that we're running out of memory
299              * while recursively trying to throw.
300              *
301              * To avoid any more allocation attempts, "throw" a pre-built
302              * OutOfMemoryError object (which won't have a useful stack trace).
303              *
304              * Note that since this call can't possibly allocate anything,
305              * we don't care about the state of self->throwingOOME
306              * (which will usually already be set).
307              */
308             dvmSetException(self, gDvm.outOfMemoryObj);
309         }
310         /* We're done with the possible recursion.
311          */
312         self->throwingOOME = false;
313     }
314 }
315 
316 /*
317  * Allocate storage on the GC heap.  We guarantee 8-byte alignment.
318  *
319  * The new storage is zeroed out.
320  *
321  * Note that, in rare cases, this could get called while a GC is in
322  * progress.  If a non-VM thread tries to attach itself through JNI,
323  * it will need to allocate some objects.  If this becomes annoying to
324  * deal with, we can block it at the source, but holding the allocation
325  * mutex should be enough.
326  *
327  * In rare circumstances (JNI AttachCurrentThread) we can be called
328  * from a non-VM thread.
329  *
330  * Use ALLOC_DONT_TRACK when we either don't want to track an allocation
331  * (because it's being done for the interpreter "new" operation and will
332  * be part of the root set immediately) or we can't (because this allocation
333  * is for a brand new thread).
334  *
335  * Returns NULL and throws an exception on failure.
336  *
337  * TODO: don't do a GC if the debugger thinks all threads are suspended
338  */
dvmMalloc(size_t size,int flags)339 void* dvmMalloc(size_t size, int flags)
340 {
341     void *ptr;
342 
343     dvmLockHeap();
344 
345     /* Try as hard as possible to allocate some memory.
346      */
347     ptr = tryMalloc(size);
348     if (ptr != NULL) {
349         /* We've got the memory.
350          */
351         if (gDvm.allocProf.enabled) {
352             Thread* self = dvmThreadSelf();
353             gDvm.allocProf.allocCount++;
354             gDvm.allocProf.allocSize += size;
355             if (self != NULL) {
356                 self->allocProf.allocCount++;
357                 self->allocProf.allocSize += size;
358             }
359         }
360     } else {
361         /* The allocation failed.
362          */
363 
364         if (gDvm.allocProf.enabled) {
365             Thread* self = dvmThreadSelf();
366             gDvm.allocProf.failedAllocCount++;
367             gDvm.allocProf.failedAllocSize += size;
368             if (self != NULL) {
369                 self->allocProf.failedAllocCount++;
370                 self->allocProf.failedAllocSize += size;
371             }
372         }
373     }
374 
375     dvmUnlockHeap();
376 
377     if (ptr != NULL) {
378         /*
379          * If caller hasn't asked us not to track it, add it to the
380          * internal tracking list.
381          */
382         if ((flags & ALLOC_DONT_TRACK) == 0) {
383             dvmAddTrackedAlloc((Object*)ptr, NULL);
384         }
385     } else {
386         /*
387          * The allocation failed; throw an OutOfMemoryError.
388          */
389         throwOOME();
390     }
391 
392     return ptr;
393 }
394 
395 /*
396  * Returns true iff <obj> points to a valid allocated object.
397  */
dvmIsValidObject(const Object * obj)398 bool dvmIsValidObject(const Object* obj)
399 {
400     /* Don't bother if it's NULL or not 8-byte aligned.
401      */
402     if (obj != NULL && ((uintptr_t)obj & (8-1)) == 0) {
403         /* Even if the heap isn't locked, this shouldn't return
404          * any false negatives.  The only mutation that could
405          * be happening is allocation, which means that another
406          * thread could be in the middle of a read-modify-write
407          * to add a new bit for a new object.  However, that
408          * RMW will have completed by the time any other thread
409          * could possibly see the new pointer, so there is no
410          * danger of dvmIsValidObject() being called on a valid
411          * pointer whose bit isn't set.
412          *
413          * Freeing will only happen during the sweep phase, which
414          * only happens while the heap is locked.
415          */
416         return dvmHeapSourceContains(obj);
417     }
418     return false;
419 }
420 
dvmObjectSizeInHeap(const Object * obj)421 size_t dvmObjectSizeInHeap(const Object *obj)
422 {
423     return dvmHeapSourceChunkSize(obj);
424 }
425 
verifyRootsAndHeap()426 static void verifyRootsAndHeap()
427 {
428     dvmVerifyRoots();
429     dvmVerifyBitmap(dvmHeapSourceGetLiveBits());
430 }
431 
432 /*
433  * Initiate garbage collection.
434  *
435  * NOTES:
436  * - If we don't hold gDvm.threadListLock, it's possible for a thread to
437  *   be added to the thread list while we work.  The thread should NOT
438  *   start executing, so this is only interesting when we start chasing
439  *   thread stacks.  (Before we do so, grab the lock.)
440  *
441  * We are not allowed to GC when the debugger has suspended the VM, which
442  * is awkward because debugger requests can cause allocations.  The easiest
443  * way to enforce this is to refuse to GC on an allocation made by the
444  * JDWP thread -- we have to expand the heap or fail.
445  */
dvmCollectGarbageInternal(const GcSpec * spec)446 void dvmCollectGarbageInternal(const GcSpec* spec)
447 {
448     GcHeap *gcHeap = gDvm.gcHeap;
449     u4 gcEnd = 0;
450     u4 rootStart = 0 , rootEnd = 0;
451     u4 dirtyStart = 0, dirtyEnd = 0;
452     size_t numObjectsFreed, numBytesFreed;
453     size_t currAllocated, currFootprint;
454     size_t percentFree;
455     int oldThreadPriority = INT_MAX;
456 
457     /* The heap lock must be held.
458      */
459 
460     if (gcHeap->gcRunning) {
461         LOGW_HEAP("Attempted recursive GC");
462         return;
463     }
464 
465     // Trace the beginning of the top-level GC.
466     if (spec == GC_FOR_MALLOC) {
467         ATRACE_BEGIN("GC (alloc)");
468     } else if (spec == GC_CONCURRENT) {
469         ATRACE_BEGIN("GC (concurrent)");
470     } else if (spec == GC_EXPLICIT) {
471         ATRACE_BEGIN("GC (explicit)");
472     } else if (spec == GC_BEFORE_OOM) {
473         ATRACE_BEGIN("GC (before OOM)");
474     } else {
475         ATRACE_BEGIN("GC (unknown)");
476     }
477 
478     gcHeap->gcRunning = true;
479 
480     rootStart = dvmGetRelativeTimeMsec();
481     ATRACE_BEGIN("GC: Threads Suspended"); // Suspend A
482     dvmSuspendAllThreads(SUSPEND_FOR_GC);
483 
484     /*
485      * If we are not marking concurrently raise the priority of the
486      * thread performing the garbage collection.
487      */
488     if (!spec->isConcurrent) {
489         oldThreadPriority = os_raiseThreadPriority();
490     }
491     if (gDvm.preVerify) {
492         LOGV_HEAP("Verifying roots and heap before GC");
493         verifyRootsAndHeap();
494     }
495 
496     dvmMethodTraceGCBegin();
497 
498     /* Set up the marking context.
499      */
500     if (!dvmHeapBeginMarkStep(spec->isPartial)) {
501         ATRACE_END(); // Suspend A
502         ATRACE_END(); // Top-level GC
503         LOGE_HEAP("dvmHeapBeginMarkStep failed; aborting");
504         dvmAbort();
505     }
506 
507     /* Mark the set of objects that are strongly reachable from the roots.
508      */
509     LOGD_HEAP("Marking...");
510     dvmHeapMarkRootSet();
511 
512     /* dvmHeapScanMarkedObjects() will build the lists of known
513      * instances of the Reference classes.
514      */
515     assert(gcHeap->softReferences == NULL);
516     assert(gcHeap->weakReferences == NULL);
517     assert(gcHeap->finalizerReferences == NULL);
518     assert(gcHeap->phantomReferences == NULL);
519     assert(gcHeap->clearedReferences == NULL);
520 
521     if (spec->isConcurrent) {
522         /*
523          * Resume threads while tracing from the roots.  We unlock the
524          * heap to allow mutator threads to allocate from free space.
525          */
526         dvmClearCardTable();
527         dvmUnlockHeap();
528         dvmResumeAllThreads(SUSPEND_FOR_GC);
529         ATRACE_END(); // Suspend A
530         rootEnd = dvmGetRelativeTimeMsec();
531     }
532 
533     /* Recursively mark any objects that marked objects point to strongly.
534      * If we're not collecting soft references, soft-reachable
535      * objects will also be marked.
536      */
537     LOGD_HEAP("Recursing...");
538     dvmHeapScanMarkedObjects();
539 
540     if (spec->isConcurrent) {
541         /*
542          * Re-acquire the heap lock and perform the final thread
543          * suspension.
544          */
545         dirtyStart = dvmGetRelativeTimeMsec();
546         dvmLockHeap();
547         ATRACE_BEGIN("GC: Threads Suspended"); // Suspend B
548         dvmSuspendAllThreads(SUSPEND_FOR_GC);
549         /*
550          * As no barrier intercepts root updates, we conservatively
551          * assume all roots may be gray and re-mark them.
552          */
553         dvmHeapReMarkRootSet();
554         /*
555          * With the exception of reference objects and weak interned
556          * strings, all gray objects should now be on dirty cards.
557          */
558         if (gDvm.verifyCardTable) {
559             dvmVerifyCardTable();
560         }
561         /*
562          * Recursively mark gray objects pointed to by the roots or by
563          * heap objects dirtied during the concurrent mark.
564          */
565         dvmHeapReScanMarkedObjects();
566     }
567 
568     /*
569      * All strongly-reachable objects have now been marked.  Process
570      * weakly-reachable objects discovered while tracing.
571      */
572     dvmHeapProcessReferences(&gcHeap->softReferences,
573                              spec->doPreserve == false,
574                              &gcHeap->weakReferences,
575                              &gcHeap->finalizerReferences,
576                              &gcHeap->phantomReferences);
577 
578 #if defined(WITH_JIT)
579     /*
580      * Patching a chaining cell is very cheap as it only updates 4 words. It's
581      * the overhead of stopping all threads and synchronizing the I/D cache
582      * that makes it expensive.
583      *
584      * Therefore we batch those work orders in a queue and go through them
585      * when threads are suspended for GC.
586      */
587     dvmCompilerPerformSafePointChecks();
588 #endif
589 
590     LOGD_HEAP("Sweeping...");
591 
592     dvmHeapSweepSystemWeaks();
593 
594     /*
595      * Live objects have a bit set in the mark bitmap, swap the mark
596      * and live bitmaps.  The sweep can proceed concurrently viewing
597      * the new live bitmap as the old mark bitmap, and vice versa.
598      */
599     dvmHeapSourceSwapBitmaps();
600 
601     if (gDvm.postVerify) {
602         LOGV_HEAP("Verifying roots and heap after GC");
603         verifyRootsAndHeap();
604     }
605 
606     if (spec->isConcurrent) {
607         dvmUnlockHeap();
608         dvmResumeAllThreads(SUSPEND_FOR_GC);
609         ATRACE_END(); // Suspend B
610         dirtyEnd = dvmGetRelativeTimeMsec();
611     }
612     dvmHeapSweepUnmarkedObjects(spec->isPartial, spec->isConcurrent,
613                                 &numObjectsFreed, &numBytesFreed);
614     LOGD_HEAP("Cleaning up...");
615     dvmHeapFinishMarkStep();
616     if (spec->isConcurrent) {
617         dvmLockHeap();
618     }
619 
620     LOGD_HEAP("Done.");
621 
622     /* Now's a good time to adjust the heap size, since
623      * we know what our utilization is.
624      *
625      * This doesn't actually resize any memory;
626      * it just lets the heap grow more when necessary.
627      */
628     dvmHeapSourceGrowForUtilization();
629 
630     currAllocated = dvmHeapSourceGetValue(HS_BYTES_ALLOCATED, NULL, 0);
631     currFootprint = dvmHeapSourceGetValue(HS_FOOTPRINT, NULL, 0);
632 
633     dvmMethodTraceGCEnd();
634     LOGV_HEAP("GC finished");
635 
636     gcHeap->gcRunning = false;
637 
638     LOGV_HEAP("Resuming threads");
639 
640     if (spec->isConcurrent) {
641         /*
642          * Wake-up any threads that blocked after a failed allocation
643          * request.
644          */
645         dvmBroadcastCond(&gDvm.gcHeapCond);
646     }
647 
648     if (!spec->isConcurrent) {
649         dvmResumeAllThreads(SUSPEND_FOR_GC);
650         ATRACE_END(); // Suspend A
651         dirtyEnd = dvmGetRelativeTimeMsec();
652         /*
653          * Restore the original thread scheduling priority if it was
654          * changed at the start of the current garbage collection.
655          */
656         if (oldThreadPriority != INT_MAX) {
657             os_lowerThreadPriority(oldThreadPriority);
658         }
659     }
660 
661     /*
662      * Move queue of pending references back into Java.
663      */
664     dvmEnqueueClearedReferences(&gDvm.gcHeap->clearedReferences);
665 
666     gcEnd = dvmGetRelativeTimeMsec();
667     percentFree = 100 - (size_t)(100.0f * (float)currAllocated / currFootprint);
668     if (!spec->isConcurrent) {
669         u4 markSweepTime = dirtyEnd - rootStart;
670         u4 gcTime = gcEnd - rootStart;
671         bool isSmall = numBytesFreed > 0 && numBytesFreed < 1024;
672         ALOGD("%s freed %s%zdK, %d%% free %zdK/%zdK, paused %ums, total %ums",
673              spec->reason,
674              isSmall ? "<" : "",
675              numBytesFreed ? MAX(numBytesFreed / 1024, 1) : 0,
676              percentFree,
677              currAllocated / 1024, currFootprint / 1024,
678              markSweepTime, gcTime);
679     } else {
680         u4 rootTime = rootEnd - rootStart;
681         u4 dirtyTime = dirtyEnd - dirtyStart;
682         u4 gcTime = gcEnd - rootStart;
683         bool isSmall = numBytesFreed > 0 && numBytesFreed < 1024;
684         ALOGD("%s freed %s%zdK, %d%% free %zdK/%zdK, paused %ums+%ums, total %ums",
685              spec->reason,
686              isSmall ? "<" : "",
687              numBytesFreed ? MAX(numBytesFreed / 1024, 1) : 0,
688              percentFree,
689              currAllocated / 1024, currFootprint / 1024,
690              rootTime, dirtyTime, gcTime);
691     }
692     if (gcHeap->ddmHpifWhen != 0) {
693         LOGD_HEAP("Sending VM heap info to DDM");
694         dvmDdmSendHeapInfo(gcHeap->ddmHpifWhen, false);
695     }
696     if (gcHeap->ddmHpsgWhen != 0) {
697         LOGD_HEAP("Dumping VM heap to DDM");
698         dvmDdmSendHeapSegments(false, false);
699     }
700     if (gcHeap->ddmNhsgWhen != 0) {
701         LOGD_HEAP("Dumping native heap to DDM");
702         dvmDdmSendHeapSegments(false, true);
703     }
704 
705     ATRACE_END(); // Top-level GC
706 }
707 
708 /*
709  * If the concurrent GC is running, wait for it to finish.  The caller
710  * must hold the heap lock.
711  *
712  * Note: the second dvmChangeStatus() could stall if we were in RUNNING
713  * on entry, and some other thread has asked us to suspend.  In that
714  * case we will be suspended with the heap lock held, which can lead to
715  * deadlock if the other thread tries to do something with the managed heap.
716  * For example, the debugger might suspend us and then execute a method that
717  * allocates memory.  We can avoid this situation by releasing the lock
718  * before self-suspending.  (The developer can work around this specific
719  * situation by single-stepping the VM.  Alternatively, we could disable
720  * concurrent GC when the debugger is attached, but that might change
721  * behavior more than is desirable.)
722  *
723  * This should not be a problem in production, because any GC-related
724  * activity will grab the lock before issuing a suspend-all.  (We may briefly
725  * suspend when the GC thread calls dvmUnlockHeap before dvmResumeAllThreads,
726  * but there's no risk of deadlock.)
727  */
dvmWaitForConcurrentGcToComplete()728 bool dvmWaitForConcurrentGcToComplete()
729 {
730     ATRACE_BEGIN("GC: Wait For Concurrent");
731     bool waited = gDvm.gcHeap->gcRunning;
732     Thread *self = dvmThreadSelf();
733     assert(self != NULL);
734     u4 start = dvmGetRelativeTimeMsec();
735     while (gDvm.gcHeap->gcRunning) {
736         ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
737         dvmWaitCond(&gDvm.gcHeapCond, &gDvm.gcHeapLock);
738         dvmChangeStatus(self, oldStatus);
739     }
740     u4 end = dvmGetRelativeTimeMsec();
741     if (end - start > 0) {
742         ALOGD("WAIT_FOR_CONCURRENT_GC blocked %ums", end - start);
743     }
744     ATRACE_END();
745     return waited;
746 }
747