1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define ATRACE_TAG ATRACE_TAG_DALVIK
18
19 /*
20 * Garbage-collecting memory allocator.
21 */
22 #include "Dalvik.h"
23 #include "alloc/HeapBitmap.h"
24 #include "alloc/Verify.h"
25 #include "alloc/Heap.h"
26 #include "alloc/HeapInternal.h"
27 #include "alloc/DdmHeap.h"
28 #include "alloc/HeapSource.h"
29 #include "alloc/MarkSweep.h"
30 #include "os/os.h"
31
32 #include <sys/mman.h>
33 #include <sys/resource.h>
34 #include <sys/time.h>
35 #include <limits.h>
36 #include <errno.h>
37
38 #include <cutils/trace.h>
39
40 static const GcSpec kGcForMallocSpec = {
41 true, /* isPartial */
42 false, /* isConcurrent */
43 true, /* doPreserve */
44 "GC_FOR_ALLOC"
45 };
46
47 const GcSpec *GC_FOR_MALLOC = &kGcForMallocSpec;
48
49 static const GcSpec kGcConcurrentSpec = {
50 true, /* isPartial */
51 true, /* isConcurrent */
52 true, /* doPreserve */
53 "GC_CONCURRENT"
54 };
55
56 const GcSpec *GC_CONCURRENT = &kGcConcurrentSpec;
57
58 static const GcSpec kGcExplicitSpec = {
59 false, /* isPartial */
60 true, /* isConcurrent */
61 true, /* doPreserve */
62 "GC_EXPLICIT"
63 };
64
65 const GcSpec *GC_EXPLICIT = &kGcExplicitSpec;
66
67 static const GcSpec kGcBeforeOomSpec = {
68 false, /* isPartial */
69 false, /* isConcurrent */
70 false, /* doPreserve */
71 "GC_BEFORE_OOM"
72 };
73
74 const GcSpec *GC_BEFORE_OOM = &kGcBeforeOomSpec;
75
76 /*
77 * Initialize the GC heap.
78 *
79 * Returns true if successful, false otherwise.
80 */
dvmHeapStartup()81 bool dvmHeapStartup()
82 {
83 GcHeap *gcHeap;
84
85 if (gDvm.heapGrowthLimit == 0) {
86 gDvm.heapGrowthLimit = gDvm.heapMaximumSize;
87 }
88
89 gcHeap = dvmHeapSourceStartup(gDvm.heapStartingSize,
90 gDvm.heapMaximumSize,
91 gDvm.heapGrowthLimit);
92 if (gcHeap == NULL) {
93 return false;
94 }
95 gcHeap->ddmHpifWhen = 0;
96 gcHeap->ddmHpsgWhen = 0;
97 gcHeap->ddmHpsgWhat = 0;
98 gcHeap->ddmNhsgWhen = 0;
99 gcHeap->ddmNhsgWhat = 0;
100 gDvm.gcHeap = gcHeap;
101
102 /* Set up the lists we'll use for cleared reference objects.
103 */
104 gcHeap->clearedReferences = NULL;
105
106 if (!dvmCardTableStartup(gDvm.heapMaximumSize, gDvm.heapGrowthLimit)) {
107 LOGE_HEAP("card table startup failed.");
108 return false;
109 }
110
111 return true;
112 }
113
dvmHeapStartupAfterZygote()114 bool dvmHeapStartupAfterZygote()
115 {
116 return dvmHeapSourceStartupAfterZygote();
117 }
118
dvmHeapShutdown()119 void dvmHeapShutdown()
120 {
121 //TODO: make sure we're locked
122 if (gDvm.gcHeap != NULL) {
123 dvmCardTableShutdown();
124 /* Destroy the heap. Any outstanding pointers will point to
125 * unmapped memory (unless/until someone else maps it). This
126 * frees gDvm.gcHeap as a side-effect.
127 */
128 dvmHeapSourceShutdown(&gDvm.gcHeap);
129 }
130 }
131
132 /*
133 * Shutdown any threads internal to the heap.
134 */
dvmHeapThreadShutdown()135 void dvmHeapThreadShutdown()
136 {
137 dvmHeapSourceThreadShutdown();
138 }
139
140 /*
141 * Grab the lock, but put ourselves into THREAD_VMWAIT if it looks like
142 * we're going to have to wait on the mutex.
143 */
dvmLockHeap()144 bool dvmLockHeap()
145 {
146 if (dvmTryLockMutex(&gDvm.gcHeapLock) != 0) {
147 Thread *self;
148 ThreadStatus oldStatus;
149
150 self = dvmThreadSelf();
151 oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
152 dvmLockMutex(&gDvm.gcHeapLock);
153 dvmChangeStatus(self, oldStatus);
154 }
155
156 return true;
157 }
158
dvmUnlockHeap()159 void dvmUnlockHeap()
160 {
161 dvmUnlockMutex(&gDvm.gcHeapLock);
162 }
163
164 /* Do a full garbage collection, which may grow the
165 * heap as a side-effect if the live set is large.
166 */
gcForMalloc(bool clearSoftReferences)167 static void gcForMalloc(bool clearSoftReferences)
168 {
169 if (gDvm.allocProf.enabled) {
170 Thread* self = dvmThreadSelf();
171 gDvm.allocProf.gcCount++;
172 if (self != NULL) {
173 self->allocProf.gcCount++;
174 }
175 }
176 /* This may adjust the soft limit as a side-effect.
177 */
178 const GcSpec *spec = clearSoftReferences ? GC_BEFORE_OOM : GC_FOR_MALLOC;
179 dvmCollectGarbageInternal(spec);
180 }
181
182 /* Try as hard as possible to allocate some memory.
183 */
tryMalloc(size_t size)184 static void *tryMalloc(size_t size)
185 {
186 void *ptr;
187
188 //TODO: figure out better heuristics
189 // There will be a lot of churn if someone allocates a bunch of
190 // big objects in a row, and we hit the frag case each time.
191 // A full GC for each.
192 // Maybe we grow the heap in bigger leaps
193 // Maybe we skip the GC if the size is large and we did one recently
194 // (number of allocations ago) (watch for thread effects)
195 // DeflateTest allocs a bunch of ~128k buffers w/in 0-5 allocs of each other
196 // (or, at least, there are only 0-5 objects swept each time)
197
198 ptr = dvmHeapSourceAlloc(size);
199 if (ptr != NULL) {
200 return ptr;
201 }
202
203 /*
204 * The allocation failed. If the GC is running, block until it
205 * completes and retry.
206 */
207 if (gDvm.gcHeap->gcRunning) {
208 /*
209 * The GC is concurrently tracing the heap. Release the heap
210 * lock, wait for the GC to complete, and retrying allocating.
211 */
212 dvmWaitForConcurrentGcToComplete();
213 } else {
214 /*
215 * Try a foreground GC since a concurrent GC is not currently running.
216 */
217 gcForMalloc(false);
218 }
219
220 ptr = dvmHeapSourceAlloc(size);
221 if (ptr != NULL) {
222 return ptr;
223 }
224
225 /* Even that didn't work; this is an exceptional state.
226 * Try harder, growing the heap if necessary.
227 */
228 ptr = dvmHeapSourceAllocAndGrow(size);
229 if (ptr != NULL) {
230 size_t newHeapSize;
231
232 newHeapSize = dvmHeapSourceGetIdealFootprint();
233 //TODO: may want to grow a little bit more so that the amount of free
234 // space is equal to the old free space + the utilization slop for
235 // the new allocation.
236 LOGI_HEAP("Grow heap (frag case) to "
237 "%zu.%03zuMB for %zu-byte allocation",
238 FRACTIONAL_MB(newHeapSize), size);
239 return ptr;
240 }
241
242 /* Most allocations should have succeeded by now, so the heap
243 * is really full, really fragmented, or the requested size is
244 * really big. Do another GC, collecting SoftReferences this
245 * time. The VM spec requires that all SoftReferences have
246 * been collected and cleared before throwing an OOME.
247 */
248 //TODO: wait for the finalizers from the previous GC to finish
249 LOGI_HEAP("Forcing collection of SoftReferences for %zu-byte allocation",
250 size);
251 gcForMalloc(true);
252 ptr = dvmHeapSourceAllocAndGrow(size);
253 if (ptr != NULL) {
254 return ptr;
255 }
256 //TODO: maybe wait for finalizers and try one last time
257
258 LOGE_HEAP("Out of memory on a %zd-byte allocation.", size);
259 //TODO: tell the HeapSource to dump its state
260 dvmDumpThread(dvmThreadSelf(), false);
261
262 return NULL;
263 }
264
265 /* Throw an OutOfMemoryError if there's a thread to attach it to.
266 * Avoid recursing.
267 *
268 * The caller must not be holding the heap lock, or else the allocations
269 * in dvmThrowException() will deadlock.
270 */
throwOOME()271 static void throwOOME()
272 {
273 Thread *self;
274
275 if ((self = dvmThreadSelf()) != NULL) {
276 /* If the current (failing) dvmMalloc() happened as part of thread
277 * creation/attachment before the thread became part of the root set,
278 * we can't rely on the thread-local trackedAlloc table, so
279 * we can't keep track of a real allocated OOME object. But, since
280 * the thread is in the process of being created, it won't have
281 * a useful stack anyway, so we may as well make things easier
282 * by throwing the (stackless) pre-built OOME.
283 */
284 if (dvmIsOnThreadList(self) && !self->throwingOOME) {
285 /* Let ourselves know that we tried to throw an OOM
286 * error in the normal way in case we run out of
287 * memory trying to allocate it inside dvmThrowException().
288 */
289 self->throwingOOME = true;
290
291 /* Don't include a description string;
292 * one fewer allocation.
293 */
294 dvmThrowOutOfMemoryError(NULL);
295 } else {
296 /*
297 * This thread has already tried to throw an OutOfMemoryError,
298 * which probably means that we're running out of memory
299 * while recursively trying to throw.
300 *
301 * To avoid any more allocation attempts, "throw" a pre-built
302 * OutOfMemoryError object (which won't have a useful stack trace).
303 *
304 * Note that since this call can't possibly allocate anything,
305 * we don't care about the state of self->throwingOOME
306 * (which will usually already be set).
307 */
308 dvmSetException(self, gDvm.outOfMemoryObj);
309 }
310 /* We're done with the possible recursion.
311 */
312 self->throwingOOME = false;
313 }
314 }
315
316 /*
317 * Allocate storage on the GC heap. We guarantee 8-byte alignment.
318 *
319 * The new storage is zeroed out.
320 *
321 * Note that, in rare cases, this could get called while a GC is in
322 * progress. If a non-VM thread tries to attach itself through JNI,
323 * it will need to allocate some objects. If this becomes annoying to
324 * deal with, we can block it at the source, but holding the allocation
325 * mutex should be enough.
326 *
327 * In rare circumstances (JNI AttachCurrentThread) we can be called
328 * from a non-VM thread.
329 *
330 * Use ALLOC_DONT_TRACK when we either don't want to track an allocation
331 * (because it's being done for the interpreter "new" operation and will
332 * be part of the root set immediately) or we can't (because this allocation
333 * is for a brand new thread).
334 *
335 * Returns NULL and throws an exception on failure.
336 *
337 * TODO: don't do a GC if the debugger thinks all threads are suspended
338 */
dvmMalloc(size_t size,int flags)339 void* dvmMalloc(size_t size, int flags)
340 {
341 void *ptr;
342
343 dvmLockHeap();
344
345 /* Try as hard as possible to allocate some memory.
346 */
347 ptr = tryMalloc(size);
348 if (ptr != NULL) {
349 /* We've got the memory.
350 */
351 if (gDvm.allocProf.enabled) {
352 Thread* self = dvmThreadSelf();
353 gDvm.allocProf.allocCount++;
354 gDvm.allocProf.allocSize += size;
355 if (self != NULL) {
356 self->allocProf.allocCount++;
357 self->allocProf.allocSize += size;
358 }
359 }
360 } else {
361 /* The allocation failed.
362 */
363
364 if (gDvm.allocProf.enabled) {
365 Thread* self = dvmThreadSelf();
366 gDvm.allocProf.failedAllocCount++;
367 gDvm.allocProf.failedAllocSize += size;
368 if (self != NULL) {
369 self->allocProf.failedAllocCount++;
370 self->allocProf.failedAllocSize += size;
371 }
372 }
373 }
374
375 dvmUnlockHeap();
376
377 if (ptr != NULL) {
378 /*
379 * If caller hasn't asked us not to track it, add it to the
380 * internal tracking list.
381 */
382 if ((flags & ALLOC_DONT_TRACK) == 0) {
383 dvmAddTrackedAlloc((Object*)ptr, NULL);
384 }
385 } else {
386 /*
387 * The allocation failed; throw an OutOfMemoryError.
388 */
389 throwOOME();
390 }
391
392 return ptr;
393 }
394
395 /*
396 * Returns true iff <obj> points to a valid allocated object.
397 */
dvmIsValidObject(const Object * obj)398 bool dvmIsValidObject(const Object* obj)
399 {
400 /* Don't bother if it's NULL or not 8-byte aligned.
401 */
402 if (obj != NULL && ((uintptr_t)obj & (8-1)) == 0) {
403 /* Even if the heap isn't locked, this shouldn't return
404 * any false negatives. The only mutation that could
405 * be happening is allocation, which means that another
406 * thread could be in the middle of a read-modify-write
407 * to add a new bit for a new object. However, that
408 * RMW will have completed by the time any other thread
409 * could possibly see the new pointer, so there is no
410 * danger of dvmIsValidObject() being called on a valid
411 * pointer whose bit isn't set.
412 *
413 * Freeing will only happen during the sweep phase, which
414 * only happens while the heap is locked.
415 */
416 return dvmHeapSourceContains(obj);
417 }
418 return false;
419 }
420
dvmObjectSizeInHeap(const Object * obj)421 size_t dvmObjectSizeInHeap(const Object *obj)
422 {
423 return dvmHeapSourceChunkSize(obj);
424 }
425
verifyRootsAndHeap()426 static void verifyRootsAndHeap()
427 {
428 dvmVerifyRoots();
429 dvmVerifyBitmap(dvmHeapSourceGetLiveBits());
430 }
431
432 /*
433 * Initiate garbage collection.
434 *
435 * NOTES:
436 * - If we don't hold gDvm.threadListLock, it's possible for a thread to
437 * be added to the thread list while we work. The thread should NOT
438 * start executing, so this is only interesting when we start chasing
439 * thread stacks. (Before we do so, grab the lock.)
440 *
441 * We are not allowed to GC when the debugger has suspended the VM, which
442 * is awkward because debugger requests can cause allocations. The easiest
443 * way to enforce this is to refuse to GC on an allocation made by the
444 * JDWP thread -- we have to expand the heap or fail.
445 */
dvmCollectGarbageInternal(const GcSpec * spec)446 void dvmCollectGarbageInternal(const GcSpec* spec)
447 {
448 GcHeap *gcHeap = gDvm.gcHeap;
449 u4 gcEnd = 0;
450 u4 rootStart = 0 , rootEnd = 0;
451 u4 dirtyStart = 0, dirtyEnd = 0;
452 size_t numObjectsFreed, numBytesFreed;
453 size_t currAllocated, currFootprint;
454 size_t percentFree;
455 int oldThreadPriority = INT_MAX;
456
457 /* The heap lock must be held.
458 */
459
460 if (gcHeap->gcRunning) {
461 LOGW_HEAP("Attempted recursive GC");
462 return;
463 }
464
465 // Trace the beginning of the top-level GC.
466 if (spec == GC_FOR_MALLOC) {
467 ATRACE_BEGIN("GC (alloc)");
468 } else if (spec == GC_CONCURRENT) {
469 ATRACE_BEGIN("GC (concurrent)");
470 } else if (spec == GC_EXPLICIT) {
471 ATRACE_BEGIN("GC (explicit)");
472 } else if (spec == GC_BEFORE_OOM) {
473 ATRACE_BEGIN("GC (before OOM)");
474 } else {
475 ATRACE_BEGIN("GC (unknown)");
476 }
477
478 gcHeap->gcRunning = true;
479
480 rootStart = dvmGetRelativeTimeMsec();
481 ATRACE_BEGIN("GC: Threads Suspended"); // Suspend A
482 dvmSuspendAllThreads(SUSPEND_FOR_GC);
483
484 /*
485 * If we are not marking concurrently raise the priority of the
486 * thread performing the garbage collection.
487 */
488 if (!spec->isConcurrent) {
489 oldThreadPriority = os_raiseThreadPriority();
490 }
491 if (gDvm.preVerify) {
492 LOGV_HEAP("Verifying roots and heap before GC");
493 verifyRootsAndHeap();
494 }
495
496 dvmMethodTraceGCBegin();
497
498 /* Set up the marking context.
499 */
500 if (!dvmHeapBeginMarkStep(spec->isPartial)) {
501 ATRACE_END(); // Suspend A
502 ATRACE_END(); // Top-level GC
503 LOGE_HEAP("dvmHeapBeginMarkStep failed; aborting");
504 dvmAbort();
505 }
506
507 /* Mark the set of objects that are strongly reachable from the roots.
508 */
509 LOGD_HEAP("Marking...");
510 dvmHeapMarkRootSet();
511
512 /* dvmHeapScanMarkedObjects() will build the lists of known
513 * instances of the Reference classes.
514 */
515 assert(gcHeap->softReferences == NULL);
516 assert(gcHeap->weakReferences == NULL);
517 assert(gcHeap->finalizerReferences == NULL);
518 assert(gcHeap->phantomReferences == NULL);
519 assert(gcHeap->clearedReferences == NULL);
520
521 if (spec->isConcurrent) {
522 /*
523 * Resume threads while tracing from the roots. We unlock the
524 * heap to allow mutator threads to allocate from free space.
525 */
526 dvmClearCardTable();
527 dvmUnlockHeap();
528 dvmResumeAllThreads(SUSPEND_FOR_GC);
529 ATRACE_END(); // Suspend A
530 rootEnd = dvmGetRelativeTimeMsec();
531 }
532
533 /* Recursively mark any objects that marked objects point to strongly.
534 * If we're not collecting soft references, soft-reachable
535 * objects will also be marked.
536 */
537 LOGD_HEAP("Recursing...");
538 dvmHeapScanMarkedObjects();
539
540 if (spec->isConcurrent) {
541 /*
542 * Re-acquire the heap lock and perform the final thread
543 * suspension.
544 */
545 dirtyStart = dvmGetRelativeTimeMsec();
546 dvmLockHeap();
547 ATRACE_BEGIN("GC: Threads Suspended"); // Suspend B
548 dvmSuspendAllThreads(SUSPEND_FOR_GC);
549 /*
550 * As no barrier intercepts root updates, we conservatively
551 * assume all roots may be gray and re-mark them.
552 */
553 dvmHeapReMarkRootSet();
554 /*
555 * With the exception of reference objects and weak interned
556 * strings, all gray objects should now be on dirty cards.
557 */
558 if (gDvm.verifyCardTable) {
559 dvmVerifyCardTable();
560 }
561 /*
562 * Recursively mark gray objects pointed to by the roots or by
563 * heap objects dirtied during the concurrent mark.
564 */
565 dvmHeapReScanMarkedObjects();
566 }
567
568 /*
569 * All strongly-reachable objects have now been marked. Process
570 * weakly-reachable objects discovered while tracing.
571 */
572 dvmHeapProcessReferences(&gcHeap->softReferences,
573 spec->doPreserve == false,
574 &gcHeap->weakReferences,
575 &gcHeap->finalizerReferences,
576 &gcHeap->phantomReferences);
577
578 #if defined(WITH_JIT)
579 /*
580 * Patching a chaining cell is very cheap as it only updates 4 words. It's
581 * the overhead of stopping all threads and synchronizing the I/D cache
582 * that makes it expensive.
583 *
584 * Therefore we batch those work orders in a queue and go through them
585 * when threads are suspended for GC.
586 */
587 dvmCompilerPerformSafePointChecks();
588 #endif
589
590 LOGD_HEAP("Sweeping...");
591
592 dvmHeapSweepSystemWeaks();
593
594 /*
595 * Live objects have a bit set in the mark bitmap, swap the mark
596 * and live bitmaps. The sweep can proceed concurrently viewing
597 * the new live bitmap as the old mark bitmap, and vice versa.
598 */
599 dvmHeapSourceSwapBitmaps();
600
601 if (gDvm.postVerify) {
602 LOGV_HEAP("Verifying roots and heap after GC");
603 verifyRootsAndHeap();
604 }
605
606 if (spec->isConcurrent) {
607 dvmUnlockHeap();
608 dvmResumeAllThreads(SUSPEND_FOR_GC);
609 ATRACE_END(); // Suspend B
610 dirtyEnd = dvmGetRelativeTimeMsec();
611 }
612 dvmHeapSweepUnmarkedObjects(spec->isPartial, spec->isConcurrent,
613 &numObjectsFreed, &numBytesFreed);
614 LOGD_HEAP("Cleaning up...");
615 dvmHeapFinishMarkStep();
616 if (spec->isConcurrent) {
617 dvmLockHeap();
618 }
619
620 LOGD_HEAP("Done.");
621
622 /* Now's a good time to adjust the heap size, since
623 * we know what our utilization is.
624 *
625 * This doesn't actually resize any memory;
626 * it just lets the heap grow more when necessary.
627 */
628 dvmHeapSourceGrowForUtilization();
629
630 currAllocated = dvmHeapSourceGetValue(HS_BYTES_ALLOCATED, NULL, 0);
631 currFootprint = dvmHeapSourceGetValue(HS_FOOTPRINT, NULL, 0);
632
633 dvmMethodTraceGCEnd();
634 LOGV_HEAP("GC finished");
635
636 gcHeap->gcRunning = false;
637
638 LOGV_HEAP("Resuming threads");
639
640 if (spec->isConcurrent) {
641 /*
642 * Wake-up any threads that blocked after a failed allocation
643 * request.
644 */
645 dvmBroadcastCond(&gDvm.gcHeapCond);
646 }
647
648 if (!spec->isConcurrent) {
649 dvmResumeAllThreads(SUSPEND_FOR_GC);
650 ATRACE_END(); // Suspend A
651 dirtyEnd = dvmGetRelativeTimeMsec();
652 /*
653 * Restore the original thread scheduling priority if it was
654 * changed at the start of the current garbage collection.
655 */
656 if (oldThreadPriority != INT_MAX) {
657 os_lowerThreadPriority(oldThreadPriority);
658 }
659 }
660
661 /*
662 * Move queue of pending references back into Java.
663 */
664 dvmEnqueueClearedReferences(&gDvm.gcHeap->clearedReferences);
665
666 gcEnd = dvmGetRelativeTimeMsec();
667 percentFree = 100 - (size_t)(100.0f * (float)currAllocated / currFootprint);
668 if (!spec->isConcurrent) {
669 u4 markSweepTime = dirtyEnd - rootStart;
670 u4 gcTime = gcEnd - rootStart;
671 bool isSmall = numBytesFreed > 0 && numBytesFreed < 1024;
672 ALOGD("%s freed %s%zdK, %d%% free %zdK/%zdK, paused %ums, total %ums",
673 spec->reason,
674 isSmall ? "<" : "",
675 numBytesFreed ? MAX(numBytesFreed / 1024, 1) : 0,
676 percentFree,
677 currAllocated / 1024, currFootprint / 1024,
678 markSweepTime, gcTime);
679 } else {
680 u4 rootTime = rootEnd - rootStart;
681 u4 dirtyTime = dirtyEnd - dirtyStart;
682 u4 gcTime = gcEnd - rootStart;
683 bool isSmall = numBytesFreed > 0 && numBytesFreed < 1024;
684 ALOGD("%s freed %s%zdK, %d%% free %zdK/%zdK, paused %ums+%ums, total %ums",
685 spec->reason,
686 isSmall ? "<" : "",
687 numBytesFreed ? MAX(numBytesFreed / 1024, 1) : 0,
688 percentFree,
689 currAllocated / 1024, currFootprint / 1024,
690 rootTime, dirtyTime, gcTime);
691 }
692 if (gcHeap->ddmHpifWhen != 0) {
693 LOGD_HEAP("Sending VM heap info to DDM");
694 dvmDdmSendHeapInfo(gcHeap->ddmHpifWhen, false);
695 }
696 if (gcHeap->ddmHpsgWhen != 0) {
697 LOGD_HEAP("Dumping VM heap to DDM");
698 dvmDdmSendHeapSegments(false, false);
699 }
700 if (gcHeap->ddmNhsgWhen != 0) {
701 LOGD_HEAP("Dumping native heap to DDM");
702 dvmDdmSendHeapSegments(false, true);
703 }
704
705 ATRACE_END(); // Top-level GC
706 }
707
708 /*
709 * If the concurrent GC is running, wait for it to finish. The caller
710 * must hold the heap lock.
711 *
712 * Note: the second dvmChangeStatus() could stall if we were in RUNNING
713 * on entry, and some other thread has asked us to suspend. In that
714 * case we will be suspended with the heap lock held, which can lead to
715 * deadlock if the other thread tries to do something with the managed heap.
716 * For example, the debugger might suspend us and then execute a method that
717 * allocates memory. We can avoid this situation by releasing the lock
718 * before self-suspending. (The developer can work around this specific
719 * situation by single-stepping the VM. Alternatively, we could disable
720 * concurrent GC when the debugger is attached, but that might change
721 * behavior more than is desirable.)
722 *
723 * This should not be a problem in production, because any GC-related
724 * activity will grab the lock before issuing a suspend-all. (We may briefly
725 * suspend when the GC thread calls dvmUnlockHeap before dvmResumeAllThreads,
726 * but there's no risk of deadlock.)
727 */
dvmWaitForConcurrentGcToComplete()728 bool dvmWaitForConcurrentGcToComplete()
729 {
730 ATRACE_BEGIN("GC: Wait For Concurrent");
731 bool waited = gDvm.gcHeap->gcRunning;
732 Thread *self = dvmThreadSelf();
733 assert(self != NULL);
734 u4 start = dvmGetRelativeTimeMsec();
735 while (gDvm.gcHeap->gcRunning) {
736 ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
737 dvmWaitCond(&gDvm.gcHeapCond, &gDvm.gcHeapLock);
738 dvmChangeStatus(self, oldStatus);
739 }
740 u4 end = dvmGetRelativeTimeMsec();
741 if (end - start > 0) {
742 ALOGD("WAIT_FOR_CONCURRENT_GC blocked %ums", end - start);
743 }
744 ATRACE_END();
745 return waited;
746 }
747