• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * EAP peer state machines (RFC 4137)
3  * Copyright (c) 2004-2012, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  *
8  * This file implements the Peer State Machine as defined in RFC 4137. The used
9  * states and state transitions match mostly with the RFC. However, there are
10  * couple of additional transitions for working around small issues noticed
11  * during testing. These exceptions are explained in comments within the
12  * functions in this file. The method functions, m.func(), are similar to the
13  * ones used in RFC 4137, but some small changes have used here to optimize
14  * operations and to add functionality needed for fast re-authentication
15  * (session resumption).
16  */
17 
18 #include "includes.h"
19 
20 #include "common.h"
21 #include "pcsc_funcs.h"
22 #include "state_machine.h"
23 #include "ext_password.h"
24 #include "crypto/crypto.h"
25 #include "crypto/tls.h"
26 #include "common/wpa_ctrl.h"
27 #include "eap_common/eap_wsc_common.h"
28 #include "eap_i.h"
29 #include "eap_config.h"
30 
31 #define STATE_MACHINE_DATA struct eap_sm
32 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
33 
34 #define EAP_MAX_AUTH_ROUNDS 50
35 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
36 
37 
38 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
39 				  EapType method);
40 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
41 static void eap_sm_processIdentity(struct eap_sm *sm,
42 				   const struct wpabuf *req);
43 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
44 static struct wpabuf * eap_sm_buildNotify(int id);
45 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
46 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
47 static const char * eap_sm_method_state_txt(EapMethodState state);
48 static const char * eap_sm_decision_txt(EapDecision decision);
49 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
50 
51 
52 
eapol_get_bool(struct eap_sm * sm,enum eapol_bool_var var)53 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
54 {
55 	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
56 }
57 
58 
eapol_set_bool(struct eap_sm * sm,enum eapol_bool_var var,Boolean value)59 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
60 			   Boolean value)
61 {
62 	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
63 }
64 
65 
eapol_get_int(struct eap_sm * sm,enum eapol_int_var var)66 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
67 {
68 	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
69 }
70 
71 
eapol_set_int(struct eap_sm * sm,enum eapol_int_var var,unsigned int value)72 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
73 			  unsigned int value)
74 {
75 	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
76 }
77 
78 
eapol_get_eapReqData(struct eap_sm * sm)79 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
80 {
81 	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
82 }
83 
84 
eap_notify_status(struct eap_sm * sm,const char * status,const char * parameter)85 static void eap_notify_status(struct eap_sm *sm, const char *status,
86 				      const char *parameter)
87 {
88 	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
89 		   status, parameter);
90 	if (sm->eapol_cb->notify_status)
91 		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
92 }
93 
94 
eap_deinit_prev_method(struct eap_sm * sm,const char * txt)95 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
96 {
97 	ext_password_free(sm->ext_pw_buf);
98 	sm->ext_pw_buf = NULL;
99 
100 	if (sm->m == NULL || sm->eap_method_priv == NULL)
101 		return;
102 
103 	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
104 		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
105 	sm->m->deinit(sm, sm->eap_method_priv);
106 	sm->eap_method_priv = NULL;
107 	sm->m = NULL;
108 }
109 
110 
111 /**
112  * eap_allowed_method - Check whether EAP method is allowed
113  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
114  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
115  * @method: EAP type
116  * Returns: 1 = allowed EAP method, 0 = not allowed
117  */
eap_allowed_method(struct eap_sm * sm,int vendor,u32 method)118 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
119 {
120 	struct eap_peer_config *config = eap_get_config(sm);
121 	int i;
122 	struct eap_method_type *m;
123 
124 	if (config == NULL || config->eap_methods == NULL)
125 		return 1;
126 
127 	m = config->eap_methods;
128 	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
129 		     m[i].method != EAP_TYPE_NONE; i++) {
130 		if (m[i].vendor == vendor && m[i].method == method)
131 			return 1;
132 	}
133 	return 0;
134 }
135 
136 
137 /*
138  * This state initializes state machine variables when the machine is
139  * activated (portEnabled = TRUE). This is also used when re-starting
140  * authentication (eapRestart == TRUE).
141  */
SM_STATE(EAP,INITIALIZE)142 SM_STATE(EAP, INITIALIZE)
143 {
144 	SM_ENTRY(EAP, INITIALIZE);
145 	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
146 	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
147 	    !sm->prev_failure) {
148 		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
149 			   "fast reauthentication");
150 		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
151 	} else {
152 		eap_deinit_prev_method(sm, "INITIALIZE");
153 	}
154 	sm->selectedMethod = EAP_TYPE_NONE;
155 	sm->methodState = METHOD_NONE;
156 	sm->allowNotifications = TRUE;
157 	sm->decision = DECISION_FAIL;
158 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
159 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
160 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
161 	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
162 	os_free(sm->eapKeyData);
163 	sm->eapKeyData = NULL;
164 	os_free(sm->eapSessionId);
165 	sm->eapSessionId = NULL;
166 	sm->eapKeyAvailable = FALSE;
167 	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
168 	sm->lastId = -1; /* new session - make sure this does not match with
169 			  * the first EAP-Packet */
170 	/*
171 	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
172 	 * seemed to be able to trigger cases where both were set and if EAPOL
173 	 * state machine uses eapNoResp first, it may end up not sending a real
174 	 * reply correctly. This occurred when the workaround in FAIL state set
175 	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
176 	 * something else(?)
177 	 */
178 	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
179 	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
180 	sm->num_rounds = 0;
181 	sm->prev_failure = 0;
182 }
183 
184 
185 /*
186  * This state is reached whenever service from the lower layer is interrupted
187  * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
188  * occurs when the port becomes enabled.
189  */
SM_STATE(EAP,DISABLED)190 SM_STATE(EAP, DISABLED)
191 {
192 	SM_ENTRY(EAP, DISABLED);
193 	sm->num_rounds = 0;
194 	/*
195 	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
196 	 * allows the timer tick to be stopped more quickly when EAP is not in
197 	 * use.
198 	 */
199 	eapol_set_int(sm, EAPOL_idleWhile, 0);
200 }
201 
202 
203 /*
204  * The state machine spends most of its time here, waiting for something to
205  * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
206  * SEND_RESPONSE states.
207  */
SM_STATE(EAP,IDLE)208 SM_STATE(EAP, IDLE)
209 {
210 	SM_ENTRY(EAP, IDLE);
211 }
212 
213 
214 /*
215  * This state is entered when an EAP packet is received (eapReq == TRUE) to
216  * parse the packet header.
217  */
SM_STATE(EAP,RECEIVED)218 SM_STATE(EAP, RECEIVED)
219 {
220 	const struct wpabuf *eapReqData;
221 
222 	SM_ENTRY(EAP, RECEIVED);
223 	eapReqData = eapol_get_eapReqData(sm);
224 	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
225 	eap_sm_parseEapReq(sm, eapReqData);
226 	sm->num_rounds++;
227 }
228 
229 
230 /*
231  * This state is entered when a request for a new type comes in. Either the
232  * correct method is started, or a Nak response is built.
233  */
SM_STATE(EAP,GET_METHOD)234 SM_STATE(EAP, GET_METHOD)
235 {
236 	int reinit;
237 	EapType method;
238 	const struct eap_method *eap_method;
239 
240 	SM_ENTRY(EAP, GET_METHOD);
241 
242 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
243 		method = sm->reqVendorMethod;
244 	else
245 		method = sm->reqMethod;
246 
247 	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
248 
249 	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
250 		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
251 			   sm->reqVendor, method);
252 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
253 			"vendor=%u method=%u -> NAK",
254 			sm->reqVendor, method);
255 		eap_notify_status(sm, "refuse proposed method",
256 				  eap_method ?  eap_method->name : "unknown");
257 		goto nak;
258 	}
259 
260 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
261 		"vendor=%u method=%u", sm->reqVendor, method);
262 
263 	eap_notify_status(sm, "accept proposed method",
264 			  eap_method ?  eap_method->name : "unknown");
265 	/*
266 	 * RFC 4137 does not define specific operation for fast
267 	 * re-authentication (session resumption). The design here is to allow
268 	 * the previously used method data to be maintained for
269 	 * re-authentication if the method support session resumption.
270 	 * Otherwise, the previously used method data is freed and a new method
271 	 * is allocated here.
272 	 */
273 	if (sm->fast_reauth &&
274 	    sm->m && sm->m->vendor == sm->reqVendor &&
275 	    sm->m->method == method &&
276 	    sm->m->has_reauth_data &&
277 	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
278 		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
279 			   " for fast re-authentication");
280 		reinit = 1;
281 	} else {
282 		eap_deinit_prev_method(sm, "GET_METHOD");
283 		reinit = 0;
284 	}
285 
286 	sm->selectedMethod = sm->reqMethod;
287 	if (sm->m == NULL)
288 		sm->m = eap_method;
289 	if (!sm->m) {
290 		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
291 			   "vendor %d method %d",
292 			   sm->reqVendor, method);
293 		goto nak;
294 	}
295 
296 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
297 
298 	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
299 		   "vendor %u method %u (%s)",
300 		   sm->reqVendor, method, sm->m->name);
301 	if (reinit)
302 		sm->eap_method_priv = sm->m->init_for_reauth(
303 			sm, sm->eap_method_priv);
304 	else
305 		sm->eap_method_priv = sm->m->init(sm);
306 
307 	if (sm->eap_method_priv == NULL) {
308 		struct eap_peer_config *config = eap_get_config(sm);
309 		wpa_msg(sm->msg_ctx, MSG_INFO,
310 			"EAP: Failed to initialize EAP method: vendor %u "
311 			"method %u (%s)",
312 			sm->reqVendor, method, sm->m->name);
313 		sm->m = NULL;
314 		sm->methodState = METHOD_NONE;
315 		sm->selectedMethod = EAP_TYPE_NONE;
316 		if (sm->reqMethod == EAP_TYPE_TLS && config &&
317 		    (config->pending_req_pin ||
318 		     config->pending_req_passphrase)) {
319 			/*
320 			 * Return without generating Nak in order to allow
321 			 * entering of PIN code or passphrase to retry the
322 			 * current EAP packet.
323 			 */
324 			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
325 				   "request - skip Nak");
326 			return;
327 		}
328 
329 		goto nak;
330 	}
331 
332 	sm->methodState = METHOD_INIT;
333 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
334 		"EAP vendor %u method %u (%s) selected",
335 		sm->reqVendor, method, sm->m->name);
336 	return;
337 
338 nak:
339 	wpabuf_free(sm->eapRespData);
340 	sm->eapRespData = NULL;
341 	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
342 }
343 
344 
345 /*
346  * The method processing happens here. The request from the authenticator is
347  * processed, and an appropriate response packet is built.
348  */
SM_STATE(EAP,METHOD)349 SM_STATE(EAP, METHOD)
350 {
351 	struct wpabuf *eapReqData;
352 	struct eap_method_ret ret;
353 	int min_len = 1;
354 
355 	SM_ENTRY(EAP, METHOD);
356 	if (sm->m == NULL) {
357 		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
358 		return;
359 	}
360 
361 	eapReqData = eapol_get_eapReqData(sm);
362 	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
363 		min_len = 0; /* LEAP uses EAP-Success without payload */
364 	if (!eap_hdr_len_valid(eapReqData, min_len))
365 		return;
366 
367 	/*
368 	 * Get ignore, methodState, decision, allowNotifications, and
369 	 * eapRespData. RFC 4137 uses three separate method procedure (check,
370 	 * process, and buildResp) in this state. These have been combined into
371 	 * a single function call to m->process() in order to optimize EAP
372 	 * method implementation interface a bit. These procedures are only
373 	 * used from within this METHOD state, so there is no need to keep
374 	 * these as separate C functions.
375 	 *
376 	 * The RFC 4137 procedures return values as follows:
377 	 * ignore = m.check(eapReqData)
378 	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
379 	 * eapRespData = m.buildResp(reqId)
380 	 */
381 	os_memset(&ret, 0, sizeof(ret));
382 	ret.ignore = sm->ignore;
383 	ret.methodState = sm->methodState;
384 	ret.decision = sm->decision;
385 	ret.allowNotifications = sm->allowNotifications;
386 	wpabuf_free(sm->eapRespData);
387 	sm->eapRespData = NULL;
388 	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
389 					 eapReqData);
390 	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
391 		   "methodState=%s decision=%s",
392 		   ret.ignore ? "TRUE" : "FALSE",
393 		   eap_sm_method_state_txt(ret.methodState),
394 		   eap_sm_decision_txt(ret.decision));
395 
396 	sm->ignore = ret.ignore;
397 	if (sm->ignore)
398 		return;
399 	sm->methodState = ret.methodState;
400 	sm->decision = ret.decision;
401 	sm->allowNotifications = ret.allowNotifications;
402 
403 	if (sm->m->isKeyAvailable && sm->m->getKey &&
404 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
405 		os_free(sm->eapKeyData);
406 		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
407 					       &sm->eapKeyDataLen);
408 		os_free(sm->eapSessionId);
409 		sm->eapSessionId = NULL;
410 		if (sm->m->getSessionId) {
411 			sm->eapSessionId = sm->m->getSessionId(
412 				sm, sm->eap_method_priv,
413 				&sm->eapSessionIdLen);
414 			wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
415 				    sm->eapSessionId, sm->eapSessionIdLen);
416 		}
417 	}
418 }
419 
420 
421 /*
422  * This state signals the lower layer that a response packet is ready to be
423  * sent.
424  */
SM_STATE(EAP,SEND_RESPONSE)425 SM_STATE(EAP, SEND_RESPONSE)
426 {
427 	SM_ENTRY(EAP, SEND_RESPONSE);
428 	wpabuf_free(sm->lastRespData);
429 	if (sm->eapRespData) {
430 		if (sm->workaround)
431 			os_memcpy(sm->last_md5, sm->req_md5, 16);
432 		sm->lastId = sm->reqId;
433 		sm->lastRespData = wpabuf_dup(sm->eapRespData);
434 		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
435 	} else
436 		sm->lastRespData = NULL;
437 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
438 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
439 }
440 
441 
442 /*
443  * This state signals the lower layer that the request was discarded, and no
444  * response packet will be sent at this time.
445  */
SM_STATE(EAP,DISCARD)446 SM_STATE(EAP, DISCARD)
447 {
448 	SM_ENTRY(EAP, DISCARD);
449 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
450 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
451 }
452 
453 
454 /*
455  * Handles requests for Identity method and builds a response.
456  */
SM_STATE(EAP,IDENTITY)457 SM_STATE(EAP, IDENTITY)
458 {
459 	const struct wpabuf *eapReqData;
460 
461 	SM_ENTRY(EAP, IDENTITY);
462 	eapReqData = eapol_get_eapReqData(sm);
463 	if (!eap_hdr_len_valid(eapReqData, 1))
464 		return;
465 	eap_sm_processIdentity(sm, eapReqData);
466 	wpabuf_free(sm->eapRespData);
467 	sm->eapRespData = NULL;
468 	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
469 }
470 
471 
472 /*
473  * Handles requests for Notification method and builds a response.
474  */
SM_STATE(EAP,NOTIFICATION)475 SM_STATE(EAP, NOTIFICATION)
476 {
477 	const struct wpabuf *eapReqData;
478 
479 	SM_ENTRY(EAP, NOTIFICATION);
480 	eapReqData = eapol_get_eapReqData(sm);
481 	if (!eap_hdr_len_valid(eapReqData, 1))
482 		return;
483 	eap_sm_processNotify(sm, eapReqData);
484 	wpabuf_free(sm->eapRespData);
485 	sm->eapRespData = NULL;
486 	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
487 }
488 
489 
490 /*
491  * This state retransmits the previous response packet.
492  */
SM_STATE(EAP,RETRANSMIT)493 SM_STATE(EAP, RETRANSMIT)
494 {
495 	SM_ENTRY(EAP, RETRANSMIT);
496 	wpabuf_free(sm->eapRespData);
497 	if (sm->lastRespData)
498 		sm->eapRespData = wpabuf_dup(sm->lastRespData);
499 	else
500 		sm->eapRespData = NULL;
501 }
502 
503 
504 /*
505  * This state is entered in case of a successful completion of authentication
506  * and state machine waits here until port is disabled or EAP authentication is
507  * restarted.
508  */
SM_STATE(EAP,SUCCESS)509 SM_STATE(EAP, SUCCESS)
510 {
511 	SM_ENTRY(EAP, SUCCESS);
512 	if (sm->eapKeyData != NULL)
513 		sm->eapKeyAvailable = TRUE;
514 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
515 
516 	/*
517 	 * RFC 4137 does not clear eapReq here, but this seems to be required
518 	 * to avoid processing the same request twice when state machine is
519 	 * initialized.
520 	 */
521 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
522 
523 	/*
524 	 * RFC 4137 does not set eapNoResp here, but this seems to be required
525 	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
526 	 * addition, either eapResp or eapNoResp is required to be set after
527 	 * processing the received EAP frame.
528 	 */
529 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
530 
531 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
532 		"EAP authentication completed successfully");
533 }
534 
535 
536 /*
537  * This state is entered in case of a failure and state machine waits here
538  * until port is disabled or EAP authentication is restarted.
539  */
SM_STATE(EAP,FAILURE)540 SM_STATE(EAP, FAILURE)
541 {
542 	SM_ENTRY(EAP, FAILURE);
543 	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
544 
545 	/*
546 	 * RFC 4137 does not clear eapReq here, but this seems to be required
547 	 * to avoid processing the same request twice when state machine is
548 	 * initialized.
549 	 */
550 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
551 
552 	/*
553 	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
554 	 * eapNoResp is required to be set after processing the received EAP
555 	 * frame.
556 	 */
557 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
558 
559 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
560 		"EAP authentication failed");
561 
562 	sm->prev_failure = 1;
563 }
564 
565 
eap_success_workaround(struct eap_sm * sm,int reqId,int lastId)566 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
567 {
568 	/*
569 	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
570 	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
571 	 * RFC 4137 require that reqId == lastId. In addition, it looks like
572 	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
573 	 *
574 	 * Accept this kind of Id if EAP workarounds are enabled. These are
575 	 * unauthenticated plaintext messages, so this should have minimal
576 	 * security implications (bit easier to fake EAP-Success/Failure).
577 	 */
578 	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
579 			       reqId == ((lastId + 2) & 0xff))) {
580 		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
581 			   "identifier field in EAP Success: "
582 			   "reqId=%d lastId=%d (these are supposed to be "
583 			   "same)", reqId, lastId);
584 		return 1;
585 	}
586 	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
587 		   "lastId=%d", reqId, lastId);
588 	return 0;
589 }
590 
591 
592 /*
593  * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
594  */
595 
eap_peer_sm_step_idle(struct eap_sm * sm)596 static void eap_peer_sm_step_idle(struct eap_sm *sm)
597 {
598 	/*
599 	 * The first three transitions are from RFC 4137. The last two are
600 	 * local additions to handle special cases with LEAP and PEAP server
601 	 * not sending EAP-Success in some cases.
602 	 */
603 	if (eapol_get_bool(sm, EAPOL_eapReq))
604 		SM_ENTER(EAP, RECEIVED);
605 	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
606 		  sm->decision != DECISION_FAIL) ||
607 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
608 		  sm->decision == DECISION_UNCOND_SUCC))
609 		SM_ENTER(EAP, SUCCESS);
610 	else if (eapol_get_bool(sm, EAPOL_altReject) ||
611 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
612 		  sm->decision != DECISION_UNCOND_SUCC) ||
613 		 (eapol_get_bool(sm, EAPOL_altAccept) &&
614 		  sm->methodState != METHOD_CONT &&
615 		  sm->decision == DECISION_FAIL))
616 		SM_ENTER(EAP, FAILURE);
617 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
618 		 sm->leap_done && sm->decision != DECISION_FAIL &&
619 		 sm->methodState == METHOD_DONE)
620 		SM_ENTER(EAP, SUCCESS);
621 	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
622 		 sm->peap_done && sm->decision != DECISION_FAIL &&
623 		 sm->methodState == METHOD_DONE)
624 		SM_ENTER(EAP, SUCCESS);
625 }
626 
627 
eap_peer_req_is_duplicate(struct eap_sm * sm)628 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
629 {
630 	int duplicate;
631 
632 	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
633 	if (sm->workaround && duplicate &&
634 	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
635 		/*
636 		 * RFC 4137 uses (reqId == lastId) as the only verification for
637 		 * duplicate EAP requests. However, this misses cases where the
638 		 * AS is incorrectly using the same id again; and
639 		 * unfortunately, such implementations exist. Use MD5 hash as
640 		 * an extra verification for the packets being duplicate to
641 		 * workaround these issues.
642 		 */
643 		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
644 			   "EAP packets were not identical");
645 		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
646 			   "duplicate packet");
647 		duplicate = 0;
648 	}
649 
650 	return duplicate;
651 }
652 
653 
eap_peer_sm_step_received(struct eap_sm * sm)654 static void eap_peer_sm_step_received(struct eap_sm *sm)
655 {
656 	int duplicate = eap_peer_req_is_duplicate(sm);
657 
658 	/*
659 	 * Two special cases below for LEAP are local additions to work around
660 	 * odd LEAP behavior (EAP-Success in the middle of authentication and
661 	 * then swapped roles). Other transitions are based on RFC 4137.
662 	 */
663 	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
664 	    (sm->reqId == sm->lastId ||
665 	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
666 		SM_ENTER(EAP, SUCCESS);
667 	else if (sm->methodState != METHOD_CONT &&
668 		 ((sm->rxFailure &&
669 		   sm->decision != DECISION_UNCOND_SUCC) ||
670 		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
671 		   (sm->selectedMethod != EAP_TYPE_LEAP ||
672 		    sm->methodState != METHOD_MAY_CONT))) &&
673 		 (sm->reqId == sm->lastId ||
674 		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
675 		SM_ENTER(EAP, FAILURE);
676 	else if (sm->rxReq && duplicate)
677 		SM_ENTER(EAP, RETRANSMIT);
678 	else if (sm->rxReq && !duplicate &&
679 		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
680 		 sm->allowNotifications)
681 		SM_ENTER(EAP, NOTIFICATION);
682 	else if (sm->rxReq && !duplicate &&
683 		 sm->selectedMethod == EAP_TYPE_NONE &&
684 		 sm->reqMethod == EAP_TYPE_IDENTITY)
685 		SM_ENTER(EAP, IDENTITY);
686 	else if (sm->rxReq && !duplicate &&
687 		 sm->selectedMethod == EAP_TYPE_NONE &&
688 		 sm->reqMethod != EAP_TYPE_IDENTITY &&
689 		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
690 		SM_ENTER(EAP, GET_METHOD);
691 	else if (sm->rxReq && !duplicate &&
692 		 sm->reqMethod == sm->selectedMethod &&
693 		 sm->methodState != METHOD_DONE)
694 		SM_ENTER(EAP, METHOD);
695 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
696 		 (sm->rxSuccess || sm->rxResp))
697 		SM_ENTER(EAP, METHOD);
698 	else
699 		SM_ENTER(EAP, DISCARD);
700 }
701 
702 
eap_peer_sm_step_local(struct eap_sm * sm)703 static void eap_peer_sm_step_local(struct eap_sm *sm)
704 {
705 	switch (sm->EAP_state) {
706 	case EAP_INITIALIZE:
707 		SM_ENTER(EAP, IDLE);
708 		break;
709 	case EAP_DISABLED:
710 		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
711 		    !sm->force_disabled)
712 			SM_ENTER(EAP, INITIALIZE);
713 		break;
714 	case EAP_IDLE:
715 		eap_peer_sm_step_idle(sm);
716 		break;
717 	case EAP_RECEIVED:
718 		eap_peer_sm_step_received(sm);
719 		break;
720 	case EAP_GET_METHOD:
721 		if (sm->selectedMethod == sm->reqMethod)
722 			SM_ENTER(EAP, METHOD);
723 		else
724 			SM_ENTER(EAP, SEND_RESPONSE);
725 		break;
726 	case EAP_METHOD:
727 		if (sm->ignore)
728 			SM_ENTER(EAP, DISCARD);
729 		else
730 			SM_ENTER(EAP, SEND_RESPONSE);
731 		break;
732 	case EAP_SEND_RESPONSE:
733 		SM_ENTER(EAP, IDLE);
734 		break;
735 	case EAP_DISCARD:
736 		SM_ENTER(EAP, IDLE);
737 		break;
738 	case EAP_IDENTITY:
739 		SM_ENTER(EAP, SEND_RESPONSE);
740 		break;
741 	case EAP_NOTIFICATION:
742 		SM_ENTER(EAP, SEND_RESPONSE);
743 		break;
744 	case EAP_RETRANSMIT:
745 		SM_ENTER(EAP, SEND_RESPONSE);
746 		break;
747 	case EAP_SUCCESS:
748 		break;
749 	case EAP_FAILURE:
750 		break;
751 	}
752 }
753 
754 
SM_STEP(EAP)755 SM_STEP(EAP)
756 {
757 	/* Global transitions */
758 	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
759 	    eapol_get_bool(sm, EAPOL_portEnabled))
760 		SM_ENTER_GLOBAL(EAP, INITIALIZE);
761 	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
762 		SM_ENTER_GLOBAL(EAP, DISABLED);
763 	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
764 		/* RFC 4137 does not place any limit on number of EAP messages
765 		 * in an authentication session. However, some error cases have
766 		 * ended up in a state were EAP messages were sent between the
767 		 * peer and server in a loop (e.g., TLS ACK frame in both
768 		 * direction). Since this is quite undesired outcome, limit the
769 		 * total number of EAP round-trips and abort authentication if
770 		 * this limit is exceeded.
771 		 */
772 		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
773 			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
774 				"authentication rounds - abort",
775 				EAP_MAX_AUTH_ROUNDS);
776 			sm->num_rounds++;
777 			SM_ENTER_GLOBAL(EAP, FAILURE);
778 		}
779 	} else {
780 		/* Local transitions */
781 		eap_peer_sm_step_local(sm);
782 	}
783 }
784 
785 
eap_sm_allowMethod(struct eap_sm * sm,int vendor,EapType method)786 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
787 				  EapType method)
788 {
789 	if (!eap_allowed_method(sm, vendor, method)) {
790 		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
791 			   "vendor %u method %u", vendor, method);
792 		return FALSE;
793 	}
794 	if (eap_peer_get_eap_method(vendor, method))
795 		return TRUE;
796 	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
797 		   "vendor %u method %u", vendor, method);
798 	return FALSE;
799 }
800 
801 
eap_sm_build_expanded_nak(struct eap_sm * sm,int id,const struct eap_method * methods,size_t count)802 static struct wpabuf * eap_sm_build_expanded_nak(
803 	struct eap_sm *sm, int id, const struct eap_method *methods,
804 	size_t count)
805 {
806 	struct wpabuf *resp;
807 	int found = 0;
808 	const struct eap_method *m;
809 
810 	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
811 
812 	/* RFC 3748 - 5.3.2: Expanded Nak */
813 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
814 			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
815 	if (resp == NULL)
816 		return NULL;
817 
818 	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
819 	wpabuf_put_be32(resp, EAP_TYPE_NAK);
820 
821 	for (m = methods; m; m = m->next) {
822 		if (sm->reqVendor == m->vendor &&
823 		    sm->reqVendorMethod == m->method)
824 			continue; /* do not allow the current method again */
825 		if (eap_allowed_method(sm, m->vendor, m->method)) {
826 			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
827 				   "vendor=%u method=%u",
828 				   m->vendor, m->method);
829 			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
830 			wpabuf_put_be24(resp, m->vendor);
831 			wpabuf_put_be32(resp, m->method);
832 
833 			found++;
834 		}
835 	}
836 	if (!found) {
837 		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
838 		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
839 		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
840 		wpabuf_put_be32(resp, EAP_TYPE_NONE);
841 	}
842 
843 	eap_update_len(resp);
844 
845 	return resp;
846 }
847 
848 
eap_sm_buildNak(struct eap_sm * sm,int id)849 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
850 {
851 	struct wpabuf *resp;
852 	u8 *start;
853 	int found = 0, expanded_found = 0;
854 	size_t count;
855 	const struct eap_method *methods, *m;
856 
857 	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
858 		   "vendor=%u method=%u not allowed)", sm->reqMethod,
859 		   sm->reqVendor, sm->reqVendorMethod);
860 	methods = eap_peer_get_methods(&count);
861 	if (methods == NULL)
862 		return NULL;
863 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
864 		return eap_sm_build_expanded_nak(sm, id, methods, count);
865 
866 	/* RFC 3748 - 5.3.1: Legacy Nak */
867 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
868 			     sizeof(struct eap_hdr) + 1 + count + 1,
869 			     EAP_CODE_RESPONSE, id);
870 	if (resp == NULL)
871 		return NULL;
872 
873 	start = wpabuf_put(resp, 0);
874 	for (m = methods; m; m = m->next) {
875 		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
876 			continue; /* do not allow the current method again */
877 		if (eap_allowed_method(sm, m->vendor, m->method)) {
878 			if (m->vendor != EAP_VENDOR_IETF) {
879 				if (expanded_found)
880 					continue;
881 				expanded_found = 1;
882 				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
883 			} else
884 				wpabuf_put_u8(resp, m->method);
885 			found++;
886 		}
887 	}
888 	if (!found)
889 		wpabuf_put_u8(resp, EAP_TYPE_NONE);
890 	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
891 
892 	eap_update_len(resp);
893 
894 	return resp;
895 }
896 
897 
eap_sm_processIdentity(struct eap_sm * sm,const struct wpabuf * req)898 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
899 {
900 	const u8 *pos;
901 	size_t msg_len;
902 
903 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
904 		"EAP authentication started");
905 	eap_notify_status(sm, "started", "");
906 
907 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
908 			       &msg_len);
909 	if (pos == NULL)
910 		return;
911 
912 	/*
913 	 * RFC 3748 - 5.1: Identity
914 	 * Data field may contain a displayable message in UTF-8. If this
915 	 * includes NUL-character, only the data before that should be
916 	 * displayed. Some EAP implementasitons may piggy-back additional
917 	 * options after the NUL.
918 	 */
919 	/* TODO: could save displayable message so that it can be shown to the
920 	 * user in case of interaction is required */
921 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
922 			  pos, msg_len);
923 }
924 
925 
926 #ifdef PCSC_FUNCS
927 
928 /*
929  * Rules for figuring out MNC length based on IMSI for SIM cards that do not
930  * include MNC length field.
931  */
mnc_len_from_imsi(const char * imsi)932 static int mnc_len_from_imsi(const char *imsi)
933 {
934 	char mcc_str[4];
935 	unsigned int mcc;
936 
937 	os_memcpy(mcc_str, imsi, 3);
938 	mcc_str[3] = '\0';
939 	mcc = atoi(mcc_str);
940 
941 	if (mcc == 228)
942 		return 2; /* Networks in Switzerland use 2-digit MNC */
943 	if (mcc == 244)
944 		return 2; /* Networks in Finland use 2-digit MNC */
945 
946 	return -1;
947 }
948 
949 
eap_sm_append_3gpp_realm(struct eap_sm * sm,char * imsi,size_t max_len,size_t * imsi_len)950 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
951 				    size_t max_len, size_t *imsi_len)
952 {
953 	int mnc_len;
954 	char *pos, mnc[4];
955 
956 	if (*imsi_len + 36 > max_len) {
957 		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
958 		return -1;
959 	}
960 
961 	/* MNC (2 or 3 digits) */
962 	mnc_len = scard_get_mnc_len(sm->scard_ctx);
963 	if (mnc_len < 0)
964 		mnc_len = mnc_len_from_imsi(imsi);
965 	if (mnc_len < 0) {
966 		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
967 			   "assuming 3");
968 		mnc_len = 3;
969 	}
970 
971 	if (mnc_len == 2) {
972 		mnc[0] = '0';
973 		mnc[1] = imsi[3];
974 		mnc[2] = imsi[4];
975 	} else if (mnc_len == 3) {
976 		mnc[0] = imsi[3];
977 		mnc[1] = imsi[4];
978 		mnc[2] = imsi[5];
979 	}
980 	mnc[3] = '\0';
981 
982 	pos = imsi + *imsi_len;
983 	pos += os_snprintf(pos, imsi + max_len - pos,
984 			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
985 			   mnc, imsi[0], imsi[1], imsi[2]);
986 	*imsi_len = pos - imsi;
987 
988 	return 0;
989 }
990 
991 
eap_sm_imsi_identity(struct eap_sm * sm,struct eap_peer_config * conf)992 static int eap_sm_imsi_identity(struct eap_sm *sm,
993 				struct eap_peer_config *conf)
994 {
995 	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
996 	char imsi[100];
997 	size_t imsi_len;
998 	struct eap_method_type *m = conf->eap_methods;
999 	int i;
1000 
1001 	imsi_len = sizeof(imsi);
1002 	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1003 		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1004 		return -1;
1005 	}
1006 
1007 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1008 
1009 	if (imsi_len < 7) {
1010 		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1011 		return -1;
1012 	}
1013 
1014 	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1015 		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1016 		return -1;
1017 	}
1018 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1019 
1020 	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1021 			  m[i].method != EAP_TYPE_NONE); i++) {
1022 		if (m[i].vendor == EAP_VENDOR_IETF &&
1023 		    m[i].method == EAP_TYPE_AKA_PRIME) {
1024 			method = EAP_SM_AKA_PRIME;
1025 			break;
1026 		}
1027 
1028 		if (m[i].vendor == EAP_VENDOR_IETF &&
1029 		    m[i].method == EAP_TYPE_AKA) {
1030 			method = EAP_SM_AKA;
1031 			break;
1032 		}
1033 	}
1034 
1035 	os_free(conf->identity);
1036 	conf->identity = os_malloc(1 + imsi_len);
1037 	if (conf->identity == NULL) {
1038 		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1039 			   "IMSI-based identity");
1040 		return -1;
1041 	}
1042 
1043 	switch (method) {
1044 	case EAP_SM_SIM:
1045 		conf->identity[0] = '1';
1046 		break;
1047 	case EAP_SM_AKA:
1048 		conf->identity[0] = '0';
1049 		break;
1050 	case EAP_SM_AKA_PRIME:
1051 		conf->identity[0] = '6';
1052 		break;
1053 	}
1054 	os_memcpy(conf->identity + 1, imsi, imsi_len);
1055 	conf->identity_len = 1 + imsi_len;
1056 
1057 	return 0;
1058 }
1059 
1060 #endif /* PCSC_FUNCS */
1061 
1062 
eap_sm_set_scard_pin(struct eap_sm * sm,struct eap_peer_config * conf)1063 static int eap_sm_set_scard_pin(struct eap_sm *sm,
1064 				struct eap_peer_config *conf)
1065 {
1066 #ifdef PCSC_FUNCS
1067 	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1068 		/*
1069 		 * Make sure the same PIN is not tried again in order to avoid
1070 		 * blocking SIM.
1071 		 */
1072 		os_free(conf->pin);
1073 		conf->pin = NULL;
1074 
1075 		wpa_printf(MSG_WARNING, "PIN validation failed");
1076 		eap_sm_request_pin(sm);
1077 		return -1;
1078 	}
1079 	return 0;
1080 #else /* PCSC_FUNCS */
1081 	return -1;
1082 #endif /* PCSC_FUNCS */
1083 }
1084 
eap_sm_get_scard_identity(struct eap_sm * sm,struct eap_peer_config * conf)1085 static int eap_sm_get_scard_identity(struct eap_sm *sm,
1086 				     struct eap_peer_config *conf)
1087 {
1088 #ifdef PCSC_FUNCS
1089 	if (eap_sm_set_scard_pin(sm, conf))
1090 		return -1;
1091 
1092 	return eap_sm_imsi_identity(sm, conf);
1093 #else /* PCSC_FUNCS */
1094 	return -1;
1095 #endif /* PCSC_FUNCS */
1096 }
1097 
1098 
1099 /**
1100  * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1101  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1102  * @id: EAP identifier for the packet
1103  * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1104  * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1105  * failure
1106  *
1107  * This function allocates and builds an EAP-Identity/Response packet for the
1108  * current network. The caller is responsible for freeing the returned data.
1109  */
eap_sm_buildIdentity(struct eap_sm * sm,int id,int encrypted)1110 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1111 {
1112 	struct eap_peer_config *config = eap_get_config(sm);
1113 	struct wpabuf *resp;
1114 	const u8 *identity;
1115 	size_t identity_len;
1116 
1117 	if (config == NULL) {
1118 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1119 			   "was not available");
1120 		return NULL;
1121 	}
1122 
1123 	if (sm->m && sm->m->get_identity &&
1124 	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1125 					    &identity_len)) != NULL) {
1126 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1127 				  "identity", identity, identity_len);
1128 	} else if (!encrypted && config->anonymous_identity) {
1129 		identity = config->anonymous_identity;
1130 		identity_len = config->anonymous_identity_len;
1131 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1132 				  identity, identity_len);
1133 	} else {
1134 		identity = config->identity;
1135 		identity_len = config->identity_len;
1136 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1137 				  identity, identity_len);
1138 	}
1139 
1140 	if (identity == NULL) {
1141 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1142 			   "configuration was not available");
1143 		if (config->pcsc) {
1144 			if (eap_sm_get_scard_identity(sm, config) < 0)
1145 				return NULL;
1146 			identity = config->identity;
1147 			identity_len = config->identity_len;
1148 			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1149 					  "IMSI", identity, identity_len);
1150 		} else {
1151 			eap_sm_request_identity(sm);
1152 			return NULL;
1153 		}
1154 	} else if (config->pcsc) {
1155 		if (eap_sm_set_scard_pin(sm, config) < 0)
1156 			return NULL;
1157 	}
1158 
1159 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1160 			     EAP_CODE_RESPONSE, id);
1161 	if (resp == NULL)
1162 		return NULL;
1163 
1164 	wpabuf_put_data(resp, identity, identity_len);
1165 
1166 	return resp;
1167 }
1168 
1169 
eap_sm_processNotify(struct eap_sm * sm,const struct wpabuf * req)1170 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1171 {
1172 	const u8 *pos;
1173 	char *msg;
1174 	size_t i, msg_len;
1175 
1176 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1177 			       &msg_len);
1178 	if (pos == NULL)
1179 		return;
1180 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1181 			  pos, msg_len);
1182 
1183 	msg = os_malloc(msg_len + 1);
1184 	if (msg == NULL)
1185 		return;
1186 	for (i = 0; i < msg_len; i++)
1187 		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1188 	msg[msg_len] = '\0';
1189 	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1190 		WPA_EVENT_EAP_NOTIFICATION, msg);
1191 	os_free(msg);
1192 }
1193 
1194 
eap_sm_buildNotify(int id)1195 static struct wpabuf * eap_sm_buildNotify(int id)
1196 {
1197 	struct wpabuf *resp;
1198 
1199 	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1200 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1201 			     EAP_CODE_RESPONSE, id);
1202 	if (resp == NULL)
1203 		return NULL;
1204 
1205 	return resp;
1206 }
1207 
1208 
eap_sm_parseEapReq(struct eap_sm * sm,const struct wpabuf * req)1209 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1210 {
1211 	const struct eap_hdr *hdr;
1212 	size_t plen;
1213 	const u8 *pos;
1214 
1215 	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1216 	sm->reqId = 0;
1217 	sm->reqMethod = EAP_TYPE_NONE;
1218 	sm->reqVendor = EAP_VENDOR_IETF;
1219 	sm->reqVendorMethod = EAP_TYPE_NONE;
1220 
1221 	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1222 		return;
1223 
1224 	hdr = wpabuf_head(req);
1225 	plen = be_to_host16(hdr->length);
1226 	if (plen > wpabuf_len(req)) {
1227 		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1228 			   "(len=%lu plen=%lu)",
1229 			   (unsigned long) wpabuf_len(req),
1230 			   (unsigned long) plen);
1231 		return;
1232 	}
1233 
1234 	sm->reqId = hdr->identifier;
1235 
1236 	if (sm->workaround) {
1237 		const u8 *addr[1];
1238 		addr[0] = wpabuf_head(req);
1239 		md5_vector(1, addr, &plen, sm->req_md5);
1240 	}
1241 
1242 	switch (hdr->code) {
1243 	case EAP_CODE_REQUEST:
1244 		if (plen < sizeof(*hdr) + 1) {
1245 			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1246 				   "no Type field");
1247 			return;
1248 		}
1249 		sm->rxReq = TRUE;
1250 		pos = (const u8 *) (hdr + 1);
1251 		sm->reqMethod = *pos++;
1252 		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1253 			if (plen < sizeof(*hdr) + 8) {
1254 				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1255 					   "expanded EAP-Packet (plen=%lu)",
1256 					   (unsigned long) plen);
1257 				return;
1258 			}
1259 			sm->reqVendor = WPA_GET_BE24(pos);
1260 			pos += 3;
1261 			sm->reqVendorMethod = WPA_GET_BE32(pos);
1262 		}
1263 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1264 			   "method=%u vendor=%u vendorMethod=%u",
1265 			   sm->reqId, sm->reqMethod, sm->reqVendor,
1266 			   sm->reqVendorMethod);
1267 		break;
1268 	case EAP_CODE_RESPONSE:
1269 		if (sm->selectedMethod == EAP_TYPE_LEAP) {
1270 			/*
1271 			 * LEAP differs from RFC 4137 by using reversed roles
1272 			 * for mutual authentication and because of this, we
1273 			 * need to accept EAP-Response frames if LEAP is used.
1274 			 */
1275 			if (plen < sizeof(*hdr) + 1) {
1276 				wpa_printf(MSG_DEBUG, "EAP: Too short "
1277 					   "EAP-Response - no Type field");
1278 				return;
1279 			}
1280 			sm->rxResp = TRUE;
1281 			pos = (const u8 *) (hdr + 1);
1282 			sm->reqMethod = *pos;
1283 			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1284 				   "LEAP method=%d id=%d",
1285 				   sm->reqMethod, sm->reqId);
1286 			break;
1287 		}
1288 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1289 		break;
1290 	case EAP_CODE_SUCCESS:
1291 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1292 		eap_notify_status(sm, "completion", "success");
1293 		sm->rxSuccess = TRUE;
1294 		break;
1295 	case EAP_CODE_FAILURE:
1296 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1297 		eap_notify_status(sm, "completion", "failure");
1298 		sm->rxFailure = TRUE;
1299 		break;
1300 	default:
1301 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1302 			   "code %d", hdr->code);
1303 		break;
1304 	}
1305 }
1306 
1307 
eap_peer_sm_tls_event(void * ctx,enum tls_event ev,union tls_event_data * data)1308 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1309 				  union tls_event_data *data)
1310 {
1311 	struct eap_sm *sm = ctx;
1312 	char *hash_hex = NULL;
1313 
1314 	switch (ev) {
1315 	case TLS_CERT_CHAIN_SUCCESS:
1316 		eap_notify_status(sm, "remote certificate verification",
1317 				  "success");
1318 		break;
1319 	case TLS_CERT_CHAIN_FAILURE:
1320 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1321 			"reason=%d depth=%d subject='%s' err='%s'",
1322 			data->cert_fail.reason,
1323 			data->cert_fail.depth,
1324 			data->cert_fail.subject,
1325 			data->cert_fail.reason_txt);
1326 		eap_notify_status(sm, "remote certificate verification",
1327 				  data->cert_fail.reason_txt);
1328 		break;
1329 	case TLS_PEER_CERTIFICATE:
1330 		if (!sm->eapol_cb->notify_cert)
1331 			break;
1332 
1333 		if (data->peer_cert.hash) {
1334 			size_t len = data->peer_cert.hash_len * 2 + 1;
1335 			hash_hex = os_malloc(len);
1336 			if (hash_hex) {
1337 				wpa_snprintf_hex(hash_hex, len,
1338 						 data->peer_cert.hash,
1339 						 data->peer_cert.hash_len);
1340 			}
1341 		}
1342 
1343 		sm->eapol_cb->notify_cert(sm->eapol_ctx,
1344 					  data->peer_cert.depth,
1345 					  data->peer_cert.subject,
1346 					  hash_hex, data->peer_cert.cert);
1347 		break;
1348 	case TLS_ALERT:
1349 		if (data->alert.is_local)
1350 			eap_notify_status(sm, "local TLS alert",
1351 					  data->alert.description);
1352 		else
1353 			eap_notify_status(sm, "remote TLS alert",
1354 					  data->alert.description);
1355 		break;
1356 	}
1357 
1358 	os_free(hash_hex);
1359 }
1360 
1361 
1362 /**
1363  * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1364  * @eapol_ctx: Context data to be used with eapol_cb calls
1365  * @eapol_cb: Pointer to EAPOL callback functions
1366  * @msg_ctx: Context data for wpa_msg() calls
1367  * @conf: EAP configuration
1368  * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1369  *
1370  * This function allocates and initializes an EAP state machine. In addition,
1371  * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1372  * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1373  * state machine. Consequently, the caller must make sure that this data
1374  * structure remains alive while the EAP state machine is active.
1375  */
eap_peer_sm_init(void * eapol_ctx,struct eapol_callbacks * eapol_cb,void * msg_ctx,struct eap_config * conf)1376 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1377 				 struct eapol_callbacks *eapol_cb,
1378 				 void *msg_ctx, struct eap_config *conf)
1379 {
1380 	struct eap_sm *sm;
1381 	struct tls_config tlsconf;
1382 
1383 	sm = os_zalloc(sizeof(*sm));
1384 	if (sm == NULL)
1385 		return NULL;
1386 	sm->eapol_ctx = eapol_ctx;
1387 	sm->eapol_cb = eapol_cb;
1388 	sm->msg_ctx = msg_ctx;
1389 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1390 	sm->wps = conf->wps;
1391 
1392 	os_memset(&tlsconf, 0, sizeof(tlsconf));
1393 	tlsconf.opensc_engine_path = conf->opensc_engine_path;
1394 	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1395 	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1396 #ifdef CONFIG_FIPS
1397 	tlsconf.fips_mode = 1;
1398 #endif /* CONFIG_FIPS */
1399 	tlsconf.event_cb = eap_peer_sm_tls_event;
1400 	tlsconf.cb_ctx = sm;
1401 	tlsconf.cert_in_cb = conf->cert_in_cb;
1402 	sm->ssl_ctx = tls_init(&tlsconf);
1403 	if (sm->ssl_ctx == NULL) {
1404 		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1405 			   "context.");
1406 		os_free(sm);
1407 		return NULL;
1408 	}
1409 
1410 	sm->ssl_ctx2 = tls_init(&tlsconf);
1411 	if (sm->ssl_ctx2 == NULL) {
1412 		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1413 			   "context (2).");
1414 		/* Run without separate TLS context within TLS tunnel */
1415 	}
1416 
1417 	return sm;
1418 }
1419 
1420 
1421 /**
1422  * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1423  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1424  *
1425  * This function deinitializes EAP state machine and frees all allocated
1426  * resources.
1427  */
eap_peer_sm_deinit(struct eap_sm * sm)1428 void eap_peer_sm_deinit(struct eap_sm *sm)
1429 {
1430 	if (sm == NULL)
1431 		return;
1432 	eap_deinit_prev_method(sm, "EAP deinit");
1433 	eap_sm_abort(sm);
1434 	if (sm->ssl_ctx2)
1435 		tls_deinit(sm->ssl_ctx2);
1436 	tls_deinit(sm->ssl_ctx);
1437 	os_free(sm);
1438 }
1439 
1440 
1441 /**
1442  * eap_peer_sm_step - Step EAP peer state machine
1443  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1444  * Returns: 1 if EAP state was changed or 0 if not
1445  *
1446  * This function advances EAP state machine to a new state to match with the
1447  * current variables. This should be called whenever variables used by the EAP
1448  * state machine have changed.
1449  */
eap_peer_sm_step(struct eap_sm * sm)1450 int eap_peer_sm_step(struct eap_sm *sm)
1451 {
1452 	int res = 0;
1453 	do {
1454 		sm->changed = FALSE;
1455 		SM_STEP_RUN(EAP);
1456 		if (sm->changed)
1457 			res = 1;
1458 	} while (sm->changed);
1459 	return res;
1460 }
1461 
1462 
1463 /**
1464  * eap_sm_abort - Abort EAP authentication
1465  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1466  *
1467  * Release system resources that have been allocated for the authentication
1468  * session without fully deinitializing the EAP state machine.
1469  */
eap_sm_abort(struct eap_sm * sm)1470 void eap_sm_abort(struct eap_sm *sm)
1471 {
1472 	wpabuf_free(sm->lastRespData);
1473 	sm->lastRespData = NULL;
1474 	wpabuf_free(sm->eapRespData);
1475 	sm->eapRespData = NULL;
1476 	os_free(sm->eapKeyData);
1477 	sm->eapKeyData = NULL;
1478 	os_free(sm->eapSessionId);
1479 	sm->eapSessionId = NULL;
1480 
1481 	/* This is not clearly specified in the EAP statemachines draft, but
1482 	 * it seems necessary to make sure that some of the EAPOL variables get
1483 	 * cleared for the next authentication. */
1484 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1485 }
1486 
1487 
1488 #ifdef CONFIG_CTRL_IFACE
eap_sm_state_txt(int state)1489 static const char * eap_sm_state_txt(int state)
1490 {
1491 	switch (state) {
1492 	case EAP_INITIALIZE:
1493 		return "INITIALIZE";
1494 	case EAP_DISABLED:
1495 		return "DISABLED";
1496 	case EAP_IDLE:
1497 		return "IDLE";
1498 	case EAP_RECEIVED:
1499 		return "RECEIVED";
1500 	case EAP_GET_METHOD:
1501 		return "GET_METHOD";
1502 	case EAP_METHOD:
1503 		return "METHOD";
1504 	case EAP_SEND_RESPONSE:
1505 		return "SEND_RESPONSE";
1506 	case EAP_DISCARD:
1507 		return "DISCARD";
1508 	case EAP_IDENTITY:
1509 		return "IDENTITY";
1510 	case EAP_NOTIFICATION:
1511 		return "NOTIFICATION";
1512 	case EAP_RETRANSMIT:
1513 		return "RETRANSMIT";
1514 	case EAP_SUCCESS:
1515 		return "SUCCESS";
1516 	case EAP_FAILURE:
1517 		return "FAILURE";
1518 	default:
1519 		return "UNKNOWN";
1520 	}
1521 }
1522 #endif /* CONFIG_CTRL_IFACE */
1523 
1524 
1525 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_method_state_txt(EapMethodState state)1526 static const char * eap_sm_method_state_txt(EapMethodState state)
1527 {
1528 	switch (state) {
1529 	case METHOD_NONE:
1530 		return "NONE";
1531 	case METHOD_INIT:
1532 		return "INIT";
1533 	case METHOD_CONT:
1534 		return "CONT";
1535 	case METHOD_MAY_CONT:
1536 		return "MAY_CONT";
1537 	case METHOD_DONE:
1538 		return "DONE";
1539 	default:
1540 		return "UNKNOWN";
1541 	}
1542 }
1543 
1544 
eap_sm_decision_txt(EapDecision decision)1545 static const char * eap_sm_decision_txt(EapDecision decision)
1546 {
1547 	switch (decision) {
1548 	case DECISION_FAIL:
1549 		return "FAIL";
1550 	case DECISION_COND_SUCC:
1551 		return "COND_SUCC";
1552 	case DECISION_UNCOND_SUCC:
1553 		return "UNCOND_SUCC";
1554 	default:
1555 		return "UNKNOWN";
1556 	}
1557 }
1558 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1559 
1560 
1561 #ifdef CONFIG_CTRL_IFACE
1562 
1563 /**
1564  * eap_sm_get_status - Get EAP state machine status
1565  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1566  * @buf: Buffer for status information
1567  * @buflen: Maximum buffer length
1568  * @verbose: Whether to include verbose status information
1569  * Returns: Number of bytes written to buf.
1570  *
1571  * Query EAP state machine for status information. This function fills in a
1572  * text area with current status information from the EAPOL state machine. If
1573  * the buffer (buf) is not large enough, status information will be truncated
1574  * to fit the buffer.
1575  */
eap_sm_get_status(struct eap_sm * sm,char * buf,size_t buflen,int verbose)1576 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1577 {
1578 	int len, ret;
1579 
1580 	if (sm == NULL)
1581 		return 0;
1582 
1583 	len = os_snprintf(buf, buflen,
1584 			  "EAP state=%s\n",
1585 			  eap_sm_state_txt(sm->EAP_state));
1586 	if (len < 0 || (size_t) len >= buflen)
1587 		return 0;
1588 
1589 	if (sm->selectedMethod != EAP_TYPE_NONE) {
1590 		const char *name;
1591 		if (sm->m) {
1592 			name = sm->m->name;
1593 		} else {
1594 			const struct eap_method *m =
1595 				eap_peer_get_eap_method(EAP_VENDOR_IETF,
1596 							sm->selectedMethod);
1597 			if (m)
1598 				name = m->name;
1599 			else
1600 				name = "?";
1601 		}
1602 		ret = os_snprintf(buf + len, buflen - len,
1603 				  "selectedMethod=%d (EAP-%s)\n",
1604 				  sm->selectedMethod, name);
1605 		if (ret < 0 || (size_t) ret >= buflen - len)
1606 			return len;
1607 		len += ret;
1608 
1609 		if (sm->m && sm->m->get_status) {
1610 			len += sm->m->get_status(sm, sm->eap_method_priv,
1611 						 buf + len, buflen - len,
1612 						 verbose);
1613 		}
1614 	}
1615 
1616 	if (verbose) {
1617 		ret = os_snprintf(buf + len, buflen - len,
1618 				  "reqMethod=%d\n"
1619 				  "methodState=%s\n"
1620 				  "decision=%s\n"
1621 				  "ClientTimeout=%d\n",
1622 				  sm->reqMethod,
1623 				  eap_sm_method_state_txt(sm->methodState),
1624 				  eap_sm_decision_txt(sm->decision),
1625 				  sm->ClientTimeout);
1626 		if (ret < 0 || (size_t) ret >= buflen - len)
1627 			return len;
1628 		len += ret;
1629 	}
1630 
1631 	return len;
1632 }
1633 #endif /* CONFIG_CTRL_IFACE */
1634 
1635 
1636 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_request(struct eap_sm * sm,enum wpa_ctrl_req_type field,const char * msg,size_t msglen)1637 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
1638 			   const char *msg, size_t msglen)
1639 {
1640 	struct eap_peer_config *config;
1641 	char *txt = NULL, *tmp;
1642 
1643 	if (sm == NULL)
1644 		return;
1645 	config = eap_get_config(sm);
1646 	if (config == NULL)
1647 		return;
1648 
1649 	switch (field) {
1650 	case WPA_CTRL_REQ_EAP_IDENTITY:
1651 		config->pending_req_identity++;
1652 		break;
1653 	case WPA_CTRL_REQ_EAP_PASSWORD:
1654 		config->pending_req_password++;
1655 		break;
1656 	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
1657 		config->pending_req_new_password++;
1658 		break;
1659 	case WPA_CTRL_REQ_EAP_PIN:
1660 		config->pending_req_pin++;
1661 		break;
1662 	case WPA_CTRL_REQ_EAP_OTP:
1663 		if (msg) {
1664 			tmp = os_malloc(msglen + 3);
1665 			if (tmp == NULL)
1666 				return;
1667 			tmp[0] = '[';
1668 			os_memcpy(tmp + 1, msg, msglen);
1669 			tmp[msglen + 1] = ']';
1670 			tmp[msglen + 2] = '\0';
1671 			txt = tmp;
1672 			os_free(config->pending_req_otp);
1673 			config->pending_req_otp = tmp;
1674 			config->pending_req_otp_len = msglen + 3;
1675 		} else {
1676 			if (config->pending_req_otp == NULL)
1677 				return;
1678 			txt = config->pending_req_otp;
1679 		}
1680 		break;
1681 	case WPA_CTRL_REQ_EAP_PASSPHRASE:
1682 		config->pending_req_passphrase++;
1683 		break;
1684 	default:
1685 		return;
1686 	}
1687 
1688 	if (sm->eapol_cb->eap_param_needed)
1689 		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1690 }
1691 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1692 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1693 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1694 
eap_sm_get_method_name(struct eap_sm * sm)1695 const char * eap_sm_get_method_name(struct eap_sm *sm)
1696 {
1697 	if (sm->m == NULL)
1698 		return "UNKNOWN";
1699 	return sm->m->name;
1700 }
1701 
1702 
1703 /**
1704  * eap_sm_request_identity - Request identity from user (ctrl_iface)
1705  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1706  *
1707  * EAP methods can call this function to request identity information for the
1708  * current network. This is normally called when the identity is not included
1709  * in the network configuration. The request will be sent to monitor programs
1710  * through the control interface.
1711  */
eap_sm_request_identity(struct eap_sm * sm)1712 void eap_sm_request_identity(struct eap_sm *sm)
1713 {
1714 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
1715 }
1716 
1717 
1718 /**
1719  * eap_sm_request_password - Request password from user (ctrl_iface)
1720  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1721  *
1722  * EAP methods can call this function to request password information for the
1723  * current network. This is normally called when the password is not included
1724  * in the network configuration. The request will be sent to monitor programs
1725  * through the control interface.
1726  */
eap_sm_request_password(struct eap_sm * sm)1727 void eap_sm_request_password(struct eap_sm *sm)
1728 {
1729 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
1730 }
1731 
1732 
1733 /**
1734  * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1735  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1736  *
1737  * EAP methods can call this function to request new password information for
1738  * the current network. This is normally called when the EAP method indicates
1739  * that the current password has expired and password change is required. The
1740  * request will be sent to monitor programs through the control interface.
1741  */
eap_sm_request_new_password(struct eap_sm * sm)1742 void eap_sm_request_new_password(struct eap_sm *sm)
1743 {
1744 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
1745 }
1746 
1747 
1748 /**
1749  * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1750  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1751  *
1752  * EAP methods can call this function to request SIM or smart card PIN
1753  * information for the current network. This is normally called when the PIN is
1754  * not included in the network configuration. The request will be sent to
1755  * monitor programs through the control interface.
1756  */
eap_sm_request_pin(struct eap_sm * sm)1757 void eap_sm_request_pin(struct eap_sm *sm)
1758 {
1759 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
1760 }
1761 
1762 
1763 /**
1764  * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1765  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1766  * @msg: Message to be displayed to the user when asking for OTP
1767  * @msg_len: Length of the user displayable message
1768  *
1769  * EAP methods can call this function to request open time password (OTP) for
1770  * the current network. The request will be sent to monitor programs through
1771  * the control interface.
1772  */
eap_sm_request_otp(struct eap_sm * sm,const char * msg,size_t msg_len)1773 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1774 {
1775 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
1776 }
1777 
1778 
1779 /**
1780  * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1781  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1782  *
1783  * EAP methods can call this function to request passphrase for a private key
1784  * for the current network. This is normally called when the passphrase is not
1785  * included in the network configuration. The request will be sent to monitor
1786  * programs through the control interface.
1787  */
eap_sm_request_passphrase(struct eap_sm * sm)1788 void eap_sm_request_passphrase(struct eap_sm *sm)
1789 {
1790 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
1791 }
1792 
1793 
1794 /**
1795  * eap_sm_notify_ctrl_attached - Notification of attached monitor
1796  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1797  *
1798  * Notify EAP state machines that a monitor was attached to the control
1799  * interface to trigger re-sending of pending requests for user input.
1800  */
eap_sm_notify_ctrl_attached(struct eap_sm * sm)1801 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1802 {
1803 	struct eap_peer_config *config = eap_get_config(sm);
1804 
1805 	if (config == NULL)
1806 		return;
1807 
1808 	/* Re-send any pending requests for user data since a new control
1809 	 * interface was added. This handles cases where the EAP authentication
1810 	 * starts immediately after system startup when the user interface is
1811 	 * not yet running. */
1812 	if (config->pending_req_identity)
1813 		eap_sm_request_identity(sm);
1814 	if (config->pending_req_password)
1815 		eap_sm_request_password(sm);
1816 	if (config->pending_req_new_password)
1817 		eap_sm_request_new_password(sm);
1818 	if (config->pending_req_otp)
1819 		eap_sm_request_otp(sm, NULL, 0);
1820 	if (config->pending_req_pin)
1821 		eap_sm_request_pin(sm);
1822 	if (config->pending_req_passphrase)
1823 		eap_sm_request_passphrase(sm);
1824 }
1825 
1826 
eap_allowed_phase2_type(int vendor,int type)1827 static int eap_allowed_phase2_type(int vendor, int type)
1828 {
1829 	if (vendor != EAP_VENDOR_IETF)
1830 		return 0;
1831 	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1832 		type != EAP_TYPE_FAST;
1833 }
1834 
1835 
1836 /**
1837  * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1838  * @name: EAP method name, e.g., MD5
1839  * @vendor: Buffer for returning EAP Vendor-Id
1840  * Returns: EAP method type or %EAP_TYPE_NONE if not found
1841  *
1842  * This function maps EAP type names into EAP type numbers that are allowed for
1843  * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1844  * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1845  */
eap_get_phase2_type(const char * name,int * vendor)1846 u32 eap_get_phase2_type(const char *name, int *vendor)
1847 {
1848 	int v;
1849 	u8 type = eap_peer_get_type(name, &v);
1850 	if (eap_allowed_phase2_type(v, type)) {
1851 		*vendor = v;
1852 		return type;
1853 	}
1854 	*vendor = EAP_VENDOR_IETF;
1855 	return EAP_TYPE_NONE;
1856 }
1857 
1858 
1859 /**
1860  * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1861  * @config: Pointer to a network configuration
1862  * @count: Pointer to a variable to be filled with number of returned EAP types
1863  * Returns: Pointer to allocated type list or %NULL on failure
1864  *
1865  * This function generates an array of allowed EAP phase 2 (tunneled) types for
1866  * the given network configuration.
1867  */
eap_get_phase2_types(struct eap_peer_config * config,size_t * count)1868 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1869 					      size_t *count)
1870 {
1871 	struct eap_method_type *buf;
1872 	u32 method;
1873 	int vendor;
1874 	size_t mcount;
1875 	const struct eap_method *methods, *m;
1876 
1877 	methods = eap_peer_get_methods(&mcount);
1878 	if (methods == NULL)
1879 		return NULL;
1880 	*count = 0;
1881 	buf = os_malloc(mcount * sizeof(struct eap_method_type));
1882 	if (buf == NULL)
1883 		return NULL;
1884 
1885 	for (m = methods; m; m = m->next) {
1886 		vendor = m->vendor;
1887 		method = m->method;
1888 		if (eap_allowed_phase2_type(vendor, method)) {
1889 			if (vendor == EAP_VENDOR_IETF &&
1890 			    method == EAP_TYPE_TLS && config &&
1891 			    config->private_key2 == NULL)
1892 				continue;
1893 			buf[*count].vendor = vendor;
1894 			buf[*count].method = method;
1895 			(*count)++;
1896 		}
1897 	}
1898 
1899 	return buf;
1900 }
1901 
1902 
1903 /**
1904  * eap_set_fast_reauth - Update fast_reauth setting
1905  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1906  * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1907  */
eap_set_fast_reauth(struct eap_sm * sm,int enabled)1908 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1909 {
1910 	sm->fast_reauth = enabled;
1911 }
1912 
1913 
1914 /**
1915  * eap_set_workaround - Update EAP workarounds setting
1916  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1917  * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1918  */
eap_set_workaround(struct eap_sm * sm,unsigned int workaround)1919 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1920 {
1921 	sm->workaround = workaround;
1922 }
1923 
1924 
1925 /**
1926  * eap_get_config - Get current network configuration
1927  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1928  * Returns: Pointer to the current network configuration or %NULL if not found
1929  *
1930  * EAP peer methods should avoid using this function if they can use other
1931  * access functions, like eap_get_config_identity() and
1932  * eap_get_config_password(), that do not require direct access to
1933  * struct eap_peer_config.
1934  */
eap_get_config(struct eap_sm * sm)1935 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1936 {
1937 	return sm->eapol_cb->get_config(sm->eapol_ctx);
1938 }
1939 
1940 
1941 /**
1942  * eap_get_config_identity - Get identity from the network configuration
1943  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1944  * @len: Buffer for the length of the identity
1945  * Returns: Pointer to the identity or %NULL if not found
1946  */
eap_get_config_identity(struct eap_sm * sm,size_t * len)1947 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1948 {
1949 	struct eap_peer_config *config = eap_get_config(sm);
1950 	if (config == NULL)
1951 		return NULL;
1952 	*len = config->identity_len;
1953 	return config->identity;
1954 }
1955 
1956 
eap_get_ext_password(struct eap_sm * sm,struct eap_peer_config * config)1957 static int eap_get_ext_password(struct eap_sm *sm,
1958 				struct eap_peer_config *config)
1959 {
1960 	char *name;
1961 
1962 	if (config->password == NULL)
1963 		return -1;
1964 
1965 	name = os_zalloc(config->password_len + 1);
1966 	if (name == NULL)
1967 		return -1;
1968 	os_memcpy(name, config->password, config->password_len);
1969 
1970 	ext_password_free(sm->ext_pw_buf);
1971 	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
1972 	os_free(name);
1973 
1974 	return sm->ext_pw_buf == NULL ? -1 : 0;
1975 }
1976 
1977 
1978 /**
1979  * eap_get_config_password - Get password from the network configuration
1980  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1981  * @len: Buffer for the length of the password
1982  * Returns: Pointer to the password or %NULL if not found
1983  */
eap_get_config_password(struct eap_sm * sm,size_t * len)1984 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1985 {
1986 	struct eap_peer_config *config = eap_get_config(sm);
1987 	if (config == NULL)
1988 		return NULL;
1989 
1990 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
1991 		if (eap_get_ext_password(sm, config) < 0)
1992 			return NULL;
1993 		*len = wpabuf_len(sm->ext_pw_buf);
1994 		return wpabuf_head(sm->ext_pw_buf);
1995 	}
1996 
1997 	*len = config->password_len;
1998 	return config->password;
1999 }
2000 
2001 
2002 /**
2003  * eap_get_config_password2 - Get password from the network configuration
2004  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2005  * @len: Buffer for the length of the password
2006  * @hash: Buffer for returning whether the password is stored as a
2007  * NtPasswordHash instead of plaintext password; can be %NULL if this
2008  * information is not needed
2009  * Returns: Pointer to the password or %NULL if not found
2010  */
eap_get_config_password2(struct eap_sm * sm,size_t * len,int * hash)2011 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2012 {
2013 	struct eap_peer_config *config = eap_get_config(sm);
2014 	if (config == NULL)
2015 		return NULL;
2016 
2017 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2018 		if (eap_get_ext_password(sm, config) < 0)
2019 			return NULL;
2020 		*len = wpabuf_len(sm->ext_pw_buf);
2021 		return wpabuf_head(sm->ext_pw_buf);
2022 	}
2023 
2024 	*len = config->password_len;
2025 	if (hash)
2026 		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2027 	return config->password;
2028 }
2029 
2030 
2031 /**
2032  * eap_get_config_new_password - Get new password from network configuration
2033  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2034  * @len: Buffer for the length of the new password
2035  * Returns: Pointer to the new password or %NULL if not found
2036  */
eap_get_config_new_password(struct eap_sm * sm,size_t * len)2037 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2038 {
2039 	struct eap_peer_config *config = eap_get_config(sm);
2040 	if (config == NULL)
2041 		return NULL;
2042 	*len = config->new_password_len;
2043 	return config->new_password;
2044 }
2045 
2046 
2047 /**
2048  * eap_get_config_otp - Get one-time password from the network configuration
2049  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2050  * @len: Buffer for the length of the one-time password
2051  * Returns: Pointer to the one-time password or %NULL if not found
2052  */
eap_get_config_otp(struct eap_sm * sm,size_t * len)2053 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2054 {
2055 	struct eap_peer_config *config = eap_get_config(sm);
2056 	if (config == NULL)
2057 		return NULL;
2058 	*len = config->otp_len;
2059 	return config->otp;
2060 }
2061 
2062 
2063 /**
2064  * eap_clear_config_otp - Clear used one-time password
2065  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2066  *
2067  * This function clears a used one-time password (OTP) from the current network
2068  * configuration. This should be called when the OTP has been used and is not
2069  * needed anymore.
2070  */
eap_clear_config_otp(struct eap_sm * sm)2071 void eap_clear_config_otp(struct eap_sm *sm)
2072 {
2073 	struct eap_peer_config *config = eap_get_config(sm);
2074 	if (config == NULL)
2075 		return;
2076 	os_memset(config->otp, 0, config->otp_len);
2077 	os_free(config->otp);
2078 	config->otp = NULL;
2079 	config->otp_len = 0;
2080 }
2081 
2082 
2083 /**
2084  * eap_get_config_phase1 - Get phase1 data from the network configuration
2085  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2086  * Returns: Pointer to the phase1 data or %NULL if not found
2087  */
eap_get_config_phase1(struct eap_sm * sm)2088 const char * eap_get_config_phase1(struct eap_sm *sm)
2089 {
2090 	struct eap_peer_config *config = eap_get_config(sm);
2091 	if (config == NULL)
2092 		return NULL;
2093 	return config->phase1;
2094 }
2095 
2096 
2097 /**
2098  * eap_get_config_phase2 - Get phase2 data from the network configuration
2099  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2100  * Returns: Pointer to the phase1 data or %NULL if not found
2101  */
eap_get_config_phase2(struct eap_sm * sm)2102 const char * eap_get_config_phase2(struct eap_sm *sm)
2103 {
2104 	struct eap_peer_config *config = eap_get_config(sm);
2105 	if (config == NULL)
2106 		return NULL;
2107 	return config->phase2;
2108 }
2109 
2110 
eap_get_config_fragment_size(struct eap_sm * sm)2111 int eap_get_config_fragment_size(struct eap_sm *sm)
2112 {
2113 	struct eap_peer_config *config = eap_get_config(sm);
2114 	if (config == NULL)
2115 		return -1;
2116 	return config->fragment_size;
2117 }
2118 
2119 
2120 /**
2121  * eap_key_available - Get key availability (eapKeyAvailable variable)
2122  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2123  * Returns: 1 if EAP keying material is available, 0 if not
2124  */
eap_key_available(struct eap_sm * sm)2125 int eap_key_available(struct eap_sm *sm)
2126 {
2127 	return sm ? sm->eapKeyAvailable : 0;
2128 }
2129 
2130 
2131 /**
2132  * eap_notify_success - Notify EAP state machine about external success trigger
2133  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2134  *
2135  * This function is called when external event, e.g., successful completion of
2136  * WPA-PSK key handshake, is indicating that EAP state machine should move to
2137  * success state. This is mainly used with security modes that do not use EAP
2138  * state machine (e.g., WPA-PSK).
2139  */
eap_notify_success(struct eap_sm * sm)2140 void eap_notify_success(struct eap_sm *sm)
2141 {
2142 	if (sm) {
2143 		sm->decision = DECISION_COND_SUCC;
2144 		sm->EAP_state = EAP_SUCCESS;
2145 	}
2146 }
2147 
2148 
2149 /**
2150  * eap_notify_lower_layer_success - Notification of lower layer success
2151  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2152  *
2153  * Notify EAP state machines that a lower layer has detected a successful
2154  * authentication. This is used to recover from dropped EAP-Success messages.
2155  */
eap_notify_lower_layer_success(struct eap_sm * sm)2156 void eap_notify_lower_layer_success(struct eap_sm *sm)
2157 {
2158 	if (sm == NULL)
2159 		return;
2160 
2161 	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2162 	    sm->decision == DECISION_FAIL ||
2163 	    (sm->methodState != METHOD_MAY_CONT &&
2164 	     sm->methodState != METHOD_DONE))
2165 		return;
2166 
2167 	if (sm->eapKeyData != NULL)
2168 		sm->eapKeyAvailable = TRUE;
2169 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2170 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2171 		"EAP authentication completed successfully (based on lower "
2172 		"layer success)");
2173 }
2174 
2175 
2176 /**
2177  * eap_get_eapSessionId - Get Session-Id from EAP state machine
2178  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2179  * @len: Pointer to variable that will be set to number of bytes in the session
2180  * Returns: Pointer to the EAP Session-Id or %NULL on failure
2181  *
2182  * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2183  * only after a successful authentication. EAP state machine continues to manage
2184  * the Session-Id and the caller must not change or free the returned data.
2185  */
eap_get_eapSessionId(struct eap_sm * sm,size_t * len)2186 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2187 {
2188 	if (sm == NULL || sm->eapSessionId == NULL) {
2189 		*len = 0;
2190 		return NULL;
2191 	}
2192 
2193 	*len = sm->eapSessionIdLen;
2194 	return sm->eapSessionId;
2195 }
2196 
2197 
2198 /**
2199  * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2200  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2201  * @len: Pointer to variable that will be set to number of bytes in the key
2202  * Returns: Pointer to the EAP keying data or %NULL on failure
2203  *
2204  * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2205  * key is available only after a successful authentication. EAP state machine
2206  * continues to manage the key data and the caller must not change or free the
2207  * returned data.
2208  */
eap_get_eapKeyData(struct eap_sm * sm,size_t * len)2209 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2210 {
2211 	if (sm == NULL || sm->eapKeyData == NULL) {
2212 		*len = 0;
2213 		return NULL;
2214 	}
2215 
2216 	*len = sm->eapKeyDataLen;
2217 	return sm->eapKeyData;
2218 }
2219 
2220 
2221 /**
2222  * eap_get_eapKeyData - Get EAP response data
2223  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2224  * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2225  *
2226  * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2227  * available when EAP state machine has processed an incoming EAP request. The
2228  * EAP state machine does not maintain a reference to the response after this
2229  * function is called and the caller is responsible for freeing the data.
2230  */
eap_get_eapRespData(struct eap_sm * sm)2231 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2232 {
2233 	struct wpabuf *resp;
2234 
2235 	if (sm == NULL || sm->eapRespData == NULL)
2236 		return NULL;
2237 
2238 	resp = sm->eapRespData;
2239 	sm->eapRespData = NULL;
2240 
2241 	return resp;
2242 }
2243 
2244 
2245 /**
2246  * eap_sm_register_scard_ctx - Notification of smart card context
2247  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2248  * @ctx: Context data for smart card operations
2249  *
2250  * Notify EAP state machines of context data for smart card operations. This
2251  * context data will be used as a parameter for scard_*() functions.
2252  */
eap_register_scard_ctx(struct eap_sm * sm,void * ctx)2253 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2254 {
2255 	if (sm)
2256 		sm->scard_ctx = ctx;
2257 }
2258 
2259 
2260 /**
2261  * eap_set_config_blob - Set or add a named configuration blob
2262  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2263  * @blob: New value for the blob
2264  *
2265  * Adds a new configuration blob or replaces the current value of an existing
2266  * blob.
2267  */
eap_set_config_blob(struct eap_sm * sm,struct wpa_config_blob * blob)2268 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2269 {
2270 #ifndef CONFIG_NO_CONFIG_BLOBS
2271 	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2272 #endif /* CONFIG_NO_CONFIG_BLOBS */
2273 }
2274 
2275 
2276 /**
2277  * eap_get_config_blob - Get a named configuration blob
2278  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2279  * @name: Name of the blob
2280  * Returns: Pointer to blob data or %NULL if not found
2281  */
eap_get_config_blob(struct eap_sm * sm,const char * name)2282 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2283 						   const char *name)
2284 {
2285 #ifndef CONFIG_NO_CONFIG_BLOBS
2286 	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2287 #else /* CONFIG_NO_CONFIG_BLOBS */
2288 	return NULL;
2289 #endif /* CONFIG_NO_CONFIG_BLOBS */
2290 }
2291 
2292 
2293 /**
2294  * eap_set_force_disabled - Set force_disabled flag
2295  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2296  * @disabled: 1 = EAP disabled, 0 = EAP enabled
2297  *
2298  * This function is used to force EAP state machine to be disabled when it is
2299  * not in use (e.g., with WPA-PSK or plaintext connections).
2300  */
eap_set_force_disabled(struct eap_sm * sm,int disabled)2301 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2302 {
2303 	sm->force_disabled = disabled;
2304 }
2305 
2306 
2307  /**
2308  * eap_notify_pending - Notify that EAP method is ready to re-process a request
2309  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2310  *
2311  * An EAP method can perform a pending operation (e.g., to get a response from
2312  * an external process). Once the response is available, this function can be
2313  * used to request EAPOL state machine to retry delivering the previously
2314  * received (and still unanswered) EAP request to EAP state machine.
2315  */
eap_notify_pending(struct eap_sm * sm)2316 void eap_notify_pending(struct eap_sm *sm)
2317 {
2318 	sm->eapol_cb->notify_pending(sm->eapol_ctx);
2319 }
2320 
2321 
2322 /**
2323  * eap_invalidate_cached_session - Mark cached session data invalid
2324  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2325  */
eap_invalidate_cached_session(struct eap_sm * sm)2326 void eap_invalidate_cached_session(struct eap_sm *sm)
2327 {
2328 	if (sm)
2329 		eap_deinit_prev_method(sm, "invalidate");
2330 }
2331 
2332 
eap_is_wps_pbc_enrollee(struct eap_peer_config * conf)2333 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2334 {
2335 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2336 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2337 		return 0; /* Not a WPS Enrollee */
2338 
2339 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2340 		return 0; /* Not using PBC */
2341 
2342 	return 1;
2343 }
2344 
2345 
eap_is_wps_pin_enrollee(struct eap_peer_config * conf)2346 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2347 {
2348 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2349 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2350 		return 0; /* Not a WPS Enrollee */
2351 
2352 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2353 		return 0; /* Not using PIN */
2354 
2355 	return 1;
2356 }
2357 
2358 
eap_sm_set_ext_pw_ctx(struct eap_sm * sm,struct ext_password_data * ext)2359 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2360 {
2361 	ext_password_free(sm->ext_pw_buf);
2362 	sm->ext_pw_buf = NULL;
2363 	sm->ext_pw = ext;
2364 }
2365 
2366 
2367 /**
2368  * eap_set_anon_id - Set or add anonymous identity
2369  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2370  * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2371  * @len: Length of anonymous identity in octets
2372  */
eap_set_anon_id(struct eap_sm * sm,const u8 * id,size_t len)2373 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2374 {
2375 	if (sm->eapol_cb->set_anon_id)
2376 		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2377 }
2378