• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines SValBuilder, the base class for all (complete) SValBuilder
11 //  implementations.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
22 
23 using namespace clang;
24 using namespace ento;
25 
26 //===----------------------------------------------------------------------===//
27 // Basic SVal creation.
28 //===----------------------------------------------------------------------===//
29 
anchor()30 void SValBuilder::anchor() { }
31 
makeZeroVal(QualType type)32 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
33   if (Loc::isLocType(type))
34     return makeNull();
35 
36   if (type->isIntegralOrEnumerationType())
37     return makeIntVal(0, type);
38 
39   // FIXME: Handle floats.
40   // FIXME: Handle structs.
41   return UnknownVal();
42 }
43 
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const llvm::APSInt & rhs,QualType type)44 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
45                                 const llvm::APSInt& rhs, QualType type) {
46   // The Environment ensures we always get a persistent APSInt in
47   // BasicValueFactory, so we don't need to get the APSInt from
48   // BasicValueFactory again.
49   assert(lhs);
50   assert(!Loc::isLocType(type));
51   return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
52 }
53 
makeNonLoc(const llvm::APSInt & lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)54 NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
55                                BinaryOperator::Opcode op, const SymExpr *rhs,
56                                QualType type) {
57   assert(rhs);
58   assert(!Loc::isLocType(type));
59   return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
60 }
61 
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)62 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
63                                const SymExpr *rhs, QualType type) {
64   assert(lhs && rhs);
65   assert(!Loc::isLocType(type));
66   return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
67 }
68 
makeNonLoc(const SymExpr * operand,QualType fromTy,QualType toTy)69 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
70                                QualType fromTy, QualType toTy) {
71   assert(operand);
72   assert(!Loc::isLocType(toTy));
73   return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
74 }
75 
convertToArrayIndex(SVal val)76 SVal SValBuilder::convertToArrayIndex(SVal val) {
77   if (val.isUnknownOrUndef())
78     return val;
79 
80   // Common case: we have an appropriately sized integer.
81   if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
82     const llvm::APSInt& I = CI->getValue();
83     if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
84       return val;
85   }
86 
87   return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
88 }
89 
makeBoolVal(const CXXBoolLiteralExpr * boolean)90 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
91   return makeTruthVal(boolean->getValue());
92 }
93 
94 DefinedOrUnknownSVal
getRegionValueSymbolVal(const TypedValueRegion * region)95 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
96   QualType T = region->getValueType();
97 
98   if (!SymbolManager::canSymbolicate(T))
99     return UnknownVal();
100 
101   SymbolRef sym = SymMgr.getRegionValueSymbol(region);
102 
103   if (Loc::isLocType(T))
104     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
105 
106   return nonloc::SymbolVal(sym);
107 }
108 
conjureSymbolVal(const void * SymbolTag,const Expr * Ex,const LocationContext * LCtx,unsigned Count)109 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
110                                                    const Expr *Ex,
111                                                    const LocationContext *LCtx,
112                                                    unsigned Count) {
113   QualType T = Ex->getType();
114 
115   // Compute the type of the result. If the expression is not an R-value, the
116   // result should be a location.
117   QualType ExType = Ex->getType();
118   if (Ex->isGLValue())
119     T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
120 
121   return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
122 }
123 
conjureSymbolVal(const void * symbolTag,const Expr * expr,const LocationContext * LCtx,QualType type,unsigned count)124 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
125                                                    const Expr *expr,
126                                                    const LocationContext *LCtx,
127                                                    QualType type,
128                                                    unsigned count) {
129   if (!SymbolManager::canSymbolicate(type))
130     return UnknownVal();
131 
132   SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
133 
134   if (Loc::isLocType(type))
135     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
136 
137   return nonloc::SymbolVal(sym);
138 }
139 
140 
conjureSymbolVal(const Stmt * stmt,const LocationContext * LCtx,QualType type,unsigned visitCount)141 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
142                                                    const LocationContext *LCtx,
143                                                    QualType type,
144                                                    unsigned visitCount) {
145   if (!SymbolManager::canSymbolicate(type))
146     return UnknownVal();
147 
148   SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
149 
150   if (Loc::isLocType(type))
151     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
152 
153   return nonloc::SymbolVal(sym);
154 }
155 
156 DefinedOrUnknownSVal
getConjuredHeapSymbolVal(const Expr * E,const LocationContext * LCtx,unsigned VisitCount)157 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
158                                       const LocationContext *LCtx,
159                                       unsigned VisitCount) {
160   QualType T = E->getType();
161   assert(Loc::isLocType(T));
162   assert(SymbolManager::canSymbolicate(T));
163 
164   SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
165   return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
166 }
167 
getMetadataSymbolVal(const void * symbolTag,const MemRegion * region,const Expr * expr,QualType type,unsigned count)168 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
169                                               const MemRegion *region,
170                                               const Expr *expr, QualType type,
171                                               unsigned count) {
172   assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
173 
174   SymbolRef sym =
175       SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
176 
177   if (Loc::isLocType(type))
178     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
179 
180   return nonloc::SymbolVal(sym);
181 }
182 
183 DefinedOrUnknownSVal
getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,const TypedValueRegion * region)184 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
185                                              const TypedValueRegion *region) {
186   QualType T = region->getValueType();
187 
188   if (!SymbolManager::canSymbolicate(T))
189     return UnknownVal();
190 
191   SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
192 
193   if (Loc::isLocType(T))
194     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
195 
196   return nonloc::SymbolVal(sym);
197 }
198 
getFunctionPointer(const FunctionDecl * func)199 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
200   return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
201 }
202 
getBlockPointer(const BlockDecl * block,CanQualType locTy,const LocationContext * locContext)203 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
204                                          CanQualType locTy,
205                                          const LocationContext *locContext) {
206   const BlockTextRegion *BC =
207     MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
208   const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext);
209   return loc::MemRegionVal(BD);
210 }
211 
212 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXMethodDecl * D,const StackFrameContext * SFC)213 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
214                                           const StackFrameContext *SFC) {
215   return loc::MemRegionVal(getRegionManager().
216                            getCXXThisRegion(D->getThisType(getContext()), SFC));
217 }
218 
219 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXRecordDecl * D,const StackFrameContext * SFC)220 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
221                                           const StackFrameContext *SFC) {
222   const Type *T = D->getTypeForDecl();
223   QualType PT = getContext().getPointerType(QualType(T, 0));
224   return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
225 }
226 
getConstantVal(const Expr * E)227 Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
228   E = E->IgnoreParens();
229 
230   switch (E->getStmtClass()) {
231   // Handle expressions that we treat differently from the AST's constant
232   // evaluator.
233   case Stmt::AddrLabelExprClass:
234     return makeLoc(cast<AddrLabelExpr>(E));
235 
236   case Stmt::CXXScalarValueInitExprClass:
237   case Stmt::ImplicitValueInitExprClass:
238     return makeZeroVal(E->getType());
239 
240   case Stmt::ObjCStringLiteralClass: {
241     const ObjCStringLiteral *SL = cast<ObjCStringLiteral>(E);
242     return makeLoc(getRegionManager().getObjCStringRegion(SL));
243   }
244 
245   case Stmt::StringLiteralClass: {
246     const StringLiteral *SL = cast<StringLiteral>(E);
247     return makeLoc(getRegionManager().getStringRegion(SL));
248   }
249 
250   // Fast-path some expressions to avoid the overhead of going through the AST's
251   // constant evaluator
252   case Stmt::CharacterLiteralClass: {
253     const CharacterLiteral *C = cast<CharacterLiteral>(E);
254     return makeIntVal(C->getValue(), C->getType());
255   }
256 
257   case Stmt::CXXBoolLiteralExprClass:
258     return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
259 
260   case Stmt::IntegerLiteralClass:
261     return makeIntVal(cast<IntegerLiteral>(E));
262 
263   case Stmt::ObjCBoolLiteralExprClass:
264     return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
265 
266   case Stmt::CXXNullPtrLiteralExprClass:
267     return makeNull();
268 
269   case Stmt::ImplicitCastExprClass: {
270     const CastExpr *CE = cast<CastExpr>(E);
271     if (CE->getCastKind() == CK_ArrayToPointerDecay) {
272       Optional<SVal> ArrayVal = getConstantVal(CE->getSubExpr());
273       if (!ArrayVal)
274         return None;
275       return evalCast(*ArrayVal, CE->getType(), CE->getSubExpr()->getType());
276     }
277     // FALLTHROUGH
278   }
279 
280   // If we don't have a special case, fall back to the AST's constant evaluator.
281   default: {
282     // Don't try to come up with a value for materialized temporaries.
283     if (E->isGLValue())
284       return None;
285 
286     ASTContext &Ctx = getContext();
287     llvm::APSInt Result;
288     if (E->EvaluateAsInt(Result, Ctx))
289       return makeIntVal(Result);
290 
291     if (Loc::isLocType(E->getType()))
292       if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
293         return makeNull();
294 
295     return None;
296   }
297   }
298 }
299 
300 //===----------------------------------------------------------------------===//
301 
makeSymExprValNN(ProgramStateRef State,BinaryOperator::Opcode Op,NonLoc LHS,NonLoc RHS,QualType ResultTy)302 SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
303                                    BinaryOperator::Opcode Op,
304                                    NonLoc LHS, NonLoc RHS,
305                                    QualType ResultTy) {
306   if (!State->isTainted(RHS) && !State->isTainted(LHS))
307     return UnknownVal();
308 
309   const SymExpr *symLHS = LHS.getAsSymExpr();
310   const SymExpr *symRHS = RHS.getAsSymExpr();
311   // TODO: When the Max Complexity is reached, we should conjure a symbol
312   // instead of generating an Unknown value and propagate the taint info to it.
313   const unsigned MaxComp = 10000; // 100000 28X
314 
315   if (symLHS && symRHS &&
316       (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
317     return makeNonLoc(symLHS, Op, symRHS, ResultTy);
318 
319   if (symLHS && symLHS->computeComplexity() < MaxComp)
320     if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
321       return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
322 
323   if (symRHS && symRHS->computeComplexity() < MaxComp)
324     if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
325       return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
326 
327   return UnknownVal();
328 }
329 
330 
evalBinOp(ProgramStateRef state,BinaryOperator::Opcode op,SVal lhs,SVal rhs,QualType type)331 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
332                             SVal lhs, SVal rhs, QualType type) {
333 
334   if (lhs.isUndef() || rhs.isUndef())
335     return UndefinedVal();
336 
337   if (lhs.isUnknown() || rhs.isUnknown())
338     return UnknownVal();
339 
340   if (Optional<Loc> LV = lhs.getAs<Loc>()) {
341     if (Optional<Loc> RV = rhs.getAs<Loc>())
342       return evalBinOpLL(state, op, *LV, *RV, type);
343 
344     return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
345   }
346 
347   if (Optional<Loc> RV = rhs.getAs<Loc>()) {
348     // Support pointer arithmetic where the addend is on the left
349     // and the pointer on the right.
350     assert(op == BO_Add);
351 
352     // Commute the operands.
353     return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
354   }
355 
356   return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
357                      type);
358 }
359 
evalEQ(ProgramStateRef state,DefinedOrUnknownSVal lhs,DefinedOrUnknownSVal rhs)360 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
361                                          DefinedOrUnknownSVal lhs,
362                                          DefinedOrUnknownSVal rhs) {
363   return evalBinOp(state, BO_EQ, lhs, rhs, Context.IntTy)
364       .castAs<DefinedOrUnknownSVal>();
365 }
366 
367 /// Recursively check if the pointer types are equal modulo const, volatile,
368 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
369 /// Assumes the input types are canonical.
shouldBeModeledWithNoOp(ASTContext & Context,QualType ToTy,QualType FromTy)370 static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
371                                                          QualType FromTy) {
372   while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
373     Qualifiers Quals1, Quals2;
374     ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
375     FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
376 
377     // Make sure that non cvr-qualifiers the other qualifiers (e.g., address
378     // spaces) are identical.
379     Quals1.removeCVRQualifiers();
380     Quals2.removeCVRQualifiers();
381     if (Quals1 != Quals2)
382       return false;
383   }
384 
385   // If we are casting to void, the 'From' value can be used to represent the
386   // 'To' value.
387   if (ToTy->isVoidType())
388     return true;
389 
390   if (ToTy != FromTy)
391     return false;
392 
393   return true;
394 }
395 
396 // FIXME: should rewrite according to the cast kind.
evalCast(SVal val,QualType castTy,QualType originalTy)397 SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
398   castTy = Context.getCanonicalType(castTy);
399   originalTy = Context.getCanonicalType(originalTy);
400   if (val.isUnknownOrUndef() || castTy == originalTy)
401     return val;
402 
403   if (castTy->isBooleanType()) {
404     if (val.isUnknownOrUndef())
405       return val;
406     if (val.isConstant())
407       return makeTruthVal(!val.isZeroConstant(), castTy);
408     if (SymbolRef Sym = val.getAsSymbol()) {
409       BasicValueFactory &BVF = getBasicValueFactory();
410       // FIXME: If we had a state here, we could see if the symbol is known to
411       // be zero, but we don't.
412       return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
413     }
414 
415     assert(val.getAs<Loc>() || val.getAs<nonloc::LocAsInteger>());
416     return makeTruthVal(true, castTy);
417   }
418 
419   // For const casts, casts to void, just propagate the value.
420   if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
421     if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
422                                          Context.getPointerType(originalTy)))
423       return val;
424 
425   // Check for casts from pointers to integers.
426   if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
427     return evalCastFromLoc(val.castAs<Loc>(), castTy);
428 
429   // Check for casts from integers to pointers.
430   if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
431     if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
432       if (const MemRegion *R = LV->getLoc().getAsRegion()) {
433         StoreManager &storeMgr = StateMgr.getStoreManager();
434         R = storeMgr.castRegion(R, castTy);
435         return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
436       }
437       return LV->getLoc();
438     }
439     return dispatchCast(val, castTy);
440   }
441 
442   // Just pass through function and block pointers.
443   if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
444     assert(Loc::isLocType(castTy));
445     return val;
446   }
447 
448   // Check for casts from array type to another type.
449   if (const ArrayType *arrayT =
450                       dyn_cast<ArrayType>(originalTy.getCanonicalType())) {
451     // We will always decay to a pointer.
452     QualType elemTy = arrayT->getElementType();
453     val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy);
454 
455     // Are we casting from an array to a pointer?  If so just pass on
456     // the decayed value.
457     if (castTy->isPointerType() || castTy->isReferenceType())
458       return val;
459 
460     // Are we casting from an array to an integer?  If so, cast the decayed
461     // pointer value to an integer.
462     assert(castTy->isIntegralOrEnumerationType());
463 
464     // FIXME: Keep these here for now in case we decide soon that we
465     // need the original decayed type.
466     //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
467     //    QualType pointerTy = C.getPointerType(elemTy);
468     return evalCastFromLoc(val.castAs<Loc>(), castTy);
469   }
470 
471   // Check for casts from a region to a specific type.
472   if (const MemRegion *R = val.getAsRegion()) {
473     // Handle other casts of locations to integers.
474     if (castTy->isIntegralOrEnumerationType())
475       return evalCastFromLoc(loc::MemRegionVal(R), castTy);
476 
477     // FIXME: We should handle the case where we strip off view layers to get
478     //  to a desugared type.
479     if (!Loc::isLocType(castTy)) {
480       // FIXME: There can be gross cases where one casts the result of a function
481       // (that returns a pointer) to some other value that happens to fit
482       // within that pointer value.  We currently have no good way to
483       // model such operations.  When this happens, the underlying operation
484       // is that the caller is reasoning about bits.  Conceptually we are
485       // layering a "view" of a location on top of those bits.  Perhaps
486       // we need to be more lazy about mutual possible views, even on an
487       // SVal?  This may be necessary for bit-level reasoning as well.
488       return UnknownVal();
489     }
490 
491     // We get a symbolic function pointer for a dereference of a function
492     // pointer, but it is of function type. Example:
493 
494     //  struct FPRec {
495     //    void (*my_func)(int * x);
496     //  };
497     //
498     //  int bar(int x);
499     //
500     //  int f1_a(struct FPRec* foo) {
501     //    int x;
502     //    (*foo->my_func)(&x);
503     //    return bar(x)+1; // no-warning
504     //  }
505 
506     assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
507            originalTy->isBlockPointerType() || castTy->isReferenceType());
508 
509     StoreManager &storeMgr = StateMgr.getStoreManager();
510 
511     // Delegate to store manager to get the result of casting a region to a
512     // different type.  If the MemRegion* returned is NULL, this expression
513     // Evaluates to UnknownVal.
514     R = storeMgr.castRegion(R, castTy);
515     return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
516   }
517 
518   return dispatchCast(val, castTy);
519 }
520