1 // SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines SValBuilder, the base class for all (complete) SValBuilder
11 // implementations.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
22
23 using namespace clang;
24 using namespace ento;
25
26 //===----------------------------------------------------------------------===//
27 // Basic SVal creation.
28 //===----------------------------------------------------------------------===//
29
anchor()30 void SValBuilder::anchor() { }
31
makeZeroVal(QualType type)32 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
33 if (Loc::isLocType(type))
34 return makeNull();
35
36 if (type->isIntegralOrEnumerationType())
37 return makeIntVal(0, type);
38
39 // FIXME: Handle floats.
40 // FIXME: Handle structs.
41 return UnknownVal();
42 }
43
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const llvm::APSInt & rhs,QualType type)44 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
45 const llvm::APSInt& rhs, QualType type) {
46 // The Environment ensures we always get a persistent APSInt in
47 // BasicValueFactory, so we don't need to get the APSInt from
48 // BasicValueFactory again.
49 assert(lhs);
50 assert(!Loc::isLocType(type));
51 return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
52 }
53
makeNonLoc(const llvm::APSInt & lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)54 NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
55 BinaryOperator::Opcode op, const SymExpr *rhs,
56 QualType type) {
57 assert(rhs);
58 assert(!Loc::isLocType(type));
59 return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
60 }
61
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)62 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
63 const SymExpr *rhs, QualType type) {
64 assert(lhs && rhs);
65 assert(!Loc::isLocType(type));
66 return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
67 }
68
makeNonLoc(const SymExpr * operand,QualType fromTy,QualType toTy)69 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
70 QualType fromTy, QualType toTy) {
71 assert(operand);
72 assert(!Loc::isLocType(toTy));
73 return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
74 }
75
convertToArrayIndex(SVal val)76 SVal SValBuilder::convertToArrayIndex(SVal val) {
77 if (val.isUnknownOrUndef())
78 return val;
79
80 // Common case: we have an appropriately sized integer.
81 if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
82 const llvm::APSInt& I = CI->getValue();
83 if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
84 return val;
85 }
86
87 return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
88 }
89
makeBoolVal(const CXXBoolLiteralExpr * boolean)90 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
91 return makeTruthVal(boolean->getValue());
92 }
93
94 DefinedOrUnknownSVal
getRegionValueSymbolVal(const TypedValueRegion * region)95 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
96 QualType T = region->getValueType();
97
98 if (!SymbolManager::canSymbolicate(T))
99 return UnknownVal();
100
101 SymbolRef sym = SymMgr.getRegionValueSymbol(region);
102
103 if (Loc::isLocType(T))
104 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
105
106 return nonloc::SymbolVal(sym);
107 }
108
conjureSymbolVal(const void * SymbolTag,const Expr * Ex,const LocationContext * LCtx,unsigned Count)109 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
110 const Expr *Ex,
111 const LocationContext *LCtx,
112 unsigned Count) {
113 QualType T = Ex->getType();
114
115 // Compute the type of the result. If the expression is not an R-value, the
116 // result should be a location.
117 QualType ExType = Ex->getType();
118 if (Ex->isGLValue())
119 T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
120
121 return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
122 }
123
conjureSymbolVal(const void * symbolTag,const Expr * expr,const LocationContext * LCtx,QualType type,unsigned count)124 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
125 const Expr *expr,
126 const LocationContext *LCtx,
127 QualType type,
128 unsigned count) {
129 if (!SymbolManager::canSymbolicate(type))
130 return UnknownVal();
131
132 SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
133
134 if (Loc::isLocType(type))
135 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
136
137 return nonloc::SymbolVal(sym);
138 }
139
140
conjureSymbolVal(const Stmt * stmt,const LocationContext * LCtx,QualType type,unsigned visitCount)141 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
142 const LocationContext *LCtx,
143 QualType type,
144 unsigned visitCount) {
145 if (!SymbolManager::canSymbolicate(type))
146 return UnknownVal();
147
148 SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
149
150 if (Loc::isLocType(type))
151 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
152
153 return nonloc::SymbolVal(sym);
154 }
155
156 DefinedOrUnknownSVal
getConjuredHeapSymbolVal(const Expr * E,const LocationContext * LCtx,unsigned VisitCount)157 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
158 const LocationContext *LCtx,
159 unsigned VisitCount) {
160 QualType T = E->getType();
161 assert(Loc::isLocType(T));
162 assert(SymbolManager::canSymbolicate(T));
163
164 SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
165 return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
166 }
167
getMetadataSymbolVal(const void * symbolTag,const MemRegion * region,const Expr * expr,QualType type,unsigned count)168 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
169 const MemRegion *region,
170 const Expr *expr, QualType type,
171 unsigned count) {
172 assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
173
174 SymbolRef sym =
175 SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
176
177 if (Loc::isLocType(type))
178 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
179
180 return nonloc::SymbolVal(sym);
181 }
182
183 DefinedOrUnknownSVal
getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,const TypedValueRegion * region)184 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
185 const TypedValueRegion *region) {
186 QualType T = region->getValueType();
187
188 if (!SymbolManager::canSymbolicate(T))
189 return UnknownVal();
190
191 SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
192
193 if (Loc::isLocType(T))
194 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
195
196 return nonloc::SymbolVal(sym);
197 }
198
getFunctionPointer(const FunctionDecl * func)199 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
200 return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
201 }
202
getBlockPointer(const BlockDecl * block,CanQualType locTy,const LocationContext * locContext)203 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
204 CanQualType locTy,
205 const LocationContext *locContext) {
206 const BlockTextRegion *BC =
207 MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
208 const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext);
209 return loc::MemRegionVal(BD);
210 }
211
212 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXMethodDecl * D,const StackFrameContext * SFC)213 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
214 const StackFrameContext *SFC) {
215 return loc::MemRegionVal(getRegionManager().
216 getCXXThisRegion(D->getThisType(getContext()), SFC));
217 }
218
219 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXRecordDecl * D,const StackFrameContext * SFC)220 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
221 const StackFrameContext *SFC) {
222 const Type *T = D->getTypeForDecl();
223 QualType PT = getContext().getPointerType(QualType(T, 0));
224 return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
225 }
226
getConstantVal(const Expr * E)227 Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
228 E = E->IgnoreParens();
229
230 switch (E->getStmtClass()) {
231 // Handle expressions that we treat differently from the AST's constant
232 // evaluator.
233 case Stmt::AddrLabelExprClass:
234 return makeLoc(cast<AddrLabelExpr>(E));
235
236 case Stmt::CXXScalarValueInitExprClass:
237 case Stmt::ImplicitValueInitExprClass:
238 return makeZeroVal(E->getType());
239
240 case Stmt::ObjCStringLiteralClass: {
241 const ObjCStringLiteral *SL = cast<ObjCStringLiteral>(E);
242 return makeLoc(getRegionManager().getObjCStringRegion(SL));
243 }
244
245 case Stmt::StringLiteralClass: {
246 const StringLiteral *SL = cast<StringLiteral>(E);
247 return makeLoc(getRegionManager().getStringRegion(SL));
248 }
249
250 // Fast-path some expressions to avoid the overhead of going through the AST's
251 // constant evaluator
252 case Stmt::CharacterLiteralClass: {
253 const CharacterLiteral *C = cast<CharacterLiteral>(E);
254 return makeIntVal(C->getValue(), C->getType());
255 }
256
257 case Stmt::CXXBoolLiteralExprClass:
258 return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
259
260 case Stmt::IntegerLiteralClass:
261 return makeIntVal(cast<IntegerLiteral>(E));
262
263 case Stmt::ObjCBoolLiteralExprClass:
264 return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
265
266 case Stmt::CXXNullPtrLiteralExprClass:
267 return makeNull();
268
269 case Stmt::ImplicitCastExprClass: {
270 const CastExpr *CE = cast<CastExpr>(E);
271 if (CE->getCastKind() == CK_ArrayToPointerDecay) {
272 Optional<SVal> ArrayVal = getConstantVal(CE->getSubExpr());
273 if (!ArrayVal)
274 return None;
275 return evalCast(*ArrayVal, CE->getType(), CE->getSubExpr()->getType());
276 }
277 // FALLTHROUGH
278 }
279
280 // If we don't have a special case, fall back to the AST's constant evaluator.
281 default: {
282 // Don't try to come up with a value for materialized temporaries.
283 if (E->isGLValue())
284 return None;
285
286 ASTContext &Ctx = getContext();
287 llvm::APSInt Result;
288 if (E->EvaluateAsInt(Result, Ctx))
289 return makeIntVal(Result);
290
291 if (Loc::isLocType(E->getType()))
292 if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
293 return makeNull();
294
295 return None;
296 }
297 }
298 }
299
300 //===----------------------------------------------------------------------===//
301
makeSymExprValNN(ProgramStateRef State,BinaryOperator::Opcode Op,NonLoc LHS,NonLoc RHS,QualType ResultTy)302 SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
303 BinaryOperator::Opcode Op,
304 NonLoc LHS, NonLoc RHS,
305 QualType ResultTy) {
306 if (!State->isTainted(RHS) && !State->isTainted(LHS))
307 return UnknownVal();
308
309 const SymExpr *symLHS = LHS.getAsSymExpr();
310 const SymExpr *symRHS = RHS.getAsSymExpr();
311 // TODO: When the Max Complexity is reached, we should conjure a symbol
312 // instead of generating an Unknown value and propagate the taint info to it.
313 const unsigned MaxComp = 10000; // 100000 28X
314
315 if (symLHS && symRHS &&
316 (symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp)
317 return makeNonLoc(symLHS, Op, symRHS, ResultTy);
318
319 if (symLHS && symLHS->computeComplexity() < MaxComp)
320 if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
321 return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
322
323 if (symRHS && symRHS->computeComplexity() < MaxComp)
324 if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
325 return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
326
327 return UnknownVal();
328 }
329
330
evalBinOp(ProgramStateRef state,BinaryOperator::Opcode op,SVal lhs,SVal rhs,QualType type)331 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
332 SVal lhs, SVal rhs, QualType type) {
333
334 if (lhs.isUndef() || rhs.isUndef())
335 return UndefinedVal();
336
337 if (lhs.isUnknown() || rhs.isUnknown())
338 return UnknownVal();
339
340 if (Optional<Loc> LV = lhs.getAs<Loc>()) {
341 if (Optional<Loc> RV = rhs.getAs<Loc>())
342 return evalBinOpLL(state, op, *LV, *RV, type);
343
344 return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
345 }
346
347 if (Optional<Loc> RV = rhs.getAs<Loc>()) {
348 // Support pointer arithmetic where the addend is on the left
349 // and the pointer on the right.
350 assert(op == BO_Add);
351
352 // Commute the operands.
353 return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
354 }
355
356 return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
357 type);
358 }
359
evalEQ(ProgramStateRef state,DefinedOrUnknownSVal lhs,DefinedOrUnknownSVal rhs)360 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
361 DefinedOrUnknownSVal lhs,
362 DefinedOrUnknownSVal rhs) {
363 return evalBinOp(state, BO_EQ, lhs, rhs, Context.IntTy)
364 .castAs<DefinedOrUnknownSVal>();
365 }
366
367 /// Recursively check if the pointer types are equal modulo const, volatile,
368 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
369 /// Assumes the input types are canonical.
shouldBeModeledWithNoOp(ASTContext & Context,QualType ToTy,QualType FromTy)370 static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
371 QualType FromTy) {
372 while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
373 Qualifiers Quals1, Quals2;
374 ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
375 FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
376
377 // Make sure that non cvr-qualifiers the other qualifiers (e.g., address
378 // spaces) are identical.
379 Quals1.removeCVRQualifiers();
380 Quals2.removeCVRQualifiers();
381 if (Quals1 != Quals2)
382 return false;
383 }
384
385 // If we are casting to void, the 'From' value can be used to represent the
386 // 'To' value.
387 if (ToTy->isVoidType())
388 return true;
389
390 if (ToTy != FromTy)
391 return false;
392
393 return true;
394 }
395
396 // FIXME: should rewrite according to the cast kind.
evalCast(SVal val,QualType castTy,QualType originalTy)397 SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
398 castTy = Context.getCanonicalType(castTy);
399 originalTy = Context.getCanonicalType(originalTy);
400 if (val.isUnknownOrUndef() || castTy == originalTy)
401 return val;
402
403 if (castTy->isBooleanType()) {
404 if (val.isUnknownOrUndef())
405 return val;
406 if (val.isConstant())
407 return makeTruthVal(!val.isZeroConstant(), castTy);
408 if (SymbolRef Sym = val.getAsSymbol()) {
409 BasicValueFactory &BVF = getBasicValueFactory();
410 // FIXME: If we had a state here, we could see if the symbol is known to
411 // be zero, but we don't.
412 return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
413 }
414
415 assert(val.getAs<Loc>() || val.getAs<nonloc::LocAsInteger>());
416 return makeTruthVal(true, castTy);
417 }
418
419 // For const casts, casts to void, just propagate the value.
420 if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
421 if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
422 Context.getPointerType(originalTy)))
423 return val;
424
425 // Check for casts from pointers to integers.
426 if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
427 return evalCastFromLoc(val.castAs<Loc>(), castTy);
428
429 // Check for casts from integers to pointers.
430 if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
431 if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
432 if (const MemRegion *R = LV->getLoc().getAsRegion()) {
433 StoreManager &storeMgr = StateMgr.getStoreManager();
434 R = storeMgr.castRegion(R, castTy);
435 return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
436 }
437 return LV->getLoc();
438 }
439 return dispatchCast(val, castTy);
440 }
441
442 // Just pass through function and block pointers.
443 if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
444 assert(Loc::isLocType(castTy));
445 return val;
446 }
447
448 // Check for casts from array type to another type.
449 if (const ArrayType *arrayT =
450 dyn_cast<ArrayType>(originalTy.getCanonicalType())) {
451 // We will always decay to a pointer.
452 QualType elemTy = arrayT->getElementType();
453 val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy);
454
455 // Are we casting from an array to a pointer? If so just pass on
456 // the decayed value.
457 if (castTy->isPointerType() || castTy->isReferenceType())
458 return val;
459
460 // Are we casting from an array to an integer? If so, cast the decayed
461 // pointer value to an integer.
462 assert(castTy->isIntegralOrEnumerationType());
463
464 // FIXME: Keep these here for now in case we decide soon that we
465 // need the original decayed type.
466 // QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
467 // QualType pointerTy = C.getPointerType(elemTy);
468 return evalCastFromLoc(val.castAs<Loc>(), castTy);
469 }
470
471 // Check for casts from a region to a specific type.
472 if (const MemRegion *R = val.getAsRegion()) {
473 // Handle other casts of locations to integers.
474 if (castTy->isIntegralOrEnumerationType())
475 return evalCastFromLoc(loc::MemRegionVal(R), castTy);
476
477 // FIXME: We should handle the case where we strip off view layers to get
478 // to a desugared type.
479 if (!Loc::isLocType(castTy)) {
480 // FIXME: There can be gross cases where one casts the result of a function
481 // (that returns a pointer) to some other value that happens to fit
482 // within that pointer value. We currently have no good way to
483 // model such operations. When this happens, the underlying operation
484 // is that the caller is reasoning about bits. Conceptually we are
485 // layering a "view" of a location on top of those bits. Perhaps
486 // we need to be more lazy about mutual possible views, even on an
487 // SVal? This may be necessary for bit-level reasoning as well.
488 return UnknownVal();
489 }
490
491 // We get a symbolic function pointer for a dereference of a function
492 // pointer, but it is of function type. Example:
493
494 // struct FPRec {
495 // void (*my_func)(int * x);
496 // };
497 //
498 // int bar(int x);
499 //
500 // int f1_a(struct FPRec* foo) {
501 // int x;
502 // (*foo->my_func)(&x);
503 // return bar(x)+1; // no-warning
504 // }
505
506 assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
507 originalTy->isBlockPointerType() || castTy->isReferenceType());
508
509 StoreManager &storeMgr = StateMgr.getStoreManager();
510
511 // Delegate to store manager to get the result of casting a region to a
512 // different type. If the MemRegion* returned is NULL, this expression
513 // Evaluates to UnknownVal.
514 R = storeMgr.castRegion(R, castTy);
515 return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
516 }
517
518 return dispatchCast(val, castTy);
519 }
520