1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalValue.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 // Constant Class
41 //===----------------------------------------------------------------------===//
42
anchor()43 void Constant::anchor() { }
44
isNegativeZeroValue() const45 bool Constant::isNegativeZeroValue() const {
46 // Floating point values have an explicit -0.0 value.
47 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48 return CFP->isZero() && CFP->isNegative();
49
50 // Equivalent for a vector of -0.0's.
51 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54 return true;
55
56 // We've already handled true FP case; any other FP vectors can't represent -0.0.
57 if (getType()->isFPOrFPVectorTy())
58 return false;
59
60 // Otherwise, just use +0.0.
61 return isNullValue();
62 }
63
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
isZeroValue() const66 bool Constant::isZeroValue() const {
67 // Floating point values have an explicit -0.0 value.
68 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69 return CFP->isZero();
70
71 // Otherwise, just use +0.0.
72 return isNullValue();
73 }
74
isNullValue() const75 bool Constant::isNullValue() const {
76 // 0 is null.
77 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78 return CI->isZero();
79
80 // +0.0 is null.
81 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82 return CFP->isZero() && !CFP->isNegative();
83
84 // constant zero is zero for aggregates and cpnull is null for pointers.
85 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86 }
87
isAllOnesValue() const88 bool Constant::isAllOnesValue() const {
89 // Check for -1 integers
90 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91 return CI->isMinusOne();
92
93 // Check for FP which are bitcasted from -1 integers
94 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96
97 // Check for constant vectors which are splats of -1 values.
98 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99 if (Constant *Splat = CV->getSplatValue())
100 return Splat->isAllOnesValue();
101
102 // Check for constant vectors which are splats of -1 values.
103 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104 if (Constant *Splat = CV->getSplatValue())
105 return Splat->isAllOnesValue();
106
107 return false;
108 }
109
110 // Constructor to create a '0' constant of arbitrary type...
getNullValue(Type * Ty)111 Constant *Constant::getNullValue(Type *Ty) {
112 switch (Ty->getTypeID()) {
113 case Type::IntegerTyID:
114 return ConstantInt::get(Ty, 0);
115 case Type::HalfTyID:
116 return ConstantFP::get(Ty->getContext(),
117 APFloat::getZero(APFloat::IEEEhalf));
118 case Type::FloatTyID:
119 return ConstantFP::get(Ty->getContext(),
120 APFloat::getZero(APFloat::IEEEsingle));
121 case Type::DoubleTyID:
122 return ConstantFP::get(Ty->getContext(),
123 APFloat::getZero(APFloat::IEEEdouble));
124 case Type::X86_FP80TyID:
125 return ConstantFP::get(Ty->getContext(),
126 APFloat::getZero(APFloat::x87DoubleExtended));
127 case Type::FP128TyID:
128 return ConstantFP::get(Ty->getContext(),
129 APFloat::getZero(APFloat::IEEEquad));
130 case Type::PPC_FP128TyID:
131 return ConstantFP::get(Ty->getContext(),
132 APFloat(APFloat::PPCDoubleDouble,
133 APInt::getNullValue(128)));
134 case Type::PointerTyID:
135 return ConstantPointerNull::get(cast<PointerType>(Ty));
136 case Type::StructTyID:
137 case Type::ArrayTyID:
138 case Type::VectorTyID:
139 return ConstantAggregateZero::get(Ty);
140 default:
141 // Function, Label, or Opaque type?
142 llvm_unreachable("Cannot create a null constant of that type!");
143 }
144 }
145
getIntegerValue(Type * Ty,const APInt & V)146 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
147 Type *ScalarTy = Ty->getScalarType();
148
149 // Create the base integer constant.
150 Constant *C = ConstantInt::get(Ty->getContext(), V);
151
152 // Convert an integer to a pointer, if necessary.
153 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
154 C = ConstantExpr::getIntToPtr(C, PTy);
155
156 // Broadcast a scalar to a vector, if necessary.
157 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
158 C = ConstantVector::getSplat(VTy->getNumElements(), C);
159
160 return C;
161 }
162
getAllOnesValue(Type * Ty)163 Constant *Constant::getAllOnesValue(Type *Ty) {
164 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
165 return ConstantInt::get(Ty->getContext(),
166 APInt::getAllOnesValue(ITy->getBitWidth()));
167
168 if (Ty->isFloatingPointTy()) {
169 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
170 !Ty->isPPC_FP128Ty());
171 return ConstantFP::get(Ty->getContext(), FL);
172 }
173
174 VectorType *VTy = cast<VectorType>(Ty);
175 return ConstantVector::getSplat(VTy->getNumElements(),
176 getAllOnesValue(VTy->getElementType()));
177 }
178
179 /// getAggregateElement - For aggregates (struct/array/vector) return the
180 /// constant that corresponds to the specified element if possible, or null if
181 /// not. This can return null if the element index is a ConstantExpr, or if
182 /// 'this' is a constant expr.
getAggregateElement(unsigned Elt) const183 Constant *Constant::getAggregateElement(unsigned Elt) const {
184 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
185 return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
186
187 if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
188 return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
189
190 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
191 return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
192
193 if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
194 return CAZ->getElementValue(Elt);
195
196 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
197 return UV->getElementValue(Elt);
198
199 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
200 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
201 return 0;
202 }
203
getAggregateElement(Constant * Elt) const204 Constant *Constant::getAggregateElement(Constant *Elt) const {
205 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
206 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
207 return getAggregateElement(CI->getZExtValue());
208 return 0;
209 }
210
211
destroyConstantImpl()212 void Constant::destroyConstantImpl() {
213 // When a Constant is destroyed, there may be lingering
214 // references to the constant by other constants in the constant pool. These
215 // constants are implicitly dependent on the module that is being deleted,
216 // but they don't know that. Because we only find out when the CPV is
217 // deleted, we must now notify all of our users (that should only be
218 // Constants) that they are, in fact, invalid now and should be deleted.
219 //
220 while (!use_empty()) {
221 Value *V = use_back();
222 #ifndef NDEBUG // Only in -g mode...
223 if (!isa<Constant>(V)) {
224 dbgs() << "While deleting: " << *this
225 << "\n\nUse still stuck around after Def is destroyed: "
226 << *V << "\n\n";
227 }
228 #endif
229 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
230 cast<Constant>(V)->destroyConstant();
231
232 // The constant should remove itself from our use list...
233 assert((use_empty() || use_back() != V) && "Constant not removed!");
234 }
235
236 // Value has no outstanding references it is safe to delete it now...
237 delete this;
238 }
239
canTrapImpl(const Constant * C,SmallPtrSet<const ConstantExpr *,4> & NonTrappingOps)240 static bool canTrapImpl(const Constant *C,
241 SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) {
242 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
243 // The only thing that could possibly trap are constant exprs.
244 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
245 if (!CE)
246 return false;
247
248 // ConstantExpr traps if any operands can trap.
249 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
250 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
251 if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
252 return true;
253 }
254 }
255
256 // Otherwise, only specific operations can trap.
257 switch (CE->getOpcode()) {
258 default:
259 return false;
260 case Instruction::UDiv:
261 case Instruction::SDiv:
262 case Instruction::FDiv:
263 case Instruction::URem:
264 case Instruction::SRem:
265 case Instruction::FRem:
266 // Div and rem can trap if the RHS is not known to be non-zero.
267 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
268 return true;
269 return false;
270 }
271 }
272
273 /// canTrap - Return true if evaluation of this constant could trap. This is
274 /// true for things like constant expressions that could divide by zero.
canTrap() const275 bool Constant::canTrap() const {
276 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
277 return canTrapImpl(this, NonTrappingOps);
278 }
279
280 /// isThreadDependent - Return true if the value can vary between threads.
isThreadDependent() const281 bool Constant::isThreadDependent() const {
282 SmallPtrSet<const Constant*, 64> Visited;
283 SmallVector<const Constant*, 64> WorkList;
284 WorkList.push_back(this);
285 Visited.insert(this);
286
287 while (!WorkList.empty()) {
288 const Constant *C = WorkList.pop_back_val();
289
290 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
291 if (GV->isThreadLocal())
292 return true;
293 }
294
295 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
296 const Constant *D = dyn_cast<Constant>(C->getOperand(I));
297 if (!D)
298 continue;
299 if (Visited.insert(D))
300 WorkList.push_back(D);
301 }
302 }
303
304 return false;
305 }
306
307 /// isConstantUsed - Return true if the constant has users other than constant
308 /// exprs and other dangling things.
isConstantUsed() const309 bool Constant::isConstantUsed() const {
310 for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
311 const Constant *UC = dyn_cast<Constant>(*UI);
312 if (UC == 0 || isa<GlobalValue>(UC))
313 return true;
314
315 if (UC->isConstantUsed())
316 return true;
317 }
318 return false;
319 }
320
321
322
323 /// getRelocationInfo - This method classifies the entry according to
324 /// whether or not it may generate a relocation entry. This must be
325 /// conservative, so if it might codegen to a relocatable entry, it should say
326 /// so. The return values are:
327 ///
328 /// NoRelocation: This constant pool entry is guaranteed to never have a
329 /// relocation applied to it (because it holds a simple constant like
330 /// '4').
331 /// LocalRelocation: This entry has relocations, but the entries are
332 /// guaranteed to be resolvable by the static linker, so the dynamic
333 /// linker will never see them.
334 /// GlobalRelocations: This entry may have arbitrary relocations.
335 ///
336 /// FIXME: This really should not be in IR.
getRelocationInfo() const337 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
338 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
339 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
340 return LocalRelocation; // Local to this file/library.
341 return GlobalRelocations; // Global reference.
342 }
343
344 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
345 return BA->getFunction()->getRelocationInfo();
346
347 // While raw uses of blockaddress need to be relocated, differences between
348 // two of them don't when they are for labels in the same function. This is a
349 // common idiom when creating a table for the indirect goto extension, so we
350 // handle it efficiently here.
351 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
352 if (CE->getOpcode() == Instruction::Sub) {
353 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
354 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
355 if (LHS && RHS &&
356 LHS->getOpcode() == Instruction::PtrToInt &&
357 RHS->getOpcode() == Instruction::PtrToInt &&
358 isa<BlockAddress>(LHS->getOperand(0)) &&
359 isa<BlockAddress>(RHS->getOperand(0)) &&
360 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
361 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
362 return NoRelocation;
363 }
364
365 PossibleRelocationsTy Result = NoRelocation;
366 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
367 Result = std::max(Result,
368 cast<Constant>(getOperand(i))->getRelocationInfo());
369
370 return Result;
371 }
372
373 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
374 /// it. This involves recursively eliminating any dead users of the
375 /// constantexpr.
removeDeadUsersOfConstant(const Constant * C)376 static bool removeDeadUsersOfConstant(const Constant *C) {
377 if (isa<GlobalValue>(C)) return false; // Cannot remove this
378
379 while (!C->use_empty()) {
380 const Constant *User = dyn_cast<Constant>(C->use_back());
381 if (!User) return false; // Non-constant usage;
382 if (!removeDeadUsersOfConstant(User))
383 return false; // Constant wasn't dead
384 }
385
386 const_cast<Constant*>(C)->destroyConstant();
387 return true;
388 }
389
390
391 /// removeDeadConstantUsers - If there are any dead constant users dangling
392 /// off of this constant, remove them. This method is useful for clients
393 /// that want to check to see if a global is unused, but don't want to deal
394 /// with potentially dead constants hanging off of the globals.
removeDeadConstantUsers() const395 void Constant::removeDeadConstantUsers() const {
396 Value::const_use_iterator I = use_begin(), E = use_end();
397 Value::const_use_iterator LastNonDeadUser = E;
398 while (I != E) {
399 const Constant *User = dyn_cast<Constant>(*I);
400 if (User == 0) {
401 LastNonDeadUser = I;
402 ++I;
403 continue;
404 }
405
406 if (!removeDeadUsersOfConstant(User)) {
407 // If the constant wasn't dead, remember that this was the last live use
408 // and move on to the next constant.
409 LastNonDeadUser = I;
410 ++I;
411 continue;
412 }
413
414 // If the constant was dead, then the iterator is invalidated.
415 if (LastNonDeadUser == E) {
416 I = use_begin();
417 if (I == E) break;
418 } else {
419 I = LastNonDeadUser;
420 ++I;
421 }
422 }
423 }
424
425
426
427 //===----------------------------------------------------------------------===//
428 // ConstantInt
429 //===----------------------------------------------------------------------===//
430
anchor()431 void ConstantInt::anchor() { }
432
ConstantInt(IntegerType * Ty,const APInt & V)433 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
434 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
435 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
436 }
437
getTrue(LLVMContext & Context)438 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
439 LLVMContextImpl *pImpl = Context.pImpl;
440 if (!pImpl->TheTrueVal)
441 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
442 return pImpl->TheTrueVal;
443 }
444
getFalse(LLVMContext & Context)445 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
446 LLVMContextImpl *pImpl = Context.pImpl;
447 if (!pImpl->TheFalseVal)
448 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
449 return pImpl->TheFalseVal;
450 }
451
getTrue(Type * Ty)452 Constant *ConstantInt::getTrue(Type *Ty) {
453 VectorType *VTy = dyn_cast<VectorType>(Ty);
454 if (!VTy) {
455 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
456 return ConstantInt::getTrue(Ty->getContext());
457 }
458 assert(VTy->getElementType()->isIntegerTy(1) &&
459 "True must be vector of i1 or i1.");
460 return ConstantVector::getSplat(VTy->getNumElements(),
461 ConstantInt::getTrue(Ty->getContext()));
462 }
463
getFalse(Type * Ty)464 Constant *ConstantInt::getFalse(Type *Ty) {
465 VectorType *VTy = dyn_cast<VectorType>(Ty);
466 if (!VTy) {
467 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
468 return ConstantInt::getFalse(Ty->getContext());
469 }
470 assert(VTy->getElementType()->isIntegerTy(1) &&
471 "False must be vector of i1 or i1.");
472 return ConstantVector::getSplat(VTy->getNumElements(),
473 ConstantInt::getFalse(Ty->getContext()));
474 }
475
476
477 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
478 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
479 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
480 // compare APInt's of different widths, which would violate an APInt class
481 // invariant which generates an assertion.
get(LLVMContext & Context,const APInt & V)482 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
483 // Get the corresponding integer type for the bit width of the value.
484 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
485 // get an existing value or the insertion position
486 LLVMContextImpl *pImpl = Context.pImpl;
487 ConstantInt *&Slot = pImpl->IntConstants[DenseMapAPIntKeyInfo::KeyTy(V, ITy)];
488 if (!Slot) Slot = new ConstantInt(ITy, V);
489 return Slot;
490 }
491
get(Type * Ty,uint64_t V,bool isSigned)492 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
493 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
494
495 // For vectors, broadcast the value.
496 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
497 return ConstantVector::getSplat(VTy->getNumElements(), C);
498
499 return C;
500 }
501
get(IntegerType * Ty,uint64_t V,bool isSigned)502 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
503 bool isSigned) {
504 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
505 }
506
getSigned(IntegerType * Ty,int64_t V)507 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
508 return get(Ty, V, true);
509 }
510
getSigned(Type * Ty,int64_t V)511 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
512 return get(Ty, V, true);
513 }
514
get(Type * Ty,const APInt & V)515 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
516 ConstantInt *C = get(Ty->getContext(), V);
517 assert(C->getType() == Ty->getScalarType() &&
518 "ConstantInt type doesn't match the type implied by its value!");
519
520 // For vectors, broadcast the value.
521 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
522 return ConstantVector::getSplat(VTy->getNumElements(), C);
523
524 return C;
525 }
526
get(IntegerType * Ty,StringRef Str,uint8_t radix)527 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
528 uint8_t radix) {
529 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
530 }
531
532 //===----------------------------------------------------------------------===//
533 // ConstantFP
534 //===----------------------------------------------------------------------===//
535
TypeToFloatSemantics(Type * Ty)536 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
537 if (Ty->isHalfTy())
538 return &APFloat::IEEEhalf;
539 if (Ty->isFloatTy())
540 return &APFloat::IEEEsingle;
541 if (Ty->isDoubleTy())
542 return &APFloat::IEEEdouble;
543 if (Ty->isX86_FP80Ty())
544 return &APFloat::x87DoubleExtended;
545 else if (Ty->isFP128Ty())
546 return &APFloat::IEEEquad;
547
548 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
549 return &APFloat::PPCDoubleDouble;
550 }
551
anchor()552 void ConstantFP::anchor() { }
553
554 /// get() - This returns a constant fp for the specified value in the
555 /// specified type. This should only be used for simple constant values like
556 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
get(Type * Ty,double V)557 Constant *ConstantFP::get(Type *Ty, double V) {
558 LLVMContext &Context = Ty->getContext();
559
560 APFloat FV(V);
561 bool ignored;
562 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
563 APFloat::rmNearestTiesToEven, &ignored);
564 Constant *C = get(Context, FV);
565
566 // For vectors, broadcast the value.
567 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
568 return ConstantVector::getSplat(VTy->getNumElements(), C);
569
570 return C;
571 }
572
573
get(Type * Ty,StringRef Str)574 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
575 LLVMContext &Context = Ty->getContext();
576
577 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
578 Constant *C = get(Context, FV);
579
580 // For vectors, broadcast the value.
581 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
582 return ConstantVector::getSplat(VTy->getNumElements(), C);
583
584 return C;
585 }
586
587
getNegativeZero(Type * Ty)588 ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
589 LLVMContext &Context = Ty->getContext();
590 APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
591 apf.changeSign();
592 return get(Context, apf);
593 }
594
595
getZeroValueForNegation(Type * Ty)596 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
597 Type *ScalarTy = Ty->getScalarType();
598 if (ScalarTy->isFloatingPointTy()) {
599 Constant *C = getNegativeZero(ScalarTy);
600 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
601 return ConstantVector::getSplat(VTy->getNumElements(), C);
602 return C;
603 }
604
605 return Constant::getNullValue(Ty);
606 }
607
608
609 // ConstantFP accessors.
get(LLVMContext & Context,const APFloat & V)610 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
611 LLVMContextImpl* pImpl = Context.pImpl;
612
613 ConstantFP *&Slot = pImpl->FPConstants[DenseMapAPFloatKeyInfo::KeyTy(V)];
614
615 if (!Slot) {
616 Type *Ty;
617 if (&V.getSemantics() == &APFloat::IEEEhalf)
618 Ty = Type::getHalfTy(Context);
619 else if (&V.getSemantics() == &APFloat::IEEEsingle)
620 Ty = Type::getFloatTy(Context);
621 else if (&V.getSemantics() == &APFloat::IEEEdouble)
622 Ty = Type::getDoubleTy(Context);
623 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
624 Ty = Type::getX86_FP80Ty(Context);
625 else if (&V.getSemantics() == &APFloat::IEEEquad)
626 Ty = Type::getFP128Ty(Context);
627 else {
628 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
629 "Unknown FP format");
630 Ty = Type::getPPC_FP128Ty(Context);
631 }
632 Slot = new ConstantFP(Ty, V);
633 }
634
635 return Slot;
636 }
637
getInfinity(Type * Ty,bool Negative)638 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
639 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
640 return ConstantFP::get(Ty->getContext(),
641 APFloat::getInf(Semantics, Negative));
642 }
643
ConstantFP(Type * Ty,const APFloat & V)644 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
645 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
646 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
647 "FP type Mismatch");
648 }
649
isExactlyValue(const APFloat & V) const650 bool ConstantFP::isExactlyValue(const APFloat &V) const {
651 return Val.bitwiseIsEqual(V);
652 }
653
654 //===----------------------------------------------------------------------===//
655 // ConstantAggregateZero Implementation
656 //===----------------------------------------------------------------------===//
657
658 /// getSequentialElement - If this CAZ has array or vector type, return a zero
659 /// with the right element type.
getSequentialElement() const660 Constant *ConstantAggregateZero::getSequentialElement() const {
661 return Constant::getNullValue(getType()->getSequentialElementType());
662 }
663
664 /// getStructElement - If this CAZ has struct type, return a zero with the
665 /// right element type for the specified element.
getStructElement(unsigned Elt) const666 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
667 return Constant::getNullValue(getType()->getStructElementType(Elt));
668 }
669
670 /// getElementValue - Return a zero of the right value for the specified GEP
671 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
getElementValue(Constant * C) const672 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
673 if (isa<SequentialType>(getType()))
674 return getSequentialElement();
675 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
676 }
677
678 /// getElementValue - Return a zero of the right value for the specified GEP
679 /// index.
getElementValue(unsigned Idx) const680 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
681 if (isa<SequentialType>(getType()))
682 return getSequentialElement();
683 return getStructElement(Idx);
684 }
685
686
687 //===----------------------------------------------------------------------===//
688 // UndefValue Implementation
689 //===----------------------------------------------------------------------===//
690
691 /// getSequentialElement - If this undef has array or vector type, return an
692 /// undef with the right element type.
getSequentialElement() const693 UndefValue *UndefValue::getSequentialElement() const {
694 return UndefValue::get(getType()->getSequentialElementType());
695 }
696
697 /// getStructElement - If this undef has struct type, return a zero with the
698 /// right element type for the specified element.
getStructElement(unsigned Elt) const699 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
700 return UndefValue::get(getType()->getStructElementType(Elt));
701 }
702
703 /// getElementValue - Return an undef of the right value for the specified GEP
704 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
getElementValue(Constant * C) const705 UndefValue *UndefValue::getElementValue(Constant *C) const {
706 if (isa<SequentialType>(getType()))
707 return getSequentialElement();
708 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
709 }
710
711 /// getElementValue - Return an undef of the right value for the specified GEP
712 /// index.
getElementValue(unsigned Idx) const713 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
714 if (isa<SequentialType>(getType()))
715 return getSequentialElement();
716 return getStructElement(Idx);
717 }
718
719
720
721 //===----------------------------------------------------------------------===//
722 // ConstantXXX Classes
723 //===----------------------------------------------------------------------===//
724
725 template <typename ItTy, typename EltTy>
rangeOnlyContains(ItTy Start,ItTy End,EltTy Elt)726 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
727 for (; Start != End; ++Start)
728 if (*Start != Elt)
729 return false;
730 return true;
731 }
732
ConstantArray(ArrayType * T,ArrayRef<Constant * > V)733 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
734 : Constant(T, ConstantArrayVal,
735 OperandTraits<ConstantArray>::op_end(this) - V.size(),
736 V.size()) {
737 assert(V.size() == T->getNumElements() &&
738 "Invalid initializer vector for constant array");
739 for (unsigned i = 0, e = V.size(); i != e; ++i)
740 assert(V[i]->getType() == T->getElementType() &&
741 "Initializer for array element doesn't match array element type!");
742 std::copy(V.begin(), V.end(), op_begin());
743 }
744
get(ArrayType * Ty,ArrayRef<Constant * > V)745 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
746 // Empty arrays are canonicalized to ConstantAggregateZero.
747 if (V.empty())
748 return ConstantAggregateZero::get(Ty);
749
750 for (unsigned i = 0, e = V.size(); i != e; ++i) {
751 assert(V[i]->getType() == Ty->getElementType() &&
752 "Wrong type in array element initializer");
753 }
754 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
755
756 // If this is an all-zero array, return a ConstantAggregateZero object. If
757 // all undef, return an UndefValue, if "all simple", then return a
758 // ConstantDataArray.
759 Constant *C = V[0];
760 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
761 return UndefValue::get(Ty);
762
763 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
764 return ConstantAggregateZero::get(Ty);
765
766 // Check to see if all of the elements are ConstantFP or ConstantInt and if
767 // the element type is compatible with ConstantDataVector. If so, use it.
768 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
769 // We speculatively build the elements here even if it turns out that there
770 // is a constantexpr or something else weird in the array, since it is so
771 // uncommon for that to happen.
772 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
773 if (CI->getType()->isIntegerTy(8)) {
774 SmallVector<uint8_t, 16> Elts;
775 for (unsigned i = 0, e = V.size(); i != e; ++i)
776 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
777 Elts.push_back(CI->getZExtValue());
778 else
779 break;
780 if (Elts.size() == V.size())
781 return ConstantDataArray::get(C->getContext(), Elts);
782 } else if (CI->getType()->isIntegerTy(16)) {
783 SmallVector<uint16_t, 16> Elts;
784 for (unsigned i = 0, e = V.size(); i != e; ++i)
785 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
786 Elts.push_back(CI->getZExtValue());
787 else
788 break;
789 if (Elts.size() == V.size())
790 return ConstantDataArray::get(C->getContext(), Elts);
791 } else if (CI->getType()->isIntegerTy(32)) {
792 SmallVector<uint32_t, 16> Elts;
793 for (unsigned i = 0, e = V.size(); i != e; ++i)
794 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
795 Elts.push_back(CI->getZExtValue());
796 else
797 break;
798 if (Elts.size() == V.size())
799 return ConstantDataArray::get(C->getContext(), Elts);
800 } else if (CI->getType()->isIntegerTy(64)) {
801 SmallVector<uint64_t, 16> Elts;
802 for (unsigned i = 0, e = V.size(); i != e; ++i)
803 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
804 Elts.push_back(CI->getZExtValue());
805 else
806 break;
807 if (Elts.size() == V.size())
808 return ConstantDataArray::get(C->getContext(), Elts);
809 }
810 }
811
812 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
813 if (CFP->getType()->isFloatTy()) {
814 SmallVector<float, 16> Elts;
815 for (unsigned i = 0, e = V.size(); i != e; ++i)
816 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
817 Elts.push_back(CFP->getValueAPF().convertToFloat());
818 else
819 break;
820 if (Elts.size() == V.size())
821 return ConstantDataArray::get(C->getContext(), Elts);
822 } else if (CFP->getType()->isDoubleTy()) {
823 SmallVector<double, 16> Elts;
824 for (unsigned i = 0, e = V.size(); i != e; ++i)
825 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
826 Elts.push_back(CFP->getValueAPF().convertToDouble());
827 else
828 break;
829 if (Elts.size() == V.size())
830 return ConstantDataArray::get(C->getContext(), Elts);
831 }
832 }
833 }
834
835 // Otherwise, we really do want to create a ConstantArray.
836 return pImpl->ArrayConstants.getOrCreate(Ty, V);
837 }
838
839 /// getTypeForElements - Return an anonymous struct type to use for a constant
840 /// with the specified set of elements. The list must not be empty.
getTypeForElements(LLVMContext & Context,ArrayRef<Constant * > V,bool Packed)841 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
842 ArrayRef<Constant*> V,
843 bool Packed) {
844 unsigned VecSize = V.size();
845 SmallVector<Type*, 16> EltTypes(VecSize);
846 for (unsigned i = 0; i != VecSize; ++i)
847 EltTypes[i] = V[i]->getType();
848
849 return StructType::get(Context, EltTypes, Packed);
850 }
851
852
getTypeForElements(ArrayRef<Constant * > V,bool Packed)853 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
854 bool Packed) {
855 assert(!V.empty() &&
856 "ConstantStruct::getTypeForElements cannot be called on empty list");
857 return getTypeForElements(V[0]->getContext(), V, Packed);
858 }
859
860
ConstantStruct(StructType * T,ArrayRef<Constant * > V)861 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
862 : Constant(T, ConstantStructVal,
863 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
864 V.size()) {
865 assert(V.size() == T->getNumElements() &&
866 "Invalid initializer vector for constant structure");
867 for (unsigned i = 0, e = V.size(); i != e; ++i)
868 assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
869 "Initializer for struct element doesn't match struct element type!");
870 std::copy(V.begin(), V.end(), op_begin());
871 }
872
873 // ConstantStruct accessors.
get(StructType * ST,ArrayRef<Constant * > V)874 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
875 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
876 "Incorrect # elements specified to ConstantStruct::get");
877
878 // Create a ConstantAggregateZero value if all elements are zeros.
879 bool isZero = true;
880 bool isUndef = false;
881
882 if (!V.empty()) {
883 isUndef = isa<UndefValue>(V[0]);
884 isZero = V[0]->isNullValue();
885 if (isUndef || isZero) {
886 for (unsigned i = 0, e = V.size(); i != e; ++i) {
887 if (!V[i]->isNullValue())
888 isZero = false;
889 if (!isa<UndefValue>(V[i]))
890 isUndef = false;
891 }
892 }
893 }
894 if (isZero)
895 return ConstantAggregateZero::get(ST);
896 if (isUndef)
897 return UndefValue::get(ST);
898
899 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
900 }
901
get(StructType * T,...)902 Constant *ConstantStruct::get(StructType *T, ...) {
903 va_list ap;
904 SmallVector<Constant*, 8> Values;
905 va_start(ap, T);
906 while (Constant *Val = va_arg(ap, llvm::Constant*))
907 Values.push_back(Val);
908 va_end(ap);
909 return get(T, Values);
910 }
911
ConstantVector(VectorType * T,ArrayRef<Constant * > V)912 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
913 : Constant(T, ConstantVectorVal,
914 OperandTraits<ConstantVector>::op_end(this) - V.size(),
915 V.size()) {
916 for (size_t i = 0, e = V.size(); i != e; i++)
917 assert(V[i]->getType() == T->getElementType() &&
918 "Initializer for vector element doesn't match vector element type!");
919 std::copy(V.begin(), V.end(), op_begin());
920 }
921
922 // ConstantVector accessors.
get(ArrayRef<Constant * > V)923 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
924 assert(!V.empty() && "Vectors can't be empty");
925 VectorType *T = VectorType::get(V.front()->getType(), V.size());
926 LLVMContextImpl *pImpl = T->getContext().pImpl;
927
928 // If this is an all-undef or all-zero vector, return a
929 // ConstantAggregateZero or UndefValue.
930 Constant *C = V[0];
931 bool isZero = C->isNullValue();
932 bool isUndef = isa<UndefValue>(C);
933
934 if (isZero || isUndef) {
935 for (unsigned i = 1, e = V.size(); i != e; ++i)
936 if (V[i] != C) {
937 isZero = isUndef = false;
938 break;
939 }
940 }
941
942 if (isZero)
943 return ConstantAggregateZero::get(T);
944 if (isUndef)
945 return UndefValue::get(T);
946
947 // Check to see if all of the elements are ConstantFP or ConstantInt and if
948 // the element type is compatible with ConstantDataVector. If so, use it.
949 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
950 // We speculatively build the elements here even if it turns out that there
951 // is a constantexpr or something else weird in the array, since it is so
952 // uncommon for that to happen.
953 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
954 if (CI->getType()->isIntegerTy(8)) {
955 SmallVector<uint8_t, 16> Elts;
956 for (unsigned i = 0, e = V.size(); i != e; ++i)
957 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
958 Elts.push_back(CI->getZExtValue());
959 else
960 break;
961 if (Elts.size() == V.size())
962 return ConstantDataVector::get(C->getContext(), Elts);
963 } else if (CI->getType()->isIntegerTy(16)) {
964 SmallVector<uint16_t, 16> Elts;
965 for (unsigned i = 0, e = V.size(); i != e; ++i)
966 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
967 Elts.push_back(CI->getZExtValue());
968 else
969 break;
970 if (Elts.size() == V.size())
971 return ConstantDataVector::get(C->getContext(), Elts);
972 } else if (CI->getType()->isIntegerTy(32)) {
973 SmallVector<uint32_t, 16> Elts;
974 for (unsigned i = 0, e = V.size(); i != e; ++i)
975 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
976 Elts.push_back(CI->getZExtValue());
977 else
978 break;
979 if (Elts.size() == V.size())
980 return ConstantDataVector::get(C->getContext(), Elts);
981 } else if (CI->getType()->isIntegerTy(64)) {
982 SmallVector<uint64_t, 16> Elts;
983 for (unsigned i = 0, e = V.size(); i != e; ++i)
984 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
985 Elts.push_back(CI->getZExtValue());
986 else
987 break;
988 if (Elts.size() == V.size())
989 return ConstantDataVector::get(C->getContext(), Elts);
990 }
991 }
992
993 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
994 if (CFP->getType()->isFloatTy()) {
995 SmallVector<float, 16> Elts;
996 for (unsigned i = 0, e = V.size(); i != e; ++i)
997 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
998 Elts.push_back(CFP->getValueAPF().convertToFloat());
999 else
1000 break;
1001 if (Elts.size() == V.size())
1002 return ConstantDataVector::get(C->getContext(), Elts);
1003 } else if (CFP->getType()->isDoubleTy()) {
1004 SmallVector<double, 16> Elts;
1005 for (unsigned i = 0, e = V.size(); i != e; ++i)
1006 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1007 Elts.push_back(CFP->getValueAPF().convertToDouble());
1008 else
1009 break;
1010 if (Elts.size() == V.size())
1011 return ConstantDataVector::get(C->getContext(), Elts);
1012 }
1013 }
1014 }
1015
1016 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1017 // the operand list constants a ConstantExpr or something else strange.
1018 return pImpl->VectorConstants.getOrCreate(T, V);
1019 }
1020
getSplat(unsigned NumElts,Constant * V)1021 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1022 // If this splat is compatible with ConstantDataVector, use it instead of
1023 // ConstantVector.
1024 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1025 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1026 return ConstantDataVector::getSplat(NumElts, V);
1027
1028 SmallVector<Constant*, 32> Elts(NumElts, V);
1029 return get(Elts);
1030 }
1031
1032
1033 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1034 // can't be inline because we don't want to #include Instruction.h into
1035 // Constant.h
isCast() const1036 bool ConstantExpr::isCast() const {
1037 return Instruction::isCast(getOpcode());
1038 }
1039
isCompare() const1040 bool ConstantExpr::isCompare() const {
1041 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1042 }
1043
isGEPWithNoNotionalOverIndexing() const1044 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1045 if (getOpcode() != Instruction::GetElementPtr) return false;
1046
1047 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1048 User::const_op_iterator OI = llvm::next(this->op_begin());
1049
1050 // Skip the first index, as it has no static limit.
1051 ++GEPI;
1052 ++OI;
1053
1054 // The remaining indices must be compile-time known integers within the
1055 // bounds of the corresponding notional static array types.
1056 for (; GEPI != E; ++GEPI, ++OI) {
1057 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1058 if (!CI) return false;
1059 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1060 if (CI->getValue().getActiveBits() > 64 ||
1061 CI->getZExtValue() >= ATy->getNumElements())
1062 return false;
1063 }
1064
1065 // All the indices checked out.
1066 return true;
1067 }
1068
hasIndices() const1069 bool ConstantExpr::hasIndices() const {
1070 return getOpcode() == Instruction::ExtractValue ||
1071 getOpcode() == Instruction::InsertValue;
1072 }
1073
getIndices() const1074 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1075 if (const ExtractValueConstantExpr *EVCE =
1076 dyn_cast<ExtractValueConstantExpr>(this))
1077 return EVCE->Indices;
1078
1079 return cast<InsertValueConstantExpr>(this)->Indices;
1080 }
1081
getPredicate() const1082 unsigned ConstantExpr::getPredicate() const {
1083 assert(isCompare());
1084 return ((const CompareConstantExpr*)this)->predicate;
1085 }
1086
1087 /// getWithOperandReplaced - Return a constant expression identical to this
1088 /// one, but with the specified operand set to the specified value.
1089 Constant *
getWithOperandReplaced(unsigned OpNo,Constant * Op) const1090 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1091 assert(Op->getType() == getOperand(OpNo)->getType() &&
1092 "Replacing operand with value of different type!");
1093 if (getOperand(OpNo) == Op)
1094 return const_cast<ConstantExpr*>(this);
1095
1096 SmallVector<Constant*, 8> NewOps;
1097 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1098 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1099
1100 return getWithOperands(NewOps);
1101 }
1102
1103 /// getWithOperands - This returns the current constant expression with the
1104 /// operands replaced with the specified values. The specified array must
1105 /// have the same number of operands as our current one.
1106 Constant *ConstantExpr::
getWithOperands(ArrayRef<Constant * > Ops,Type * Ty) const1107 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1108 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1109 bool AnyChange = Ty != getType();
1110 for (unsigned i = 0; i != Ops.size(); ++i)
1111 AnyChange |= Ops[i] != getOperand(i);
1112
1113 if (!AnyChange) // No operands changed, return self.
1114 return const_cast<ConstantExpr*>(this);
1115
1116 switch (getOpcode()) {
1117 case Instruction::Trunc:
1118 case Instruction::ZExt:
1119 case Instruction::SExt:
1120 case Instruction::FPTrunc:
1121 case Instruction::FPExt:
1122 case Instruction::UIToFP:
1123 case Instruction::SIToFP:
1124 case Instruction::FPToUI:
1125 case Instruction::FPToSI:
1126 case Instruction::PtrToInt:
1127 case Instruction::IntToPtr:
1128 case Instruction::BitCast:
1129 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1130 case Instruction::Select:
1131 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1132 case Instruction::InsertElement:
1133 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1134 case Instruction::ExtractElement:
1135 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1136 case Instruction::InsertValue:
1137 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1138 case Instruction::ExtractValue:
1139 return ConstantExpr::getExtractValue(Ops[0], getIndices());
1140 case Instruction::ShuffleVector:
1141 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1142 case Instruction::GetElementPtr:
1143 return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1144 cast<GEPOperator>(this)->isInBounds());
1145 case Instruction::ICmp:
1146 case Instruction::FCmp:
1147 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1148 default:
1149 assert(getNumOperands() == 2 && "Must be binary operator?");
1150 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1151 }
1152 }
1153
1154
1155 //===----------------------------------------------------------------------===//
1156 // isValueValidForType implementations
1157
isValueValidForType(Type * Ty,uint64_t Val)1158 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1159 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1160 if (Ty->isIntegerTy(1))
1161 return Val == 0 || Val == 1;
1162 if (NumBits >= 64)
1163 return true; // always true, has to fit in largest type
1164 uint64_t Max = (1ll << NumBits) - 1;
1165 return Val <= Max;
1166 }
1167
isValueValidForType(Type * Ty,int64_t Val)1168 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1169 unsigned NumBits = Ty->getIntegerBitWidth();
1170 if (Ty->isIntegerTy(1))
1171 return Val == 0 || Val == 1 || Val == -1;
1172 if (NumBits >= 64)
1173 return true; // always true, has to fit in largest type
1174 int64_t Min = -(1ll << (NumBits-1));
1175 int64_t Max = (1ll << (NumBits-1)) - 1;
1176 return (Val >= Min && Val <= Max);
1177 }
1178
isValueValidForType(Type * Ty,const APFloat & Val)1179 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1180 // convert modifies in place, so make a copy.
1181 APFloat Val2 = APFloat(Val);
1182 bool losesInfo;
1183 switch (Ty->getTypeID()) {
1184 default:
1185 return false; // These can't be represented as floating point!
1186
1187 // FIXME rounding mode needs to be more flexible
1188 case Type::HalfTyID: {
1189 if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1190 return true;
1191 Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1192 return !losesInfo;
1193 }
1194 case Type::FloatTyID: {
1195 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1196 return true;
1197 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1198 return !losesInfo;
1199 }
1200 case Type::DoubleTyID: {
1201 if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1202 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1203 &Val2.getSemantics() == &APFloat::IEEEdouble)
1204 return true;
1205 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1206 return !losesInfo;
1207 }
1208 case Type::X86_FP80TyID:
1209 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1210 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1211 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1212 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1213 case Type::FP128TyID:
1214 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1215 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1216 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1217 &Val2.getSemantics() == &APFloat::IEEEquad;
1218 case Type::PPC_FP128TyID:
1219 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1220 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1221 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1222 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1223 }
1224 }
1225
1226
1227 //===----------------------------------------------------------------------===//
1228 // Factory Function Implementation
1229
get(Type * Ty)1230 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1231 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1232 "Cannot create an aggregate zero of non-aggregate type!");
1233
1234 ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1235 if (Entry == 0)
1236 Entry = new ConstantAggregateZero(Ty);
1237
1238 return Entry;
1239 }
1240
1241 /// destroyConstant - Remove the constant from the constant table.
1242 ///
destroyConstant()1243 void ConstantAggregateZero::destroyConstant() {
1244 getContext().pImpl->CAZConstants.erase(getType());
1245 destroyConstantImpl();
1246 }
1247
1248 /// destroyConstant - Remove the constant from the constant table...
1249 ///
destroyConstant()1250 void ConstantArray::destroyConstant() {
1251 getType()->getContext().pImpl->ArrayConstants.remove(this);
1252 destroyConstantImpl();
1253 }
1254
1255
1256 //---- ConstantStruct::get() implementation...
1257 //
1258
1259 // destroyConstant - Remove the constant from the constant table...
1260 //
destroyConstant()1261 void ConstantStruct::destroyConstant() {
1262 getType()->getContext().pImpl->StructConstants.remove(this);
1263 destroyConstantImpl();
1264 }
1265
1266 // destroyConstant - Remove the constant from the constant table...
1267 //
destroyConstant()1268 void ConstantVector::destroyConstant() {
1269 getType()->getContext().pImpl->VectorConstants.remove(this);
1270 destroyConstantImpl();
1271 }
1272
1273 /// getSplatValue - If this is a splat vector constant, meaning that all of
1274 /// the elements have the same value, return that value. Otherwise return 0.
getSplatValue() const1275 Constant *Constant::getSplatValue() const {
1276 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1277 if (isa<ConstantAggregateZero>(this))
1278 return getNullValue(this->getType()->getVectorElementType());
1279 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1280 return CV->getSplatValue();
1281 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1282 return CV->getSplatValue();
1283 return 0;
1284 }
1285
1286 /// getSplatValue - If this is a splat constant, where all of the
1287 /// elements have the same value, return that value. Otherwise return null.
getSplatValue() const1288 Constant *ConstantVector::getSplatValue() const {
1289 // Check out first element.
1290 Constant *Elt = getOperand(0);
1291 // Then make sure all remaining elements point to the same value.
1292 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1293 if (getOperand(I) != Elt)
1294 return 0;
1295 return Elt;
1296 }
1297
1298 /// If C is a constant integer then return its value, otherwise C must be a
1299 /// vector of constant integers, all equal, and the common value is returned.
getUniqueInteger() const1300 const APInt &Constant::getUniqueInteger() const {
1301 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1302 return CI->getValue();
1303 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1304 const Constant *C = this->getAggregateElement(0U);
1305 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1306 return cast<ConstantInt>(C)->getValue();
1307 }
1308
1309
1310 //---- ConstantPointerNull::get() implementation.
1311 //
1312
get(PointerType * Ty)1313 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1314 ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1315 if (Entry == 0)
1316 Entry = new ConstantPointerNull(Ty);
1317
1318 return Entry;
1319 }
1320
1321 // destroyConstant - Remove the constant from the constant table...
1322 //
destroyConstant()1323 void ConstantPointerNull::destroyConstant() {
1324 getContext().pImpl->CPNConstants.erase(getType());
1325 // Free the constant and any dangling references to it.
1326 destroyConstantImpl();
1327 }
1328
1329
1330 //---- UndefValue::get() implementation.
1331 //
1332
get(Type * Ty)1333 UndefValue *UndefValue::get(Type *Ty) {
1334 UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1335 if (Entry == 0)
1336 Entry = new UndefValue(Ty);
1337
1338 return Entry;
1339 }
1340
1341 // destroyConstant - Remove the constant from the constant table.
1342 //
destroyConstant()1343 void UndefValue::destroyConstant() {
1344 // Free the constant and any dangling references to it.
1345 getContext().pImpl->UVConstants.erase(getType());
1346 destroyConstantImpl();
1347 }
1348
1349 //---- BlockAddress::get() implementation.
1350 //
1351
get(BasicBlock * BB)1352 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1353 assert(BB->getParent() != 0 && "Block must have a parent");
1354 return get(BB->getParent(), BB);
1355 }
1356
get(Function * F,BasicBlock * BB)1357 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1358 BlockAddress *&BA =
1359 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1360 if (BA == 0)
1361 BA = new BlockAddress(F, BB);
1362
1363 assert(BA->getFunction() == F && "Basic block moved between functions");
1364 return BA;
1365 }
1366
BlockAddress(Function * F,BasicBlock * BB)1367 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1368 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1369 &Op<0>(), 2) {
1370 setOperand(0, F);
1371 setOperand(1, BB);
1372 BB->AdjustBlockAddressRefCount(1);
1373 }
1374
1375
1376 // destroyConstant - Remove the constant from the constant table.
1377 //
destroyConstant()1378 void BlockAddress::destroyConstant() {
1379 getFunction()->getType()->getContext().pImpl
1380 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1381 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1382 destroyConstantImpl();
1383 }
1384
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)1385 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1386 // This could be replacing either the Basic Block or the Function. In either
1387 // case, we have to remove the map entry.
1388 Function *NewF = getFunction();
1389 BasicBlock *NewBB = getBasicBlock();
1390
1391 if (U == &Op<0>())
1392 NewF = cast<Function>(To->stripPointerCasts());
1393 else
1394 NewBB = cast<BasicBlock>(To);
1395
1396 // See if the 'new' entry already exists, if not, just update this in place
1397 // and return early.
1398 BlockAddress *&NewBA =
1399 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1400 if (NewBA == 0) {
1401 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1402
1403 // Remove the old entry, this can't cause the map to rehash (just a
1404 // tombstone will get added).
1405 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1406 getBasicBlock()));
1407 NewBA = this;
1408 setOperand(0, NewF);
1409 setOperand(1, NewBB);
1410 getBasicBlock()->AdjustBlockAddressRefCount(1);
1411 return;
1412 }
1413
1414 // Otherwise, I do need to replace this with an existing value.
1415 assert(NewBA != this && "I didn't contain From!");
1416
1417 // Everyone using this now uses the replacement.
1418 replaceAllUsesWith(NewBA);
1419
1420 destroyConstant();
1421 }
1422
1423 //---- ConstantExpr::get() implementations.
1424 //
1425
1426 /// This is a utility function to handle folding of casts and lookup of the
1427 /// cast in the ExprConstants map. It is used by the various get* methods below.
getFoldedCast(Instruction::CastOps opc,Constant * C,Type * Ty)1428 static inline Constant *getFoldedCast(
1429 Instruction::CastOps opc, Constant *C, Type *Ty) {
1430 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1431 // Fold a few common cases
1432 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1433 return FC;
1434
1435 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1436
1437 // Look up the constant in the table first to ensure uniqueness.
1438 ExprMapKeyType Key(opc, C);
1439
1440 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1441 }
1442
getCast(unsigned oc,Constant * C,Type * Ty)1443 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1444 Instruction::CastOps opc = Instruction::CastOps(oc);
1445 assert(Instruction::isCast(opc) && "opcode out of range");
1446 assert(C && Ty && "Null arguments to getCast");
1447 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1448
1449 switch (opc) {
1450 default:
1451 llvm_unreachable("Invalid cast opcode");
1452 case Instruction::Trunc: return getTrunc(C, Ty);
1453 case Instruction::ZExt: return getZExt(C, Ty);
1454 case Instruction::SExt: return getSExt(C, Ty);
1455 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1456 case Instruction::FPExt: return getFPExtend(C, Ty);
1457 case Instruction::UIToFP: return getUIToFP(C, Ty);
1458 case Instruction::SIToFP: return getSIToFP(C, Ty);
1459 case Instruction::FPToUI: return getFPToUI(C, Ty);
1460 case Instruction::FPToSI: return getFPToSI(C, Ty);
1461 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1462 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1463 case Instruction::BitCast: return getBitCast(C, Ty);
1464 }
1465 }
1466
getZExtOrBitCast(Constant * C,Type * Ty)1467 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1468 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1469 return getBitCast(C, Ty);
1470 return getZExt(C, Ty);
1471 }
1472
getSExtOrBitCast(Constant * C,Type * Ty)1473 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1474 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1475 return getBitCast(C, Ty);
1476 return getSExt(C, Ty);
1477 }
1478
getTruncOrBitCast(Constant * C,Type * Ty)1479 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1480 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1481 return getBitCast(C, Ty);
1482 return getTrunc(C, Ty);
1483 }
1484
getPointerCast(Constant * S,Type * Ty)1485 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1486 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1487 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1488 "Invalid cast");
1489
1490 if (Ty->isIntOrIntVectorTy())
1491 return getPtrToInt(S, Ty);
1492 return getBitCast(S, Ty);
1493 }
1494
getIntegerCast(Constant * C,Type * Ty,bool isSigned)1495 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1496 bool isSigned) {
1497 assert(C->getType()->isIntOrIntVectorTy() &&
1498 Ty->isIntOrIntVectorTy() && "Invalid cast");
1499 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1500 unsigned DstBits = Ty->getScalarSizeInBits();
1501 Instruction::CastOps opcode =
1502 (SrcBits == DstBits ? Instruction::BitCast :
1503 (SrcBits > DstBits ? Instruction::Trunc :
1504 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1505 return getCast(opcode, C, Ty);
1506 }
1507
getFPCast(Constant * C,Type * Ty)1508 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1509 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1510 "Invalid cast");
1511 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1512 unsigned DstBits = Ty->getScalarSizeInBits();
1513 if (SrcBits == DstBits)
1514 return C; // Avoid a useless cast
1515 Instruction::CastOps opcode =
1516 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1517 return getCast(opcode, C, Ty);
1518 }
1519
getTrunc(Constant * C,Type * Ty)1520 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1521 #ifndef NDEBUG
1522 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1523 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1524 #endif
1525 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1526 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1527 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1528 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1529 "SrcTy must be larger than DestTy for Trunc!");
1530
1531 return getFoldedCast(Instruction::Trunc, C, Ty);
1532 }
1533
getSExt(Constant * C,Type * Ty)1534 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1535 #ifndef NDEBUG
1536 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1537 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1538 #endif
1539 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1540 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1541 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1542 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1543 "SrcTy must be smaller than DestTy for SExt!");
1544
1545 return getFoldedCast(Instruction::SExt, C, Ty);
1546 }
1547
getZExt(Constant * C,Type * Ty)1548 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1549 #ifndef NDEBUG
1550 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1551 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1552 #endif
1553 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1554 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1555 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1556 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1557 "SrcTy must be smaller than DestTy for ZExt!");
1558
1559 return getFoldedCast(Instruction::ZExt, C, Ty);
1560 }
1561
getFPTrunc(Constant * C,Type * Ty)1562 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1563 #ifndef NDEBUG
1564 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1565 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1566 #endif
1567 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1568 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1569 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1570 "This is an illegal floating point truncation!");
1571 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1572 }
1573
getFPExtend(Constant * C,Type * Ty)1574 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1575 #ifndef NDEBUG
1576 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1577 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1578 #endif
1579 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1580 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1581 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1582 "This is an illegal floating point extension!");
1583 return getFoldedCast(Instruction::FPExt, C, Ty);
1584 }
1585
getUIToFP(Constant * C,Type * Ty)1586 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1587 #ifndef NDEBUG
1588 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1589 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1590 #endif
1591 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1592 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1593 "This is an illegal uint to floating point cast!");
1594 return getFoldedCast(Instruction::UIToFP, C, Ty);
1595 }
1596
getSIToFP(Constant * C,Type * Ty)1597 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1598 #ifndef NDEBUG
1599 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1600 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1601 #endif
1602 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1603 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1604 "This is an illegal sint to floating point cast!");
1605 return getFoldedCast(Instruction::SIToFP, C, Ty);
1606 }
1607
getFPToUI(Constant * C,Type * Ty)1608 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1609 #ifndef NDEBUG
1610 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1611 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1612 #endif
1613 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1614 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1615 "This is an illegal floating point to uint cast!");
1616 return getFoldedCast(Instruction::FPToUI, C, Ty);
1617 }
1618
getFPToSI(Constant * C,Type * Ty)1619 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1620 #ifndef NDEBUG
1621 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1622 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1623 #endif
1624 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1625 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1626 "This is an illegal floating point to sint cast!");
1627 return getFoldedCast(Instruction::FPToSI, C, Ty);
1628 }
1629
getPtrToInt(Constant * C,Type * DstTy)1630 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1631 assert(C->getType()->getScalarType()->isPointerTy() &&
1632 "PtrToInt source must be pointer or pointer vector");
1633 assert(DstTy->getScalarType()->isIntegerTy() &&
1634 "PtrToInt destination must be integer or integer vector");
1635 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1636 if (isa<VectorType>(C->getType()))
1637 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1638 "Invalid cast between a different number of vector elements");
1639 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1640 }
1641
getIntToPtr(Constant * C,Type * DstTy)1642 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1643 assert(C->getType()->getScalarType()->isIntegerTy() &&
1644 "IntToPtr source must be integer or integer vector");
1645 assert(DstTy->getScalarType()->isPointerTy() &&
1646 "IntToPtr destination must be a pointer or pointer vector");
1647 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1648 if (isa<VectorType>(C->getType()))
1649 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1650 "Invalid cast between a different number of vector elements");
1651 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1652 }
1653
getBitCast(Constant * C,Type * DstTy)1654 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1655 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1656 "Invalid constantexpr bitcast!");
1657
1658 // It is common to ask for a bitcast of a value to its own type, handle this
1659 // speedily.
1660 if (C->getType() == DstTy) return C;
1661
1662 return getFoldedCast(Instruction::BitCast, C, DstTy);
1663 }
1664
get(unsigned Opcode,Constant * C1,Constant * C2,unsigned Flags)1665 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1666 unsigned Flags) {
1667 // Check the operands for consistency first.
1668 assert(Opcode >= Instruction::BinaryOpsBegin &&
1669 Opcode < Instruction::BinaryOpsEnd &&
1670 "Invalid opcode in binary constant expression");
1671 assert(C1->getType() == C2->getType() &&
1672 "Operand types in binary constant expression should match");
1673
1674 #ifndef NDEBUG
1675 switch (Opcode) {
1676 case Instruction::Add:
1677 case Instruction::Sub:
1678 case Instruction::Mul:
1679 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1680 assert(C1->getType()->isIntOrIntVectorTy() &&
1681 "Tried to create an integer operation on a non-integer type!");
1682 break;
1683 case Instruction::FAdd:
1684 case Instruction::FSub:
1685 case Instruction::FMul:
1686 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1687 assert(C1->getType()->isFPOrFPVectorTy() &&
1688 "Tried to create a floating-point operation on a "
1689 "non-floating-point type!");
1690 break;
1691 case Instruction::UDiv:
1692 case Instruction::SDiv:
1693 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1694 assert(C1->getType()->isIntOrIntVectorTy() &&
1695 "Tried to create an arithmetic operation on a non-arithmetic type!");
1696 break;
1697 case Instruction::FDiv:
1698 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1699 assert(C1->getType()->isFPOrFPVectorTy() &&
1700 "Tried to create an arithmetic operation on a non-arithmetic type!");
1701 break;
1702 case Instruction::URem:
1703 case Instruction::SRem:
1704 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1705 assert(C1->getType()->isIntOrIntVectorTy() &&
1706 "Tried to create an arithmetic operation on a non-arithmetic type!");
1707 break;
1708 case Instruction::FRem:
1709 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1710 assert(C1->getType()->isFPOrFPVectorTy() &&
1711 "Tried to create an arithmetic operation on a non-arithmetic type!");
1712 break;
1713 case Instruction::And:
1714 case Instruction::Or:
1715 case Instruction::Xor:
1716 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1717 assert(C1->getType()->isIntOrIntVectorTy() &&
1718 "Tried to create a logical operation on a non-integral type!");
1719 break;
1720 case Instruction::Shl:
1721 case Instruction::LShr:
1722 case Instruction::AShr:
1723 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1724 assert(C1->getType()->isIntOrIntVectorTy() &&
1725 "Tried to create a shift operation on a non-integer type!");
1726 break;
1727 default:
1728 break;
1729 }
1730 #endif
1731
1732 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1733 return FC; // Fold a few common cases.
1734
1735 Constant *ArgVec[] = { C1, C2 };
1736 ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1737
1738 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1739 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1740 }
1741
getSizeOf(Type * Ty)1742 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1743 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1744 // Note that a non-inbounds gep is used, as null isn't within any object.
1745 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1746 Constant *GEP = getGetElementPtr(
1747 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1748 return getPtrToInt(GEP,
1749 Type::getInt64Ty(Ty->getContext()));
1750 }
1751
getAlignOf(Type * Ty)1752 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1753 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1754 // Note that a non-inbounds gep is used, as null isn't within any object.
1755 Type *AligningTy =
1756 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1757 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1758 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1759 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1760 Constant *Indices[2] = { Zero, One };
1761 Constant *GEP = getGetElementPtr(NullPtr, Indices);
1762 return getPtrToInt(GEP,
1763 Type::getInt64Ty(Ty->getContext()));
1764 }
1765
getOffsetOf(StructType * STy,unsigned FieldNo)1766 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1767 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1768 FieldNo));
1769 }
1770
getOffsetOf(Type * Ty,Constant * FieldNo)1771 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1772 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1773 // Note that a non-inbounds gep is used, as null isn't within any object.
1774 Constant *GEPIdx[] = {
1775 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1776 FieldNo
1777 };
1778 Constant *GEP = getGetElementPtr(
1779 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1780 return getPtrToInt(GEP,
1781 Type::getInt64Ty(Ty->getContext()));
1782 }
1783
getCompare(unsigned short Predicate,Constant * C1,Constant * C2)1784 Constant *ConstantExpr::getCompare(unsigned short Predicate,
1785 Constant *C1, Constant *C2) {
1786 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1787
1788 switch (Predicate) {
1789 default: llvm_unreachable("Invalid CmpInst predicate");
1790 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1791 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1792 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1793 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1794 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1795 case CmpInst::FCMP_TRUE:
1796 return getFCmp(Predicate, C1, C2);
1797
1798 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1799 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1800 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1801 case CmpInst::ICMP_SLE:
1802 return getICmp(Predicate, C1, C2);
1803 }
1804 }
1805
getSelect(Constant * C,Constant * V1,Constant * V2)1806 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1807 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1808
1809 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1810 return SC; // Fold common cases
1811
1812 Constant *ArgVec[] = { C, V1, V2 };
1813 ExprMapKeyType Key(Instruction::Select, ArgVec);
1814
1815 LLVMContextImpl *pImpl = C->getContext().pImpl;
1816 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1817 }
1818
getGetElementPtr(Constant * C,ArrayRef<Value * > Idxs,bool InBounds)1819 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1820 bool InBounds) {
1821 assert(C->getType()->isPtrOrPtrVectorTy() &&
1822 "Non-pointer type for constant GetElementPtr expression");
1823
1824 if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1825 return FC; // Fold a few common cases.
1826
1827 // Get the result type of the getelementptr!
1828 Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1829 assert(Ty && "GEP indices invalid!");
1830 unsigned AS = C->getType()->getPointerAddressSpace();
1831 Type *ReqTy = Ty->getPointerTo(AS);
1832 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1833 ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1834
1835 // Look up the constant in the table first to ensure uniqueness
1836 std::vector<Constant*> ArgVec;
1837 ArgVec.reserve(1 + Idxs.size());
1838 ArgVec.push_back(C);
1839 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1840 assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1841 "getelementptr index type missmatch");
1842 assert((!Idxs[i]->getType()->isVectorTy() ||
1843 ReqTy->getVectorNumElements() ==
1844 Idxs[i]->getType()->getVectorNumElements()) &&
1845 "getelementptr index type missmatch");
1846 ArgVec.push_back(cast<Constant>(Idxs[i]));
1847 }
1848 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1849 InBounds ? GEPOperator::IsInBounds : 0);
1850
1851 LLVMContextImpl *pImpl = C->getContext().pImpl;
1852 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1853 }
1854
1855 Constant *
getICmp(unsigned short pred,Constant * LHS,Constant * RHS)1856 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1857 assert(LHS->getType() == RHS->getType());
1858 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1859 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1860
1861 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1862 return FC; // Fold a few common cases...
1863
1864 // Look up the constant in the table first to ensure uniqueness
1865 Constant *ArgVec[] = { LHS, RHS };
1866 // Get the key type with both the opcode and predicate
1867 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1868
1869 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1870 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1871 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1872
1873 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1874 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1875 }
1876
1877 Constant *
getFCmp(unsigned short pred,Constant * LHS,Constant * RHS)1878 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1879 assert(LHS->getType() == RHS->getType());
1880 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1881
1882 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1883 return FC; // Fold a few common cases...
1884
1885 // Look up the constant in the table first to ensure uniqueness
1886 Constant *ArgVec[] = { LHS, RHS };
1887 // Get the key type with both the opcode and predicate
1888 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1889
1890 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1891 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1892 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1893
1894 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1895 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1896 }
1897
getExtractElement(Constant * Val,Constant * Idx)1898 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1899 assert(Val->getType()->isVectorTy() &&
1900 "Tried to create extractelement operation on non-vector type!");
1901 assert(Idx->getType()->isIntegerTy(32) &&
1902 "Extractelement index must be i32 type!");
1903
1904 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1905 return FC; // Fold a few common cases.
1906
1907 // Look up the constant in the table first to ensure uniqueness
1908 Constant *ArgVec[] = { Val, Idx };
1909 const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1910
1911 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1912 Type *ReqTy = Val->getType()->getVectorElementType();
1913 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1914 }
1915
getInsertElement(Constant * Val,Constant * Elt,Constant * Idx)1916 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1917 Constant *Idx) {
1918 assert(Val->getType()->isVectorTy() &&
1919 "Tried to create insertelement operation on non-vector type!");
1920 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1921 "Insertelement types must match!");
1922 assert(Idx->getType()->isIntegerTy(32) &&
1923 "Insertelement index must be i32 type!");
1924
1925 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1926 return FC; // Fold a few common cases.
1927 // Look up the constant in the table first to ensure uniqueness
1928 Constant *ArgVec[] = { Val, Elt, Idx };
1929 const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
1930
1931 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1932 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1933 }
1934
getShuffleVector(Constant * V1,Constant * V2,Constant * Mask)1935 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1936 Constant *Mask) {
1937 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1938 "Invalid shuffle vector constant expr operands!");
1939
1940 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1941 return FC; // Fold a few common cases.
1942
1943 unsigned NElts = Mask->getType()->getVectorNumElements();
1944 Type *EltTy = V1->getType()->getVectorElementType();
1945 Type *ShufTy = VectorType::get(EltTy, NElts);
1946
1947 // Look up the constant in the table first to ensure uniqueness
1948 Constant *ArgVec[] = { V1, V2, Mask };
1949 const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
1950
1951 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1952 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1953 }
1954
getInsertValue(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs)1955 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1956 ArrayRef<unsigned> Idxs) {
1957 assert(Agg->getType()->isFirstClassType() &&
1958 "Non-first-class type for constant insertvalue expression");
1959
1960 assert(ExtractValueInst::getIndexedType(Agg->getType(),
1961 Idxs) == Val->getType() &&
1962 "insertvalue indices invalid!");
1963 Type *ReqTy = Val->getType();
1964
1965 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
1966 return FC;
1967
1968 Constant *ArgVec[] = { Agg, Val };
1969 const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
1970
1971 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
1972 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1973 }
1974
getExtractValue(Constant * Agg,ArrayRef<unsigned> Idxs)1975 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1976 ArrayRef<unsigned> Idxs) {
1977 assert(Agg->getType()->isFirstClassType() &&
1978 "Tried to create extractelement operation on non-first-class type!");
1979
1980 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1981 (void)ReqTy;
1982 assert(ReqTy && "extractvalue indices invalid!");
1983
1984 assert(Agg->getType()->isFirstClassType() &&
1985 "Non-first-class type for constant extractvalue expression");
1986 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
1987 return FC;
1988
1989 Constant *ArgVec[] = { Agg };
1990 const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
1991
1992 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
1993 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1994 }
1995
getNeg(Constant * C,bool HasNUW,bool HasNSW)1996 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1997 assert(C->getType()->isIntOrIntVectorTy() &&
1998 "Cannot NEG a nonintegral value!");
1999 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2000 C, HasNUW, HasNSW);
2001 }
2002
getFNeg(Constant * C)2003 Constant *ConstantExpr::getFNeg(Constant *C) {
2004 assert(C->getType()->isFPOrFPVectorTy() &&
2005 "Cannot FNEG a non-floating-point value!");
2006 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2007 }
2008
getNot(Constant * C)2009 Constant *ConstantExpr::getNot(Constant *C) {
2010 assert(C->getType()->isIntOrIntVectorTy() &&
2011 "Cannot NOT a nonintegral value!");
2012 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2013 }
2014
getAdd(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2015 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2016 bool HasNUW, bool HasNSW) {
2017 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2018 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2019 return get(Instruction::Add, C1, C2, Flags);
2020 }
2021
getFAdd(Constant * C1,Constant * C2)2022 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2023 return get(Instruction::FAdd, C1, C2);
2024 }
2025
getSub(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2026 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2027 bool HasNUW, bool HasNSW) {
2028 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2029 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2030 return get(Instruction::Sub, C1, C2, Flags);
2031 }
2032
getFSub(Constant * C1,Constant * C2)2033 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2034 return get(Instruction::FSub, C1, C2);
2035 }
2036
getMul(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2037 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2038 bool HasNUW, bool HasNSW) {
2039 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2040 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2041 return get(Instruction::Mul, C1, C2, Flags);
2042 }
2043
getFMul(Constant * C1,Constant * C2)2044 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2045 return get(Instruction::FMul, C1, C2);
2046 }
2047
getUDiv(Constant * C1,Constant * C2,bool isExact)2048 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2049 return get(Instruction::UDiv, C1, C2,
2050 isExact ? PossiblyExactOperator::IsExact : 0);
2051 }
2052
getSDiv(Constant * C1,Constant * C2,bool isExact)2053 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2054 return get(Instruction::SDiv, C1, C2,
2055 isExact ? PossiblyExactOperator::IsExact : 0);
2056 }
2057
getFDiv(Constant * C1,Constant * C2)2058 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2059 return get(Instruction::FDiv, C1, C2);
2060 }
2061
getURem(Constant * C1,Constant * C2)2062 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2063 return get(Instruction::URem, C1, C2);
2064 }
2065
getSRem(Constant * C1,Constant * C2)2066 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2067 return get(Instruction::SRem, C1, C2);
2068 }
2069
getFRem(Constant * C1,Constant * C2)2070 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2071 return get(Instruction::FRem, C1, C2);
2072 }
2073
getAnd(Constant * C1,Constant * C2)2074 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2075 return get(Instruction::And, C1, C2);
2076 }
2077
getOr(Constant * C1,Constant * C2)2078 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2079 return get(Instruction::Or, C1, C2);
2080 }
2081
getXor(Constant * C1,Constant * C2)2082 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2083 return get(Instruction::Xor, C1, C2);
2084 }
2085
getShl(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2086 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2087 bool HasNUW, bool HasNSW) {
2088 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2089 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2090 return get(Instruction::Shl, C1, C2, Flags);
2091 }
2092
getLShr(Constant * C1,Constant * C2,bool isExact)2093 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2094 return get(Instruction::LShr, C1, C2,
2095 isExact ? PossiblyExactOperator::IsExact : 0);
2096 }
2097
getAShr(Constant * C1,Constant * C2,bool isExact)2098 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2099 return get(Instruction::AShr, C1, C2,
2100 isExact ? PossiblyExactOperator::IsExact : 0);
2101 }
2102
2103 /// getBinOpIdentity - Return the identity for the given binary operation,
2104 /// i.e. a constant C such that X op C = X and C op X = X for every X. It
2105 /// returns null if the operator doesn't have an identity.
getBinOpIdentity(unsigned Opcode,Type * Ty)2106 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2107 switch (Opcode) {
2108 default:
2109 // Doesn't have an identity.
2110 return 0;
2111
2112 case Instruction::Add:
2113 case Instruction::Or:
2114 case Instruction::Xor:
2115 return Constant::getNullValue(Ty);
2116
2117 case Instruction::Mul:
2118 return ConstantInt::get(Ty, 1);
2119
2120 case Instruction::And:
2121 return Constant::getAllOnesValue(Ty);
2122 }
2123 }
2124
2125 /// getBinOpAbsorber - Return the absorbing element for the given binary
2126 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2127 /// every X. For example, this returns zero for integer multiplication.
2128 /// It returns null if the operator doesn't have an absorbing element.
getBinOpAbsorber(unsigned Opcode,Type * Ty)2129 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2130 switch (Opcode) {
2131 default:
2132 // Doesn't have an absorber.
2133 return 0;
2134
2135 case Instruction::Or:
2136 return Constant::getAllOnesValue(Ty);
2137
2138 case Instruction::And:
2139 case Instruction::Mul:
2140 return Constant::getNullValue(Ty);
2141 }
2142 }
2143
2144 // destroyConstant - Remove the constant from the constant table...
2145 //
destroyConstant()2146 void ConstantExpr::destroyConstant() {
2147 getType()->getContext().pImpl->ExprConstants.remove(this);
2148 destroyConstantImpl();
2149 }
2150
getOpcodeName() const2151 const char *ConstantExpr::getOpcodeName() const {
2152 return Instruction::getOpcodeName(getOpcode());
2153 }
2154
2155
2156
2157 GetElementPtrConstantExpr::
GetElementPtrConstantExpr(Constant * C,ArrayRef<Constant * > IdxList,Type * DestTy)2158 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2159 Type *DestTy)
2160 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2161 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2162 - (IdxList.size()+1), IdxList.size()+1) {
2163 OperandList[0] = C;
2164 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2165 OperandList[i+1] = IdxList[i];
2166 }
2167
2168 //===----------------------------------------------------------------------===//
2169 // ConstantData* implementations
2170
anchor()2171 void ConstantDataArray::anchor() {}
anchor()2172 void ConstantDataVector::anchor() {}
2173
2174 /// getElementType - Return the element type of the array/vector.
getElementType() const2175 Type *ConstantDataSequential::getElementType() const {
2176 return getType()->getElementType();
2177 }
2178
getRawDataValues() const2179 StringRef ConstantDataSequential::getRawDataValues() const {
2180 return StringRef(DataElements, getNumElements()*getElementByteSize());
2181 }
2182
2183 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2184 /// formed with a vector or array of the specified element type.
2185 /// ConstantDataArray only works with normal float and int types that are
2186 /// stored densely in memory, not with things like i42 or x86_f80.
isElementTypeCompatible(const Type * Ty)2187 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2188 if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2189 if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2190 switch (IT->getBitWidth()) {
2191 case 8:
2192 case 16:
2193 case 32:
2194 case 64:
2195 return true;
2196 default: break;
2197 }
2198 }
2199 return false;
2200 }
2201
2202 /// getNumElements - Return the number of elements in the array or vector.
getNumElements() const2203 unsigned ConstantDataSequential::getNumElements() const {
2204 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2205 return AT->getNumElements();
2206 return getType()->getVectorNumElements();
2207 }
2208
2209
2210 /// getElementByteSize - Return the size in bytes of the elements in the data.
getElementByteSize() const2211 uint64_t ConstantDataSequential::getElementByteSize() const {
2212 return getElementType()->getPrimitiveSizeInBits()/8;
2213 }
2214
2215 /// getElementPointer - Return the start of the specified element.
getElementPointer(unsigned Elt) const2216 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2217 assert(Elt < getNumElements() && "Invalid Elt");
2218 return DataElements+Elt*getElementByteSize();
2219 }
2220
2221
2222 /// isAllZeros - return true if the array is empty or all zeros.
isAllZeros(StringRef Arr)2223 static bool isAllZeros(StringRef Arr) {
2224 for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2225 if (*I != 0)
2226 return false;
2227 return true;
2228 }
2229
2230 /// getImpl - This is the underlying implementation of all of the
2231 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2232 /// the correct element type. We take the bytes in as a StringRef because
2233 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
getImpl(StringRef Elements,Type * Ty)2234 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2235 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2236 // If the elements are all zero or there are no elements, return a CAZ, which
2237 // is more dense and canonical.
2238 if (isAllZeros(Elements))
2239 return ConstantAggregateZero::get(Ty);
2240
2241 // Do a lookup to see if we have already formed one of these.
2242 StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2243 Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2244
2245 // The bucket can point to a linked list of different CDS's that have the same
2246 // body but different types. For example, 0,0,0,1 could be a 4 element array
2247 // of i8, or a 1-element array of i32. They'll both end up in the same
2248 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2249 ConstantDataSequential **Entry = &Slot.getValue();
2250 for (ConstantDataSequential *Node = *Entry; Node != 0;
2251 Entry = &Node->Next, Node = *Entry)
2252 if (Node->getType() == Ty)
2253 return Node;
2254
2255 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2256 // and return it.
2257 if (isa<ArrayType>(Ty))
2258 return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2259
2260 assert(isa<VectorType>(Ty));
2261 return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2262 }
2263
destroyConstant()2264 void ConstantDataSequential::destroyConstant() {
2265 // Remove the constant from the StringMap.
2266 StringMap<ConstantDataSequential*> &CDSConstants =
2267 getType()->getContext().pImpl->CDSConstants;
2268
2269 StringMap<ConstantDataSequential*>::iterator Slot =
2270 CDSConstants.find(getRawDataValues());
2271
2272 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2273
2274 ConstantDataSequential **Entry = &Slot->getValue();
2275
2276 // Remove the entry from the hash table.
2277 if ((*Entry)->Next == 0) {
2278 // If there is only one value in the bucket (common case) it must be this
2279 // entry, and removing the entry should remove the bucket completely.
2280 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2281 getContext().pImpl->CDSConstants.erase(Slot);
2282 } else {
2283 // Otherwise, there are multiple entries linked off the bucket, unlink the
2284 // node we care about but keep the bucket around.
2285 for (ConstantDataSequential *Node = *Entry; ;
2286 Entry = &Node->Next, Node = *Entry) {
2287 assert(Node && "Didn't find entry in its uniquing hash table!");
2288 // If we found our entry, unlink it from the list and we're done.
2289 if (Node == this) {
2290 *Entry = Node->Next;
2291 break;
2292 }
2293 }
2294 }
2295
2296 // If we were part of a list, make sure that we don't delete the list that is
2297 // still owned by the uniquing map.
2298 Next = 0;
2299
2300 // Finally, actually delete it.
2301 destroyConstantImpl();
2302 }
2303
2304 /// get() constructors - Return a constant with array type with an element
2305 /// count and element type matching the ArrayRef passed in. Note that this
2306 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2307 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2308 Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2309 const char *Data = reinterpret_cast<const char *>(Elts.data());
2310 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2311 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2312 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2313 Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2314 const char *Data = reinterpret_cast<const char *>(Elts.data());
2315 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2316 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2317 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2318 Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2319 const char *Data = reinterpret_cast<const char *>(Elts.data());
2320 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2321 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2322 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2323 Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2324 const char *Data = reinterpret_cast<const char *>(Elts.data());
2325 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2326 }
get(LLVMContext & Context,ArrayRef<float> Elts)2327 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2328 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2329 const char *Data = reinterpret_cast<const char *>(Elts.data());
2330 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2331 }
get(LLVMContext & Context,ArrayRef<double> Elts)2332 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2333 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2334 const char *Data = reinterpret_cast<const char *>(Elts.data());
2335 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2336 }
2337
2338 /// getString - This method constructs a CDS and initializes it with a text
2339 /// string. The default behavior (AddNull==true) causes a null terminator to
2340 /// be placed at the end of the array (increasing the length of the string by
2341 /// one more than the StringRef would normally indicate. Pass AddNull=false
2342 /// to disable this behavior.
getString(LLVMContext & Context,StringRef Str,bool AddNull)2343 Constant *ConstantDataArray::getString(LLVMContext &Context,
2344 StringRef Str, bool AddNull) {
2345 if (!AddNull) {
2346 const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2347 return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2348 Str.size()));
2349 }
2350
2351 SmallVector<uint8_t, 64> ElementVals;
2352 ElementVals.append(Str.begin(), Str.end());
2353 ElementVals.push_back(0);
2354 return get(Context, ElementVals);
2355 }
2356
2357 /// get() constructors - Return a constant with vector type with an element
2358 /// count and element type matching the ArrayRef passed in. Note that this
2359 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2360 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2361 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2362 const char *Data = reinterpret_cast<const char *>(Elts.data());
2363 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2364 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2365 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2366 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2367 const char *Data = reinterpret_cast<const char *>(Elts.data());
2368 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2369 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2370 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2371 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2372 const char *Data = reinterpret_cast<const char *>(Elts.data());
2373 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2374 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2375 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2376 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2377 const char *Data = reinterpret_cast<const char *>(Elts.data());
2378 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2379 }
get(LLVMContext & Context,ArrayRef<float> Elts)2380 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2381 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2382 const char *Data = reinterpret_cast<const char *>(Elts.data());
2383 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2384 }
get(LLVMContext & Context,ArrayRef<double> Elts)2385 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2386 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2387 const char *Data = reinterpret_cast<const char *>(Elts.data());
2388 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2389 }
2390
getSplat(unsigned NumElts,Constant * V)2391 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2392 assert(isElementTypeCompatible(V->getType()) &&
2393 "Element type not compatible with ConstantData");
2394 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2395 if (CI->getType()->isIntegerTy(8)) {
2396 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2397 return get(V->getContext(), Elts);
2398 }
2399 if (CI->getType()->isIntegerTy(16)) {
2400 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2401 return get(V->getContext(), Elts);
2402 }
2403 if (CI->getType()->isIntegerTy(32)) {
2404 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2405 return get(V->getContext(), Elts);
2406 }
2407 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2408 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2409 return get(V->getContext(), Elts);
2410 }
2411
2412 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2413 if (CFP->getType()->isFloatTy()) {
2414 SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2415 return get(V->getContext(), Elts);
2416 }
2417 if (CFP->getType()->isDoubleTy()) {
2418 SmallVector<double, 16> Elts(NumElts,
2419 CFP->getValueAPF().convertToDouble());
2420 return get(V->getContext(), Elts);
2421 }
2422 }
2423 return ConstantVector::getSplat(NumElts, V);
2424 }
2425
2426
2427 /// getElementAsInteger - If this is a sequential container of integers (of
2428 /// any size), return the specified element in the low bits of a uint64_t.
getElementAsInteger(unsigned Elt) const2429 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2430 assert(isa<IntegerType>(getElementType()) &&
2431 "Accessor can only be used when element is an integer");
2432 const char *EltPtr = getElementPointer(Elt);
2433
2434 // The data is stored in host byte order, make sure to cast back to the right
2435 // type to load with the right endianness.
2436 switch (getElementType()->getIntegerBitWidth()) {
2437 default: llvm_unreachable("Invalid bitwidth for CDS");
2438 case 8:
2439 return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2440 case 16:
2441 return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2442 case 32:
2443 return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2444 case 64:
2445 return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2446 }
2447 }
2448
2449 /// getElementAsAPFloat - If this is a sequential container of floating point
2450 /// type, return the specified element as an APFloat.
getElementAsAPFloat(unsigned Elt) const2451 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2452 const char *EltPtr = getElementPointer(Elt);
2453
2454 switch (getElementType()->getTypeID()) {
2455 default:
2456 llvm_unreachable("Accessor can only be used when element is float/double!");
2457 case Type::FloatTyID: {
2458 const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2459 return APFloat(*const_cast<float *>(FloatPrt));
2460 }
2461 case Type::DoubleTyID: {
2462 const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2463 return APFloat(*const_cast<double *>(DoublePtr));
2464 }
2465 }
2466 }
2467
2468 /// getElementAsFloat - If this is an sequential container of floats, return
2469 /// the specified element as a float.
getElementAsFloat(unsigned Elt) const2470 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2471 assert(getElementType()->isFloatTy() &&
2472 "Accessor can only be used when element is a 'float'");
2473 const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2474 return *const_cast<float *>(EltPtr);
2475 }
2476
2477 /// getElementAsDouble - If this is an sequential container of doubles, return
2478 /// the specified element as a float.
getElementAsDouble(unsigned Elt) const2479 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2480 assert(getElementType()->isDoubleTy() &&
2481 "Accessor can only be used when element is a 'float'");
2482 const double *EltPtr =
2483 reinterpret_cast<const double *>(getElementPointer(Elt));
2484 return *const_cast<double *>(EltPtr);
2485 }
2486
2487 /// getElementAsConstant - Return a Constant for a specified index's element.
2488 /// Note that this has to compute a new constant to return, so it isn't as
2489 /// efficient as getElementAsInteger/Float/Double.
getElementAsConstant(unsigned Elt) const2490 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2491 if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2492 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2493
2494 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2495 }
2496
2497 /// isString - This method returns true if this is an array of i8.
isString() const2498 bool ConstantDataSequential::isString() const {
2499 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2500 }
2501
2502 /// isCString - This method returns true if the array "isString", ends with a
2503 /// nul byte, and does not contains any other nul bytes.
isCString() const2504 bool ConstantDataSequential::isCString() const {
2505 if (!isString())
2506 return false;
2507
2508 StringRef Str = getAsString();
2509
2510 // The last value must be nul.
2511 if (Str.back() != 0) return false;
2512
2513 // Other elements must be non-nul.
2514 return Str.drop_back().find(0) == StringRef::npos;
2515 }
2516
2517 /// getSplatValue - If this is a splat constant, meaning that all of the
2518 /// elements have the same value, return that value. Otherwise return NULL.
getSplatValue() const2519 Constant *ConstantDataVector::getSplatValue() const {
2520 const char *Base = getRawDataValues().data();
2521
2522 // Compare elements 1+ to the 0'th element.
2523 unsigned EltSize = getElementByteSize();
2524 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2525 if (memcmp(Base, Base+i*EltSize, EltSize))
2526 return 0;
2527
2528 // If they're all the same, return the 0th one as a representative.
2529 return getElementAsConstant(0);
2530 }
2531
2532 //===----------------------------------------------------------------------===//
2533 // replaceUsesOfWithOnConstant implementations
2534
2535 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2536 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2537 /// etc.
2538 ///
2539 /// Note that we intentionally replace all uses of From with To here. Consider
2540 /// a large array that uses 'From' 1000 times. By handling this case all here,
2541 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2542 /// single invocation handles all 1000 uses. Handling them one at a time would
2543 /// work, but would be really slow because it would have to unique each updated
2544 /// array instance.
2545 ///
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2546 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2547 Use *U) {
2548 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2549 Constant *ToC = cast<Constant>(To);
2550
2551 LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2552
2553 SmallVector<Constant*, 8> Values;
2554 LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2555 Lookup.first = cast<ArrayType>(getType());
2556 Values.reserve(getNumOperands()); // Build replacement array.
2557
2558 // Fill values with the modified operands of the constant array. Also,
2559 // compute whether this turns into an all-zeros array.
2560 unsigned NumUpdated = 0;
2561
2562 // Keep track of whether all the values in the array are "ToC".
2563 bool AllSame = true;
2564 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2565 Constant *Val = cast<Constant>(O->get());
2566 if (Val == From) {
2567 Val = ToC;
2568 ++NumUpdated;
2569 }
2570 Values.push_back(Val);
2571 AllSame &= Val == ToC;
2572 }
2573
2574 Constant *Replacement = 0;
2575 if (AllSame && ToC->isNullValue()) {
2576 Replacement = ConstantAggregateZero::get(getType());
2577 } else if (AllSame && isa<UndefValue>(ToC)) {
2578 Replacement = UndefValue::get(getType());
2579 } else {
2580 // Check to see if we have this array type already.
2581 Lookup.second = makeArrayRef(Values);
2582 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2583 pImpl->ArrayConstants.find(Lookup);
2584
2585 if (I != pImpl->ArrayConstants.map_end()) {
2586 Replacement = I->first;
2587 } else {
2588 // Okay, the new shape doesn't exist in the system yet. Instead of
2589 // creating a new constant array, inserting it, replaceallusesof'ing the
2590 // old with the new, then deleting the old... just update the current one
2591 // in place!
2592 pImpl->ArrayConstants.remove(this);
2593
2594 // Update to the new value. Optimize for the case when we have a single
2595 // operand that we're changing, but handle bulk updates efficiently.
2596 if (NumUpdated == 1) {
2597 unsigned OperandToUpdate = U - OperandList;
2598 assert(getOperand(OperandToUpdate) == From &&
2599 "ReplaceAllUsesWith broken!");
2600 setOperand(OperandToUpdate, ToC);
2601 } else {
2602 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2603 if (getOperand(i) == From)
2604 setOperand(i, ToC);
2605 }
2606 pImpl->ArrayConstants.insert(this);
2607 return;
2608 }
2609 }
2610
2611 // Otherwise, I do need to replace this with an existing value.
2612 assert(Replacement != this && "I didn't contain From!");
2613
2614 // Everyone using this now uses the replacement.
2615 replaceAllUsesWith(Replacement);
2616
2617 // Delete the old constant!
2618 destroyConstant();
2619 }
2620
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2621 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2622 Use *U) {
2623 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2624 Constant *ToC = cast<Constant>(To);
2625
2626 unsigned OperandToUpdate = U-OperandList;
2627 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2628
2629 SmallVector<Constant*, 8> Values;
2630 LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2631 Lookup.first = cast<StructType>(getType());
2632 Values.reserve(getNumOperands()); // Build replacement struct.
2633
2634 // Fill values with the modified operands of the constant struct. Also,
2635 // compute whether this turns into an all-zeros struct.
2636 bool isAllZeros = false;
2637 bool isAllUndef = false;
2638 if (ToC->isNullValue()) {
2639 isAllZeros = true;
2640 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2641 Constant *Val = cast<Constant>(O->get());
2642 Values.push_back(Val);
2643 if (isAllZeros) isAllZeros = Val->isNullValue();
2644 }
2645 } else if (isa<UndefValue>(ToC)) {
2646 isAllUndef = true;
2647 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2648 Constant *Val = cast<Constant>(O->get());
2649 Values.push_back(Val);
2650 if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2651 }
2652 } else {
2653 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2654 Values.push_back(cast<Constant>(O->get()));
2655 }
2656 Values[OperandToUpdate] = ToC;
2657
2658 LLVMContextImpl *pImpl = getContext().pImpl;
2659
2660 Constant *Replacement = 0;
2661 if (isAllZeros) {
2662 Replacement = ConstantAggregateZero::get(getType());
2663 } else if (isAllUndef) {
2664 Replacement = UndefValue::get(getType());
2665 } else {
2666 // Check to see if we have this struct type already.
2667 Lookup.second = makeArrayRef(Values);
2668 LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2669 pImpl->StructConstants.find(Lookup);
2670
2671 if (I != pImpl->StructConstants.map_end()) {
2672 Replacement = I->first;
2673 } else {
2674 // Okay, the new shape doesn't exist in the system yet. Instead of
2675 // creating a new constant struct, inserting it, replaceallusesof'ing the
2676 // old with the new, then deleting the old... just update the current one
2677 // in place!
2678 pImpl->StructConstants.remove(this);
2679
2680 // Update to the new value.
2681 setOperand(OperandToUpdate, ToC);
2682 pImpl->StructConstants.insert(this);
2683 return;
2684 }
2685 }
2686
2687 assert(Replacement != this && "I didn't contain From!");
2688
2689 // Everyone using this now uses the replacement.
2690 replaceAllUsesWith(Replacement);
2691
2692 // Delete the old constant!
2693 destroyConstant();
2694 }
2695
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2696 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2697 Use *U) {
2698 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2699
2700 SmallVector<Constant*, 8> Values;
2701 Values.reserve(getNumOperands()); // Build replacement array...
2702 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2703 Constant *Val = getOperand(i);
2704 if (Val == From) Val = cast<Constant>(To);
2705 Values.push_back(Val);
2706 }
2707
2708 Constant *Replacement = get(Values);
2709 assert(Replacement != this && "I didn't contain From!");
2710
2711 // Everyone using this now uses the replacement.
2712 replaceAllUsesWith(Replacement);
2713
2714 // Delete the old constant!
2715 destroyConstant();
2716 }
2717
replaceUsesOfWithOnConstant(Value * From,Value * ToV,Use * U)2718 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2719 Use *U) {
2720 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2721 Constant *To = cast<Constant>(ToV);
2722
2723 SmallVector<Constant*, 8> NewOps;
2724 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2725 Constant *Op = getOperand(i);
2726 NewOps.push_back(Op == From ? To : Op);
2727 }
2728
2729 Constant *Replacement = getWithOperands(NewOps);
2730 assert(Replacement != this && "I didn't contain From!");
2731
2732 // Everyone using this now uses the replacement.
2733 replaceAllUsesWith(Replacement);
2734
2735 // Delete the old constant!
2736 destroyConstant();
2737 }
2738
getAsInstruction()2739 Instruction *ConstantExpr::getAsInstruction() {
2740 SmallVector<Value*,4> ValueOperands;
2741 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2742 ValueOperands.push_back(cast<Value>(I));
2743
2744 ArrayRef<Value*> Ops(ValueOperands);
2745
2746 switch (getOpcode()) {
2747 case Instruction::Trunc:
2748 case Instruction::ZExt:
2749 case Instruction::SExt:
2750 case Instruction::FPTrunc:
2751 case Instruction::FPExt:
2752 case Instruction::UIToFP:
2753 case Instruction::SIToFP:
2754 case Instruction::FPToUI:
2755 case Instruction::FPToSI:
2756 case Instruction::PtrToInt:
2757 case Instruction::IntToPtr:
2758 case Instruction::BitCast:
2759 return CastInst::Create((Instruction::CastOps)getOpcode(),
2760 Ops[0], getType());
2761 case Instruction::Select:
2762 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2763 case Instruction::InsertElement:
2764 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2765 case Instruction::ExtractElement:
2766 return ExtractElementInst::Create(Ops[0], Ops[1]);
2767 case Instruction::InsertValue:
2768 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2769 case Instruction::ExtractValue:
2770 return ExtractValueInst::Create(Ops[0], getIndices());
2771 case Instruction::ShuffleVector:
2772 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2773
2774 case Instruction::GetElementPtr:
2775 if (cast<GEPOperator>(this)->isInBounds())
2776 return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2777 else
2778 return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2779
2780 case Instruction::ICmp:
2781 case Instruction::FCmp:
2782 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2783 getPredicate(), Ops[0], Ops[1]);
2784
2785 default:
2786 assert(getNumOperands() == 2 && "Must be binary operator?");
2787 BinaryOperator *BO =
2788 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2789 Ops[0], Ops[1]);
2790 if (isa<OverflowingBinaryOperator>(BO)) {
2791 BO->setHasNoUnsignedWrap(SubclassOptionalData &
2792 OverflowingBinaryOperator::NoUnsignedWrap);
2793 BO->setHasNoSignedWrap(SubclassOptionalData &
2794 OverflowingBinaryOperator::NoSignedWrap);
2795 }
2796 if (isa<PossiblyExactOperator>(BO))
2797 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2798 return BO;
2799 }
2800 }
2801