1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/Support/ConstantRange.h"
28 #include "llvm/Support/GetElementPtrTypeIterator.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/PatternMatch.h"
31 #include <cstring>
32 using namespace llvm;
33 using namespace llvm::PatternMatch;
34
35 const unsigned MaxDepth = 6;
36
37 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
38 /// unknown returns 0). For vector types, returns the element type's bitwidth.
getBitWidth(Type * Ty,const DataLayout * TD)39 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
40 if (unsigned BitWidth = Ty->getScalarSizeInBits())
41 return BitWidth;
42 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
43 return TD ? TD->getPointerSizeInBits() : 0;
44 }
45
ComputeMaskedBitsAddSub(bool Add,Value * Op0,Value * Op1,bool NSW,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,const DataLayout * TD,unsigned Depth)46 static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
47 APInt &KnownZero, APInt &KnownOne,
48 APInt &KnownZero2, APInt &KnownOne2,
49 const DataLayout *TD, unsigned Depth) {
50 if (!Add) {
51 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
52 // We know that the top bits of C-X are clear if X contains less bits
53 // than C (i.e. no wrap-around can happen). For example, 20-X is
54 // positive if we can prove that X is >= 0 and < 16.
55 if (!CLHS->getValue().isNegative()) {
56 unsigned BitWidth = KnownZero.getBitWidth();
57 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
58 // NLZ can't be BitWidth with no sign bit
59 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
60 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
61
62 // If all of the MaskV bits are known to be zero, then we know the
63 // output top bits are zero, because we now know that the output is
64 // from [0-C].
65 if ((KnownZero2 & MaskV) == MaskV) {
66 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
67 // Top bits known zero.
68 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
69 }
70 }
71 }
72 }
73
74 unsigned BitWidth = KnownZero.getBitWidth();
75
76 // If one of the operands has trailing zeros, then the bits that the
77 // other operand has in those bit positions will be preserved in the
78 // result. For an add, this works with either operand. For a subtract,
79 // this only works if the known zeros are in the right operand.
80 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
81 llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
82 assert((LHSKnownZero & LHSKnownOne) == 0 &&
83 "Bits known to be one AND zero?");
84 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
85
86 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
87 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
88 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
89
90 // Determine which operand has more trailing zeros, and use that
91 // many bits from the other operand.
92 if (LHSKnownZeroOut > RHSKnownZeroOut) {
93 if (Add) {
94 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
95 KnownZero |= KnownZero2 & Mask;
96 KnownOne |= KnownOne2 & Mask;
97 } else {
98 // If the known zeros are in the left operand for a subtract,
99 // fall back to the minimum known zeros in both operands.
100 KnownZero |= APInt::getLowBitsSet(BitWidth,
101 std::min(LHSKnownZeroOut,
102 RHSKnownZeroOut));
103 }
104 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
105 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
106 KnownZero |= LHSKnownZero & Mask;
107 KnownOne |= LHSKnownOne & Mask;
108 }
109
110 // Are we still trying to solve for the sign bit?
111 if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
112 if (NSW) {
113 if (Add) {
114 // Adding two positive numbers can't wrap into negative
115 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
116 KnownZero |= APInt::getSignBit(BitWidth);
117 // and adding two negative numbers can't wrap into positive.
118 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
119 KnownOne |= APInt::getSignBit(BitWidth);
120 } else {
121 // Subtracting a negative number from a positive one can't wrap
122 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
123 KnownZero |= APInt::getSignBit(BitWidth);
124 // neither can subtracting a positive number from a negative one.
125 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
126 KnownOne |= APInt::getSignBit(BitWidth);
127 }
128 }
129 }
130 }
131
ComputeMaskedBitsMul(Value * Op0,Value * Op1,bool NSW,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,const DataLayout * TD,unsigned Depth)132 static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
133 APInt &KnownZero, APInt &KnownOne,
134 APInt &KnownZero2, APInt &KnownOne2,
135 const DataLayout *TD, unsigned Depth) {
136 unsigned BitWidth = KnownZero.getBitWidth();
137 ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
138 ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
139 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141
142 bool isKnownNegative = false;
143 bool isKnownNonNegative = false;
144 // If the multiplication is known not to overflow, compute the sign bit.
145 if (NSW) {
146 if (Op0 == Op1) {
147 // The product of a number with itself is non-negative.
148 isKnownNonNegative = true;
149 } else {
150 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
151 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
152 bool isKnownNegativeOp1 = KnownOne.isNegative();
153 bool isKnownNegativeOp0 = KnownOne2.isNegative();
154 // The product of two numbers with the same sign is non-negative.
155 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
156 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
157 // The product of a negative number and a non-negative number is either
158 // negative or zero.
159 if (!isKnownNonNegative)
160 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
161 isKnownNonZero(Op0, TD, Depth)) ||
162 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
163 isKnownNonZero(Op1, TD, Depth));
164 }
165 }
166
167 // If low bits are zero in either operand, output low known-0 bits.
168 // Also compute a conserative estimate for high known-0 bits.
169 // More trickiness is possible, but this is sufficient for the
170 // interesting case of alignment computation.
171 KnownOne.clearAllBits();
172 unsigned TrailZ = KnownZero.countTrailingOnes() +
173 KnownZero2.countTrailingOnes();
174 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
175 KnownZero2.countLeadingOnes(),
176 BitWidth) - BitWidth;
177
178 TrailZ = std::min(TrailZ, BitWidth);
179 LeadZ = std::min(LeadZ, BitWidth);
180 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181 APInt::getHighBitsSet(BitWidth, LeadZ);
182
183 // Only make use of no-wrap flags if we failed to compute the sign bit
184 // directly. This matters if the multiplication always overflows, in
185 // which case we prefer to follow the result of the direct computation,
186 // though as the program is invoking undefined behaviour we can choose
187 // whatever we like here.
188 if (isKnownNonNegative && !KnownOne.isNegative())
189 KnownZero.setBit(BitWidth - 1);
190 else if (isKnownNegative && !KnownZero.isNegative())
191 KnownOne.setBit(BitWidth - 1);
192 }
193
computeMaskedBitsLoad(const MDNode & Ranges,APInt & KnownZero)194 void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
195 unsigned BitWidth = KnownZero.getBitWidth();
196 unsigned NumRanges = Ranges.getNumOperands() / 2;
197 assert(NumRanges >= 1);
198
199 // Use the high end of the ranges to find leading zeros.
200 unsigned MinLeadingZeros = BitWidth;
201 for (unsigned i = 0; i < NumRanges; ++i) {
202 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
203 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
204 ConstantRange Range(Lower->getValue(), Upper->getValue());
205 if (Range.isWrappedSet())
206 MinLeadingZeros = 0; // -1 has no zeros
207 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
208 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
209 }
210
211 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
212 }
213 /// ComputeMaskedBits - Determine which of the bits are known to be either zero
214 /// or one and return them in the KnownZero/KnownOne bit sets.
215 ///
216 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
217 /// we cannot optimize based on the assumption that it is zero without changing
218 /// it to be an explicit zero. If we don't change it to zero, other code could
219 /// optimized based on the contradictory assumption that it is non-zero.
220 /// Because instcombine aggressively folds operations with undef args anyway,
221 /// this won't lose us code quality.
222 ///
223 /// This function is defined on values with integer type, values with pointer
224 /// type (but only if TD is non-null), and vectors of integers. In the case
225 /// where V is a vector, known zero, and known one values are the
226 /// same width as the vector element, and the bit is set only if it is true
227 /// for all of the elements in the vector.
ComputeMaskedBits(Value * V,APInt & KnownZero,APInt & KnownOne,const DataLayout * TD,unsigned Depth)228 void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
229 const DataLayout *TD, unsigned Depth) {
230 assert(V && "No Value?");
231 assert(Depth <= MaxDepth && "Limit Search Depth");
232 unsigned BitWidth = KnownZero.getBitWidth();
233
234 assert((V->getType()->isIntOrIntVectorTy() ||
235 V->getType()->getScalarType()->isPointerTy()) &&
236 "Not integer or pointer type!");
237 assert((!TD ||
238 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
239 (!V->getType()->isIntOrIntVectorTy() ||
240 V->getType()->getScalarSizeInBits() == BitWidth) &&
241 KnownZero.getBitWidth() == BitWidth &&
242 KnownOne.getBitWidth() == BitWidth &&
243 "V, Mask, KnownOne and KnownZero should have same BitWidth");
244
245 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
246 // We know all of the bits for a constant!
247 KnownOne = CI->getValue();
248 KnownZero = ~KnownOne;
249 return;
250 }
251 // Null and aggregate-zero are all-zeros.
252 if (isa<ConstantPointerNull>(V) ||
253 isa<ConstantAggregateZero>(V)) {
254 KnownOne.clearAllBits();
255 KnownZero = APInt::getAllOnesValue(BitWidth);
256 return;
257 }
258 // Handle a constant vector by taking the intersection of the known bits of
259 // each element. There is no real need to handle ConstantVector here, because
260 // we don't handle undef in any particularly useful way.
261 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
262 // We know that CDS must be a vector of integers. Take the intersection of
263 // each element.
264 KnownZero.setAllBits(); KnownOne.setAllBits();
265 APInt Elt(KnownZero.getBitWidth(), 0);
266 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
267 Elt = CDS->getElementAsInteger(i);
268 KnownZero &= ~Elt;
269 KnownOne &= Elt;
270 }
271 return;
272 }
273
274 // The address of an aligned GlobalValue has trailing zeros.
275 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
276 unsigned Align = GV->getAlignment();
277 if (Align == 0 && TD) {
278 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
279 Type *ObjectType = GVar->getType()->getElementType();
280 if (ObjectType->isSized()) {
281 // If the object is defined in the current Module, we'll be giving
282 // it the preferred alignment. Otherwise, we have to assume that it
283 // may only have the minimum ABI alignment.
284 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
285 Align = TD->getPreferredAlignment(GVar);
286 else
287 Align = TD->getABITypeAlignment(ObjectType);
288 }
289 }
290 }
291 if (Align > 0)
292 KnownZero = APInt::getLowBitsSet(BitWidth,
293 countTrailingZeros(Align));
294 else
295 KnownZero.clearAllBits();
296 KnownOne.clearAllBits();
297 return;
298 }
299 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
300 // the bits of its aliasee.
301 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
302 if (GA->mayBeOverridden()) {
303 KnownZero.clearAllBits(); KnownOne.clearAllBits();
304 } else {
305 ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
306 }
307 return;
308 }
309
310 if (Argument *A = dyn_cast<Argument>(V)) {
311 unsigned Align = 0;
312
313 if (A->hasByValAttr()) {
314 // Get alignment information off byval arguments if specified in the IR.
315 Align = A->getParamAlignment();
316 } else if (TD && A->hasStructRetAttr()) {
317 // An sret parameter has at least the ABI alignment of the return type.
318 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
319 if (EltTy->isSized())
320 Align = TD->getABITypeAlignment(EltTy);
321 }
322
323 if (Align)
324 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
325 return;
326 }
327
328 // Start out not knowing anything.
329 KnownZero.clearAllBits(); KnownOne.clearAllBits();
330
331 if (Depth == MaxDepth)
332 return; // Limit search depth.
333
334 Operator *I = dyn_cast<Operator>(V);
335 if (!I) return;
336
337 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
338 switch (I->getOpcode()) {
339 default: break;
340 case Instruction::Load:
341 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
342 computeMaskedBitsLoad(*MD, KnownZero);
343 return;
344 case Instruction::And: {
345 // If either the LHS or the RHS are Zero, the result is zero.
346 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
347 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
348 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
349 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
350
351 // Output known-1 bits are only known if set in both the LHS & RHS.
352 KnownOne &= KnownOne2;
353 // Output known-0 are known to be clear if zero in either the LHS | RHS.
354 KnownZero |= KnownZero2;
355 return;
356 }
357 case Instruction::Or: {
358 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
359 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
360 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
361 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
362
363 // Output known-0 bits are only known if clear in both the LHS & RHS.
364 KnownZero &= KnownZero2;
365 // Output known-1 are known to be set if set in either the LHS | RHS.
366 KnownOne |= KnownOne2;
367 return;
368 }
369 case Instruction::Xor: {
370 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
371 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
372 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
373 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
374
375 // Output known-0 bits are known if clear or set in both the LHS & RHS.
376 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
377 // Output known-1 are known to be set if set in only one of the LHS, RHS.
378 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
379 KnownZero = KnownZeroOut;
380 return;
381 }
382 case Instruction::Mul: {
383 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
384 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
385 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
386 break;
387 }
388 case Instruction::UDiv: {
389 // For the purposes of computing leading zeros we can conservatively
390 // treat a udiv as a logical right shift by the power of 2 known to
391 // be less than the denominator.
392 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
393 unsigned LeadZ = KnownZero2.countLeadingOnes();
394
395 KnownOne2.clearAllBits();
396 KnownZero2.clearAllBits();
397 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
398 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
399 if (RHSUnknownLeadingOnes != BitWidth)
400 LeadZ = std::min(BitWidth,
401 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
402
403 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
404 return;
405 }
406 case Instruction::Select:
407 ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
408 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
409 Depth+1);
410 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
411 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
412
413 // Only known if known in both the LHS and RHS.
414 KnownOne &= KnownOne2;
415 KnownZero &= KnownZero2;
416 return;
417 case Instruction::FPTrunc:
418 case Instruction::FPExt:
419 case Instruction::FPToUI:
420 case Instruction::FPToSI:
421 case Instruction::SIToFP:
422 case Instruction::UIToFP:
423 return; // Can't work with floating point.
424 case Instruction::PtrToInt:
425 case Instruction::IntToPtr:
426 // We can't handle these if we don't know the pointer size.
427 if (!TD) return;
428 // FALL THROUGH and handle them the same as zext/trunc.
429 case Instruction::ZExt:
430 case Instruction::Trunc: {
431 Type *SrcTy = I->getOperand(0)->getType();
432
433 unsigned SrcBitWidth;
434 // Note that we handle pointer operands here because of inttoptr/ptrtoint
435 // which fall through here.
436 if(TD) {
437 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
438 } else {
439 SrcBitWidth = SrcTy->getScalarSizeInBits();
440 if (!SrcBitWidth) return;
441 }
442
443 assert(SrcBitWidth && "SrcBitWidth can't be zero");
444 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
445 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
446 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
447 KnownZero = KnownZero.zextOrTrunc(BitWidth);
448 KnownOne = KnownOne.zextOrTrunc(BitWidth);
449 // Any top bits are known to be zero.
450 if (BitWidth > SrcBitWidth)
451 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
452 return;
453 }
454 case Instruction::BitCast: {
455 Type *SrcTy = I->getOperand(0)->getType();
456 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
457 // TODO: For now, not handling conversions like:
458 // (bitcast i64 %x to <2 x i32>)
459 !I->getType()->isVectorTy()) {
460 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
461 return;
462 }
463 break;
464 }
465 case Instruction::SExt: {
466 // Compute the bits in the result that are not present in the input.
467 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
468
469 KnownZero = KnownZero.trunc(SrcBitWidth);
470 KnownOne = KnownOne.trunc(SrcBitWidth);
471 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
472 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
473 KnownZero = KnownZero.zext(BitWidth);
474 KnownOne = KnownOne.zext(BitWidth);
475
476 // If the sign bit of the input is known set or clear, then we know the
477 // top bits of the result.
478 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
479 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
480 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
481 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
482 return;
483 }
484 case Instruction::Shl:
485 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
486 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
487 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
488 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
489 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
490 KnownZero <<= ShiftAmt;
491 KnownOne <<= ShiftAmt;
492 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
493 return;
494 }
495 break;
496 case Instruction::LShr:
497 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
498 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
499 // Compute the new bits that are at the top now.
500 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
501
502 // Unsigned shift right.
503 ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
504 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
505 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
506 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
507 // high bits known zero.
508 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
509 return;
510 }
511 break;
512 case Instruction::AShr:
513 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
514 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
515 // Compute the new bits that are at the top now.
516 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
517
518 // Signed shift right.
519 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
520 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
521 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
522 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
523
524 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
525 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
526 KnownZero |= HighBits;
527 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
528 KnownOne |= HighBits;
529 return;
530 }
531 break;
532 case Instruction::Sub: {
533 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
534 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
535 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
536 Depth);
537 break;
538 }
539 case Instruction::Add: {
540 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
541 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
542 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
543 Depth);
544 break;
545 }
546 case Instruction::SRem:
547 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
548 APInt RA = Rem->getValue().abs();
549 if (RA.isPowerOf2()) {
550 APInt LowBits = RA - 1;
551 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
552
553 // The low bits of the first operand are unchanged by the srem.
554 KnownZero = KnownZero2 & LowBits;
555 KnownOne = KnownOne2 & LowBits;
556
557 // If the first operand is non-negative or has all low bits zero, then
558 // the upper bits are all zero.
559 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
560 KnownZero |= ~LowBits;
561
562 // If the first operand is negative and not all low bits are zero, then
563 // the upper bits are all one.
564 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
565 KnownOne |= ~LowBits;
566
567 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
568 }
569 }
570
571 // The sign bit is the LHS's sign bit, except when the result of the
572 // remainder is zero.
573 if (KnownZero.isNonNegative()) {
574 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
575 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
576 Depth+1);
577 // If it's known zero, our sign bit is also zero.
578 if (LHSKnownZero.isNegative())
579 KnownZero.setBit(BitWidth - 1);
580 }
581
582 break;
583 case Instruction::URem: {
584 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
585 APInt RA = Rem->getValue();
586 if (RA.isPowerOf2()) {
587 APInt LowBits = (RA - 1);
588 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
589 Depth+1);
590 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
591 KnownZero |= ~LowBits;
592 KnownOne &= LowBits;
593 break;
594 }
595 }
596
597 // Since the result is less than or equal to either operand, any leading
598 // zero bits in either operand must also exist in the result.
599 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
600 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
601
602 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
603 KnownZero2.countLeadingOnes());
604 KnownOne.clearAllBits();
605 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
606 break;
607 }
608
609 case Instruction::Alloca: {
610 AllocaInst *AI = cast<AllocaInst>(V);
611 unsigned Align = AI->getAlignment();
612 if (Align == 0 && TD)
613 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
614
615 if (Align > 0)
616 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
617 break;
618 }
619 case Instruction::GetElementPtr: {
620 // Analyze all of the subscripts of this getelementptr instruction
621 // to determine if we can prove known low zero bits.
622 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
623 ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
624 Depth+1);
625 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
626
627 gep_type_iterator GTI = gep_type_begin(I);
628 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
629 Value *Index = I->getOperand(i);
630 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
631 // Handle struct member offset arithmetic.
632 if (!TD) return;
633 const StructLayout *SL = TD->getStructLayout(STy);
634 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
635 uint64_t Offset = SL->getElementOffset(Idx);
636 TrailZ = std::min<unsigned>(TrailZ,
637 countTrailingZeros(Offset));
638 } else {
639 // Handle array index arithmetic.
640 Type *IndexedTy = GTI.getIndexedType();
641 if (!IndexedTy->isSized()) return;
642 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
643 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
644 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
645 ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
646 TrailZ = std::min(TrailZ,
647 unsigned(countTrailingZeros(TypeSize) +
648 LocalKnownZero.countTrailingOnes()));
649 }
650 }
651
652 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
653 break;
654 }
655 case Instruction::PHI: {
656 PHINode *P = cast<PHINode>(I);
657 // Handle the case of a simple two-predecessor recurrence PHI.
658 // There's a lot more that could theoretically be done here, but
659 // this is sufficient to catch some interesting cases.
660 if (P->getNumIncomingValues() == 2) {
661 for (unsigned i = 0; i != 2; ++i) {
662 Value *L = P->getIncomingValue(i);
663 Value *R = P->getIncomingValue(!i);
664 Operator *LU = dyn_cast<Operator>(L);
665 if (!LU)
666 continue;
667 unsigned Opcode = LU->getOpcode();
668 // Check for operations that have the property that if
669 // both their operands have low zero bits, the result
670 // will have low zero bits.
671 if (Opcode == Instruction::Add ||
672 Opcode == Instruction::Sub ||
673 Opcode == Instruction::And ||
674 Opcode == Instruction::Or ||
675 Opcode == Instruction::Mul) {
676 Value *LL = LU->getOperand(0);
677 Value *LR = LU->getOperand(1);
678 // Find a recurrence.
679 if (LL == I)
680 L = LR;
681 else if (LR == I)
682 L = LL;
683 else
684 break;
685 // Ok, we have a PHI of the form L op= R. Check for low
686 // zero bits.
687 ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
688
689 // We need to take the minimum number of known bits
690 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
691 ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
692
693 KnownZero = APInt::getLowBitsSet(BitWidth,
694 std::min(KnownZero2.countTrailingOnes(),
695 KnownZero3.countTrailingOnes()));
696 break;
697 }
698 }
699 }
700
701 // Unreachable blocks may have zero-operand PHI nodes.
702 if (P->getNumIncomingValues() == 0)
703 return;
704
705 // Otherwise take the unions of the known bit sets of the operands,
706 // taking conservative care to avoid excessive recursion.
707 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
708 // Skip if every incoming value references to ourself.
709 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
710 break;
711
712 KnownZero = APInt::getAllOnesValue(BitWidth);
713 KnownOne = APInt::getAllOnesValue(BitWidth);
714 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
715 // Skip direct self references.
716 if (P->getIncomingValue(i) == P) continue;
717
718 KnownZero2 = APInt(BitWidth, 0);
719 KnownOne2 = APInt(BitWidth, 0);
720 // Recurse, but cap the recursion to one level, because we don't
721 // want to waste time spinning around in loops.
722 ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
723 MaxDepth-1);
724 KnownZero &= KnownZero2;
725 KnownOne &= KnownOne2;
726 // If all bits have been ruled out, there's no need to check
727 // more operands.
728 if (!KnownZero && !KnownOne)
729 break;
730 }
731 }
732 break;
733 }
734 case Instruction::Call:
735 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
736 switch (II->getIntrinsicID()) {
737 default: break;
738 case Intrinsic::ctlz:
739 case Intrinsic::cttz: {
740 unsigned LowBits = Log2_32(BitWidth)+1;
741 // If this call is undefined for 0, the result will be less than 2^n.
742 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
743 LowBits -= 1;
744 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
745 break;
746 }
747 case Intrinsic::ctpop: {
748 unsigned LowBits = Log2_32(BitWidth)+1;
749 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
750 break;
751 }
752 case Intrinsic::x86_sse42_crc32_64_8:
753 case Intrinsic::x86_sse42_crc32_64_64:
754 KnownZero = APInt::getHighBitsSet(64, 32);
755 break;
756 }
757 }
758 break;
759 case Instruction::ExtractValue:
760 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
761 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
762 if (EVI->getNumIndices() != 1) break;
763 if (EVI->getIndices()[0] == 0) {
764 switch (II->getIntrinsicID()) {
765 default: break;
766 case Intrinsic::uadd_with_overflow:
767 case Intrinsic::sadd_with_overflow:
768 ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
769 II->getArgOperand(1), false, KnownZero,
770 KnownOne, KnownZero2, KnownOne2, TD, Depth);
771 break;
772 case Intrinsic::usub_with_overflow:
773 case Intrinsic::ssub_with_overflow:
774 ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
775 II->getArgOperand(1), false, KnownZero,
776 KnownOne, KnownZero2, KnownOne2, TD, Depth);
777 break;
778 case Intrinsic::umul_with_overflow:
779 case Intrinsic::smul_with_overflow:
780 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
781 false, KnownZero, KnownOne,
782 KnownZero2, KnownOne2, TD, Depth);
783 break;
784 }
785 }
786 }
787 }
788 }
789
790 /// ComputeSignBit - Determine whether the sign bit is known to be zero or
791 /// one. Convenience wrapper around ComputeMaskedBits.
ComputeSignBit(Value * V,bool & KnownZero,bool & KnownOne,const DataLayout * TD,unsigned Depth)792 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
793 const DataLayout *TD, unsigned Depth) {
794 unsigned BitWidth = getBitWidth(V->getType(), TD);
795 if (!BitWidth) {
796 KnownZero = false;
797 KnownOne = false;
798 return;
799 }
800 APInt ZeroBits(BitWidth, 0);
801 APInt OneBits(BitWidth, 0);
802 ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
803 KnownOne = OneBits[BitWidth - 1];
804 KnownZero = ZeroBits[BitWidth - 1];
805 }
806
807 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
808 /// bit set when defined. For vectors return true if every element is known to
809 /// be a power of two when defined. Supports values with integer or pointer
810 /// types and vectors of integers.
isKnownToBeAPowerOfTwo(Value * V,bool OrZero,unsigned Depth)811 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
812 if (Constant *C = dyn_cast<Constant>(V)) {
813 if (C->isNullValue())
814 return OrZero;
815 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
816 return CI->getValue().isPowerOf2();
817 // TODO: Handle vector constants.
818 }
819
820 // 1 << X is clearly a power of two if the one is not shifted off the end. If
821 // it is shifted off the end then the result is undefined.
822 if (match(V, m_Shl(m_One(), m_Value())))
823 return true;
824
825 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
826 // bottom. If it is shifted off the bottom then the result is undefined.
827 if (match(V, m_LShr(m_SignBit(), m_Value())))
828 return true;
829
830 // The remaining tests are all recursive, so bail out if we hit the limit.
831 if (Depth++ == MaxDepth)
832 return false;
833
834 Value *X = 0, *Y = 0;
835 // A shift of a power of two is a power of two or zero.
836 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
837 match(V, m_Shr(m_Value(X), m_Value()))))
838 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
839
840 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
841 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
842
843 if (SelectInst *SI = dyn_cast<SelectInst>(V))
844 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
845 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
846
847 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
848 // A power of two and'd with anything is a power of two or zero.
849 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
850 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
851 return true;
852 // X & (-X) is always a power of two or zero.
853 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
854 return true;
855 return false;
856 }
857
858 // Adding a power-of-two or zero to the same power-of-two or zero yields
859 // either the original power-of-two, a larger power-of-two or zero.
860 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
861 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
862 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
863 if (match(X, m_And(m_Specific(Y), m_Value())) ||
864 match(X, m_And(m_Value(), m_Specific(Y))))
865 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth))
866 return true;
867 if (match(Y, m_And(m_Specific(X), m_Value())) ||
868 match(Y, m_And(m_Value(), m_Specific(X))))
869 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth))
870 return true;
871
872 unsigned BitWidth = V->getType()->getScalarSizeInBits();
873 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
874 ComputeMaskedBits(X, LHSZeroBits, LHSOneBits, 0, Depth);
875
876 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
877 ComputeMaskedBits(Y, RHSZeroBits, RHSOneBits, 0, Depth);
878 // If i8 V is a power of two or zero:
879 // ZeroBits: 1 1 1 0 1 1 1 1
880 // ~ZeroBits: 0 0 0 1 0 0 0 0
881 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
882 // If OrZero isn't set, we cannot give back a zero result.
883 // Make sure either the LHS or RHS has a bit set.
884 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
885 return true;
886 }
887 }
888
889 // An exact divide or right shift can only shift off zero bits, so the result
890 // is a power of two only if the first operand is a power of two and not
891 // copying a sign bit (sdiv int_min, 2).
892 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
893 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
894 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
895 }
896
897 return false;
898 }
899
900 /// \brief Test whether a GEP's result is known to be non-null.
901 ///
902 /// Uses properties inherent in a GEP to try to determine whether it is known
903 /// to be non-null.
904 ///
905 /// Currently this routine does not support vector GEPs.
isGEPKnownNonNull(GEPOperator * GEP,const DataLayout * DL,unsigned Depth)906 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
907 unsigned Depth) {
908 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
909 return false;
910
911 // FIXME: Support vector-GEPs.
912 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
913
914 // If the base pointer is non-null, we cannot walk to a null address with an
915 // inbounds GEP in address space zero.
916 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
917 return true;
918
919 // Past this, if we don't have DataLayout, we can't do much.
920 if (!DL)
921 return false;
922
923 // Walk the GEP operands and see if any operand introduces a non-zero offset.
924 // If so, then the GEP cannot produce a null pointer, as doing so would
925 // inherently violate the inbounds contract within address space zero.
926 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
927 GTI != GTE; ++GTI) {
928 // Struct types are easy -- they must always be indexed by a constant.
929 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
930 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
931 unsigned ElementIdx = OpC->getZExtValue();
932 const StructLayout *SL = DL->getStructLayout(STy);
933 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
934 if (ElementOffset > 0)
935 return true;
936 continue;
937 }
938
939 // If we have a zero-sized type, the index doesn't matter. Keep looping.
940 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
941 continue;
942
943 // Fast path the constant operand case both for efficiency and so we don't
944 // increment Depth when just zipping down an all-constant GEP.
945 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
946 if (!OpC->isZero())
947 return true;
948 continue;
949 }
950
951 // We post-increment Depth here because while isKnownNonZero increments it
952 // as well, when we pop back up that increment won't persist. We don't want
953 // to recurse 10k times just because we have 10k GEP operands. We don't
954 // bail completely out because we want to handle constant GEPs regardless
955 // of depth.
956 if (Depth++ >= MaxDepth)
957 continue;
958
959 if (isKnownNonZero(GTI.getOperand(), DL, Depth))
960 return true;
961 }
962
963 return false;
964 }
965
966 /// isKnownNonZero - Return true if the given value is known to be non-zero
967 /// when defined. For vectors return true if every element is known to be
968 /// non-zero when defined. Supports values with integer or pointer type and
969 /// vectors of integers.
isKnownNonZero(Value * V,const DataLayout * TD,unsigned Depth)970 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
971 if (Constant *C = dyn_cast<Constant>(V)) {
972 if (C->isNullValue())
973 return false;
974 if (isa<ConstantInt>(C))
975 // Must be non-zero due to null test above.
976 return true;
977 // TODO: Handle vectors
978 return false;
979 }
980
981 // The remaining tests are all recursive, so bail out if we hit the limit.
982 if (Depth++ >= MaxDepth)
983 return false;
984
985 // Check for pointer simplifications.
986 if (V->getType()->isPointerTy()) {
987 if (isKnownNonNull(V))
988 return true;
989 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
990 if (isGEPKnownNonNull(GEP, TD, Depth))
991 return true;
992 }
993
994 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
995
996 // X | Y != 0 if X != 0 or Y != 0.
997 Value *X = 0, *Y = 0;
998 if (match(V, m_Or(m_Value(X), m_Value(Y))))
999 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
1000
1001 // ext X != 0 if X != 0.
1002 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1003 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
1004
1005 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
1006 // if the lowest bit is shifted off the end.
1007 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1008 // shl nuw can't remove any non-zero bits.
1009 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1010 if (BO->hasNoUnsignedWrap())
1011 return isKnownNonZero(X, TD, Depth);
1012
1013 APInt KnownZero(BitWidth, 0);
1014 APInt KnownOne(BitWidth, 0);
1015 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
1016 if (KnownOne[0])
1017 return true;
1018 }
1019 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
1020 // defined if the sign bit is shifted off the end.
1021 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1022 // shr exact can only shift out zero bits.
1023 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1024 if (BO->isExact())
1025 return isKnownNonZero(X, TD, Depth);
1026
1027 bool XKnownNonNegative, XKnownNegative;
1028 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1029 if (XKnownNegative)
1030 return true;
1031 }
1032 // div exact can only produce a zero if the dividend is zero.
1033 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1034 return isKnownNonZero(X, TD, Depth);
1035 }
1036 // X + Y.
1037 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1038 bool XKnownNonNegative, XKnownNegative;
1039 bool YKnownNonNegative, YKnownNegative;
1040 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1041 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1042
1043 // If X and Y are both non-negative (as signed values) then their sum is not
1044 // zero unless both X and Y are zero.
1045 if (XKnownNonNegative && YKnownNonNegative)
1046 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1047 return true;
1048
1049 // If X and Y are both negative (as signed values) then their sum is not
1050 // zero unless both X and Y equal INT_MIN.
1051 if (BitWidth && XKnownNegative && YKnownNegative) {
1052 APInt KnownZero(BitWidth, 0);
1053 APInt KnownOne(BitWidth, 0);
1054 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1055 // The sign bit of X is set. If some other bit is set then X is not equal
1056 // to INT_MIN.
1057 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
1058 if ((KnownOne & Mask) != 0)
1059 return true;
1060 // The sign bit of Y is set. If some other bit is set then Y is not equal
1061 // to INT_MIN.
1062 ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
1063 if ((KnownOne & Mask) != 0)
1064 return true;
1065 }
1066
1067 // The sum of a non-negative number and a power of two is not zero.
1068 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
1069 return true;
1070 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
1071 return true;
1072 }
1073 // X * Y.
1074 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1075 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1076 // If X and Y are non-zero then so is X * Y as long as the multiplication
1077 // does not overflow.
1078 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1079 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
1080 return true;
1081 }
1082 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1083 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1084 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1085 isKnownNonZero(SI->getFalseValue(), TD, Depth))
1086 return true;
1087 }
1088
1089 if (!BitWidth) return false;
1090 APInt KnownZero(BitWidth, 0);
1091 APInt KnownOne(BitWidth, 0);
1092 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1093 return KnownOne != 0;
1094 }
1095
1096 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1097 /// this predicate to simplify operations downstream. Mask is known to be zero
1098 /// for bits that V cannot have.
1099 ///
1100 /// This function is defined on values with integer type, values with pointer
1101 /// type (but only if TD is non-null), and vectors of integers. In the case
1102 /// where V is a vector, the mask, known zero, and known one values are the
1103 /// same width as the vector element, and the bit is set only if it is true
1104 /// for all of the elements in the vector.
MaskedValueIsZero(Value * V,const APInt & Mask,const DataLayout * TD,unsigned Depth)1105 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
1106 const DataLayout *TD, unsigned Depth) {
1107 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1108 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1109 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1110 return (KnownZero & Mask) == Mask;
1111 }
1112
1113
1114
1115 /// ComputeNumSignBits - Return the number of times the sign bit of the
1116 /// register is replicated into the other bits. We know that at least 1 bit
1117 /// is always equal to the sign bit (itself), but other cases can give us
1118 /// information. For example, immediately after an "ashr X, 2", we know that
1119 /// the top 3 bits are all equal to each other, so we return 3.
1120 ///
1121 /// 'Op' must have a scalar integer type.
1122 ///
ComputeNumSignBits(Value * V,const DataLayout * TD,unsigned Depth)1123 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
1124 unsigned Depth) {
1125 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
1126 "ComputeNumSignBits requires a DataLayout object to operate "
1127 "on non-integer values!");
1128 Type *Ty = V->getType();
1129 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1130 Ty->getScalarSizeInBits();
1131 unsigned Tmp, Tmp2;
1132 unsigned FirstAnswer = 1;
1133
1134 // Note that ConstantInt is handled by the general ComputeMaskedBits case
1135 // below.
1136
1137 if (Depth == 6)
1138 return 1; // Limit search depth.
1139
1140 Operator *U = dyn_cast<Operator>(V);
1141 switch (Operator::getOpcode(V)) {
1142 default: break;
1143 case Instruction::SExt:
1144 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1145 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1146
1147 case Instruction::AShr: {
1148 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1149 // ashr X, C -> adds C sign bits. Vectors too.
1150 const APInt *ShAmt;
1151 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1152 Tmp += ShAmt->getZExtValue();
1153 if (Tmp > TyBits) Tmp = TyBits;
1154 }
1155 return Tmp;
1156 }
1157 case Instruction::Shl: {
1158 const APInt *ShAmt;
1159 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1160 // shl destroys sign bits.
1161 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1162 Tmp2 = ShAmt->getZExtValue();
1163 if (Tmp2 >= TyBits || // Bad shift.
1164 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1165 return Tmp - Tmp2;
1166 }
1167 break;
1168 }
1169 case Instruction::And:
1170 case Instruction::Or:
1171 case Instruction::Xor: // NOT is handled here.
1172 // Logical binary ops preserve the number of sign bits at the worst.
1173 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1174 if (Tmp != 1) {
1175 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1176 FirstAnswer = std::min(Tmp, Tmp2);
1177 // We computed what we know about the sign bits as our first
1178 // answer. Now proceed to the generic code that uses
1179 // ComputeMaskedBits, and pick whichever answer is better.
1180 }
1181 break;
1182
1183 case Instruction::Select:
1184 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1185 if (Tmp == 1) return 1; // Early out.
1186 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1187 return std::min(Tmp, Tmp2);
1188
1189 case Instruction::Add:
1190 // Add can have at most one carry bit. Thus we know that the output
1191 // is, at worst, one more bit than the inputs.
1192 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1193 if (Tmp == 1) return 1; // Early out.
1194
1195 // Special case decrementing a value (ADD X, -1):
1196 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1197 if (CRHS->isAllOnesValue()) {
1198 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1199 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
1200
1201 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1202 // sign bits set.
1203 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1204 return TyBits;
1205
1206 // If we are subtracting one from a positive number, there is no carry
1207 // out of the result.
1208 if (KnownZero.isNegative())
1209 return Tmp;
1210 }
1211
1212 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1213 if (Tmp2 == 1) return 1;
1214 return std::min(Tmp, Tmp2)-1;
1215
1216 case Instruction::Sub:
1217 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1218 if (Tmp2 == 1) return 1;
1219
1220 // Handle NEG.
1221 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1222 if (CLHS->isNullValue()) {
1223 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1224 ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
1225 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1226 // sign bits set.
1227 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1228 return TyBits;
1229
1230 // If the input is known to be positive (the sign bit is known clear),
1231 // the output of the NEG has the same number of sign bits as the input.
1232 if (KnownZero.isNegative())
1233 return Tmp2;
1234
1235 // Otherwise, we treat this like a SUB.
1236 }
1237
1238 // Sub can have at most one carry bit. Thus we know that the output
1239 // is, at worst, one more bit than the inputs.
1240 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1241 if (Tmp == 1) return 1; // Early out.
1242 return std::min(Tmp, Tmp2)-1;
1243
1244 case Instruction::PHI: {
1245 PHINode *PN = cast<PHINode>(U);
1246 // Don't analyze large in-degree PHIs.
1247 if (PN->getNumIncomingValues() > 4) break;
1248
1249 // Take the minimum of all incoming values. This can't infinitely loop
1250 // because of our depth threshold.
1251 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1252 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1253 if (Tmp == 1) return Tmp;
1254 Tmp = std::min(Tmp,
1255 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1256 }
1257 return Tmp;
1258 }
1259
1260 case Instruction::Trunc:
1261 // FIXME: it's tricky to do anything useful for this, but it is an important
1262 // case for targets like X86.
1263 break;
1264 }
1265
1266 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1267 // use this information.
1268 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1269 APInt Mask;
1270 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1271
1272 if (KnownZero.isNegative()) { // sign bit is 0
1273 Mask = KnownZero;
1274 } else if (KnownOne.isNegative()) { // sign bit is 1;
1275 Mask = KnownOne;
1276 } else {
1277 // Nothing known.
1278 return FirstAnswer;
1279 }
1280
1281 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1282 // the number of identical bits in the top of the input value.
1283 Mask = ~Mask;
1284 Mask <<= Mask.getBitWidth()-TyBits;
1285 // Return # leading zeros. We use 'min' here in case Val was zero before
1286 // shifting. We don't want to return '64' as for an i32 "0".
1287 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1288 }
1289
1290 /// ComputeMultiple - This function computes the integer multiple of Base that
1291 /// equals V. If successful, it returns true and returns the multiple in
1292 /// Multiple. If unsuccessful, it returns false. It looks
1293 /// through SExt instructions only if LookThroughSExt is true.
ComputeMultiple(Value * V,unsigned Base,Value * & Multiple,bool LookThroughSExt,unsigned Depth)1294 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1295 bool LookThroughSExt, unsigned Depth) {
1296 const unsigned MaxDepth = 6;
1297
1298 assert(V && "No Value?");
1299 assert(Depth <= MaxDepth && "Limit Search Depth");
1300 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1301
1302 Type *T = V->getType();
1303
1304 ConstantInt *CI = dyn_cast<ConstantInt>(V);
1305
1306 if (Base == 0)
1307 return false;
1308
1309 if (Base == 1) {
1310 Multiple = V;
1311 return true;
1312 }
1313
1314 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1315 Constant *BaseVal = ConstantInt::get(T, Base);
1316 if (CO && CO == BaseVal) {
1317 // Multiple is 1.
1318 Multiple = ConstantInt::get(T, 1);
1319 return true;
1320 }
1321
1322 if (CI && CI->getZExtValue() % Base == 0) {
1323 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1324 return true;
1325 }
1326
1327 if (Depth == MaxDepth) return false; // Limit search depth.
1328
1329 Operator *I = dyn_cast<Operator>(V);
1330 if (!I) return false;
1331
1332 switch (I->getOpcode()) {
1333 default: break;
1334 case Instruction::SExt:
1335 if (!LookThroughSExt) return false;
1336 // otherwise fall through to ZExt
1337 case Instruction::ZExt:
1338 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1339 LookThroughSExt, Depth+1);
1340 case Instruction::Shl:
1341 case Instruction::Mul: {
1342 Value *Op0 = I->getOperand(0);
1343 Value *Op1 = I->getOperand(1);
1344
1345 if (I->getOpcode() == Instruction::Shl) {
1346 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1347 if (!Op1CI) return false;
1348 // Turn Op0 << Op1 into Op0 * 2^Op1
1349 APInt Op1Int = Op1CI->getValue();
1350 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1351 APInt API(Op1Int.getBitWidth(), 0);
1352 API.setBit(BitToSet);
1353 Op1 = ConstantInt::get(V->getContext(), API);
1354 }
1355
1356 Value *Mul0 = NULL;
1357 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1358 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1359 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1360 if (Op1C->getType()->getPrimitiveSizeInBits() <
1361 MulC->getType()->getPrimitiveSizeInBits())
1362 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1363 if (Op1C->getType()->getPrimitiveSizeInBits() >
1364 MulC->getType()->getPrimitiveSizeInBits())
1365 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1366
1367 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1368 Multiple = ConstantExpr::getMul(MulC, Op1C);
1369 return true;
1370 }
1371
1372 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1373 if (Mul0CI->getValue() == 1) {
1374 // V == Base * Op1, so return Op1
1375 Multiple = Op1;
1376 return true;
1377 }
1378 }
1379
1380 Value *Mul1 = NULL;
1381 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1382 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1383 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1384 if (Op0C->getType()->getPrimitiveSizeInBits() <
1385 MulC->getType()->getPrimitiveSizeInBits())
1386 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1387 if (Op0C->getType()->getPrimitiveSizeInBits() >
1388 MulC->getType()->getPrimitiveSizeInBits())
1389 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1390
1391 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1392 Multiple = ConstantExpr::getMul(MulC, Op0C);
1393 return true;
1394 }
1395
1396 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1397 if (Mul1CI->getValue() == 1) {
1398 // V == Base * Op0, so return Op0
1399 Multiple = Op0;
1400 return true;
1401 }
1402 }
1403 }
1404 }
1405
1406 // We could not determine if V is a multiple of Base.
1407 return false;
1408 }
1409
1410 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
1411 /// value is never equal to -0.0.
1412 ///
1413 /// NOTE: this function will need to be revisited when we support non-default
1414 /// rounding modes!
1415 ///
CannotBeNegativeZero(const Value * V,unsigned Depth)1416 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1417 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1418 return !CFP->getValueAPF().isNegZero();
1419
1420 if (Depth == 6)
1421 return 1; // Limit search depth.
1422
1423 const Operator *I = dyn_cast<Operator>(V);
1424 if (I == 0) return false;
1425
1426 // Check if the nsz fast-math flag is set
1427 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1428 if (FPO->hasNoSignedZeros())
1429 return true;
1430
1431 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1432 if (I->getOpcode() == Instruction::FAdd)
1433 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1434 if (CFP->isNullValue())
1435 return true;
1436
1437 // sitofp and uitofp turn into +0.0 for zero.
1438 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1439 return true;
1440
1441 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1442 // sqrt(-0.0) = -0.0, no other negative results are possible.
1443 if (II->getIntrinsicID() == Intrinsic::sqrt)
1444 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1445
1446 if (const CallInst *CI = dyn_cast<CallInst>(I))
1447 if (const Function *F = CI->getCalledFunction()) {
1448 if (F->isDeclaration()) {
1449 // abs(x) != -0.0
1450 if (F->getName() == "abs") return true;
1451 // fabs[lf](x) != -0.0
1452 if (F->getName() == "fabs") return true;
1453 if (F->getName() == "fabsf") return true;
1454 if (F->getName() == "fabsl") return true;
1455 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1456 F->getName() == "sqrtl")
1457 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1458 }
1459 }
1460
1461 return false;
1462 }
1463
1464 /// isBytewiseValue - If the specified value can be set by repeating the same
1465 /// byte in memory, return the i8 value that it is represented with. This is
1466 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1467 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1468 /// byte store (e.g. i16 0x1234), return null.
isBytewiseValue(Value * V)1469 Value *llvm::isBytewiseValue(Value *V) {
1470 // All byte-wide stores are splatable, even of arbitrary variables.
1471 if (V->getType()->isIntegerTy(8)) return V;
1472
1473 // Handle 'null' ConstantArrayZero etc.
1474 if (Constant *C = dyn_cast<Constant>(V))
1475 if (C->isNullValue())
1476 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1477
1478 // Constant float and double values can be handled as integer values if the
1479 // corresponding integer value is "byteable". An important case is 0.0.
1480 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1481 if (CFP->getType()->isFloatTy())
1482 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1483 if (CFP->getType()->isDoubleTy())
1484 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1485 // Don't handle long double formats, which have strange constraints.
1486 }
1487
1488 // We can handle constant integers that are power of two in size and a
1489 // multiple of 8 bits.
1490 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1491 unsigned Width = CI->getBitWidth();
1492 if (isPowerOf2_32(Width) && Width > 8) {
1493 // We can handle this value if the recursive binary decomposition is the
1494 // same at all levels.
1495 APInt Val = CI->getValue();
1496 APInt Val2;
1497 while (Val.getBitWidth() != 8) {
1498 unsigned NextWidth = Val.getBitWidth()/2;
1499 Val2 = Val.lshr(NextWidth);
1500 Val2 = Val2.trunc(Val.getBitWidth()/2);
1501 Val = Val.trunc(Val.getBitWidth()/2);
1502
1503 // If the top/bottom halves aren't the same, reject it.
1504 if (Val != Val2)
1505 return 0;
1506 }
1507 return ConstantInt::get(V->getContext(), Val);
1508 }
1509 }
1510
1511 // A ConstantDataArray/Vector is splatable if all its members are equal and
1512 // also splatable.
1513 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1514 Value *Elt = CA->getElementAsConstant(0);
1515 Value *Val = isBytewiseValue(Elt);
1516 if (!Val)
1517 return 0;
1518
1519 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1520 if (CA->getElementAsConstant(I) != Elt)
1521 return 0;
1522
1523 return Val;
1524 }
1525
1526 // Conceptually, we could handle things like:
1527 // %a = zext i8 %X to i16
1528 // %b = shl i16 %a, 8
1529 // %c = or i16 %a, %b
1530 // but until there is an example that actually needs this, it doesn't seem
1531 // worth worrying about.
1532 return 0;
1533 }
1534
1535
1536 // This is the recursive version of BuildSubAggregate. It takes a few different
1537 // arguments. Idxs is the index within the nested struct From that we are
1538 // looking at now (which is of type IndexedType). IdxSkip is the number of
1539 // indices from Idxs that should be left out when inserting into the resulting
1540 // struct. To is the result struct built so far, new insertvalue instructions
1541 // build on that.
BuildSubAggregate(Value * From,Value * To,Type * IndexedType,SmallVectorImpl<unsigned> & Idxs,unsigned IdxSkip,Instruction * InsertBefore)1542 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
1543 SmallVectorImpl<unsigned> &Idxs,
1544 unsigned IdxSkip,
1545 Instruction *InsertBefore) {
1546 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
1547 if (STy) {
1548 // Save the original To argument so we can modify it
1549 Value *OrigTo = To;
1550 // General case, the type indexed by Idxs is a struct
1551 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1552 // Process each struct element recursively
1553 Idxs.push_back(i);
1554 Value *PrevTo = To;
1555 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1556 InsertBefore);
1557 Idxs.pop_back();
1558 if (!To) {
1559 // Couldn't find any inserted value for this index? Cleanup
1560 while (PrevTo != OrigTo) {
1561 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1562 PrevTo = Del->getAggregateOperand();
1563 Del->eraseFromParent();
1564 }
1565 // Stop processing elements
1566 break;
1567 }
1568 }
1569 // If we successfully found a value for each of our subaggregates
1570 if (To)
1571 return To;
1572 }
1573 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1574 // the struct's elements had a value that was inserted directly. In the latter
1575 // case, perhaps we can't determine each of the subelements individually, but
1576 // we might be able to find the complete struct somewhere.
1577
1578 // Find the value that is at that particular spot
1579 Value *V = FindInsertedValue(From, Idxs);
1580
1581 if (!V)
1582 return NULL;
1583
1584 // Insert the value in the new (sub) aggregrate
1585 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1586 "tmp", InsertBefore);
1587 }
1588
1589 // This helper takes a nested struct and extracts a part of it (which is again a
1590 // struct) into a new value. For example, given the struct:
1591 // { a, { b, { c, d }, e } }
1592 // and the indices "1, 1" this returns
1593 // { c, d }.
1594 //
1595 // It does this by inserting an insertvalue for each element in the resulting
1596 // struct, as opposed to just inserting a single struct. This will only work if
1597 // each of the elements of the substruct are known (ie, inserted into From by an
1598 // insertvalue instruction somewhere).
1599 //
1600 // All inserted insertvalue instructions are inserted before InsertBefore
BuildSubAggregate(Value * From,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)1601 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
1602 Instruction *InsertBefore) {
1603 assert(InsertBefore && "Must have someplace to insert!");
1604 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1605 idx_range);
1606 Value *To = UndefValue::get(IndexedType);
1607 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1608 unsigned IdxSkip = Idxs.size();
1609
1610 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1611 }
1612
1613 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1614 /// the scalar value indexed is already around as a register, for example if it
1615 /// were inserted directly into the aggregrate.
1616 ///
1617 /// If InsertBefore is not null, this function will duplicate (modified)
1618 /// insertvalues when a part of a nested struct is extracted.
FindInsertedValue(Value * V,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)1619 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1620 Instruction *InsertBefore) {
1621 // Nothing to index? Just return V then (this is useful at the end of our
1622 // recursion).
1623 if (idx_range.empty())
1624 return V;
1625 // We have indices, so V should have an indexable type.
1626 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1627 "Not looking at a struct or array?");
1628 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1629 "Invalid indices for type?");
1630
1631 if (Constant *C = dyn_cast<Constant>(V)) {
1632 C = C->getAggregateElement(idx_range[0]);
1633 if (C == 0) return 0;
1634 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1635 }
1636
1637 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1638 // Loop the indices for the insertvalue instruction in parallel with the
1639 // requested indices
1640 const unsigned *req_idx = idx_range.begin();
1641 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1642 i != e; ++i, ++req_idx) {
1643 if (req_idx == idx_range.end()) {
1644 // We can't handle this without inserting insertvalues
1645 if (!InsertBefore)
1646 return 0;
1647
1648 // The requested index identifies a part of a nested aggregate. Handle
1649 // this specially. For example,
1650 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1651 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1652 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1653 // This can be changed into
1654 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1655 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1656 // which allows the unused 0,0 element from the nested struct to be
1657 // removed.
1658 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1659 InsertBefore);
1660 }
1661
1662 // This insert value inserts something else than what we are looking for.
1663 // See if the (aggregrate) value inserted into has the value we are
1664 // looking for, then.
1665 if (*req_idx != *i)
1666 return FindInsertedValue(I->getAggregateOperand(), idx_range,
1667 InsertBefore);
1668 }
1669 // If we end up here, the indices of the insertvalue match with those
1670 // requested (though possibly only partially). Now we recursively look at
1671 // the inserted value, passing any remaining indices.
1672 return FindInsertedValue(I->getInsertedValueOperand(),
1673 makeArrayRef(req_idx, idx_range.end()),
1674 InsertBefore);
1675 }
1676
1677 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1678 // If we're extracting a value from an aggregrate that was extracted from
1679 // something else, we can extract from that something else directly instead.
1680 // However, we will need to chain I's indices with the requested indices.
1681
1682 // Calculate the number of indices required
1683 unsigned size = I->getNumIndices() + idx_range.size();
1684 // Allocate some space to put the new indices in
1685 SmallVector<unsigned, 5> Idxs;
1686 Idxs.reserve(size);
1687 // Add indices from the extract value instruction
1688 Idxs.append(I->idx_begin(), I->idx_end());
1689
1690 // Add requested indices
1691 Idxs.append(idx_range.begin(), idx_range.end());
1692
1693 assert(Idxs.size() == size
1694 && "Number of indices added not correct?");
1695
1696 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1697 }
1698 // Otherwise, we don't know (such as, extracting from a function return value
1699 // or load instruction)
1700 return 0;
1701 }
1702
1703 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1704 /// it can be expressed as a base pointer plus a constant offset. Return the
1705 /// base and offset to the caller.
GetPointerBaseWithConstantOffset(Value * Ptr,int64_t & Offset,const DataLayout * TD)1706 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1707 const DataLayout *TD) {
1708 // Without DataLayout, conservatively assume 64-bit offsets, which is
1709 // the widest we support.
1710 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
1711 APInt ByteOffset(BitWidth, 0);
1712 while (1) {
1713 if (Ptr->getType()->isVectorTy())
1714 break;
1715
1716 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1717 APInt GEPOffset(BitWidth, 0);
1718 if (TD && !GEP->accumulateConstantOffset(*TD, GEPOffset))
1719 break;
1720 ByteOffset += GEPOffset;
1721 Ptr = GEP->getPointerOperand();
1722 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1723 Ptr = cast<Operator>(Ptr)->getOperand(0);
1724 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1725 if (GA->mayBeOverridden())
1726 break;
1727 Ptr = GA->getAliasee();
1728 } else {
1729 break;
1730 }
1731 }
1732 Offset = ByteOffset.getSExtValue();
1733 return Ptr;
1734 }
1735
1736
1737 /// getConstantStringInfo - This function computes the length of a
1738 /// null-terminated C string pointed to by V. If successful, it returns true
1739 /// and returns the string in Str. If unsuccessful, it returns false.
getConstantStringInfo(const Value * V,StringRef & Str,uint64_t Offset,bool TrimAtNul)1740 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1741 uint64_t Offset, bool TrimAtNul) {
1742 assert(V);
1743
1744 // Look through bitcast instructions and geps.
1745 V = V->stripPointerCasts();
1746
1747 // If the value is a GEP instructionor constant expression, treat it as an
1748 // offset.
1749 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1750 // Make sure the GEP has exactly three arguments.
1751 if (GEP->getNumOperands() != 3)
1752 return false;
1753
1754 // Make sure the index-ee is a pointer to array of i8.
1755 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1756 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1757 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
1758 return false;
1759
1760 // Check to make sure that the first operand of the GEP is an integer and
1761 // has value 0 so that we are sure we're indexing into the initializer.
1762 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1763 if (FirstIdx == 0 || !FirstIdx->isZero())
1764 return false;
1765
1766 // If the second index isn't a ConstantInt, then this is a variable index
1767 // into the array. If this occurs, we can't say anything meaningful about
1768 // the string.
1769 uint64_t StartIdx = 0;
1770 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1771 StartIdx = CI->getZExtValue();
1772 else
1773 return false;
1774 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
1775 }
1776
1777 // The GEP instruction, constant or instruction, must reference a global
1778 // variable that is a constant and is initialized. The referenced constant
1779 // initializer is the array that we'll use for optimization.
1780 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
1781 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1782 return false;
1783
1784 // Handle the all-zeros case
1785 if (GV->getInitializer()->isNullValue()) {
1786 // This is a degenerate case. The initializer is constant zero so the
1787 // length of the string must be zero.
1788 Str = "";
1789 return true;
1790 }
1791
1792 // Must be a Constant Array
1793 const ConstantDataArray *Array =
1794 dyn_cast<ConstantDataArray>(GV->getInitializer());
1795 if (Array == 0 || !Array->isString())
1796 return false;
1797
1798 // Get the number of elements in the array
1799 uint64_t NumElts = Array->getType()->getArrayNumElements();
1800
1801 // Start out with the entire array in the StringRef.
1802 Str = Array->getAsString();
1803
1804 if (Offset > NumElts)
1805 return false;
1806
1807 // Skip over 'offset' bytes.
1808 Str = Str.substr(Offset);
1809
1810 if (TrimAtNul) {
1811 // Trim off the \0 and anything after it. If the array is not nul
1812 // terminated, we just return the whole end of string. The client may know
1813 // some other way that the string is length-bound.
1814 Str = Str.substr(0, Str.find('\0'));
1815 }
1816 return true;
1817 }
1818
1819 // These next two are very similar to the above, but also look through PHI
1820 // nodes.
1821 // TODO: See if we can integrate these two together.
1822
1823 /// GetStringLengthH - If we can compute the length of the string pointed to by
1824 /// the specified pointer, return 'len+1'. If we can't, return 0.
GetStringLengthH(Value * V,SmallPtrSet<PHINode *,32> & PHIs)1825 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1826 // Look through noop bitcast instructions.
1827 V = V->stripPointerCasts();
1828
1829 // If this is a PHI node, there are two cases: either we have already seen it
1830 // or we haven't.
1831 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1832 if (!PHIs.insert(PN))
1833 return ~0ULL; // already in the set.
1834
1835 // If it was new, see if all the input strings are the same length.
1836 uint64_t LenSoFar = ~0ULL;
1837 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1838 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1839 if (Len == 0) return 0; // Unknown length -> unknown.
1840
1841 if (Len == ~0ULL) continue;
1842
1843 if (Len != LenSoFar && LenSoFar != ~0ULL)
1844 return 0; // Disagree -> unknown.
1845 LenSoFar = Len;
1846 }
1847
1848 // Success, all agree.
1849 return LenSoFar;
1850 }
1851
1852 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1853 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1854 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1855 if (Len1 == 0) return 0;
1856 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1857 if (Len2 == 0) return 0;
1858 if (Len1 == ~0ULL) return Len2;
1859 if (Len2 == ~0ULL) return Len1;
1860 if (Len1 != Len2) return 0;
1861 return Len1;
1862 }
1863
1864 // Otherwise, see if we can read the string.
1865 StringRef StrData;
1866 if (!getConstantStringInfo(V, StrData))
1867 return 0;
1868
1869 return StrData.size()+1;
1870 }
1871
1872 /// GetStringLength - If we can compute the length of the string pointed to by
1873 /// the specified pointer, return 'len+1'. If we can't, return 0.
GetStringLength(Value * V)1874 uint64_t llvm::GetStringLength(Value *V) {
1875 if (!V->getType()->isPointerTy()) return 0;
1876
1877 SmallPtrSet<PHINode*, 32> PHIs;
1878 uint64_t Len = GetStringLengthH(V, PHIs);
1879 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1880 // an empty string as a length.
1881 return Len == ~0ULL ? 1 : Len;
1882 }
1883
1884 Value *
GetUnderlyingObject(Value * V,const DataLayout * TD,unsigned MaxLookup)1885 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
1886 if (!V->getType()->isPointerTy())
1887 return V;
1888 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1889 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1890 V = GEP->getPointerOperand();
1891 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1892 V = cast<Operator>(V)->getOperand(0);
1893 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1894 if (GA->mayBeOverridden())
1895 return V;
1896 V = GA->getAliasee();
1897 } else {
1898 // See if InstructionSimplify knows any relevant tricks.
1899 if (Instruction *I = dyn_cast<Instruction>(V))
1900 // TODO: Acquire a DominatorTree and use it.
1901 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1902 V = Simplified;
1903 continue;
1904 }
1905
1906 return V;
1907 }
1908 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1909 }
1910 return V;
1911 }
1912
1913 void
GetUnderlyingObjects(Value * V,SmallVectorImpl<Value * > & Objects,const DataLayout * TD,unsigned MaxLookup)1914 llvm::GetUnderlyingObjects(Value *V,
1915 SmallVectorImpl<Value *> &Objects,
1916 const DataLayout *TD,
1917 unsigned MaxLookup) {
1918 SmallPtrSet<Value *, 4> Visited;
1919 SmallVector<Value *, 4> Worklist;
1920 Worklist.push_back(V);
1921 do {
1922 Value *P = Worklist.pop_back_val();
1923 P = GetUnderlyingObject(P, TD, MaxLookup);
1924
1925 if (!Visited.insert(P))
1926 continue;
1927
1928 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1929 Worklist.push_back(SI->getTrueValue());
1930 Worklist.push_back(SI->getFalseValue());
1931 continue;
1932 }
1933
1934 if (PHINode *PN = dyn_cast<PHINode>(P)) {
1935 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1936 Worklist.push_back(PN->getIncomingValue(i));
1937 continue;
1938 }
1939
1940 Objects.push_back(P);
1941 } while (!Worklist.empty());
1942 }
1943
1944 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1945 /// are lifetime markers.
1946 ///
onlyUsedByLifetimeMarkers(const Value * V)1947 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1948 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1949 UI != UE; ++UI) {
1950 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1951 if (!II) return false;
1952
1953 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1954 II->getIntrinsicID() != Intrinsic::lifetime_end)
1955 return false;
1956 }
1957 return true;
1958 }
1959
isSafeToSpeculativelyExecute(const Value * V,const DataLayout * TD)1960 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
1961 const DataLayout *TD) {
1962 const Operator *Inst = dyn_cast<Operator>(V);
1963 if (!Inst)
1964 return false;
1965
1966 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1967 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1968 if (C->canTrap())
1969 return false;
1970
1971 switch (Inst->getOpcode()) {
1972 default:
1973 return true;
1974 case Instruction::UDiv:
1975 case Instruction::URem:
1976 // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1977 return isKnownNonZero(Inst->getOperand(1), TD);
1978 case Instruction::SDiv:
1979 case Instruction::SRem: {
1980 Value *Op = Inst->getOperand(1);
1981 // x / y is undefined if y == 0
1982 if (!isKnownNonZero(Op, TD))
1983 return false;
1984 // x / y might be undefined if y == -1
1985 unsigned BitWidth = getBitWidth(Op->getType(), TD);
1986 if (BitWidth == 0)
1987 return false;
1988 APInt KnownZero(BitWidth, 0);
1989 APInt KnownOne(BitWidth, 0);
1990 ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
1991 return !!KnownZero;
1992 }
1993 case Instruction::Load: {
1994 const LoadInst *LI = cast<LoadInst>(Inst);
1995 if (!LI->isUnordered())
1996 return false;
1997 return LI->getPointerOperand()->isDereferenceablePointer();
1998 }
1999 case Instruction::Call: {
2000 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2001 switch (II->getIntrinsicID()) {
2002 // These synthetic intrinsics have no side-effects, and just mark
2003 // information about their operands.
2004 // FIXME: There are other no-op synthetic instructions that potentially
2005 // should be considered at least *safe* to speculate...
2006 case Intrinsic::dbg_declare:
2007 case Intrinsic::dbg_value:
2008 return true;
2009
2010 case Intrinsic::bswap:
2011 case Intrinsic::ctlz:
2012 case Intrinsic::ctpop:
2013 case Intrinsic::cttz:
2014 case Intrinsic::objectsize:
2015 case Intrinsic::sadd_with_overflow:
2016 case Intrinsic::smul_with_overflow:
2017 case Intrinsic::ssub_with_overflow:
2018 case Intrinsic::uadd_with_overflow:
2019 case Intrinsic::umul_with_overflow:
2020 case Intrinsic::usub_with_overflow:
2021 return true;
2022 // TODO: some fp intrinsics are marked as having the same error handling
2023 // as libm. They're safe to speculate when they won't error.
2024 // TODO: are convert_{from,to}_fp16 safe?
2025 // TODO: can we list target-specific intrinsics here?
2026 default: break;
2027 }
2028 }
2029 return false; // The called function could have undefined behavior or
2030 // side-effects, even if marked readnone nounwind.
2031 }
2032 case Instruction::VAArg:
2033 case Instruction::Alloca:
2034 case Instruction::Invoke:
2035 case Instruction::PHI:
2036 case Instruction::Store:
2037 case Instruction::Ret:
2038 case Instruction::Br:
2039 case Instruction::IndirectBr:
2040 case Instruction::Switch:
2041 case Instruction::Unreachable:
2042 case Instruction::Fence:
2043 case Instruction::LandingPad:
2044 case Instruction::AtomicRMW:
2045 case Instruction::AtomicCmpXchg:
2046 case Instruction::Resume:
2047 return false; // Misc instructions which have effects
2048 }
2049 }
2050
2051 /// isKnownNonNull - Return true if we know that the specified value is never
2052 /// null.
isKnownNonNull(const Value * V)2053 bool llvm::isKnownNonNull(const Value *V) {
2054 // Alloca never returns null, malloc might.
2055 if (isa<AllocaInst>(V)) return true;
2056
2057 // A byval argument is never null.
2058 if (const Argument *A = dyn_cast<Argument>(V))
2059 return A->hasByValAttr();
2060
2061 // Global values are not null unless extern weak.
2062 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2063 return !GV->hasExternalWeakLinkage();
2064 return false;
2065 }
2066