1 //===--- CGRecordLayout.h - LLVM Record Layout Information ------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #ifndef CLANG_CODEGEN_CGRECORDLAYOUT_H 11 #define CLANG_CODEGEN_CGRECORDLAYOUT_H 12 13 #include "clang/AST/CharUnits.h" 14 #include "clang/AST/Decl.h" 15 #include "clang/Basic/LLVM.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/IR/DerivedTypes.h" 18 19 namespace llvm { 20 class StructType; 21 } 22 23 namespace clang { 24 namespace CodeGen { 25 26 /// \brief Structure with information about how a bitfield should be accessed. 27 /// 28 /// Often we layout a sequence of bitfields as a contiguous sequence of bits. 29 /// When the AST record layout does this, we represent it in the LLVM IR's type 30 /// as either a sequence of i8 members or a byte array to reserve the number of 31 /// bytes touched without forcing any particular alignment beyond the basic 32 /// character alignment. 33 /// 34 /// Then accessing a particular bitfield involves converting this byte array 35 /// into a single integer of that size (i24 or i40 -- may not be power-of-two 36 /// size), loading it, and shifting and masking to extract the particular 37 /// subsequence of bits which make up that particular bitfield. This structure 38 /// encodes the information used to construct the extraction code sequences. 39 /// The CGRecordLayout also has a field index which encodes which byte-sequence 40 /// this bitfield falls within. Let's assume the following C struct: 41 /// 42 /// struct S { 43 /// char a, b, c; 44 /// unsigned bits : 3; 45 /// unsigned more_bits : 4; 46 /// unsigned still_more_bits : 7; 47 /// }; 48 /// 49 /// This will end up as the following LLVM type. The first array is the 50 /// bitfield, and the second is the padding out to a 4-byte alignmnet. 51 /// 52 /// %t = type { i8, i8, i8, i8, i8, [3 x i8] } 53 /// 54 /// When generating code to access more_bits, we'll generate something 55 /// essentially like this: 56 /// 57 /// define i32 @foo(%t* %base) { 58 /// %0 = gep %t* %base, i32 0, i32 3 59 /// %2 = load i8* %1 60 /// %3 = lshr i8 %2, 3 61 /// %4 = and i8 %3, 15 62 /// %5 = zext i8 %4 to i32 63 /// ret i32 %i 64 /// } 65 /// 66 struct CGBitFieldInfo { 67 /// The offset within a contiguous run of bitfields that are represented as 68 /// a single "field" within the LLVM struct type. This offset is in bits. 69 unsigned Offset : 16; 70 71 /// The total size of the bit-field, in bits. 72 unsigned Size : 15; 73 74 /// Whether the bit-field is signed. 75 unsigned IsSigned : 1; 76 77 /// The storage size in bits which should be used when accessing this 78 /// bitfield. 79 unsigned StorageSize; 80 81 /// The alignment which should be used when accessing the bitfield. 82 unsigned StorageAlignment; 83 CGBitFieldInfoCGBitFieldInfo84 CGBitFieldInfo() 85 : Offset(), Size(), IsSigned(), StorageSize(), StorageAlignment() {} 86 CGBitFieldInfoCGBitFieldInfo87 CGBitFieldInfo(unsigned Offset, unsigned Size, bool IsSigned, 88 unsigned StorageSize, unsigned StorageAlignment) 89 : Offset(Offset), Size(Size), IsSigned(IsSigned), 90 StorageSize(StorageSize), StorageAlignment(StorageAlignment) {} 91 92 void print(raw_ostream &OS) const; 93 void dump() const; 94 95 /// \brief Given a bit-field decl, build an appropriate helper object for 96 /// accessing that field (which is expected to have the given offset and 97 /// size). 98 static CGBitFieldInfo MakeInfo(class CodeGenTypes &Types, 99 const FieldDecl *FD, 100 uint64_t Offset, uint64_t Size, 101 uint64_t StorageSize, 102 uint64_t StorageAlignment); 103 }; 104 105 /// CGRecordLayout - This class handles struct and union layout info while 106 /// lowering AST types to LLVM types. 107 /// 108 /// These layout objects are only created on demand as IR generation requires. 109 class CGRecordLayout { 110 friend class CodeGenTypes; 111 112 CGRecordLayout(const CGRecordLayout &) LLVM_DELETED_FUNCTION; 113 void operator=(const CGRecordLayout &) LLVM_DELETED_FUNCTION; 114 115 private: 116 /// The LLVM type corresponding to this record layout; used when 117 /// laying it out as a complete object. 118 llvm::StructType *CompleteObjectType; 119 120 /// The LLVM type for the non-virtual part of this record layout; 121 /// used when laying it out as a base subobject. 122 llvm::StructType *BaseSubobjectType; 123 124 /// Map from (non-bit-field) struct field to the corresponding llvm struct 125 /// type field no. This info is populated by record builder. 126 llvm::DenseMap<const FieldDecl *, unsigned> FieldInfo; 127 128 /// Map from (bit-field) struct field to the corresponding llvm struct type 129 /// field no. This info is populated by record builder. 130 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; 131 132 // FIXME: Maybe we could use a CXXBaseSpecifier as the key and use a single 133 // map for both virtual and non virtual bases. 134 llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; 135 136 /// Map from virtual bases to their field index in the complete object. 137 llvm::DenseMap<const CXXRecordDecl *, unsigned> CompleteObjectVirtualBases; 138 139 /// False if any direct or indirect subobject of this class, when 140 /// considered as a complete object, requires a non-zero bitpattern 141 /// when zero-initialized. 142 bool IsZeroInitializable : 1; 143 144 /// False if any direct or indirect subobject of this class, when 145 /// considered as a base subobject, requires a non-zero bitpattern 146 /// when zero-initialized. 147 bool IsZeroInitializableAsBase : 1; 148 149 public: CGRecordLayout(llvm::StructType * CompleteObjectType,llvm::StructType * BaseSubobjectType,bool IsZeroInitializable,bool IsZeroInitializableAsBase)150 CGRecordLayout(llvm::StructType *CompleteObjectType, 151 llvm::StructType *BaseSubobjectType, 152 bool IsZeroInitializable, 153 bool IsZeroInitializableAsBase) 154 : CompleteObjectType(CompleteObjectType), 155 BaseSubobjectType(BaseSubobjectType), 156 IsZeroInitializable(IsZeroInitializable), 157 IsZeroInitializableAsBase(IsZeroInitializableAsBase) {} 158 159 /// \brief Return the "complete object" LLVM type associated with 160 /// this record. getLLVMType()161 llvm::StructType *getLLVMType() const { 162 return CompleteObjectType; 163 } 164 165 /// \brief Return the "base subobject" LLVM type associated with 166 /// this record. getBaseSubobjectLLVMType()167 llvm::StructType *getBaseSubobjectLLVMType() const { 168 return BaseSubobjectType; 169 } 170 171 /// \brief Check whether this struct can be C++ zero-initialized 172 /// with a zeroinitializer. isZeroInitializable()173 bool isZeroInitializable() const { 174 return IsZeroInitializable; 175 } 176 177 /// \brief Check whether this struct can be C++ zero-initialized 178 /// with a zeroinitializer when considered as a base subobject. isZeroInitializableAsBase()179 bool isZeroInitializableAsBase() const { 180 return IsZeroInitializableAsBase; 181 } 182 183 /// \brief Return llvm::StructType element number that corresponds to the 184 /// field FD. getLLVMFieldNo(const FieldDecl * FD)185 unsigned getLLVMFieldNo(const FieldDecl *FD) const { 186 assert(FieldInfo.count(FD) && "Invalid field for record!"); 187 return FieldInfo.lookup(FD); 188 } 189 getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl * RD)190 unsigned getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl *RD) const { 191 assert(NonVirtualBases.count(RD) && "Invalid non-virtual base!"); 192 return NonVirtualBases.lookup(RD); 193 } 194 195 /// \brief Return the LLVM field index corresponding to the given 196 /// virtual base. Only valid when operating on the complete object. getVirtualBaseIndex(const CXXRecordDecl * base)197 unsigned getVirtualBaseIndex(const CXXRecordDecl *base) const { 198 assert(CompleteObjectVirtualBases.count(base) && "Invalid virtual base!"); 199 return CompleteObjectVirtualBases.lookup(base); 200 } 201 202 /// \brief Return the BitFieldInfo that corresponds to the field FD. getBitFieldInfo(const FieldDecl * FD)203 const CGBitFieldInfo &getBitFieldInfo(const FieldDecl *FD) const { 204 assert(FD->isBitField() && "Invalid call for non bit-field decl!"); 205 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo>::const_iterator 206 it = BitFields.find(FD); 207 assert(it != BitFields.end() && "Unable to find bitfield info"); 208 return it->second; 209 } 210 211 void print(raw_ostream &OS) const; 212 void dump() const; 213 }; 214 215 } // end namespace CodeGen 216 } // end namespace clang 217 218 #endif 219