1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file implements a class to represent arbitrary precision
12 /// integral constant values and operations on them.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_ADT_APINT_H
17 #define LLVM_ADT_APINT_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/MathExtras.h"
22 #include <cassert>
23 #include <climits>
24 #include <cstring>
25 #include <string>
26
27 namespace llvm {
28 class Deserializer;
29 class FoldingSetNodeID;
30 class Serializer;
31 class StringRef;
32 class hash_code;
33 class raw_ostream;
34
35 template <typename T> class SmallVectorImpl;
36
37 // An unsigned host type used as a single part of a multi-part
38 // bignum.
39 typedef uint64_t integerPart;
40
41 const unsigned int host_char_bit = 8;
42 const unsigned int integerPartWidth =
43 host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
44
45 //===----------------------------------------------------------------------===//
46 // APInt Class
47 //===----------------------------------------------------------------------===//
48
49 /// \brief Class for arbitrary precision integers.
50 ///
51 /// APInt is a functional replacement for common case unsigned integer type like
52 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
53 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
54 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
55 /// and methods to manipulate integer values of any bit-width. It supports both
56 /// the typical integer arithmetic and comparison operations as well as bitwise
57 /// manipulation.
58 ///
59 /// The class has several invariants worth noting:
60 /// * All bit, byte, and word positions are zero-based.
61 /// * Once the bit width is set, it doesn't change except by the Truncate,
62 /// SignExtend, or ZeroExtend operations.
63 /// * All binary operators must be on APInt instances of the same bit width.
64 /// Attempting to use these operators on instances with different bit
65 /// widths will yield an assertion.
66 /// * The value is stored canonically as an unsigned value. For operations
67 /// where it makes a difference, there are both signed and unsigned variants
68 /// of the operation. For example, sdiv and udiv. However, because the bit
69 /// widths must be the same, operations such as Mul and Add produce the same
70 /// results regardless of whether the values are interpreted as signed or
71 /// not.
72 /// * In general, the class tries to follow the style of computation that LLVM
73 /// uses in its IR. This simplifies its use for LLVM.
74 ///
75 class APInt {
76 unsigned BitWidth; ///< The number of bits in this APInt.
77
78 /// This union is used to store the integer value. When the
79 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80 union {
81 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
82 uint64_t *pVal; ///< Used to store the >64 bits integer value.
83 };
84
85 /// This enum is used to hold the constants we needed for APInt.
86 enum {
87 /// Bits in a word
88 APINT_BITS_PER_WORD =
89 static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
90 /// Byte size of a word
91 APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92 };
93
94 /// \brief Fast internal constructor
95 ///
96 /// This constructor is used only internally for speed of construction of
97 /// temporaries. It is unsafe for general use so it is not public.
APInt(uint64_t * val,unsigned bits)98 APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
99
100 /// \brief Determine if this APInt just has one word to store value.
101 ///
102 /// \returns true if the number of bits <= 64, false otherwise.
isSingleWord()103 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
104
105 /// \brief Determine which word a bit is in.
106 ///
107 /// \returns the word position for the specified bit position.
whichWord(unsigned bitPosition)108 static unsigned whichWord(unsigned bitPosition) {
109 return bitPosition / APINT_BITS_PER_WORD;
110 }
111
112 /// \brief Determine which bit in a word a bit is in.
113 ///
114 /// \returns the bit position in a word for the specified bit position
115 /// in the APInt.
whichBit(unsigned bitPosition)116 static unsigned whichBit(unsigned bitPosition) {
117 return bitPosition % APINT_BITS_PER_WORD;
118 }
119
120 /// \brief Get a single bit mask.
121 ///
122 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
123 /// This method generates and returns a uint64_t (word) mask for a single
124 /// bit at a specific bit position. This is used to mask the bit in the
125 /// corresponding word.
maskBit(unsigned bitPosition)126 static uint64_t maskBit(unsigned bitPosition) {
127 return 1ULL << whichBit(bitPosition);
128 }
129
130 /// \brief Clear unused high order bits
131 ///
132 /// This method is used internally to clear the to "N" bits in the high order
133 /// word that are not used by the APInt. This is needed after the most
134 /// significant word is assigned a value to ensure that those bits are
135 /// zero'd out.
clearUnusedBits()136 APInt &clearUnusedBits() {
137 // Compute how many bits are used in the final word
138 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
139 if (wordBits == 0)
140 // If all bits are used, we want to leave the value alone. This also
141 // avoids the undefined behavior of >> when the shift is the same size as
142 // the word size (64).
143 return *this;
144
145 // Mask out the high bits.
146 uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
147 if (isSingleWord())
148 VAL &= mask;
149 else
150 pVal[getNumWords() - 1] &= mask;
151 return *this;
152 }
153
154 /// \brief Get the word corresponding to a bit position
155 /// \returns the corresponding word for the specified bit position.
getWord(unsigned bitPosition)156 uint64_t getWord(unsigned bitPosition) const {
157 return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
158 }
159
160 /// \brief Convert a char array into an APInt
161 ///
162 /// \param radix 2, 8, 10, 16, or 36
163 /// Converts a string into a number. The string must be non-empty
164 /// and well-formed as a number of the given base. The bit-width
165 /// must be sufficient to hold the result.
166 ///
167 /// This is used by the constructors that take string arguments.
168 ///
169 /// StringRef::getAsInteger is superficially similar but (1) does
170 /// not assume that the string is well-formed and (2) grows the
171 /// result to hold the input.
172 void fromString(unsigned numBits, StringRef str, uint8_t radix);
173
174 /// \brief An internal division function for dividing APInts.
175 ///
176 /// This is used by the toString method to divide by the radix. It simply
177 /// provides a more convenient form of divide for internal use since KnuthDiv
178 /// has specific constraints on its inputs. If those constraints are not met
179 /// then it provides a simpler form of divide.
180 static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
181 unsigned rhsWords, APInt *Quotient, APInt *Remainder);
182
183 /// out-of-line slow case for inline constructor
184 void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
185
186 /// shared code between two array constructors
187 void initFromArray(ArrayRef<uint64_t> array);
188
189 /// out-of-line slow case for inline copy constructor
190 void initSlowCase(const APInt &that);
191
192 /// out-of-line slow case for shl
193 APInt shlSlowCase(unsigned shiftAmt) const;
194
195 /// out-of-line slow case for operator&
196 APInt AndSlowCase(const APInt &RHS) const;
197
198 /// out-of-line slow case for operator|
199 APInt OrSlowCase(const APInt &RHS) const;
200
201 /// out-of-line slow case for operator^
202 APInt XorSlowCase(const APInt &RHS) const;
203
204 /// out-of-line slow case for operator=
205 APInt &AssignSlowCase(const APInt &RHS);
206
207 /// out-of-line slow case for operator==
208 bool EqualSlowCase(const APInt &RHS) const;
209
210 /// out-of-line slow case for operator==
211 bool EqualSlowCase(uint64_t Val) const;
212
213 /// out-of-line slow case for countLeadingZeros
214 unsigned countLeadingZerosSlowCase() const;
215
216 /// out-of-line slow case for countTrailingOnes
217 unsigned countTrailingOnesSlowCase() const;
218
219 /// out-of-line slow case for countPopulation
220 unsigned countPopulationSlowCase() const;
221
222 public:
223 /// \name Constructors
224 /// @{
225
226 /// \brief Create a new APInt of numBits width, initialized as val.
227 ///
228 /// If isSigned is true then val is treated as if it were a signed value
229 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
230 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
231 /// the range of val are zero filled).
232 ///
233 /// \param numBits the bit width of the constructed APInt
234 /// \param val the initial value of the APInt
235 /// \param isSigned how to treat signedness of val
236 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)237 : BitWidth(numBits), VAL(0) {
238 assert(BitWidth && "bitwidth too small");
239 if (isSingleWord())
240 VAL = val;
241 else
242 initSlowCase(numBits, val, isSigned);
243 clearUnusedBits();
244 }
245
246 /// \brief Construct an APInt of numBits width, initialized as bigVal[].
247 ///
248 /// Note that bigVal.size() can be smaller or larger than the corresponding
249 /// bit width but any extraneous bits will be dropped.
250 ///
251 /// \param numBits the bit width of the constructed APInt
252 /// \param bigVal a sequence of words to form the initial value of the APInt
253 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
254
255 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
256 /// deprecated because this constructor is prone to ambiguity with the
257 /// APInt(unsigned, uint64_t, bool) constructor.
258 ///
259 /// If this overload is ever deleted, care should be taken to prevent calls
260 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
261 /// constructor.
262 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
263
264 /// \brief Construct an APInt from a string representation.
265 ///
266 /// This constructor interprets the string \p str in the given radix. The
267 /// interpretation stops when the first character that is not suitable for the
268 /// radix is encountered, or the end of the string. Acceptable radix values
269 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
270 /// string to require more bits than numBits.
271 ///
272 /// \param numBits the bit width of the constructed APInt
273 /// \param str the string to be interpreted
274 /// \param radix the radix to use for the conversion
275 APInt(unsigned numBits, StringRef str, uint8_t radix);
276
277 /// Simply makes *this a copy of that.
278 /// @brief Copy Constructor.
APInt(const APInt & that)279 APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
280 assert(BitWidth && "bitwidth too small");
281 if (isSingleWord())
282 VAL = that.VAL;
283 else
284 initSlowCase(that);
285 }
286
287 #if LLVM_HAS_RVALUE_REFERENCES
288 /// \brief Move Constructor.
APInt(APInt && that)289 APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
290 that.BitWidth = 0;
291 }
292 #endif
293
294 /// \brief Destructor.
~APInt()295 ~APInt() {
296 if (needsCleanup())
297 delete[] pVal;
298 }
299
300 /// \brief Default constructor that creates an uninitialized APInt.
301 ///
302 /// This is useful for object deserialization (pair this with the static
303 /// method Read).
APInt()304 explicit APInt() : BitWidth(1) {}
305
306 /// \brief Returns whether this instance allocated memory.
needsCleanup()307 bool needsCleanup() const { return !isSingleWord(); }
308
309 /// Used to insert APInt objects, or objects that contain APInt objects, into
310 /// FoldingSets.
311 void Profile(FoldingSetNodeID &id) const;
312
313 /// @}
314 /// \name Value Tests
315 /// @{
316
317 /// \brief Determine sign of this APInt.
318 ///
319 /// This tests the high bit of this APInt to determine if it is set.
320 ///
321 /// \returns true if this APInt is negative, false otherwise
isNegative()322 bool isNegative() const { return (*this)[BitWidth - 1]; }
323
324 /// \brief Determine if this APInt Value is non-negative (>= 0)
325 ///
326 /// This tests the high bit of the APInt to determine if it is unset.
isNonNegative()327 bool isNonNegative() const { return !isNegative(); }
328
329 /// \brief Determine if this APInt Value is positive.
330 ///
331 /// This tests if the value of this APInt is positive (> 0). Note
332 /// that 0 is not a positive value.
333 ///
334 /// \returns true if this APInt is positive.
isStrictlyPositive()335 bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
336
337 /// \brief Determine if all bits are set
338 ///
339 /// This checks to see if the value has all bits of the APInt are set or not.
isAllOnesValue()340 bool isAllOnesValue() const {
341 if (isSingleWord())
342 return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
343 return countPopulationSlowCase() == BitWidth;
344 }
345
346 /// \brief Determine if this is the largest unsigned value.
347 ///
348 /// This checks to see if the value of this APInt is the maximum unsigned
349 /// value for the APInt's bit width.
isMaxValue()350 bool isMaxValue() const { return isAllOnesValue(); }
351
352 /// \brief Determine if this is the largest signed value.
353 ///
354 /// This checks to see if the value of this APInt is the maximum signed
355 /// value for the APInt's bit width.
isMaxSignedValue()356 bool isMaxSignedValue() const {
357 return BitWidth == 1 ? VAL == 0
358 : !isNegative() && countPopulation() == BitWidth - 1;
359 }
360
361 /// \brief Determine if this is the smallest unsigned value.
362 ///
363 /// This checks to see if the value of this APInt is the minimum unsigned
364 /// value for the APInt's bit width.
isMinValue()365 bool isMinValue() const { return !*this; }
366
367 /// \brief Determine if this is the smallest signed value.
368 ///
369 /// This checks to see if the value of this APInt is the minimum signed
370 /// value for the APInt's bit width.
isMinSignedValue()371 bool isMinSignedValue() const {
372 return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
373 }
374
375 /// \brief Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)376 bool isIntN(unsigned N) const {
377 assert(N && "N == 0 ???");
378 return getActiveBits() <= N;
379 }
380
381 /// \brief Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)382 bool isSignedIntN(unsigned N) const {
383 assert(N && "N == 0 ???");
384 return getMinSignedBits() <= N;
385 }
386
387 /// \brief Check if this APInt's value is a power of two greater than zero.
388 ///
389 /// \returns true if the argument APInt value is a power of two > 0.
isPowerOf2()390 bool isPowerOf2() const {
391 if (isSingleWord())
392 return isPowerOf2_64(VAL);
393 return countPopulationSlowCase() == 1;
394 }
395
396 /// \brief Check if the APInt's value is returned by getSignBit.
397 ///
398 /// \returns true if this is the value returned by getSignBit.
isSignBit()399 bool isSignBit() const { return isMinSignedValue(); }
400
401 /// \brief Convert APInt to a boolean value.
402 ///
403 /// This converts the APInt to a boolean value as a test against zero.
getBoolValue()404 bool getBoolValue() const { return !!*this; }
405
406 /// If this value is smaller than the specified limit, return it, otherwise
407 /// return the limit value. This causes the value to saturate to the limit.
408 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
409 return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
410 : getZExtValue();
411 }
412
413 /// @}
414 /// \name Value Generators
415 /// @{
416
417 /// \brief Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)418 static APInt getMaxValue(unsigned numBits) {
419 return getAllOnesValue(numBits);
420 }
421
422 /// \brief Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)423 static APInt getSignedMaxValue(unsigned numBits) {
424 APInt API = getAllOnesValue(numBits);
425 API.clearBit(numBits - 1);
426 return API;
427 }
428
429 /// \brief Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)430 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
431
432 /// \brief Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)433 static APInt getSignedMinValue(unsigned numBits) {
434 APInt API(numBits, 0);
435 API.setBit(numBits - 1);
436 return API;
437 }
438
439 /// \brief Get the SignBit for a specific bit width.
440 ///
441 /// This is just a wrapper function of getSignedMinValue(), and it helps code
442 /// readability when we want to get a SignBit.
getSignBit(unsigned BitWidth)443 static APInt getSignBit(unsigned BitWidth) {
444 return getSignedMinValue(BitWidth);
445 }
446
447 /// \brief Get the all-ones value.
448 ///
449 /// \returns the all-ones value for an APInt of the specified bit-width.
getAllOnesValue(unsigned numBits)450 static APInt getAllOnesValue(unsigned numBits) {
451 return APInt(numBits, UINT64_MAX, true);
452 }
453
454 /// \brief Get the '0' value.
455 ///
456 /// \returns the '0' value for an APInt of the specified bit-width.
getNullValue(unsigned numBits)457 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
458
459 /// \brief Compute an APInt containing numBits highbits from this APInt.
460 ///
461 /// Get an APInt with the same BitWidth as this APInt, just zero mask
462 /// the low bits and right shift to the least significant bit.
463 ///
464 /// \returns the high "numBits" bits of this APInt.
465 APInt getHiBits(unsigned numBits) const;
466
467 /// \brief Compute an APInt containing numBits lowbits from this APInt.
468 ///
469 /// Get an APInt with the same BitWidth as this APInt, just zero mask
470 /// the high bits.
471 ///
472 /// \returns the low "numBits" bits of this APInt.
473 APInt getLoBits(unsigned numBits) const;
474
475 /// \brief Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)476 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
477 APInt Res(numBits, 0);
478 Res.setBit(BitNo);
479 return Res;
480 }
481
482 /// \brief Get a value with a block of bits set.
483 ///
484 /// Constructs an APInt value that has a contiguous range of bits set. The
485 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
486 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
487 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
488 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
489 ///
490 /// \param numBits the intended bit width of the result
491 /// \param loBit the index of the lowest bit set.
492 /// \param hiBit the index of the highest bit set.
493 ///
494 /// \returns An APInt value with the requested bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)495 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
496 assert(hiBit <= numBits && "hiBit out of range");
497 assert(loBit < numBits && "loBit out of range");
498 if (hiBit < loBit)
499 return getLowBitsSet(numBits, hiBit) |
500 getHighBitsSet(numBits, numBits - loBit);
501 return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
502 }
503
504 /// \brief Get a value with high bits set
505 ///
506 /// Constructs an APInt value that has the top hiBitsSet bits set.
507 ///
508 /// \param numBits the bitwidth of the result
509 /// \param hiBitsSet the number of high-order bits set in the result.
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)510 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
511 assert(hiBitsSet <= numBits && "Too many bits to set!");
512 // Handle a degenerate case, to avoid shifting by word size
513 if (hiBitsSet == 0)
514 return APInt(numBits, 0);
515 unsigned shiftAmt = numBits - hiBitsSet;
516 // For small values, return quickly
517 if (numBits <= APINT_BITS_PER_WORD)
518 return APInt(numBits, ~0ULL << shiftAmt);
519 return getAllOnesValue(numBits).shl(shiftAmt);
520 }
521
522 /// \brief Get a value with low bits set
523 ///
524 /// Constructs an APInt value that has the bottom loBitsSet bits set.
525 ///
526 /// \param numBits the bitwidth of the result
527 /// \param loBitsSet the number of low-order bits set in the result.
getLowBitsSet(unsigned numBits,unsigned loBitsSet)528 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
529 assert(loBitsSet <= numBits && "Too many bits to set!");
530 // Handle a degenerate case, to avoid shifting by word size
531 if (loBitsSet == 0)
532 return APInt(numBits, 0);
533 if (loBitsSet == APINT_BITS_PER_WORD)
534 return APInt(numBits, UINT64_MAX);
535 // For small values, return quickly.
536 if (loBitsSet <= APINT_BITS_PER_WORD)
537 return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
538 return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
539 }
540
541 /// \brief Return a value containing V broadcasted over NewLen bits.
getSplat(unsigned NewLen,const APInt & V)542 static APInt getSplat(unsigned NewLen, const APInt &V) {
543 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
544
545 APInt Val = V.zextOrSelf(NewLen);
546 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
547 Val |= Val << I;
548
549 return Val;
550 }
551
552 /// \brief Determine if two APInts have the same value, after zero-extending
553 /// one of them (if needed!) to ensure that the bit-widths match.
isSameValue(const APInt & I1,const APInt & I2)554 static bool isSameValue(const APInt &I1, const APInt &I2) {
555 if (I1.getBitWidth() == I2.getBitWidth())
556 return I1 == I2;
557
558 if (I1.getBitWidth() > I2.getBitWidth())
559 return I1 == I2.zext(I1.getBitWidth());
560
561 return I1.zext(I2.getBitWidth()) == I2;
562 }
563
564 /// \brief Overload to compute a hash_code for an APInt value.
565 friend hash_code hash_value(const APInt &Arg);
566
567 /// This function returns a pointer to the internal storage of the APInt.
568 /// This is useful for writing out the APInt in binary form without any
569 /// conversions.
getRawData()570 const uint64_t *getRawData() const {
571 if (isSingleWord())
572 return &VAL;
573 return &pVal[0];
574 }
575
576 /// @}
577 /// \name Unary Operators
578 /// @{
579
580 /// \brief Postfix increment operator.
581 ///
582 /// \returns a new APInt value representing *this incremented by one
583 const APInt operator++(int) {
584 APInt API(*this);
585 ++(*this);
586 return API;
587 }
588
589 /// \brief Prefix increment operator.
590 ///
591 /// \returns *this incremented by one
592 APInt &operator++();
593
594 /// \brief Postfix decrement operator.
595 ///
596 /// \returns a new APInt representing *this decremented by one.
597 const APInt operator--(int) {
598 APInt API(*this);
599 --(*this);
600 return API;
601 }
602
603 /// \brief Prefix decrement operator.
604 ///
605 /// \returns *this decremented by one.
606 APInt &operator--();
607
608 /// \brief Unary bitwise complement operator.
609 ///
610 /// Performs a bitwise complement operation on this APInt.
611 ///
612 /// \returns an APInt that is the bitwise complement of *this
613 APInt operator~() const {
614 APInt Result(*this);
615 Result.flipAllBits();
616 return Result;
617 }
618
619 /// \brief Unary negation operator
620 ///
621 /// Negates *this using two's complement logic.
622 ///
623 /// \returns An APInt value representing the negation of *this.
624 APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
625
626 /// \brief Logical negation operator.
627 ///
628 /// Performs logical negation operation on this APInt.
629 ///
630 /// \returns true if *this is zero, false otherwise.
631 bool operator!() const {
632 if (isSingleWord())
633 return !VAL;
634
635 for (unsigned i = 0; i != getNumWords(); ++i)
636 if (pVal[i])
637 return false;
638 return true;
639 }
640
641 /// @}
642 /// \name Assignment Operators
643 /// @{
644
645 /// \brief Copy assignment operator.
646 ///
647 /// \returns *this after assignment of RHS.
648 APInt &operator=(const APInt &RHS) {
649 // If the bitwidths are the same, we can avoid mucking with memory
650 if (isSingleWord() && RHS.isSingleWord()) {
651 VAL = RHS.VAL;
652 BitWidth = RHS.BitWidth;
653 return clearUnusedBits();
654 }
655
656 return AssignSlowCase(RHS);
657 }
658
659 #if LLVM_HAS_RVALUE_REFERENCES
660 /// @brief Move assignment operator.
661 APInt &operator=(APInt &&that) {
662 if (!isSingleWord())
663 delete[] pVal;
664
665 BitWidth = that.BitWidth;
666 VAL = that.VAL;
667
668 that.BitWidth = 0;
669
670 return *this;
671 }
672 #endif
673
674 /// \brief Assignment operator.
675 ///
676 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
677 /// the bit width, the excess bits are truncated. If the bit width is larger
678 /// than 64, the value is zero filled in the unspecified high order bits.
679 ///
680 /// \returns *this after assignment of RHS value.
681 APInt &operator=(uint64_t RHS);
682
683 /// \brief Bitwise AND assignment operator.
684 ///
685 /// Performs a bitwise AND operation on this APInt and RHS. The result is
686 /// assigned to *this.
687 ///
688 /// \returns *this after ANDing with RHS.
689 APInt &operator&=(const APInt &RHS);
690
691 /// \brief Bitwise OR assignment operator.
692 ///
693 /// Performs a bitwise OR operation on this APInt and RHS. The result is
694 /// assigned *this;
695 ///
696 /// \returns *this after ORing with RHS.
697 APInt &operator|=(const APInt &RHS);
698
699 /// \brief Bitwise OR assignment operator.
700 ///
701 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
702 /// logically zero-extended or truncated to match the bit-width of
703 /// the LHS.
704 APInt &operator|=(uint64_t RHS) {
705 if (isSingleWord()) {
706 VAL |= RHS;
707 clearUnusedBits();
708 } else {
709 pVal[0] |= RHS;
710 }
711 return *this;
712 }
713
714 /// \brief Bitwise XOR assignment operator.
715 ///
716 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
717 /// assigned to *this.
718 ///
719 /// \returns *this after XORing with RHS.
720 APInt &operator^=(const APInt &RHS);
721
722 /// \brief Multiplication assignment operator.
723 ///
724 /// Multiplies this APInt by RHS and assigns the result to *this.
725 ///
726 /// \returns *this
727 APInt &operator*=(const APInt &RHS);
728
729 /// \brief Addition assignment operator.
730 ///
731 /// Adds RHS to *this and assigns the result to *this.
732 ///
733 /// \returns *this
734 APInt &operator+=(const APInt &RHS);
735
736 /// \brief Subtraction assignment operator.
737 ///
738 /// Subtracts RHS from *this and assigns the result to *this.
739 ///
740 /// \returns *this
741 APInt &operator-=(const APInt &RHS);
742
743 /// \brief Left-shift assignment function.
744 ///
745 /// Shifts *this left by shiftAmt and assigns the result to *this.
746 ///
747 /// \returns *this after shifting left by shiftAmt
748 APInt &operator<<=(unsigned shiftAmt) {
749 *this = shl(shiftAmt);
750 return *this;
751 }
752
753 /// @}
754 /// \name Binary Operators
755 /// @{
756
757 /// \brief Bitwise AND operator.
758 ///
759 /// Performs a bitwise AND operation on *this and RHS.
760 ///
761 /// \returns An APInt value representing the bitwise AND of *this and RHS.
762 APInt operator&(const APInt &RHS) const {
763 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
764 if (isSingleWord())
765 return APInt(getBitWidth(), VAL & RHS.VAL);
766 return AndSlowCase(RHS);
767 }
And(const APInt & RHS)768 APInt And(const APInt &RHS) const { return this->operator&(RHS); }
769
770 /// \brief Bitwise OR operator.
771 ///
772 /// Performs a bitwise OR operation on *this and RHS.
773 ///
774 /// \returns An APInt value representing the bitwise OR of *this and RHS.
775 APInt operator|(const APInt &RHS) const {
776 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
777 if (isSingleWord())
778 return APInt(getBitWidth(), VAL | RHS.VAL);
779 return OrSlowCase(RHS);
780 }
781
782 /// \brief Bitwise OR function.
783 ///
784 /// Performs a bitwise or on *this and RHS. This is implemented bny simply
785 /// calling operator|.
786 ///
787 /// \returns An APInt value representing the bitwise OR of *this and RHS.
Or(const APInt & RHS)788 APInt Or(const APInt &RHS) const { return this->operator|(RHS); }
789
790 /// \brief Bitwise XOR operator.
791 ///
792 /// Performs a bitwise XOR operation on *this and RHS.
793 ///
794 /// \returns An APInt value representing the bitwise XOR of *this and RHS.
795 APInt operator^(const APInt &RHS) const {
796 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
797 if (isSingleWord())
798 return APInt(BitWidth, VAL ^ RHS.VAL);
799 return XorSlowCase(RHS);
800 }
801
802 /// \brief Bitwise XOR function.
803 ///
804 /// Performs a bitwise XOR operation on *this and RHS. This is implemented
805 /// through the usage of operator^.
806 ///
807 /// \returns An APInt value representing the bitwise XOR of *this and RHS.
Xor(const APInt & RHS)808 APInt Xor(const APInt &RHS) const { return this->operator^(RHS); }
809
810 /// \brief Multiplication operator.
811 ///
812 /// Multiplies this APInt by RHS and returns the result.
813 APInt operator*(const APInt &RHS) const;
814
815 /// \brief Addition operator.
816 ///
817 /// Adds RHS to this APInt and returns the result.
818 APInt operator+(const APInt &RHS) const;
819 APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
820
821 /// \brief Subtraction operator.
822 ///
823 /// Subtracts RHS from this APInt and returns the result.
824 APInt operator-(const APInt &RHS) const;
825 APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
826
827 /// \brief Left logical shift operator.
828 ///
829 /// Shifts this APInt left by \p Bits and returns the result.
830 APInt operator<<(unsigned Bits) const { return shl(Bits); }
831
832 /// \brief Left logical shift operator.
833 ///
834 /// Shifts this APInt left by \p Bits and returns the result.
835 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
836
837 /// \brief Arithmetic right-shift function.
838 ///
839 /// Arithmetic right-shift this APInt by shiftAmt.
840 APInt ashr(unsigned shiftAmt) const;
841
842 /// \brief Logical right-shift function.
843 ///
844 /// Logical right-shift this APInt by shiftAmt.
845 APInt lshr(unsigned shiftAmt) const;
846
847 /// \brief Left-shift function.
848 ///
849 /// Left-shift this APInt by shiftAmt.
shl(unsigned shiftAmt)850 APInt shl(unsigned shiftAmt) const {
851 assert(shiftAmt <= BitWidth && "Invalid shift amount");
852 if (isSingleWord()) {
853 if (shiftAmt >= BitWidth)
854 return APInt(BitWidth, 0); // avoid undefined shift results
855 return APInt(BitWidth, VAL << shiftAmt);
856 }
857 return shlSlowCase(shiftAmt);
858 }
859
860 /// \brief Rotate left by rotateAmt.
861 APInt rotl(unsigned rotateAmt) const;
862
863 /// \brief Rotate right by rotateAmt.
864 APInt rotr(unsigned rotateAmt) const;
865
866 /// \brief Arithmetic right-shift function.
867 ///
868 /// Arithmetic right-shift this APInt by shiftAmt.
869 APInt ashr(const APInt &shiftAmt) const;
870
871 /// \brief Logical right-shift function.
872 ///
873 /// Logical right-shift this APInt by shiftAmt.
874 APInt lshr(const APInt &shiftAmt) const;
875
876 /// \brief Left-shift function.
877 ///
878 /// Left-shift this APInt by shiftAmt.
879 APInt shl(const APInt &shiftAmt) const;
880
881 /// \brief Rotate left by rotateAmt.
882 APInt rotl(const APInt &rotateAmt) const;
883
884 /// \brief Rotate right by rotateAmt.
885 APInt rotr(const APInt &rotateAmt) const;
886
887 /// \brief Unsigned division operation.
888 ///
889 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
890 /// RHS are treated as unsigned quantities for purposes of this division.
891 ///
892 /// \returns a new APInt value containing the division result
893 APInt udiv(const APInt &RHS) const;
894
895 /// \brief Signed division function for APInt.
896 ///
897 /// Signed divide this APInt by APInt RHS.
898 APInt sdiv(const APInt &RHS) const;
899
900 /// \brief Unsigned remainder operation.
901 ///
902 /// Perform an unsigned remainder operation on this APInt with RHS being the
903 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
904 /// of this operation. Note that this is a true remainder operation and not a
905 /// modulo operation because the sign follows the sign of the dividend which
906 /// is *this.
907 ///
908 /// \returns a new APInt value containing the remainder result
909 APInt urem(const APInt &RHS) const;
910
911 /// \brief Function for signed remainder operation.
912 ///
913 /// Signed remainder operation on APInt.
914 APInt srem(const APInt &RHS) const;
915
916 /// \brief Dual division/remainder interface.
917 ///
918 /// Sometimes it is convenient to divide two APInt values and obtain both the
919 /// quotient and remainder. This function does both operations in the same
920 /// computation making it a little more efficient. The pair of input arguments
921 /// may overlap with the pair of output arguments. It is safe to call
922 /// udivrem(X, Y, X, Y), for example.
923 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
924 APInt &Remainder);
925
926 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
927 APInt &Remainder);
928
929 // Operations that return overflow indicators.
930 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
931 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
932 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
933 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
934 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
935 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
936 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
937 APInt sshl_ov(unsigned Amt, bool &Overflow) const;
938
939 /// \brief Array-indexing support.
940 ///
941 /// \returns the bit value at bitPosition
942 bool operator[](unsigned bitPosition) const {
943 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
944 return (maskBit(bitPosition) &
945 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
946 0;
947 }
948
949 /// @}
950 /// \name Comparison Operators
951 /// @{
952
953 /// \brief Equality operator.
954 ///
955 /// Compares this APInt with RHS for the validity of the equality
956 /// relationship.
957 bool operator==(const APInt &RHS) const {
958 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
959 if (isSingleWord())
960 return VAL == RHS.VAL;
961 return EqualSlowCase(RHS);
962 }
963
964 /// \brief Equality operator.
965 ///
966 /// Compares this APInt with a uint64_t for the validity of the equality
967 /// relationship.
968 ///
969 /// \returns true if *this == Val
970 bool operator==(uint64_t Val) const {
971 if (isSingleWord())
972 return VAL == Val;
973 return EqualSlowCase(Val);
974 }
975
976 /// \brief Equality comparison.
977 ///
978 /// Compares this APInt with RHS for the validity of the equality
979 /// relationship.
980 ///
981 /// \returns true if *this == Val
eq(const APInt & RHS)982 bool eq(const APInt &RHS) const { return (*this) == RHS; }
983
984 /// \brief Inequality operator.
985 ///
986 /// Compares this APInt with RHS for the validity of the inequality
987 /// relationship.
988 ///
989 /// \returns true if *this != Val
990 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
991
992 /// \brief Inequality operator.
993 ///
994 /// Compares this APInt with a uint64_t for the validity of the inequality
995 /// relationship.
996 ///
997 /// \returns true if *this != Val
998 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
999
1000 /// \brief Inequality comparison
1001 ///
1002 /// Compares this APInt with RHS for the validity of the inequality
1003 /// relationship.
1004 ///
1005 /// \returns true if *this != Val
ne(const APInt & RHS)1006 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1007
1008 /// \brief Unsigned less than comparison
1009 ///
1010 /// Regards both *this and RHS as unsigned quantities and compares them for
1011 /// the validity of the less-than relationship.
1012 ///
1013 /// \returns true if *this < RHS when both are considered unsigned.
1014 bool ult(const APInt &RHS) const;
1015
1016 /// \brief Unsigned less than comparison
1017 ///
1018 /// Regards both *this as an unsigned quantity and compares it with RHS for
1019 /// the validity of the less-than relationship.
1020 ///
1021 /// \returns true if *this < RHS when considered unsigned.
ult(uint64_t RHS)1022 bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }
1023
1024 /// \brief Signed less than comparison
1025 ///
1026 /// Regards both *this and RHS as signed quantities and compares them for
1027 /// validity of the less-than relationship.
1028 ///
1029 /// \returns true if *this < RHS when both are considered signed.
1030 bool slt(const APInt &RHS) const;
1031
1032 /// \brief Signed less than comparison
1033 ///
1034 /// Regards both *this as a signed quantity and compares it with RHS for
1035 /// the validity of the less-than relationship.
1036 ///
1037 /// \returns true if *this < RHS when considered signed.
slt(uint64_t RHS)1038 bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }
1039
1040 /// \brief Unsigned less or equal comparison
1041 ///
1042 /// Regards both *this and RHS as unsigned quantities and compares them for
1043 /// validity of the less-or-equal relationship.
1044 ///
1045 /// \returns true if *this <= RHS when both are considered unsigned.
ule(const APInt & RHS)1046 bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
1047
1048 /// \brief Unsigned less or equal comparison
1049 ///
1050 /// Regards both *this as an unsigned quantity and compares it with RHS for
1051 /// the validity of the less-or-equal relationship.
1052 ///
1053 /// \returns true if *this <= RHS when considered unsigned.
ule(uint64_t RHS)1054 bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }
1055
1056 /// \brief Signed less or equal comparison
1057 ///
1058 /// Regards both *this and RHS as signed quantities and compares them for
1059 /// validity of the less-or-equal relationship.
1060 ///
1061 /// \returns true if *this <= RHS when both are considered signed.
sle(const APInt & RHS)1062 bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
1063
1064 /// \brief Signed less or equal comparison
1065 ///
1066 /// Regards both *this as a signed quantity and compares it with RHS for the
1067 /// validity of the less-or-equal relationship.
1068 ///
1069 /// \returns true if *this <= RHS when considered signed.
sle(uint64_t RHS)1070 bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }
1071
1072 /// \brief Unsigned greather than comparison
1073 ///
1074 /// Regards both *this and RHS as unsigned quantities and compares them for
1075 /// the validity of the greater-than relationship.
1076 ///
1077 /// \returns true if *this > RHS when both are considered unsigned.
ugt(const APInt & RHS)1078 bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
1079
1080 /// \brief Unsigned greater than comparison
1081 ///
1082 /// Regards both *this as an unsigned quantity and compares it with RHS for
1083 /// the validity of the greater-than relationship.
1084 ///
1085 /// \returns true if *this > RHS when considered unsigned.
ugt(uint64_t RHS)1086 bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }
1087
1088 /// \brief Signed greather than comparison
1089 ///
1090 /// Regards both *this and RHS as signed quantities and compares them for the
1091 /// validity of the greater-than relationship.
1092 ///
1093 /// \returns true if *this > RHS when both are considered signed.
sgt(const APInt & RHS)1094 bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
1095
1096 /// \brief Signed greater than comparison
1097 ///
1098 /// Regards both *this as a signed quantity and compares it with RHS for
1099 /// the validity of the greater-than relationship.
1100 ///
1101 /// \returns true if *this > RHS when considered signed.
sgt(uint64_t RHS)1102 bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }
1103
1104 /// \brief Unsigned greater or equal comparison
1105 ///
1106 /// Regards both *this and RHS as unsigned quantities and compares them for
1107 /// validity of the greater-or-equal relationship.
1108 ///
1109 /// \returns true if *this >= RHS when both are considered unsigned.
uge(const APInt & RHS)1110 bool uge(const APInt &RHS) const { return !ult(RHS); }
1111
1112 /// \brief Unsigned greater or equal comparison
1113 ///
1114 /// Regards both *this as an unsigned quantity and compares it with RHS for
1115 /// the validity of the greater-or-equal relationship.
1116 ///
1117 /// \returns true if *this >= RHS when considered unsigned.
uge(uint64_t RHS)1118 bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }
1119
1120 /// \brief Signed greather or equal comparison
1121 ///
1122 /// Regards both *this and RHS as signed quantities and compares them for
1123 /// validity of the greater-or-equal relationship.
1124 ///
1125 /// \returns true if *this >= RHS when both are considered signed.
sge(const APInt & RHS)1126 bool sge(const APInt &RHS) const { return !slt(RHS); }
1127
1128 /// \brief Signed greater or equal comparison
1129 ///
1130 /// Regards both *this as a signed quantity and compares it with RHS for
1131 /// the validity of the greater-or-equal relationship.
1132 ///
1133 /// \returns true if *this >= RHS when considered signed.
sge(uint64_t RHS)1134 bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }
1135
1136 /// This operation tests if there are any pairs of corresponding bits
1137 /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1138 bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
1139
1140 /// @}
1141 /// \name Resizing Operators
1142 /// @{
1143
1144 /// \brief Truncate to new width.
1145 ///
1146 /// Truncate the APInt to a specified width. It is an error to specify a width
1147 /// that is greater than or equal to the current width.
1148 APInt trunc(unsigned width) const;
1149
1150 /// \brief Sign extend to a new width.
1151 ///
1152 /// This operation sign extends the APInt to a new width. If the high order
1153 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1154 /// It is an error to specify a width that is less than or equal to the
1155 /// current width.
1156 APInt sext(unsigned width) const;
1157
1158 /// \brief Zero extend to a new width.
1159 ///
1160 /// This operation zero extends the APInt to a new width. The high order bits
1161 /// are filled with 0 bits. It is an error to specify a width that is less
1162 /// than or equal to the current width.
1163 APInt zext(unsigned width) const;
1164
1165 /// \brief Sign extend or truncate to width
1166 ///
1167 /// Make this APInt have the bit width given by \p width. The value is sign
1168 /// extended, truncated, or left alone to make it that width.
1169 APInt sextOrTrunc(unsigned width) const;
1170
1171 /// \brief Zero extend or truncate to width
1172 ///
1173 /// Make this APInt have the bit width given by \p width. The value is zero
1174 /// extended, truncated, or left alone to make it that width.
1175 APInt zextOrTrunc(unsigned width) const;
1176
1177 /// \brief Sign extend or truncate to width
1178 ///
1179 /// Make this APInt have the bit width given by \p width. The value is sign
1180 /// extended, or left alone to make it that width.
1181 APInt sextOrSelf(unsigned width) const;
1182
1183 /// \brief Zero extend or truncate to width
1184 ///
1185 /// Make this APInt have the bit width given by \p width. The value is zero
1186 /// extended, or left alone to make it that width.
1187 APInt zextOrSelf(unsigned width) const;
1188
1189 /// @}
1190 /// \name Bit Manipulation Operators
1191 /// @{
1192
1193 /// \brief Set every bit to 1.
setAllBits()1194 void setAllBits() {
1195 if (isSingleWord())
1196 VAL = UINT64_MAX;
1197 else {
1198 // Set all the bits in all the words.
1199 for (unsigned i = 0; i < getNumWords(); ++i)
1200 pVal[i] = UINT64_MAX;
1201 }
1202 // Clear the unused ones
1203 clearUnusedBits();
1204 }
1205
1206 /// \brief Set a given bit to 1.
1207 ///
1208 /// Set the given bit to 1 whose position is given as "bitPosition".
1209 void setBit(unsigned bitPosition);
1210
1211 /// \brief Set every bit to 0.
clearAllBits()1212 void clearAllBits() {
1213 if (isSingleWord())
1214 VAL = 0;
1215 else
1216 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1217 }
1218
1219 /// \brief Set a given bit to 0.
1220 ///
1221 /// Set the given bit to 0 whose position is given as "bitPosition".
1222 void clearBit(unsigned bitPosition);
1223
1224 /// \brief Toggle every bit to its opposite value.
flipAllBits()1225 void flipAllBits() {
1226 if (isSingleWord())
1227 VAL ^= UINT64_MAX;
1228 else {
1229 for (unsigned i = 0; i < getNumWords(); ++i)
1230 pVal[i] ^= UINT64_MAX;
1231 }
1232 clearUnusedBits();
1233 }
1234
1235 /// \brief Toggles a given bit to its opposite value.
1236 ///
1237 /// Toggle a given bit to its opposite value whose position is given
1238 /// as "bitPosition".
1239 void flipBit(unsigned bitPosition);
1240
1241 /// @}
1242 /// \name Value Characterization Functions
1243 /// @{
1244
1245 /// \brief Return the number of bits in the APInt.
getBitWidth()1246 unsigned getBitWidth() const { return BitWidth; }
1247
1248 /// \brief Get the number of words.
1249 ///
1250 /// Here one word's bitwidth equals to that of uint64_t.
1251 ///
1252 /// \returns the number of words to hold the integer value of this APInt.
getNumWords()1253 unsigned getNumWords() const { return getNumWords(BitWidth); }
1254
1255 /// \brief Get the number of words.
1256 ///
1257 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1258 ///
1259 /// \returns the number of words to hold the integer value with a given bit
1260 /// width.
getNumWords(unsigned BitWidth)1261 static unsigned getNumWords(unsigned BitWidth) {
1262 return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1263 }
1264
1265 /// \brief Compute the number of active bits in the value
1266 ///
1267 /// This function returns the number of active bits which is defined as the
1268 /// bit width minus the number of leading zeros. This is used in several
1269 /// computations to see how "wide" the value is.
getActiveBits()1270 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1271
1272 /// \brief Compute the number of active words in the value of this APInt.
1273 ///
1274 /// This is used in conjunction with getActiveData to extract the raw value of
1275 /// the APInt.
getActiveWords()1276 unsigned getActiveWords() const {
1277 unsigned numActiveBits = getActiveBits();
1278 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1279 }
1280
1281 /// \brief Get the minimum bit size for this signed APInt
1282 ///
1283 /// Computes the minimum bit width for this APInt while considering it to be a
1284 /// signed (and probably negative) value. If the value is not negative, this
1285 /// function returns the same value as getActiveBits()+1. Otherwise, it
1286 /// returns the smallest bit width that will retain the negative value. For
1287 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1288 /// for -1, this function will always return 1.
getMinSignedBits()1289 unsigned getMinSignedBits() const {
1290 if (isNegative())
1291 return BitWidth - countLeadingOnes() + 1;
1292 return getActiveBits() + 1;
1293 }
1294
1295 /// \brief Get zero extended value
1296 ///
1297 /// This method attempts to return the value of this APInt as a zero extended
1298 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1299 /// uint64_t. Otherwise an assertion will result.
getZExtValue()1300 uint64_t getZExtValue() const {
1301 if (isSingleWord())
1302 return VAL;
1303 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1304 return pVal[0];
1305 }
1306
1307 /// \brief Get sign extended value
1308 ///
1309 /// This method attempts to return the value of this APInt as a sign extended
1310 /// int64_t. The bit width must be <= 64 or the value must fit within an
1311 /// int64_t. Otherwise an assertion will result.
getSExtValue()1312 int64_t getSExtValue() const {
1313 if (isSingleWord())
1314 return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1315 (APINT_BITS_PER_WORD - BitWidth);
1316 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1317 return int64_t(pVal[0]);
1318 }
1319
1320 /// \brief Get bits required for string value.
1321 ///
1322 /// This method determines how many bits are required to hold the APInt
1323 /// equivalent of the string given by \p str.
1324 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1325
1326 /// \brief The APInt version of the countLeadingZeros functions in
1327 /// MathExtras.h.
1328 ///
1329 /// It counts the number of zeros from the most significant bit to the first
1330 /// one bit.
1331 ///
1332 /// \returns BitWidth if the value is zero, otherwise returns the number of
1333 /// zeros from the most significant bit to the first one bits.
countLeadingZeros()1334 unsigned countLeadingZeros() const {
1335 if (isSingleWord()) {
1336 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1337 return llvm::countLeadingZeros(VAL) - unusedBits;
1338 }
1339 return countLeadingZerosSlowCase();
1340 }
1341
1342 /// \brief Count the number of leading one bits.
1343 ///
1344 /// This function is an APInt version of the countLeadingOnes_{32,64}
1345 /// functions in MathExtras.h. It counts the number of ones from the most
1346 /// significant bit to the first zero bit.
1347 ///
1348 /// \returns 0 if the high order bit is not set, otherwise returns the number
1349 /// of 1 bits from the most significant to the least
1350 unsigned countLeadingOnes() const;
1351
1352 /// Computes the number of leading bits of this APInt that are equal to its
1353 /// sign bit.
getNumSignBits()1354 unsigned getNumSignBits() const {
1355 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1356 }
1357
1358 /// \brief Count the number of trailing zero bits.
1359 ///
1360 /// This function is an APInt version of the countTrailingZeros_{32,64}
1361 /// functions in MathExtras.h. It counts the number of zeros from the least
1362 /// significant bit to the first set bit.
1363 ///
1364 /// \returns BitWidth if the value is zero, otherwise returns the number of
1365 /// zeros from the least significant bit to the first one bit.
1366 unsigned countTrailingZeros() const;
1367
1368 /// \brief Count the number of trailing one bits.
1369 ///
1370 /// This function is an APInt version of the countTrailingOnes_{32,64}
1371 /// functions in MathExtras.h. It counts the number of ones from the least
1372 /// significant bit to the first zero bit.
1373 ///
1374 /// \returns BitWidth if the value is all ones, otherwise returns the number
1375 /// of ones from the least significant bit to the first zero bit.
countTrailingOnes()1376 unsigned countTrailingOnes() const {
1377 if (isSingleWord())
1378 return CountTrailingOnes_64(VAL);
1379 return countTrailingOnesSlowCase();
1380 }
1381
1382 /// \brief Count the number of bits set.
1383 ///
1384 /// This function is an APInt version of the countPopulation_{32,64} functions
1385 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1386 ///
1387 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
countPopulation()1388 unsigned countPopulation() const {
1389 if (isSingleWord())
1390 return CountPopulation_64(VAL);
1391 return countPopulationSlowCase();
1392 }
1393
1394 /// @}
1395 /// \name Conversion Functions
1396 /// @{
1397 void print(raw_ostream &OS, bool isSigned) const;
1398
1399 /// Converts an APInt to a string and append it to Str. Str is commonly a
1400 /// SmallString.
1401 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1402 bool formatAsCLiteral = false) const;
1403
1404 /// Considers the APInt to be unsigned and converts it into a string in the
1405 /// radix given. The radix can be 2, 8, 10 16, or 36.
1406 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1407 toString(Str, Radix, false, false);
1408 }
1409
1410 /// Considers the APInt to be signed and converts it into a string in the
1411 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1412 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1413 toString(Str, Radix, true, false);
1414 }
1415
1416 /// \brief Return the APInt as a std::string.
1417 ///
1418 /// Note that this is an inefficient method. It is better to pass in a
1419 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1420 /// for the string.
1421 std::string toString(unsigned Radix, bool Signed) const;
1422
1423 /// \returns a byte-swapped representation of this APInt Value.
1424 APInt byteSwap() const;
1425
1426 /// \brief Converts this APInt to a double value.
1427 double roundToDouble(bool isSigned) const;
1428
1429 /// \brief Converts this unsigned APInt to a double value.
roundToDouble()1430 double roundToDouble() const { return roundToDouble(false); }
1431
1432 /// \brief Converts this signed APInt to a double value.
signedRoundToDouble()1433 double signedRoundToDouble() const { return roundToDouble(true); }
1434
1435 /// \brief Converts APInt bits to a double
1436 ///
1437 /// The conversion does not do a translation from integer to double, it just
1438 /// re-interprets the bits as a double. Note that it is valid to do this on
1439 /// any bit width. Exactly 64 bits will be translated.
bitsToDouble()1440 double bitsToDouble() const {
1441 union {
1442 uint64_t I;
1443 double D;
1444 } T;
1445 T.I = (isSingleWord() ? VAL : pVal[0]);
1446 return T.D;
1447 }
1448
1449 /// \brief Converts APInt bits to a double
1450 ///
1451 /// The conversion does not do a translation from integer to float, it just
1452 /// re-interprets the bits as a float. Note that it is valid to do this on
1453 /// any bit width. Exactly 32 bits will be translated.
bitsToFloat()1454 float bitsToFloat() const {
1455 union {
1456 unsigned I;
1457 float F;
1458 } T;
1459 T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1460 return T.F;
1461 }
1462
1463 /// \brief Converts a double to APInt bits.
1464 ///
1465 /// The conversion does not do a translation from double to integer, it just
1466 /// re-interprets the bits of the double.
doubleToBits(double V)1467 static APInt doubleToBits(double V) {
1468 union {
1469 uint64_t I;
1470 double D;
1471 } T;
1472 T.D = V;
1473 return APInt(sizeof T * CHAR_BIT, T.I);
1474 }
1475
1476 /// \brief Converts a float to APInt bits.
1477 ///
1478 /// The conversion does not do a translation from float to integer, it just
1479 /// re-interprets the bits of the float.
floatToBits(float V)1480 static APInt floatToBits(float V) {
1481 union {
1482 unsigned I;
1483 float F;
1484 } T;
1485 T.F = V;
1486 return APInt(sizeof T * CHAR_BIT, T.I);
1487 }
1488
1489 /// @}
1490 /// \name Mathematics Operations
1491 /// @{
1492
1493 /// \returns the floor log base 2 of this APInt.
logBase2()1494 unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
1495
1496 /// \returns the ceil log base 2 of this APInt.
ceilLogBase2()1497 unsigned ceilLogBase2() const {
1498 return BitWidth - (*this - 1).countLeadingZeros();
1499 }
1500
1501 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1502 /// otherwise
exactLogBase2()1503 int32_t exactLogBase2() const {
1504 if (!isPowerOf2())
1505 return -1;
1506 return logBase2();
1507 }
1508
1509 /// \brief Compute the square root
1510 APInt sqrt() const;
1511
1512 /// \brief Get the absolute value;
1513 ///
1514 /// If *this is < 0 then return -(*this), otherwise *this;
abs()1515 APInt abs() const {
1516 if (isNegative())
1517 return -(*this);
1518 return *this;
1519 }
1520
1521 /// \returns the multiplicative inverse for a given modulo.
1522 APInt multiplicativeInverse(const APInt &modulo) const;
1523
1524 /// @}
1525 /// \name Support for division by constant
1526 /// @{
1527
1528 /// Calculate the magic number for signed division by a constant.
1529 struct ms;
1530 ms magic() const;
1531
1532 /// Calculate the magic number for unsigned division by a constant.
1533 struct mu;
1534 mu magicu(unsigned LeadingZeros = 0) const;
1535
1536 /// @}
1537 /// \name Building-block Operations for APInt and APFloat
1538 /// @{
1539
1540 // These building block operations operate on a representation of arbitrary
1541 // precision, two's-complement, bignum integer values. They should be
1542 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1543 // generally a pointer to the base of an array of integer parts, representing
1544 // an unsigned bignum, and a count of how many parts there are.
1545
1546 /// Sets the least significant part of a bignum to the input value, and zeroes
1547 /// out higher parts.
1548 static void tcSet(integerPart *, integerPart, unsigned int);
1549
1550 /// Assign one bignum to another.
1551 static void tcAssign(integerPart *, const integerPart *, unsigned int);
1552
1553 /// Returns true if a bignum is zero, false otherwise.
1554 static bool tcIsZero(const integerPart *, unsigned int);
1555
1556 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1557 static int tcExtractBit(const integerPart *, unsigned int bit);
1558
1559 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1560 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1561 /// significant bit of DST. All high bits above srcBITS in DST are
1562 /// zero-filled.
1563 static void tcExtract(integerPart *, unsigned int dstCount,
1564 const integerPart *, unsigned int srcBits,
1565 unsigned int srcLSB);
1566
1567 /// Set the given bit of a bignum. Zero-based.
1568 static void tcSetBit(integerPart *, unsigned int bit);
1569
1570 /// Clear the given bit of a bignum. Zero-based.
1571 static void tcClearBit(integerPart *, unsigned int bit);
1572
1573 /// Returns the bit number of the least or most significant set bit of a
1574 /// number. If the input number has no bits set -1U is returned.
1575 static unsigned int tcLSB(const integerPart *, unsigned int);
1576 static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1577
1578 /// Negate a bignum in-place.
1579 static void tcNegate(integerPart *, unsigned int);
1580
1581 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1582 static integerPart tcAdd(integerPart *, const integerPart *,
1583 integerPart carry, unsigned);
1584
1585 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1586 static integerPart tcSubtract(integerPart *, const integerPart *,
1587 integerPart carry, unsigned);
1588
1589 /// DST += SRC * MULTIPLIER + PART if add is true
1590 /// DST = SRC * MULTIPLIER + PART if add is false
1591 ///
1592 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1593 /// start at the same point, i.e. DST == SRC.
1594 ///
1595 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1596 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1597 /// result, and if all of the omitted higher parts were zero return zero,
1598 /// otherwise overflow occurred and return one.
1599 static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1600 integerPart multiplier, integerPart carry,
1601 unsigned int srcParts, unsigned int dstParts,
1602 bool add);
1603
1604 /// DST = LHS * RHS, where DST has the same width as the operands and is
1605 /// filled with the least significant parts of the result. Returns one if
1606 /// overflow occurred, otherwise zero. DST must be disjoint from both
1607 /// operands.
1608 static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
1609 unsigned);
1610
1611 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1612 /// operands. No overflow occurs. DST must be disjoint from both
1613 /// operands. Returns the number of parts required to hold the result.
1614 static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1615 const integerPart *, unsigned, unsigned);
1616
1617 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1618 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1619 /// REMAINDER to the remainder, return zero. i.e.
1620 ///
1621 /// OLD_LHS = RHS * LHS + REMAINDER
1622 ///
1623 /// SCRATCH is a bignum of the same size as the operands and result for use by
1624 /// the routine; its contents need not be initialized and are destroyed. LHS,
1625 /// REMAINDER and SCRATCH must be distinct.
1626 static int tcDivide(integerPart *lhs, const integerPart *rhs,
1627 integerPart *remainder, integerPart *scratch,
1628 unsigned int parts);
1629
1630 /// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no
1631 /// restrictions on COUNT.
1632 static void tcShiftLeft(integerPart *, unsigned int parts,
1633 unsigned int count);
1634
1635 /// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no
1636 /// restrictions on COUNT.
1637 static void tcShiftRight(integerPart *, unsigned int parts,
1638 unsigned int count);
1639
1640 /// The obvious AND, OR and XOR and complement operations.
1641 static void tcAnd(integerPart *, const integerPart *, unsigned int);
1642 static void tcOr(integerPart *, const integerPart *, unsigned int);
1643 static void tcXor(integerPart *, const integerPart *, unsigned int);
1644 static void tcComplement(integerPart *, unsigned int);
1645
1646 /// Comparison (unsigned) of two bignums.
1647 static int tcCompare(const integerPart *, const integerPart *, unsigned int);
1648
1649 /// Increment a bignum in-place. Return the carry flag.
1650 static integerPart tcIncrement(integerPart *, unsigned int);
1651
1652 /// Decrement a bignum in-place. Return the borrow flag.
1653 static integerPart tcDecrement(integerPart *, unsigned int);
1654
1655 /// Set the least significant BITS and clear the rest.
1656 static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1657 unsigned int bits);
1658
1659 /// \brief debug method
1660 void dump() const;
1661
1662 /// @}
1663 };
1664
1665 /// Magic data for optimising signed division by a constant.
1666 struct APInt::ms {
1667 APInt m; ///< magic number
1668 unsigned s; ///< shift amount
1669 };
1670
1671 /// Magic data for optimising unsigned division by a constant.
1672 struct APInt::mu {
1673 APInt m; ///< magic number
1674 bool a; ///< add indicator
1675 unsigned s; ///< shift amount
1676 };
1677
1678 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1679
1680 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1681
1682 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1683 I.print(OS, true);
1684 return OS;
1685 }
1686
1687 namespace APIntOps {
1688
1689 /// \brief Determine the smaller of two APInts considered to be signed.
smin(const APInt & A,const APInt & B)1690 inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
1691
1692 /// \brief Determine the larger of two APInts considered to be signed.
smax(const APInt & A,const APInt & B)1693 inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
1694
1695 /// \brief Determine the smaller of two APInts considered to be signed.
umin(const APInt & A,const APInt & B)1696 inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
1697
1698 /// \brief Determine the larger of two APInts considered to be unsigned.
umax(const APInt & A,const APInt & B)1699 inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
1700
1701 /// \brief Check if the specified APInt has a N-bits unsigned integer value.
isIntN(unsigned N,const APInt & APIVal)1702 inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
1703
1704 /// \brief Check if the specified APInt has a N-bits signed integer value.
isSignedIntN(unsigned N,const APInt & APIVal)1705 inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
1706 return APIVal.isSignedIntN(N);
1707 }
1708
1709 /// \returns true if the argument APInt value is a sequence of ones starting at
1710 /// the least significant bit with the remainder zero.
isMask(unsigned numBits,const APInt & APIVal)1711 inline bool isMask(unsigned numBits, const APInt &APIVal) {
1712 return numBits <= APIVal.getBitWidth() &&
1713 APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1714 }
1715
1716 /// \brief Return true if the argument APInt value contains a sequence of ones
1717 /// with the remainder zero.
isShiftedMask(unsigned numBits,const APInt & APIVal)1718 inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
1719 return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
1720 }
1721
1722 /// \brief Returns a byte-swapped representation of the specified APInt Value.
byteSwap(const APInt & APIVal)1723 inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
1724
1725 /// \brief Returns the floor log base 2 of the specified APInt value.
logBase2(const APInt & APIVal)1726 inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
1727
1728 /// \brief Compute GCD of two APInt values.
1729 ///
1730 /// This function returns the greatest common divisor of the two APInt values
1731 /// using Euclid's algorithm.
1732 ///
1733 /// \returns the greatest common divisor of Val1 and Val2
1734 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
1735
1736 /// \brief Converts the given APInt to a double value.
1737 ///
1738 /// Treats the APInt as an unsigned value for conversion purposes.
RoundAPIntToDouble(const APInt & APIVal)1739 inline double RoundAPIntToDouble(const APInt &APIVal) {
1740 return APIVal.roundToDouble();
1741 }
1742
1743 /// \brief Converts the given APInt to a double value.
1744 ///
1745 /// Treats the APInt as a signed value for conversion purposes.
RoundSignedAPIntToDouble(const APInt & APIVal)1746 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
1747 return APIVal.signedRoundToDouble();
1748 }
1749
1750 /// \brief Converts the given APInt to a float vlalue.
RoundAPIntToFloat(const APInt & APIVal)1751 inline float RoundAPIntToFloat(const APInt &APIVal) {
1752 return float(RoundAPIntToDouble(APIVal));
1753 }
1754
1755 /// \brief Converts the given APInt to a float value.
1756 ///
1757 /// Treast the APInt as a signed value for conversion purposes.
RoundSignedAPIntToFloat(const APInt & APIVal)1758 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
1759 return float(APIVal.signedRoundToDouble());
1760 }
1761
1762 /// \brief Converts the given double value into a APInt.
1763 ///
1764 /// This function convert a double value to an APInt value.
1765 APInt RoundDoubleToAPInt(double Double, unsigned width);
1766
1767 /// \brief Converts a float value into a APInt.
1768 ///
1769 /// Converts a float value into an APInt value.
RoundFloatToAPInt(float Float,unsigned width)1770 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1771 return RoundDoubleToAPInt(double(Float), width);
1772 }
1773
1774 /// \brief Arithmetic right-shift function.
1775 ///
1776 /// Arithmetic right-shift the APInt by shiftAmt.
ashr(const APInt & LHS,unsigned shiftAmt)1777 inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
1778 return LHS.ashr(shiftAmt);
1779 }
1780
1781 /// \brief Logical right-shift function.
1782 ///
1783 /// Logical right-shift the APInt by shiftAmt.
lshr(const APInt & LHS,unsigned shiftAmt)1784 inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
1785 return LHS.lshr(shiftAmt);
1786 }
1787
1788 /// \brief Left-shift function.
1789 ///
1790 /// Left-shift the APInt by shiftAmt.
shl(const APInt & LHS,unsigned shiftAmt)1791 inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
1792 return LHS.shl(shiftAmt);
1793 }
1794
1795 /// \brief Signed division function for APInt.
1796 ///
1797 /// Signed divide APInt LHS by APInt RHS.
sdiv(const APInt & LHS,const APInt & RHS)1798 inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
1799
1800 /// \brief Unsigned division function for APInt.
1801 ///
1802 /// Unsigned divide APInt LHS by APInt RHS.
udiv(const APInt & LHS,const APInt & RHS)1803 inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
1804
1805 /// \brief Function for signed remainder operation.
1806 ///
1807 /// Signed remainder operation on APInt.
srem(const APInt & LHS,const APInt & RHS)1808 inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
1809
1810 /// \brief Function for unsigned remainder operation.
1811 ///
1812 /// Unsigned remainder operation on APInt.
urem(const APInt & LHS,const APInt & RHS)1813 inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
1814
1815 /// \brief Function for multiplication operation.
1816 ///
1817 /// Performs multiplication on APInt values.
mul(const APInt & LHS,const APInt & RHS)1818 inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
1819
1820 /// \brief Function for addition operation.
1821 ///
1822 /// Performs addition on APInt values.
add(const APInt & LHS,const APInt & RHS)1823 inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
1824
1825 /// \brief Function for subtraction operation.
1826 ///
1827 /// Performs subtraction on APInt values.
sub(const APInt & LHS,const APInt & RHS)1828 inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
1829
1830 /// \brief Bitwise AND function for APInt.
1831 ///
1832 /// Performs bitwise AND operation on APInt LHS and
1833 /// APInt RHS.
And(const APInt & LHS,const APInt & RHS)1834 inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
1835
1836 /// \brief Bitwise OR function for APInt.
1837 ///
1838 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
Or(const APInt & LHS,const APInt & RHS)1839 inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
1840
1841 /// \brief Bitwise XOR function for APInt.
1842 ///
1843 /// Performs bitwise XOR operation on APInt.
Xor(const APInt & LHS,const APInt & RHS)1844 inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
1845
1846 /// \brief Bitwise complement function.
1847 ///
1848 /// Performs a bitwise complement operation on APInt.
Not(const APInt & APIVal)1849 inline APInt Not(const APInt &APIVal) { return ~APIVal; }
1850
1851 } // End of APIntOps namespace
1852
1853 // See friend declaration above. This additional declaration is required in
1854 // order to compile LLVM with IBM xlC compiler.
1855 hash_code hash_value(const APInt &Arg);
1856 } // End of llvm namespace
1857
1858 #endif
1859