• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file implements a class to represent arbitrary precision
12 /// integral constant values and operations on them.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_APINT_H
17 #define LLVM_ADT_APINT_H
18 
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/MathExtras.h"
22 #include <cassert>
23 #include <climits>
24 #include <cstring>
25 #include <string>
26 
27 namespace llvm {
28 class Deserializer;
29 class FoldingSetNodeID;
30 class Serializer;
31 class StringRef;
32 class hash_code;
33 class raw_ostream;
34 
35 template <typename T> class SmallVectorImpl;
36 
37 // An unsigned host type used as a single part of a multi-part
38 // bignum.
39 typedef uint64_t integerPart;
40 
41 const unsigned int host_char_bit = 8;
42 const unsigned int integerPartWidth =
43     host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
44 
45 //===----------------------------------------------------------------------===//
46 //                              APInt Class
47 //===----------------------------------------------------------------------===//
48 
49 /// \brief Class for arbitrary precision integers.
50 ///
51 /// APInt is a functional replacement for common case unsigned integer type like
52 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
53 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
54 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
55 /// and methods to manipulate integer values of any bit-width. It supports both
56 /// the typical integer arithmetic and comparison operations as well as bitwise
57 /// manipulation.
58 ///
59 /// The class has several invariants worth noting:
60 ///   * All bit, byte, and word positions are zero-based.
61 ///   * Once the bit width is set, it doesn't change except by the Truncate,
62 ///     SignExtend, or ZeroExtend operations.
63 ///   * All binary operators must be on APInt instances of the same bit width.
64 ///     Attempting to use these operators on instances with different bit
65 ///     widths will yield an assertion.
66 ///   * The value is stored canonically as an unsigned value. For operations
67 ///     where it makes a difference, there are both signed and unsigned variants
68 ///     of the operation. For example, sdiv and udiv. However, because the bit
69 ///     widths must be the same, operations such as Mul and Add produce the same
70 ///     results regardless of whether the values are interpreted as signed or
71 ///     not.
72 ///   * In general, the class tries to follow the style of computation that LLVM
73 ///     uses in its IR. This simplifies its use for LLVM.
74 ///
75 class APInt {
76   unsigned BitWidth; ///< The number of bits in this APInt.
77 
78   /// This union is used to store the integer value. When the
79   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80   union {
81     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
82     uint64_t *pVal; ///< Used to store the >64 bits integer value.
83   };
84 
85   /// This enum is used to hold the constants we needed for APInt.
86   enum {
87     /// Bits in a word
88     APINT_BITS_PER_WORD =
89         static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
90     /// Byte size of a word
91     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92   };
93 
94   /// \brief Fast internal constructor
95   ///
96   /// This constructor is used only internally for speed of construction of
97   /// temporaries. It is unsafe for general use so it is not public.
APInt(uint64_t * val,unsigned bits)98   APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
99 
100   /// \brief Determine if this APInt just has one word to store value.
101   ///
102   /// \returns true if the number of bits <= 64, false otherwise.
isSingleWord()103   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
104 
105   /// \brief Determine which word a bit is in.
106   ///
107   /// \returns the word position for the specified bit position.
whichWord(unsigned bitPosition)108   static unsigned whichWord(unsigned bitPosition) {
109     return bitPosition / APINT_BITS_PER_WORD;
110   }
111 
112   /// \brief Determine which bit in a word a bit is in.
113   ///
114   /// \returns the bit position in a word for the specified bit position
115   /// in the APInt.
whichBit(unsigned bitPosition)116   static unsigned whichBit(unsigned bitPosition) {
117     return bitPosition % APINT_BITS_PER_WORD;
118   }
119 
120   /// \brief Get a single bit mask.
121   ///
122   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
123   /// This method generates and returns a uint64_t (word) mask for a single
124   /// bit at a specific bit position. This is used to mask the bit in the
125   /// corresponding word.
maskBit(unsigned bitPosition)126   static uint64_t maskBit(unsigned bitPosition) {
127     return 1ULL << whichBit(bitPosition);
128   }
129 
130   /// \brief Clear unused high order bits
131   ///
132   /// This method is used internally to clear the to "N" bits in the high order
133   /// word that are not used by the APInt. This is needed after the most
134   /// significant word is assigned a value to ensure that those bits are
135   /// zero'd out.
clearUnusedBits()136   APInt &clearUnusedBits() {
137     // Compute how many bits are used in the final word
138     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
139     if (wordBits == 0)
140       // If all bits are used, we want to leave the value alone. This also
141       // avoids the undefined behavior of >> when the shift is the same size as
142       // the word size (64).
143       return *this;
144 
145     // Mask out the high bits.
146     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
147     if (isSingleWord())
148       VAL &= mask;
149     else
150       pVal[getNumWords() - 1] &= mask;
151     return *this;
152   }
153 
154   /// \brief Get the word corresponding to a bit position
155   /// \returns the corresponding word for the specified bit position.
getWord(unsigned bitPosition)156   uint64_t getWord(unsigned bitPosition) const {
157     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
158   }
159 
160   /// \brief Convert a char array into an APInt
161   ///
162   /// \param radix 2, 8, 10, 16, or 36
163   /// Converts a string into a number.  The string must be non-empty
164   /// and well-formed as a number of the given base. The bit-width
165   /// must be sufficient to hold the result.
166   ///
167   /// This is used by the constructors that take string arguments.
168   ///
169   /// StringRef::getAsInteger is superficially similar but (1) does
170   /// not assume that the string is well-formed and (2) grows the
171   /// result to hold the input.
172   void fromString(unsigned numBits, StringRef str, uint8_t radix);
173 
174   /// \brief An internal division function for dividing APInts.
175   ///
176   /// This is used by the toString method to divide by the radix. It simply
177   /// provides a more convenient form of divide for internal use since KnuthDiv
178   /// has specific constraints on its inputs. If those constraints are not met
179   /// then it provides a simpler form of divide.
180   static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
181                      unsigned rhsWords, APInt *Quotient, APInt *Remainder);
182 
183   /// out-of-line slow case for inline constructor
184   void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
185 
186   /// shared code between two array constructors
187   void initFromArray(ArrayRef<uint64_t> array);
188 
189   /// out-of-line slow case for inline copy constructor
190   void initSlowCase(const APInt &that);
191 
192   /// out-of-line slow case for shl
193   APInt shlSlowCase(unsigned shiftAmt) const;
194 
195   /// out-of-line slow case for operator&
196   APInt AndSlowCase(const APInt &RHS) const;
197 
198   /// out-of-line slow case for operator|
199   APInt OrSlowCase(const APInt &RHS) const;
200 
201   /// out-of-line slow case for operator^
202   APInt XorSlowCase(const APInt &RHS) const;
203 
204   /// out-of-line slow case for operator=
205   APInt &AssignSlowCase(const APInt &RHS);
206 
207   /// out-of-line slow case for operator==
208   bool EqualSlowCase(const APInt &RHS) const;
209 
210   /// out-of-line slow case for operator==
211   bool EqualSlowCase(uint64_t Val) const;
212 
213   /// out-of-line slow case for countLeadingZeros
214   unsigned countLeadingZerosSlowCase() const;
215 
216   /// out-of-line slow case for countTrailingOnes
217   unsigned countTrailingOnesSlowCase() const;
218 
219   /// out-of-line slow case for countPopulation
220   unsigned countPopulationSlowCase() const;
221 
222 public:
223   /// \name Constructors
224   /// @{
225 
226   /// \brief Create a new APInt of numBits width, initialized as val.
227   ///
228   /// If isSigned is true then val is treated as if it were a signed value
229   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
230   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
231   /// the range of val are zero filled).
232   ///
233   /// \param numBits the bit width of the constructed APInt
234   /// \param val the initial value of the APInt
235   /// \param isSigned how to treat signedness of val
236   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)237       : BitWidth(numBits), VAL(0) {
238     assert(BitWidth && "bitwidth too small");
239     if (isSingleWord())
240       VAL = val;
241     else
242       initSlowCase(numBits, val, isSigned);
243     clearUnusedBits();
244   }
245 
246   /// \brief Construct an APInt of numBits width, initialized as bigVal[].
247   ///
248   /// Note that bigVal.size() can be smaller or larger than the corresponding
249   /// bit width but any extraneous bits will be dropped.
250   ///
251   /// \param numBits the bit width of the constructed APInt
252   /// \param bigVal a sequence of words to form the initial value of the APInt
253   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
254 
255   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
256   /// deprecated because this constructor is prone to ambiguity with the
257   /// APInt(unsigned, uint64_t, bool) constructor.
258   ///
259   /// If this overload is ever deleted, care should be taken to prevent calls
260   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
261   /// constructor.
262   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
263 
264   /// \brief Construct an APInt from a string representation.
265   ///
266   /// This constructor interprets the string \p str in the given radix. The
267   /// interpretation stops when the first character that is not suitable for the
268   /// radix is encountered, or the end of the string. Acceptable radix values
269   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
270   /// string to require more bits than numBits.
271   ///
272   /// \param numBits the bit width of the constructed APInt
273   /// \param str the string to be interpreted
274   /// \param radix the radix to use for the conversion
275   APInt(unsigned numBits, StringRef str, uint8_t radix);
276 
277   /// Simply makes *this a copy of that.
278   /// @brief Copy Constructor.
APInt(const APInt & that)279   APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
280     assert(BitWidth && "bitwidth too small");
281     if (isSingleWord())
282       VAL = that.VAL;
283     else
284       initSlowCase(that);
285   }
286 
287 #if LLVM_HAS_RVALUE_REFERENCES
288   /// \brief Move Constructor.
APInt(APInt && that)289   APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
290     that.BitWidth = 0;
291   }
292 #endif
293 
294   /// \brief Destructor.
~APInt()295   ~APInt() {
296     if (needsCleanup())
297       delete[] pVal;
298   }
299 
300   /// \brief Default constructor that creates an uninitialized APInt.
301   ///
302   /// This is useful for object deserialization (pair this with the static
303   ///  method Read).
APInt()304   explicit APInt() : BitWidth(1) {}
305 
306   /// \brief Returns whether this instance allocated memory.
needsCleanup()307   bool needsCleanup() const { return !isSingleWord(); }
308 
309   /// Used to insert APInt objects, or objects that contain APInt objects, into
310   ///  FoldingSets.
311   void Profile(FoldingSetNodeID &id) const;
312 
313   /// @}
314   /// \name Value Tests
315   /// @{
316 
317   /// \brief Determine sign of this APInt.
318   ///
319   /// This tests the high bit of this APInt to determine if it is set.
320   ///
321   /// \returns true if this APInt is negative, false otherwise
isNegative()322   bool isNegative() const { return (*this)[BitWidth - 1]; }
323 
324   /// \brief Determine if this APInt Value is non-negative (>= 0)
325   ///
326   /// This tests the high bit of the APInt to determine if it is unset.
isNonNegative()327   bool isNonNegative() const { return !isNegative(); }
328 
329   /// \brief Determine if this APInt Value is positive.
330   ///
331   /// This tests if the value of this APInt is positive (> 0). Note
332   /// that 0 is not a positive value.
333   ///
334   /// \returns true if this APInt is positive.
isStrictlyPositive()335   bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
336 
337   /// \brief Determine if all bits are set
338   ///
339   /// This checks to see if the value has all bits of the APInt are set or not.
isAllOnesValue()340   bool isAllOnesValue() const {
341     if (isSingleWord())
342       return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
343     return countPopulationSlowCase() == BitWidth;
344   }
345 
346   /// \brief Determine if this is the largest unsigned value.
347   ///
348   /// This checks to see if the value of this APInt is the maximum unsigned
349   /// value for the APInt's bit width.
isMaxValue()350   bool isMaxValue() const { return isAllOnesValue(); }
351 
352   /// \brief Determine if this is the largest signed value.
353   ///
354   /// This checks to see if the value of this APInt is the maximum signed
355   /// value for the APInt's bit width.
isMaxSignedValue()356   bool isMaxSignedValue() const {
357     return BitWidth == 1 ? VAL == 0
358                          : !isNegative() && countPopulation() == BitWidth - 1;
359   }
360 
361   /// \brief Determine if this is the smallest unsigned value.
362   ///
363   /// This checks to see if the value of this APInt is the minimum unsigned
364   /// value for the APInt's bit width.
isMinValue()365   bool isMinValue() const { return !*this; }
366 
367   /// \brief Determine if this is the smallest signed value.
368   ///
369   /// This checks to see if the value of this APInt is the minimum signed
370   /// value for the APInt's bit width.
isMinSignedValue()371   bool isMinSignedValue() const {
372     return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
373   }
374 
375   /// \brief Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)376   bool isIntN(unsigned N) const {
377     assert(N && "N == 0 ???");
378     return getActiveBits() <= N;
379   }
380 
381   /// \brief Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)382   bool isSignedIntN(unsigned N) const {
383     assert(N && "N == 0 ???");
384     return getMinSignedBits() <= N;
385   }
386 
387   /// \brief Check if this APInt's value is a power of two greater than zero.
388   ///
389   /// \returns true if the argument APInt value is a power of two > 0.
isPowerOf2()390   bool isPowerOf2() const {
391     if (isSingleWord())
392       return isPowerOf2_64(VAL);
393     return countPopulationSlowCase() == 1;
394   }
395 
396   /// \brief Check if the APInt's value is returned by getSignBit.
397   ///
398   /// \returns true if this is the value returned by getSignBit.
isSignBit()399   bool isSignBit() const { return isMinSignedValue(); }
400 
401   /// \brief Convert APInt to a boolean value.
402   ///
403   /// This converts the APInt to a boolean value as a test against zero.
getBoolValue()404   bool getBoolValue() const { return !!*this; }
405 
406   /// If this value is smaller than the specified limit, return it, otherwise
407   /// return the limit value.  This causes the value to saturate to the limit.
408   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
409     return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
410                                                             : getZExtValue();
411   }
412 
413   /// @}
414   /// \name Value Generators
415   /// @{
416 
417   /// \brief Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)418   static APInt getMaxValue(unsigned numBits) {
419     return getAllOnesValue(numBits);
420   }
421 
422   /// \brief Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)423   static APInt getSignedMaxValue(unsigned numBits) {
424     APInt API = getAllOnesValue(numBits);
425     API.clearBit(numBits - 1);
426     return API;
427   }
428 
429   /// \brief Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)430   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
431 
432   /// \brief Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)433   static APInt getSignedMinValue(unsigned numBits) {
434     APInt API(numBits, 0);
435     API.setBit(numBits - 1);
436     return API;
437   }
438 
439   /// \brief Get the SignBit for a specific bit width.
440   ///
441   /// This is just a wrapper function of getSignedMinValue(), and it helps code
442   /// readability when we want to get a SignBit.
getSignBit(unsigned BitWidth)443   static APInt getSignBit(unsigned BitWidth) {
444     return getSignedMinValue(BitWidth);
445   }
446 
447   /// \brief Get the all-ones value.
448   ///
449   /// \returns the all-ones value for an APInt of the specified bit-width.
getAllOnesValue(unsigned numBits)450   static APInt getAllOnesValue(unsigned numBits) {
451     return APInt(numBits, UINT64_MAX, true);
452   }
453 
454   /// \brief Get the '0' value.
455   ///
456   /// \returns the '0' value for an APInt of the specified bit-width.
getNullValue(unsigned numBits)457   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
458 
459   /// \brief Compute an APInt containing numBits highbits from this APInt.
460   ///
461   /// Get an APInt with the same BitWidth as this APInt, just zero mask
462   /// the low bits and right shift to the least significant bit.
463   ///
464   /// \returns the high "numBits" bits of this APInt.
465   APInt getHiBits(unsigned numBits) const;
466 
467   /// \brief Compute an APInt containing numBits lowbits from this APInt.
468   ///
469   /// Get an APInt with the same BitWidth as this APInt, just zero mask
470   /// the high bits.
471   ///
472   /// \returns the low "numBits" bits of this APInt.
473   APInt getLoBits(unsigned numBits) const;
474 
475   /// \brief Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)476   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
477     APInt Res(numBits, 0);
478     Res.setBit(BitNo);
479     return Res;
480   }
481 
482   /// \brief Get a value with a block of bits set.
483   ///
484   /// Constructs an APInt value that has a contiguous range of bits set. The
485   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
486   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
487   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
488   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
489   ///
490   /// \param numBits the intended bit width of the result
491   /// \param loBit the index of the lowest bit set.
492   /// \param hiBit the index of the highest bit set.
493   ///
494   /// \returns An APInt value with the requested bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)495   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
496     assert(hiBit <= numBits && "hiBit out of range");
497     assert(loBit < numBits && "loBit out of range");
498     if (hiBit < loBit)
499       return getLowBitsSet(numBits, hiBit) |
500              getHighBitsSet(numBits, numBits - loBit);
501     return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
502   }
503 
504   /// \brief Get a value with high bits set
505   ///
506   /// Constructs an APInt value that has the top hiBitsSet bits set.
507   ///
508   /// \param numBits the bitwidth of the result
509   /// \param hiBitsSet the number of high-order bits set in the result.
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)510   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
511     assert(hiBitsSet <= numBits && "Too many bits to set!");
512     // Handle a degenerate case, to avoid shifting by word size
513     if (hiBitsSet == 0)
514       return APInt(numBits, 0);
515     unsigned shiftAmt = numBits - hiBitsSet;
516     // For small values, return quickly
517     if (numBits <= APINT_BITS_PER_WORD)
518       return APInt(numBits, ~0ULL << shiftAmt);
519     return getAllOnesValue(numBits).shl(shiftAmt);
520   }
521 
522   /// \brief Get a value with low bits set
523   ///
524   /// Constructs an APInt value that has the bottom loBitsSet bits set.
525   ///
526   /// \param numBits the bitwidth of the result
527   /// \param loBitsSet the number of low-order bits set in the result.
getLowBitsSet(unsigned numBits,unsigned loBitsSet)528   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
529     assert(loBitsSet <= numBits && "Too many bits to set!");
530     // Handle a degenerate case, to avoid shifting by word size
531     if (loBitsSet == 0)
532       return APInt(numBits, 0);
533     if (loBitsSet == APINT_BITS_PER_WORD)
534       return APInt(numBits, UINT64_MAX);
535     // For small values, return quickly.
536     if (loBitsSet <= APINT_BITS_PER_WORD)
537       return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
538     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
539   }
540 
541   /// \brief Return a value containing V broadcasted over NewLen bits.
getSplat(unsigned NewLen,const APInt & V)542   static APInt getSplat(unsigned NewLen, const APInt &V) {
543     assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
544 
545     APInt Val = V.zextOrSelf(NewLen);
546     for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
547       Val |= Val << I;
548 
549     return Val;
550   }
551 
552   /// \brief Determine if two APInts have the same value, after zero-extending
553   /// one of them (if needed!) to ensure that the bit-widths match.
isSameValue(const APInt & I1,const APInt & I2)554   static bool isSameValue(const APInt &I1, const APInt &I2) {
555     if (I1.getBitWidth() == I2.getBitWidth())
556       return I1 == I2;
557 
558     if (I1.getBitWidth() > I2.getBitWidth())
559       return I1 == I2.zext(I1.getBitWidth());
560 
561     return I1.zext(I2.getBitWidth()) == I2;
562   }
563 
564   /// \brief Overload to compute a hash_code for an APInt value.
565   friend hash_code hash_value(const APInt &Arg);
566 
567   /// This function returns a pointer to the internal storage of the APInt.
568   /// This is useful for writing out the APInt in binary form without any
569   /// conversions.
getRawData()570   const uint64_t *getRawData() const {
571     if (isSingleWord())
572       return &VAL;
573     return &pVal[0];
574   }
575 
576   /// @}
577   /// \name Unary Operators
578   /// @{
579 
580   /// \brief Postfix increment operator.
581   ///
582   /// \returns a new APInt value representing *this incremented by one
583   const APInt operator++(int) {
584     APInt API(*this);
585     ++(*this);
586     return API;
587   }
588 
589   /// \brief Prefix increment operator.
590   ///
591   /// \returns *this incremented by one
592   APInt &operator++();
593 
594   /// \brief Postfix decrement operator.
595   ///
596   /// \returns a new APInt representing *this decremented by one.
597   const APInt operator--(int) {
598     APInt API(*this);
599     --(*this);
600     return API;
601   }
602 
603   /// \brief Prefix decrement operator.
604   ///
605   /// \returns *this decremented by one.
606   APInt &operator--();
607 
608   /// \brief Unary bitwise complement operator.
609   ///
610   /// Performs a bitwise complement operation on this APInt.
611   ///
612   /// \returns an APInt that is the bitwise complement of *this
613   APInt operator~() const {
614     APInt Result(*this);
615     Result.flipAllBits();
616     return Result;
617   }
618 
619   /// \brief Unary negation operator
620   ///
621   /// Negates *this using two's complement logic.
622   ///
623   /// \returns An APInt value representing the negation of *this.
624   APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
625 
626   /// \brief Logical negation operator.
627   ///
628   /// Performs logical negation operation on this APInt.
629   ///
630   /// \returns true if *this is zero, false otherwise.
631   bool operator!() const {
632     if (isSingleWord())
633       return !VAL;
634 
635     for (unsigned i = 0; i != getNumWords(); ++i)
636       if (pVal[i])
637         return false;
638     return true;
639   }
640 
641   /// @}
642   /// \name Assignment Operators
643   /// @{
644 
645   /// \brief Copy assignment operator.
646   ///
647   /// \returns *this after assignment of RHS.
648   APInt &operator=(const APInt &RHS) {
649     // If the bitwidths are the same, we can avoid mucking with memory
650     if (isSingleWord() && RHS.isSingleWord()) {
651       VAL = RHS.VAL;
652       BitWidth = RHS.BitWidth;
653       return clearUnusedBits();
654     }
655 
656     return AssignSlowCase(RHS);
657   }
658 
659 #if LLVM_HAS_RVALUE_REFERENCES
660   /// @brief Move assignment operator.
661   APInt &operator=(APInt &&that) {
662     if (!isSingleWord())
663       delete[] pVal;
664 
665     BitWidth = that.BitWidth;
666     VAL = that.VAL;
667 
668     that.BitWidth = 0;
669 
670     return *this;
671   }
672 #endif
673 
674   /// \brief Assignment operator.
675   ///
676   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
677   /// the bit width, the excess bits are truncated. If the bit width is larger
678   /// than 64, the value is zero filled in the unspecified high order bits.
679   ///
680   /// \returns *this after assignment of RHS value.
681   APInt &operator=(uint64_t RHS);
682 
683   /// \brief Bitwise AND assignment operator.
684   ///
685   /// Performs a bitwise AND operation on this APInt and RHS. The result is
686   /// assigned to *this.
687   ///
688   /// \returns *this after ANDing with RHS.
689   APInt &operator&=(const APInt &RHS);
690 
691   /// \brief Bitwise OR assignment operator.
692   ///
693   /// Performs a bitwise OR operation on this APInt and RHS. The result is
694   /// assigned *this;
695   ///
696   /// \returns *this after ORing with RHS.
697   APInt &operator|=(const APInt &RHS);
698 
699   /// \brief Bitwise OR assignment operator.
700   ///
701   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
702   /// logically zero-extended or truncated to match the bit-width of
703   /// the LHS.
704   APInt &operator|=(uint64_t RHS) {
705     if (isSingleWord()) {
706       VAL |= RHS;
707       clearUnusedBits();
708     } else {
709       pVal[0] |= RHS;
710     }
711     return *this;
712   }
713 
714   /// \brief Bitwise XOR assignment operator.
715   ///
716   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
717   /// assigned to *this.
718   ///
719   /// \returns *this after XORing with RHS.
720   APInt &operator^=(const APInt &RHS);
721 
722   /// \brief Multiplication assignment operator.
723   ///
724   /// Multiplies this APInt by RHS and assigns the result to *this.
725   ///
726   /// \returns *this
727   APInt &operator*=(const APInt &RHS);
728 
729   /// \brief Addition assignment operator.
730   ///
731   /// Adds RHS to *this and assigns the result to *this.
732   ///
733   /// \returns *this
734   APInt &operator+=(const APInt &RHS);
735 
736   /// \brief Subtraction assignment operator.
737   ///
738   /// Subtracts RHS from *this and assigns the result to *this.
739   ///
740   /// \returns *this
741   APInt &operator-=(const APInt &RHS);
742 
743   /// \brief Left-shift assignment function.
744   ///
745   /// Shifts *this left by shiftAmt and assigns the result to *this.
746   ///
747   /// \returns *this after shifting left by shiftAmt
748   APInt &operator<<=(unsigned shiftAmt) {
749     *this = shl(shiftAmt);
750     return *this;
751   }
752 
753   /// @}
754   /// \name Binary Operators
755   /// @{
756 
757   /// \brief Bitwise AND operator.
758   ///
759   /// Performs a bitwise AND operation on *this and RHS.
760   ///
761   /// \returns An APInt value representing the bitwise AND of *this and RHS.
762   APInt operator&(const APInt &RHS) const {
763     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
764     if (isSingleWord())
765       return APInt(getBitWidth(), VAL & RHS.VAL);
766     return AndSlowCase(RHS);
767   }
And(const APInt & RHS)768   APInt And(const APInt &RHS) const { return this->operator&(RHS); }
769 
770   /// \brief Bitwise OR operator.
771   ///
772   /// Performs a bitwise OR operation on *this and RHS.
773   ///
774   /// \returns An APInt value representing the bitwise OR of *this and RHS.
775   APInt operator|(const APInt &RHS) const {
776     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
777     if (isSingleWord())
778       return APInt(getBitWidth(), VAL | RHS.VAL);
779     return OrSlowCase(RHS);
780   }
781 
782   /// \brief Bitwise OR function.
783   ///
784   /// Performs a bitwise or on *this and RHS. This is implemented bny simply
785   /// calling operator|.
786   ///
787   /// \returns An APInt value representing the bitwise OR of *this and RHS.
Or(const APInt & RHS)788   APInt Or(const APInt &RHS) const { return this->operator|(RHS); }
789 
790   /// \brief Bitwise XOR operator.
791   ///
792   /// Performs a bitwise XOR operation on *this and RHS.
793   ///
794   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
795   APInt operator^(const APInt &RHS) const {
796     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
797     if (isSingleWord())
798       return APInt(BitWidth, VAL ^ RHS.VAL);
799     return XorSlowCase(RHS);
800   }
801 
802   /// \brief Bitwise XOR function.
803   ///
804   /// Performs a bitwise XOR operation on *this and RHS. This is implemented
805   /// through the usage of operator^.
806   ///
807   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
Xor(const APInt & RHS)808   APInt Xor(const APInt &RHS) const { return this->operator^(RHS); }
809 
810   /// \brief Multiplication operator.
811   ///
812   /// Multiplies this APInt by RHS and returns the result.
813   APInt operator*(const APInt &RHS) const;
814 
815   /// \brief Addition operator.
816   ///
817   /// Adds RHS to this APInt and returns the result.
818   APInt operator+(const APInt &RHS) const;
819   APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
820 
821   /// \brief Subtraction operator.
822   ///
823   /// Subtracts RHS from this APInt and returns the result.
824   APInt operator-(const APInt &RHS) const;
825   APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
826 
827   /// \brief Left logical shift operator.
828   ///
829   /// Shifts this APInt left by \p Bits and returns the result.
830   APInt operator<<(unsigned Bits) const { return shl(Bits); }
831 
832   /// \brief Left logical shift operator.
833   ///
834   /// Shifts this APInt left by \p Bits and returns the result.
835   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
836 
837   /// \brief Arithmetic right-shift function.
838   ///
839   /// Arithmetic right-shift this APInt by shiftAmt.
840   APInt ashr(unsigned shiftAmt) const;
841 
842   /// \brief Logical right-shift function.
843   ///
844   /// Logical right-shift this APInt by shiftAmt.
845   APInt lshr(unsigned shiftAmt) const;
846 
847   /// \brief Left-shift function.
848   ///
849   /// Left-shift this APInt by shiftAmt.
shl(unsigned shiftAmt)850   APInt shl(unsigned shiftAmt) const {
851     assert(shiftAmt <= BitWidth && "Invalid shift amount");
852     if (isSingleWord()) {
853       if (shiftAmt >= BitWidth)
854         return APInt(BitWidth, 0); // avoid undefined shift results
855       return APInt(BitWidth, VAL << shiftAmt);
856     }
857     return shlSlowCase(shiftAmt);
858   }
859 
860   /// \brief Rotate left by rotateAmt.
861   APInt rotl(unsigned rotateAmt) const;
862 
863   /// \brief Rotate right by rotateAmt.
864   APInt rotr(unsigned rotateAmt) const;
865 
866   /// \brief Arithmetic right-shift function.
867   ///
868   /// Arithmetic right-shift this APInt by shiftAmt.
869   APInt ashr(const APInt &shiftAmt) const;
870 
871   /// \brief Logical right-shift function.
872   ///
873   /// Logical right-shift this APInt by shiftAmt.
874   APInt lshr(const APInt &shiftAmt) const;
875 
876   /// \brief Left-shift function.
877   ///
878   /// Left-shift this APInt by shiftAmt.
879   APInt shl(const APInt &shiftAmt) const;
880 
881   /// \brief Rotate left by rotateAmt.
882   APInt rotl(const APInt &rotateAmt) const;
883 
884   /// \brief Rotate right by rotateAmt.
885   APInt rotr(const APInt &rotateAmt) const;
886 
887   /// \brief Unsigned division operation.
888   ///
889   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
890   /// RHS are treated as unsigned quantities for purposes of this division.
891   ///
892   /// \returns a new APInt value containing the division result
893   APInt udiv(const APInt &RHS) const;
894 
895   /// \brief Signed division function for APInt.
896   ///
897   /// Signed divide this APInt by APInt RHS.
898   APInt sdiv(const APInt &RHS) const;
899 
900   /// \brief Unsigned remainder operation.
901   ///
902   /// Perform an unsigned remainder operation on this APInt with RHS being the
903   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
904   /// of this operation. Note that this is a true remainder operation and not a
905   /// modulo operation because the sign follows the sign of the dividend which
906   /// is *this.
907   ///
908   /// \returns a new APInt value containing the remainder result
909   APInt urem(const APInt &RHS) const;
910 
911   /// \brief Function for signed remainder operation.
912   ///
913   /// Signed remainder operation on APInt.
914   APInt srem(const APInt &RHS) const;
915 
916   /// \brief Dual division/remainder interface.
917   ///
918   /// Sometimes it is convenient to divide two APInt values and obtain both the
919   /// quotient and remainder. This function does both operations in the same
920   /// computation making it a little more efficient. The pair of input arguments
921   /// may overlap with the pair of output arguments. It is safe to call
922   /// udivrem(X, Y, X, Y), for example.
923   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
924                       APInt &Remainder);
925 
926   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
927                       APInt &Remainder);
928 
929   // Operations that return overflow indicators.
930   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
931   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
932   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
933   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
934   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
935   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
936   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
937   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
938 
939   /// \brief Array-indexing support.
940   ///
941   /// \returns the bit value at bitPosition
942   bool operator[](unsigned bitPosition) const {
943     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
944     return (maskBit(bitPosition) &
945             (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
946            0;
947   }
948 
949   /// @}
950   /// \name Comparison Operators
951   /// @{
952 
953   /// \brief Equality operator.
954   ///
955   /// Compares this APInt with RHS for the validity of the equality
956   /// relationship.
957   bool operator==(const APInt &RHS) const {
958     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
959     if (isSingleWord())
960       return VAL == RHS.VAL;
961     return EqualSlowCase(RHS);
962   }
963 
964   /// \brief Equality operator.
965   ///
966   /// Compares this APInt with a uint64_t for the validity of the equality
967   /// relationship.
968   ///
969   /// \returns true if *this == Val
970   bool operator==(uint64_t Val) const {
971     if (isSingleWord())
972       return VAL == Val;
973     return EqualSlowCase(Val);
974   }
975 
976   /// \brief Equality comparison.
977   ///
978   /// Compares this APInt with RHS for the validity of the equality
979   /// relationship.
980   ///
981   /// \returns true if *this == Val
eq(const APInt & RHS)982   bool eq(const APInt &RHS) const { return (*this) == RHS; }
983 
984   /// \brief Inequality operator.
985   ///
986   /// Compares this APInt with RHS for the validity of the inequality
987   /// relationship.
988   ///
989   /// \returns true if *this != Val
990   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
991 
992   /// \brief Inequality operator.
993   ///
994   /// Compares this APInt with a uint64_t for the validity of the inequality
995   /// relationship.
996   ///
997   /// \returns true if *this != Val
998   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
999 
1000   /// \brief Inequality comparison
1001   ///
1002   /// Compares this APInt with RHS for the validity of the inequality
1003   /// relationship.
1004   ///
1005   /// \returns true if *this != Val
ne(const APInt & RHS)1006   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1007 
1008   /// \brief Unsigned less than comparison
1009   ///
1010   /// Regards both *this and RHS as unsigned quantities and compares them for
1011   /// the validity of the less-than relationship.
1012   ///
1013   /// \returns true if *this < RHS when both are considered unsigned.
1014   bool ult(const APInt &RHS) const;
1015 
1016   /// \brief Unsigned less than comparison
1017   ///
1018   /// Regards both *this as an unsigned quantity and compares it with RHS for
1019   /// the validity of the less-than relationship.
1020   ///
1021   /// \returns true if *this < RHS when considered unsigned.
ult(uint64_t RHS)1022   bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }
1023 
1024   /// \brief Signed less than comparison
1025   ///
1026   /// Regards both *this and RHS as signed quantities and compares them for
1027   /// validity of the less-than relationship.
1028   ///
1029   /// \returns true if *this < RHS when both are considered signed.
1030   bool slt(const APInt &RHS) const;
1031 
1032   /// \brief Signed less than comparison
1033   ///
1034   /// Regards both *this as a signed quantity and compares it with RHS for
1035   /// the validity of the less-than relationship.
1036   ///
1037   /// \returns true if *this < RHS when considered signed.
slt(uint64_t RHS)1038   bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }
1039 
1040   /// \brief Unsigned less or equal comparison
1041   ///
1042   /// Regards both *this and RHS as unsigned quantities and compares them for
1043   /// validity of the less-or-equal relationship.
1044   ///
1045   /// \returns true if *this <= RHS when both are considered unsigned.
ule(const APInt & RHS)1046   bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
1047 
1048   /// \brief Unsigned less or equal comparison
1049   ///
1050   /// Regards both *this as an unsigned quantity and compares it with RHS for
1051   /// the validity of the less-or-equal relationship.
1052   ///
1053   /// \returns true if *this <= RHS when considered unsigned.
ule(uint64_t RHS)1054   bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }
1055 
1056   /// \brief Signed less or equal comparison
1057   ///
1058   /// Regards both *this and RHS as signed quantities and compares them for
1059   /// validity of the less-or-equal relationship.
1060   ///
1061   /// \returns true if *this <= RHS when both are considered signed.
sle(const APInt & RHS)1062   bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
1063 
1064   /// \brief Signed less or equal comparison
1065   ///
1066   /// Regards both *this as a signed quantity and compares it with RHS for the
1067   /// validity of the less-or-equal relationship.
1068   ///
1069   /// \returns true if *this <= RHS when considered signed.
sle(uint64_t RHS)1070   bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }
1071 
1072   /// \brief Unsigned greather than comparison
1073   ///
1074   /// Regards both *this and RHS as unsigned quantities and compares them for
1075   /// the validity of the greater-than relationship.
1076   ///
1077   /// \returns true if *this > RHS when both are considered unsigned.
ugt(const APInt & RHS)1078   bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
1079 
1080   /// \brief Unsigned greater than comparison
1081   ///
1082   /// Regards both *this as an unsigned quantity and compares it with RHS for
1083   /// the validity of the greater-than relationship.
1084   ///
1085   /// \returns true if *this > RHS when considered unsigned.
ugt(uint64_t RHS)1086   bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }
1087 
1088   /// \brief Signed greather than comparison
1089   ///
1090   /// Regards both *this and RHS as signed quantities and compares them for the
1091   /// validity of the greater-than relationship.
1092   ///
1093   /// \returns true if *this > RHS when both are considered signed.
sgt(const APInt & RHS)1094   bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
1095 
1096   /// \brief Signed greater than comparison
1097   ///
1098   /// Regards both *this as a signed quantity and compares it with RHS for
1099   /// the validity of the greater-than relationship.
1100   ///
1101   /// \returns true if *this > RHS when considered signed.
sgt(uint64_t RHS)1102   bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }
1103 
1104   /// \brief Unsigned greater or equal comparison
1105   ///
1106   /// Regards both *this and RHS as unsigned quantities and compares them for
1107   /// validity of the greater-or-equal relationship.
1108   ///
1109   /// \returns true if *this >= RHS when both are considered unsigned.
uge(const APInt & RHS)1110   bool uge(const APInt &RHS) const { return !ult(RHS); }
1111 
1112   /// \brief Unsigned greater or equal comparison
1113   ///
1114   /// Regards both *this as an unsigned quantity and compares it with RHS for
1115   /// the validity of the greater-or-equal relationship.
1116   ///
1117   /// \returns true if *this >= RHS when considered unsigned.
uge(uint64_t RHS)1118   bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }
1119 
1120   /// \brief Signed greather or equal comparison
1121   ///
1122   /// Regards both *this and RHS as signed quantities and compares them for
1123   /// validity of the greater-or-equal relationship.
1124   ///
1125   /// \returns true if *this >= RHS when both are considered signed.
sge(const APInt & RHS)1126   bool sge(const APInt &RHS) const { return !slt(RHS); }
1127 
1128   /// \brief Signed greater or equal comparison
1129   ///
1130   /// Regards both *this as a signed quantity and compares it with RHS for
1131   /// the validity of the greater-or-equal relationship.
1132   ///
1133   /// \returns true if *this >= RHS when considered signed.
sge(uint64_t RHS)1134   bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }
1135 
1136   /// This operation tests if there are any pairs of corresponding bits
1137   /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1138   bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
1139 
1140   /// @}
1141   /// \name Resizing Operators
1142   /// @{
1143 
1144   /// \brief Truncate to new width.
1145   ///
1146   /// Truncate the APInt to a specified width. It is an error to specify a width
1147   /// that is greater than or equal to the current width.
1148   APInt trunc(unsigned width) const;
1149 
1150   /// \brief Sign extend to a new width.
1151   ///
1152   /// This operation sign extends the APInt to a new width. If the high order
1153   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1154   /// It is an error to specify a width that is less than or equal to the
1155   /// current width.
1156   APInt sext(unsigned width) const;
1157 
1158   /// \brief Zero extend to a new width.
1159   ///
1160   /// This operation zero extends the APInt to a new width. The high order bits
1161   /// are filled with 0 bits.  It is an error to specify a width that is less
1162   /// than or equal to the current width.
1163   APInt zext(unsigned width) const;
1164 
1165   /// \brief Sign extend or truncate to width
1166   ///
1167   /// Make this APInt have the bit width given by \p width. The value is sign
1168   /// extended, truncated, or left alone to make it that width.
1169   APInt sextOrTrunc(unsigned width) const;
1170 
1171   /// \brief Zero extend or truncate to width
1172   ///
1173   /// Make this APInt have the bit width given by \p width. The value is zero
1174   /// extended, truncated, or left alone to make it that width.
1175   APInt zextOrTrunc(unsigned width) const;
1176 
1177   /// \brief Sign extend or truncate to width
1178   ///
1179   /// Make this APInt have the bit width given by \p width. The value is sign
1180   /// extended, or left alone to make it that width.
1181   APInt sextOrSelf(unsigned width) const;
1182 
1183   /// \brief Zero extend or truncate to width
1184   ///
1185   /// Make this APInt have the bit width given by \p width. The value is zero
1186   /// extended, or left alone to make it that width.
1187   APInt zextOrSelf(unsigned width) const;
1188 
1189   /// @}
1190   /// \name Bit Manipulation Operators
1191   /// @{
1192 
1193   /// \brief Set every bit to 1.
setAllBits()1194   void setAllBits() {
1195     if (isSingleWord())
1196       VAL = UINT64_MAX;
1197     else {
1198       // Set all the bits in all the words.
1199       for (unsigned i = 0; i < getNumWords(); ++i)
1200         pVal[i] = UINT64_MAX;
1201     }
1202     // Clear the unused ones
1203     clearUnusedBits();
1204   }
1205 
1206   /// \brief Set a given bit to 1.
1207   ///
1208   /// Set the given bit to 1 whose position is given as "bitPosition".
1209   void setBit(unsigned bitPosition);
1210 
1211   /// \brief Set every bit to 0.
clearAllBits()1212   void clearAllBits() {
1213     if (isSingleWord())
1214       VAL = 0;
1215     else
1216       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1217   }
1218 
1219   /// \brief Set a given bit to 0.
1220   ///
1221   /// Set the given bit to 0 whose position is given as "bitPosition".
1222   void clearBit(unsigned bitPosition);
1223 
1224   /// \brief Toggle every bit to its opposite value.
flipAllBits()1225   void flipAllBits() {
1226     if (isSingleWord())
1227       VAL ^= UINT64_MAX;
1228     else {
1229       for (unsigned i = 0; i < getNumWords(); ++i)
1230         pVal[i] ^= UINT64_MAX;
1231     }
1232     clearUnusedBits();
1233   }
1234 
1235   /// \brief Toggles a given bit to its opposite value.
1236   ///
1237   /// Toggle a given bit to its opposite value whose position is given
1238   /// as "bitPosition".
1239   void flipBit(unsigned bitPosition);
1240 
1241   /// @}
1242   /// \name Value Characterization Functions
1243   /// @{
1244 
1245   /// \brief Return the number of bits in the APInt.
getBitWidth()1246   unsigned getBitWidth() const { return BitWidth; }
1247 
1248   /// \brief Get the number of words.
1249   ///
1250   /// Here one word's bitwidth equals to that of uint64_t.
1251   ///
1252   /// \returns the number of words to hold the integer value of this APInt.
getNumWords()1253   unsigned getNumWords() const { return getNumWords(BitWidth); }
1254 
1255   /// \brief Get the number of words.
1256   ///
1257   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1258   ///
1259   /// \returns the number of words to hold the integer value with a given bit
1260   /// width.
getNumWords(unsigned BitWidth)1261   static unsigned getNumWords(unsigned BitWidth) {
1262     return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1263   }
1264 
1265   /// \brief Compute the number of active bits in the value
1266   ///
1267   /// This function returns the number of active bits which is defined as the
1268   /// bit width minus the number of leading zeros. This is used in several
1269   /// computations to see how "wide" the value is.
getActiveBits()1270   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1271 
1272   /// \brief Compute the number of active words in the value of this APInt.
1273   ///
1274   /// This is used in conjunction with getActiveData to extract the raw value of
1275   /// the APInt.
getActiveWords()1276   unsigned getActiveWords() const {
1277     unsigned numActiveBits = getActiveBits();
1278     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1279   }
1280 
1281   /// \brief Get the minimum bit size for this signed APInt
1282   ///
1283   /// Computes the minimum bit width for this APInt while considering it to be a
1284   /// signed (and probably negative) value. If the value is not negative, this
1285   /// function returns the same value as getActiveBits()+1. Otherwise, it
1286   /// returns the smallest bit width that will retain the negative value. For
1287   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1288   /// for -1, this function will always return 1.
getMinSignedBits()1289   unsigned getMinSignedBits() const {
1290     if (isNegative())
1291       return BitWidth - countLeadingOnes() + 1;
1292     return getActiveBits() + 1;
1293   }
1294 
1295   /// \brief Get zero extended value
1296   ///
1297   /// This method attempts to return the value of this APInt as a zero extended
1298   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1299   /// uint64_t. Otherwise an assertion will result.
getZExtValue()1300   uint64_t getZExtValue() const {
1301     if (isSingleWord())
1302       return VAL;
1303     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1304     return pVal[0];
1305   }
1306 
1307   /// \brief Get sign extended value
1308   ///
1309   /// This method attempts to return the value of this APInt as a sign extended
1310   /// int64_t. The bit width must be <= 64 or the value must fit within an
1311   /// int64_t. Otherwise an assertion will result.
getSExtValue()1312   int64_t getSExtValue() const {
1313     if (isSingleWord())
1314       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1315              (APINT_BITS_PER_WORD - BitWidth);
1316     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1317     return int64_t(pVal[0]);
1318   }
1319 
1320   /// \brief Get bits required for string value.
1321   ///
1322   /// This method determines how many bits are required to hold the APInt
1323   /// equivalent of the string given by \p str.
1324   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1325 
1326   /// \brief The APInt version of the countLeadingZeros functions in
1327   ///   MathExtras.h.
1328   ///
1329   /// It counts the number of zeros from the most significant bit to the first
1330   /// one bit.
1331   ///
1332   /// \returns BitWidth if the value is zero, otherwise returns the number of
1333   ///   zeros from the most significant bit to the first one bits.
countLeadingZeros()1334   unsigned countLeadingZeros() const {
1335     if (isSingleWord()) {
1336       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1337       return llvm::countLeadingZeros(VAL) - unusedBits;
1338     }
1339     return countLeadingZerosSlowCase();
1340   }
1341 
1342   /// \brief Count the number of leading one bits.
1343   ///
1344   /// This function is an APInt version of the countLeadingOnes_{32,64}
1345   /// functions in MathExtras.h. It counts the number of ones from the most
1346   /// significant bit to the first zero bit.
1347   ///
1348   /// \returns 0 if the high order bit is not set, otherwise returns the number
1349   /// of 1 bits from the most significant to the least
1350   unsigned countLeadingOnes() const;
1351 
1352   /// Computes the number of leading bits of this APInt that are equal to its
1353   /// sign bit.
getNumSignBits()1354   unsigned getNumSignBits() const {
1355     return isNegative() ? countLeadingOnes() : countLeadingZeros();
1356   }
1357 
1358   /// \brief Count the number of trailing zero bits.
1359   ///
1360   /// This function is an APInt version of the countTrailingZeros_{32,64}
1361   /// functions in MathExtras.h. It counts the number of zeros from the least
1362   /// significant bit to the first set bit.
1363   ///
1364   /// \returns BitWidth if the value is zero, otherwise returns the number of
1365   /// zeros from the least significant bit to the first one bit.
1366   unsigned countTrailingZeros() const;
1367 
1368   /// \brief Count the number of trailing one bits.
1369   ///
1370   /// This function is an APInt version of the countTrailingOnes_{32,64}
1371   /// functions in MathExtras.h. It counts the number of ones from the least
1372   /// significant bit to the first zero bit.
1373   ///
1374   /// \returns BitWidth if the value is all ones, otherwise returns the number
1375   /// of ones from the least significant bit to the first zero bit.
countTrailingOnes()1376   unsigned countTrailingOnes() const {
1377     if (isSingleWord())
1378       return CountTrailingOnes_64(VAL);
1379     return countTrailingOnesSlowCase();
1380   }
1381 
1382   /// \brief Count the number of bits set.
1383   ///
1384   /// This function is an APInt version of the countPopulation_{32,64} functions
1385   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1386   ///
1387   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
countPopulation()1388   unsigned countPopulation() const {
1389     if (isSingleWord())
1390       return CountPopulation_64(VAL);
1391     return countPopulationSlowCase();
1392   }
1393 
1394   /// @}
1395   /// \name Conversion Functions
1396   /// @{
1397   void print(raw_ostream &OS, bool isSigned) const;
1398 
1399   /// Converts an APInt to a string and append it to Str.  Str is commonly a
1400   /// SmallString.
1401   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1402                 bool formatAsCLiteral = false) const;
1403 
1404   /// Considers the APInt to be unsigned and converts it into a string in the
1405   /// radix given. The radix can be 2, 8, 10 16, or 36.
1406   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1407     toString(Str, Radix, false, false);
1408   }
1409 
1410   /// Considers the APInt to be signed and converts it into a string in the
1411   /// radix given. The radix can be 2, 8, 10, 16, or 36.
1412   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1413     toString(Str, Radix, true, false);
1414   }
1415 
1416   /// \brief Return the APInt as a std::string.
1417   ///
1418   /// Note that this is an inefficient method.  It is better to pass in a
1419   /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1420   /// for the string.
1421   std::string toString(unsigned Radix, bool Signed) const;
1422 
1423   /// \returns a byte-swapped representation of this APInt Value.
1424   APInt byteSwap() const;
1425 
1426   /// \brief Converts this APInt to a double value.
1427   double roundToDouble(bool isSigned) const;
1428 
1429   /// \brief Converts this unsigned APInt to a double value.
roundToDouble()1430   double roundToDouble() const { return roundToDouble(false); }
1431 
1432   /// \brief Converts this signed APInt to a double value.
signedRoundToDouble()1433   double signedRoundToDouble() const { return roundToDouble(true); }
1434 
1435   /// \brief Converts APInt bits to a double
1436   ///
1437   /// The conversion does not do a translation from integer to double, it just
1438   /// re-interprets the bits as a double. Note that it is valid to do this on
1439   /// any bit width. Exactly 64 bits will be translated.
bitsToDouble()1440   double bitsToDouble() const {
1441     union {
1442       uint64_t I;
1443       double D;
1444     } T;
1445     T.I = (isSingleWord() ? VAL : pVal[0]);
1446     return T.D;
1447   }
1448 
1449   /// \brief Converts APInt bits to a double
1450   ///
1451   /// The conversion does not do a translation from integer to float, it just
1452   /// re-interprets the bits as a float. Note that it is valid to do this on
1453   /// any bit width. Exactly 32 bits will be translated.
bitsToFloat()1454   float bitsToFloat() const {
1455     union {
1456       unsigned I;
1457       float F;
1458     } T;
1459     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1460     return T.F;
1461   }
1462 
1463   /// \brief Converts a double to APInt bits.
1464   ///
1465   /// The conversion does not do a translation from double to integer, it just
1466   /// re-interprets the bits of the double.
doubleToBits(double V)1467   static APInt doubleToBits(double V) {
1468     union {
1469       uint64_t I;
1470       double D;
1471     } T;
1472     T.D = V;
1473     return APInt(sizeof T * CHAR_BIT, T.I);
1474   }
1475 
1476   /// \brief Converts a float to APInt bits.
1477   ///
1478   /// The conversion does not do a translation from float to integer, it just
1479   /// re-interprets the bits of the float.
floatToBits(float V)1480   static APInt floatToBits(float V) {
1481     union {
1482       unsigned I;
1483       float F;
1484     } T;
1485     T.F = V;
1486     return APInt(sizeof T * CHAR_BIT, T.I);
1487   }
1488 
1489   /// @}
1490   /// \name Mathematics Operations
1491   /// @{
1492 
1493   /// \returns the floor log base 2 of this APInt.
logBase2()1494   unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
1495 
1496   /// \returns the ceil log base 2 of this APInt.
ceilLogBase2()1497   unsigned ceilLogBase2() const {
1498     return BitWidth - (*this - 1).countLeadingZeros();
1499   }
1500 
1501   /// \returns the log base 2 of this APInt if its an exact power of two, -1
1502   /// otherwise
exactLogBase2()1503   int32_t exactLogBase2() const {
1504     if (!isPowerOf2())
1505       return -1;
1506     return logBase2();
1507   }
1508 
1509   /// \brief Compute the square root
1510   APInt sqrt() const;
1511 
1512   /// \brief Get the absolute value;
1513   ///
1514   /// If *this is < 0 then return -(*this), otherwise *this;
abs()1515   APInt abs() const {
1516     if (isNegative())
1517       return -(*this);
1518     return *this;
1519   }
1520 
1521   /// \returns the multiplicative inverse for a given modulo.
1522   APInt multiplicativeInverse(const APInt &modulo) const;
1523 
1524   /// @}
1525   /// \name Support for division by constant
1526   /// @{
1527 
1528   /// Calculate the magic number for signed division by a constant.
1529   struct ms;
1530   ms magic() const;
1531 
1532   /// Calculate the magic number for unsigned division by a constant.
1533   struct mu;
1534   mu magicu(unsigned LeadingZeros = 0) const;
1535 
1536   /// @}
1537   /// \name Building-block Operations for APInt and APFloat
1538   /// @{
1539 
1540   // These building block operations operate on a representation of arbitrary
1541   // precision, two's-complement, bignum integer values. They should be
1542   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1543   // generally a pointer to the base of an array of integer parts, representing
1544   // an unsigned bignum, and a count of how many parts there are.
1545 
1546   /// Sets the least significant part of a bignum to the input value, and zeroes
1547   /// out higher parts.
1548   static void tcSet(integerPart *, integerPart, unsigned int);
1549 
1550   /// Assign one bignum to another.
1551   static void tcAssign(integerPart *, const integerPart *, unsigned int);
1552 
1553   /// Returns true if a bignum is zero, false otherwise.
1554   static bool tcIsZero(const integerPart *, unsigned int);
1555 
1556   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1557   static int tcExtractBit(const integerPart *, unsigned int bit);
1558 
1559   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1560   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1561   /// significant bit of DST.  All high bits above srcBITS in DST are
1562   /// zero-filled.
1563   static void tcExtract(integerPart *, unsigned int dstCount,
1564                         const integerPart *, unsigned int srcBits,
1565                         unsigned int srcLSB);
1566 
1567   /// Set the given bit of a bignum.  Zero-based.
1568   static void tcSetBit(integerPart *, unsigned int bit);
1569 
1570   /// Clear the given bit of a bignum.  Zero-based.
1571   static void tcClearBit(integerPart *, unsigned int bit);
1572 
1573   /// Returns the bit number of the least or most significant set bit of a
1574   /// number.  If the input number has no bits set -1U is returned.
1575   static unsigned int tcLSB(const integerPart *, unsigned int);
1576   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1577 
1578   /// Negate a bignum in-place.
1579   static void tcNegate(integerPart *, unsigned int);
1580 
1581   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1582   static integerPart tcAdd(integerPart *, const integerPart *,
1583                            integerPart carry, unsigned);
1584 
1585   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1586   static integerPart tcSubtract(integerPart *, const integerPart *,
1587                                 integerPart carry, unsigned);
1588 
1589   /// DST += SRC * MULTIPLIER + PART   if add is true
1590   /// DST  = SRC * MULTIPLIER + PART   if add is false
1591   ///
1592   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1593   /// start at the same point, i.e. DST == SRC.
1594   ///
1595   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1596   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1597   /// result, and if all of the omitted higher parts were zero return zero,
1598   /// otherwise overflow occurred and return one.
1599   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1600                             integerPart multiplier, integerPart carry,
1601                             unsigned int srcParts, unsigned int dstParts,
1602                             bool add);
1603 
1604   /// DST = LHS * RHS, where DST has the same width as the operands and is
1605   /// filled with the least significant parts of the result.  Returns one if
1606   /// overflow occurred, otherwise zero.  DST must be disjoint from both
1607   /// operands.
1608   static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
1609                         unsigned);
1610 
1611   /// DST = LHS * RHS, where DST has width the sum of the widths of the
1612   /// operands.  No overflow occurs.  DST must be disjoint from both
1613   /// operands. Returns the number of parts required to hold the result.
1614   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1615                                      const integerPart *, unsigned, unsigned);
1616 
1617   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1618   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1619   /// REMAINDER to the remainder, return zero.  i.e.
1620   ///
1621   ///  OLD_LHS = RHS * LHS + REMAINDER
1622   ///
1623   /// SCRATCH is a bignum of the same size as the operands and result for use by
1624   /// the routine; its contents need not be initialized and are destroyed.  LHS,
1625   /// REMAINDER and SCRATCH must be distinct.
1626   static int tcDivide(integerPart *lhs, const integerPart *rhs,
1627                       integerPart *remainder, integerPart *scratch,
1628                       unsigned int parts);
1629 
1630   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.  There are no
1631   /// restrictions on COUNT.
1632   static void tcShiftLeft(integerPart *, unsigned int parts,
1633                           unsigned int count);
1634 
1635   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.  There are no
1636   /// restrictions on COUNT.
1637   static void tcShiftRight(integerPart *, unsigned int parts,
1638                            unsigned int count);
1639 
1640   /// The obvious AND, OR and XOR and complement operations.
1641   static void tcAnd(integerPart *, const integerPart *, unsigned int);
1642   static void tcOr(integerPart *, const integerPart *, unsigned int);
1643   static void tcXor(integerPart *, const integerPart *, unsigned int);
1644   static void tcComplement(integerPart *, unsigned int);
1645 
1646   /// Comparison (unsigned) of two bignums.
1647   static int tcCompare(const integerPart *, const integerPart *, unsigned int);
1648 
1649   /// Increment a bignum in-place.  Return the carry flag.
1650   static integerPart tcIncrement(integerPart *, unsigned int);
1651 
1652   /// Decrement a bignum in-place.  Return the borrow flag.
1653   static integerPart tcDecrement(integerPart *, unsigned int);
1654 
1655   /// Set the least significant BITS and clear the rest.
1656   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1657                                         unsigned int bits);
1658 
1659   /// \brief debug method
1660   void dump() const;
1661 
1662   /// @}
1663 };
1664 
1665 /// Magic data for optimising signed division by a constant.
1666 struct APInt::ms {
1667   APInt m;    ///< magic number
1668   unsigned s; ///< shift amount
1669 };
1670 
1671 /// Magic data for optimising unsigned division by a constant.
1672 struct APInt::mu {
1673   APInt m;    ///< magic number
1674   bool a;     ///< add indicator
1675   unsigned s; ///< shift amount
1676 };
1677 
1678 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1679 
1680 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1681 
1682 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1683   I.print(OS, true);
1684   return OS;
1685 }
1686 
1687 namespace APIntOps {
1688 
1689 /// \brief Determine the smaller of two APInts considered to be signed.
smin(const APInt & A,const APInt & B)1690 inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
1691 
1692 /// \brief Determine the larger of two APInts considered to be signed.
smax(const APInt & A,const APInt & B)1693 inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
1694 
1695 /// \brief Determine the smaller of two APInts considered to be signed.
umin(const APInt & A,const APInt & B)1696 inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
1697 
1698 /// \brief Determine the larger of two APInts considered to be unsigned.
umax(const APInt & A,const APInt & B)1699 inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
1700 
1701 /// \brief Check if the specified APInt has a N-bits unsigned integer value.
isIntN(unsigned N,const APInt & APIVal)1702 inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
1703 
1704 /// \brief Check if the specified APInt has a N-bits signed integer value.
isSignedIntN(unsigned N,const APInt & APIVal)1705 inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
1706   return APIVal.isSignedIntN(N);
1707 }
1708 
1709 /// \returns true if the argument APInt value is a sequence of ones starting at
1710 /// the least significant bit with the remainder zero.
isMask(unsigned numBits,const APInt & APIVal)1711 inline bool isMask(unsigned numBits, const APInt &APIVal) {
1712   return numBits <= APIVal.getBitWidth() &&
1713          APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1714 }
1715 
1716 /// \brief Return true if the argument APInt value contains a sequence of ones
1717 /// with the remainder zero.
isShiftedMask(unsigned numBits,const APInt & APIVal)1718 inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
1719   return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
1720 }
1721 
1722 /// \brief Returns a byte-swapped representation of the specified APInt Value.
byteSwap(const APInt & APIVal)1723 inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
1724 
1725 /// \brief Returns the floor log base 2 of the specified APInt value.
logBase2(const APInt & APIVal)1726 inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
1727 
1728 /// \brief Compute GCD of two APInt values.
1729 ///
1730 /// This function returns the greatest common divisor of the two APInt values
1731 /// using Euclid's algorithm.
1732 ///
1733 /// \returns the greatest common divisor of Val1 and Val2
1734 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
1735 
1736 /// \brief Converts the given APInt to a double value.
1737 ///
1738 /// Treats the APInt as an unsigned value for conversion purposes.
RoundAPIntToDouble(const APInt & APIVal)1739 inline double RoundAPIntToDouble(const APInt &APIVal) {
1740   return APIVal.roundToDouble();
1741 }
1742 
1743 /// \brief Converts the given APInt to a double value.
1744 ///
1745 /// Treats the APInt as a signed value for conversion purposes.
RoundSignedAPIntToDouble(const APInt & APIVal)1746 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
1747   return APIVal.signedRoundToDouble();
1748 }
1749 
1750 /// \brief Converts the given APInt to a float vlalue.
RoundAPIntToFloat(const APInt & APIVal)1751 inline float RoundAPIntToFloat(const APInt &APIVal) {
1752   return float(RoundAPIntToDouble(APIVal));
1753 }
1754 
1755 /// \brief Converts the given APInt to a float value.
1756 ///
1757 /// Treast the APInt as a signed value for conversion purposes.
RoundSignedAPIntToFloat(const APInt & APIVal)1758 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
1759   return float(APIVal.signedRoundToDouble());
1760 }
1761 
1762 /// \brief Converts the given double value into a APInt.
1763 ///
1764 /// This function convert a double value to an APInt value.
1765 APInt RoundDoubleToAPInt(double Double, unsigned width);
1766 
1767 /// \brief Converts a float value into a APInt.
1768 ///
1769 /// Converts a float value into an APInt value.
RoundFloatToAPInt(float Float,unsigned width)1770 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1771   return RoundDoubleToAPInt(double(Float), width);
1772 }
1773 
1774 /// \brief Arithmetic right-shift function.
1775 ///
1776 /// Arithmetic right-shift the APInt by shiftAmt.
ashr(const APInt & LHS,unsigned shiftAmt)1777 inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
1778   return LHS.ashr(shiftAmt);
1779 }
1780 
1781 /// \brief Logical right-shift function.
1782 ///
1783 /// Logical right-shift the APInt by shiftAmt.
lshr(const APInt & LHS,unsigned shiftAmt)1784 inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
1785   return LHS.lshr(shiftAmt);
1786 }
1787 
1788 /// \brief Left-shift function.
1789 ///
1790 /// Left-shift the APInt by shiftAmt.
shl(const APInt & LHS,unsigned shiftAmt)1791 inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
1792   return LHS.shl(shiftAmt);
1793 }
1794 
1795 /// \brief Signed division function for APInt.
1796 ///
1797 /// Signed divide APInt LHS by APInt RHS.
sdiv(const APInt & LHS,const APInt & RHS)1798 inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
1799 
1800 /// \brief Unsigned division function for APInt.
1801 ///
1802 /// Unsigned divide APInt LHS by APInt RHS.
udiv(const APInt & LHS,const APInt & RHS)1803 inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
1804 
1805 /// \brief Function for signed remainder operation.
1806 ///
1807 /// Signed remainder operation on APInt.
srem(const APInt & LHS,const APInt & RHS)1808 inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
1809 
1810 /// \brief Function for unsigned remainder operation.
1811 ///
1812 /// Unsigned remainder operation on APInt.
urem(const APInt & LHS,const APInt & RHS)1813 inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
1814 
1815 /// \brief Function for multiplication operation.
1816 ///
1817 /// Performs multiplication on APInt values.
mul(const APInt & LHS,const APInt & RHS)1818 inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
1819 
1820 /// \brief Function for addition operation.
1821 ///
1822 /// Performs addition on APInt values.
add(const APInt & LHS,const APInt & RHS)1823 inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
1824 
1825 /// \brief Function for subtraction operation.
1826 ///
1827 /// Performs subtraction on APInt values.
sub(const APInt & LHS,const APInt & RHS)1828 inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
1829 
1830 /// \brief Bitwise AND function for APInt.
1831 ///
1832 /// Performs bitwise AND operation on APInt LHS and
1833 /// APInt RHS.
And(const APInt & LHS,const APInt & RHS)1834 inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
1835 
1836 /// \brief Bitwise OR function for APInt.
1837 ///
1838 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
Or(const APInt & LHS,const APInt & RHS)1839 inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
1840 
1841 /// \brief Bitwise XOR function for APInt.
1842 ///
1843 /// Performs bitwise XOR operation on APInt.
Xor(const APInt & LHS,const APInt & RHS)1844 inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
1845 
1846 /// \brief Bitwise complement function.
1847 ///
1848 /// Performs a bitwise complement operation on APInt.
Not(const APInt & APIVal)1849 inline APInt Not(const APInt &APIVal) { return ~APIVal; }
1850 
1851 } // End of APIntOps namespace
1852 
1853 // See friend declaration above. This additional declaration is required in
1854 // order to compile LLVM with IBM xlC compiler.
1855 hash_code hash_value(const APInt &Arg);
1856 } // End of llvm namespace
1857 
1858 #endif
1859