1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "BufferQueue"
18 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
19 //#define LOG_NDEBUG 0
20
21 #define GL_GLEXT_PROTOTYPES
22 #define EGL_EGLEXT_PROTOTYPES
23
24 #include <EGL/egl.h>
25 #include <EGL/eglext.h>
26
27 #include <gui/BufferQueue.h>
28 #include <gui/IConsumerListener.h>
29 #include <gui/ISurfaceComposer.h>
30 #include <private/gui/ComposerService.h>
31
32 #include <utils/Log.h>
33 #include <utils/Trace.h>
34 #include <utils/CallStack.h>
35
36 // Macros for including the BufferQueue name in log messages
37 #define ST_LOGV(x, ...) ALOGV("[%s] "x, mConsumerName.string(), ##__VA_ARGS__)
38 #define ST_LOGD(x, ...) ALOGD("[%s] "x, mConsumerName.string(), ##__VA_ARGS__)
39 #define ST_LOGI(x, ...) ALOGI("[%s] "x, mConsumerName.string(), ##__VA_ARGS__)
40 #define ST_LOGW(x, ...) ALOGW("[%s] "x, mConsumerName.string(), ##__VA_ARGS__)
41 #define ST_LOGE(x, ...) ALOGE("[%s] "x, mConsumerName.string(), ##__VA_ARGS__)
42
43 #define ATRACE_BUFFER_INDEX(index) \
44 if (ATRACE_ENABLED()) { \
45 char ___traceBuf[1024]; \
46 snprintf(___traceBuf, 1024, "%s: %d", mConsumerName.string(), \
47 (index)); \
48 android::ScopedTrace ___bufTracer(ATRACE_TAG, ___traceBuf); \
49 }
50
51 namespace android {
52
53 // Get an ID that's unique within this process.
createProcessUniqueId()54 static int32_t createProcessUniqueId() {
55 static volatile int32_t globalCounter = 0;
56 return android_atomic_inc(&globalCounter);
57 }
58
scalingModeName(int scalingMode)59 static const char* scalingModeName(int scalingMode) {
60 switch (scalingMode) {
61 case NATIVE_WINDOW_SCALING_MODE_FREEZE: return "FREEZE";
62 case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW: return "SCALE_TO_WINDOW";
63 case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP: return "SCALE_CROP";
64 default: return "Unknown";
65 }
66 }
67
BufferQueue(const sp<IGraphicBufferAlloc> & allocator)68 BufferQueue::BufferQueue(const sp<IGraphicBufferAlloc>& allocator) :
69 mDefaultWidth(1),
70 mDefaultHeight(1),
71 mMaxAcquiredBufferCount(1),
72 mDefaultMaxBufferCount(2),
73 mOverrideMaxBufferCount(0),
74 mConsumerControlledByApp(false),
75 mDequeueBufferCannotBlock(false),
76 mUseAsyncBuffer(true),
77 mConnectedApi(NO_CONNECTED_API),
78 mAbandoned(false),
79 mFrameCounter(0),
80 mBufferHasBeenQueued(false),
81 mDefaultBufferFormat(PIXEL_FORMAT_RGBA_8888),
82 mConsumerUsageBits(0),
83 mTransformHint(0)
84 {
85 // Choose a name using the PID and a process-unique ID.
86 mConsumerName = String8::format("unnamed-%d-%d", getpid(), createProcessUniqueId());
87
88 ST_LOGV("BufferQueue");
89 if (allocator == NULL) {
90 sp<ISurfaceComposer> composer(ComposerService::getComposerService());
91 mGraphicBufferAlloc = composer->createGraphicBufferAlloc();
92 if (mGraphicBufferAlloc == 0) {
93 ST_LOGE("createGraphicBufferAlloc() failed in BufferQueue()");
94 }
95 } else {
96 mGraphicBufferAlloc = allocator;
97 }
98 }
99
~BufferQueue()100 BufferQueue::~BufferQueue() {
101 ST_LOGV("~BufferQueue");
102 }
103
setDefaultMaxBufferCountLocked(int count)104 status_t BufferQueue::setDefaultMaxBufferCountLocked(int count) {
105 const int minBufferCount = mUseAsyncBuffer ? 2 : 1;
106 if (count < minBufferCount || count > NUM_BUFFER_SLOTS)
107 return BAD_VALUE;
108
109 mDefaultMaxBufferCount = count;
110 mDequeueCondition.broadcast();
111
112 return NO_ERROR;
113 }
114
setConsumerName(const String8 & name)115 void BufferQueue::setConsumerName(const String8& name) {
116 Mutex::Autolock lock(mMutex);
117 mConsumerName = name;
118 }
119
setDefaultBufferFormat(uint32_t defaultFormat)120 status_t BufferQueue::setDefaultBufferFormat(uint32_t defaultFormat) {
121 Mutex::Autolock lock(mMutex);
122 mDefaultBufferFormat = defaultFormat;
123 return NO_ERROR;
124 }
125
setConsumerUsageBits(uint32_t usage)126 status_t BufferQueue::setConsumerUsageBits(uint32_t usage) {
127 Mutex::Autolock lock(mMutex);
128 mConsumerUsageBits = usage;
129 return NO_ERROR;
130 }
131
setTransformHint(uint32_t hint)132 status_t BufferQueue::setTransformHint(uint32_t hint) {
133 ST_LOGV("setTransformHint: %02x", hint);
134 Mutex::Autolock lock(mMutex);
135 mTransformHint = hint;
136 return NO_ERROR;
137 }
138
setBufferCount(int bufferCount)139 status_t BufferQueue::setBufferCount(int bufferCount) {
140 ST_LOGV("setBufferCount: count=%d", bufferCount);
141
142 sp<IConsumerListener> listener;
143 {
144 Mutex::Autolock lock(mMutex);
145
146 if (mAbandoned) {
147 ST_LOGE("setBufferCount: BufferQueue has been abandoned!");
148 return NO_INIT;
149 }
150 if (bufferCount > NUM_BUFFER_SLOTS) {
151 ST_LOGE("setBufferCount: bufferCount too large (max %d)",
152 NUM_BUFFER_SLOTS);
153 return BAD_VALUE;
154 }
155
156 // Error out if the user has dequeued buffers
157 for (int i=0 ; i<NUM_BUFFER_SLOTS; i++) {
158 if (mSlots[i].mBufferState == BufferSlot::DEQUEUED) {
159 ST_LOGE("setBufferCount: client owns some buffers");
160 return -EINVAL;
161 }
162 }
163
164 if (bufferCount == 0) {
165 mOverrideMaxBufferCount = 0;
166 mDequeueCondition.broadcast();
167 return NO_ERROR;
168 }
169
170 // fine to assume async to false before we're setting the buffer count
171 const int minBufferSlots = getMinMaxBufferCountLocked(false);
172 if (bufferCount < minBufferSlots) {
173 ST_LOGE("setBufferCount: requested buffer count (%d) is less than "
174 "minimum (%d)", bufferCount, minBufferSlots);
175 return BAD_VALUE;
176 }
177
178 // here we're guaranteed that the client doesn't have dequeued buffers
179 // and will release all of its buffer references. We don't clear the
180 // queue, however, so currently queued buffers still get displayed.
181 freeAllBuffersLocked();
182 mOverrideMaxBufferCount = bufferCount;
183 mDequeueCondition.broadcast();
184 listener = mConsumerListener;
185 } // scope for lock
186
187 if (listener != NULL) {
188 listener->onBuffersReleased();
189 }
190
191 return NO_ERROR;
192 }
193
query(int what,int * outValue)194 int BufferQueue::query(int what, int* outValue)
195 {
196 ATRACE_CALL();
197 Mutex::Autolock lock(mMutex);
198
199 if (mAbandoned) {
200 ST_LOGE("query: BufferQueue has been abandoned!");
201 return NO_INIT;
202 }
203
204 int value;
205 switch (what) {
206 case NATIVE_WINDOW_WIDTH:
207 value = mDefaultWidth;
208 break;
209 case NATIVE_WINDOW_HEIGHT:
210 value = mDefaultHeight;
211 break;
212 case NATIVE_WINDOW_FORMAT:
213 value = mDefaultBufferFormat;
214 break;
215 case NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS:
216 value = getMinUndequeuedBufferCount(false);
217 break;
218 case NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND:
219 value = (mQueue.size() >= 2);
220 break;
221 case NATIVE_WINDOW_CONSUMER_USAGE_BITS:
222 value = mConsumerUsageBits;
223 break;
224 default:
225 return BAD_VALUE;
226 }
227 outValue[0] = value;
228 return NO_ERROR;
229 }
230
requestBuffer(int slot,sp<GraphicBuffer> * buf)231 status_t BufferQueue::requestBuffer(int slot, sp<GraphicBuffer>* buf) {
232 ATRACE_CALL();
233 ST_LOGV("requestBuffer: slot=%d", slot);
234 Mutex::Autolock lock(mMutex);
235 if (mAbandoned) {
236 ST_LOGE("requestBuffer: BufferQueue has been abandoned!");
237 return NO_INIT;
238 }
239 if (slot < 0 || slot >= NUM_BUFFER_SLOTS) {
240 ST_LOGE("requestBuffer: slot index out of range [0, %d]: %d",
241 NUM_BUFFER_SLOTS, slot);
242 return BAD_VALUE;
243 } else if (mSlots[slot].mBufferState != BufferSlot::DEQUEUED) {
244 ST_LOGE("requestBuffer: slot %d is not owned by the client (state=%d)",
245 slot, mSlots[slot].mBufferState);
246 return BAD_VALUE;
247 }
248 mSlots[slot].mRequestBufferCalled = true;
249 *buf = mSlots[slot].mGraphicBuffer;
250 return NO_ERROR;
251 }
252
dequeueBuffer(int * outBuf,sp<Fence> * outFence,bool async,uint32_t w,uint32_t h,uint32_t format,uint32_t usage)253 status_t BufferQueue::dequeueBuffer(int *outBuf, sp<Fence>* outFence, bool async,
254 uint32_t w, uint32_t h, uint32_t format, uint32_t usage) {
255 ATRACE_CALL();
256 ST_LOGV("dequeueBuffer: w=%d h=%d fmt=%#x usage=%#x", w, h, format, usage);
257
258 if ((w && !h) || (!w && h)) {
259 ST_LOGE("dequeueBuffer: invalid size: w=%u, h=%u", w, h);
260 return BAD_VALUE;
261 }
262
263 status_t returnFlags(OK);
264 EGLDisplay dpy = EGL_NO_DISPLAY;
265 EGLSyncKHR eglFence = EGL_NO_SYNC_KHR;
266
267 { // Scope for the lock
268 Mutex::Autolock lock(mMutex);
269
270 if (format == 0) {
271 format = mDefaultBufferFormat;
272 }
273 // turn on usage bits the consumer requested
274 usage |= mConsumerUsageBits;
275
276 int found = -1;
277 bool tryAgain = true;
278 while (tryAgain) {
279 if (mAbandoned) {
280 ST_LOGE("dequeueBuffer: BufferQueue has been abandoned!");
281 return NO_INIT;
282 }
283
284 const int maxBufferCount = getMaxBufferCountLocked(async);
285 if (async && mOverrideMaxBufferCount) {
286 // FIXME: some drivers are manually setting the buffer-count (which they
287 // shouldn't), so we do this extra test here to handle that case.
288 // This is TEMPORARY, until we get this fixed.
289 if (mOverrideMaxBufferCount < maxBufferCount) {
290 ST_LOGE("dequeueBuffer: async mode is invalid with buffercount override");
291 return BAD_VALUE;
292 }
293 }
294
295 // Free up any buffers that are in slots beyond the max buffer
296 // count.
297 for (int i = maxBufferCount; i < NUM_BUFFER_SLOTS; i++) {
298 assert(mSlots[i].mBufferState == BufferSlot::FREE);
299 if (mSlots[i].mGraphicBuffer != NULL) {
300 freeBufferLocked(i);
301 returnFlags |= IGraphicBufferProducer::RELEASE_ALL_BUFFERS;
302 }
303 }
304
305 // look for a free buffer to give to the client
306 found = INVALID_BUFFER_SLOT;
307 int dequeuedCount = 0;
308 int acquiredCount = 0;
309 for (int i = 0; i < maxBufferCount; i++) {
310 const int state = mSlots[i].mBufferState;
311 switch (state) {
312 case BufferSlot::DEQUEUED:
313 dequeuedCount++;
314 break;
315 case BufferSlot::ACQUIRED:
316 acquiredCount++;
317 break;
318 case BufferSlot::FREE:
319 /* We return the oldest of the free buffers to avoid
320 * stalling the producer if possible. This is because
321 * the consumer may still have pending reads of the
322 * buffers in flight.
323 */
324 if ((found < 0) ||
325 mSlots[i].mFrameNumber < mSlots[found].mFrameNumber) {
326 found = i;
327 }
328 break;
329 }
330 }
331
332 // clients are not allowed to dequeue more than one buffer
333 // if they didn't set a buffer count.
334 if (!mOverrideMaxBufferCount && dequeuedCount) {
335 ST_LOGE("dequeueBuffer: can't dequeue multiple buffers without "
336 "setting the buffer count");
337 return -EINVAL;
338 }
339
340 // See whether a buffer has been queued since the last
341 // setBufferCount so we know whether to perform the min undequeued
342 // buffers check below.
343 if (mBufferHasBeenQueued) {
344 // make sure the client is not trying to dequeue more buffers
345 // than allowed.
346 const int newUndequeuedCount = maxBufferCount - (dequeuedCount+1);
347 const int minUndequeuedCount = getMinUndequeuedBufferCount(async);
348 if (newUndequeuedCount < minUndequeuedCount) {
349 ST_LOGE("dequeueBuffer: min undequeued buffer count (%d) "
350 "exceeded (dequeued=%d undequeudCount=%d)",
351 minUndequeuedCount, dequeuedCount,
352 newUndequeuedCount);
353 return -EBUSY;
354 }
355 }
356
357 // If no buffer is found, wait for a buffer to be released or for
358 // the max buffer count to change.
359 tryAgain = found == INVALID_BUFFER_SLOT;
360 if (tryAgain) {
361 // return an error if we're in "cannot block" mode (producer and consumer
362 // are controlled by the application) -- however, the consumer is allowed
363 // to acquire briefly an extra buffer (which could cause us to have to wait here)
364 // and that's okay because we know the wait will be brief (it happens
365 // if we dequeue a buffer while the consumer has acquired one but not released
366 // the old one yet -- for e.g.: see GLConsumer::updateTexImage()).
367 if (mDequeueBufferCannotBlock && (acquiredCount <= mMaxAcquiredBufferCount)) {
368 ST_LOGE("dequeueBuffer: would block! returning an error instead.");
369 return WOULD_BLOCK;
370 }
371 mDequeueCondition.wait(mMutex);
372 }
373 }
374
375
376 if (found == INVALID_BUFFER_SLOT) {
377 // This should not happen.
378 ST_LOGE("dequeueBuffer: no available buffer slots");
379 return -EBUSY;
380 }
381
382 const int buf = found;
383 *outBuf = found;
384
385 ATRACE_BUFFER_INDEX(buf);
386
387 const bool useDefaultSize = !w && !h;
388 if (useDefaultSize) {
389 // use the default size
390 w = mDefaultWidth;
391 h = mDefaultHeight;
392 }
393
394 mSlots[buf].mBufferState = BufferSlot::DEQUEUED;
395
396 const sp<GraphicBuffer>& buffer(mSlots[buf].mGraphicBuffer);
397 if ((buffer == NULL) ||
398 (uint32_t(buffer->width) != w) ||
399 (uint32_t(buffer->height) != h) ||
400 (uint32_t(buffer->format) != format) ||
401 ((uint32_t(buffer->usage) & usage) != usage))
402 {
403 mSlots[buf].mAcquireCalled = false;
404 mSlots[buf].mGraphicBuffer = NULL;
405 mSlots[buf].mRequestBufferCalled = false;
406 mSlots[buf].mEglFence = EGL_NO_SYNC_KHR;
407 mSlots[buf].mFence = Fence::NO_FENCE;
408 mSlots[buf].mEglDisplay = EGL_NO_DISPLAY;
409
410 returnFlags |= IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION;
411 }
412
413
414 if (CC_UNLIKELY(mSlots[buf].mFence == NULL)) {
415 ST_LOGE("dequeueBuffer: about to return a NULL fence from mSlot. "
416 "buf=%d, w=%d, h=%d, format=%d",
417 buf, buffer->width, buffer->height, buffer->format);
418 }
419
420 dpy = mSlots[buf].mEglDisplay;
421 eglFence = mSlots[buf].mEglFence;
422 *outFence = mSlots[buf].mFence;
423 mSlots[buf].mEglFence = EGL_NO_SYNC_KHR;
424 mSlots[buf].mFence = Fence::NO_FENCE;
425 } // end lock scope
426
427 if (returnFlags & IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION) {
428 status_t error;
429 sp<GraphicBuffer> graphicBuffer(
430 mGraphicBufferAlloc->createGraphicBuffer(w, h, format, usage, &error));
431 if (graphicBuffer == 0) {
432 ST_LOGE("dequeueBuffer: SurfaceComposer::createGraphicBuffer failed");
433 return error;
434 }
435
436 { // Scope for the lock
437 Mutex::Autolock lock(mMutex);
438
439 if (mAbandoned) {
440 ST_LOGE("dequeueBuffer: BufferQueue has been abandoned!");
441 return NO_INIT;
442 }
443
444 mSlots[*outBuf].mFrameNumber = ~0;
445 mSlots[*outBuf].mGraphicBuffer = graphicBuffer;
446 }
447 }
448
449 if (eglFence != EGL_NO_SYNC_KHR) {
450 EGLint result = eglClientWaitSyncKHR(dpy, eglFence, 0, 1000000000);
451 // If something goes wrong, log the error, but return the buffer without
452 // synchronizing access to it. It's too late at this point to abort the
453 // dequeue operation.
454 if (result == EGL_FALSE) {
455 ST_LOGE("dequeueBuffer: error waiting for fence: %#x", eglGetError());
456 } else if (result == EGL_TIMEOUT_EXPIRED_KHR) {
457 ST_LOGE("dequeueBuffer: timeout waiting for fence");
458 }
459 eglDestroySyncKHR(dpy, eglFence);
460 }
461
462 ST_LOGV("dequeueBuffer: returning slot=%d/%llu buf=%p flags=%#x", *outBuf,
463 mSlots[*outBuf].mFrameNumber,
464 mSlots[*outBuf].mGraphicBuffer->handle, returnFlags);
465
466 return returnFlags;
467 }
468
queueBuffer(int buf,const QueueBufferInput & input,QueueBufferOutput * output)469 status_t BufferQueue::queueBuffer(int buf,
470 const QueueBufferInput& input, QueueBufferOutput* output) {
471 ATRACE_CALL();
472 ATRACE_BUFFER_INDEX(buf);
473
474 Rect crop;
475 uint32_t transform;
476 int scalingMode;
477 int64_t timestamp;
478 bool isAutoTimestamp;
479 bool async;
480 sp<Fence> fence;
481
482 input.deflate(×tamp, &isAutoTimestamp, &crop, &scalingMode, &transform,
483 &async, &fence);
484
485 if (fence == NULL) {
486 ST_LOGE("queueBuffer: fence is NULL");
487 return BAD_VALUE;
488 }
489
490 switch (scalingMode) {
491 case NATIVE_WINDOW_SCALING_MODE_FREEZE:
492 case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW:
493 case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP:
494 case NATIVE_WINDOW_SCALING_MODE_NO_SCALE_CROP:
495 break;
496 default:
497 ST_LOGE("unknown scaling mode: %d", scalingMode);
498 return -EINVAL;
499 }
500
501 sp<IConsumerListener> listener;
502
503 { // scope for the lock
504 Mutex::Autolock lock(mMutex);
505
506 if (mAbandoned) {
507 ST_LOGE("queueBuffer: BufferQueue has been abandoned!");
508 return NO_INIT;
509 }
510
511 const int maxBufferCount = getMaxBufferCountLocked(async);
512 if (async && mOverrideMaxBufferCount) {
513 // FIXME: some drivers are manually setting the buffer-count (which they
514 // shouldn't), so we do this extra test here to handle that case.
515 // This is TEMPORARY, until we get this fixed.
516 if (mOverrideMaxBufferCount < maxBufferCount) {
517 ST_LOGE("queueBuffer: async mode is invalid with buffercount override");
518 return BAD_VALUE;
519 }
520 }
521 if (buf < 0 || buf >= maxBufferCount) {
522 ST_LOGE("queueBuffer: slot index out of range [0, %d]: %d",
523 maxBufferCount, buf);
524 return -EINVAL;
525 } else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) {
526 ST_LOGE("queueBuffer: slot %d is not owned by the client "
527 "(state=%d)", buf, mSlots[buf].mBufferState);
528 return -EINVAL;
529 } else if (!mSlots[buf].mRequestBufferCalled) {
530 ST_LOGE("queueBuffer: slot %d was enqueued without requesting a "
531 "buffer", buf);
532 return -EINVAL;
533 }
534
535 ST_LOGV("queueBuffer: slot=%d/%llu time=%#llx crop=[%d,%d,%d,%d] "
536 "tr=%#x scale=%s",
537 buf, mFrameCounter + 1, timestamp,
538 crop.left, crop.top, crop.right, crop.bottom,
539 transform, scalingModeName(scalingMode));
540
541 const sp<GraphicBuffer>& graphicBuffer(mSlots[buf].mGraphicBuffer);
542 Rect bufferRect(graphicBuffer->getWidth(), graphicBuffer->getHeight());
543 Rect croppedCrop;
544 crop.intersect(bufferRect, &croppedCrop);
545 if (croppedCrop != crop) {
546 ST_LOGE("queueBuffer: crop rect is not contained within the "
547 "buffer in slot %d", buf);
548 return -EINVAL;
549 }
550
551 mSlots[buf].mFence = fence;
552 mSlots[buf].mBufferState = BufferSlot::QUEUED;
553 mFrameCounter++;
554 mSlots[buf].mFrameNumber = mFrameCounter;
555
556 BufferItem item;
557 item.mAcquireCalled = mSlots[buf].mAcquireCalled;
558 item.mGraphicBuffer = mSlots[buf].mGraphicBuffer;
559 item.mCrop = crop;
560 item.mTransform = transform & ~NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY;
561 item.mTransformToDisplayInverse = bool(transform & NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY);
562 item.mScalingMode = scalingMode;
563 item.mTimestamp = timestamp;
564 item.mIsAutoTimestamp = isAutoTimestamp;
565 item.mFrameNumber = mFrameCounter;
566 item.mBuf = buf;
567 item.mFence = fence;
568 item.mIsDroppable = mDequeueBufferCannotBlock || async;
569
570 if (mQueue.empty()) {
571 // when the queue is empty, we can ignore "mDequeueBufferCannotBlock", and
572 // simply queue this buffer.
573 mQueue.push_back(item);
574 listener = mConsumerListener;
575 } else {
576 // when the queue is not empty, we need to look at the front buffer
577 // state and see if we need to replace it.
578 Fifo::iterator front(mQueue.begin());
579 if (front->mIsDroppable) {
580 // buffer slot currently queued is marked free if still tracked
581 if (stillTracking(front)) {
582 mSlots[front->mBuf].mBufferState = BufferSlot::FREE;
583 // reset the frame number of the freed buffer so that it is the first in
584 // line to be dequeued again.
585 mSlots[front->mBuf].mFrameNumber = 0;
586 }
587 // and we record the new buffer in the queued list
588 *front = item;
589 } else {
590 mQueue.push_back(item);
591 listener = mConsumerListener;
592 }
593 }
594
595 mBufferHasBeenQueued = true;
596 mDequeueCondition.broadcast();
597
598 output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint,
599 mQueue.size());
600
601 ATRACE_INT(mConsumerName.string(), mQueue.size());
602 } // scope for the lock
603
604 // call back without lock held
605 if (listener != 0) {
606 listener->onFrameAvailable();
607 }
608 return NO_ERROR;
609 }
610
cancelBuffer(int buf,const sp<Fence> & fence)611 void BufferQueue::cancelBuffer(int buf, const sp<Fence>& fence) {
612 ATRACE_CALL();
613 ST_LOGV("cancelBuffer: slot=%d", buf);
614 Mutex::Autolock lock(mMutex);
615
616 if (mAbandoned) {
617 ST_LOGW("cancelBuffer: BufferQueue has been abandoned!");
618 return;
619 }
620
621 if (buf < 0 || buf >= NUM_BUFFER_SLOTS) {
622 ST_LOGE("cancelBuffer: slot index out of range [0, %d]: %d",
623 NUM_BUFFER_SLOTS, buf);
624 return;
625 } else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) {
626 ST_LOGE("cancelBuffer: slot %d is not owned by the client (state=%d)",
627 buf, mSlots[buf].mBufferState);
628 return;
629 } else if (fence == NULL) {
630 ST_LOGE("cancelBuffer: fence is NULL");
631 return;
632 }
633 mSlots[buf].mBufferState = BufferSlot::FREE;
634 mSlots[buf].mFrameNumber = 0;
635 mSlots[buf].mFence = fence;
636 mDequeueCondition.broadcast();
637 }
638
639
connect(const sp<IBinder> & token,int api,bool producerControlledByApp,QueueBufferOutput * output)640 status_t BufferQueue::connect(const sp<IBinder>& token,
641 int api, bool producerControlledByApp, QueueBufferOutput* output) {
642 ATRACE_CALL();
643 ST_LOGV("connect: api=%d producerControlledByApp=%s", api,
644 producerControlledByApp ? "true" : "false");
645 Mutex::Autolock lock(mMutex);
646
647 retry:
648 if (mAbandoned) {
649 ST_LOGE("connect: BufferQueue has been abandoned!");
650 return NO_INIT;
651 }
652
653 if (mConsumerListener == NULL) {
654 ST_LOGE("connect: BufferQueue has no consumer!");
655 return NO_INIT;
656 }
657
658 if (mConnectedApi != NO_CONNECTED_API) {
659 ST_LOGE("connect: already connected (cur=%d, req=%d)",
660 mConnectedApi, api);
661 return -EINVAL;
662 }
663
664 // If we disconnect and reconnect quickly, we can be in a state where our slots are
665 // empty but we have many buffers in the queue. This can cause us to run out of
666 // memory if we outrun the consumer. Wait here if it looks like we have too many
667 // buffers queued up.
668 int maxBufferCount = getMaxBufferCountLocked(false); // worst-case, i.e. largest value
669 if (mQueue.size() > (size_t) maxBufferCount) {
670 // TODO: make this bound tighter?
671 ST_LOGV("queue size is %d, waiting", mQueue.size());
672 mDequeueCondition.wait(mMutex);
673 goto retry;
674 }
675
676 int err = NO_ERROR;
677 switch (api) {
678 case NATIVE_WINDOW_API_EGL:
679 case NATIVE_WINDOW_API_CPU:
680 case NATIVE_WINDOW_API_MEDIA:
681 case NATIVE_WINDOW_API_CAMERA:
682 mConnectedApi = api;
683 output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint, mQueue.size());
684
685 // set-up a death notification so that we can disconnect
686 // automatically when/if the remote producer dies.
687 if (token != NULL && token->remoteBinder() != NULL) {
688 status_t err = token->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
689 if (err == NO_ERROR) {
690 mConnectedProducerToken = token;
691 } else {
692 ALOGE("linkToDeath failed: %s (%d)", strerror(-err), err);
693 }
694 }
695 break;
696 default:
697 err = -EINVAL;
698 break;
699 }
700
701 mBufferHasBeenQueued = false;
702 mDequeueBufferCannotBlock = mConsumerControlledByApp && producerControlledByApp;
703
704 return err;
705 }
706
binderDied(const wp<IBinder> & who)707 void BufferQueue::binderDied(const wp<IBinder>& who) {
708 // If we're here, it means that a producer we were connected to died.
709 // We're GUARANTEED that we still are connected to it because it has no other way
710 // to get disconnected -- or -- we wouldn't be here because we're removing this
711 // callback upon disconnect. Therefore, it's okay to read mConnectedApi without
712 // synchronization here.
713 int api = mConnectedApi;
714 this->disconnect(api);
715 }
716
disconnect(int api)717 status_t BufferQueue::disconnect(int api) {
718 ATRACE_CALL();
719 ST_LOGV("disconnect: api=%d", api);
720
721 int err = NO_ERROR;
722 sp<IConsumerListener> listener;
723
724 { // Scope for the lock
725 Mutex::Autolock lock(mMutex);
726
727 if (mAbandoned) {
728 // it is not really an error to disconnect after the surface
729 // has been abandoned, it should just be a no-op.
730 return NO_ERROR;
731 }
732
733 switch (api) {
734 case NATIVE_WINDOW_API_EGL:
735 case NATIVE_WINDOW_API_CPU:
736 case NATIVE_WINDOW_API_MEDIA:
737 case NATIVE_WINDOW_API_CAMERA:
738 if (mConnectedApi == api) {
739 freeAllBuffersLocked();
740 // remove our death notification callback if we have one
741 sp<IBinder> token = mConnectedProducerToken;
742 if (token != NULL) {
743 // this can fail if we're here because of the death notification
744 // either way, we just ignore.
745 token->unlinkToDeath(static_cast<IBinder::DeathRecipient*>(this));
746 }
747 mConnectedProducerToken = NULL;
748 mConnectedApi = NO_CONNECTED_API;
749 mDequeueCondition.broadcast();
750 listener = mConsumerListener;
751 } else {
752 ST_LOGE("disconnect: connected to another api (cur=%d, req=%d)",
753 mConnectedApi, api);
754 err = -EINVAL;
755 }
756 break;
757 default:
758 ST_LOGE("disconnect: unknown API %d", api);
759 err = -EINVAL;
760 break;
761 }
762 }
763
764 if (listener != NULL) {
765 listener->onBuffersReleased();
766 }
767
768 return err;
769 }
770
dump(String8 & result,const char * prefix) const771 void BufferQueue::dump(String8& result, const char* prefix) const {
772 Mutex::Autolock _l(mMutex);
773
774 String8 fifo;
775 int fifoSize = 0;
776 Fifo::const_iterator i(mQueue.begin());
777 while (i != mQueue.end()) {
778 fifo.appendFormat("%02d:%p crop=[%d,%d,%d,%d], "
779 "xform=0x%02x, time=%#llx, scale=%s\n",
780 i->mBuf, i->mGraphicBuffer.get(),
781 i->mCrop.left, i->mCrop.top, i->mCrop.right,
782 i->mCrop.bottom, i->mTransform, i->mTimestamp,
783 scalingModeName(i->mScalingMode)
784 );
785 i++;
786 fifoSize++;
787 }
788
789
790 result.appendFormat(
791 "%s-BufferQueue mMaxAcquiredBufferCount=%d, mDequeueBufferCannotBlock=%d, default-size=[%dx%d], "
792 "default-format=%d, transform-hint=%02x, FIFO(%d)={%s}\n",
793 prefix, mMaxAcquiredBufferCount, mDequeueBufferCannotBlock, mDefaultWidth,
794 mDefaultHeight, mDefaultBufferFormat, mTransformHint,
795 fifoSize, fifo.string());
796
797 struct {
798 const char * operator()(int state) const {
799 switch (state) {
800 case BufferSlot::DEQUEUED: return "DEQUEUED";
801 case BufferSlot::QUEUED: return "QUEUED";
802 case BufferSlot::FREE: return "FREE";
803 case BufferSlot::ACQUIRED: return "ACQUIRED";
804 default: return "Unknown";
805 }
806 }
807 } stateName;
808
809 // just trim the free buffers to not spam the dump
810 int maxBufferCount = 0;
811 for (int i=NUM_BUFFER_SLOTS-1 ; i>=0 ; i--) {
812 const BufferSlot& slot(mSlots[i]);
813 if ((slot.mBufferState != BufferSlot::FREE) || (slot.mGraphicBuffer != NULL)) {
814 maxBufferCount = i+1;
815 break;
816 }
817 }
818
819 for (int i=0 ; i<maxBufferCount ; i++) {
820 const BufferSlot& slot(mSlots[i]);
821 const sp<GraphicBuffer>& buf(slot.mGraphicBuffer);
822 result.appendFormat(
823 "%s%s[%02d:%p] state=%-8s",
824 prefix, (slot.mBufferState == BufferSlot::ACQUIRED)?">":" ", i, buf.get(),
825 stateName(slot.mBufferState)
826 );
827
828 if (buf != NULL) {
829 result.appendFormat(
830 ", %p [%4ux%4u:%4u,%3X]",
831 buf->handle, buf->width, buf->height, buf->stride,
832 buf->format);
833 }
834 result.append("\n");
835 }
836 }
837
freeBufferLocked(int slot)838 void BufferQueue::freeBufferLocked(int slot) {
839 ST_LOGV("freeBufferLocked: slot=%d", slot);
840 mSlots[slot].mGraphicBuffer = 0;
841 if (mSlots[slot].mBufferState == BufferSlot::ACQUIRED) {
842 mSlots[slot].mNeedsCleanupOnRelease = true;
843 }
844 mSlots[slot].mBufferState = BufferSlot::FREE;
845 mSlots[slot].mFrameNumber = 0;
846 mSlots[slot].mAcquireCalled = false;
847
848 // destroy fence as BufferQueue now takes ownership
849 if (mSlots[slot].mEglFence != EGL_NO_SYNC_KHR) {
850 eglDestroySyncKHR(mSlots[slot].mEglDisplay, mSlots[slot].mEglFence);
851 mSlots[slot].mEglFence = EGL_NO_SYNC_KHR;
852 }
853 mSlots[slot].mFence = Fence::NO_FENCE;
854 }
855
freeAllBuffersLocked()856 void BufferQueue::freeAllBuffersLocked() {
857 mBufferHasBeenQueued = false;
858 for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
859 freeBufferLocked(i);
860 }
861 }
862
acquireBuffer(BufferItem * buffer,nsecs_t expectedPresent)863 status_t BufferQueue::acquireBuffer(BufferItem *buffer, nsecs_t expectedPresent) {
864 ATRACE_CALL();
865 Mutex::Autolock _l(mMutex);
866
867 // Check that the consumer doesn't currently have the maximum number of
868 // buffers acquired. We allow the max buffer count to be exceeded by one
869 // buffer, so that the consumer can successfully set up the newly acquired
870 // buffer before releasing the old one.
871 int numAcquiredBuffers = 0;
872 for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
873 if (mSlots[i].mBufferState == BufferSlot::ACQUIRED) {
874 numAcquiredBuffers++;
875 }
876 }
877 if (numAcquiredBuffers >= mMaxAcquiredBufferCount+1) {
878 ST_LOGE("acquireBuffer: max acquired buffer count reached: %d (max=%d)",
879 numAcquiredBuffers, mMaxAcquiredBufferCount);
880 return INVALID_OPERATION;
881 }
882
883 // check if queue is empty
884 // In asynchronous mode the list is guaranteed to be one buffer
885 // deep, while in synchronous mode we use the oldest buffer.
886 if (mQueue.empty()) {
887 return NO_BUFFER_AVAILABLE;
888 }
889
890 Fifo::iterator front(mQueue.begin());
891
892 // If expectedPresent is specified, we may not want to return a buffer yet.
893 // If it's specified and there's more than one buffer queued, we may
894 // want to drop a buffer.
895 if (expectedPresent != 0) {
896 const int MAX_REASONABLE_NSEC = 1000000000ULL; // 1 second
897
898 // The "expectedPresent" argument indicates when the buffer is expected
899 // to be presented on-screen. If the buffer's desired-present time
900 // is earlier (less) than expectedPresent, meaning it'll be displayed
901 // on time or possibly late if we show it ASAP, we acquire and return
902 // it. If we don't want to display it until after the expectedPresent
903 // time, we return PRESENT_LATER without acquiring it.
904 //
905 // To be safe, we don't defer acquisition if expectedPresent is
906 // more than one second in the future beyond the desired present time
907 // (i.e. we'd be holding the buffer for a long time).
908 //
909 // NOTE: code assumes monotonic time values from the system clock are
910 // positive.
911
912 // Start by checking to see if we can drop frames. We skip this check
913 // if the timestamps are being auto-generated by Surface -- if the
914 // app isn't generating timestamps explicitly, they probably don't
915 // want frames to be discarded based on them.
916 while (mQueue.size() > 1 && !mQueue[0].mIsAutoTimestamp) {
917 // If entry[1] is timely, drop entry[0] (and repeat). We apply
918 // an additional criteria here: we only drop the earlier buffer if
919 // our desiredPresent falls within +/- 1 second of the expected
920 // present. Otherwise, bogus desiredPresent times (e.g. 0 or
921 // a small relative timestamp), which normally mean "ignore the
922 // timestamp and acquire immediately", would cause us to drop
923 // frames.
924 //
925 // We may want to add an additional criteria: don't drop the
926 // earlier buffer if entry[1]'s fence hasn't signaled yet.
927 //
928 // (Vector front is [0], back is [size()-1])
929 const BufferItem& bi(mQueue[1]);
930 nsecs_t desiredPresent = bi.mTimestamp;
931 if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC ||
932 desiredPresent > expectedPresent) {
933 // This buffer is set to display in the near future, or
934 // desiredPresent is garbage. Either way we don't want to
935 // drop the previous buffer just to get this on screen sooner.
936 ST_LOGV("pts nodrop: des=%lld expect=%lld (%lld) now=%lld",
937 desiredPresent, expectedPresent, desiredPresent - expectedPresent,
938 systemTime(CLOCK_MONOTONIC));
939 break;
940 }
941 ST_LOGV("pts drop: queue1des=%lld expect=%lld size=%d",
942 desiredPresent, expectedPresent, mQueue.size());
943 if (stillTracking(front)) {
944 // front buffer is still in mSlots, so mark the slot as free
945 mSlots[front->mBuf].mBufferState = BufferSlot::FREE;
946 }
947 mQueue.erase(front);
948 front = mQueue.begin();
949 }
950
951 // See if the front buffer is due.
952 nsecs_t desiredPresent = front->mTimestamp;
953 if (desiredPresent > expectedPresent &&
954 desiredPresent < expectedPresent + MAX_REASONABLE_NSEC) {
955 ST_LOGV("pts defer: des=%lld expect=%lld (%lld) now=%lld",
956 desiredPresent, expectedPresent, desiredPresent - expectedPresent,
957 systemTime(CLOCK_MONOTONIC));
958 return PRESENT_LATER;
959 }
960
961 ST_LOGV("pts accept: des=%lld expect=%lld (%lld) now=%lld",
962 desiredPresent, expectedPresent, desiredPresent - expectedPresent,
963 systemTime(CLOCK_MONOTONIC));
964 }
965
966 int buf = front->mBuf;
967 *buffer = *front;
968 ATRACE_BUFFER_INDEX(buf);
969
970 ST_LOGV("acquireBuffer: acquiring { slot=%d/%llu, buffer=%p }",
971 front->mBuf, front->mFrameNumber,
972 front->mGraphicBuffer->handle);
973 // if front buffer still being tracked update slot state
974 if (stillTracking(front)) {
975 mSlots[buf].mAcquireCalled = true;
976 mSlots[buf].mNeedsCleanupOnRelease = false;
977 mSlots[buf].mBufferState = BufferSlot::ACQUIRED;
978 mSlots[buf].mFence = Fence::NO_FENCE;
979 }
980
981 // If the buffer has previously been acquired by the consumer, set
982 // mGraphicBuffer to NULL to avoid unnecessarily remapping this
983 // buffer on the consumer side.
984 if (buffer->mAcquireCalled) {
985 buffer->mGraphicBuffer = NULL;
986 }
987
988 mQueue.erase(front);
989 mDequeueCondition.broadcast();
990
991 ATRACE_INT(mConsumerName.string(), mQueue.size());
992
993 return NO_ERROR;
994 }
995
releaseBuffer(int buf,uint64_t frameNumber,EGLDisplay display,EGLSyncKHR eglFence,const sp<Fence> & fence)996 status_t BufferQueue::releaseBuffer(
997 int buf, uint64_t frameNumber, EGLDisplay display,
998 EGLSyncKHR eglFence, const sp<Fence>& fence) {
999 ATRACE_CALL();
1000 ATRACE_BUFFER_INDEX(buf);
1001
1002 if (buf == INVALID_BUFFER_SLOT || fence == NULL) {
1003 return BAD_VALUE;
1004 }
1005
1006 Mutex::Autolock _l(mMutex);
1007
1008 // If the frame number has changed because buffer has been reallocated,
1009 // we can ignore this releaseBuffer for the old buffer.
1010 if (frameNumber != mSlots[buf].mFrameNumber) {
1011 return STALE_BUFFER_SLOT;
1012 }
1013
1014
1015 // Internal state consistency checks:
1016 // Make sure this buffers hasn't been queued while we were owning it (acquired)
1017 Fifo::iterator front(mQueue.begin());
1018 Fifo::const_iterator const end(mQueue.end());
1019 while (front != end) {
1020 if (front->mBuf == buf) {
1021 LOG_ALWAYS_FATAL("[%s] received new buffer(#%lld) on slot #%d that has not yet been "
1022 "acquired", mConsumerName.string(), frameNumber, buf);
1023 break; // never reached
1024 }
1025 front++;
1026 }
1027
1028 // The buffer can now only be released if its in the acquired state
1029 if (mSlots[buf].mBufferState == BufferSlot::ACQUIRED) {
1030 mSlots[buf].mEglDisplay = display;
1031 mSlots[buf].mEglFence = eglFence;
1032 mSlots[buf].mFence = fence;
1033 mSlots[buf].mBufferState = BufferSlot::FREE;
1034 } else if (mSlots[buf].mNeedsCleanupOnRelease) {
1035 ST_LOGV("releasing a stale buf %d its state was %d", buf, mSlots[buf].mBufferState);
1036 mSlots[buf].mNeedsCleanupOnRelease = false;
1037 return STALE_BUFFER_SLOT;
1038 } else {
1039 ST_LOGE("attempted to release buf %d but its state was %d", buf, mSlots[buf].mBufferState);
1040 return -EINVAL;
1041 }
1042
1043 mDequeueCondition.broadcast();
1044 return NO_ERROR;
1045 }
1046
consumerConnect(const sp<IConsumerListener> & consumerListener,bool controlledByApp)1047 status_t BufferQueue::consumerConnect(const sp<IConsumerListener>& consumerListener,
1048 bool controlledByApp) {
1049 ST_LOGV("consumerConnect controlledByApp=%s",
1050 controlledByApp ? "true" : "false");
1051 Mutex::Autolock lock(mMutex);
1052
1053 if (mAbandoned) {
1054 ST_LOGE("consumerConnect: BufferQueue has been abandoned!");
1055 return NO_INIT;
1056 }
1057 if (consumerListener == NULL) {
1058 ST_LOGE("consumerConnect: consumerListener may not be NULL");
1059 return BAD_VALUE;
1060 }
1061
1062 mConsumerListener = consumerListener;
1063 mConsumerControlledByApp = controlledByApp;
1064
1065 return NO_ERROR;
1066 }
1067
consumerDisconnect()1068 status_t BufferQueue::consumerDisconnect() {
1069 ST_LOGV("consumerDisconnect");
1070 Mutex::Autolock lock(mMutex);
1071
1072 if (mConsumerListener == NULL) {
1073 ST_LOGE("consumerDisconnect: No consumer is connected!");
1074 return -EINVAL;
1075 }
1076
1077 mAbandoned = true;
1078 mConsumerListener = NULL;
1079 mQueue.clear();
1080 freeAllBuffersLocked();
1081 mDequeueCondition.broadcast();
1082 return NO_ERROR;
1083 }
1084
getReleasedBuffers(uint32_t * slotMask)1085 status_t BufferQueue::getReleasedBuffers(uint32_t* slotMask) {
1086 ST_LOGV("getReleasedBuffers");
1087 Mutex::Autolock lock(mMutex);
1088
1089 if (mAbandoned) {
1090 ST_LOGE("getReleasedBuffers: BufferQueue has been abandoned!");
1091 return NO_INIT;
1092 }
1093
1094 uint32_t mask = 0;
1095 for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
1096 if (!mSlots[i].mAcquireCalled) {
1097 mask |= 1 << i;
1098 }
1099 }
1100
1101 // Remove buffers in flight (on the queue) from the mask where acquire has
1102 // been called, as the consumer will not receive the buffer address, so
1103 // it should not free these slots.
1104 Fifo::iterator front(mQueue.begin());
1105 while (front != mQueue.end()) {
1106 if (front->mAcquireCalled)
1107 mask &= ~(1 << front->mBuf);
1108 front++;
1109 }
1110
1111 *slotMask = mask;
1112
1113 ST_LOGV("getReleasedBuffers: returning mask %#x", mask);
1114 return NO_ERROR;
1115 }
1116
setDefaultBufferSize(uint32_t w,uint32_t h)1117 status_t BufferQueue::setDefaultBufferSize(uint32_t w, uint32_t h) {
1118 ST_LOGV("setDefaultBufferSize: w=%d, h=%d", w, h);
1119 if (!w || !h) {
1120 ST_LOGE("setDefaultBufferSize: dimensions cannot be 0 (w=%d, h=%d)",
1121 w, h);
1122 return BAD_VALUE;
1123 }
1124
1125 Mutex::Autolock lock(mMutex);
1126 mDefaultWidth = w;
1127 mDefaultHeight = h;
1128 return NO_ERROR;
1129 }
1130
setDefaultMaxBufferCount(int bufferCount)1131 status_t BufferQueue::setDefaultMaxBufferCount(int bufferCount) {
1132 ATRACE_CALL();
1133 Mutex::Autolock lock(mMutex);
1134 return setDefaultMaxBufferCountLocked(bufferCount);
1135 }
1136
disableAsyncBuffer()1137 status_t BufferQueue::disableAsyncBuffer() {
1138 ATRACE_CALL();
1139 Mutex::Autolock lock(mMutex);
1140 if (mConsumerListener != NULL) {
1141 ST_LOGE("disableAsyncBuffer: consumer already connected!");
1142 return INVALID_OPERATION;
1143 }
1144 mUseAsyncBuffer = false;
1145 return NO_ERROR;
1146 }
1147
setMaxAcquiredBufferCount(int maxAcquiredBuffers)1148 status_t BufferQueue::setMaxAcquiredBufferCount(int maxAcquiredBuffers) {
1149 ATRACE_CALL();
1150 Mutex::Autolock lock(mMutex);
1151 if (maxAcquiredBuffers < 1 || maxAcquiredBuffers > MAX_MAX_ACQUIRED_BUFFERS) {
1152 ST_LOGE("setMaxAcquiredBufferCount: invalid count specified: %d",
1153 maxAcquiredBuffers);
1154 return BAD_VALUE;
1155 }
1156 if (mConnectedApi != NO_CONNECTED_API) {
1157 return INVALID_OPERATION;
1158 }
1159 mMaxAcquiredBufferCount = maxAcquiredBuffers;
1160 return NO_ERROR;
1161 }
1162
getMinUndequeuedBufferCount(bool async) const1163 int BufferQueue::getMinUndequeuedBufferCount(bool async) const {
1164 // if dequeueBuffer is allowed to error out, we don't have to
1165 // add an extra buffer.
1166 if (!mUseAsyncBuffer)
1167 return mMaxAcquiredBufferCount;
1168
1169 // we're in async mode, or we want to prevent the app to
1170 // deadlock itself, we throw-in an extra buffer to guarantee it.
1171 if (mDequeueBufferCannotBlock || async)
1172 return mMaxAcquiredBufferCount+1;
1173
1174 return mMaxAcquiredBufferCount;
1175 }
1176
getMinMaxBufferCountLocked(bool async) const1177 int BufferQueue::getMinMaxBufferCountLocked(bool async) const {
1178 return getMinUndequeuedBufferCount(async) + 1;
1179 }
1180
getMaxBufferCountLocked(bool async) const1181 int BufferQueue::getMaxBufferCountLocked(bool async) const {
1182 int minMaxBufferCount = getMinMaxBufferCountLocked(async);
1183
1184 int maxBufferCount = mDefaultMaxBufferCount;
1185 if (maxBufferCount < minMaxBufferCount) {
1186 maxBufferCount = minMaxBufferCount;
1187 }
1188 if (mOverrideMaxBufferCount != 0) {
1189 assert(mOverrideMaxBufferCount >= minMaxBufferCount);
1190 maxBufferCount = mOverrideMaxBufferCount;
1191 }
1192
1193 // Any buffers that are dequeued by the producer or sitting in the queue
1194 // waiting to be consumed need to have their slots preserved. Such
1195 // buffers will temporarily keep the max buffer count up until the slots
1196 // no longer need to be preserved.
1197 for (int i = maxBufferCount; i < NUM_BUFFER_SLOTS; i++) {
1198 BufferSlot::BufferState state = mSlots[i].mBufferState;
1199 if (state == BufferSlot::QUEUED || state == BufferSlot::DEQUEUED) {
1200 maxBufferCount = i + 1;
1201 }
1202 }
1203
1204 return maxBufferCount;
1205 }
1206
stillTracking(const BufferItem * item) const1207 bool BufferQueue::stillTracking(const BufferItem *item) const {
1208 const BufferSlot &slot = mSlots[item->mBuf];
1209
1210 ST_LOGV("stillTracking?: item: { slot=%d/%llu, buffer=%p }, "
1211 "slot: { slot=%d/%llu, buffer=%p }",
1212 item->mBuf, item->mFrameNumber,
1213 (item->mGraphicBuffer.get() ? item->mGraphicBuffer->handle : 0),
1214 item->mBuf, slot.mFrameNumber,
1215 (slot.mGraphicBuffer.get() ? slot.mGraphicBuffer->handle : 0));
1216
1217 // Compare item with its original buffer slot. We can check the slot
1218 // as the buffer would not be moved to a different slot by the producer.
1219 return (slot.mGraphicBuffer != NULL &&
1220 item->mGraphicBuffer->handle == slot.mGraphicBuffer->handle);
1221 }
1222
ProxyConsumerListener(const wp<ConsumerListener> & consumerListener)1223 BufferQueue::ProxyConsumerListener::ProxyConsumerListener(
1224 const wp<ConsumerListener>& consumerListener):
1225 mConsumerListener(consumerListener) {}
1226
~ProxyConsumerListener()1227 BufferQueue::ProxyConsumerListener::~ProxyConsumerListener() {}
1228
onFrameAvailable()1229 void BufferQueue::ProxyConsumerListener::onFrameAvailable() {
1230 sp<ConsumerListener> listener(mConsumerListener.promote());
1231 if (listener != NULL) {
1232 listener->onFrameAvailable();
1233 }
1234 }
1235
onBuffersReleased()1236 void BufferQueue::ProxyConsumerListener::onBuffersReleased() {
1237 sp<ConsumerListener> listener(mConsumerListener.promote());
1238 if (listener != NULL) {
1239 listener->onBuffersReleased();
1240 }
1241 }
1242
1243 }; // namespace android
1244