• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 //  This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===/
12 
13 #include "clang/Sema/TemplateDeduction.h"
14 #include "TreeTransform.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Sema.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/SmallBitVector.h"
25 #include <algorithm>
26 
27 namespace clang {
28   using namespace sema;
29 
30   /// \brief Various flags that control template argument deduction.
31   ///
32   /// These flags can be bitwise-OR'd together.
33   enum TemplateDeductionFlags {
34     /// \brief No template argument deduction flags, which indicates the
35     /// strictest results for template argument deduction (as used for, e.g.,
36     /// matching class template partial specializations).
37     TDF_None = 0,
38     /// \brief Within template argument deduction from a function call, we are
39     /// matching with a parameter type for which the original parameter was
40     /// a reference.
41     TDF_ParamWithReferenceType = 0x1,
42     /// \brief Within template argument deduction from a function call, we
43     /// are matching in a case where we ignore cv-qualifiers.
44     TDF_IgnoreQualifiers = 0x02,
45     /// \brief Within template argument deduction from a function call,
46     /// we are matching in a case where we can perform template argument
47     /// deduction from a template-id of a derived class of the argument type.
48     TDF_DerivedClass = 0x04,
49     /// \brief Allow non-dependent types to differ, e.g., when performing
50     /// template argument deduction from a function call where conversions
51     /// may apply.
52     TDF_SkipNonDependent = 0x08,
53     /// \brief Whether we are performing template argument deduction for
54     /// parameters and arguments in a top-level template argument
55     TDF_TopLevelParameterTypeList = 0x10,
56     /// \brief Within template argument deduction from overload resolution per
57     /// C++ [over.over] allow matching function types that are compatible in
58     /// terms of noreturn and default calling convention adjustments.
59     TDF_InOverloadResolution = 0x20
60   };
61 }
62 
63 using namespace clang;
64 
65 /// \brief Compare two APSInts, extending and switching the sign as
66 /// necessary to compare their values regardless of underlying type.
hasSameExtendedValue(llvm::APSInt X,llvm::APSInt Y)67 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
68   if (Y.getBitWidth() > X.getBitWidth())
69     X = X.extend(Y.getBitWidth());
70   else if (Y.getBitWidth() < X.getBitWidth())
71     Y = Y.extend(X.getBitWidth());
72 
73   // If there is a signedness mismatch, correct it.
74   if (X.isSigned() != Y.isSigned()) {
75     // If the signed value is negative, then the values cannot be the same.
76     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
77       return false;
78 
79     Y.setIsSigned(true);
80     X.setIsSigned(true);
81   }
82 
83   return X == Y;
84 }
85 
86 static Sema::TemplateDeductionResult
87 DeduceTemplateArguments(Sema &S,
88                         TemplateParameterList *TemplateParams,
89                         const TemplateArgument &Param,
90                         TemplateArgument Arg,
91                         TemplateDeductionInfo &Info,
92                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
93 
94 /// \brief Whether template argument deduction for two reference parameters
95 /// resulted in the argument type, parameter type, or neither type being more
96 /// qualified than the other.
97 enum DeductionQualifierComparison {
98   NeitherMoreQualified = 0,
99   ParamMoreQualified,
100   ArgMoreQualified
101 };
102 
103 /// \brief Stores the result of comparing two reference parameters while
104 /// performing template argument deduction for partial ordering of function
105 /// templates.
106 struct RefParamPartialOrderingComparison {
107   /// \brief Whether the parameter type is an rvalue reference type.
108   bool ParamIsRvalueRef;
109   /// \brief Whether the argument type is an rvalue reference type.
110   bool ArgIsRvalueRef;
111 
112   /// \brief Whether the parameter or argument (or neither) is more qualified.
113   DeductionQualifierComparison Qualifiers;
114 };
115 
116 
117 
118 static Sema::TemplateDeductionResult
119 DeduceTemplateArgumentsByTypeMatch(Sema &S,
120                                    TemplateParameterList *TemplateParams,
121                                    QualType Param,
122                                    QualType Arg,
123                                    TemplateDeductionInfo &Info,
124                                    SmallVectorImpl<DeducedTemplateArgument> &
125                                                       Deduced,
126                                    unsigned TDF,
127                                    bool PartialOrdering = false,
128                             SmallVectorImpl<RefParamPartialOrderingComparison> *
129                                                       RefParamComparisons = 0);
130 
131 static Sema::TemplateDeductionResult
132 DeduceTemplateArguments(Sema &S,
133                         TemplateParameterList *TemplateParams,
134                         const TemplateArgument *Params, unsigned NumParams,
135                         const TemplateArgument *Args, unsigned NumArgs,
136                         TemplateDeductionInfo &Info,
137                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
138 
139 /// \brief If the given expression is of a form that permits the deduction
140 /// of a non-type template parameter, return the declaration of that
141 /// non-type template parameter.
getDeducedParameterFromExpr(Expr * E)142 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
143   // If we are within an alias template, the expression may have undergone
144   // any number of parameter substitutions already.
145   while (1) {
146     if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
147       E = IC->getSubExpr();
148     else if (SubstNonTypeTemplateParmExpr *Subst =
149                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
150       E = Subst->getReplacement();
151     else
152       break;
153   }
154 
155   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
156     return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
157 
158   return 0;
159 }
160 
161 /// \brief Determine whether two declaration pointers refer to the same
162 /// declaration.
isSameDeclaration(Decl * X,Decl * Y)163 static bool isSameDeclaration(Decl *X, Decl *Y) {
164   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
165     X = NX->getUnderlyingDecl();
166   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
167     Y = NY->getUnderlyingDecl();
168 
169   return X->getCanonicalDecl() == Y->getCanonicalDecl();
170 }
171 
172 /// \brief Verify that the given, deduced template arguments are compatible.
173 ///
174 /// \returns The deduced template argument, or a NULL template argument if
175 /// the deduced template arguments were incompatible.
176 static DeducedTemplateArgument
checkDeducedTemplateArguments(ASTContext & Context,const DeducedTemplateArgument & X,const DeducedTemplateArgument & Y)177 checkDeducedTemplateArguments(ASTContext &Context,
178                               const DeducedTemplateArgument &X,
179                               const DeducedTemplateArgument &Y) {
180   // We have no deduction for one or both of the arguments; they're compatible.
181   if (X.isNull())
182     return Y;
183   if (Y.isNull())
184     return X;
185 
186   switch (X.getKind()) {
187   case TemplateArgument::Null:
188     llvm_unreachable("Non-deduced template arguments handled above");
189 
190   case TemplateArgument::Type:
191     // If two template type arguments have the same type, they're compatible.
192     if (Y.getKind() == TemplateArgument::Type &&
193         Context.hasSameType(X.getAsType(), Y.getAsType()))
194       return X;
195 
196     return DeducedTemplateArgument();
197 
198   case TemplateArgument::Integral:
199     // If we deduced a constant in one case and either a dependent expression or
200     // declaration in another case, keep the integral constant.
201     // If both are integral constants with the same value, keep that value.
202     if (Y.getKind() == TemplateArgument::Expression ||
203         Y.getKind() == TemplateArgument::Declaration ||
204         (Y.getKind() == TemplateArgument::Integral &&
205          hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
206       return DeducedTemplateArgument(X,
207                                      X.wasDeducedFromArrayBound() &&
208                                      Y.wasDeducedFromArrayBound());
209 
210     // All other combinations are incompatible.
211     return DeducedTemplateArgument();
212 
213   case TemplateArgument::Template:
214     if (Y.getKind() == TemplateArgument::Template &&
215         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
216       return X;
217 
218     // All other combinations are incompatible.
219     return DeducedTemplateArgument();
220 
221   case TemplateArgument::TemplateExpansion:
222     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
223         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
224                                     Y.getAsTemplateOrTemplatePattern()))
225       return X;
226 
227     // All other combinations are incompatible.
228     return DeducedTemplateArgument();
229 
230   case TemplateArgument::Expression:
231     // If we deduced a dependent expression in one case and either an integral
232     // constant or a declaration in another case, keep the integral constant
233     // or declaration.
234     if (Y.getKind() == TemplateArgument::Integral ||
235         Y.getKind() == TemplateArgument::Declaration)
236       return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
237                                      Y.wasDeducedFromArrayBound());
238 
239     if (Y.getKind() == TemplateArgument::Expression) {
240       // Compare the expressions for equality
241       llvm::FoldingSetNodeID ID1, ID2;
242       X.getAsExpr()->Profile(ID1, Context, true);
243       Y.getAsExpr()->Profile(ID2, Context, true);
244       if (ID1 == ID2)
245         return X;
246     }
247 
248     // All other combinations are incompatible.
249     return DeducedTemplateArgument();
250 
251   case TemplateArgument::Declaration:
252     // If we deduced a declaration and a dependent expression, keep the
253     // declaration.
254     if (Y.getKind() == TemplateArgument::Expression)
255       return X;
256 
257     // If we deduced a declaration and an integral constant, keep the
258     // integral constant.
259     if (Y.getKind() == TemplateArgument::Integral)
260       return Y;
261 
262     // If we deduced two declarations, make sure they they refer to the
263     // same declaration.
264     if (Y.getKind() == TemplateArgument::Declaration &&
265         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
266         X.isDeclForReferenceParam() == Y.isDeclForReferenceParam())
267       return X;
268 
269     // All other combinations are incompatible.
270     return DeducedTemplateArgument();
271 
272   case TemplateArgument::NullPtr:
273     // If we deduced a null pointer and a dependent expression, keep the
274     // null pointer.
275     if (Y.getKind() == TemplateArgument::Expression)
276       return X;
277 
278     // If we deduced a null pointer and an integral constant, keep the
279     // integral constant.
280     if (Y.getKind() == TemplateArgument::Integral)
281       return Y;
282 
283     // If we deduced two null pointers, make sure they have the same type.
284     if (Y.getKind() == TemplateArgument::NullPtr &&
285         Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
286       return X;
287 
288     // All other combinations are incompatible.
289     return DeducedTemplateArgument();
290 
291   case TemplateArgument::Pack:
292     if (Y.getKind() != TemplateArgument::Pack ||
293         X.pack_size() != Y.pack_size())
294       return DeducedTemplateArgument();
295 
296     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
297                                       XAEnd = X.pack_end(),
298                                          YA = Y.pack_begin();
299          XA != XAEnd; ++XA, ++YA) {
300       if (checkDeducedTemplateArguments(Context,
301                     DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
302                     DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
303             .isNull())
304         return DeducedTemplateArgument();
305     }
306 
307     return X;
308   }
309 
310   llvm_unreachable("Invalid TemplateArgument Kind!");
311 }
312 
313 /// \brief Deduce the value of the given non-type template parameter
314 /// from the given constant.
315 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,llvm::APSInt Value,QualType ValueType,bool DeducedFromArrayBound,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)316 DeduceNonTypeTemplateArgument(Sema &S,
317                               NonTypeTemplateParmDecl *NTTP,
318                               llvm::APSInt Value, QualType ValueType,
319                               bool DeducedFromArrayBound,
320                               TemplateDeductionInfo &Info,
321                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
322   assert(NTTP->getDepth() == 0 &&
323          "Cannot deduce non-type template argument with depth > 0");
324 
325   DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
326                                      DeducedFromArrayBound);
327   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
328                                                      Deduced[NTTP->getIndex()],
329                                                                  NewDeduced);
330   if (Result.isNull()) {
331     Info.Param = NTTP;
332     Info.FirstArg = Deduced[NTTP->getIndex()];
333     Info.SecondArg = NewDeduced;
334     return Sema::TDK_Inconsistent;
335   }
336 
337   Deduced[NTTP->getIndex()] = Result;
338   return Sema::TDK_Success;
339 }
340 
341 /// \brief Deduce the value of the given non-type template parameter
342 /// from the given type- or value-dependent expression.
343 ///
344 /// \returns true if deduction succeeded, false otherwise.
345 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,Expr * Value,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)346 DeduceNonTypeTemplateArgument(Sema &S,
347                               NonTypeTemplateParmDecl *NTTP,
348                               Expr *Value,
349                               TemplateDeductionInfo &Info,
350                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
351   assert(NTTP->getDepth() == 0 &&
352          "Cannot deduce non-type template argument with depth > 0");
353   assert((Value->isTypeDependent() || Value->isValueDependent()) &&
354          "Expression template argument must be type- or value-dependent.");
355 
356   DeducedTemplateArgument NewDeduced(Value);
357   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
358                                                      Deduced[NTTP->getIndex()],
359                                                                  NewDeduced);
360 
361   if (Result.isNull()) {
362     Info.Param = NTTP;
363     Info.FirstArg = Deduced[NTTP->getIndex()];
364     Info.SecondArg = NewDeduced;
365     return Sema::TDK_Inconsistent;
366   }
367 
368   Deduced[NTTP->getIndex()] = Result;
369   return Sema::TDK_Success;
370 }
371 
372 /// \brief Deduce the value of the given non-type template parameter
373 /// from the given declaration.
374 ///
375 /// \returns true if deduction succeeded, false otherwise.
376 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,ValueDecl * D,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)377 DeduceNonTypeTemplateArgument(Sema &S,
378                             NonTypeTemplateParmDecl *NTTP,
379                             ValueDecl *D,
380                             TemplateDeductionInfo &Info,
381                             SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
382   assert(NTTP->getDepth() == 0 &&
383          "Cannot deduce non-type template argument with depth > 0");
384 
385   D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : 0;
386   TemplateArgument New(D, NTTP->getType()->isReferenceType());
387   DeducedTemplateArgument NewDeduced(New);
388   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
389                                                      Deduced[NTTP->getIndex()],
390                                                                  NewDeduced);
391   if (Result.isNull()) {
392     Info.Param = NTTP;
393     Info.FirstArg = Deduced[NTTP->getIndex()];
394     Info.SecondArg = NewDeduced;
395     return Sema::TDK_Inconsistent;
396   }
397 
398   Deduced[NTTP->getIndex()] = Result;
399   return Sema::TDK_Success;
400 }
401 
402 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,TemplateName Param,TemplateName Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)403 DeduceTemplateArguments(Sema &S,
404                         TemplateParameterList *TemplateParams,
405                         TemplateName Param,
406                         TemplateName Arg,
407                         TemplateDeductionInfo &Info,
408                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
409   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
410   if (!ParamDecl) {
411     // The parameter type is dependent and is not a template template parameter,
412     // so there is nothing that we can deduce.
413     return Sema::TDK_Success;
414   }
415 
416   if (TemplateTemplateParmDecl *TempParam
417         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
418     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
419     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
420                                                  Deduced[TempParam->getIndex()],
421                                                                    NewDeduced);
422     if (Result.isNull()) {
423       Info.Param = TempParam;
424       Info.FirstArg = Deduced[TempParam->getIndex()];
425       Info.SecondArg = NewDeduced;
426       return Sema::TDK_Inconsistent;
427     }
428 
429     Deduced[TempParam->getIndex()] = Result;
430     return Sema::TDK_Success;
431   }
432 
433   // Verify that the two template names are equivalent.
434   if (S.Context.hasSameTemplateName(Param, Arg))
435     return Sema::TDK_Success;
436 
437   // Mismatch of non-dependent template parameter to argument.
438   Info.FirstArg = TemplateArgument(Param);
439   Info.SecondArg = TemplateArgument(Arg);
440   return Sema::TDK_NonDeducedMismatch;
441 }
442 
443 /// \brief Deduce the template arguments by comparing the template parameter
444 /// type (which is a template-id) with the template argument type.
445 ///
446 /// \param S the Sema
447 ///
448 /// \param TemplateParams the template parameters that we are deducing
449 ///
450 /// \param Param the parameter type
451 ///
452 /// \param Arg the argument type
453 ///
454 /// \param Info information about the template argument deduction itself
455 ///
456 /// \param Deduced the deduced template arguments
457 ///
458 /// \returns the result of template argument deduction so far. Note that a
459 /// "success" result means that template argument deduction has not yet failed,
460 /// but it may still fail, later, for other reasons.
461 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateSpecializationType * Param,QualType Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)462 DeduceTemplateArguments(Sema &S,
463                         TemplateParameterList *TemplateParams,
464                         const TemplateSpecializationType *Param,
465                         QualType Arg,
466                         TemplateDeductionInfo &Info,
467                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
468   assert(Arg.isCanonical() && "Argument type must be canonical");
469 
470   // Check whether the template argument is a dependent template-id.
471   if (const TemplateSpecializationType *SpecArg
472         = dyn_cast<TemplateSpecializationType>(Arg)) {
473     // Perform template argument deduction for the template name.
474     if (Sema::TemplateDeductionResult Result
475           = DeduceTemplateArguments(S, TemplateParams,
476                                     Param->getTemplateName(),
477                                     SpecArg->getTemplateName(),
478                                     Info, Deduced))
479       return Result;
480 
481 
482     // Perform template argument deduction on each template
483     // argument. Ignore any missing/extra arguments, since they could be
484     // filled in by default arguments.
485     return DeduceTemplateArguments(S, TemplateParams,
486                                    Param->getArgs(), Param->getNumArgs(),
487                                    SpecArg->getArgs(), SpecArg->getNumArgs(),
488                                    Info, Deduced);
489   }
490 
491   // If the argument type is a class template specialization, we
492   // perform template argument deduction using its template
493   // arguments.
494   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
495   if (!RecordArg) {
496     Info.FirstArg = TemplateArgument(QualType(Param, 0));
497     Info.SecondArg = TemplateArgument(Arg);
498     return Sema::TDK_NonDeducedMismatch;
499   }
500 
501   ClassTemplateSpecializationDecl *SpecArg
502     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
503   if (!SpecArg) {
504     Info.FirstArg = TemplateArgument(QualType(Param, 0));
505     Info.SecondArg = TemplateArgument(Arg);
506     return Sema::TDK_NonDeducedMismatch;
507   }
508 
509   // Perform template argument deduction for the template name.
510   if (Sema::TemplateDeductionResult Result
511         = DeduceTemplateArguments(S,
512                                   TemplateParams,
513                                   Param->getTemplateName(),
514                                TemplateName(SpecArg->getSpecializedTemplate()),
515                                   Info, Deduced))
516     return Result;
517 
518   // Perform template argument deduction for the template arguments.
519   return DeduceTemplateArguments(S, TemplateParams,
520                                  Param->getArgs(), Param->getNumArgs(),
521                                  SpecArg->getTemplateArgs().data(),
522                                  SpecArg->getTemplateArgs().size(),
523                                  Info, Deduced);
524 }
525 
526 /// \brief Determines whether the given type is an opaque type that
527 /// might be more qualified when instantiated.
IsPossiblyOpaquelyQualifiedType(QualType T)528 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
529   switch (T->getTypeClass()) {
530   case Type::TypeOfExpr:
531   case Type::TypeOf:
532   case Type::DependentName:
533   case Type::Decltype:
534   case Type::UnresolvedUsing:
535   case Type::TemplateTypeParm:
536     return true;
537 
538   case Type::ConstantArray:
539   case Type::IncompleteArray:
540   case Type::VariableArray:
541   case Type::DependentSizedArray:
542     return IsPossiblyOpaquelyQualifiedType(
543                                       cast<ArrayType>(T)->getElementType());
544 
545   default:
546     return false;
547   }
548 }
549 
550 /// \brief Retrieve the depth and index of a template parameter.
551 static std::pair<unsigned, unsigned>
getDepthAndIndex(NamedDecl * ND)552 getDepthAndIndex(NamedDecl *ND) {
553   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
554     return std::make_pair(TTP->getDepth(), TTP->getIndex());
555 
556   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
557     return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
558 
559   TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
560   return std::make_pair(TTP->getDepth(), TTP->getIndex());
561 }
562 
563 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
564 static std::pair<unsigned, unsigned>
getDepthAndIndex(UnexpandedParameterPack UPP)565 getDepthAndIndex(UnexpandedParameterPack UPP) {
566   if (const TemplateTypeParmType *TTP
567                           = UPP.first.dyn_cast<const TemplateTypeParmType *>())
568     return std::make_pair(TTP->getDepth(), TTP->getIndex());
569 
570   return getDepthAndIndex(UPP.first.get<NamedDecl *>());
571 }
572 
573 /// \brief Helper function to build a TemplateParameter when we don't
574 /// know its type statically.
makeTemplateParameter(Decl * D)575 static TemplateParameter makeTemplateParameter(Decl *D) {
576   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
577     return TemplateParameter(TTP);
578   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
579     return TemplateParameter(NTTP);
580 
581   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
582 }
583 
584 typedef SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
585   NewlyDeducedPacksType;
586 
587 /// \brief Prepare to perform template argument deduction for all of the
588 /// arguments in a set of argument packs.
589 static void
PrepareArgumentPackDeduction(Sema & S,SmallVectorImpl<DeducedTemplateArgument> & Deduced,ArrayRef<unsigned> PackIndices,SmallVectorImpl<DeducedTemplateArgument> & SavedPacks,NewlyDeducedPacksType & NewlyDeducedPacks)590 PrepareArgumentPackDeduction(Sema &S,
591                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
592                            ArrayRef<unsigned> PackIndices,
593                            SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
594                            NewlyDeducedPacksType &NewlyDeducedPacks) {
595   // Save the deduced template arguments for each parameter pack expanded
596   // by this pack expansion, then clear out the deduction.
597   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
598     // Save the previously-deduced argument pack, then clear it out so that we
599     // can deduce a new argument pack.
600     SavedPacks[I] = Deduced[PackIndices[I]];
601     Deduced[PackIndices[I]] = TemplateArgument();
602 
603     if (!S.CurrentInstantiationScope)
604       continue;
605 
606     // If the template argument pack was explicitly specified, add that to
607     // the set of deduced arguments.
608     const TemplateArgument *ExplicitArgs;
609     unsigned NumExplicitArgs;
610     if (NamedDecl *PartiallySubstitutedPack
611         = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
612                                                            &ExplicitArgs,
613                                                            &NumExplicitArgs)) {
614       if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
615         NewlyDeducedPacks[I].append(ExplicitArgs,
616                                     ExplicitArgs + NumExplicitArgs);
617     }
618   }
619 }
620 
621 /// \brief Finish template argument deduction for a set of argument packs,
622 /// producing the argument packs and checking for consistency with prior
623 /// deductions.
624 static Sema::TemplateDeductionResult
FinishArgumentPackDeduction(Sema & S,TemplateParameterList * TemplateParams,bool HasAnyArguments,SmallVectorImpl<DeducedTemplateArgument> & Deduced,ArrayRef<unsigned> PackIndices,SmallVectorImpl<DeducedTemplateArgument> & SavedPacks,NewlyDeducedPacksType & NewlyDeducedPacks,TemplateDeductionInfo & Info)625 FinishArgumentPackDeduction(Sema &S,
626                            TemplateParameterList *TemplateParams,
627                            bool HasAnyArguments,
628                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
629                            ArrayRef<unsigned> PackIndices,
630                            SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
631                            NewlyDeducedPacksType &NewlyDeducedPacks,
632                            TemplateDeductionInfo &Info) {
633   // Build argument packs for each of the parameter packs expanded by this
634   // pack expansion.
635   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
636     if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
637       // We were not able to deduce anything for this parameter pack,
638       // so just restore the saved argument pack.
639       Deduced[PackIndices[I]] = SavedPacks[I];
640       continue;
641     }
642 
643     DeducedTemplateArgument NewPack;
644 
645     if (NewlyDeducedPacks[I].empty()) {
646       // If we deduced an empty argument pack, create it now.
647       NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
648     } else {
649       TemplateArgument *ArgumentPack
650         = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
651       std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
652                 ArgumentPack);
653       NewPack
654         = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
655                                                    NewlyDeducedPacks[I].size()),
656                             NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
657     }
658 
659     DeducedTemplateArgument Result
660       = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
661     if (Result.isNull()) {
662       Info.Param
663         = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
664       Info.FirstArg = SavedPacks[I];
665       Info.SecondArg = NewPack;
666       return Sema::TDK_Inconsistent;
667     }
668 
669     Deduced[PackIndices[I]] = Result;
670   }
671 
672   return Sema::TDK_Success;
673 }
674 
675 /// \brief Deduce the template arguments by comparing the list of parameter
676 /// types to the list of argument types, as in the parameter-type-lists of
677 /// function types (C++ [temp.deduct.type]p10).
678 ///
679 /// \param S The semantic analysis object within which we are deducing
680 ///
681 /// \param TemplateParams The template parameters that we are deducing
682 ///
683 /// \param Params The list of parameter types
684 ///
685 /// \param NumParams The number of types in \c Params
686 ///
687 /// \param Args The list of argument types
688 ///
689 /// \param NumArgs The number of types in \c Args
690 ///
691 /// \param Info information about the template argument deduction itself
692 ///
693 /// \param Deduced the deduced template arguments
694 ///
695 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
696 /// how template argument deduction is performed.
697 ///
698 /// \param PartialOrdering If true, we are performing template argument
699 /// deduction for during partial ordering for a call
700 /// (C++0x [temp.deduct.partial]).
701 ///
702 /// \param RefParamComparisons If we're performing template argument deduction
703 /// in the context of partial ordering, the set of qualifier comparisons.
704 ///
705 /// \returns the result of template argument deduction so far. Note that a
706 /// "success" result means that template argument deduction has not yet failed,
707 /// but it may still fail, later, for other reasons.
708 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const QualType * Params,unsigned NumParams,const QualType * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering=false,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons=0)709 DeduceTemplateArguments(Sema &S,
710                         TemplateParameterList *TemplateParams,
711                         const QualType *Params, unsigned NumParams,
712                         const QualType *Args, unsigned NumArgs,
713                         TemplateDeductionInfo &Info,
714                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
715                         unsigned TDF,
716                         bool PartialOrdering = false,
717                         SmallVectorImpl<RefParamPartialOrderingComparison> *
718                                                      RefParamComparisons = 0) {
719   // Fast-path check to see if we have too many/too few arguments.
720   if (NumParams != NumArgs &&
721       !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
722       !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
723     return Sema::TDK_MiscellaneousDeductionFailure;
724 
725   // C++0x [temp.deduct.type]p10:
726   //   Similarly, if P has a form that contains (T), then each parameter type
727   //   Pi of the respective parameter-type- list of P is compared with the
728   //   corresponding parameter type Ai of the corresponding parameter-type-list
729   //   of A. [...]
730   unsigned ArgIdx = 0, ParamIdx = 0;
731   for (; ParamIdx != NumParams; ++ParamIdx) {
732     // Check argument types.
733     const PackExpansionType *Expansion
734                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
735     if (!Expansion) {
736       // Simple case: compare the parameter and argument types at this point.
737 
738       // Make sure we have an argument.
739       if (ArgIdx >= NumArgs)
740         return Sema::TDK_MiscellaneousDeductionFailure;
741 
742       if (isa<PackExpansionType>(Args[ArgIdx])) {
743         // C++0x [temp.deduct.type]p22:
744         //   If the original function parameter associated with A is a function
745         //   parameter pack and the function parameter associated with P is not
746         //   a function parameter pack, then template argument deduction fails.
747         return Sema::TDK_MiscellaneousDeductionFailure;
748       }
749 
750       if (Sema::TemplateDeductionResult Result
751             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
752                                                  Params[ParamIdx], Args[ArgIdx],
753                                                  Info, Deduced, TDF,
754                                                  PartialOrdering,
755                                                  RefParamComparisons))
756         return Result;
757 
758       ++ArgIdx;
759       continue;
760     }
761 
762     // C++0x [temp.deduct.type]p5:
763     //   The non-deduced contexts are:
764     //     - A function parameter pack that does not occur at the end of the
765     //       parameter-declaration-clause.
766     if (ParamIdx + 1 < NumParams)
767       return Sema::TDK_Success;
768 
769     // C++0x [temp.deduct.type]p10:
770     //   If the parameter-declaration corresponding to Pi is a function
771     //   parameter pack, then the type of its declarator- id is compared with
772     //   each remaining parameter type in the parameter-type-list of A. Each
773     //   comparison deduces template arguments for subsequent positions in the
774     //   template parameter packs expanded by the function parameter pack.
775 
776     // Compute the set of template parameter indices that correspond to
777     // parameter packs expanded by the pack expansion.
778     SmallVector<unsigned, 2> PackIndices;
779     QualType Pattern = Expansion->getPattern();
780     {
781       llvm::SmallBitVector SawIndices(TemplateParams->size());
782       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
783       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
784       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
785         unsigned Depth, Index;
786         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
787         if (Depth == 0 && !SawIndices[Index]) {
788           SawIndices[Index] = true;
789           PackIndices.push_back(Index);
790         }
791       }
792     }
793     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
794 
795     // Keep track of the deduced template arguments for each parameter pack
796     // expanded by this pack expansion (the outer index) and for each
797     // template argument (the inner SmallVectors).
798     NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
799     SmallVector<DeducedTemplateArgument, 2>
800       SavedPacks(PackIndices.size());
801     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
802                                  NewlyDeducedPacks);
803 
804     bool HasAnyArguments = false;
805     for (; ArgIdx < NumArgs; ++ArgIdx) {
806       HasAnyArguments = true;
807 
808       // Deduce template arguments from the pattern.
809       if (Sema::TemplateDeductionResult Result
810             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
811                                                  Args[ArgIdx], Info, Deduced,
812                                                  TDF, PartialOrdering,
813                                                  RefParamComparisons))
814         return Result;
815 
816       // Capture the deduced template arguments for each parameter pack expanded
817       // by this pack expansion, add them to the list of arguments we've deduced
818       // for that pack, then clear out the deduced argument.
819       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
820         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
821         if (!DeducedArg.isNull()) {
822           NewlyDeducedPacks[I].push_back(DeducedArg);
823           DeducedArg = DeducedTemplateArgument();
824         }
825       }
826     }
827 
828     // Build argument packs for each of the parameter packs expanded by this
829     // pack expansion.
830     if (Sema::TemplateDeductionResult Result
831           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
832                                         Deduced, PackIndices, SavedPacks,
833                                         NewlyDeducedPacks, Info))
834       return Result;
835   }
836 
837   // Make sure we don't have any extra arguments.
838   if (ArgIdx < NumArgs)
839     return Sema::TDK_MiscellaneousDeductionFailure;
840 
841   return Sema::TDK_Success;
842 }
843 
844 /// \brief Determine whether the parameter has qualifiers that are either
845 /// inconsistent with or a superset of the argument's qualifiers.
hasInconsistentOrSupersetQualifiersOf(QualType ParamType,QualType ArgType)846 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
847                                                   QualType ArgType) {
848   Qualifiers ParamQs = ParamType.getQualifiers();
849   Qualifiers ArgQs = ArgType.getQualifiers();
850 
851   if (ParamQs == ArgQs)
852     return false;
853 
854   // Mismatched (but not missing) Objective-C GC attributes.
855   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
856       ParamQs.hasObjCGCAttr())
857     return true;
858 
859   // Mismatched (but not missing) address spaces.
860   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
861       ParamQs.hasAddressSpace())
862     return true;
863 
864   // Mismatched (but not missing) Objective-C lifetime qualifiers.
865   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
866       ParamQs.hasObjCLifetime())
867     return true;
868 
869   // CVR qualifier superset.
870   return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
871       ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
872                                                 == ParamQs.getCVRQualifiers());
873 }
874 
875 /// \brief Compare types for equality with respect to possibly compatible
876 /// function types (noreturn adjustment, implicit calling conventions). If any
877 /// of parameter and argument is not a function, just perform type comparison.
878 ///
879 /// \param Param the template parameter type.
880 ///
881 /// \param Arg the argument type.
isSameOrCompatibleFunctionType(CanQualType Param,CanQualType Arg)882 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
883                                           CanQualType Arg) {
884   const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
885                      *ArgFunction   = Arg->getAs<FunctionType>();
886 
887   // Just compare if not functions.
888   if (!ParamFunction || !ArgFunction)
889     return Param == Arg;
890 
891   // Noreturn adjustment.
892   QualType AdjustedParam;
893   if (IsNoReturnConversion(Param, Arg, AdjustedParam))
894     return Arg == Context.getCanonicalType(AdjustedParam);
895 
896   // FIXME: Compatible calling conventions.
897 
898   return Param == Arg;
899 }
900 
901 /// \brief Deduce the template arguments by comparing the parameter type and
902 /// the argument type (C++ [temp.deduct.type]).
903 ///
904 /// \param S the semantic analysis object within which we are deducing
905 ///
906 /// \param TemplateParams the template parameters that we are deducing
907 ///
908 /// \param ParamIn the parameter type
909 ///
910 /// \param ArgIn the argument type
911 ///
912 /// \param Info information about the template argument deduction itself
913 ///
914 /// \param Deduced the deduced template arguments
915 ///
916 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
917 /// how template argument deduction is performed.
918 ///
919 /// \param PartialOrdering Whether we're performing template argument deduction
920 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
921 ///
922 /// \param RefParamComparisons If we're performing template argument deduction
923 /// in the context of partial ordering, the set of qualifier comparisons.
924 ///
925 /// \returns the result of template argument deduction so far. Note that a
926 /// "success" result means that template argument deduction has not yet failed,
927 /// but it may still fail, later, for other reasons.
928 static Sema::TemplateDeductionResult
DeduceTemplateArgumentsByTypeMatch(Sema & S,TemplateParameterList * TemplateParams,QualType ParamIn,QualType ArgIn,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)929 DeduceTemplateArgumentsByTypeMatch(Sema &S,
930                                    TemplateParameterList *TemplateParams,
931                                    QualType ParamIn, QualType ArgIn,
932                                    TemplateDeductionInfo &Info,
933                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
934                                    unsigned TDF,
935                                    bool PartialOrdering,
936                             SmallVectorImpl<RefParamPartialOrderingComparison> *
937                                                           RefParamComparisons) {
938   // We only want to look at the canonical types, since typedefs and
939   // sugar are not part of template argument deduction.
940   QualType Param = S.Context.getCanonicalType(ParamIn);
941   QualType Arg = S.Context.getCanonicalType(ArgIn);
942 
943   // If the argument type is a pack expansion, look at its pattern.
944   // This isn't explicitly called out
945   if (const PackExpansionType *ArgExpansion
946                                             = dyn_cast<PackExpansionType>(Arg))
947     Arg = ArgExpansion->getPattern();
948 
949   if (PartialOrdering) {
950     // C++0x [temp.deduct.partial]p5:
951     //   Before the partial ordering is done, certain transformations are
952     //   performed on the types used for partial ordering:
953     //     - If P is a reference type, P is replaced by the type referred to.
954     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
955     if (ParamRef)
956       Param = ParamRef->getPointeeType();
957 
958     //     - If A is a reference type, A is replaced by the type referred to.
959     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
960     if (ArgRef)
961       Arg = ArgRef->getPointeeType();
962 
963     if (RefParamComparisons && ParamRef && ArgRef) {
964       // C++0x [temp.deduct.partial]p6:
965       //   If both P and A were reference types (before being replaced with the
966       //   type referred to above), determine which of the two types (if any) is
967       //   more cv-qualified than the other; otherwise the types are considered
968       //   to be equally cv-qualified for partial ordering purposes. The result
969       //   of this determination will be used below.
970       //
971       // We save this information for later, using it only when deduction
972       // succeeds in both directions.
973       RefParamPartialOrderingComparison Comparison;
974       Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
975       Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
976       Comparison.Qualifiers = NeitherMoreQualified;
977 
978       Qualifiers ParamQuals = Param.getQualifiers();
979       Qualifiers ArgQuals = Arg.getQualifiers();
980       if (ParamQuals.isStrictSupersetOf(ArgQuals))
981         Comparison.Qualifiers = ParamMoreQualified;
982       else if (ArgQuals.isStrictSupersetOf(ParamQuals))
983         Comparison.Qualifiers = ArgMoreQualified;
984       RefParamComparisons->push_back(Comparison);
985     }
986 
987     // C++0x [temp.deduct.partial]p7:
988     //   Remove any top-level cv-qualifiers:
989     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
990     //       version of P.
991     Param = Param.getUnqualifiedType();
992     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
993     //       version of A.
994     Arg = Arg.getUnqualifiedType();
995   } else {
996     // C++0x [temp.deduct.call]p4 bullet 1:
997     //   - If the original P is a reference type, the deduced A (i.e., the type
998     //     referred to by the reference) can be more cv-qualified than the
999     //     transformed A.
1000     if (TDF & TDF_ParamWithReferenceType) {
1001       Qualifiers Quals;
1002       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
1003       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
1004                              Arg.getCVRQualifiers());
1005       Param = S.Context.getQualifiedType(UnqualParam, Quals);
1006     }
1007 
1008     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
1009       // C++0x [temp.deduct.type]p10:
1010       //   If P and A are function types that originated from deduction when
1011       //   taking the address of a function template (14.8.2.2) or when deducing
1012       //   template arguments from a function declaration (14.8.2.6) and Pi and
1013       //   Ai are parameters of the top-level parameter-type-list of P and A,
1014       //   respectively, Pi is adjusted if it is an rvalue reference to a
1015       //   cv-unqualified template parameter and Ai is an lvalue reference, in
1016       //   which case the type of Pi is changed to be the template parameter
1017       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
1018       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1019       //   deduced as X&. - end note ]
1020       TDF &= ~TDF_TopLevelParameterTypeList;
1021 
1022       if (const RValueReferenceType *ParamRef
1023                                         = Param->getAs<RValueReferenceType>()) {
1024         if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
1025             !ParamRef->getPointeeType().getQualifiers())
1026           if (Arg->isLValueReferenceType())
1027             Param = ParamRef->getPointeeType();
1028       }
1029     }
1030   }
1031 
1032   // C++ [temp.deduct.type]p9:
1033   //   A template type argument T, a template template argument TT or a
1034   //   template non-type argument i can be deduced if P and A have one of
1035   //   the following forms:
1036   //
1037   //     T
1038   //     cv-list T
1039   if (const TemplateTypeParmType *TemplateTypeParm
1040         = Param->getAs<TemplateTypeParmType>()) {
1041     // Just skip any attempts to deduce from a placeholder type.
1042     if (Arg->isPlaceholderType())
1043       return Sema::TDK_Success;
1044 
1045     unsigned Index = TemplateTypeParm->getIndex();
1046     bool RecanonicalizeArg = false;
1047 
1048     // If the argument type is an array type, move the qualifiers up to the
1049     // top level, so they can be matched with the qualifiers on the parameter.
1050     if (isa<ArrayType>(Arg)) {
1051       Qualifiers Quals;
1052       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1053       if (Quals) {
1054         Arg = S.Context.getQualifiedType(Arg, Quals);
1055         RecanonicalizeArg = true;
1056       }
1057     }
1058 
1059     // The argument type can not be less qualified than the parameter
1060     // type.
1061     if (!(TDF & TDF_IgnoreQualifiers) &&
1062         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1063       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1064       Info.FirstArg = TemplateArgument(Param);
1065       Info.SecondArg = TemplateArgument(Arg);
1066       return Sema::TDK_Underqualified;
1067     }
1068 
1069     assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1070     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1071     QualType DeducedType = Arg;
1072 
1073     // Remove any qualifiers on the parameter from the deduced type.
1074     // We checked the qualifiers for consistency above.
1075     Qualifiers DeducedQs = DeducedType.getQualifiers();
1076     Qualifiers ParamQs = Param.getQualifiers();
1077     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1078     if (ParamQs.hasObjCGCAttr())
1079       DeducedQs.removeObjCGCAttr();
1080     if (ParamQs.hasAddressSpace())
1081       DeducedQs.removeAddressSpace();
1082     if (ParamQs.hasObjCLifetime())
1083       DeducedQs.removeObjCLifetime();
1084 
1085     // Objective-C ARC:
1086     //   If template deduction would produce a lifetime qualifier on a type
1087     //   that is not a lifetime type, template argument deduction fails.
1088     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1089         !DeducedType->isDependentType()) {
1090       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1091       Info.FirstArg = TemplateArgument(Param);
1092       Info.SecondArg = TemplateArgument(Arg);
1093       return Sema::TDK_Underqualified;
1094     }
1095 
1096     // Objective-C ARC:
1097     //   If template deduction would produce an argument type with lifetime type
1098     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1099     if (S.getLangOpts().ObjCAutoRefCount &&
1100         DeducedType->isObjCLifetimeType() &&
1101         !DeducedQs.hasObjCLifetime())
1102       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1103 
1104     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1105                                              DeducedQs);
1106 
1107     if (RecanonicalizeArg)
1108       DeducedType = S.Context.getCanonicalType(DeducedType);
1109 
1110     DeducedTemplateArgument NewDeduced(DeducedType);
1111     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1112                                                                  Deduced[Index],
1113                                                                    NewDeduced);
1114     if (Result.isNull()) {
1115       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1116       Info.FirstArg = Deduced[Index];
1117       Info.SecondArg = NewDeduced;
1118       return Sema::TDK_Inconsistent;
1119     }
1120 
1121     Deduced[Index] = Result;
1122     return Sema::TDK_Success;
1123   }
1124 
1125   // Set up the template argument deduction information for a failure.
1126   Info.FirstArg = TemplateArgument(ParamIn);
1127   Info.SecondArg = TemplateArgument(ArgIn);
1128 
1129   // If the parameter is an already-substituted template parameter
1130   // pack, do nothing: we don't know which of its arguments to look
1131   // at, so we have to wait until all of the parameter packs in this
1132   // expansion have arguments.
1133   if (isa<SubstTemplateTypeParmPackType>(Param))
1134     return Sema::TDK_Success;
1135 
1136   // Check the cv-qualifiers on the parameter and argument types.
1137   CanQualType CanParam = S.Context.getCanonicalType(Param);
1138   CanQualType CanArg = S.Context.getCanonicalType(Arg);
1139   if (!(TDF & TDF_IgnoreQualifiers)) {
1140     if (TDF & TDF_ParamWithReferenceType) {
1141       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1142         return Sema::TDK_NonDeducedMismatch;
1143     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1144       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1145         return Sema::TDK_NonDeducedMismatch;
1146     }
1147 
1148     // If the parameter type is not dependent, there is nothing to deduce.
1149     if (!Param->isDependentType()) {
1150       if (!(TDF & TDF_SkipNonDependent)) {
1151         bool NonDeduced = (TDF & TDF_InOverloadResolution)?
1152                           !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
1153                           Param != Arg;
1154         if (NonDeduced) {
1155           return Sema::TDK_NonDeducedMismatch;
1156         }
1157       }
1158       return Sema::TDK_Success;
1159     }
1160   } else if (!Param->isDependentType()) {
1161     CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
1162                 ArgUnqualType = CanArg.getUnqualifiedType();
1163     bool Success = (TDF & TDF_InOverloadResolution)?
1164                    S.isSameOrCompatibleFunctionType(ParamUnqualType,
1165                                                     ArgUnqualType) :
1166                    ParamUnqualType == ArgUnqualType;
1167     if (Success)
1168       return Sema::TDK_Success;
1169   }
1170 
1171   switch (Param->getTypeClass()) {
1172     // Non-canonical types cannot appear here.
1173 #define NON_CANONICAL_TYPE(Class, Base) \
1174   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1175 #define TYPE(Class, Base)
1176 #include "clang/AST/TypeNodes.def"
1177 
1178     case Type::TemplateTypeParm:
1179     case Type::SubstTemplateTypeParmPack:
1180       llvm_unreachable("Type nodes handled above");
1181 
1182     // These types cannot be dependent, so simply check whether the types are
1183     // the same.
1184     case Type::Builtin:
1185     case Type::VariableArray:
1186     case Type::Vector:
1187     case Type::FunctionNoProto:
1188     case Type::Record:
1189     case Type::Enum:
1190     case Type::ObjCObject:
1191     case Type::ObjCInterface:
1192     case Type::ObjCObjectPointer: {
1193       if (TDF & TDF_SkipNonDependent)
1194         return Sema::TDK_Success;
1195 
1196       if (TDF & TDF_IgnoreQualifiers) {
1197         Param = Param.getUnqualifiedType();
1198         Arg = Arg.getUnqualifiedType();
1199       }
1200 
1201       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1202     }
1203 
1204     //     _Complex T   [placeholder extension]
1205     case Type::Complex:
1206       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1207         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1208                                     cast<ComplexType>(Param)->getElementType(),
1209                                     ComplexArg->getElementType(),
1210                                     Info, Deduced, TDF);
1211 
1212       return Sema::TDK_NonDeducedMismatch;
1213 
1214     //     _Atomic T   [extension]
1215     case Type::Atomic:
1216       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1217         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1218                                        cast<AtomicType>(Param)->getValueType(),
1219                                        AtomicArg->getValueType(),
1220                                        Info, Deduced, TDF);
1221 
1222       return Sema::TDK_NonDeducedMismatch;
1223 
1224     //     T *
1225     case Type::Pointer: {
1226       QualType PointeeType;
1227       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1228         PointeeType = PointerArg->getPointeeType();
1229       } else if (const ObjCObjectPointerType *PointerArg
1230                    = Arg->getAs<ObjCObjectPointerType>()) {
1231         PointeeType = PointerArg->getPointeeType();
1232       } else {
1233         return Sema::TDK_NonDeducedMismatch;
1234       }
1235 
1236       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1237       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1238                                      cast<PointerType>(Param)->getPointeeType(),
1239                                      PointeeType,
1240                                      Info, Deduced, SubTDF);
1241     }
1242 
1243     //     T &
1244     case Type::LValueReference: {
1245       const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1246       if (!ReferenceArg)
1247         return Sema::TDK_NonDeducedMismatch;
1248 
1249       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1250                            cast<LValueReferenceType>(Param)->getPointeeType(),
1251                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
1252     }
1253 
1254     //     T && [C++0x]
1255     case Type::RValueReference: {
1256       const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1257       if (!ReferenceArg)
1258         return Sema::TDK_NonDeducedMismatch;
1259 
1260       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1261                              cast<RValueReferenceType>(Param)->getPointeeType(),
1262                              ReferenceArg->getPointeeType(),
1263                              Info, Deduced, 0);
1264     }
1265 
1266     //     T [] (implied, but not stated explicitly)
1267     case Type::IncompleteArray: {
1268       const IncompleteArrayType *IncompleteArrayArg =
1269         S.Context.getAsIncompleteArrayType(Arg);
1270       if (!IncompleteArrayArg)
1271         return Sema::TDK_NonDeducedMismatch;
1272 
1273       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1274       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1275                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1276                     IncompleteArrayArg->getElementType(),
1277                     Info, Deduced, SubTDF);
1278     }
1279 
1280     //     T [integer-constant]
1281     case Type::ConstantArray: {
1282       const ConstantArrayType *ConstantArrayArg =
1283         S.Context.getAsConstantArrayType(Arg);
1284       if (!ConstantArrayArg)
1285         return Sema::TDK_NonDeducedMismatch;
1286 
1287       const ConstantArrayType *ConstantArrayParm =
1288         S.Context.getAsConstantArrayType(Param);
1289       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1290         return Sema::TDK_NonDeducedMismatch;
1291 
1292       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1293       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1294                                            ConstantArrayParm->getElementType(),
1295                                            ConstantArrayArg->getElementType(),
1296                                            Info, Deduced, SubTDF);
1297     }
1298 
1299     //     type [i]
1300     case Type::DependentSizedArray: {
1301       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1302       if (!ArrayArg)
1303         return Sema::TDK_NonDeducedMismatch;
1304 
1305       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1306 
1307       // Check the element type of the arrays
1308       const DependentSizedArrayType *DependentArrayParm
1309         = S.Context.getAsDependentSizedArrayType(Param);
1310       if (Sema::TemplateDeductionResult Result
1311             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1312                                           DependentArrayParm->getElementType(),
1313                                           ArrayArg->getElementType(),
1314                                           Info, Deduced, SubTDF))
1315         return Result;
1316 
1317       // Determine the array bound is something we can deduce.
1318       NonTypeTemplateParmDecl *NTTP
1319         = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1320       if (!NTTP)
1321         return Sema::TDK_Success;
1322 
1323       // We can perform template argument deduction for the given non-type
1324       // template parameter.
1325       assert(NTTP->getDepth() == 0 &&
1326              "Cannot deduce non-type template argument at depth > 0");
1327       if (const ConstantArrayType *ConstantArrayArg
1328             = dyn_cast<ConstantArrayType>(ArrayArg)) {
1329         llvm::APSInt Size(ConstantArrayArg->getSize());
1330         return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1331                                              S.Context.getSizeType(),
1332                                              /*ArrayBound=*/true,
1333                                              Info, Deduced);
1334       }
1335       if (const DependentSizedArrayType *DependentArrayArg
1336             = dyn_cast<DependentSizedArrayType>(ArrayArg))
1337         if (DependentArrayArg->getSizeExpr())
1338           return DeduceNonTypeTemplateArgument(S, NTTP,
1339                                                DependentArrayArg->getSizeExpr(),
1340                                                Info, Deduced);
1341 
1342       // Incomplete type does not match a dependently-sized array type
1343       return Sema::TDK_NonDeducedMismatch;
1344     }
1345 
1346     //     type(*)(T)
1347     //     T(*)()
1348     //     T(*)(T)
1349     case Type::FunctionProto: {
1350       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1351       const FunctionProtoType *FunctionProtoArg =
1352         dyn_cast<FunctionProtoType>(Arg);
1353       if (!FunctionProtoArg)
1354         return Sema::TDK_NonDeducedMismatch;
1355 
1356       const FunctionProtoType *FunctionProtoParam =
1357         cast<FunctionProtoType>(Param);
1358 
1359       if (FunctionProtoParam->getTypeQuals()
1360             != FunctionProtoArg->getTypeQuals() ||
1361           FunctionProtoParam->getRefQualifier()
1362             != FunctionProtoArg->getRefQualifier() ||
1363           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1364         return Sema::TDK_NonDeducedMismatch;
1365 
1366       // Check return types.
1367       if (Sema::TemplateDeductionResult Result
1368             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1369                                             FunctionProtoParam->getResultType(),
1370                                             FunctionProtoArg->getResultType(),
1371                                             Info, Deduced, 0))
1372         return Result;
1373 
1374       return DeduceTemplateArguments(S, TemplateParams,
1375                                      FunctionProtoParam->arg_type_begin(),
1376                                      FunctionProtoParam->getNumArgs(),
1377                                      FunctionProtoArg->arg_type_begin(),
1378                                      FunctionProtoArg->getNumArgs(),
1379                                      Info, Deduced, SubTDF);
1380     }
1381 
1382     case Type::InjectedClassName: {
1383       // Treat a template's injected-class-name as if the template
1384       // specialization type had been used.
1385       Param = cast<InjectedClassNameType>(Param)
1386         ->getInjectedSpecializationType();
1387       assert(isa<TemplateSpecializationType>(Param) &&
1388              "injected class name is not a template specialization type");
1389       // fall through
1390     }
1391 
1392     //     template-name<T> (where template-name refers to a class template)
1393     //     template-name<i>
1394     //     TT<T>
1395     //     TT<i>
1396     //     TT<>
1397     case Type::TemplateSpecialization: {
1398       const TemplateSpecializationType *SpecParam
1399         = cast<TemplateSpecializationType>(Param);
1400 
1401       // Try to deduce template arguments from the template-id.
1402       Sema::TemplateDeductionResult Result
1403         = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1404                                   Info, Deduced);
1405 
1406       if (Result && (TDF & TDF_DerivedClass)) {
1407         // C++ [temp.deduct.call]p3b3:
1408         //   If P is a class, and P has the form template-id, then A can be a
1409         //   derived class of the deduced A. Likewise, if P is a pointer to a
1410         //   class of the form template-id, A can be a pointer to a derived
1411         //   class pointed to by the deduced A.
1412         //
1413         // More importantly:
1414         //   These alternatives are considered only if type deduction would
1415         //   otherwise fail.
1416         if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1417           // We cannot inspect base classes as part of deduction when the type
1418           // is incomplete, so either instantiate any templates necessary to
1419           // complete the type, or skip over it if it cannot be completed.
1420           if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1421             return Result;
1422 
1423           // Use data recursion to crawl through the list of base classes.
1424           // Visited contains the set of nodes we have already visited, while
1425           // ToVisit is our stack of records that we still need to visit.
1426           llvm::SmallPtrSet<const RecordType *, 8> Visited;
1427           SmallVector<const RecordType *, 8> ToVisit;
1428           ToVisit.push_back(RecordT);
1429           bool Successful = false;
1430           SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1431                                                               Deduced.end());
1432           while (!ToVisit.empty()) {
1433             // Retrieve the next class in the inheritance hierarchy.
1434             const RecordType *NextT = ToVisit.back();
1435             ToVisit.pop_back();
1436 
1437             // If we have already seen this type, skip it.
1438             if (!Visited.insert(NextT))
1439               continue;
1440 
1441             // If this is a base class, try to perform template argument
1442             // deduction from it.
1443             if (NextT != RecordT) {
1444               TemplateDeductionInfo BaseInfo(Info.getLocation());
1445               Sema::TemplateDeductionResult BaseResult
1446                 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1447                                           QualType(NextT, 0), BaseInfo,
1448                                           Deduced);
1449 
1450               // If template argument deduction for this base was successful,
1451               // note that we had some success. Otherwise, ignore any deductions
1452               // from this base class.
1453               if (BaseResult == Sema::TDK_Success) {
1454                 Successful = true;
1455                 DeducedOrig.clear();
1456                 DeducedOrig.append(Deduced.begin(), Deduced.end());
1457                 Info.Param = BaseInfo.Param;
1458                 Info.FirstArg = BaseInfo.FirstArg;
1459                 Info.SecondArg = BaseInfo.SecondArg;
1460               }
1461               else
1462                 Deduced = DeducedOrig;
1463             }
1464 
1465             // Visit base classes
1466             CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1467             for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1468                                                  BaseEnd = Next->bases_end();
1469                  Base != BaseEnd; ++Base) {
1470               assert(Base->getType()->isRecordType() &&
1471                      "Base class that isn't a record?");
1472               ToVisit.push_back(Base->getType()->getAs<RecordType>());
1473             }
1474           }
1475 
1476           if (Successful)
1477             return Sema::TDK_Success;
1478         }
1479 
1480       }
1481 
1482       return Result;
1483     }
1484 
1485     //     T type::*
1486     //     T T::*
1487     //     T (type::*)()
1488     //     type (T::*)()
1489     //     type (type::*)(T)
1490     //     type (T::*)(T)
1491     //     T (type::*)(T)
1492     //     T (T::*)()
1493     //     T (T::*)(T)
1494     case Type::MemberPointer: {
1495       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1496       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1497       if (!MemPtrArg)
1498         return Sema::TDK_NonDeducedMismatch;
1499 
1500       if (Sema::TemplateDeductionResult Result
1501             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1502                                                  MemPtrParam->getPointeeType(),
1503                                                  MemPtrArg->getPointeeType(),
1504                                                  Info, Deduced,
1505                                                  TDF & TDF_IgnoreQualifiers))
1506         return Result;
1507 
1508       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1509                                            QualType(MemPtrParam->getClass(), 0),
1510                                            QualType(MemPtrArg->getClass(), 0),
1511                                            Info, Deduced,
1512                                            TDF & TDF_IgnoreQualifiers);
1513     }
1514 
1515     //     (clang extension)
1516     //
1517     //     type(^)(T)
1518     //     T(^)()
1519     //     T(^)(T)
1520     case Type::BlockPointer: {
1521       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1522       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1523 
1524       if (!BlockPtrArg)
1525         return Sema::TDK_NonDeducedMismatch;
1526 
1527       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1528                                                 BlockPtrParam->getPointeeType(),
1529                                                 BlockPtrArg->getPointeeType(),
1530                                                 Info, Deduced, 0);
1531     }
1532 
1533     //     (clang extension)
1534     //
1535     //     T __attribute__(((ext_vector_type(<integral constant>))))
1536     case Type::ExtVector: {
1537       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1538       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1539         // Make sure that the vectors have the same number of elements.
1540         if (VectorParam->getNumElements() != VectorArg->getNumElements())
1541           return Sema::TDK_NonDeducedMismatch;
1542 
1543         // Perform deduction on the element types.
1544         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1545                                                   VectorParam->getElementType(),
1546                                                   VectorArg->getElementType(),
1547                                                   Info, Deduced, TDF);
1548       }
1549 
1550       if (const DependentSizedExtVectorType *VectorArg
1551                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1552         // We can't check the number of elements, since the argument has a
1553         // dependent number of elements. This can only occur during partial
1554         // ordering.
1555 
1556         // Perform deduction on the element types.
1557         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1558                                                   VectorParam->getElementType(),
1559                                                   VectorArg->getElementType(),
1560                                                   Info, Deduced, TDF);
1561       }
1562 
1563       return Sema::TDK_NonDeducedMismatch;
1564     }
1565 
1566     //     (clang extension)
1567     //
1568     //     T __attribute__(((ext_vector_type(N))))
1569     case Type::DependentSizedExtVector: {
1570       const DependentSizedExtVectorType *VectorParam
1571         = cast<DependentSizedExtVectorType>(Param);
1572 
1573       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1574         // Perform deduction on the element types.
1575         if (Sema::TemplateDeductionResult Result
1576               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1577                                                   VectorParam->getElementType(),
1578                                                    VectorArg->getElementType(),
1579                                                    Info, Deduced, TDF))
1580           return Result;
1581 
1582         // Perform deduction on the vector size, if we can.
1583         NonTypeTemplateParmDecl *NTTP
1584           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1585         if (!NTTP)
1586           return Sema::TDK_Success;
1587 
1588         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1589         ArgSize = VectorArg->getNumElements();
1590         return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1591                                              false, Info, Deduced);
1592       }
1593 
1594       if (const DependentSizedExtVectorType *VectorArg
1595                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1596         // Perform deduction on the element types.
1597         if (Sema::TemplateDeductionResult Result
1598             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1599                                                  VectorParam->getElementType(),
1600                                                  VectorArg->getElementType(),
1601                                                  Info, Deduced, TDF))
1602           return Result;
1603 
1604         // Perform deduction on the vector size, if we can.
1605         NonTypeTemplateParmDecl *NTTP
1606           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1607         if (!NTTP)
1608           return Sema::TDK_Success;
1609 
1610         return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1611                                              Info, Deduced);
1612       }
1613 
1614       return Sema::TDK_NonDeducedMismatch;
1615     }
1616 
1617     case Type::TypeOfExpr:
1618     case Type::TypeOf:
1619     case Type::DependentName:
1620     case Type::UnresolvedUsing:
1621     case Type::Decltype:
1622     case Type::UnaryTransform:
1623     case Type::Auto:
1624     case Type::DependentTemplateSpecialization:
1625     case Type::PackExpansion:
1626       // No template argument deduction for these types
1627       return Sema::TDK_Success;
1628   }
1629 
1630   llvm_unreachable("Invalid Type Class!");
1631 }
1632 
1633 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument & Param,TemplateArgument Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1634 DeduceTemplateArguments(Sema &S,
1635                         TemplateParameterList *TemplateParams,
1636                         const TemplateArgument &Param,
1637                         TemplateArgument Arg,
1638                         TemplateDeductionInfo &Info,
1639                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1640   // If the template argument is a pack expansion, perform template argument
1641   // deduction against the pattern of that expansion. This only occurs during
1642   // partial ordering.
1643   if (Arg.isPackExpansion())
1644     Arg = Arg.getPackExpansionPattern();
1645 
1646   switch (Param.getKind()) {
1647   case TemplateArgument::Null:
1648     llvm_unreachable("Null template argument in parameter list");
1649 
1650   case TemplateArgument::Type:
1651     if (Arg.getKind() == TemplateArgument::Type)
1652       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1653                                                 Param.getAsType(),
1654                                                 Arg.getAsType(),
1655                                                 Info, Deduced, 0);
1656     Info.FirstArg = Param;
1657     Info.SecondArg = Arg;
1658     return Sema::TDK_NonDeducedMismatch;
1659 
1660   case TemplateArgument::Template:
1661     if (Arg.getKind() == TemplateArgument::Template)
1662       return DeduceTemplateArguments(S, TemplateParams,
1663                                      Param.getAsTemplate(),
1664                                      Arg.getAsTemplate(), Info, Deduced);
1665     Info.FirstArg = Param;
1666     Info.SecondArg = Arg;
1667     return Sema::TDK_NonDeducedMismatch;
1668 
1669   case TemplateArgument::TemplateExpansion:
1670     llvm_unreachable("caller should handle pack expansions");
1671 
1672   case TemplateArgument::Declaration:
1673     if (Arg.getKind() == TemplateArgument::Declaration &&
1674         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()) &&
1675         Param.isDeclForReferenceParam() == Arg.isDeclForReferenceParam())
1676       return Sema::TDK_Success;
1677 
1678     Info.FirstArg = Param;
1679     Info.SecondArg = Arg;
1680     return Sema::TDK_NonDeducedMismatch;
1681 
1682   case TemplateArgument::NullPtr:
1683     if (Arg.getKind() == TemplateArgument::NullPtr &&
1684         S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
1685       return Sema::TDK_Success;
1686 
1687     Info.FirstArg = Param;
1688     Info.SecondArg = Arg;
1689     return Sema::TDK_NonDeducedMismatch;
1690 
1691   case TemplateArgument::Integral:
1692     if (Arg.getKind() == TemplateArgument::Integral) {
1693       if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
1694         return Sema::TDK_Success;
1695 
1696       Info.FirstArg = Param;
1697       Info.SecondArg = Arg;
1698       return Sema::TDK_NonDeducedMismatch;
1699     }
1700 
1701     if (Arg.getKind() == TemplateArgument::Expression) {
1702       Info.FirstArg = Param;
1703       Info.SecondArg = Arg;
1704       return Sema::TDK_NonDeducedMismatch;
1705     }
1706 
1707     Info.FirstArg = Param;
1708     Info.SecondArg = Arg;
1709     return Sema::TDK_NonDeducedMismatch;
1710 
1711   case TemplateArgument::Expression: {
1712     if (NonTypeTemplateParmDecl *NTTP
1713           = getDeducedParameterFromExpr(Param.getAsExpr())) {
1714       if (Arg.getKind() == TemplateArgument::Integral)
1715         return DeduceNonTypeTemplateArgument(S, NTTP,
1716                                              Arg.getAsIntegral(),
1717                                              Arg.getIntegralType(),
1718                                              /*ArrayBound=*/false,
1719                                              Info, Deduced);
1720       if (Arg.getKind() == TemplateArgument::Expression)
1721         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1722                                              Info, Deduced);
1723       if (Arg.getKind() == TemplateArgument::Declaration)
1724         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1725                                              Info, Deduced);
1726 
1727       Info.FirstArg = Param;
1728       Info.SecondArg = Arg;
1729       return Sema::TDK_NonDeducedMismatch;
1730     }
1731 
1732     // Can't deduce anything, but that's okay.
1733     return Sema::TDK_Success;
1734   }
1735   case TemplateArgument::Pack:
1736     llvm_unreachable("Argument packs should be expanded by the caller!");
1737   }
1738 
1739   llvm_unreachable("Invalid TemplateArgument Kind!");
1740 }
1741 
1742 /// \brief Determine whether there is a template argument to be used for
1743 /// deduction.
1744 ///
1745 /// This routine "expands" argument packs in-place, overriding its input
1746 /// parameters so that \c Args[ArgIdx] will be the available template argument.
1747 ///
1748 /// \returns true if there is another template argument (which will be at
1749 /// \c Args[ArgIdx]), false otherwise.
hasTemplateArgumentForDeduction(const TemplateArgument * & Args,unsigned & ArgIdx,unsigned & NumArgs)1750 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1751                                             unsigned &ArgIdx,
1752                                             unsigned &NumArgs) {
1753   if (ArgIdx == NumArgs)
1754     return false;
1755 
1756   const TemplateArgument &Arg = Args[ArgIdx];
1757   if (Arg.getKind() != TemplateArgument::Pack)
1758     return true;
1759 
1760   assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1761   Args = Arg.pack_begin();
1762   NumArgs = Arg.pack_size();
1763   ArgIdx = 0;
1764   return ArgIdx < NumArgs;
1765 }
1766 
1767 /// \brief Determine whether the given set of template arguments has a pack
1768 /// expansion that is not the last template argument.
hasPackExpansionBeforeEnd(const TemplateArgument * Args,unsigned NumArgs)1769 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1770                                       unsigned NumArgs) {
1771   unsigned ArgIdx = 0;
1772   while (ArgIdx < NumArgs) {
1773     const TemplateArgument &Arg = Args[ArgIdx];
1774 
1775     // Unwrap argument packs.
1776     if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1777       Args = Arg.pack_begin();
1778       NumArgs = Arg.pack_size();
1779       ArgIdx = 0;
1780       continue;
1781     }
1782 
1783     ++ArgIdx;
1784     if (ArgIdx == NumArgs)
1785       return false;
1786 
1787     if (Arg.isPackExpansion())
1788       return true;
1789   }
1790 
1791   return false;
1792 }
1793 
1794 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument * Params,unsigned NumParams,const TemplateArgument * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1795 DeduceTemplateArguments(Sema &S,
1796                         TemplateParameterList *TemplateParams,
1797                         const TemplateArgument *Params, unsigned NumParams,
1798                         const TemplateArgument *Args, unsigned NumArgs,
1799                         TemplateDeductionInfo &Info,
1800                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1801   // C++0x [temp.deduct.type]p9:
1802   //   If the template argument list of P contains a pack expansion that is not
1803   //   the last template argument, the entire template argument list is a
1804   //   non-deduced context.
1805   if (hasPackExpansionBeforeEnd(Params, NumParams))
1806     return Sema::TDK_Success;
1807 
1808   // C++0x [temp.deduct.type]p9:
1809   //   If P has a form that contains <T> or <i>, then each argument Pi of the
1810   //   respective template argument list P is compared with the corresponding
1811   //   argument Ai of the corresponding template argument list of A.
1812   unsigned ArgIdx = 0, ParamIdx = 0;
1813   for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1814        ++ParamIdx) {
1815     if (!Params[ParamIdx].isPackExpansion()) {
1816       // The simple case: deduce template arguments by matching Pi and Ai.
1817 
1818       // Check whether we have enough arguments.
1819       if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1820         return Sema::TDK_Success;
1821 
1822       if (Args[ArgIdx].isPackExpansion()) {
1823         // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1824         // but applied to pack expansions that are template arguments.
1825         return Sema::TDK_MiscellaneousDeductionFailure;
1826       }
1827 
1828       // Perform deduction for this Pi/Ai pair.
1829       if (Sema::TemplateDeductionResult Result
1830             = DeduceTemplateArguments(S, TemplateParams,
1831                                       Params[ParamIdx], Args[ArgIdx],
1832                                       Info, Deduced))
1833         return Result;
1834 
1835       // Move to the next argument.
1836       ++ArgIdx;
1837       continue;
1838     }
1839 
1840     // The parameter is a pack expansion.
1841 
1842     // C++0x [temp.deduct.type]p9:
1843     //   If Pi is a pack expansion, then the pattern of Pi is compared with
1844     //   each remaining argument in the template argument list of A. Each
1845     //   comparison deduces template arguments for subsequent positions in the
1846     //   template parameter packs expanded by Pi.
1847     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1848 
1849     // Compute the set of template parameter indices that correspond to
1850     // parameter packs expanded by the pack expansion.
1851     SmallVector<unsigned, 2> PackIndices;
1852     {
1853       llvm::SmallBitVector SawIndices(TemplateParams->size());
1854       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1855       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1856       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1857         unsigned Depth, Index;
1858         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1859         if (Depth == 0 && !SawIndices[Index]) {
1860           SawIndices[Index] = true;
1861           PackIndices.push_back(Index);
1862         }
1863       }
1864     }
1865     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1866 
1867     // FIXME: If there are no remaining arguments, we can bail out early
1868     // and set any deduced parameter packs to an empty argument pack.
1869     // The latter part of this is a (minor) correctness issue.
1870 
1871     // Save the deduced template arguments for each parameter pack expanded
1872     // by this pack expansion, then clear out the deduction.
1873     SmallVector<DeducedTemplateArgument, 2>
1874       SavedPacks(PackIndices.size());
1875     NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
1876     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1877                                  NewlyDeducedPacks);
1878 
1879     // Keep track of the deduced template arguments for each parameter pack
1880     // expanded by this pack expansion (the outer index) and for each
1881     // template argument (the inner SmallVectors).
1882     bool HasAnyArguments = false;
1883     while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1884       HasAnyArguments = true;
1885 
1886       // Deduce template arguments from the pattern.
1887       if (Sema::TemplateDeductionResult Result
1888             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1889                                       Info, Deduced))
1890         return Result;
1891 
1892       // Capture the deduced template arguments for each parameter pack expanded
1893       // by this pack expansion, add them to the list of arguments we've deduced
1894       // for that pack, then clear out the deduced argument.
1895       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1896         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1897         if (!DeducedArg.isNull()) {
1898           NewlyDeducedPacks[I].push_back(DeducedArg);
1899           DeducedArg = DeducedTemplateArgument();
1900         }
1901       }
1902 
1903       ++ArgIdx;
1904     }
1905 
1906     // Build argument packs for each of the parameter packs expanded by this
1907     // pack expansion.
1908     if (Sema::TemplateDeductionResult Result
1909           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1910                                         Deduced, PackIndices, SavedPacks,
1911                                         NewlyDeducedPacks, Info))
1912       return Result;
1913   }
1914 
1915   return Sema::TDK_Success;
1916 }
1917 
1918 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgumentList & ParamList,const TemplateArgumentList & ArgList,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1919 DeduceTemplateArguments(Sema &S,
1920                         TemplateParameterList *TemplateParams,
1921                         const TemplateArgumentList &ParamList,
1922                         const TemplateArgumentList &ArgList,
1923                         TemplateDeductionInfo &Info,
1924                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1925   return DeduceTemplateArguments(S, TemplateParams,
1926                                  ParamList.data(), ParamList.size(),
1927                                  ArgList.data(), ArgList.size(),
1928                                  Info, Deduced);
1929 }
1930 
1931 /// \brief Determine whether two template arguments are the same.
isSameTemplateArg(ASTContext & Context,const TemplateArgument & X,const TemplateArgument & Y)1932 static bool isSameTemplateArg(ASTContext &Context,
1933                               const TemplateArgument &X,
1934                               const TemplateArgument &Y) {
1935   if (X.getKind() != Y.getKind())
1936     return false;
1937 
1938   switch (X.getKind()) {
1939     case TemplateArgument::Null:
1940       llvm_unreachable("Comparing NULL template argument");
1941 
1942     case TemplateArgument::Type:
1943       return Context.getCanonicalType(X.getAsType()) ==
1944              Context.getCanonicalType(Y.getAsType());
1945 
1946     case TemplateArgument::Declaration:
1947       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
1948              X.isDeclForReferenceParam() == Y.isDeclForReferenceParam();
1949 
1950     case TemplateArgument::NullPtr:
1951       return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
1952 
1953     case TemplateArgument::Template:
1954     case TemplateArgument::TemplateExpansion:
1955       return Context.getCanonicalTemplateName(
1956                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1957              Context.getCanonicalTemplateName(
1958                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1959 
1960     case TemplateArgument::Integral:
1961       return X.getAsIntegral() == Y.getAsIntegral();
1962 
1963     case TemplateArgument::Expression: {
1964       llvm::FoldingSetNodeID XID, YID;
1965       X.getAsExpr()->Profile(XID, Context, true);
1966       Y.getAsExpr()->Profile(YID, Context, true);
1967       return XID == YID;
1968     }
1969 
1970     case TemplateArgument::Pack:
1971       if (X.pack_size() != Y.pack_size())
1972         return false;
1973 
1974       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1975                                         XPEnd = X.pack_end(),
1976                                            YP = Y.pack_begin();
1977            XP != XPEnd; ++XP, ++YP)
1978         if (!isSameTemplateArg(Context, *XP, *YP))
1979           return false;
1980 
1981       return true;
1982   }
1983 
1984   llvm_unreachable("Invalid TemplateArgument Kind!");
1985 }
1986 
1987 /// \brief Allocate a TemplateArgumentLoc where all locations have
1988 /// been initialized to the given location.
1989 ///
1990 /// \param S The semantic analysis object.
1991 ///
1992 /// \param Arg The template argument we are producing template argument
1993 /// location information for.
1994 ///
1995 /// \param NTTPType For a declaration template argument, the type of
1996 /// the non-type template parameter that corresponds to this template
1997 /// argument.
1998 ///
1999 /// \param Loc The source location to use for the resulting template
2000 /// argument.
2001 static TemplateArgumentLoc
getTrivialTemplateArgumentLoc(Sema & S,const TemplateArgument & Arg,QualType NTTPType,SourceLocation Loc)2002 getTrivialTemplateArgumentLoc(Sema &S,
2003                               const TemplateArgument &Arg,
2004                               QualType NTTPType,
2005                               SourceLocation Loc) {
2006   switch (Arg.getKind()) {
2007   case TemplateArgument::Null:
2008     llvm_unreachable("Can't get a NULL template argument here");
2009 
2010   case TemplateArgument::Type:
2011     return TemplateArgumentLoc(Arg,
2012                      S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2013 
2014   case TemplateArgument::Declaration: {
2015     Expr *E
2016       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2017           .takeAs<Expr>();
2018     return TemplateArgumentLoc(TemplateArgument(E), E);
2019   }
2020 
2021   case TemplateArgument::NullPtr: {
2022     Expr *E
2023       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2024           .takeAs<Expr>();
2025     return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2026                                E);
2027   }
2028 
2029   case TemplateArgument::Integral: {
2030     Expr *E
2031       = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
2032     return TemplateArgumentLoc(TemplateArgument(E), E);
2033   }
2034 
2035     case TemplateArgument::Template:
2036     case TemplateArgument::TemplateExpansion: {
2037       NestedNameSpecifierLocBuilder Builder;
2038       TemplateName Template = Arg.getAsTemplate();
2039       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2040         Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
2041       else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2042         Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
2043 
2044       if (Arg.getKind() == TemplateArgument::Template)
2045         return TemplateArgumentLoc(Arg,
2046                                    Builder.getWithLocInContext(S.Context),
2047                                    Loc);
2048 
2049 
2050       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
2051                                  Loc, Loc);
2052     }
2053 
2054   case TemplateArgument::Expression:
2055     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2056 
2057   case TemplateArgument::Pack:
2058     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2059   }
2060 
2061   llvm_unreachable("Invalid TemplateArgument Kind!");
2062 }
2063 
2064 
2065 /// \brief Convert the given deduced template argument and add it to the set of
2066 /// fully-converted template arguments.
2067 static bool
ConvertDeducedTemplateArgument(Sema & S,NamedDecl * Param,DeducedTemplateArgument Arg,NamedDecl * Template,QualType NTTPType,unsigned ArgumentPackIndex,TemplateDeductionInfo & Info,bool InFunctionTemplate,SmallVectorImpl<TemplateArgument> & Output)2068 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
2069                                DeducedTemplateArgument Arg,
2070                                NamedDecl *Template,
2071                                QualType NTTPType,
2072                                unsigned ArgumentPackIndex,
2073                                TemplateDeductionInfo &Info,
2074                                bool InFunctionTemplate,
2075                                SmallVectorImpl<TemplateArgument> &Output) {
2076   if (Arg.getKind() == TemplateArgument::Pack) {
2077     // This is a template argument pack, so check each of its arguments against
2078     // the template parameter.
2079     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
2080     for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
2081                                       PAEnd = Arg.pack_end();
2082          PA != PAEnd; ++PA) {
2083       // When converting the deduced template argument, append it to the
2084       // general output list. We need to do this so that the template argument
2085       // checking logic has all of the prior template arguments available.
2086       DeducedTemplateArgument InnerArg(*PA);
2087       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2088       if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
2089                                          NTTPType, PackedArgsBuilder.size(),
2090                                          Info, InFunctionTemplate, Output))
2091         return true;
2092 
2093       // Move the converted template argument into our argument pack.
2094       PackedArgsBuilder.push_back(Output.back());
2095       Output.pop_back();
2096     }
2097 
2098     // Create the resulting argument pack.
2099     Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
2100                                                       PackedArgsBuilder.data(),
2101                                                      PackedArgsBuilder.size()));
2102     return false;
2103   }
2104 
2105   // Convert the deduced template argument into a template
2106   // argument that we can check, almost as if the user had written
2107   // the template argument explicitly.
2108   TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
2109                                                              Info.getLocation());
2110 
2111   // Check the template argument, converting it as necessary.
2112   return S.CheckTemplateArgument(Param, ArgLoc,
2113                                  Template,
2114                                  Template->getLocation(),
2115                                  Template->getSourceRange().getEnd(),
2116                                  ArgumentPackIndex,
2117                                  Output,
2118                                  InFunctionTemplate
2119                                   ? (Arg.wasDeducedFromArrayBound()
2120                                        ? Sema::CTAK_DeducedFromArrayBound
2121                                        : Sema::CTAK_Deduced)
2122                                  : Sema::CTAK_Specified);
2123 }
2124 
2125 /// Complete template argument deduction for a class template partial
2126 /// specialization.
2127 static Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(Sema & S,ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2128 FinishTemplateArgumentDeduction(Sema &S,
2129                                 ClassTemplatePartialSpecializationDecl *Partial,
2130                                 const TemplateArgumentList &TemplateArgs,
2131                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2132                                 TemplateDeductionInfo &Info) {
2133   // Unevaluated SFINAE context.
2134   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2135   Sema::SFINAETrap Trap(S);
2136 
2137   Sema::ContextRAII SavedContext(S, Partial);
2138 
2139   // C++ [temp.deduct.type]p2:
2140   //   [...] or if any template argument remains neither deduced nor
2141   //   explicitly specified, template argument deduction fails.
2142   SmallVector<TemplateArgument, 4> Builder;
2143   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2144   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2145     NamedDecl *Param = PartialParams->getParam(I);
2146     if (Deduced[I].isNull()) {
2147       Info.Param = makeTemplateParameter(Param);
2148       return Sema::TDK_Incomplete;
2149     }
2150 
2151     // We have deduced this argument, so it still needs to be
2152     // checked and converted.
2153 
2154     // First, for a non-type template parameter type that is
2155     // initialized by a declaration, we need the type of the
2156     // corresponding non-type template parameter.
2157     QualType NTTPType;
2158     if (NonTypeTemplateParmDecl *NTTP
2159                                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2160       NTTPType = NTTP->getType();
2161       if (NTTPType->isDependentType()) {
2162         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2163                                           Builder.data(), Builder.size());
2164         NTTPType = S.SubstType(NTTPType,
2165                                MultiLevelTemplateArgumentList(TemplateArgs),
2166                                NTTP->getLocation(),
2167                                NTTP->getDeclName());
2168         if (NTTPType.isNull()) {
2169           Info.Param = makeTemplateParameter(Param);
2170           // FIXME: These template arguments are temporary. Free them!
2171           Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2172                                                       Builder.data(),
2173                                                       Builder.size()));
2174           return Sema::TDK_SubstitutionFailure;
2175         }
2176       }
2177     }
2178 
2179     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2180                                        Partial, NTTPType, 0, Info, false,
2181                                        Builder)) {
2182       Info.Param = makeTemplateParameter(Param);
2183       // FIXME: These template arguments are temporary. Free them!
2184       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2185                                                   Builder.size()));
2186       return Sema::TDK_SubstitutionFailure;
2187     }
2188   }
2189 
2190   // Form the template argument list from the deduced template arguments.
2191   TemplateArgumentList *DeducedArgumentList
2192     = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2193                                        Builder.size());
2194 
2195   Info.reset(DeducedArgumentList);
2196 
2197   // Substitute the deduced template arguments into the template
2198   // arguments of the class template partial specialization, and
2199   // verify that the instantiated template arguments are both valid
2200   // and are equivalent to the template arguments originally provided
2201   // to the class template.
2202   LocalInstantiationScope InstScope(S);
2203   ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2204   const TemplateArgumentLoc *PartialTemplateArgs
2205     = Partial->getTemplateArgsAsWritten();
2206 
2207   // Note that we don't provide the langle and rangle locations.
2208   TemplateArgumentListInfo InstArgs;
2209 
2210   if (S.Subst(PartialTemplateArgs,
2211               Partial->getNumTemplateArgsAsWritten(),
2212               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2213     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2214     if (ParamIdx >= Partial->getTemplateParameters()->size())
2215       ParamIdx = Partial->getTemplateParameters()->size() - 1;
2216 
2217     Decl *Param
2218       = const_cast<NamedDecl *>(
2219                           Partial->getTemplateParameters()->getParam(ParamIdx));
2220     Info.Param = makeTemplateParameter(Param);
2221     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2222     return Sema::TDK_SubstitutionFailure;
2223   }
2224 
2225   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2226   if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2227                                   InstArgs, false, ConvertedInstArgs))
2228     return Sema::TDK_SubstitutionFailure;
2229 
2230   TemplateParameterList *TemplateParams
2231     = ClassTemplate->getTemplateParameters();
2232   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2233     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2234     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2235       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2236       Info.FirstArg = TemplateArgs[I];
2237       Info.SecondArg = InstArg;
2238       return Sema::TDK_NonDeducedMismatch;
2239     }
2240   }
2241 
2242   if (Trap.hasErrorOccurred())
2243     return Sema::TDK_SubstitutionFailure;
2244 
2245   return Sema::TDK_Success;
2246 }
2247 
2248 /// \brief Perform template argument deduction to determine whether
2249 /// the given template arguments match the given class template
2250 /// partial specialization per C++ [temp.class.spec.match].
2251 Sema::TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)2252 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2253                               const TemplateArgumentList &TemplateArgs,
2254                               TemplateDeductionInfo &Info) {
2255   if (Partial->isInvalidDecl())
2256     return TDK_Invalid;
2257 
2258   // C++ [temp.class.spec.match]p2:
2259   //   A partial specialization matches a given actual template
2260   //   argument list if the template arguments of the partial
2261   //   specialization can be deduced from the actual template argument
2262   //   list (14.8.2).
2263 
2264   // Unevaluated SFINAE context.
2265   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2266   SFINAETrap Trap(*this);
2267 
2268   SmallVector<DeducedTemplateArgument, 4> Deduced;
2269   Deduced.resize(Partial->getTemplateParameters()->size());
2270   if (TemplateDeductionResult Result
2271         = ::DeduceTemplateArguments(*this,
2272                                     Partial->getTemplateParameters(),
2273                                     Partial->getTemplateArgs(),
2274                                     TemplateArgs, Info, Deduced))
2275     return Result;
2276 
2277   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2278   InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2279                              DeducedArgs, Info);
2280   if (Inst)
2281     return TDK_InstantiationDepth;
2282 
2283   if (Trap.hasErrorOccurred())
2284     return Sema::TDK_SubstitutionFailure;
2285 
2286   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2287                                            Deduced, Info);
2288 }
2289 
2290 /// Complete template argument deduction for a variable template partial
2291 /// specialization.
2292 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version.
FinishTemplateArgumentDeduction(Sema & S,VarTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2293 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
2294     Sema &S, VarTemplatePartialSpecializationDecl *Partial,
2295     const TemplateArgumentList &TemplateArgs,
2296     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2297     TemplateDeductionInfo &Info) {
2298   // Unevaluated SFINAE context.
2299   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2300   Sema::SFINAETrap Trap(S);
2301 
2302   // C++ [temp.deduct.type]p2:
2303   //   [...] or if any template argument remains neither deduced nor
2304   //   explicitly specified, template argument deduction fails.
2305   SmallVector<TemplateArgument, 4> Builder;
2306   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2307   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2308     NamedDecl *Param = PartialParams->getParam(I);
2309     if (Deduced[I].isNull()) {
2310       Info.Param = makeTemplateParameter(Param);
2311       return Sema::TDK_Incomplete;
2312     }
2313 
2314     // We have deduced this argument, so it still needs to be
2315     // checked and converted.
2316 
2317     // First, for a non-type template parameter type that is
2318     // initialized by a declaration, we need the type of the
2319     // corresponding non-type template parameter.
2320     QualType NTTPType;
2321     if (NonTypeTemplateParmDecl *NTTP =
2322             dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2323       NTTPType = NTTP->getType();
2324       if (NTTPType->isDependentType()) {
2325         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2326                                           Builder.data(), Builder.size());
2327         NTTPType =
2328             S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
2329                         NTTP->getLocation(), NTTP->getDeclName());
2330         if (NTTPType.isNull()) {
2331           Info.Param = makeTemplateParameter(Param);
2332           // FIXME: These template arguments are temporary. Free them!
2333           Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2334                                                       Builder.size()));
2335           return Sema::TDK_SubstitutionFailure;
2336         }
2337       }
2338     }
2339 
2340     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
2341                                        0, Info, false, Builder)) {
2342       Info.Param = makeTemplateParameter(Param);
2343       // FIXME: These template arguments are temporary. Free them!
2344       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2345                                                   Builder.size()));
2346       return Sema::TDK_SubstitutionFailure;
2347     }
2348   }
2349 
2350   // Form the template argument list from the deduced template arguments.
2351   TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
2352       S.Context, Builder.data(), Builder.size());
2353 
2354   Info.reset(DeducedArgumentList);
2355 
2356   // Substitute the deduced template arguments into the template
2357   // arguments of the class template partial specialization, and
2358   // verify that the instantiated template arguments are both valid
2359   // and are equivalent to the template arguments originally provided
2360   // to the class template.
2361   LocalInstantiationScope InstScope(S);
2362   VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
2363   const TemplateArgumentLoc *PartialTemplateArgs =
2364       Partial->getTemplateArgsAsWritten();
2365 
2366   // Note that we don't provide the langle and rangle locations.
2367   TemplateArgumentListInfo InstArgs;
2368 
2369   if (S.Subst(PartialTemplateArgs, Partial->getNumTemplateArgsAsWritten(),
2370               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2371     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2372     if (ParamIdx >= Partial->getTemplateParameters()->size())
2373       ParamIdx = Partial->getTemplateParameters()->size() - 1;
2374 
2375     Decl *Param = const_cast<NamedDecl *>(
2376         Partial->getTemplateParameters()->getParam(ParamIdx));
2377     Info.Param = makeTemplateParameter(Param);
2378     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2379     return Sema::TDK_SubstitutionFailure;
2380   }
2381   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2382   if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
2383                                   false, ConvertedInstArgs))
2384     return Sema::TDK_SubstitutionFailure;
2385 
2386   TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
2387   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2388     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2389     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2390       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2391       Info.FirstArg = TemplateArgs[I];
2392       Info.SecondArg = InstArg;
2393       return Sema::TDK_NonDeducedMismatch;
2394     }
2395   }
2396 
2397   if (Trap.hasErrorOccurred())
2398     return Sema::TDK_SubstitutionFailure;
2399 
2400   return Sema::TDK_Success;
2401 }
2402 
2403 /// \brief Perform template argument deduction to determine whether
2404 /// the given template arguments match the given variable template
2405 /// partial specialization per C++ [temp.class.spec.match].
2406 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version.
2407 Sema::TemplateDeductionResult
DeduceTemplateArguments(VarTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)2408 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
2409                               const TemplateArgumentList &TemplateArgs,
2410                               TemplateDeductionInfo &Info) {
2411   if (Partial->isInvalidDecl())
2412     return TDK_Invalid;
2413 
2414   // C++ [temp.class.spec.match]p2:
2415   //   A partial specialization matches a given actual template
2416   //   argument list if the template arguments of the partial
2417   //   specialization can be deduced from the actual template argument
2418   //   list (14.8.2).
2419 
2420   // Unevaluated SFINAE context.
2421   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2422   SFINAETrap Trap(*this);
2423 
2424   SmallVector<DeducedTemplateArgument, 4> Deduced;
2425   Deduced.resize(Partial->getTemplateParameters()->size());
2426   if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
2427           *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
2428           TemplateArgs, Info, Deduced))
2429     return Result;
2430 
2431   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2432   InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2433                              DeducedArgs, Info);
2434   if (Inst)
2435     return TDK_InstantiationDepth;
2436 
2437   if (Trap.hasErrorOccurred())
2438     return Sema::TDK_SubstitutionFailure;
2439 
2440   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2441                                            Deduced, Info);
2442 }
2443 
2444 /// \brief Determine whether the given type T is a simple-template-id type.
isSimpleTemplateIdType(QualType T)2445 static bool isSimpleTemplateIdType(QualType T) {
2446   if (const TemplateSpecializationType *Spec
2447         = T->getAs<TemplateSpecializationType>())
2448     return Spec->getTemplateName().getAsTemplateDecl() != 0;
2449 
2450   return false;
2451 }
2452 
2453 /// \brief Substitute the explicitly-provided template arguments into the
2454 /// given function template according to C++ [temp.arg.explicit].
2455 ///
2456 /// \param FunctionTemplate the function template into which the explicit
2457 /// template arguments will be substituted.
2458 ///
2459 /// \param ExplicitTemplateArgs the explicitly-specified template
2460 /// arguments.
2461 ///
2462 /// \param Deduced the deduced template arguments, which will be populated
2463 /// with the converted and checked explicit template arguments.
2464 ///
2465 /// \param ParamTypes will be populated with the instantiated function
2466 /// parameters.
2467 ///
2468 /// \param FunctionType if non-NULL, the result type of the function template
2469 /// will also be instantiated and the pointed-to value will be updated with
2470 /// the instantiated function type.
2471 ///
2472 /// \param Info if substitution fails for any reason, this object will be
2473 /// populated with more information about the failure.
2474 ///
2475 /// \returns TDK_Success if substitution was successful, or some failure
2476 /// condition.
2477 Sema::TemplateDeductionResult
SubstituteExplicitTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo & ExplicitTemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<QualType> & ParamTypes,QualType * FunctionType,TemplateDeductionInfo & Info)2478 Sema::SubstituteExplicitTemplateArguments(
2479                                       FunctionTemplateDecl *FunctionTemplate,
2480                                TemplateArgumentListInfo &ExplicitTemplateArgs,
2481                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2482                                  SmallVectorImpl<QualType> &ParamTypes,
2483                                           QualType *FunctionType,
2484                                           TemplateDeductionInfo &Info) {
2485   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2486   TemplateParameterList *TemplateParams
2487     = FunctionTemplate->getTemplateParameters();
2488 
2489   if (ExplicitTemplateArgs.size() == 0) {
2490     // No arguments to substitute; just copy over the parameter types and
2491     // fill in the function type.
2492     for (FunctionDecl::param_iterator P = Function->param_begin(),
2493                                    PEnd = Function->param_end();
2494          P != PEnd;
2495          ++P)
2496       ParamTypes.push_back((*P)->getType());
2497 
2498     if (FunctionType)
2499       *FunctionType = Function->getType();
2500     return TDK_Success;
2501   }
2502 
2503   // Unevaluated SFINAE context.
2504   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2505   SFINAETrap Trap(*this);
2506 
2507   // C++ [temp.arg.explicit]p3:
2508   //   Template arguments that are present shall be specified in the
2509   //   declaration order of their corresponding template-parameters. The
2510   //   template argument list shall not specify more template-arguments than
2511   //   there are corresponding template-parameters.
2512   SmallVector<TemplateArgument, 4> Builder;
2513 
2514   // Enter a new template instantiation context where we check the
2515   // explicitly-specified template arguments against this function template,
2516   // and then substitute them into the function parameter types.
2517   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2518   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2519                              FunctionTemplate, DeducedArgs,
2520            ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2521                              Info);
2522   if (Inst)
2523     return TDK_InstantiationDepth;
2524 
2525   if (CheckTemplateArgumentList(FunctionTemplate,
2526                                 SourceLocation(),
2527                                 ExplicitTemplateArgs,
2528                                 true,
2529                                 Builder) || Trap.hasErrorOccurred()) {
2530     unsigned Index = Builder.size();
2531     if (Index >= TemplateParams->size())
2532       Index = TemplateParams->size() - 1;
2533     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2534     return TDK_InvalidExplicitArguments;
2535   }
2536 
2537   // Form the template argument list from the explicitly-specified
2538   // template arguments.
2539   TemplateArgumentList *ExplicitArgumentList
2540     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2541   Info.reset(ExplicitArgumentList);
2542 
2543   // Template argument deduction and the final substitution should be
2544   // done in the context of the templated declaration.  Explicit
2545   // argument substitution, on the other hand, needs to happen in the
2546   // calling context.
2547   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2548 
2549   // If we deduced template arguments for a template parameter pack,
2550   // note that the template argument pack is partially substituted and record
2551   // the explicit template arguments. They'll be used as part of deduction
2552   // for this template parameter pack.
2553   for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2554     const TemplateArgument &Arg = Builder[I];
2555     if (Arg.getKind() == TemplateArgument::Pack) {
2556       CurrentInstantiationScope->SetPartiallySubstitutedPack(
2557                                                  TemplateParams->getParam(I),
2558                                                              Arg.pack_begin(),
2559                                                              Arg.pack_size());
2560       break;
2561     }
2562   }
2563 
2564   const FunctionProtoType *Proto
2565     = Function->getType()->getAs<FunctionProtoType>();
2566   assert(Proto && "Function template does not have a prototype?");
2567 
2568   // Instantiate the types of each of the function parameters given the
2569   // explicitly-specified template arguments. If the function has a trailing
2570   // return type, substitute it after the arguments to ensure we substitute
2571   // in lexical order.
2572   if (Proto->hasTrailingReturn()) {
2573     if (SubstParmTypes(Function->getLocation(),
2574                        Function->param_begin(), Function->getNumParams(),
2575                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2576                        ParamTypes))
2577       return TDK_SubstitutionFailure;
2578   }
2579 
2580   // Instantiate the return type.
2581   // FIXME: exception-specifications?
2582   QualType ResultType;
2583   {
2584     // C++11 [expr.prim.general]p3:
2585     //   If a declaration declares a member function or member function
2586     //   template of a class X, the expression this is a prvalue of type
2587     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
2588     //   and the end of the function-definition, member-declarator, or
2589     //   declarator.
2590     unsigned ThisTypeQuals = 0;
2591     CXXRecordDecl *ThisContext = 0;
2592     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2593       ThisContext = Method->getParent();
2594       ThisTypeQuals = Method->getTypeQualifiers();
2595     }
2596 
2597     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
2598                                getLangOpts().CPlusPlus11);
2599 
2600     ResultType = SubstType(Proto->getResultType(),
2601                    MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2602                    Function->getTypeSpecStartLoc(),
2603                    Function->getDeclName());
2604     if (ResultType.isNull() || Trap.hasErrorOccurred())
2605       return TDK_SubstitutionFailure;
2606   }
2607 
2608   // Instantiate the types of each of the function parameters given the
2609   // explicitly-specified template arguments if we didn't do so earlier.
2610   if (!Proto->hasTrailingReturn() &&
2611       SubstParmTypes(Function->getLocation(),
2612                      Function->param_begin(), Function->getNumParams(),
2613                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2614                      ParamTypes))
2615     return TDK_SubstitutionFailure;
2616 
2617   if (FunctionType) {
2618     *FunctionType = BuildFunctionType(ResultType, ParamTypes,
2619                                       Function->getLocation(),
2620                                       Function->getDeclName(),
2621                                       Proto->getExtProtoInfo());
2622     if (FunctionType->isNull() || Trap.hasErrorOccurred())
2623       return TDK_SubstitutionFailure;
2624   }
2625 
2626   // C++ [temp.arg.explicit]p2:
2627   //   Trailing template arguments that can be deduced (14.8.2) may be
2628   //   omitted from the list of explicit template-arguments. If all of the
2629   //   template arguments can be deduced, they may all be omitted; in this
2630   //   case, the empty template argument list <> itself may also be omitted.
2631   //
2632   // Take all of the explicitly-specified arguments and put them into
2633   // the set of deduced template arguments. Explicitly-specified
2634   // parameter packs, however, will be set to NULL since the deduction
2635   // mechanisms handle explicitly-specified argument packs directly.
2636   Deduced.reserve(TemplateParams->size());
2637   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2638     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2639     if (Arg.getKind() == TemplateArgument::Pack)
2640       Deduced.push_back(DeducedTemplateArgument());
2641     else
2642       Deduced.push_back(Arg);
2643   }
2644 
2645   return TDK_Success;
2646 }
2647 
2648 /// \brief Check whether the deduced argument type for a call to a function
2649 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
2650 static bool
CheckOriginalCallArgDeduction(Sema & S,Sema::OriginalCallArg OriginalArg,QualType DeducedA)2651 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2652                               QualType DeducedA) {
2653   ASTContext &Context = S.Context;
2654 
2655   QualType A = OriginalArg.OriginalArgType;
2656   QualType OriginalParamType = OriginalArg.OriginalParamType;
2657 
2658   // Check for type equality (top-level cv-qualifiers are ignored).
2659   if (Context.hasSameUnqualifiedType(A, DeducedA))
2660     return false;
2661 
2662   // Strip off references on the argument types; they aren't needed for
2663   // the following checks.
2664   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2665     DeducedA = DeducedARef->getPointeeType();
2666   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2667     A = ARef->getPointeeType();
2668 
2669   // C++ [temp.deduct.call]p4:
2670   //   [...] However, there are three cases that allow a difference:
2671   //     - If the original P is a reference type, the deduced A (i.e., the
2672   //       type referred to by the reference) can be more cv-qualified than
2673   //       the transformed A.
2674   if (const ReferenceType *OriginalParamRef
2675       = OriginalParamType->getAs<ReferenceType>()) {
2676     // We don't want to keep the reference around any more.
2677     OriginalParamType = OriginalParamRef->getPointeeType();
2678 
2679     Qualifiers AQuals = A.getQualifiers();
2680     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2681 
2682     // Under Objective-C++ ARC, the deduced type may have implicitly been
2683     // given strong lifetime. If so, update the original qualifiers to
2684     // include this strong lifetime.
2685     if (S.getLangOpts().ObjCAutoRefCount &&
2686         DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
2687         AQuals.getObjCLifetime() == Qualifiers::OCL_None) {
2688       AQuals.setObjCLifetime(Qualifiers::OCL_Strong);
2689     }
2690 
2691     if (AQuals == DeducedAQuals) {
2692       // Qualifiers match; there's nothing to do.
2693     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2694       return true;
2695     } else {
2696       // Qualifiers are compatible, so have the argument type adopt the
2697       // deduced argument type's qualifiers as if we had performed the
2698       // qualification conversion.
2699       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2700     }
2701   }
2702 
2703   //    - The transformed A can be another pointer or pointer to member
2704   //      type that can be converted to the deduced A via a qualification
2705   //      conversion.
2706   //
2707   // Also allow conversions which merely strip [[noreturn]] from function types
2708   // (recursively) as an extension.
2709   // FIXME: Currently, this doesn't place nicely with qualfication conversions.
2710   bool ObjCLifetimeConversion = false;
2711   QualType ResultTy;
2712   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2713       (S.IsQualificationConversion(A, DeducedA, false,
2714                                    ObjCLifetimeConversion) ||
2715        S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2716     return false;
2717 
2718 
2719   //    - If P is a class and P has the form simple-template-id, then the
2720   //      transformed A can be a derived class of the deduced A. [...]
2721   //     [...] Likewise, if P is a pointer to a class of the form
2722   //      simple-template-id, the transformed A can be a pointer to a
2723   //      derived class pointed to by the deduced A.
2724   if (const PointerType *OriginalParamPtr
2725       = OriginalParamType->getAs<PointerType>()) {
2726     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2727       if (const PointerType *APtr = A->getAs<PointerType>()) {
2728         if (A->getPointeeType()->isRecordType()) {
2729           OriginalParamType = OriginalParamPtr->getPointeeType();
2730           DeducedA = DeducedAPtr->getPointeeType();
2731           A = APtr->getPointeeType();
2732         }
2733       }
2734     }
2735   }
2736 
2737   if (Context.hasSameUnqualifiedType(A, DeducedA))
2738     return false;
2739 
2740   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2741       S.IsDerivedFrom(A, DeducedA))
2742     return false;
2743 
2744   return true;
2745 }
2746 
2747 /// \brief Finish template argument deduction for a function template,
2748 /// checking the deduced template arguments for completeness and forming
2749 /// the function template specialization.
2750 ///
2751 /// \param OriginalCallArgs If non-NULL, the original call arguments against
2752 /// which the deduced argument types should be compared.
2753 Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(FunctionTemplateDecl * FunctionTemplate,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned NumExplicitlySpecified,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,SmallVectorImpl<OriginalCallArg> const * OriginalCallArgs)2754 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2755                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2756                                       unsigned NumExplicitlySpecified,
2757                                       FunctionDecl *&Specialization,
2758                                       TemplateDeductionInfo &Info,
2759         SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
2760   TemplateParameterList *TemplateParams
2761     = FunctionTemplate->getTemplateParameters();
2762 
2763   // Unevaluated SFINAE context.
2764   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2765   SFINAETrap Trap(*this);
2766 
2767   // Enter a new template instantiation context while we instantiate the
2768   // actual function declaration.
2769   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2770   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2771                              FunctionTemplate, DeducedArgs,
2772               ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2773                              Info);
2774   if (Inst)
2775     return TDK_InstantiationDepth;
2776 
2777   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2778 
2779   // C++ [temp.deduct.type]p2:
2780   //   [...] or if any template argument remains neither deduced nor
2781   //   explicitly specified, template argument deduction fails.
2782   SmallVector<TemplateArgument, 4> Builder;
2783   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2784     NamedDecl *Param = TemplateParams->getParam(I);
2785 
2786     if (!Deduced[I].isNull()) {
2787       if (I < NumExplicitlySpecified) {
2788         // We have already fully type-checked and converted this
2789         // argument, because it was explicitly-specified. Just record the
2790         // presence of this argument.
2791         Builder.push_back(Deduced[I]);
2792         continue;
2793       }
2794 
2795       // We have deduced this argument, so it still needs to be
2796       // checked and converted.
2797 
2798       // First, for a non-type template parameter type that is
2799       // initialized by a declaration, we need the type of the
2800       // corresponding non-type template parameter.
2801       QualType NTTPType;
2802       if (NonTypeTemplateParmDecl *NTTP
2803                                 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2804         NTTPType = NTTP->getType();
2805         if (NTTPType->isDependentType()) {
2806           TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2807                                             Builder.data(), Builder.size());
2808           NTTPType = SubstType(NTTPType,
2809                                MultiLevelTemplateArgumentList(TemplateArgs),
2810                                NTTP->getLocation(),
2811                                NTTP->getDeclName());
2812           if (NTTPType.isNull()) {
2813             Info.Param = makeTemplateParameter(Param);
2814             // FIXME: These template arguments are temporary. Free them!
2815             Info.reset(TemplateArgumentList::CreateCopy(Context,
2816                                                         Builder.data(),
2817                                                         Builder.size()));
2818             return TDK_SubstitutionFailure;
2819           }
2820         }
2821       }
2822 
2823       if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2824                                          FunctionTemplate, NTTPType, 0, Info,
2825                                          true, Builder)) {
2826         Info.Param = makeTemplateParameter(Param);
2827         // FIXME: These template arguments are temporary. Free them!
2828         Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2829                                                     Builder.size()));
2830         return TDK_SubstitutionFailure;
2831       }
2832 
2833       continue;
2834     }
2835 
2836     // C++0x [temp.arg.explicit]p3:
2837     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2838     //    be deduced to an empty sequence of template arguments.
2839     // FIXME: Where did the word "trailing" come from?
2840     if (Param->isTemplateParameterPack()) {
2841       // We may have had explicitly-specified template arguments for this
2842       // template parameter pack. If so, our empty deduction extends the
2843       // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2844       const TemplateArgument *ExplicitArgs;
2845       unsigned NumExplicitArgs;
2846       if (CurrentInstantiationScope &&
2847           CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2848                                                              &NumExplicitArgs)
2849             == Param) {
2850         Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2851 
2852         // Forget the partially-substituted pack; it's substitution is now
2853         // complete.
2854         CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2855       } else {
2856         Builder.push_back(TemplateArgument::getEmptyPack());
2857       }
2858       continue;
2859     }
2860 
2861     // Substitute into the default template argument, if available.
2862     bool HasDefaultArg = false;
2863     TemplateArgumentLoc DefArg
2864       = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2865                                               FunctionTemplate->getLocation(),
2866                                   FunctionTemplate->getSourceRange().getEnd(),
2867                                                 Param,
2868                                                 Builder, HasDefaultArg);
2869 
2870     // If there was no default argument, deduction is incomplete.
2871     if (DefArg.getArgument().isNull()) {
2872       Info.Param = makeTemplateParameter(
2873                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2874       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2875                                                   Builder.size()));
2876       return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
2877     }
2878 
2879     // Check whether we can actually use the default argument.
2880     if (CheckTemplateArgument(Param, DefArg,
2881                               FunctionTemplate,
2882                               FunctionTemplate->getLocation(),
2883                               FunctionTemplate->getSourceRange().getEnd(),
2884                               0, Builder,
2885                               CTAK_Specified)) {
2886       Info.Param = makeTemplateParameter(
2887                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2888       // FIXME: These template arguments are temporary. Free them!
2889       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2890                                                   Builder.size()));
2891       return TDK_SubstitutionFailure;
2892     }
2893 
2894     // If we get here, we successfully used the default template argument.
2895   }
2896 
2897   // Form the template argument list from the deduced template arguments.
2898   TemplateArgumentList *DeducedArgumentList
2899     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2900   Info.reset(DeducedArgumentList);
2901 
2902   // Substitute the deduced template arguments into the function template
2903   // declaration to produce the function template specialization.
2904   DeclContext *Owner = FunctionTemplate->getDeclContext();
2905   if (FunctionTemplate->getFriendObjectKind())
2906     Owner = FunctionTemplate->getLexicalDeclContext();
2907   Specialization = cast_or_null<FunctionDecl>(
2908                       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2909                          MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2910   if (!Specialization || Specialization->isInvalidDecl())
2911     return TDK_SubstitutionFailure;
2912 
2913   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2914          FunctionTemplate->getCanonicalDecl());
2915 
2916   // If the template argument list is owned by the function template
2917   // specialization, release it.
2918   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2919       !Trap.hasErrorOccurred())
2920     Info.take();
2921 
2922   // There may have been an error that did not prevent us from constructing a
2923   // declaration. Mark the declaration invalid and return with a substitution
2924   // failure.
2925   if (Trap.hasErrorOccurred()) {
2926     Specialization->setInvalidDecl(true);
2927     return TDK_SubstitutionFailure;
2928   }
2929 
2930   if (OriginalCallArgs) {
2931     // C++ [temp.deduct.call]p4:
2932     //   In general, the deduction process attempts to find template argument
2933     //   values that will make the deduced A identical to A (after the type A
2934     //   is transformed as described above). [...]
2935     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2936       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2937       unsigned ParamIdx = OriginalArg.ArgIdx;
2938 
2939       if (ParamIdx >= Specialization->getNumParams())
2940         continue;
2941 
2942       QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2943       if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2944         return Sema::TDK_SubstitutionFailure;
2945     }
2946   }
2947 
2948   // If we suppressed any diagnostics while performing template argument
2949   // deduction, and if we haven't already instantiated this declaration,
2950   // keep track of these diagnostics. They'll be emitted if this specialization
2951   // is actually used.
2952   if (Info.diag_begin() != Info.diag_end()) {
2953     SuppressedDiagnosticsMap::iterator
2954       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2955     if (Pos == SuppressedDiagnostics.end())
2956         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2957           .append(Info.diag_begin(), Info.diag_end());
2958   }
2959 
2960   return TDK_Success;
2961 }
2962 
2963 /// Gets the type of a function for template-argument-deducton
2964 /// purposes when it's considered as part of an overload set.
GetTypeOfFunction(Sema & S,const OverloadExpr::FindResult & R,FunctionDecl * Fn)2965 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
2966                                   FunctionDecl *Fn) {
2967   // We may need to deduce the return type of the function now.
2968   if (S.getLangOpts().CPlusPlus1y && Fn->getResultType()->isUndeducedType() &&
2969       S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/false))
2970     return QualType();
2971 
2972   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2973     if (Method->isInstance()) {
2974       // An instance method that's referenced in a form that doesn't
2975       // look like a member pointer is just invalid.
2976       if (!R.HasFormOfMemberPointer) return QualType();
2977 
2978       return S.Context.getMemberPointerType(Fn->getType(),
2979                S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
2980     }
2981 
2982   if (!R.IsAddressOfOperand) return Fn->getType();
2983   return S.Context.getPointerType(Fn->getType());
2984 }
2985 
2986 /// Apply the deduction rules for overload sets.
2987 ///
2988 /// \return the null type if this argument should be treated as an
2989 /// undeduced context
2990 static QualType
ResolveOverloadForDeduction(Sema & S,TemplateParameterList * TemplateParams,Expr * Arg,QualType ParamType,bool ParamWasReference)2991 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2992                             Expr *Arg, QualType ParamType,
2993                             bool ParamWasReference) {
2994 
2995   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2996 
2997   OverloadExpr *Ovl = R.Expression;
2998 
2999   // C++0x [temp.deduct.call]p4
3000   unsigned TDF = 0;
3001   if (ParamWasReference)
3002     TDF |= TDF_ParamWithReferenceType;
3003   if (R.IsAddressOfOperand)
3004     TDF |= TDF_IgnoreQualifiers;
3005 
3006   // C++0x [temp.deduct.call]p6:
3007   //   When P is a function type, pointer to function type, or pointer
3008   //   to member function type:
3009 
3010   if (!ParamType->isFunctionType() &&
3011       !ParamType->isFunctionPointerType() &&
3012       !ParamType->isMemberFunctionPointerType()) {
3013     if (Ovl->hasExplicitTemplateArgs()) {
3014       // But we can still look for an explicit specialization.
3015       if (FunctionDecl *ExplicitSpec
3016             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
3017         return GetTypeOfFunction(S, R, ExplicitSpec);
3018     }
3019 
3020     return QualType();
3021   }
3022 
3023   // Gather the explicit template arguments, if any.
3024   TemplateArgumentListInfo ExplicitTemplateArgs;
3025   if (Ovl->hasExplicitTemplateArgs())
3026     Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
3027   QualType Match;
3028   for (UnresolvedSetIterator I = Ovl->decls_begin(),
3029          E = Ovl->decls_end(); I != E; ++I) {
3030     NamedDecl *D = (*I)->getUnderlyingDecl();
3031 
3032     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
3033       //   - If the argument is an overload set containing one or more
3034       //     function templates, the parameter is treated as a
3035       //     non-deduced context.
3036       if (!Ovl->hasExplicitTemplateArgs())
3037         return QualType();
3038 
3039       // Otherwise, see if we can resolve a function type
3040       FunctionDecl *Specialization = 0;
3041       TemplateDeductionInfo Info(Ovl->getNameLoc());
3042       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
3043                                     Specialization, Info))
3044         continue;
3045 
3046       D = Specialization;
3047     }
3048 
3049     FunctionDecl *Fn = cast<FunctionDecl>(D);
3050     QualType ArgType = GetTypeOfFunction(S, R, Fn);
3051     if (ArgType.isNull()) continue;
3052 
3053     // Function-to-pointer conversion.
3054     if (!ParamWasReference && ParamType->isPointerType() &&
3055         ArgType->isFunctionType())
3056       ArgType = S.Context.getPointerType(ArgType);
3057 
3058     //   - If the argument is an overload set (not containing function
3059     //     templates), trial argument deduction is attempted using each
3060     //     of the members of the set. If deduction succeeds for only one
3061     //     of the overload set members, that member is used as the
3062     //     argument value for the deduction. If deduction succeeds for
3063     //     more than one member of the overload set the parameter is
3064     //     treated as a non-deduced context.
3065 
3066     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
3067     //   Type deduction is done independently for each P/A pair, and
3068     //   the deduced template argument values are then combined.
3069     // So we do not reject deductions which were made elsewhere.
3070     SmallVector<DeducedTemplateArgument, 8>
3071       Deduced(TemplateParams->size());
3072     TemplateDeductionInfo Info(Ovl->getNameLoc());
3073     Sema::TemplateDeductionResult Result
3074       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3075                                            ArgType, Info, Deduced, TDF);
3076     if (Result) continue;
3077     if (!Match.isNull()) return QualType();
3078     Match = ArgType;
3079   }
3080 
3081   return Match;
3082 }
3083 
3084 /// \brief Perform the adjustments to the parameter and argument types
3085 /// described in C++ [temp.deduct.call].
3086 ///
3087 /// \returns true if the caller should not attempt to perform any template
3088 /// argument deduction based on this P/A pair because the argument is an
3089 /// overloaded function set that could not be resolved.
AdjustFunctionParmAndArgTypesForDeduction(Sema & S,TemplateParameterList * TemplateParams,QualType & ParamType,QualType & ArgType,Expr * Arg,unsigned & TDF)3090 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
3091                                           TemplateParameterList *TemplateParams,
3092                                                       QualType &ParamType,
3093                                                       QualType &ArgType,
3094                                                       Expr *Arg,
3095                                                       unsigned &TDF) {
3096   // C++0x [temp.deduct.call]p3:
3097   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
3098   //   are ignored for type deduction.
3099   if (ParamType.hasQualifiers())
3100     ParamType = ParamType.getUnqualifiedType();
3101   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
3102   if (ParamRefType) {
3103     QualType PointeeType = ParamRefType->getPointeeType();
3104 
3105     // If the argument has incomplete array type, try to complete its type.
3106     if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
3107       ArgType = Arg->getType();
3108 
3109     //   [C++0x] If P is an rvalue reference to a cv-unqualified
3110     //   template parameter and the argument is an lvalue, the type
3111     //   "lvalue reference to A" is used in place of A for type
3112     //   deduction.
3113     if (isa<RValueReferenceType>(ParamType)) {
3114       if (!PointeeType.getQualifiers() &&
3115           isa<TemplateTypeParmType>(PointeeType) &&
3116           Arg->Classify(S.Context).isLValue() &&
3117           Arg->getType() != S.Context.OverloadTy &&
3118           Arg->getType() != S.Context.BoundMemberTy)
3119         ArgType = S.Context.getLValueReferenceType(ArgType);
3120     }
3121 
3122     //   [...] If P is a reference type, the type referred to by P is used
3123     //   for type deduction.
3124     ParamType = PointeeType;
3125   }
3126 
3127   // Overload sets usually make this parameter an undeduced
3128   // context, but there are sometimes special circumstances.
3129   if (ArgType == S.Context.OverloadTy) {
3130     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
3131                                           Arg, ParamType,
3132                                           ParamRefType != 0);
3133     if (ArgType.isNull())
3134       return true;
3135   }
3136 
3137   if (ParamRefType) {
3138     // C++0x [temp.deduct.call]p3:
3139     //   [...] If P is of the form T&&, where T is a template parameter, and
3140     //   the argument is an lvalue, the type A& is used in place of A for
3141     //   type deduction.
3142     if (ParamRefType->isRValueReferenceType() &&
3143         ParamRefType->getAs<TemplateTypeParmType>() &&
3144         Arg->isLValue())
3145       ArgType = S.Context.getLValueReferenceType(ArgType);
3146   } else {
3147     // C++ [temp.deduct.call]p2:
3148     //   If P is not a reference type:
3149     //   - If A is an array type, the pointer type produced by the
3150     //     array-to-pointer standard conversion (4.2) is used in place of
3151     //     A for type deduction; otherwise,
3152     if (ArgType->isArrayType())
3153       ArgType = S.Context.getArrayDecayedType(ArgType);
3154     //   - If A is a function type, the pointer type produced by the
3155     //     function-to-pointer standard conversion (4.3) is used in place
3156     //     of A for type deduction; otherwise,
3157     else if (ArgType->isFunctionType())
3158       ArgType = S.Context.getPointerType(ArgType);
3159     else {
3160       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3161       //   type are ignored for type deduction.
3162       ArgType = ArgType.getUnqualifiedType();
3163     }
3164   }
3165 
3166   // C++0x [temp.deduct.call]p4:
3167   //   In general, the deduction process attempts to find template argument
3168   //   values that will make the deduced A identical to A (after the type A
3169   //   is transformed as described above). [...]
3170   TDF = TDF_SkipNonDependent;
3171 
3172   //     - If the original P is a reference type, the deduced A (i.e., the
3173   //       type referred to by the reference) can be more cv-qualified than
3174   //       the transformed A.
3175   if (ParamRefType)
3176     TDF |= TDF_ParamWithReferenceType;
3177   //     - The transformed A can be another pointer or pointer to member
3178   //       type that can be converted to the deduced A via a qualification
3179   //       conversion (4.4).
3180   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3181       ArgType->isObjCObjectPointerType())
3182     TDF |= TDF_IgnoreQualifiers;
3183   //     - If P is a class and P has the form simple-template-id, then the
3184   //       transformed A can be a derived class of the deduced A. Likewise,
3185   //       if P is a pointer to a class of the form simple-template-id, the
3186   //       transformed A can be a pointer to a derived class pointed to by
3187   //       the deduced A.
3188   if (isSimpleTemplateIdType(ParamType) ||
3189       (isa<PointerType>(ParamType) &&
3190        isSimpleTemplateIdType(
3191                               ParamType->getAs<PointerType>()->getPointeeType())))
3192     TDF |= TDF_DerivedClass;
3193 
3194   return false;
3195 }
3196 
3197 static bool hasDeducibleTemplateParameters(Sema &S,
3198                                            FunctionTemplateDecl *FunctionTemplate,
3199                                            QualType T);
3200 
3201 /// \brief Perform template argument deduction by matching a parameter type
3202 ///        against a single expression, where the expression is an element of
3203 ///        an initializer list that was originally matched against a parameter
3204 ///        of type \c initializer_list\<ParamType\>.
3205 static Sema::TemplateDeductionResult
DeduceTemplateArgumentByListElement(Sema & S,TemplateParameterList * TemplateParams,QualType ParamType,Expr * Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF)3206 DeduceTemplateArgumentByListElement(Sema &S,
3207                                     TemplateParameterList *TemplateParams,
3208                                     QualType ParamType, Expr *Arg,
3209                                     TemplateDeductionInfo &Info,
3210                               SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3211                                     unsigned TDF) {
3212   // Handle the case where an init list contains another init list as the
3213   // element.
3214   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3215     QualType X;
3216     if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
3217       return Sema::TDK_Success; // Just ignore this expression.
3218 
3219     // Recurse down into the init list.
3220     for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3221       if (Sema::TemplateDeductionResult Result =
3222             DeduceTemplateArgumentByListElement(S, TemplateParams, X,
3223                                                  ILE->getInit(i),
3224                                                  Info, Deduced, TDF))
3225         return Result;
3226     }
3227     return Sema::TDK_Success;
3228   }
3229 
3230   // For all other cases, just match by type.
3231   QualType ArgType = Arg->getType();
3232   if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
3233                                                 ArgType, Arg, TDF)) {
3234     Info.Expression = Arg;
3235     return Sema::TDK_FailedOverloadResolution;
3236   }
3237   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3238                                             ArgType, Info, Deduced, TDF);
3239 }
3240 
3241 /// \brief Perform template argument deduction from a function call
3242 /// (C++ [temp.deduct.call]).
3243 ///
3244 /// \param FunctionTemplate the function template for which we are performing
3245 /// template argument deduction.
3246 ///
3247 /// \param ExplicitTemplateArgs the explicit template arguments provided
3248 /// for this call.
3249 ///
3250 /// \param Args the function call arguments
3251 ///
3252 /// \param Specialization if template argument deduction was successful,
3253 /// this will be set to the function template specialization produced by
3254 /// template argument deduction.
3255 ///
3256 /// \param Info the argument will be updated to provide additional information
3257 /// about template argument deduction.
3258 ///
3259 /// \returns the result of template argument deduction.
3260 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)3261 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3262                               TemplateArgumentListInfo *ExplicitTemplateArgs,
3263                               llvm::ArrayRef<Expr *> Args,
3264                               FunctionDecl *&Specialization,
3265                               TemplateDeductionInfo &Info) {
3266   if (FunctionTemplate->isInvalidDecl())
3267     return TDK_Invalid;
3268 
3269   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3270 
3271   // C++ [temp.deduct.call]p1:
3272   //   Template argument deduction is done by comparing each function template
3273   //   parameter type (call it P) with the type of the corresponding argument
3274   //   of the call (call it A) as described below.
3275   unsigned CheckArgs = Args.size();
3276   if (Args.size() < Function->getMinRequiredArguments())
3277     return TDK_TooFewArguments;
3278   else if (Args.size() > Function->getNumParams()) {
3279     const FunctionProtoType *Proto
3280       = Function->getType()->getAs<FunctionProtoType>();
3281     if (Proto->isTemplateVariadic())
3282       /* Do nothing */;
3283     else if (Proto->isVariadic())
3284       CheckArgs = Function->getNumParams();
3285     else
3286       return TDK_TooManyArguments;
3287   }
3288 
3289   // The types of the parameters from which we will perform template argument
3290   // deduction.
3291   LocalInstantiationScope InstScope(*this);
3292   TemplateParameterList *TemplateParams
3293     = FunctionTemplate->getTemplateParameters();
3294   SmallVector<DeducedTemplateArgument, 4> Deduced;
3295   SmallVector<QualType, 4> ParamTypes;
3296   unsigned NumExplicitlySpecified = 0;
3297   if (ExplicitTemplateArgs) {
3298     TemplateDeductionResult Result =
3299       SubstituteExplicitTemplateArguments(FunctionTemplate,
3300                                           *ExplicitTemplateArgs,
3301                                           Deduced,
3302                                           ParamTypes,
3303                                           0,
3304                                           Info);
3305     if (Result)
3306       return Result;
3307 
3308     NumExplicitlySpecified = Deduced.size();
3309   } else {
3310     // Just fill in the parameter types from the function declaration.
3311     for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3312       ParamTypes.push_back(Function->getParamDecl(I)->getType());
3313   }
3314 
3315   // Deduce template arguments from the function parameters.
3316   Deduced.resize(TemplateParams->size());
3317   unsigned ArgIdx = 0;
3318   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
3319   for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
3320        ParamIdx != NumParams; ++ParamIdx) {
3321     QualType OrigParamType = ParamTypes[ParamIdx];
3322     QualType ParamType = OrigParamType;
3323 
3324     const PackExpansionType *ParamExpansion
3325       = dyn_cast<PackExpansionType>(ParamType);
3326     if (!ParamExpansion) {
3327       // Simple case: matching a function parameter to a function argument.
3328       if (ArgIdx >= CheckArgs)
3329         break;
3330 
3331       Expr *Arg = Args[ArgIdx++];
3332       QualType ArgType = Arg->getType();
3333 
3334       unsigned TDF = 0;
3335       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3336                                                     ParamType, ArgType, Arg,
3337                                                     TDF))
3338         continue;
3339 
3340       // If we have nothing to deduce, we're done.
3341       if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3342         continue;
3343 
3344       // If the argument is an initializer list ...
3345       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3346         // ... then the parameter is an undeduced context, unless the parameter
3347         // type is (reference to cv) std::initializer_list<P'>, in which case
3348         // deduction is done for each element of the initializer list, and the
3349         // result is the deduced type if it's the same for all elements.
3350         QualType X;
3351         // Removing references was already done.
3352         if (!isStdInitializerList(ParamType, &X))
3353           continue;
3354 
3355         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3356           if (TemplateDeductionResult Result =
3357                 DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
3358                                                      ILE->getInit(i),
3359                                                      Info, Deduced, TDF))
3360             return Result;
3361         }
3362         // Don't track the argument type, since an initializer list has none.
3363         continue;
3364       }
3365 
3366       // Keep track of the argument type and corresponding parameter index,
3367       // so we can check for compatibility between the deduced A and A.
3368       OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
3369                                                  ArgType));
3370 
3371       if (TemplateDeductionResult Result
3372             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3373                                                  ParamType, ArgType,
3374                                                  Info, Deduced, TDF))
3375         return Result;
3376 
3377       continue;
3378     }
3379 
3380     // C++0x [temp.deduct.call]p1:
3381     //   For a function parameter pack that occurs at the end of the
3382     //   parameter-declaration-list, the type A of each remaining argument of
3383     //   the call is compared with the type P of the declarator-id of the
3384     //   function parameter pack. Each comparison deduces template arguments
3385     //   for subsequent positions in the template parameter packs expanded by
3386     //   the function parameter pack. For a function parameter pack that does
3387     //   not occur at the end of the parameter-declaration-list, the type of
3388     //   the parameter pack is a non-deduced context.
3389     if (ParamIdx + 1 < NumParams)
3390       break;
3391 
3392     QualType ParamPattern = ParamExpansion->getPattern();
3393     SmallVector<unsigned, 2> PackIndices;
3394     {
3395       llvm::SmallBitVector SawIndices(TemplateParams->size());
3396       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3397       collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
3398       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
3399         unsigned Depth, Index;
3400         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
3401         if (Depth == 0 && !SawIndices[Index]) {
3402           SawIndices[Index] = true;
3403           PackIndices.push_back(Index);
3404         }
3405       }
3406     }
3407     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
3408 
3409     // Keep track of the deduced template arguments for each parameter pack
3410     // expanded by this pack expansion (the outer index) and for each
3411     // template argument (the inner SmallVectors).
3412     NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
3413     SmallVector<DeducedTemplateArgument, 2>
3414       SavedPacks(PackIndices.size());
3415     PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
3416                                  NewlyDeducedPacks);
3417     bool HasAnyArguments = false;
3418     for (; ArgIdx < Args.size(); ++ArgIdx) {
3419       HasAnyArguments = true;
3420 
3421       QualType OrigParamType = ParamPattern;
3422       ParamType = OrigParamType;
3423       Expr *Arg = Args[ArgIdx];
3424       QualType ArgType = Arg->getType();
3425 
3426       unsigned TDF = 0;
3427       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3428                                                     ParamType, ArgType, Arg,
3429                                                     TDF)) {
3430         // We can't actually perform any deduction for this argument, so stop
3431         // deduction at this point.
3432         ++ArgIdx;
3433         break;
3434       }
3435 
3436       // As above, initializer lists need special handling.
3437       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3438         QualType X;
3439         if (!isStdInitializerList(ParamType, &X)) {
3440           ++ArgIdx;
3441           break;
3442         }
3443 
3444         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3445           if (TemplateDeductionResult Result =
3446                 DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
3447                                                    ILE->getInit(i)->getType(),
3448                                                    Info, Deduced, TDF))
3449             return Result;
3450         }
3451       } else {
3452 
3453         // Keep track of the argument type and corresponding argument index,
3454         // so we can check for compatibility between the deduced A and A.
3455         if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3456           OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3457                                                      ArgType));
3458 
3459         if (TemplateDeductionResult Result
3460             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3461                                                  ParamType, ArgType, Info,
3462                                                  Deduced, TDF))
3463           return Result;
3464       }
3465 
3466       // Capture the deduced template arguments for each parameter pack expanded
3467       // by this pack expansion, add them to the list of arguments we've deduced
3468       // for that pack, then clear out the deduced argument.
3469       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
3470         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
3471         if (!DeducedArg.isNull()) {
3472           NewlyDeducedPacks[I].push_back(DeducedArg);
3473           DeducedArg = DeducedTemplateArgument();
3474         }
3475       }
3476     }
3477 
3478     // Build argument packs for each of the parameter packs expanded by this
3479     // pack expansion.
3480     if (Sema::TemplateDeductionResult Result
3481           = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
3482                                         Deduced, PackIndices, SavedPacks,
3483                                         NewlyDeducedPacks, Info))
3484       return Result;
3485 
3486     // After we've matching against a parameter pack, we're done.
3487     break;
3488   }
3489 
3490   return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3491                                          NumExplicitlySpecified,
3492                                          Specialization, Info, &OriginalCallArgs);
3493 }
3494 
3495 /// \brief Deduce template arguments when taking the address of a function
3496 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3497 /// a template.
3498 ///
3499 /// \param FunctionTemplate the function template for which we are performing
3500 /// template argument deduction.
3501 ///
3502 /// \param ExplicitTemplateArgs the explicitly-specified template
3503 /// arguments.
3504 ///
3505 /// \param ArgFunctionType the function type that will be used as the
3506 /// "argument" type (A) when performing template argument deduction from the
3507 /// function template's function type. This type may be NULL, if there is no
3508 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3509 ///
3510 /// \param Specialization if template argument deduction was successful,
3511 /// this will be set to the function template specialization produced by
3512 /// template argument deduction.
3513 ///
3514 /// \param Info the argument will be updated to provide additional information
3515 /// about template argument deduction.
3516 ///
3517 /// \returns the result of template argument deduction.
3518 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ArgFunctionType,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool InOverloadResolution)3519 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3520                               TemplateArgumentListInfo *ExplicitTemplateArgs,
3521                               QualType ArgFunctionType,
3522                               FunctionDecl *&Specialization,
3523                               TemplateDeductionInfo &Info,
3524                               bool InOverloadResolution) {
3525   if (FunctionTemplate->isInvalidDecl())
3526     return TDK_Invalid;
3527 
3528   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3529   TemplateParameterList *TemplateParams
3530     = FunctionTemplate->getTemplateParameters();
3531   QualType FunctionType = Function->getType();
3532 
3533   // Substitute any explicit template arguments.
3534   LocalInstantiationScope InstScope(*this);
3535   SmallVector<DeducedTemplateArgument, 4> Deduced;
3536   unsigned NumExplicitlySpecified = 0;
3537   SmallVector<QualType, 4> ParamTypes;
3538   if (ExplicitTemplateArgs) {
3539     if (TemplateDeductionResult Result
3540           = SubstituteExplicitTemplateArguments(FunctionTemplate,
3541                                                 *ExplicitTemplateArgs,
3542                                                 Deduced, ParamTypes,
3543                                                 &FunctionType, Info))
3544       return Result;
3545 
3546     NumExplicitlySpecified = Deduced.size();
3547   }
3548 
3549   // Unevaluated SFINAE context.
3550   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3551   SFINAETrap Trap(*this);
3552 
3553   Deduced.resize(TemplateParams->size());
3554 
3555   // If the function has a deduced return type, substitute it for a dependent
3556   // type so that we treat it as a non-deduced context in what follows.
3557   bool HasUndeducedReturnType = false;
3558   if (getLangOpts().CPlusPlus1y && InOverloadResolution &&
3559       Function->getResultType()->isUndeducedType()) {
3560     FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
3561     HasUndeducedReturnType = true;
3562   }
3563 
3564   if (!ArgFunctionType.isNull()) {
3565     unsigned TDF = TDF_TopLevelParameterTypeList;
3566     if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
3567     // Deduce template arguments from the function type.
3568     if (TemplateDeductionResult Result
3569           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3570                                                FunctionType, ArgFunctionType,
3571                                                Info, Deduced, TDF))
3572       return Result;
3573   }
3574 
3575   if (TemplateDeductionResult Result
3576         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3577                                           NumExplicitlySpecified,
3578                                           Specialization, Info))
3579     return Result;
3580 
3581   // If the function has a deduced return type, deduce it now, so we can check
3582   // that the deduced function type matches the requested type.
3583   if (HasUndeducedReturnType &&
3584       Specialization->getResultType()->isUndeducedType() &&
3585       DeduceReturnType(Specialization, Info.getLocation(), false))
3586     return TDK_MiscellaneousDeductionFailure;
3587 
3588   // If the requested function type does not match the actual type of the
3589   // specialization with respect to arguments of compatible pointer to function
3590   // types, template argument deduction fails.
3591   if (!ArgFunctionType.isNull()) {
3592     if (InOverloadResolution && !isSameOrCompatibleFunctionType(
3593                            Context.getCanonicalType(Specialization->getType()),
3594                            Context.getCanonicalType(ArgFunctionType)))
3595       return TDK_MiscellaneousDeductionFailure;
3596     else if(!InOverloadResolution &&
3597             !Context.hasSameType(Specialization->getType(), ArgFunctionType))
3598       return TDK_MiscellaneousDeductionFailure;
3599   }
3600 
3601   return TDK_Success;
3602 }
3603 
3604 /// \brief Deduce template arguments for a templated conversion
3605 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
3606 /// conversion function template specialization.
3607 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,QualType ToType,CXXConversionDecl * & Specialization,TemplateDeductionInfo & Info)3608 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3609                               QualType ToType,
3610                               CXXConversionDecl *&Specialization,
3611                               TemplateDeductionInfo &Info) {
3612   if (FunctionTemplate->isInvalidDecl())
3613     return TDK_Invalid;
3614 
3615   CXXConversionDecl *Conv
3616     = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
3617   QualType FromType = Conv->getConversionType();
3618 
3619   // Canonicalize the types for deduction.
3620   QualType P = Context.getCanonicalType(FromType);
3621   QualType A = Context.getCanonicalType(ToType);
3622 
3623   // C++0x [temp.deduct.conv]p2:
3624   //   If P is a reference type, the type referred to by P is used for
3625   //   type deduction.
3626   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3627     P = PRef->getPointeeType();
3628 
3629   // C++0x [temp.deduct.conv]p4:
3630   //   [...] If A is a reference type, the type referred to by A is used
3631   //   for type deduction.
3632   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3633     A = ARef->getPointeeType().getUnqualifiedType();
3634   // C++ [temp.deduct.conv]p3:
3635   //
3636   //   If A is not a reference type:
3637   else {
3638     assert(!A->isReferenceType() && "Reference types were handled above");
3639 
3640     //   - If P is an array type, the pointer type produced by the
3641     //     array-to-pointer standard conversion (4.2) is used in place
3642     //     of P for type deduction; otherwise,
3643     if (P->isArrayType())
3644       P = Context.getArrayDecayedType(P);
3645     //   - If P is a function type, the pointer type produced by the
3646     //     function-to-pointer standard conversion (4.3) is used in
3647     //     place of P for type deduction; otherwise,
3648     else if (P->isFunctionType())
3649       P = Context.getPointerType(P);
3650     //   - If P is a cv-qualified type, the top level cv-qualifiers of
3651     //     P's type are ignored for type deduction.
3652     else
3653       P = P.getUnqualifiedType();
3654 
3655     // C++0x [temp.deduct.conv]p4:
3656     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
3657     //   type are ignored for type deduction. If A is a reference type, the type
3658     //   referred to by A is used for type deduction.
3659     A = A.getUnqualifiedType();
3660   }
3661 
3662   // Unevaluated SFINAE context.
3663   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3664   SFINAETrap Trap(*this);
3665 
3666   // C++ [temp.deduct.conv]p1:
3667   //   Template argument deduction is done by comparing the return
3668   //   type of the template conversion function (call it P) with the
3669   //   type that is required as the result of the conversion (call it
3670   //   A) as described in 14.8.2.4.
3671   TemplateParameterList *TemplateParams
3672     = FunctionTemplate->getTemplateParameters();
3673   SmallVector<DeducedTemplateArgument, 4> Deduced;
3674   Deduced.resize(TemplateParams->size());
3675 
3676   // C++0x [temp.deduct.conv]p4:
3677   //   In general, the deduction process attempts to find template
3678   //   argument values that will make the deduced A identical to
3679   //   A. However, there are two cases that allow a difference:
3680   unsigned TDF = 0;
3681   //     - If the original A is a reference type, A can be more
3682   //       cv-qualified than the deduced A (i.e., the type referred to
3683   //       by the reference)
3684   if (ToType->isReferenceType())
3685     TDF |= TDF_ParamWithReferenceType;
3686   //     - The deduced A can be another pointer or pointer to member
3687   //       type that can be converted to A via a qualification
3688   //       conversion.
3689   //
3690   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3691   // both P and A are pointers or member pointers. In this case, we
3692   // just ignore cv-qualifiers completely).
3693   if ((P->isPointerType() && A->isPointerType()) ||
3694       (P->isMemberPointerType() && A->isMemberPointerType()))
3695     TDF |= TDF_IgnoreQualifiers;
3696   if (TemplateDeductionResult Result
3697         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3698                                              P, A, Info, Deduced, TDF))
3699     return Result;
3700 
3701   // Finish template argument deduction.
3702   LocalInstantiationScope InstScope(*this);
3703   FunctionDecl *Spec = 0;
3704   TemplateDeductionResult Result
3705     = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
3706                                       Info);
3707   Specialization = cast_or_null<CXXConversionDecl>(Spec);
3708   return Result;
3709 }
3710 
3711 /// \brief Deduce template arguments for a function template when there is
3712 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3713 ///
3714 /// \param FunctionTemplate the function template for which we are performing
3715 /// template argument deduction.
3716 ///
3717 /// \param ExplicitTemplateArgs the explicitly-specified template
3718 /// arguments.
3719 ///
3720 /// \param Specialization if template argument deduction was successful,
3721 /// this will be set to the function template specialization produced by
3722 /// template argument deduction.
3723 ///
3724 /// \param Info the argument will be updated to provide additional information
3725 /// about template argument deduction.
3726 ///
3727 /// \returns the result of template argument deduction.
3728 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool InOverloadResolution)3729 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3730                               TemplateArgumentListInfo *ExplicitTemplateArgs,
3731                               FunctionDecl *&Specialization,
3732                               TemplateDeductionInfo &Info,
3733                               bool InOverloadResolution) {
3734   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3735                                  QualType(), Specialization, Info,
3736                                  InOverloadResolution);
3737 }
3738 
3739 namespace {
3740   /// Substitute the 'auto' type specifier within a type for a given replacement
3741   /// type.
3742   class SubstituteAutoTransform :
3743     public TreeTransform<SubstituteAutoTransform> {
3744     QualType Replacement;
3745   public:
SubstituteAutoTransform(Sema & SemaRef,QualType Replacement)3746     SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
3747       TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
3748     }
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)3749     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3750       // If we're building the type pattern to deduce against, don't wrap the
3751       // substituted type in an AutoType. Certain template deduction rules
3752       // apply only when a template type parameter appears directly (and not if
3753       // the parameter is found through desugaring). For instance:
3754       //   auto &&lref = lvalue;
3755       // must transform into "rvalue reference to T" not "rvalue reference to
3756       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3757       if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
3758         QualType Result = Replacement;
3759         TemplateTypeParmTypeLoc NewTL =
3760           TLB.push<TemplateTypeParmTypeLoc>(Result);
3761         NewTL.setNameLoc(TL.getNameLoc());
3762         return Result;
3763       } else {
3764         bool Dependent =
3765           !Replacement.isNull() && Replacement->isDependentType();
3766         QualType Result =
3767           SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
3768                                       TL.getTypePtr()->isDecltypeAuto(),
3769                                       Dependent);
3770         AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3771         NewTL.setNameLoc(TL.getNameLoc());
3772         return Result;
3773       }
3774     }
3775 
TransformLambdaExpr(LambdaExpr * E)3776     ExprResult TransformLambdaExpr(LambdaExpr *E) {
3777       // Lambdas never need to be transformed.
3778       return E;
3779     }
3780 
Apply(TypeLoc TL)3781     QualType Apply(TypeLoc TL) {
3782       // Create some scratch storage for the transformed type locations.
3783       // FIXME: We're just going to throw this information away. Don't build it.
3784       TypeLocBuilder TLB;
3785       TLB.reserve(TL.getFullDataSize());
3786       return TransformType(TLB, TL);
3787     }
3788   };
3789 }
3790 
3791 Sema::DeduceAutoResult
DeduceAutoType(TypeSourceInfo * Type,Expr * & Init,QualType & Result)3792 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
3793   return DeduceAutoType(Type->getTypeLoc(), Init, Result);
3794 }
3795 
3796 /// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
3797 ///
3798 /// \param Type the type pattern using the auto type-specifier.
3799 /// \param Init the initializer for the variable whose type is to be deduced.
3800 /// \param Result if type deduction was successful, this will be set to the
3801 ///        deduced type.
3802 Sema::DeduceAutoResult
DeduceAutoType(TypeLoc Type,Expr * & Init,QualType & Result)3803 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
3804   if (Init->getType()->isNonOverloadPlaceholderType()) {
3805     ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
3806     if (NonPlaceholder.isInvalid())
3807       return DAR_FailedAlreadyDiagnosed;
3808     Init = NonPlaceholder.take();
3809   }
3810 
3811   if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
3812     Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
3813     assert(!Result.isNull() && "substituting DependentTy can't fail");
3814     return DAR_Succeeded;
3815   }
3816 
3817   // If this is a 'decltype(auto)' specifier, do the decltype dance.
3818   // Since 'decltype(auto)' can only occur at the top of the type, we
3819   // don't need to go digging for it.
3820   if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
3821     if (AT->isDecltypeAuto()) {
3822       if (isa<InitListExpr>(Init)) {
3823         Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
3824         return DAR_FailedAlreadyDiagnosed;
3825       }
3826 
3827       QualType Deduced = BuildDecltypeType(Init, Init->getLocStart());
3828       // FIXME: Support a non-canonical deduced type for 'auto'.
3829       Deduced = Context.getCanonicalType(Deduced);
3830       Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
3831       if (Result.isNull())
3832         return DAR_FailedAlreadyDiagnosed;
3833       return DAR_Succeeded;
3834     }
3835   }
3836 
3837   SourceLocation Loc = Init->getExprLoc();
3838 
3839   LocalInstantiationScope InstScope(*this);
3840 
3841   // Build template<class TemplParam> void Func(FuncParam);
3842   TemplateTypeParmDecl *TemplParam =
3843     TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
3844                                  false, false);
3845   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
3846   NamedDecl *TemplParamPtr = TemplParam;
3847   FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
3848                                                    Loc);
3849 
3850   QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
3851   assert(!FuncParam.isNull() &&
3852          "substituting template parameter for 'auto' failed");
3853 
3854   // Deduce type of TemplParam in Func(Init)
3855   SmallVector<DeducedTemplateArgument, 1> Deduced;
3856   Deduced.resize(1);
3857   QualType InitType = Init->getType();
3858   unsigned TDF = 0;
3859 
3860   TemplateDeductionInfo Info(Loc);
3861 
3862   InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
3863   if (InitList) {
3864     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
3865       if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
3866                                               TemplArg,
3867                                               InitList->getInit(i),
3868                                               Info, Deduced, TDF))
3869         return DAR_Failed;
3870     }
3871   } else {
3872     if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
3873                                                   FuncParam, InitType, Init,
3874                                                   TDF))
3875       return DAR_Failed;
3876 
3877     if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
3878                                            InitType, Info, Deduced, TDF))
3879       return DAR_Failed;
3880   }
3881 
3882   if (Deduced[0].getKind() != TemplateArgument::Type)
3883     return DAR_Failed;
3884 
3885   QualType DeducedType = Deduced[0].getAsType();
3886 
3887   if (InitList) {
3888     DeducedType = BuildStdInitializerList(DeducedType, Loc);
3889     if (DeducedType.isNull())
3890       return DAR_FailedAlreadyDiagnosed;
3891   }
3892 
3893   Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
3894   if (Result.isNull())
3895    return DAR_FailedAlreadyDiagnosed;
3896 
3897   // Check that the deduced argument type is compatible with the original
3898   // argument type per C++ [temp.deduct.call]p4.
3899   if (!InitList && !Result.isNull() &&
3900       CheckOriginalCallArgDeduction(*this,
3901                                     Sema::OriginalCallArg(FuncParam,0,InitType),
3902                                     Result)) {
3903     Result = QualType();
3904     return DAR_Failed;
3905   }
3906 
3907   return DAR_Succeeded;
3908 }
3909 
SubstAutoType(QualType Type,QualType Deduced)3910 QualType Sema::SubstAutoType(QualType Type, QualType Deduced) {
3911   return SubstituteAutoTransform(*this, Deduced).TransformType(Type);
3912 }
3913 
DiagnoseAutoDeductionFailure(VarDecl * VDecl,Expr * Init)3914 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
3915   if (isa<InitListExpr>(Init))
3916     Diag(VDecl->getLocation(),
3917          diag::err_auto_var_deduction_failure_from_init_list)
3918       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
3919   else
3920     Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
3921       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
3922       << Init->getSourceRange();
3923 }
3924 
DeduceReturnType(FunctionDecl * FD,SourceLocation Loc,bool Diagnose)3925 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
3926                             bool Diagnose) {
3927   assert(FD->getResultType()->isUndeducedType());
3928 
3929   if (FD->getTemplateInstantiationPattern())
3930     InstantiateFunctionDefinition(Loc, FD);
3931 
3932   bool StillUndeduced = FD->getResultType()->isUndeducedType();
3933   if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
3934     Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
3935     Diag(FD->getLocation(), diag::note_callee_decl) << FD;
3936   }
3937 
3938   return StillUndeduced;
3939 }
3940 
3941 static void
3942 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
3943                            bool OnlyDeduced,
3944                            unsigned Level,
3945                            llvm::SmallBitVector &Deduced);
3946 
3947 /// \brief If this is a non-static member function,
3948 static void
AddImplicitObjectParameterType(ASTContext & Context,CXXMethodDecl * Method,SmallVectorImpl<QualType> & ArgTypes)3949 AddImplicitObjectParameterType(ASTContext &Context,
3950                                CXXMethodDecl *Method,
3951                                SmallVectorImpl<QualType> &ArgTypes) {
3952   // C++11 [temp.func.order]p3:
3953   //   [...] The new parameter is of type "reference to cv A," where cv are
3954   //   the cv-qualifiers of the function template (if any) and A is
3955   //   the class of which the function template is a member.
3956   //
3957   // The standard doesn't say explicitly, but we pick the appropriate kind of
3958   // reference type based on [over.match.funcs]p4.
3959   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
3960   ArgTy = Context.getQualifiedType(ArgTy,
3961                         Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
3962   if (Method->getRefQualifier() == RQ_RValue)
3963     ArgTy = Context.getRValueReferenceType(ArgTy);
3964   else
3965     ArgTy = Context.getLValueReferenceType(ArgTy);
3966   ArgTypes.push_back(ArgTy);
3967 }
3968 
3969 /// \brief Determine whether the function template \p FT1 is at least as
3970 /// specialized as \p FT2.
isAtLeastAsSpecializedAs(Sema & S,SourceLocation Loc,FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)3971 static bool isAtLeastAsSpecializedAs(Sema &S,
3972                                      SourceLocation Loc,
3973                                      FunctionTemplateDecl *FT1,
3974                                      FunctionTemplateDecl *FT2,
3975                                      TemplatePartialOrderingContext TPOC,
3976                                      unsigned NumCallArguments,
3977     SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
3978   FunctionDecl *FD1 = FT1->getTemplatedDecl();
3979   FunctionDecl *FD2 = FT2->getTemplatedDecl();
3980   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
3981   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
3982 
3983   assert(Proto1 && Proto2 && "Function templates must have prototypes");
3984   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
3985   SmallVector<DeducedTemplateArgument, 4> Deduced;
3986   Deduced.resize(TemplateParams->size());
3987 
3988   // C++0x [temp.deduct.partial]p3:
3989   //   The types used to determine the ordering depend on the context in which
3990   //   the partial ordering is done:
3991   TemplateDeductionInfo Info(Loc);
3992   CXXMethodDecl *Method1 = 0;
3993   CXXMethodDecl *Method2 = 0;
3994   bool IsNonStatic2 = false;
3995   bool IsNonStatic1 = false;
3996   unsigned Skip2 = 0;
3997   switch (TPOC) {
3998   case TPOC_Call: {
3999     //   - In the context of a function call, the function parameter types are
4000     //     used.
4001     Method1 = dyn_cast<CXXMethodDecl>(FD1);
4002     Method2 = dyn_cast<CXXMethodDecl>(FD2);
4003     IsNonStatic1 = Method1 && !Method1->isStatic();
4004     IsNonStatic2 = Method2 && !Method2->isStatic();
4005 
4006     // C++11 [temp.func.order]p3:
4007     //   [...] If only one of the function templates is a non-static
4008     //   member, that function template is considered to have a new
4009     //   first parameter inserted in its function parameter list. The
4010     //   new parameter is of type "reference to cv A," where cv are
4011     //   the cv-qualifiers of the function template (if any) and A is
4012     //   the class of which the function template is a member.
4013     //
4014     // Note that we interpret this to mean "if one of the function
4015     // templates is a non-static member and the other is a non-member";
4016     // otherwise, the ordering rules for static functions against non-static
4017     // functions don't make any sense.
4018     //
4019     // C++98/03 doesn't have this provision, so instead we drop the
4020     // first argument of the free function, which seems to match
4021     // existing practice.
4022     SmallVector<QualType, 4> Args1;
4023     unsigned Skip1 = !S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1;
4024     if (S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2)
4025       AddImplicitObjectParameterType(S.Context, Method1, Args1);
4026     Args1.insert(Args1.end(),
4027                  Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
4028 
4029     SmallVector<QualType, 4> Args2;
4030     Skip2 = !S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2;
4031     if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1)
4032       AddImplicitObjectParameterType(S.Context, Method2, Args2);
4033     Args2.insert(Args2.end(),
4034                  Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
4035 
4036     // C++ [temp.func.order]p5:
4037     //   The presence of unused ellipsis and default arguments has no effect on
4038     //   the partial ordering of function templates.
4039     if (Args1.size() > NumCallArguments)
4040       Args1.resize(NumCallArguments);
4041     if (Args2.size() > NumCallArguments)
4042       Args2.resize(NumCallArguments);
4043     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
4044                                 Args1.data(), Args1.size(), Info, Deduced,
4045                                 TDF_None, /*PartialOrdering=*/true,
4046                                 RefParamComparisons))
4047         return false;
4048 
4049     break;
4050   }
4051 
4052   case TPOC_Conversion:
4053     //   - In the context of a call to a conversion operator, the return types
4054     //     of the conversion function templates are used.
4055     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
4056                                            Proto2->getResultType(),
4057                                            Proto1->getResultType(),
4058                                            Info, Deduced, TDF_None,
4059                                            /*PartialOrdering=*/true,
4060                                            RefParamComparisons))
4061       return false;
4062     break;
4063 
4064   case TPOC_Other:
4065     //   - In other contexts (14.6.6.2) the function template's function type
4066     //     is used.
4067     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
4068                                            FD2->getType(), FD1->getType(),
4069                                            Info, Deduced, TDF_None,
4070                                            /*PartialOrdering=*/true,
4071                                            RefParamComparisons))
4072       return false;
4073     break;
4074   }
4075 
4076   // C++0x [temp.deduct.partial]p11:
4077   //   In most cases, all template parameters must have values in order for
4078   //   deduction to succeed, but for partial ordering purposes a template
4079   //   parameter may remain without a value provided it is not used in the
4080   //   types being used for partial ordering. [ Note: a template parameter used
4081   //   in a non-deduced context is considered used. -end note]
4082   unsigned ArgIdx = 0, NumArgs = Deduced.size();
4083   for (; ArgIdx != NumArgs; ++ArgIdx)
4084     if (Deduced[ArgIdx].isNull())
4085       break;
4086 
4087   if (ArgIdx == NumArgs) {
4088     // All template arguments were deduced. FT1 is at least as specialized
4089     // as FT2.
4090     return true;
4091   }
4092 
4093   // Figure out which template parameters were used.
4094   llvm::SmallBitVector UsedParameters(TemplateParams->size());
4095   switch (TPOC) {
4096   case TPOC_Call: {
4097     unsigned NumParams = std::min(NumCallArguments,
4098                                   std::min(Proto1->getNumArgs(),
4099                                            Proto2->getNumArgs()));
4100     if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !IsNonStatic1)
4101       ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
4102                                    false,
4103                                    TemplateParams->getDepth(), UsedParameters);
4104     for (unsigned I = Skip2; I < NumParams; ++I)
4105       ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
4106                                    TemplateParams->getDepth(),
4107                                    UsedParameters);
4108     break;
4109   }
4110 
4111   case TPOC_Conversion:
4112     ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
4113                                  TemplateParams->getDepth(),
4114                                  UsedParameters);
4115     break;
4116 
4117   case TPOC_Other:
4118     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
4119                                  TemplateParams->getDepth(),
4120                                  UsedParameters);
4121     break;
4122   }
4123 
4124   for (; ArgIdx != NumArgs; ++ArgIdx)
4125     // If this argument had no value deduced but was used in one of the types
4126     // used for partial ordering, then deduction fails.
4127     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
4128       return false;
4129 
4130   return true;
4131 }
4132 
4133 /// \brief Determine whether this a function template whose parameter-type-list
4134 /// ends with a function parameter pack.
isVariadicFunctionTemplate(FunctionTemplateDecl * FunTmpl)4135 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
4136   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
4137   unsigned NumParams = Function->getNumParams();
4138   if (NumParams == 0)
4139     return false;
4140 
4141   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
4142   if (!Last->isParameterPack())
4143     return false;
4144 
4145   // Make sure that no previous parameter is a parameter pack.
4146   while (--NumParams > 0) {
4147     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
4148       return false;
4149   }
4150 
4151   return true;
4152 }
4153 
4154 /// \brief Returns the more specialized function template according
4155 /// to the rules of function template partial ordering (C++ [temp.func.order]).
4156 ///
4157 /// \param FT1 the first function template
4158 ///
4159 /// \param FT2 the second function template
4160 ///
4161 /// \param TPOC the context in which we are performing partial ordering of
4162 /// function templates.
4163 ///
4164 /// \param NumCallArguments The number of arguments in a call, used only
4165 /// when \c TPOC is \c TPOC_Call.
4166 ///
4167 /// \returns the more specialized function template. If neither
4168 /// template is more specialized, returns NULL.
4169 FunctionTemplateDecl *
getMoreSpecializedTemplate(FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,SourceLocation Loc,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments)4170 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
4171                                  FunctionTemplateDecl *FT2,
4172                                  SourceLocation Loc,
4173                                  TemplatePartialOrderingContext TPOC,
4174                                  unsigned NumCallArguments) {
4175   SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
4176   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
4177                                           NumCallArguments, 0);
4178   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
4179                                           NumCallArguments,
4180                                           &RefParamComparisons);
4181 
4182   if (Better1 != Better2) // We have a clear winner
4183     return Better1? FT1 : FT2;
4184 
4185   if (!Better1 && !Better2) // Neither is better than the other
4186     return 0;
4187 
4188   // C++0x [temp.deduct.partial]p10:
4189   //   If for each type being considered a given template is at least as
4190   //   specialized for all types and more specialized for some set of types and
4191   //   the other template is not more specialized for any types or is not at
4192   //   least as specialized for any types, then the given template is more
4193   //   specialized than the other template. Otherwise, neither template is more
4194   //   specialized than the other.
4195   Better1 = false;
4196   Better2 = false;
4197   for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
4198     // C++0x [temp.deduct.partial]p9:
4199     //   If, for a given type, deduction succeeds in both directions (i.e., the
4200     //   types are identical after the transformations above) and both P and A
4201     //   were reference types (before being replaced with the type referred to
4202     //   above):
4203 
4204     //     -- if the type from the argument template was an lvalue reference
4205     //        and the type from the parameter template was not, the argument
4206     //        type is considered to be more specialized than the other;
4207     //        otherwise,
4208     if (!RefParamComparisons[I].ArgIsRvalueRef &&
4209         RefParamComparisons[I].ParamIsRvalueRef) {
4210       Better2 = true;
4211       if (Better1)
4212         return 0;
4213       continue;
4214     } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
4215                RefParamComparisons[I].ArgIsRvalueRef) {
4216       Better1 = true;
4217       if (Better2)
4218         return 0;
4219       continue;
4220     }
4221 
4222     //     -- if the type from the argument template is more cv-qualified than
4223     //        the type from the parameter template (as described above), the
4224     //        argument type is considered to be more specialized than the
4225     //        other; otherwise,
4226     switch (RefParamComparisons[I].Qualifiers) {
4227     case NeitherMoreQualified:
4228       break;
4229 
4230     case ParamMoreQualified:
4231       Better1 = true;
4232       if (Better2)
4233         return 0;
4234       continue;
4235 
4236     case ArgMoreQualified:
4237       Better2 = true;
4238       if (Better1)
4239         return 0;
4240       continue;
4241     }
4242 
4243     //     -- neither type is more specialized than the other.
4244   }
4245 
4246   assert(!(Better1 && Better2) && "Should have broken out in the loop above");
4247   if (Better1)
4248     return FT1;
4249   else if (Better2)
4250     return FT2;
4251 
4252   // FIXME: This mimics what GCC implements, but doesn't match up with the
4253   // proposed resolution for core issue 692. This area needs to be sorted out,
4254   // but for now we attempt to maintain compatibility.
4255   bool Variadic1 = isVariadicFunctionTemplate(FT1);
4256   bool Variadic2 = isVariadicFunctionTemplate(FT2);
4257   if (Variadic1 != Variadic2)
4258     return Variadic1? FT2 : FT1;
4259 
4260   return 0;
4261 }
4262 
4263 /// \brief Determine if the two templates are equivalent.
isSameTemplate(TemplateDecl * T1,TemplateDecl * T2)4264 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
4265   if (T1 == T2)
4266     return true;
4267 
4268   if (!T1 || !T2)
4269     return false;
4270 
4271   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
4272 }
4273 
4274 /// \brief Retrieve the most specialized of the given function template
4275 /// specializations.
4276 ///
4277 /// \param SpecBegin the start iterator of the function template
4278 /// specializations that we will be comparing.
4279 ///
4280 /// \param SpecEnd the end iterator of the function template
4281 /// specializations, paired with \p SpecBegin.
4282 ///
4283 /// \param TPOC the partial ordering context to use to compare the function
4284 /// template specializations.
4285 ///
4286 /// \param NumCallArguments The number of arguments in a call, used only
4287 /// when \c TPOC is \c TPOC_Call.
4288 ///
4289 /// \param Loc the location where the ambiguity or no-specializations
4290 /// diagnostic should occur.
4291 ///
4292 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
4293 /// no matching candidates.
4294 ///
4295 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
4296 /// occurs.
4297 ///
4298 /// \param CandidateDiag partial diagnostic used for each function template
4299 /// specialization that is a candidate in the ambiguous ordering. One parameter
4300 /// in this diagnostic should be unbound, which will correspond to the string
4301 /// describing the template arguments for the function template specialization.
4302 ///
4303 /// \returns the most specialized function template specialization, if
4304 /// found. Otherwise, returns SpecEnd.
getMostSpecialized(UnresolvedSetIterator SpecBegin,UnresolvedSetIterator SpecEnd,TemplateSpecCandidateSet & FailedCandidates,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments,SourceLocation Loc,const PartialDiagnostic & NoneDiag,const PartialDiagnostic & AmbigDiag,const PartialDiagnostic & CandidateDiag,bool Complain,QualType TargetType)4305 UnresolvedSetIterator Sema::getMostSpecialized(
4306     UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
4307     TemplateSpecCandidateSet &FailedCandidates,
4308     TemplatePartialOrderingContext TPOC, unsigned NumCallArguments,
4309     SourceLocation Loc, const PartialDiagnostic &NoneDiag,
4310     const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
4311     bool Complain, QualType TargetType) {
4312   if (SpecBegin == SpecEnd) {
4313     if (Complain) {
4314       Diag(Loc, NoneDiag);
4315       FailedCandidates.NoteCandidates(*this, Loc);
4316     }
4317     return SpecEnd;
4318   }
4319 
4320   if (SpecBegin + 1 == SpecEnd)
4321     return SpecBegin;
4322 
4323   // Find the function template that is better than all of the templates it
4324   // has been compared to.
4325   UnresolvedSetIterator Best = SpecBegin;
4326   FunctionTemplateDecl *BestTemplate
4327     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
4328   assert(BestTemplate && "Not a function template specialization?");
4329   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
4330     FunctionTemplateDecl *Challenger
4331       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4332     assert(Challenger && "Not a function template specialization?");
4333     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4334                                                   Loc, TPOC, NumCallArguments),
4335                        Challenger)) {
4336       Best = I;
4337       BestTemplate = Challenger;
4338     }
4339   }
4340 
4341   // Make sure that the "best" function template is more specialized than all
4342   // of the others.
4343   bool Ambiguous = false;
4344   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4345     FunctionTemplateDecl *Challenger
4346       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4347     if (I != Best &&
4348         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4349                                                    Loc, TPOC, NumCallArguments),
4350                         BestTemplate)) {
4351       Ambiguous = true;
4352       break;
4353     }
4354   }
4355 
4356   if (!Ambiguous) {
4357     // We found an answer. Return it.
4358     return Best;
4359   }
4360 
4361   // Diagnose the ambiguity.
4362   if (Complain) {
4363     Diag(Loc, AmbigDiag);
4364 
4365     // FIXME: Can we order the candidates in some sane way?
4366     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4367       PartialDiagnostic PD = CandidateDiag;
4368       PD << getTemplateArgumentBindingsText(
4369           cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
4370                     *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
4371       if (!TargetType.isNull())
4372         HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
4373                                    TargetType);
4374       Diag((*I)->getLocation(), PD);
4375     }
4376   }
4377 
4378   return SpecEnd;
4379 }
4380 
4381 /// \brief Returns the more specialized class template partial specialization
4382 /// according to the rules of partial ordering of class template partial
4383 /// specializations (C++ [temp.class.order]).
4384 ///
4385 /// \param PS1 the first class template partial specialization
4386 ///
4387 /// \param PS2 the second class template partial specialization
4388 ///
4389 /// \returns the more specialized class template partial specialization. If
4390 /// neither partial specialization is more specialized, returns NULL.
4391 ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(ClassTemplatePartialSpecializationDecl * PS1,ClassTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)4392 Sema::getMoreSpecializedPartialSpecialization(
4393                                   ClassTemplatePartialSpecializationDecl *PS1,
4394                                   ClassTemplatePartialSpecializationDecl *PS2,
4395                                               SourceLocation Loc) {
4396   // C++ [temp.class.order]p1:
4397   //   For two class template partial specializations, the first is at least as
4398   //   specialized as the second if, given the following rewrite to two
4399   //   function templates, the first function template is at least as
4400   //   specialized as the second according to the ordering rules for function
4401   //   templates (14.6.6.2):
4402   //     - the first function template has the same template parameters as the
4403   //       first partial specialization and has a single function parameter
4404   //       whose type is a class template specialization with the template
4405   //       arguments of the first partial specialization, and
4406   //     - the second function template has the same template parameters as the
4407   //       second partial specialization and has a single function parameter
4408   //       whose type is a class template specialization with the template
4409   //       arguments of the second partial specialization.
4410   //
4411   // Rather than synthesize function templates, we merely perform the
4412   // equivalent partial ordering by performing deduction directly on
4413   // the template arguments of the class template partial
4414   // specializations. This computation is slightly simpler than the
4415   // general problem of function template partial ordering, because
4416   // class template partial specializations are more constrained. We
4417   // know that every template parameter is deducible from the class
4418   // template partial specialization's template arguments, for
4419   // example.
4420   SmallVector<DeducedTemplateArgument, 4> Deduced;
4421   TemplateDeductionInfo Info(Loc);
4422 
4423   QualType PT1 = PS1->getInjectedSpecializationType();
4424   QualType PT2 = PS2->getInjectedSpecializationType();
4425 
4426   // Determine whether PS1 is at least as specialized as PS2
4427   Deduced.resize(PS2->getTemplateParameters()->size());
4428   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
4429                                             PS2->getTemplateParameters(),
4430                                             PT2, PT1, Info, Deduced, TDF_None,
4431                                             /*PartialOrdering=*/true,
4432                                             /*RefParamComparisons=*/0);
4433   if (Better1) {
4434     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4435     InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2, DeducedArgs,
4436                                Info);
4437     Better1 = !::FinishTemplateArgumentDeduction(
4438         *this, PS2, PS1->getTemplateArgs(), Deduced, Info);
4439   }
4440 
4441   // Determine whether PS2 is at least as specialized as PS1
4442   Deduced.clear();
4443   Deduced.resize(PS1->getTemplateParameters()->size());
4444   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
4445       *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
4446       /*PartialOrdering=*/true,
4447       /*RefParamComparisons=*/0);
4448   if (Better2) {
4449     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
4450                                                  Deduced.end());
4451     InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1, DeducedArgs,
4452                                Info);
4453     Better2 = !::FinishTemplateArgumentDeduction(
4454         *this, PS1, PS2->getTemplateArgs(), Deduced, Info);
4455   }
4456 
4457   if (Better1 == Better2)
4458     return 0;
4459 
4460   return Better1 ? PS1 : PS2;
4461 }
4462 
4463 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version.
4464 VarTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(VarTemplatePartialSpecializationDecl * PS1,VarTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)4465 Sema::getMoreSpecializedPartialSpecialization(
4466     VarTemplatePartialSpecializationDecl *PS1,
4467     VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
4468   SmallVector<DeducedTemplateArgument, 4> Deduced;
4469   TemplateDeductionInfo Info(Loc);
4470 
4471   assert(PS1->getSpecializedTemplate() == PS1->getSpecializedTemplate() &&
4472          "the partial specializations being compared should specialize"
4473          " the same template.");
4474   TemplateName Name(PS1->getSpecializedTemplate());
4475   TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4476   QualType PT1 = Context.getTemplateSpecializationType(
4477       CanonTemplate, PS1->getTemplateArgs().data(),
4478       PS1->getTemplateArgs().size());
4479   QualType PT2 = Context.getTemplateSpecializationType(
4480       CanonTemplate, PS2->getTemplateArgs().data(),
4481       PS2->getTemplateArgs().size());
4482 
4483   // Determine whether PS1 is at least as specialized as PS2
4484   Deduced.resize(PS2->getTemplateParameters()->size());
4485   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
4486       *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
4487       /*PartialOrdering=*/true,
4488       /*RefParamComparisons=*/0);
4489   if (Better1) {
4490     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
4491                                                  Deduced.end());
4492     InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
4493                                DeducedArgs, Info);
4494     Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
4495                                                  PS1->getTemplateArgs(),
4496                                                  Deduced, Info);
4497   }
4498 
4499   // Determine whether PS2 is at least as specialized as PS1
4500   Deduced.clear();
4501   Deduced.resize(PS1->getTemplateParameters()->size());
4502   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
4503                                             PS1->getTemplateParameters(),
4504                                             PT1, PT2, Info, Deduced, TDF_None,
4505                                             /*PartialOrdering=*/true,
4506                                             /*RefParamComparisons=*/0);
4507   if (Better2) {
4508     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4509     InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
4510                                DeducedArgs, Info);
4511     Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
4512                                                  PS2->getTemplateArgs(),
4513                                                  Deduced, Info);
4514   }
4515 
4516   if (Better1 == Better2)
4517     return 0;
4518 
4519   return Better1? PS1 : PS2;
4520 }
4521 
4522 static void
4523 MarkUsedTemplateParameters(ASTContext &Ctx,
4524                            const TemplateArgument &TemplateArg,
4525                            bool OnlyDeduced,
4526                            unsigned Depth,
4527                            llvm::SmallBitVector &Used);
4528 
4529 /// \brief Mark the template parameters that are used by the given
4530 /// expression.
4531 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const Expr * E,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4532 MarkUsedTemplateParameters(ASTContext &Ctx,
4533                            const Expr *E,
4534                            bool OnlyDeduced,
4535                            unsigned Depth,
4536                            llvm::SmallBitVector &Used) {
4537   // We can deduce from a pack expansion.
4538   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4539     E = Expansion->getPattern();
4540 
4541   // Skip through any implicit casts we added while type-checking, and any
4542   // substitutions performed by template alias expansion.
4543   while (1) {
4544     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4545       E = ICE->getSubExpr();
4546     else if (const SubstNonTypeTemplateParmExpr *Subst =
4547                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
4548       E = Subst->getReplacement();
4549     else
4550       break;
4551   }
4552 
4553   // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4554   // find other occurrences of template parameters.
4555   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4556   if (!DRE)
4557     return;
4558 
4559   const NonTypeTemplateParmDecl *NTTP
4560     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4561   if (!NTTP)
4562     return;
4563 
4564   if (NTTP->getDepth() == Depth)
4565     Used[NTTP->getIndex()] = true;
4566 }
4567 
4568 /// \brief Mark the template parameters that are used by the given
4569 /// nested name specifier.
4570 static void
MarkUsedTemplateParameters(ASTContext & Ctx,NestedNameSpecifier * NNS,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4571 MarkUsedTemplateParameters(ASTContext &Ctx,
4572                            NestedNameSpecifier *NNS,
4573                            bool OnlyDeduced,
4574                            unsigned Depth,
4575                            llvm::SmallBitVector &Used) {
4576   if (!NNS)
4577     return;
4578 
4579   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4580                              Used);
4581   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4582                              OnlyDeduced, Depth, Used);
4583 }
4584 
4585 /// \brief Mark the template parameters that are used by the given
4586 /// template name.
4587 static void
MarkUsedTemplateParameters(ASTContext & Ctx,TemplateName Name,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4588 MarkUsedTemplateParameters(ASTContext &Ctx,
4589                            TemplateName Name,
4590                            bool OnlyDeduced,
4591                            unsigned Depth,
4592                            llvm::SmallBitVector &Used) {
4593   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4594     if (TemplateTemplateParmDecl *TTP
4595           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4596       if (TTP->getDepth() == Depth)
4597         Used[TTP->getIndex()] = true;
4598     }
4599     return;
4600   }
4601 
4602   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4603     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4604                                Depth, Used);
4605   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4606     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4607                                Depth, Used);
4608 }
4609 
4610 /// \brief Mark the template parameters that are used by the given
4611 /// type.
4612 static void
MarkUsedTemplateParameters(ASTContext & Ctx,QualType T,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4613 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4614                            bool OnlyDeduced,
4615                            unsigned Depth,
4616                            llvm::SmallBitVector &Used) {
4617   if (T.isNull())
4618     return;
4619 
4620   // Non-dependent types have nothing deducible
4621   if (!T->isDependentType())
4622     return;
4623 
4624   T = Ctx.getCanonicalType(T);
4625   switch (T->getTypeClass()) {
4626   case Type::Pointer:
4627     MarkUsedTemplateParameters(Ctx,
4628                                cast<PointerType>(T)->getPointeeType(),
4629                                OnlyDeduced,
4630                                Depth,
4631                                Used);
4632     break;
4633 
4634   case Type::BlockPointer:
4635     MarkUsedTemplateParameters(Ctx,
4636                                cast<BlockPointerType>(T)->getPointeeType(),
4637                                OnlyDeduced,
4638                                Depth,
4639                                Used);
4640     break;
4641 
4642   case Type::LValueReference:
4643   case Type::RValueReference:
4644     MarkUsedTemplateParameters(Ctx,
4645                                cast<ReferenceType>(T)->getPointeeType(),
4646                                OnlyDeduced,
4647                                Depth,
4648                                Used);
4649     break;
4650 
4651   case Type::MemberPointer: {
4652     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4653     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4654                                Depth, Used);
4655     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4656                                OnlyDeduced, Depth, Used);
4657     break;
4658   }
4659 
4660   case Type::DependentSizedArray:
4661     MarkUsedTemplateParameters(Ctx,
4662                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
4663                                OnlyDeduced, Depth, Used);
4664     // Fall through to check the element type
4665 
4666   case Type::ConstantArray:
4667   case Type::IncompleteArray:
4668     MarkUsedTemplateParameters(Ctx,
4669                                cast<ArrayType>(T)->getElementType(),
4670                                OnlyDeduced, Depth, Used);
4671     break;
4672 
4673   case Type::Vector:
4674   case Type::ExtVector:
4675     MarkUsedTemplateParameters(Ctx,
4676                                cast<VectorType>(T)->getElementType(),
4677                                OnlyDeduced, Depth, Used);
4678     break;
4679 
4680   case Type::DependentSizedExtVector: {
4681     const DependentSizedExtVectorType *VecType
4682       = cast<DependentSizedExtVectorType>(T);
4683     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4684                                Depth, Used);
4685     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4686                                Depth, Used);
4687     break;
4688   }
4689 
4690   case Type::FunctionProto: {
4691     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4692     MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
4693                                Depth, Used);
4694     for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
4695       MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
4696                                  Depth, Used);
4697     break;
4698   }
4699 
4700   case Type::TemplateTypeParm: {
4701     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4702     if (TTP->getDepth() == Depth)
4703       Used[TTP->getIndex()] = true;
4704     break;
4705   }
4706 
4707   case Type::SubstTemplateTypeParmPack: {
4708     const SubstTemplateTypeParmPackType *Subst
4709       = cast<SubstTemplateTypeParmPackType>(T);
4710     MarkUsedTemplateParameters(Ctx,
4711                                QualType(Subst->getReplacedParameter(), 0),
4712                                OnlyDeduced, Depth, Used);
4713     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4714                                OnlyDeduced, Depth, Used);
4715     break;
4716   }
4717 
4718   case Type::InjectedClassName:
4719     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4720     // fall through
4721 
4722   case Type::TemplateSpecialization: {
4723     const TemplateSpecializationType *Spec
4724       = cast<TemplateSpecializationType>(T);
4725     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4726                                Depth, Used);
4727 
4728     // C++0x [temp.deduct.type]p9:
4729     //   If the template argument list of P contains a pack expansion that is not
4730     //   the last template argument, the entire template argument list is a
4731     //   non-deduced context.
4732     if (OnlyDeduced &&
4733         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4734       break;
4735 
4736     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4737       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4738                                  Used);
4739     break;
4740   }
4741 
4742   case Type::Complex:
4743     if (!OnlyDeduced)
4744       MarkUsedTemplateParameters(Ctx,
4745                                  cast<ComplexType>(T)->getElementType(),
4746                                  OnlyDeduced, Depth, Used);
4747     break;
4748 
4749   case Type::Atomic:
4750     if (!OnlyDeduced)
4751       MarkUsedTemplateParameters(Ctx,
4752                                  cast<AtomicType>(T)->getValueType(),
4753                                  OnlyDeduced, Depth, Used);
4754     break;
4755 
4756   case Type::DependentName:
4757     if (!OnlyDeduced)
4758       MarkUsedTemplateParameters(Ctx,
4759                                  cast<DependentNameType>(T)->getQualifier(),
4760                                  OnlyDeduced, Depth, Used);
4761     break;
4762 
4763   case Type::DependentTemplateSpecialization: {
4764     const DependentTemplateSpecializationType *Spec
4765       = cast<DependentTemplateSpecializationType>(T);
4766     if (!OnlyDeduced)
4767       MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4768                                  OnlyDeduced, Depth, Used);
4769 
4770     // C++0x [temp.deduct.type]p9:
4771     //   If the template argument list of P contains a pack expansion that is not
4772     //   the last template argument, the entire template argument list is a
4773     //   non-deduced context.
4774     if (OnlyDeduced &&
4775         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4776       break;
4777 
4778     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4779       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4780                                  Used);
4781     break;
4782   }
4783 
4784   case Type::TypeOf:
4785     if (!OnlyDeduced)
4786       MarkUsedTemplateParameters(Ctx,
4787                                  cast<TypeOfType>(T)->getUnderlyingType(),
4788                                  OnlyDeduced, Depth, Used);
4789     break;
4790 
4791   case Type::TypeOfExpr:
4792     if (!OnlyDeduced)
4793       MarkUsedTemplateParameters(Ctx,
4794                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4795                                  OnlyDeduced, Depth, Used);
4796     break;
4797 
4798   case Type::Decltype:
4799     if (!OnlyDeduced)
4800       MarkUsedTemplateParameters(Ctx,
4801                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
4802                                  OnlyDeduced, Depth, Used);
4803     break;
4804 
4805   case Type::UnaryTransform:
4806     if (!OnlyDeduced)
4807       MarkUsedTemplateParameters(Ctx,
4808                                cast<UnaryTransformType>(T)->getUnderlyingType(),
4809                                  OnlyDeduced, Depth, Used);
4810     break;
4811 
4812   case Type::PackExpansion:
4813     MarkUsedTemplateParameters(Ctx,
4814                                cast<PackExpansionType>(T)->getPattern(),
4815                                OnlyDeduced, Depth, Used);
4816     break;
4817 
4818   case Type::Auto:
4819     MarkUsedTemplateParameters(Ctx,
4820                                cast<AutoType>(T)->getDeducedType(),
4821                                OnlyDeduced, Depth, Used);
4822 
4823   // None of these types have any template parameters in them.
4824   case Type::Builtin:
4825   case Type::VariableArray:
4826   case Type::FunctionNoProto:
4827   case Type::Record:
4828   case Type::Enum:
4829   case Type::ObjCInterface:
4830   case Type::ObjCObject:
4831   case Type::ObjCObjectPointer:
4832   case Type::UnresolvedUsing:
4833 #define TYPE(Class, Base)
4834 #define ABSTRACT_TYPE(Class, Base)
4835 #define DEPENDENT_TYPE(Class, Base)
4836 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4837 #include "clang/AST/TypeNodes.def"
4838     break;
4839   }
4840 }
4841 
4842 /// \brief Mark the template parameters that are used by this
4843 /// template argument.
4844 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const TemplateArgument & TemplateArg,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4845 MarkUsedTemplateParameters(ASTContext &Ctx,
4846                            const TemplateArgument &TemplateArg,
4847                            bool OnlyDeduced,
4848                            unsigned Depth,
4849                            llvm::SmallBitVector &Used) {
4850   switch (TemplateArg.getKind()) {
4851   case TemplateArgument::Null:
4852   case TemplateArgument::Integral:
4853   case TemplateArgument::Declaration:
4854     break;
4855 
4856   case TemplateArgument::NullPtr:
4857     MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
4858                                Depth, Used);
4859     break;
4860 
4861   case TemplateArgument::Type:
4862     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
4863                                Depth, Used);
4864     break;
4865 
4866   case TemplateArgument::Template:
4867   case TemplateArgument::TemplateExpansion:
4868     MarkUsedTemplateParameters(Ctx,
4869                                TemplateArg.getAsTemplateOrTemplatePattern(),
4870                                OnlyDeduced, Depth, Used);
4871     break;
4872 
4873   case TemplateArgument::Expression:
4874     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
4875                                Depth, Used);
4876     break;
4877 
4878   case TemplateArgument::Pack:
4879     for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
4880                                       PEnd = TemplateArg.pack_end();
4881          P != PEnd; ++P)
4882       MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
4883     break;
4884   }
4885 }
4886 
4887 /// \brief Mark which template parameters can be deduced from a given
4888 /// template argument list.
4889 ///
4890 /// \param TemplateArgs the template argument list from which template
4891 /// parameters will be deduced.
4892 ///
4893 /// \param Used a bit vector whose elements will be set to \c true
4894 /// to indicate when the corresponding template parameter will be
4895 /// deduced.
4896 void
MarkUsedTemplateParameters(const TemplateArgumentList & TemplateArgs,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4897 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
4898                                  bool OnlyDeduced, unsigned Depth,
4899                                  llvm::SmallBitVector &Used) {
4900   // C++0x [temp.deduct.type]p9:
4901   //   If the template argument list of P contains a pack expansion that is not
4902   //   the last template argument, the entire template argument list is a
4903   //   non-deduced context.
4904   if (OnlyDeduced &&
4905       hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
4906     return;
4907 
4908   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4909     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
4910                                  Depth, Used);
4911 }
4912 
4913 /// \brief Marks all of the template parameters that will be deduced by a
4914 /// call to the given function template.
4915 void
MarkDeducedTemplateParameters(ASTContext & Ctx,const FunctionTemplateDecl * FunctionTemplate,llvm::SmallBitVector & Deduced)4916 Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
4917                                     const FunctionTemplateDecl *FunctionTemplate,
4918                                     llvm::SmallBitVector &Deduced) {
4919   TemplateParameterList *TemplateParams
4920     = FunctionTemplate->getTemplateParameters();
4921   Deduced.clear();
4922   Deduced.resize(TemplateParams->size());
4923 
4924   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4925   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
4926     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
4927                                  true, TemplateParams->getDepth(), Deduced);
4928 }
4929 
hasDeducibleTemplateParameters(Sema & S,FunctionTemplateDecl * FunctionTemplate,QualType T)4930 bool hasDeducibleTemplateParameters(Sema &S,
4931                                     FunctionTemplateDecl *FunctionTemplate,
4932                                     QualType T) {
4933   if (!T->isDependentType())
4934     return false;
4935 
4936   TemplateParameterList *TemplateParams
4937     = FunctionTemplate->getTemplateParameters();
4938   llvm::SmallBitVector Deduced(TemplateParams->size());
4939   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
4940                                Deduced);
4941 
4942   return Deduced.any();
4943 }
4944