1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===/
12
13 #include "clang/Sema/TemplateDeduction.h"
14 #include "TreeTransform.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Sema.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/SmallBitVector.h"
25 #include <algorithm>
26
27 namespace clang {
28 using namespace sema;
29
30 /// \brief Various flags that control template argument deduction.
31 ///
32 /// These flags can be bitwise-OR'd together.
33 enum TemplateDeductionFlags {
34 /// \brief No template argument deduction flags, which indicates the
35 /// strictest results for template argument deduction (as used for, e.g.,
36 /// matching class template partial specializations).
37 TDF_None = 0,
38 /// \brief Within template argument deduction from a function call, we are
39 /// matching with a parameter type for which the original parameter was
40 /// a reference.
41 TDF_ParamWithReferenceType = 0x1,
42 /// \brief Within template argument deduction from a function call, we
43 /// are matching in a case where we ignore cv-qualifiers.
44 TDF_IgnoreQualifiers = 0x02,
45 /// \brief Within template argument deduction from a function call,
46 /// we are matching in a case where we can perform template argument
47 /// deduction from a template-id of a derived class of the argument type.
48 TDF_DerivedClass = 0x04,
49 /// \brief Allow non-dependent types to differ, e.g., when performing
50 /// template argument deduction from a function call where conversions
51 /// may apply.
52 TDF_SkipNonDependent = 0x08,
53 /// \brief Whether we are performing template argument deduction for
54 /// parameters and arguments in a top-level template argument
55 TDF_TopLevelParameterTypeList = 0x10,
56 /// \brief Within template argument deduction from overload resolution per
57 /// C++ [over.over] allow matching function types that are compatible in
58 /// terms of noreturn and default calling convention adjustments.
59 TDF_InOverloadResolution = 0x20
60 };
61 }
62
63 using namespace clang;
64
65 /// \brief Compare two APSInts, extending and switching the sign as
66 /// necessary to compare their values regardless of underlying type.
hasSameExtendedValue(llvm::APSInt X,llvm::APSInt Y)67 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
68 if (Y.getBitWidth() > X.getBitWidth())
69 X = X.extend(Y.getBitWidth());
70 else if (Y.getBitWidth() < X.getBitWidth())
71 Y = Y.extend(X.getBitWidth());
72
73 // If there is a signedness mismatch, correct it.
74 if (X.isSigned() != Y.isSigned()) {
75 // If the signed value is negative, then the values cannot be the same.
76 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
77 return false;
78
79 Y.setIsSigned(true);
80 X.setIsSigned(true);
81 }
82
83 return X == Y;
84 }
85
86 static Sema::TemplateDeductionResult
87 DeduceTemplateArguments(Sema &S,
88 TemplateParameterList *TemplateParams,
89 const TemplateArgument &Param,
90 TemplateArgument Arg,
91 TemplateDeductionInfo &Info,
92 SmallVectorImpl<DeducedTemplateArgument> &Deduced);
93
94 /// \brief Whether template argument deduction for two reference parameters
95 /// resulted in the argument type, parameter type, or neither type being more
96 /// qualified than the other.
97 enum DeductionQualifierComparison {
98 NeitherMoreQualified = 0,
99 ParamMoreQualified,
100 ArgMoreQualified
101 };
102
103 /// \brief Stores the result of comparing two reference parameters while
104 /// performing template argument deduction for partial ordering of function
105 /// templates.
106 struct RefParamPartialOrderingComparison {
107 /// \brief Whether the parameter type is an rvalue reference type.
108 bool ParamIsRvalueRef;
109 /// \brief Whether the argument type is an rvalue reference type.
110 bool ArgIsRvalueRef;
111
112 /// \brief Whether the parameter or argument (or neither) is more qualified.
113 DeductionQualifierComparison Qualifiers;
114 };
115
116
117
118 static Sema::TemplateDeductionResult
119 DeduceTemplateArgumentsByTypeMatch(Sema &S,
120 TemplateParameterList *TemplateParams,
121 QualType Param,
122 QualType Arg,
123 TemplateDeductionInfo &Info,
124 SmallVectorImpl<DeducedTemplateArgument> &
125 Deduced,
126 unsigned TDF,
127 bool PartialOrdering = false,
128 SmallVectorImpl<RefParamPartialOrderingComparison> *
129 RefParamComparisons = 0);
130
131 static Sema::TemplateDeductionResult
132 DeduceTemplateArguments(Sema &S,
133 TemplateParameterList *TemplateParams,
134 const TemplateArgument *Params, unsigned NumParams,
135 const TemplateArgument *Args, unsigned NumArgs,
136 TemplateDeductionInfo &Info,
137 SmallVectorImpl<DeducedTemplateArgument> &Deduced);
138
139 /// \brief If the given expression is of a form that permits the deduction
140 /// of a non-type template parameter, return the declaration of that
141 /// non-type template parameter.
getDeducedParameterFromExpr(Expr * E)142 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
143 // If we are within an alias template, the expression may have undergone
144 // any number of parameter substitutions already.
145 while (1) {
146 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
147 E = IC->getSubExpr();
148 else if (SubstNonTypeTemplateParmExpr *Subst =
149 dyn_cast<SubstNonTypeTemplateParmExpr>(E))
150 E = Subst->getReplacement();
151 else
152 break;
153 }
154
155 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
156 return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
157
158 return 0;
159 }
160
161 /// \brief Determine whether two declaration pointers refer to the same
162 /// declaration.
isSameDeclaration(Decl * X,Decl * Y)163 static bool isSameDeclaration(Decl *X, Decl *Y) {
164 if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
165 X = NX->getUnderlyingDecl();
166 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
167 Y = NY->getUnderlyingDecl();
168
169 return X->getCanonicalDecl() == Y->getCanonicalDecl();
170 }
171
172 /// \brief Verify that the given, deduced template arguments are compatible.
173 ///
174 /// \returns The deduced template argument, or a NULL template argument if
175 /// the deduced template arguments were incompatible.
176 static DeducedTemplateArgument
checkDeducedTemplateArguments(ASTContext & Context,const DeducedTemplateArgument & X,const DeducedTemplateArgument & Y)177 checkDeducedTemplateArguments(ASTContext &Context,
178 const DeducedTemplateArgument &X,
179 const DeducedTemplateArgument &Y) {
180 // We have no deduction for one or both of the arguments; they're compatible.
181 if (X.isNull())
182 return Y;
183 if (Y.isNull())
184 return X;
185
186 switch (X.getKind()) {
187 case TemplateArgument::Null:
188 llvm_unreachable("Non-deduced template arguments handled above");
189
190 case TemplateArgument::Type:
191 // If two template type arguments have the same type, they're compatible.
192 if (Y.getKind() == TemplateArgument::Type &&
193 Context.hasSameType(X.getAsType(), Y.getAsType()))
194 return X;
195
196 return DeducedTemplateArgument();
197
198 case TemplateArgument::Integral:
199 // If we deduced a constant in one case and either a dependent expression or
200 // declaration in another case, keep the integral constant.
201 // If both are integral constants with the same value, keep that value.
202 if (Y.getKind() == TemplateArgument::Expression ||
203 Y.getKind() == TemplateArgument::Declaration ||
204 (Y.getKind() == TemplateArgument::Integral &&
205 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
206 return DeducedTemplateArgument(X,
207 X.wasDeducedFromArrayBound() &&
208 Y.wasDeducedFromArrayBound());
209
210 // All other combinations are incompatible.
211 return DeducedTemplateArgument();
212
213 case TemplateArgument::Template:
214 if (Y.getKind() == TemplateArgument::Template &&
215 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
216 return X;
217
218 // All other combinations are incompatible.
219 return DeducedTemplateArgument();
220
221 case TemplateArgument::TemplateExpansion:
222 if (Y.getKind() == TemplateArgument::TemplateExpansion &&
223 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
224 Y.getAsTemplateOrTemplatePattern()))
225 return X;
226
227 // All other combinations are incompatible.
228 return DeducedTemplateArgument();
229
230 case TemplateArgument::Expression:
231 // If we deduced a dependent expression in one case and either an integral
232 // constant or a declaration in another case, keep the integral constant
233 // or declaration.
234 if (Y.getKind() == TemplateArgument::Integral ||
235 Y.getKind() == TemplateArgument::Declaration)
236 return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
237 Y.wasDeducedFromArrayBound());
238
239 if (Y.getKind() == TemplateArgument::Expression) {
240 // Compare the expressions for equality
241 llvm::FoldingSetNodeID ID1, ID2;
242 X.getAsExpr()->Profile(ID1, Context, true);
243 Y.getAsExpr()->Profile(ID2, Context, true);
244 if (ID1 == ID2)
245 return X;
246 }
247
248 // All other combinations are incompatible.
249 return DeducedTemplateArgument();
250
251 case TemplateArgument::Declaration:
252 // If we deduced a declaration and a dependent expression, keep the
253 // declaration.
254 if (Y.getKind() == TemplateArgument::Expression)
255 return X;
256
257 // If we deduced a declaration and an integral constant, keep the
258 // integral constant.
259 if (Y.getKind() == TemplateArgument::Integral)
260 return Y;
261
262 // If we deduced two declarations, make sure they they refer to the
263 // same declaration.
264 if (Y.getKind() == TemplateArgument::Declaration &&
265 isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
266 X.isDeclForReferenceParam() == Y.isDeclForReferenceParam())
267 return X;
268
269 // All other combinations are incompatible.
270 return DeducedTemplateArgument();
271
272 case TemplateArgument::NullPtr:
273 // If we deduced a null pointer and a dependent expression, keep the
274 // null pointer.
275 if (Y.getKind() == TemplateArgument::Expression)
276 return X;
277
278 // If we deduced a null pointer and an integral constant, keep the
279 // integral constant.
280 if (Y.getKind() == TemplateArgument::Integral)
281 return Y;
282
283 // If we deduced two null pointers, make sure they have the same type.
284 if (Y.getKind() == TemplateArgument::NullPtr &&
285 Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
286 return X;
287
288 // All other combinations are incompatible.
289 return DeducedTemplateArgument();
290
291 case TemplateArgument::Pack:
292 if (Y.getKind() != TemplateArgument::Pack ||
293 X.pack_size() != Y.pack_size())
294 return DeducedTemplateArgument();
295
296 for (TemplateArgument::pack_iterator XA = X.pack_begin(),
297 XAEnd = X.pack_end(),
298 YA = Y.pack_begin();
299 XA != XAEnd; ++XA, ++YA) {
300 if (checkDeducedTemplateArguments(Context,
301 DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
302 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
303 .isNull())
304 return DeducedTemplateArgument();
305 }
306
307 return X;
308 }
309
310 llvm_unreachable("Invalid TemplateArgument Kind!");
311 }
312
313 /// \brief Deduce the value of the given non-type template parameter
314 /// from the given constant.
315 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,llvm::APSInt Value,QualType ValueType,bool DeducedFromArrayBound,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)316 DeduceNonTypeTemplateArgument(Sema &S,
317 NonTypeTemplateParmDecl *NTTP,
318 llvm::APSInt Value, QualType ValueType,
319 bool DeducedFromArrayBound,
320 TemplateDeductionInfo &Info,
321 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
322 assert(NTTP->getDepth() == 0 &&
323 "Cannot deduce non-type template argument with depth > 0");
324
325 DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
326 DeducedFromArrayBound);
327 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
328 Deduced[NTTP->getIndex()],
329 NewDeduced);
330 if (Result.isNull()) {
331 Info.Param = NTTP;
332 Info.FirstArg = Deduced[NTTP->getIndex()];
333 Info.SecondArg = NewDeduced;
334 return Sema::TDK_Inconsistent;
335 }
336
337 Deduced[NTTP->getIndex()] = Result;
338 return Sema::TDK_Success;
339 }
340
341 /// \brief Deduce the value of the given non-type template parameter
342 /// from the given type- or value-dependent expression.
343 ///
344 /// \returns true if deduction succeeded, false otherwise.
345 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,Expr * Value,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)346 DeduceNonTypeTemplateArgument(Sema &S,
347 NonTypeTemplateParmDecl *NTTP,
348 Expr *Value,
349 TemplateDeductionInfo &Info,
350 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
351 assert(NTTP->getDepth() == 0 &&
352 "Cannot deduce non-type template argument with depth > 0");
353 assert((Value->isTypeDependent() || Value->isValueDependent()) &&
354 "Expression template argument must be type- or value-dependent.");
355
356 DeducedTemplateArgument NewDeduced(Value);
357 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
358 Deduced[NTTP->getIndex()],
359 NewDeduced);
360
361 if (Result.isNull()) {
362 Info.Param = NTTP;
363 Info.FirstArg = Deduced[NTTP->getIndex()];
364 Info.SecondArg = NewDeduced;
365 return Sema::TDK_Inconsistent;
366 }
367
368 Deduced[NTTP->getIndex()] = Result;
369 return Sema::TDK_Success;
370 }
371
372 /// \brief Deduce the value of the given non-type template parameter
373 /// from the given declaration.
374 ///
375 /// \returns true if deduction succeeded, false otherwise.
376 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,ValueDecl * D,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)377 DeduceNonTypeTemplateArgument(Sema &S,
378 NonTypeTemplateParmDecl *NTTP,
379 ValueDecl *D,
380 TemplateDeductionInfo &Info,
381 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
382 assert(NTTP->getDepth() == 0 &&
383 "Cannot deduce non-type template argument with depth > 0");
384
385 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : 0;
386 TemplateArgument New(D, NTTP->getType()->isReferenceType());
387 DeducedTemplateArgument NewDeduced(New);
388 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
389 Deduced[NTTP->getIndex()],
390 NewDeduced);
391 if (Result.isNull()) {
392 Info.Param = NTTP;
393 Info.FirstArg = Deduced[NTTP->getIndex()];
394 Info.SecondArg = NewDeduced;
395 return Sema::TDK_Inconsistent;
396 }
397
398 Deduced[NTTP->getIndex()] = Result;
399 return Sema::TDK_Success;
400 }
401
402 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,TemplateName Param,TemplateName Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)403 DeduceTemplateArguments(Sema &S,
404 TemplateParameterList *TemplateParams,
405 TemplateName Param,
406 TemplateName Arg,
407 TemplateDeductionInfo &Info,
408 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
409 TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
410 if (!ParamDecl) {
411 // The parameter type is dependent and is not a template template parameter,
412 // so there is nothing that we can deduce.
413 return Sema::TDK_Success;
414 }
415
416 if (TemplateTemplateParmDecl *TempParam
417 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
418 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
419 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
420 Deduced[TempParam->getIndex()],
421 NewDeduced);
422 if (Result.isNull()) {
423 Info.Param = TempParam;
424 Info.FirstArg = Deduced[TempParam->getIndex()];
425 Info.SecondArg = NewDeduced;
426 return Sema::TDK_Inconsistent;
427 }
428
429 Deduced[TempParam->getIndex()] = Result;
430 return Sema::TDK_Success;
431 }
432
433 // Verify that the two template names are equivalent.
434 if (S.Context.hasSameTemplateName(Param, Arg))
435 return Sema::TDK_Success;
436
437 // Mismatch of non-dependent template parameter to argument.
438 Info.FirstArg = TemplateArgument(Param);
439 Info.SecondArg = TemplateArgument(Arg);
440 return Sema::TDK_NonDeducedMismatch;
441 }
442
443 /// \brief Deduce the template arguments by comparing the template parameter
444 /// type (which is a template-id) with the template argument type.
445 ///
446 /// \param S the Sema
447 ///
448 /// \param TemplateParams the template parameters that we are deducing
449 ///
450 /// \param Param the parameter type
451 ///
452 /// \param Arg the argument type
453 ///
454 /// \param Info information about the template argument deduction itself
455 ///
456 /// \param Deduced the deduced template arguments
457 ///
458 /// \returns the result of template argument deduction so far. Note that a
459 /// "success" result means that template argument deduction has not yet failed,
460 /// but it may still fail, later, for other reasons.
461 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateSpecializationType * Param,QualType Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)462 DeduceTemplateArguments(Sema &S,
463 TemplateParameterList *TemplateParams,
464 const TemplateSpecializationType *Param,
465 QualType Arg,
466 TemplateDeductionInfo &Info,
467 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
468 assert(Arg.isCanonical() && "Argument type must be canonical");
469
470 // Check whether the template argument is a dependent template-id.
471 if (const TemplateSpecializationType *SpecArg
472 = dyn_cast<TemplateSpecializationType>(Arg)) {
473 // Perform template argument deduction for the template name.
474 if (Sema::TemplateDeductionResult Result
475 = DeduceTemplateArguments(S, TemplateParams,
476 Param->getTemplateName(),
477 SpecArg->getTemplateName(),
478 Info, Deduced))
479 return Result;
480
481
482 // Perform template argument deduction on each template
483 // argument. Ignore any missing/extra arguments, since they could be
484 // filled in by default arguments.
485 return DeduceTemplateArguments(S, TemplateParams,
486 Param->getArgs(), Param->getNumArgs(),
487 SpecArg->getArgs(), SpecArg->getNumArgs(),
488 Info, Deduced);
489 }
490
491 // If the argument type is a class template specialization, we
492 // perform template argument deduction using its template
493 // arguments.
494 const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
495 if (!RecordArg) {
496 Info.FirstArg = TemplateArgument(QualType(Param, 0));
497 Info.SecondArg = TemplateArgument(Arg);
498 return Sema::TDK_NonDeducedMismatch;
499 }
500
501 ClassTemplateSpecializationDecl *SpecArg
502 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
503 if (!SpecArg) {
504 Info.FirstArg = TemplateArgument(QualType(Param, 0));
505 Info.SecondArg = TemplateArgument(Arg);
506 return Sema::TDK_NonDeducedMismatch;
507 }
508
509 // Perform template argument deduction for the template name.
510 if (Sema::TemplateDeductionResult Result
511 = DeduceTemplateArguments(S,
512 TemplateParams,
513 Param->getTemplateName(),
514 TemplateName(SpecArg->getSpecializedTemplate()),
515 Info, Deduced))
516 return Result;
517
518 // Perform template argument deduction for the template arguments.
519 return DeduceTemplateArguments(S, TemplateParams,
520 Param->getArgs(), Param->getNumArgs(),
521 SpecArg->getTemplateArgs().data(),
522 SpecArg->getTemplateArgs().size(),
523 Info, Deduced);
524 }
525
526 /// \brief Determines whether the given type is an opaque type that
527 /// might be more qualified when instantiated.
IsPossiblyOpaquelyQualifiedType(QualType T)528 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
529 switch (T->getTypeClass()) {
530 case Type::TypeOfExpr:
531 case Type::TypeOf:
532 case Type::DependentName:
533 case Type::Decltype:
534 case Type::UnresolvedUsing:
535 case Type::TemplateTypeParm:
536 return true;
537
538 case Type::ConstantArray:
539 case Type::IncompleteArray:
540 case Type::VariableArray:
541 case Type::DependentSizedArray:
542 return IsPossiblyOpaquelyQualifiedType(
543 cast<ArrayType>(T)->getElementType());
544
545 default:
546 return false;
547 }
548 }
549
550 /// \brief Retrieve the depth and index of a template parameter.
551 static std::pair<unsigned, unsigned>
getDepthAndIndex(NamedDecl * ND)552 getDepthAndIndex(NamedDecl *ND) {
553 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
554 return std::make_pair(TTP->getDepth(), TTP->getIndex());
555
556 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
557 return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
558
559 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
560 return std::make_pair(TTP->getDepth(), TTP->getIndex());
561 }
562
563 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
564 static std::pair<unsigned, unsigned>
getDepthAndIndex(UnexpandedParameterPack UPP)565 getDepthAndIndex(UnexpandedParameterPack UPP) {
566 if (const TemplateTypeParmType *TTP
567 = UPP.first.dyn_cast<const TemplateTypeParmType *>())
568 return std::make_pair(TTP->getDepth(), TTP->getIndex());
569
570 return getDepthAndIndex(UPP.first.get<NamedDecl *>());
571 }
572
573 /// \brief Helper function to build a TemplateParameter when we don't
574 /// know its type statically.
makeTemplateParameter(Decl * D)575 static TemplateParameter makeTemplateParameter(Decl *D) {
576 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
577 return TemplateParameter(TTP);
578 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
579 return TemplateParameter(NTTP);
580
581 return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
582 }
583
584 typedef SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
585 NewlyDeducedPacksType;
586
587 /// \brief Prepare to perform template argument deduction for all of the
588 /// arguments in a set of argument packs.
589 static void
PrepareArgumentPackDeduction(Sema & S,SmallVectorImpl<DeducedTemplateArgument> & Deduced,ArrayRef<unsigned> PackIndices,SmallVectorImpl<DeducedTemplateArgument> & SavedPacks,NewlyDeducedPacksType & NewlyDeducedPacks)590 PrepareArgumentPackDeduction(Sema &S,
591 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
592 ArrayRef<unsigned> PackIndices,
593 SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
594 NewlyDeducedPacksType &NewlyDeducedPacks) {
595 // Save the deduced template arguments for each parameter pack expanded
596 // by this pack expansion, then clear out the deduction.
597 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
598 // Save the previously-deduced argument pack, then clear it out so that we
599 // can deduce a new argument pack.
600 SavedPacks[I] = Deduced[PackIndices[I]];
601 Deduced[PackIndices[I]] = TemplateArgument();
602
603 if (!S.CurrentInstantiationScope)
604 continue;
605
606 // If the template argument pack was explicitly specified, add that to
607 // the set of deduced arguments.
608 const TemplateArgument *ExplicitArgs;
609 unsigned NumExplicitArgs;
610 if (NamedDecl *PartiallySubstitutedPack
611 = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
612 &ExplicitArgs,
613 &NumExplicitArgs)) {
614 if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
615 NewlyDeducedPacks[I].append(ExplicitArgs,
616 ExplicitArgs + NumExplicitArgs);
617 }
618 }
619 }
620
621 /// \brief Finish template argument deduction for a set of argument packs,
622 /// producing the argument packs and checking for consistency with prior
623 /// deductions.
624 static Sema::TemplateDeductionResult
FinishArgumentPackDeduction(Sema & S,TemplateParameterList * TemplateParams,bool HasAnyArguments,SmallVectorImpl<DeducedTemplateArgument> & Deduced,ArrayRef<unsigned> PackIndices,SmallVectorImpl<DeducedTemplateArgument> & SavedPacks,NewlyDeducedPacksType & NewlyDeducedPacks,TemplateDeductionInfo & Info)625 FinishArgumentPackDeduction(Sema &S,
626 TemplateParameterList *TemplateParams,
627 bool HasAnyArguments,
628 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
629 ArrayRef<unsigned> PackIndices,
630 SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
631 NewlyDeducedPacksType &NewlyDeducedPacks,
632 TemplateDeductionInfo &Info) {
633 // Build argument packs for each of the parameter packs expanded by this
634 // pack expansion.
635 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
636 if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
637 // We were not able to deduce anything for this parameter pack,
638 // so just restore the saved argument pack.
639 Deduced[PackIndices[I]] = SavedPacks[I];
640 continue;
641 }
642
643 DeducedTemplateArgument NewPack;
644
645 if (NewlyDeducedPacks[I].empty()) {
646 // If we deduced an empty argument pack, create it now.
647 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
648 } else {
649 TemplateArgument *ArgumentPack
650 = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
651 std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
652 ArgumentPack);
653 NewPack
654 = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
655 NewlyDeducedPacks[I].size()),
656 NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
657 }
658
659 DeducedTemplateArgument Result
660 = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
661 if (Result.isNull()) {
662 Info.Param
663 = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
664 Info.FirstArg = SavedPacks[I];
665 Info.SecondArg = NewPack;
666 return Sema::TDK_Inconsistent;
667 }
668
669 Deduced[PackIndices[I]] = Result;
670 }
671
672 return Sema::TDK_Success;
673 }
674
675 /// \brief Deduce the template arguments by comparing the list of parameter
676 /// types to the list of argument types, as in the parameter-type-lists of
677 /// function types (C++ [temp.deduct.type]p10).
678 ///
679 /// \param S The semantic analysis object within which we are deducing
680 ///
681 /// \param TemplateParams The template parameters that we are deducing
682 ///
683 /// \param Params The list of parameter types
684 ///
685 /// \param NumParams The number of types in \c Params
686 ///
687 /// \param Args The list of argument types
688 ///
689 /// \param NumArgs The number of types in \c Args
690 ///
691 /// \param Info information about the template argument deduction itself
692 ///
693 /// \param Deduced the deduced template arguments
694 ///
695 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
696 /// how template argument deduction is performed.
697 ///
698 /// \param PartialOrdering If true, we are performing template argument
699 /// deduction for during partial ordering for a call
700 /// (C++0x [temp.deduct.partial]).
701 ///
702 /// \param RefParamComparisons If we're performing template argument deduction
703 /// in the context of partial ordering, the set of qualifier comparisons.
704 ///
705 /// \returns the result of template argument deduction so far. Note that a
706 /// "success" result means that template argument deduction has not yet failed,
707 /// but it may still fail, later, for other reasons.
708 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const QualType * Params,unsigned NumParams,const QualType * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering=false,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons=0)709 DeduceTemplateArguments(Sema &S,
710 TemplateParameterList *TemplateParams,
711 const QualType *Params, unsigned NumParams,
712 const QualType *Args, unsigned NumArgs,
713 TemplateDeductionInfo &Info,
714 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
715 unsigned TDF,
716 bool PartialOrdering = false,
717 SmallVectorImpl<RefParamPartialOrderingComparison> *
718 RefParamComparisons = 0) {
719 // Fast-path check to see if we have too many/too few arguments.
720 if (NumParams != NumArgs &&
721 !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
722 !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
723 return Sema::TDK_MiscellaneousDeductionFailure;
724
725 // C++0x [temp.deduct.type]p10:
726 // Similarly, if P has a form that contains (T), then each parameter type
727 // Pi of the respective parameter-type- list of P is compared with the
728 // corresponding parameter type Ai of the corresponding parameter-type-list
729 // of A. [...]
730 unsigned ArgIdx = 0, ParamIdx = 0;
731 for (; ParamIdx != NumParams; ++ParamIdx) {
732 // Check argument types.
733 const PackExpansionType *Expansion
734 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
735 if (!Expansion) {
736 // Simple case: compare the parameter and argument types at this point.
737
738 // Make sure we have an argument.
739 if (ArgIdx >= NumArgs)
740 return Sema::TDK_MiscellaneousDeductionFailure;
741
742 if (isa<PackExpansionType>(Args[ArgIdx])) {
743 // C++0x [temp.deduct.type]p22:
744 // If the original function parameter associated with A is a function
745 // parameter pack and the function parameter associated with P is not
746 // a function parameter pack, then template argument deduction fails.
747 return Sema::TDK_MiscellaneousDeductionFailure;
748 }
749
750 if (Sema::TemplateDeductionResult Result
751 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
752 Params[ParamIdx], Args[ArgIdx],
753 Info, Deduced, TDF,
754 PartialOrdering,
755 RefParamComparisons))
756 return Result;
757
758 ++ArgIdx;
759 continue;
760 }
761
762 // C++0x [temp.deduct.type]p5:
763 // The non-deduced contexts are:
764 // - A function parameter pack that does not occur at the end of the
765 // parameter-declaration-clause.
766 if (ParamIdx + 1 < NumParams)
767 return Sema::TDK_Success;
768
769 // C++0x [temp.deduct.type]p10:
770 // If the parameter-declaration corresponding to Pi is a function
771 // parameter pack, then the type of its declarator- id is compared with
772 // each remaining parameter type in the parameter-type-list of A. Each
773 // comparison deduces template arguments for subsequent positions in the
774 // template parameter packs expanded by the function parameter pack.
775
776 // Compute the set of template parameter indices that correspond to
777 // parameter packs expanded by the pack expansion.
778 SmallVector<unsigned, 2> PackIndices;
779 QualType Pattern = Expansion->getPattern();
780 {
781 llvm::SmallBitVector SawIndices(TemplateParams->size());
782 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
783 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
784 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
785 unsigned Depth, Index;
786 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
787 if (Depth == 0 && !SawIndices[Index]) {
788 SawIndices[Index] = true;
789 PackIndices.push_back(Index);
790 }
791 }
792 }
793 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
794
795 // Keep track of the deduced template arguments for each parameter pack
796 // expanded by this pack expansion (the outer index) and for each
797 // template argument (the inner SmallVectors).
798 NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
799 SmallVector<DeducedTemplateArgument, 2>
800 SavedPacks(PackIndices.size());
801 PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
802 NewlyDeducedPacks);
803
804 bool HasAnyArguments = false;
805 for (; ArgIdx < NumArgs; ++ArgIdx) {
806 HasAnyArguments = true;
807
808 // Deduce template arguments from the pattern.
809 if (Sema::TemplateDeductionResult Result
810 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
811 Args[ArgIdx], Info, Deduced,
812 TDF, PartialOrdering,
813 RefParamComparisons))
814 return Result;
815
816 // Capture the deduced template arguments for each parameter pack expanded
817 // by this pack expansion, add them to the list of arguments we've deduced
818 // for that pack, then clear out the deduced argument.
819 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
820 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
821 if (!DeducedArg.isNull()) {
822 NewlyDeducedPacks[I].push_back(DeducedArg);
823 DeducedArg = DeducedTemplateArgument();
824 }
825 }
826 }
827
828 // Build argument packs for each of the parameter packs expanded by this
829 // pack expansion.
830 if (Sema::TemplateDeductionResult Result
831 = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
832 Deduced, PackIndices, SavedPacks,
833 NewlyDeducedPacks, Info))
834 return Result;
835 }
836
837 // Make sure we don't have any extra arguments.
838 if (ArgIdx < NumArgs)
839 return Sema::TDK_MiscellaneousDeductionFailure;
840
841 return Sema::TDK_Success;
842 }
843
844 /// \brief Determine whether the parameter has qualifiers that are either
845 /// inconsistent with or a superset of the argument's qualifiers.
hasInconsistentOrSupersetQualifiersOf(QualType ParamType,QualType ArgType)846 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
847 QualType ArgType) {
848 Qualifiers ParamQs = ParamType.getQualifiers();
849 Qualifiers ArgQs = ArgType.getQualifiers();
850
851 if (ParamQs == ArgQs)
852 return false;
853
854 // Mismatched (but not missing) Objective-C GC attributes.
855 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
856 ParamQs.hasObjCGCAttr())
857 return true;
858
859 // Mismatched (but not missing) address spaces.
860 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
861 ParamQs.hasAddressSpace())
862 return true;
863
864 // Mismatched (but not missing) Objective-C lifetime qualifiers.
865 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
866 ParamQs.hasObjCLifetime())
867 return true;
868
869 // CVR qualifier superset.
870 return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
871 ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
872 == ParamQs.getCVRQualifiers());
873 }
874
875 /// \brief Compare types for equality with respect to possibly compatible
876 /// function types (noreturn adjustment, implicit calling conventions). If any
877 /// of parameter and argument is not a function, just perform type comparison.
878 ///
879 /// \param Param the template parameter type.
880 ///
881 /// \param Arg the argument type.
isSameOrCompatibleFunctionType(CanQualType Param,CanQualType Arg)882 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
883 CanQualType Arg) {
884 const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
885 *ArgFunction = Arg->getAs<FunctionType>();
886
887 // Just compare if not functions.
888 if (!ParamFunction || !ArgFunction)
889 return Param == Arg;
890
891 // Noreturn adjustment.
892 QualType AdjustedParam;
893 if (IsNoReturnConversion(Param, Arg, AdjustedParam))
894 return Arg == Context.getCanonicalType(AdjustedParam);
895
896 // FIXME: Compatible calling conventions.
897
898 return Param == Arg;
899 }
900
901 /// \brief Deduce the template arguments by comparing the parameter type and
902 /// the argument type (C++ [temp.deduct.type]).
903 ///
904 /// \param S the semantic analysis object within which we are deducing
905 ///
906 /// \param TemplateParams the template parameters that we are deducing
907 ///
908 /// \param ParamIn the parameter type
909 ///
910 /// \param ArgIn the argument type
911 ///
912 /// \param Info information about the template argument deduction itself
913 ///
914 /// \param Deduced the deduced template arguments
915 ///
916 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
917 /// how template argument deduction is performed.
918 ///
919 /// \param PartialOrdering Whether we're performing template argument deduction
920 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
921 ///
922 /// \param RefParamComparisons If we're performing template argument deduction
923 /// in the context of partial ordering, the set of qualifier comparisons.
924 ///
925 /// \returns the result of template argument deduction so far. Note that a
926 /// "success" result means that template argument deduction has not yet failed,
927 /// but it may still fail, later, for other reasons.
928 static Sema::TemplateDeductionResult
DeduceTemplateArgumentsByTypeMatch(Sema & S,TemplateParameterList * TemplateParams,QualType ParamIn,QualType ArgIn,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)929 DeduceTemplateArgumentsByTypeMatch(Sema &S,
930 TemplateParameterList *TemplateParams,
931 QualType ParamIn, QualType ArgIn,
932 TemplateDeductionInfo &Info,
933 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
934 unsigned TDF,
935 bool PartialOrdering,
936 SmallVectorImpl<RefParamPartialOrderingComparison> *
937 RefParamComparisons) {
938 // We only want to look at the canonical types, since typedefs and
939 // sugar are not part of template argument deduction.
940 QualType Param = S.Context.getCanonicalType(ParamIn);
941 QualType Arg = S.Context.getCanonicalType(ArgIn);
942
943 // If the argument type is a pack expansion, look at its pattern.
944 // This isn't explicitly called out
945 if (const PackExpansionType *ArgExpansion
946 = dyn_cast<PackExpansionType>(Arg))
947 Arg = ArgExpansion->getPattern();
948
949 if (PartialOrdering) {
950 // C++0x [temp.deduct.partial]p5:
951 // Before the partial ordering is done, certain transformations are
952 // performed on the types used for partial ordering:
953 // - If P is a reference type, P is replaced by the type referred to.
954 const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
955 if (ParamRef)
956 Param = ParamRef->getPointeeType();
957
958 // - If A is a reference type, A is replaced by the type referred to.
959 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
960 if (ArgRef)
961 Arg = ArgRef->getPointeeType();
962
963 if (RefParamComparisons && ParamRef && ArgRef) {
964 // C++0x [temp.deduct.partial]p6:
965 // If both P and A were reference types (before being replaced with the
966 // type referred to above), determine which of the two types (if any) is
967 // more cv-qualified than the other; otherwise the types are considered
968 // to be equally cv-qualified for partial ordering purposes. The result
969 // of this determination will be used below.
970 //
971 // We save this information for later, using it only when deduction
972 // succeeds in both directions.
973 RefParamPartialOrderingComparison Comparison;
974 Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
975 Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
976 Comparison.Qualifiers = NeitherMoreQualified;
977
978 Qualifiers ParamQuals = Param.getQualifiers();
979 Qualifiers ArgQuals = Arg.getQualifiers();
980 if (ParamQuals.isStrictSupersetOf(ArgQuals))
981 Comparison.Qualifiers = ParamMoreQualified;
982 else if (ArgQuals.isStrictSupersetOf(ParamQuals))
983 Comparison.Qualifiers = ArgMoreQualified;
984 RefParamComparisons->push_back(Comparison);
985 }
986
987 // C++0x [temp.deduct.partial]p7:
988 // Remove any top-level cv-qualifiers:
989 // - If P is a cv-qualified type, P is replaced by the cv-unqualified
990 // version of P.
991 Param = Param.getUnqualifiedType();
992 // - If A is a cv-qualified type, A is replaced by the cv-unqualified
993 // version of A.
994 Arg = Arg.getUnqualifiedType();
995 } else {
996 // C++0x [temp.deduct.call]p4 bullet 1:
997 // - If the original P is a reference type, the deduced A (i.e., the type
998 // referred to by the reference) can be more cv-qualified than the
999 // transformed A.
1000 if (TDF & TDF_ParamWithReferenceType) {
1001 Qualifiers Quals;
1002 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
1003 Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
1004 Arg.getCVRQualifiers());
1005 Param = S.Context.getQualifiedType(UnqualParam, Quals);
1006 }
1007
1008 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
1009 // C++0x [temp.deduct.type]p10:
1010 // If P and A are function types that originated from deduction when
1011 // taking the address of a function template (14.8.2.2) or when deducing
1012 // template arguments from a function declaration (14.8.2.6) and Pi and
1013 // Ai are parameters of the top-level parameter-type-list of P and A,
1014 // respectively, Pi is adjusted if it is an rvalue reference to a
1015 // cv-unqualified template parameter and Ai is an lvalue reference, in
1016 // which case the type of Pi is changed to be the template parameter
1017 // type (i.e., T&& is changed to simply T). [ Note: As a result, when
1018 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1019 // deduced as X&. - end note ]
1020 TDF &= ~TDF_TopLevelParameterTypeList;
1021
1022 if (const RValueReferenceType *ParamRef
1023 = Param->getAs<RValueReferenceType>()) {
1024 if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
1025 !ParamRef->getPointeeType().getQualifiers())
1026 if (Arg->isLValueReferenceType())
1027 Param = ParamRef->getPointeeType();
1028 }
1029 }
1030 }
1031
1032 // C++ [temp.deduct.type]p9:
1033 // A template type argument T, a template template argument TT or a
1034 // template non-type argument i can be deduced if P and A have one of
1035 // the following forms:
1036 //
1037 // T
1038 // cv-list T
1039 if (const TemplateTypeParmType *TemplateTypeParm
1040 = Param->getAs<TemplateTypeParmType>()) {
1041 // Just skip any attempts to deduce from a placeholder type.
1042 if (Arg->isPlaceholderType())
1043 return Sema::TDK_Success;
1044
1045 unsigned Index = TemplateTypeParm->getIndex();
1046 bool RecanonicalizeArg = false;
1047
1048 // If the argument type is an array type, move the qualifiers up to the
1049 // top level, so they can be matched with the qualifiers on the parameter.
1050 if (isa<ArrayType>(Arg)) {
1051 Qualifiers Quals;
1052 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1053 if (Quals) {
1054 Arg = S.Context.getQualifiedType(Arg, Quals);
1055 RecanonicalizeArg = true;
1056 }
1057 }
1058
1059 // The argument type can not be less qualified than the parameter
1060 // type.
1061 if (!(TDF & TDF_IgnoreQualifiers) &&
1062 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1063 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1064 Info.FirstArg = TemplateArgument(Param);
1065 Info.SecondArg = TemplateArgument(Arg);
1066 return Sema::TDK_Underqualified;
1067 }
1068
1069 assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1070 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1071 QualType DeducedType = Arg;
1072
1073 // Remove any qualifiers on the parameter from the deduced type.
1074 // We checked the qualifiers for consistency above.
1075 Qualifiers DeducedQs = DeducedType.getQualifiers();
1076 Qualifiers ParamQs = Param.getQualifiers();
1077 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1078 if (ParamQs.hasObjCGCAttr())
1079 DeducedQs.removeObjCGCAttr();
1080 if (ParamQs.hasAddressSpace())
1081 DeducedQs.removeAddressSpace();
1082 if (ParamQs.hasObjCLifetime())
1083 DeducedQs.removeObjCLifetime();
1084
1085 // Objective-C ARC:
1086 // If template deduction would produce a lifetime qualifier on a type
1087 // that is not a lifetime type, template argument deduction fails.
1088 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1089 !DeducedType->isDependentType()) {
1090 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1091 Info.FirstArg = TemplateArgument(Param);
1092 Info.SecondArg = TemplateArgument(Arg);
1093 return Sema::TDK_Underqualified;
1094 }
1095
1096 // Objective-C ARC:
1097 // If template deduction would produce an argument type with lifetime type
1098 // but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1099 if (S.getLangOpts().ObjCAutoRefCount &&
1100 DeducedType->isObjCLifetimeType() &&
1101 !DeducedQs.hasObjCLifetime())
1102 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1103
1104 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1105 DeducedQs);
1106
1107 if (RecanonicalizeArg)
1108 DeducedType = S.Context.getCanonicalType(DeducedType);
1109
1110 DeducedTemplateArgument NewDeduced(DeducedType);
1111 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1112 Deduced[Index],
1113 NewDeduced);
1114 if (Result.isNull()) {
1115 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1116 Info.FirstArg = Deduced[Index];
1117 Info.SecondArg = NewDeduced;
1118 return Sema::TDK_Inconsistent;
1119 }
1120
1121 Deduced[Index] = Result;
1122 return Sema::TDK_Success;
1123 }
1124
1125 // Set up the template argument deduction information for a failure.
1126 Info.FirstArg = TemplateArgument(ParamIn);
1127 Info.SecondArg = TemplateArgument(ArgIn);
1128
1129 // If the parameter is an already-substituted template parameter
1130 // pack, do nothing: we don't know which of its arguments to look
1131 // at, so we have to wait until all of the parameter packs in this
1132 // expansion have arguments.
1133 if (isa<SubstTemplateTypeParmPackType>(Param))
1134 return Sema::TDK_Success;
1135
1136 // Check the cv-qualifiers on the parameter and argument types.
1137 CanQualType CanParam = S.Context.getCanonicalType(Param);
1138 CanQualType CanArg = S.Context.getCanonicalType(Arg);
1139 if (!(TDF & TDF_IgnoreQualifiers)) {
1140 if (TDF & TDF_ParamWithReferenceType) {
1141 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1142 return Sema::TDK_NonDeducedMismatch;
1143 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1144 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1145 return Sema::TDK_NonDeducedMismatch;
1146 }
1147
1148 // If the parameter type is not dependent, there is nothing to deduce.
1149 if (!Param->isDependentType()) {
1150 if (!(TDF & TDF_SkipNonDependent)) {
1151 bool NonDeduced = (TDF & TDF_InOverloadResolution)?
1152 !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
1153 Param != Arg;
1154 if (NonDeduced) {
1155 return Sema::TDK_NonDeducedMismatch;
1156 }
1157 }
1158 return Sema::TDK_Success;
1159 }
1160 } else if (!Param->isDependentType()) {
1161 CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
1162 ArgUnqualType = CanArg.getUnqualifiedType();
1163 bool Success = (TDF & TDF_InOverloadResolution)?
1164 S.isSameOrCompatibleFunctionType(ParamUnqualType,
1165 ArgUnqualType) :
1166 ParamUnqualType == ArgUnqualType;
1167 if (Success)
1168 return Sema::TDK_Success;
1169 }
1170
1171 switch (Param->getTypeClass()) {
1172 // Non-canonical types cannot appear here.
1173 #define NON_CANONICAL_TYPE(Class, Base) \
1174 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1175 #define TYPE(Class, Base)
1176 #include "clang/AST/TypeNodes.def"
1177
1178 case Type::TemplateTypeParm:
1179 case Type::SubstTemplateTypeParmPack:
1180 llvm_unreachable("Type nodes handled above");
1181
1182 // These types cannot be dependent, so simply check whether the types are
1183 // the same.
1184 case Type::Builtin:
1185 case Type::VariableArray:
1186 case Type::Vector:
1187 case Type::FunctionNoProto:
1188 case Type::Record:
1189 case Type::Enum:
1190 case Type::ObjCObject:
1191 case Type::ObjCInterface:
1192 case Type::ObjCObjectPointer: {
1193 if (TDF & TDF_SkipNonDependent)
1194 return Sema::TDK_Success;
1195
1196 if (TDF & TDF_IgnoreQualifiers) {
1197 Param = Param.getUnqualifiedType();
1198 Arg = Arg.getUnqualifiedType();
1199 }
1200
1201 return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1202 }
1203
1204 // _Complex T [placeholder extension]
1205 case Type::Complex:
1206 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1207 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1208 cast<ComplexType>(Param)->getElementType(),
1209 ComplexArg->getElementType(),
1210 Info, Deduced, TDF);
1211
1212 return Sema::TDK_NonDeducedMismatch;
1213
1214 // _Atomic T [extension]
1215 case Type::Atomic:
1216 if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1217 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1218 cast<AtomicType>(Param)->getValueType(),
1219 AtomicArg->getValueType(),
1220 Info, Deduced, TDF);
1221
1222 return Sema::TDK_NonDeducedMismatch;
1223
1224 // T *
1225 case Type::Pointer: {
1226 QualType PointeeType;
1227 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1228 PointeeType = PointerArg->getPointeeType();
1229 } else if (const ObjCObjectPointerType *PointerArg
1230 = Arg->getAs<ObjCObjectPointerType>()) {
1231 PointeeType = PointerArg->getPointeeType();
1232 } else {
1233 return Sema::TDK_NonDeducedMismatch;
1234 }
1235
1236 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1237 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1238 cast<PointerType>(Param)->getPointeeType(),
1239 PointeeType,
1240 Info, Deduced, SubTDF);
1241 }
1242
1243 // T &
1244 case Type::LValueReference: {
1245 const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1246 if (!ReferenceArg)
1247 return Sema::TDK_NonDeducedMismatch;
1248
1249 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1250 cast<LValueReferenceType>(Param)->getPointeeType(),
1251 ReferenceArg->getPointeeType(), Info, Deduced, 0);
1252 }
1253
1254 // T && [C++0x]
1255 case Type::RValueReference: {
1256 const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1257 if (!ReferenceArg)
1258 return Sema::TDK_NonDeducedMismatch;
1259
1260 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1261 cast<RValueReferenceType>(Param)->getPointeeType(),
1262 ReferenceArg->getPointeeType(),
1263 Info, Deduced, 0);
1264 }
1265
1266 // T [] (implied, but not stated explicitly)
1267 case Type::IncompleteArray: {
1268 const IncompleteArrayType *IncompleteArrayArg =
1269 S.Context.getAsIncompleteArrayType(Arg);
1270 if (!IncompleteArrayArg)
1271 return Sema::TDK_NonDeducedMismatch;
1272
1273 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1274 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1275 S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1276 IncompleteArrayArg->getElementType(),
1277 Info, Deduced, SubTDF);
1278 }
1279
1280 // T [integer-constant]
1281 case Type::ConstantArray: {
1282 const ConstantArrayType *ConstantArrayArg =
1283 S.Context.getAsConstantArrayType(Arg);
1284 if (!ConstantArrayArg)
1285 return Sema::TDK_NonDeducedMismatch;
1286
1287 const ConstantArrayType *ConstantArrayParm =
1288 S.Context.getAsConstantArrayType(Param);
1289 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1290 return Sema::TDK_NonDeducedMismatch;
1291
1292 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1293 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1294 ConstantArrayParm->getElementType(),
1295 ConstantArrayArg->getElementType(),
1296 Info, Deduced, SubTDF);
1297 }
1298
1299 // type [i]
1300 case Type::DependentSizedArray: {
1301 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1302 if (!ArrayArg)
1303 return Sema::TDK_NonDeducedMismatch;
1304
1305 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1306
1307 // Check the element type of the arrays
1308 const DependentSizedArrayType *DependentArrayParm
1309 = S.Context.getAsDependentSizedArrayType(Param);
1310 if (Sema::TemplateDeductionResult Result
1311 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1312 DependentArrayParm->getElementType(),
1313 ArrayArg->getElementType(),
1314 Info, Deduced, SubTDF))
1315 return Result;
1316
1317 // Determine the array bound is something we can deduce.
1318 NonTypeTemplateParmDecl *NTTP
1319 = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1320 if (!NTTP)
1321 return Sema::TDK_Success;
1322
1323 // We can perform template argument deduction for the given non-type
1324 // template parameter.
1325 assert(NTTP->getDepth() == 0 &&
1326 "Cannot deduce non-type template argument at depth > 0");
1327 if (const ConstantArrayType *ConstantArrayArg
1328 = dyn_cast<ConstantArrayType>(ArrayArg)) {
1329 llvm::APSInt Size(ConstantArrayArg->getSize());
1330 return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1331 S.Context.getSizeType(),
1332 /*ArrayBound=*/true,
1333 Info, Deduced);
1334 }
1335 if (const DependentSizedArrayType *DependentArrayArg
1336 = dyn_cast<DependentSizedArrayType>(ArrayArg))
1337 if (DependentArrayArg->getSizeExpr())
1338 return DeduceNonTypeTemplateArgument(S, NTTP,
1339 DependentArrayArg->getSizeExpr(),
1340 Info, Deduced);
1341
1342 // Incomplete type does not match a dependently-sized array type
1343 return Sema::TDK_NonDeducedMismatch;
1344 }
1345
1346 // type(*)(T)
1347 // T(*)()
1348 // T(*)(T)
1349 case Type::FunctionProto: {
1350 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1351 const FunctionProtoType *FunctionProtoArg =
1352 dyn_cast<FunctionProtoType>(Arg);
1353 if (!FunctionProtoArg)
1354 return Sema::TDK_NonDeducedMismatch;
1355
1356 const FunctionProtoType *FunctionProtoParam =
1357 cast<FunctionProtoType>(Param);
1358
1359 if (FunctionProtoParam->getTypeQuals()
1360 != FunctionProtoArg->getTypeQuals() ||
1361 FunctionProtoParam->getRefQualifier()
1362 != FunctionProtoArg->getRefQualifier() ||
1363 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1364 return Sema::TDK_NonDeducedMismatch;
1365
1366 // Check return types.
1367 if (Sema::TemplateDeductionResult Result
1368 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1369 FunctionProtoParam->getResultType(),
1370 FunctionProtoArg->getResultType(),
1371 Info, Deduced, 0))
1372 return Result;
1373
1374 return DeduceTemplateArguments(S, TemplateParams,
1375 FunctionProtoParam->arg_type_begin(),
1376 FunctionProtoParam->getNumArgs(),
1377 FunctionProtoArg->arg_type_begin(),
1378 FunctionProtoArg->getNumArgs(),
1379 Info, Deduced, SubTDF);
1380 }
1381
1382 case Type::InjectedClassName: {
1383 // Treat a template's injected-class-name as if the template
1384 // specialization type had been used.
1385 Param = cast<InjectedClassNameType>(Param)
1386 ->getInjectedSpecializationType();
1387 assert(isa<TemplateSpecializationType>(Param) &&
1388 "injected class name is not a template specialization type");
1389 // fall through
1390 }
1391
1392 // template-name<T> (where template-name refers to a class template)
1393 // template-name<i>
1394 // TT<T>
1395 // TT<i>
1396 // TT<>
1397 case Type::TemplateSpecialization: {
1398 const TemplateSpecializationType *SpecParam
1399 = cast<TemplateSpecializationType>(Param);
1400
1401 // Try to deduce template arguments from the template-id.
1402 Sema::TemplateDeductionResult Result
1403 = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1404 Info, Deduced);
1405
1406 if (Result && (TDF & TDF_DerivedClass)) {
1407 // C++ [temp.deduct.call]p3b3:
1408 // If P is a class, and P has the form template-id, then A can be a
1409 // derived class of the deduced A. Likewise, if P is a pointer to a
1410 // class of the form template-id, A can be a pointer to a derived
1411 // class pointed to by the deduced A.
1412 //
1413 // More importantly:
1414 // These alternatives are considered only if type deduction would
1415 // otherwise fail.
1416 if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1417 // We cannot inspect base classes as part of deduction when the type
1418 // is incomplete, so either instantiate any templates necessary to
1419 // complete the type, or skip over it if it cannot be completed.
1420 if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1421 return Result;
1422
1423 // Use data recursion to crawl through the list of base classes.
1424 // Visited contains the set of nodes we have already visited, while
1425 // ToVisit is our stack of records that we still need to visit.
1426 llvm::SmallPtrSet<const RecordType *, 8> Visited;
1427 SmallVector<const RecordType *, 8> ToVisit;
1428 ToVisit.push_back(RecordT);
1429 bool Successful = false;
1430 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1431 Deduced.end());
1432 while (!ToVisit.empty()) {
1433 // Retrieve the next class in the inheritance hierarchy.
1434 const RecordType *NextT = ToVisit.back();
1435 ToVisit.pop_back();
1436
1437 // If we have already seen this type, skip it.
1438 if (!Visited.insert(NextT))
1439 continue;
1440
1441 // If this is a base class, try to perform template argument
1442 // deduction from it.
1443 if (NextT != RecordT) {
1444 TemplateDeductionInfo BaseInfo(Info.getLocation());
1445 Sema::TemplateDeductionResult BaseResult
1446 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1447 QualType(NextT, 0), BaseInfo,
1448 Deduced);
1449
1450 // If template argument deduction for this base was successful,
1451 // note that we had some success. Otherwise, ignore any deductions
1452 // from this base class.
1453 if (BaseResult == Sema::TDK_Success) {
1454 Successful = true;
1455 DeducedOrig.clear();
1456 DeducedOrig.append(Deduced.begin(), Deduced.end());
1457 Info.Param = BaseInfo.Param;
1458 Info.FirstArg = BaseInfo.FirstArg;
1459 Info.SecondArg = BaseInfo.SecondArg;
1460 }
1461 else
1462 Deduced = DeducedOrig;
1463 }
1464
1465 // Visit base classes
1466 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1467 for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1468 BaseEnd = Next->bases_end();
1469 Base != BaseEnd; ++Base) {
1470 assert(Base->getType()->isRecordType() &&
1471 "Base class that isn't a record?");
1472 ToVisit.push_back(Base->getType()->getAs<RecordType>());
1473 }
1474 }
1475
1476 if (Successful)
1477 return Sema::TDK_Success;
1478 }
1479
1480 }
1481
1482 return Result;
1483 }
1484
1485 // T type::*
1486 // T T::*
1487 // T (type::*)()
1488 // type (T::*)()
1489 // type (type::*)(T)
1490 // type (T::*)(T)
1491 // T (type::*)(T)
1492 // T (T::*)()
1493 // T (T::*)(T)
1494 case Type::MemberPointer: {
1495 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1496 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1497 if (!MemPtrArg)
1498 return Sema::TDK_NonDeducedMismatch;
1499
1500 if (Sema::TemplateDeductionResult Result
1501 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1502 MemPtrParam->getPointeeType(),
1503 MemPtrArg->getPointeeType(),
1504 Info, Deduced,
1505 TDF & TDF_IgnoreQualifiers))
1506 return Result;
1507
1508 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1509 QualType(MemPtrParam->getClass(), 0),
1510 QualType(MemPtrArg->getClass(), 0),
1511 Info, Deduced,
1512 TDF & TDF_IgnoreQualifiers);
1513 }
1514
1515 // (clang extension)
1516 //
1517 // type(^)(T)
1518 // T(^)()
1519 // T(^)(T)
1520 case Type::BlockPointer: {
1521 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1522 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1523
1524 if (!BlockPtrArg)
1525 return Sema::TDK_NonDeducedMismatch;
1526
1527 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1528 BlockPtrParam->getPointeeType(),
1529 BlockPtrArg->getPointeeType(),
1530 Info, Deduced, 0);
1531 }
1532
1533 // (clang extension)
1534 //
1535 // T __attribute__(((ext_vector_type(<integral constant>))))
1536 case Type::ExtVector: {
1537 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1538 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1539 // Make sure that the vectors have the same number of elements.
1540 if (VectorParam->getNumElements() != VectorArg->getNumElements())
1541 return Sema::TDK_NonDeducedMismatch;
1542
1543 // Perform deduction on the element types.
1544 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1545 VectorParam->getElementType(),
1546 VectorArg->getElementType(),
1547 Info, Deduced, TDF);
1548 }
1549
1550 if (const DependentSizedExtVectorType *VectorArg
1551 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1552 // We can't check the number of elements, since the argument has a
1553 // dependent number of elements. This can only occur during partial
1554 // ordering.
1555
1556 // Perform deduction on the element types.
1557 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1558 VectorParam->getElementType(),
1559 VectorArg->getElementType(),
1560 Info, Deduced, TDF);
1561 }
1562
1563 return Sema::TDK_NonDeducedMismatch;
1564 }
1565
1566 // (clang extension)
1567 //
1568 // T __attribute__(((ext_vector_type(N))))
1569 case Type::DependentSizedExtVector: {
1570 const DependentSizedExtVectorType *VectorParam
1571 = cast<DependentSizedExtVectorType>(Param);
1572
1573 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1574 // Perform deduction on the element types.
1575 if (Sema::TemplateDeductionResult Result
1576 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1577 VectorParam->getElementType(),
1578 VectorArg->getElementType(),
1579 Info, Deduced, TDF))
1580 return Result;
1581
1582 // Perform deduction on the vector size, if we can.
1583 NonTypeTemplateParmDecl *NTTP
1584 = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1585 if (!NTTP)
1586 return Sema::TDK_Success;
1587
1588 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1589 ArgSize = VectorArg->getNumElements();
1590 return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1591 false, Info, Deduced);
1592 }
1593
1594 if (const DependentSizedExtVectorType *VectorArg
1595 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1596 // Perform deduction on the element types.
1597 if (Sema::TemplateDeductionResult Result
1598 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1599 VectorParam->getElementType(),
1600 VectorArg->getElementType(),
1601 Info, Deduced, TDF))
1602 return Result;
1603
1604 // Perform deduction on the vector size, if we can.
1605 NonTypeTemplateParmDecl *NTTP
1606 = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1607 if (!NTTP)
1608 return Sema::TDK_Success;
1609
1610 return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1611 Info, Deduced);
1612 }
1613
1614 return Sema::TDK_NonDeducedMismatch;
1615 }
1616
1617 case Type::TypeOfExpr:
1618 case Type::TypeOf:
1619 case Type::DependentName:
1620 case Type::UnresolvedUsing:
1621 case Type::Decltype:
1622 case Type::UnaryTransform:
1623 case Type::Auto:
1624 case Type::DependentTemplateSpecialization:
1625 case Type::PackExpansion:
1626 // No template argument deduction for these types
1627 return Sema::TDK_Success;
1628 }
1629
1630 llvm_unreachable("Invalid Type Class!");
1631 }
1632
1633 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument & Param,TemplateArgument Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1634 DeduceTemplateArguments(Sema &S,
1635 TemplateParameterList *TemplateParams,
1636 const TemplateArgument &Param,
1637 TemplateArgument Arg,
1638 TemplateDeductionInfo &Info,
1639 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1640 // If the template argument is a pack expansion, perform template argument
1641 // deduction against the pattern of that expansion. This only occurs during
1642 // partial ordering.
1643 if (Arg.isPackExpansion())
1644 Arg = Arg.getPackExpansionPattern();
1645
1646 switch (Param.getKind()) {
1647 case TemplateArgument::Null:
1648 llvm_unreachable("Null template argument in parameter list");
1649
1650 case TemplateArgument::Type:
1651 if (Arg.getKind() == TemplateArgument::Type)
1652 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1653 Param.getAsType(),
1654 Arg.getAsType(),
1655 Info, Deduced, 0);
1656 Info.FirstArg = Param;
1657 Info.SecondArg = Arg;
1658 return Sema::TDK_NonDeducedMismatch;
1659
1660 case TemplateArgument::Template:
1661 if (Arg.getKind() == TemplateArgument::Template)
1662 return DeduceTemplateArguments(S, TemplateParams,
1663 Param.getAsTemplate(),
1664 Arg.getAsTemplate(), Info, Deduced);
1665 Info.FirstArg = Param;
1666 Info.SecondArg = Arg;
1667 return Sema::TDK_NonDeducedMismatch;
1668
1669 case TemplateArgument::TemplateExpansion:
1670 llvm_unreachable("caller should handle pack expansions");
1671
1672 case TemplateArgument::Declaration:
1673 if (Arg.getKind() == TemplateArgument::Declaration &&
1674 isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()) &&
1675 Param.isDeclForReferenceParam() == Arg.isDeclForReferenceParam())
1676 return Sema::TDK_Success;
1677
1678 Info.FirstArg = Param;
1679 Info.SecondArg = Arg;
1680 return Sema::TDK_NonDeducedMismatch;
1681
1682 case TemplateArgument::NullPtr:
1683 if (Arg.getKind() == TemplateArgument::NullPtr &&
1684 S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
1685 return Sema::TDK_Success;
1686
1687 Info.FirstArg = Param;
1688 Info.SecondArg = Arg;
1689 return Sema::TDK_NonDeducedMismatch;
1690
1691 case TemplateArgument::Integral:
1692 if (Arg.getKind() == TemplateArgument::Integral) {
1693 if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
1694 return Sema::TDK_Success;
1695
1696 Info.FirstArg = Param;
1697 Info.SecondArg = Arg;
1698 return Sema::TDK_NonDeducedMismatch;
1699 }
1700
1701 if (Arg.getKind() == TemplateArgument::Expression) {
1702 Info.FirstArg = Param;
1703 Info.SecondArg = Arg;
1704 return Sema::TDK_NonDeducedMismatch;
1705 }
1706
1707 Info.FirstArg = Param;
1708 Info.SecondArg = Arg;
1709 return Sema::TDK_NonDeducedMismatch;
1710
1711 case TemplateArgument::Expression: {
1712 if (NonTypeTemplateParmDecl *NTTP
1713 = getDeducedParameterFromExpr(Param.getAsExpr())) {
1714 if (Arg.getKind() == TemplateArgument::Integral)
1715 return DeduceNonTypeTemplateArgument(S, NTTP,
1716 Arg.getAsIntegral(),
1717 Arg.getIntegralType(),
1718 /*ArrayBound=*/false,
1719 Info, Deduced);
1720 if (Arg.getKind() == TemplateArgument::Expression)
1721 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1722 Info, Deduced);
1723 if (Arg.getKind() == TemplateArgument::Declaration)
1724 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1725 Info, Deduced);
1726
1727 Info.FirstArg = Param;
1728 Info.SecondArg = Arg;
1729 return Sema::TDK_NonDeducedMismatch;
1730 }
1731
1732 // Can't deduce anything, but that's okay.
1733 return Sema::TDK_Success;
1734 }
1735 case TemplateArgument::Pack:
1736 llvm_unreachable("Argument packs should be expanded by the caller!");
1737 }
1738
1739 llvm_unreachable("Invalid TemplateArgument Kind!");
1740 }
1741
1742 /// \brief Determine whether there is a template argument to be used for
1743 /// deduction.
1744 ///
1745 /// This routine "expands" argument packs in-place, overriding its input
1746 /// parameters so that \c Args[ArgIdx] will be the available template argument.
1747 ///
1748 /// \returns true if there is another template argument (which will be at
1749 /// \c Args[ArgIdx]), false otherwise.
hasTemplateArgumentForDeduction(const TemplateArgument * & Args,unsigned & ArgIdx,unsigned & NumArgs)1750 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1751 unsigned &ArgIdx,
1752 unsigned &NumArgs) {
1753 if (ArgIdx == NumArgs)
1754 return false;
1755
1756 const TemplateArgument &Arg = Args[ArgIdx];
1757 if (Arg.getKind() != TemplateArgument::Pack)
1758 return true;
1759
1760 assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1761 Args = Arg.pack_begin();
1762 NumArgs = Arg.pack_size();
1763 ArgIdx = 0;
1764 return ArgIdx < NumArgs;
1765 }
1766
1767 /// \brief Determine whether the given set of template arguments has a pack
1768 /// expansion that is not the last template argument.
hasPackExpansionBeforeEnd(const TemplateArgument * Args,unsigned NumArgs)1769 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1770 unsigned NumArgs) {
1771 unsigned ArgIdx = 0;
1772 while (ArgIdx < NumArgs) {
1773 const TemplateArgument &Arg = Args[ArgIdx];
1774
1775 // Unwrap argument packs.
1776 if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1777 Args = Arg.pack_begin();
1778 NumArgs = Arg.pack_size();
1779 ArgIdx = 0;
1780 continue;
1781 }
1782
1783 ++ArgIdx;
1784 if (ArgIdx == NumArgs)
1785 return false;
1786
1787 if (Arg.isPackExpansion())
1788 return true;
1789 }
1790
1791 return false;
1792 }
1793
1794 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument * Params,unsigned NumParams,const TemplateArgument * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1795 DeduceTemplateArguments(Sema &S,
1796 TemplateParameterList *TemplateParams,
1797 const TemplateArgument *Params, unsigned NumParams,
1798 const TemplateArgument *Args, unsigned NumArgs,
1799 TemplateDeductionInfo &Info,
1800 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1801 // C++0x [temp.deduct.type]p9:
1802 // If the template argument list of P contains a pack expansion that is not
1803 // the last template argument, the entire template argument list is a
1804 // non-deduced context.
1805 if (hasPackExpansionBeforeEnd(Params, NumParams))
1806 return Sema::TDK_Success;
1807
1808 // C++0x [temp.deduct.type]p9:
1809 // If P has a form that contains <T> or <i>, then each argument Pi of the
1810 // respective template argument list P is compared with the corresponding
1811 // argument Ai of the corresponding template argument list of A.
1812 unsigned ArgIdx = 0, ParamIdx = 0;
1813 for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1814 ++ParamIdx) {
1815 if (!Params[ParamIdx].isPackExpansion()) {
1816 // The simple case: deduce template arguments by matching Pi and Ai.
1817
1818 // Check whether we have enough arguments.
1819 if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1820 return Sema::TDK_Success;
1821
1822 if (Args[ArgIdx].isPackExpansion()) {
1823 // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1824 // but applied to pack expansions that are template arguments.
1825 return Sema::TDK_MiscellaneousDeductionFailure;
1826 }
1827
1828 // Perform deduction for this Pi/Ai pair.
1829 if (Sema::TemplateDeductionResult Result
1830 = DeduceTemplateArguments(S, TemplateParams,
1831 Params[ParamIdx], Args[ArgIdx],
1832 Info, Deduced))
1833 return Result;
1834
1835 // Move to the next argument.
1836 ++ArgIdx;
1837 continue;
1838 }
1839
1840 // The parameter is a pack expansion.
1841
1842 // C++0x [temp.deduct.type]p9:
1843 // If Pi is a pack expansion, then the pattern of Pi is compared with
1844 // each remaining argument in the template argument list of A. Each
1845 // comparison deduces template arguments for subsequent positions in the
1846 // template parameter packs expanded by Pi.
1847 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1848
1849 // Compute the set of template parameter indices that correspond to
1850 // parameter packs expanded by the pack expansion.
1851 SmallVector<unsigned, 2> PackIndices;
1852 {
1853 llvm::SmallBitVector SawIndices(TemplateParams->size());
1854 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1855 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1856 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1857 unsigned Depth, Index;
1858 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1859 if (Depth == 0 && !SawIndices[Index]) {
1860 SawIndices[Index] = true;
1861 PackIndices.push_back(Index);
1862 }
1863 }
1864 }
1865 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1866
1867 // FIXME: If there are no remaining arguments, we can bail out early
1868 // and set any deduced parameter packs to an empty argument pack.
1869 // The latter part of this is a (minor) correctness issue.
1870
1871 // Save the deduced template arguments for each parameter pack expanded
1872 // by this pack expansion, then clear out the deduction.
1873 SmallVector<DeducedTemplateArgument, 2>
1874 SavedPacks(PackIndices.size());
1875 NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
1876 PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1877 NewlyDeducedPacks);
1878
1879 // Keep track of the deduced template arguments for each parameter pack
1880 // expanded by this pack expansion (the outer index) and for each
1881 // template argument (the inner SmallVectors).
1882 bool HasAnyArguments = false;
1883 while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1884 HasAnyArguments = true;
1885
1886 // Deduce template arguments from the pattern.
1887 if (Sema::TemplateDeductionResult Result
1888 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1889 Info, Deduced))
1890 return Result;
1891
1892 // Capture the deduced template arguments for each parameter pack expanded
1893 // by this pack expansion, add them to the list of arguments we've deduced
1894 // for that pack, then clear out the deduced argument.
1895 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1896 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1897 if (!DeducedArg.isNull()) {
1898 NewlyDeducedPacks[I].push_back(DeducedArg);
1899 DeducedArg = DeducedTemplateArgument();
1900 }
1901 }
1902
1903 ++ArgIdx;
1904 }
1905
1906 // Build argument packs for each of the parameter packs expanded by this
1907 // pack expansion.
1908 if (Sema::TemplateDeductionResult Result
1909 = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1910 Deduced, PackIndices, SavedPacks,
1911 NewlyDeducedPacks, Info))
1912 return Result;
1913 }
1914
1915 return Sema::TDK_Success;
1916 }
1917
1918 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgumentList & ParamList,const TemplateArgumentList & ArgList,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1919 DeduceTemplateArguments(Sema &S,
1920 TemplateParameterList *TemplateParams,
1921 const TemplateArgumentList &ParamList,
1922 const TemplateArgumentList &ArgList,
1923 TemplateDeductionInfo &Info,
1924 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1925 return DeduceTemplateArguments(S, TemplateParams,
1926 ParamList.data(), ParamList.size(),
1927 ArgList.data(), ArgList.size(),
1928 Info, Deduced);
1929 }
1930
1931 /// \brief Determine whether two template arguments are the same.
isSameTemplateArg(ASTContext & Context,const TemplateArgument & X,const TemplateArgument & Y)1932 static bool isSameTemplateArg(ASTContext &Context,
1933 const TemplateArgument &X,
1934 const TemplateArgument &Y) {
1935 if (X.getKind() != Y.getKind())
1936 return false;
1937
1938 switch (X.getKind()) {
1939 case TemplateArgument::Null:
1940 llvm_unreachable("Comparing NULL template argument");
1941
1942 case TemplateArgument::Type:
1943 return Context.getCanonicalType(X.getAsType()) ==
1944 Context.getCanonicalType(Y.getAsType());
1945
1946 case TemplateArgument::Declaration:
1947 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
1948 X.isDeclForReferenceParam() == Y.isDeclForReferenceParam();
1949
1950 case TemplateArgument::NullPtr:
1951 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
1952
1953 case TemplateArgument::Template:
1954 case TemplateArgument::TemplateExpansion:
1955 return Context.getCanonicalTemplateName(
1956 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1957 Context.getCanonicalTemplateName(
1958 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1959
1960 case TemplateArgument::Integral:
1961 return X.getAsIntegral() == Y.getAsIntegral();
1962
1963 case TemplateArgument::Expression: {
1964 llvm::FoldingSetNodeID XID, YID;
1965 X.getAsExpr()->Profile(XID, Context, true);
1966 Y.getAsExpr()->Profile(YID, Context, true);
1967 return XID == YID;
1968 }
1969
1970 case TemplateArgument::Pack:
1971 if (X.pack_size() != Y.pack_size())
1972 return false;
1973
1974 for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1975 XPEnd = X.pack_end(),
1976 YP = Y.pack_begin();
1977 XP != XPEnd; ++XP, ++YP)
1978 if (!isSameTemplateArg(Context, *XP, *YP))
1979 return false;
1980
1981 return true;
1982 }
1983
1984 llvm_unreachable("Invalid TemplateArgument Kind!");
1985 }
1986
1987 /// \brief Allocate a TemplateArgumentLoc where all locations have
1988 /// been initialized to the given location.
1989 ///
1990 /// \param S The semantic analysis object.
1991 ///
1992 /// \param Arg The template argument we are producing template argument
1993 /// location information for.
1994 ///
1995 /// \param NTTPType For a declaration template argument, the type of
1996 /// the non-type template parameter that corresponds to this template
1997 /// argument.
1998 ///
1999 /// \param Loc The source location to use for the resulting template
2000 /// argument.
2001 static TemplateArgumentLoc
getTrivialTemplateArgumentLoc(Sema & S,const TemplateArgument & Arg,QualType NTTPType,SourceLocation Loc)2002 getTrivialTemplateArgumentLoc(Sema &S,
2003 const TemplateArgument &Arg,
2004 QualType NTTPType,
2005 SourceLocation Loc) {
2006 switch (Arg.getKind()) {
2007 case TemplateArgument::Null:
2008 llvm_unreachable("Can't get a NULL template argument here");
2009
2010 case TemplateArgument::Type:
2011 return TemplateArgumentLoc(Arg,
2012 S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2013
2014 case TemplateArgument::Declaration: {
2015 Expr *E
2016 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2017 .takeAs<Expr>();
2018 return TemplateArgumentLoc(TemplateArgument(E), E);
2019 }
2020
2021 case TemplateArgument::NullPtr: {
2022 Expr *E
2023 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2024 .takeAs<Expr>();
2025 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2026 E);
2027 }
2028
2029 case TemplateArgument::Integral: {
2030 Expr *E
2031 = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
2032 return TemplateArgumentLoc(TemplateArgument(E), E);
2033 }
2034
2035 case TemplateArgument::Template:
2036 case TemplateArgument::TemplateExpansion: {
2037 NestedNameSpecifierLocBuilder Builder;
2038 TemplateName Template = Arg.getAsTemplate();
2039 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2040 Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
2041 else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2042 Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
2043
2044 if (Arg.getKind() == TemplateArgument::Template)
2045 return TemplateArgumentLoc(Arg,
2046 Builder.getWithLocInContext(S.Context),
2047 Loc);
2048
2049
2050 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
2051 Loc, Loc);
2052 }
2053
2054 case TemplateArgument::Expression:
2055 return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2056
2057 case TemplateArgument::Pack:
2058 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2059 }
2060
2061 llvm_unreachable("Invalid TemplateArgument Kind!");
2062 }
2063
2064
2065 /// \brief Convert the given deduced template argument and add it to the set of
2066 /// fully-converted template arguments.
2067 static bool
ConvertDeducedTemplateArgument(Sema & S,NamedDecl * Param,DeducedTemplateArgument Arg,NamedDecl * Template,QualType NTTPType,unsigned ArgumentPackIndex,TemplateDeductionInfo & Info,bool InFunctionTemplate,SmallVectorImpl<TemplateArgument> & Output)2068 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
2069 DeducedTemplateArgument Arg,
2070 NamedDecl *Template,
2071 QualType NTTPType,
2072 unsigned ArgumentPackIndex,
2073 TemplateDeductionInfo &Info,
2074 bool InFunctionTemplate,
2075 SmallVectorImpl<TemplateArgument> &Output) {
2076 if (Arg.getKind() == TemplateArgument::Pack) {
2077 // This is a template argument pack, so check each of its arguments against
2078 // the template parameter.
2079 SmallVector<TemplateArgument, 2> PackedArgsBuilder;
2080 for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
2081 PAEnd = Arg.pack_end();
2082 PA != PAEnd; ++PA) {
2083 // When converting the deduced template argument, append it to the
2084 // general output list. We need to do this so that the template argument
2085 // checking logic has all of the prior template arguments available.
2086 DeducedTemplateArgument InnerArg(*PA);
2087 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2088 if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
2089 NTTPType, PackedArgsBuilder.size(),
2090 Info, InFunctionTemplate, Output))
2091 return true;
2092
2093 // Move the converted template argument into our argument pack.
2094 PackedArgsBuilder.push_back(Output.back());
2095 Output.pop_back();
2096 }
2097
2098 // Create the resulting argument pack.
2099 Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
2100 PackedArgsBuilder.data(),
2101 PackedArgsBuilder.size()));
2102 return false;
2103 }
2104
2105 // Convert the deduced template argument into a template
2106 // argument that we can check, almost as if the user had written
2107 // the template argument explicitly.
2108 TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
2109 Info.getLocation());
2110
2111 // Check the template argument, converting it as necessary.
2112 return S.CheckTemplateArgument(Param, ArgLoc,
2113 Template,
2114 Template->getLocation(),
2115 Template->getSourceRange().getEnd(),
2116 ArgumentPackIndex,
2117 Output,
2118 InFunctionTemplate
2119 ? (Arg.wasDeducedFromArrayBound()
2120 ? Sema::CTAK_DeducedFromArrayBound
2121 : Sema::CTAK_Deduced)
2122 : Sema::CTAK_Specified);
2123 }
2124
2125 /// Complete template argument deduction for a class template partial
2126 /// specialization.
2127 static Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(Sema & S,ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2128 FinishTemplateArgumentDeduction(Sema &S,
2129 ClassTemplatePartialSpecializationDecl *Partial,
2130 const TemplateArgumentList &TemplateArgs,
2131 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2132 TemplateDeductionInfo &Info) {
2133 // Unevaluated SFINAE context.
2134 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2135 Sema::SFINAETrap Trap(S);
2136
2137 Sema::ContextRAII SavedContext(S, Partial);
2138
2139 // C++ [temp.deduct.type]p2:
2140 // [...] or if any template argument remains neither deduced nor
2141 // explicitly specified, template argument deduction fails.
2142 SmallVector<TemplateArgument, 4> Builder;
2143 TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2144 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2145 NamedDecl *Param = PartialParams->getParam(I);
2146 if (Deduced[I].isNull()) {
2147 Info.Param = makeTemplateParameter(Param);
2148 return Sema::TDK_Incomplete;
2149 }
2150
2151 // We have deduced this argument, so it still needs to be
2152 // checked and converted.
2153
2154 // First, for a non-type template parameter type that is
2155 // initialized by a declaration, we need the type of the
2156 // corresponding non-type template parameter.
2157 QualType NTTPType;
2158 if (NonTypeTemplateParmDecl *NTTP
2159 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2160 NTTPType = NTTP->getType();
2161 if (NTTPType->isDependentType()) {
2162 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2163 Builder.data(), Builder.size());
2164 NTTPType = S.SubstType(NTTPType,
2165 MultiLevelTemplateArgumentList(TemplateArgs),
2166 NTTP->getLocation(),
2167 NTTP->getDeclName());
2168 if (NTTPType.isNull()) {
2169 Info.Param = makeTemplateParameter(Param);
2170 // FIXME: These template arguments are temporary. Free them!
2171 Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2172 Builder.data(),
2173 Builder.size()));
2174 return Sema::TDK_SubstitutionFailure;
2175 }
2176 }
2177 }
2178
2179 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2180 Partial, NTTPType, 0, Info, false,
2181 Builder)) {
2182 Info.Param = makeTemplateParameter(Param);
2183 // FIXME: These template arguments are temporary. Free them!
2184 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2185 Builder.size()));
2186 return Sema::TDK_SubstitutionFailure;
2187 }
2188 }
2189
2190 // Form the template argument list from the deduced template arguments.
2191 TemplateArgumentList *DeducedArgumentList
2192 = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2193 Builder.size());
2194
2195 Info.reset(DeducedArgumentList);
2196
2197 // Substitute the deduced template arguments into the template
2198 // arguments of the class template partial specialization, and
2199 // verify that the instantiated template arguments are both valid
2200 // and are equivalent to the template arguments originally provided
2201 // to the class template.
2202 LocalInstantiationScope InstScope(S);
2203 ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2204 const TemplateArgumentLoc *PartialTemplateArgs
2205 = Partial->getTemplateArgsAsWritten();
2206
2207 // Note that we don't provide the langle and rangle locations.
2208 TemplateArgumentListInfo InstArgs;
2209
2210 if (S.Subst(PartialTemplateArgs,
2211 Partial->getNumTemplateArgsAsWritten(),
2212 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2213 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2214 if (ParamIdx >= Partial->getTemplateParameters()->size())
2215 ParamIdx = Partial->getTemplateParameters()->size() - 1;
2216
2217 Decl *Param
2218 = const_cast<NamedDecl *>(
2219 Partial->getTemplateParameters()->getParam(ParamIdx));
2220 Info.Param = makeTemplateParameter(Param);
2221 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2222 return Sema::TDK_SubstitutionFailure;
2223 }
2224
2225 SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2226 if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2227 InstArgs, false, ConvertedInstArgs))
2228 return Sema::TDK_SubstitutionFailure;
2229
2230 TemplateParameterList *TemplateParams
2231 = ClassTemplate->getTemplateParameters();
2232 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2233 TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2234 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2235 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2236 Info.FirstArg = TemplateArgs[I];
2237 Info.SecondArg = InstArg;
2238 return Sema::TDK_NonDeducedMismatch;
2239 }
2240 }
2241
2242 if (Trap.hasErrorOccurred())
2243 return Sema::TDK_SubstitutionFailure;
2244
2245 return Sema::TDK_Success;
2246 }
2247
2248 /// \brief Perform template argument deduction to determine whether
2249 /// the given template arguments match the given class template
2250 /// partial specialization per C++ [temp.class.spec.match].
2251 Sema::TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)2252 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2253 const TemplateArgumentList &TemplateArgs,
2254 TemplateDeductionInfo &Info) {
2255 if (Partial->isInvalidDecl())
2256 return TDK_Invalid;
2257
2258 // C++ [temp.class.spec.match]p2:
2259 // A partial specialization matches a given actual template
2260 // argument list if the template arguments of the partial
2261 // specialization can be deduced from the actual template argument
2262 // list (14.8.2).
2263
2264 // Unevaluated SFINAE context.
2265 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2266 SFINAETrap Trap(*this);
2267
2268 SmallVector<DeducedTemplateArgument, 4> Deduced;
2269 Deduced.resize(Partial->getTemplateParameters()->size());
2270 if (TemplateDeductionResult Result
2271 = ::DeduceTemplateArguments(*this,
2272 Partial->getTemplateParameters(),
2273 Partial->getTemplateArgs(),
2274 TemplateArgs, Info, Deduced))
2275 return Result;
2276
2277 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2278 InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2279 DeducedArgs, Info);
2280 if (Inst)
2281 return TDK_InstantiationDepth;
2282
2283 if (Trap.hasErrorOccurred())
2284 return Sema::TDK_SubstitutionFailure;
2285
2286 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2287 Deduced, Info);
2288 }
2289
2290 /// Complete template argument deduction for a variable template partial
2291 /// specialization.
2292 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version.
FinishTemplateArgumentDeduction(Sema & S,VarTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2293 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
2294 Sema &S, VarTemplatePartialSpecializationDecl *Partial,
2295 const TemplateArgumentList &TemplateArgs,
2296 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2297 TemplateDeductionInfo &Info) {
2298 // Unevaluated SFINAE context.
2299 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2300 Sema::SFINAETrap Trap(S);
2301
2302 // C++ [temp.deduct.type]p2:
2303 // [...] or if any template argument remains neither deduced nor
2304 // explicitly specified, template argument deduction fails.
2305 SmallVector<TemplateArgument, 4> Builder;
2306 TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2307 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2308 NamedDecl *Param = PartialParams->getParam(I);
2309 if (Deduced[I].isNull()) {
2310 Info.Param = makeTemplateParameter(Param);
2311 return Sema::TDK_Incomplete;
2312 }
2313
2314 // We have deduced this argument, so it still needs to be
2315 // checked and converted.
2316
2317 // First, for a non-type template parameter type that is
2318 // initialized by a declaration, we need the type of the
2319 // corresponding non-type template parameter.
2320 QualType NTTPType;
2321 if (NonTypeTemplateParmDecl *NTTP =
2322 dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2323 NTTPType = NTTP->getType();
2324 if (NTTPType->isDependentType()) {
2325 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2326 Builder.data(), Builder.size());
2327 NTTPType =
2328 S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
2329 NTTP->getLocation(), NTTP->getDeclName());
2330 if (NTTPType.isNull()) {
2331 Info.Param = makeTemplateParameter(Param);
2332 // FIXME: These template arguments are temporary. Free them!
2333 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2334 Builder.size()));
2335 return Sema::TDK_SubstitutionFailure;
2336 }
2337 }
2338 }
2339
2340 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
2341 0, Info, false, Builder)) {
2342 Info.Param = makeTemplateParameter(Param);
2343 // FIXME: These template arguments are temporary. Free them!
2344 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2345 Builder.size()));
2346 return Sema::TDK_SubstitutionFailure;
2347 }
2348 }
2349
2350 // Form the template argument list from the deduced template arguments.
2351 TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
2352 S.Context, Builder.data(), Builder.size());
2353
2354 Info.reset(DeducedArgumentList);
2355
2356 // Substitute the deduced template arguments into the template
2357 // arguments of the class template partial specialization, and
2358 // verify that the instantiated template arguments are both valid
2359 // and are equivalent to the template arguments originally provided
2360 // to the class template.
2361 LocalInstantiationScope InstScope(S);
2362 VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
2363 const TemplateArgumentLoc *PartialTemplateArgs =
2364 Partial->getTemplateArgsAsWritten();
2365
2366 // Note that we don't provide the langle and rangle locations.
2367 TemplateArgumentListInfo InstArgs;
2368
2369 if (S.Subst(PartialTemplateArgs, Partial->getNumTemplateArgsAsWritten(),
2370 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2371 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2372 if (ParamIdx >= Partial->getTemplateParameters()->size())
2373 ParamIdx = Partial->getTemplateParameters()->size() - 1;
2374
2375 Decl *Param = const_cast<NamedDecl *>(
2376 Partial->getTemplateParameters()->getParam(ParamIdx));
2377 Info.Param = makeTemplateParameter(Param);
2378 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2379 return Sema::TDK_SubstitutionFailure;
2380 }
2381 SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2382 if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
2383 false, ConvertedInstArgs))
2384 return Sema::TDK_SubstitutionFailure;
2385
2386 TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
2387 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2388 TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2389 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2390 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2391 Info.FirstArg = TemplateArgs[I];
2392 Info.SecondArg = InstArg;
2393 return Sema::TDK_NonDeducedMismatch;
2394 }
2395 }
2396
2397 if (Trap.hasErrorOccurred())
2398 return Sema::TDK_SubstitutionFailure;
2399
2400 return Sema::TDK_Success;
2401 }
2402
2403 /// \brief Perform template argument deduction to determine whether
2404 /// the given template arguments match the given variable template
2405 /// partial specialization per C++ [temp.class.spec.match].
2406 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version.
2407 Sema::TemplateDeductionResult
DeduceTemplateArguments(VarTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)2408 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
2409 const TemplateArgumentList &TemplateArgs,
2410 TemplateDeductionInfo &Info) {
2411 if (Partial->isInvalidDecl())
2412 return TDK_Invalid;
2413
2414 // C++ [temp.class.spec.match]p2:
2415 // A partial specialization matches a given actual template
2416 // argument list if the template arguments of the partial
2417 // specialization can be deduced from the actual template argument
2418 // list (14.8.2).
2419
2420 // Unevaluated SFINAE context.
2421 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2422 SFINAETrap Trap(*this);
2423
2424 SmallVector<DeducedTemplateArgument, 4> Deduced;
2425 Deduced.resize(Partial->getTemplateParameters()->size());
2426 if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
2427 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
2428 TemplateArgs, Info, Deduced))
2429 return Result;
2430
2431 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2432 InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2433 DeducedArgs, Info);
2434 if (Inst)
2435 return TDK_InstantiationDepth;
2436
2437 if (Trap.hasErrorOccurred())
2438 return Sema::TDK_SubstitutionFailure;
2439
2440 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2441 Deduced, Info);
2442 }
2443
2444 /// \brief Determine whether the given type T is a simple-template-id type.
isSimpleTemplateIdType(QualType T)2445 static bool isSimpleTemplateIdType(QualType T) {
2446 if (const TemplateSpecializationType *Spec
2447 = T->getAs<TemplateSpecializationType>())
2448 return Spec->getTemplateName().getAsTemplateDecl() != 0;
2449
2450 return false;
2451 }
2452
2453 /// \brief Substitute the explicitly-provided template arguments into the
2454 /// given function template according to C++ [temp.arg.explicit].
2455 ///
2456 /// \param FunctionTemplate the function template into which the explicit
2457 /// template arguments will be substituted.
2458 ///
2459 /// \param ExplicitTemplateArgs the explicitly-specified template
2460 /// arguments.
2461 ///
2462 /// \param Deduced the deduced template arguments, which will be populated
2463 /// with the converted and checked explicit template arguments.
2464 ///
2465 /// \param ParamTypes will be populated with the instantiated function
2466 /// parameters.
2467 ///
2468 /// \param FunctionType if non-NULL, the result type of the function template
2469 /// will also be instantiated and the pointed-to value will be updated with
2470 /// the instantiated function type.
2471 ///
2472 /// \param Info if substitution fails for any reason, this object will be
2473 /// populated with more information about the failure.
2474 ///
2475 /// \returns TDK_Success if substitution was successful, or some failure
2476 /// condition.
2477 Sema::TemplateDeductionResult
SubstituteExplicitTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo & ExplicitTemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<QualType> & ParamTypes,QualType * FunctionType,TemplateDeductionInfo & Info)2478 Sema::SubstituteExplicitTemplateArguments(
2479 FunctionTemplateDecl *FunctionTemplate,
2480 TemplateArgumentListInfo &ExplicitTemplateArgs,
2481 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2482 SmallVectorImpl<QualType> &ParamTypes,
2483 QualType *FunctionType,
2484 TemplateDeductionInfo &Info) {
2485 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2486 TemplateParameterList *TemplateParams
2487 = FunctionTemplate->getTemplateParameters();
2488
2489 if (ExplicitTemplateArgs.size() == 0) {
2490 // No arguments to substitute; just copy over the parameter types and
2491 // fill in the function type.
2492 for (FunctionDecl::param_iterator P = Function->param_begin(),
2493 PEnd = Function->param_end();
2494 P != PEnd;
2495 ++P)
2496 ParamTypes.push_back((*P)->getType());
2497
2498 if (FunctionType)
2499 *FunctionType = Function->getType();
2500 return TDK_Success;
2501 }
2502
2503 // Unevaluated SFINAE context.
2504 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2505 SFINAETrap Trap(*this);
2506
2507 // C++ [temp.arg.explicit]p3:
2508 // Template arguments that are present shall be specified in the
2509 // declaration order of their corresponding template-parameters. The
2510 // template argument list shall not specify more template-arguments than
2511 // there are corresponding template-parameters.
2512 SmallVector<TemplateArgument, 4> Builder;
2513
2514 // Enter a new template instantiation context where we check the
2515 // explicitly-specified template arguments against this function template,
2516 // and then substitute them into the function parameter types.
2517 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2518 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2519 FunctionTemplate, DeducedArgs,
2520 ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2521 Info);
2522 if (Inst)
2523 return TDK_InstantiationDepth;
2524
2525 if (CheckTemplateArgumentList(FunctionTemplate,
2526 SourceLocation(),
2527 ExplicitTemplateArgs,
2528 true,
2529 Builder) || Trap.hasErrorOccurred()) {
2530 unsigned Index = Builder.size();
2531 if (Index >= TemplateParams->size())
2532 Index = TemplateParams->size() - 1;
2533 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2534 return TDK_InvalidExplicitArguments;
2535 }
2536
2537 // Form the template argument list from the explicitly-specified
2538 // template arguments.
2539 TemplateArgumentList *ExplicitArgumentList
2540 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2541 Info.reset(ExplicitArgumentList);
2542
2543 // Template argument deduction and the final substitution should be
2544 // done in the context of the templated declaration. Explicit
2545 // argument substitution, on the other hand, needs to happen in the
2546 // calling context.
2547 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2548
2549 // If we deduced template arguments for a template parameter pack,
2550 // note that the template argument pack is partially substituted and record
2551 // the explicit template arguments. They'll be used as part of deduction
2552 // for this template parameter pack.
2553 for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2554 const TemplateArgument &Arg = Builder[I];
2555 if (Arg.getKind() == TemplateArgument::Pack) {
2556 CurrentInstantiationScope->SetPartiallySubstitutedPack(
2557 TemplateParams->getParam(I),
2558 Arg.pack_begin(),
2559 Arg.pack_size());
2560 break;
2561 }
2562 }
2563
2564 const FunctionProtoType *Proto
2565 = Function->getType()->getAs<FunctionProtoType>();
2566 assert(Proto && "Function template does not have a prototype?");
2567
2568 // Instantiate the types of each of the function parameters given the
2569 // explicitly-specified template arguments. If the function has a trailing
2570 // return type, substitute it after the arguments to ensure we substitute
2571 // in lexical order.
2572 if (Proto->hasTrailingReturn()) {
2573 if (SubstParmTypes(Function->getLocation(),
2574 Function->param_begin(), Function->getNumParams(),
2575 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2576 ParamTypes))
2577 return TDK_SubstitutionFailure;
2578 }
2579
2580 // Instantiate the return type.
2581 // FIXME: exception-specifications?
2582 QualType ResultType;
2583 {
2584 // C++11 [expr.prim.general]p3:
2585 // If a declaration declares a member function or member function
2586 // template of a class X, the expression this is a prvalue of type
2587 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
2588 // and the end of the function-definition, member-declarator, or
2589 // declarator.
2590 unsigned ThisTypeQuals = 0;
2591 CXXRecordDecl *ThisContext = 0;
2592 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2593 ThisContext = Method->getParent();
2594 ThisTypeQuals = Method->getTypeQualifiers();
2595 }
2596
2597 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
2598 getLangOpts().CPlusPlus11);
2599
2600 ResultType = SubstType(Proto->getResultType(),
2601 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2602 Function->getTypeSpecStartLoc(),
2603 Function->getDeclName());
2604 if (ResultType.isNull() || Trap.hasErrorOccurred())
2605 return TDK_SubstitutionFailure;
2606 }
2607
2608 // Instantiate the types of each of the function parameters given the
2609 // explicitly-specified template arguments if we didn't do so earlier.
2610 if (!Proto->hasTrailingReturn() &&
2611 SubstParmTypes(Function->getLocation(),
2612 Function->param_begin(), Function->getNumParams(),
2613 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2614 ParamTypes))
2615 return TDK_SubstitutionFailure;
2616
2617 if (FunctionType) {
2618 *FunctionType = BuildFunctionType(ResultType, ParamTypes,
2619 Function->getLocation(),
2620 Function->getDeclName(),
2621 Proto->getExtProtoInfo());
2622 if (FunctionType->isNull() || Trap.hasErrorOccurred())
2623 return TDK_SubstitutionFailure;
2624 }
2625
2626 // C++ [temp.arg.explicit]p2:
2627 // Trailing template arguments that can be deduced (14.8.2) may be
2628 // omitted from the list of explicit template-arguments. If all of the
2629 // template arguments can be deduced, they may all be omitted; in this
2630 // case, the empty template argument list <> itself may also be omitted.
2631 //
2632 // Take all of the explicitly-specified arguments and put them into
2633 // the set of deduced template arguments. Explicitly-specified
2634 // parameter packs, however, will be set to NULL since the deduction
2635 // mechanisms handle explicitly-specified argument packs directly.
2636 Deduced.reserve(TemplateParams->size());
2637 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2638 const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2639 if (Arg.getKind() == TemplateArgument::Pack)
2640 Deduced.push_back(DeducedTemplateArgument());
2641 else
2642 Deduced.push_back(Arg);
2643 }
2644
2645 return TDK_Success;
2646 }
2647
2648 /// \brief Check whether the deduced argument type for a call to a function
2649 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
2650 static bool
CheckOriginalCallArgDeduction(Sema & S,Sema::OriginalCallArg OriginalArg,QualType DeducedA)2651 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2652 QualType DeducedA) {
2653 ASTContext &Context = S.Context;
2654
2655 QualType A = OriginalArg.OriginalArgType;
2656 QualType OriginalParamType = OriginalArg.OriginalParamType;
2657
2658 // Check for type equality (top-level cv-qualifiers are ignored).
2659 if (Context.hasSameUnqualifiedType(A, DeducedA))
2660 return false;
2661
2662 // Strip off references on the argument types; they aren't needed for
2663 // the following checks.
2664 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2665 DeducedA = DeducedARef->getPointeeType();
2666 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2667 A = ARef->getPointeeType();
2668
2669 // C++ [temp.deduct.call]p4:
2670 // [...] However, there are three cases that allow a difference:
2671 // - If the original P is a reference type, the deduced A (i.e., the
2672 // type referred to by the reference) can be more cv-qualified than
2673 // the transformed A.
2674 if (const ReferenceType *OriginalParamRef
2675 = OriginalParamType->getAs<ReferenceType>()) {
2676 // We don't want to keep the reference around any more.
2677 OriginalParamType = OriginalParamRef->getPointeeType();
2678
2679 Qualifiers AQuals = A.getQualifiers();
2680 Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2681
2682 // Under Objective-C++ ARC, the deduced type may have implicitly been
2683 // given strong lifetime. If so, update the original qualifiers to
2684 // include this strong lifetime.
2685 if (S.getLangOpts().ObjCAutoRefCount &&
2686 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
2687 AQuals.getObjCLifetime() == Qualifiers::OCL_None) {
2688 AQuals.setObjCLifetime(Qualifiers::OCL_Strong);
2689 }
2690
2691 if (AQuals == DeducedAQuals) {
2692 // Qualifiers match; there's nothing to do.
2693 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2694 return true;
2695 } else {
2696 // Qualifiers are compatible, so have the argument type adopt the
2697 // deduced argument type's qualifiers as if we had performed the
2698 // qualification conversion.
2699 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2700 }
2701 }
2702
2703 // - The transformed A can be another pointer or pointer to member
2704 // type that can be converted to the deduced A via a qualification
2705 // conversion.
2706 //
2707 // Also allow conversions which merely strip [[noreturn]] from function types
2708 // (recursively) as an extension.
2709 // FIXME: Currently, this doesn't place nicely with qualfication conversions.
2710 bool ObjCLifetimeConversion = false;
2711 QualType ResultTy;
2712 if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2713 (S.IsQualificationConversion(A, DeducedA, false,
2714 ObjCLifetimeConversion) ||
2715 S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2716 return false;
2717
2718
2719 // - If P is a class and P has the form simple-template-id, then the
2720 // transformed A can be a derived class of the deduced A. [...]
2721 // [...] Likewise, if P is a pointer to a class of the form
2722 // simple-template-id, the transformed A can be a pointer to a
2723 // derived class pointed to by the deduced A.
2724 if (const PointerType *OriginalParamPtr
2725 = OriginalParamType->getAs<PointerType>()) {
2726 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2727 if (const PointerType *APtr = A->getAs<PointerType>()) {
2728 if (A->getPointeeType()->isRecordType()) {
2729 OriginalParamType = OriginalParamPtr->getPointeeType();
2730 DeducedA = DeducedAPtr->getPointeeType();
2731 A = APtr->getPointeeType();
2732 }
2733 }
2734 }
2735 }
2736
2737 if (Context.hasSameUnqualifiedType(A, DeducedA))
2738 return false;
2739
2740 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2741 S.IsDerivedFrom(A, DeducedA))
2742 return false;
2743
2744 return true;
2745 }
2746
2747 /// \brief Finish template argument deduction for a function template,
2748 /// checking the deduced template arguments for completeness and forming
2749 /// the function template specialization.
2750 ///
2751 /// \param OriginalCallArgs If non-NULL, the original call arguments against
2752 /// which the deduced argument types should be compared.
2753 Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(FunctionTemplateDecl * FunctionTemplate,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned NumExplicitlySpecified,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,SmallVectorImpl<OriginalCallArg> const * OriginalCallArgs)2754 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2755 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2756 unsigned NumExplicitlySpecified,
2757 FunctionDecl *&Specialization,
2758 TemplateDeductionInfo &Info,
2759 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
2760 TemplateParameterList *TemplateParams
2761 = FunctionTemplate->getTemplateParameters();
2762
2763 // Unevaluated SFINAE context.
2764 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2765 SFINAETrap Trap(*this);
2766
2767 // Enter a new template instantiation context while we instantiate the
2768 // actual function declaration.
2769 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2770 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2771 FunctionTemplate, DeducedArgs,
2772 ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2773 Info);
2774 if (Inst)
2775 return TDK_InstantiationDepth;
2776
2777 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2778
2779 // C++ [temp.deduct.type]p2:
2780 // [...] or if any template argument remains neither deduced nor
2781 // explicitly specified, template argument deduction fails.
2782 SmallVector<TemplateArgument, 4> Builder;
2783 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2784 NamedDecl *Param = TemplateParams->getParam(I);
2785
2786 if (!Deduced[I].isNull()) {
2787 if (I < NumExplicitlySpecified) {
2788 // We have already fully type-checked and converted this
2789 // argument, because it was explicitly-specified. Just record the
2790 // presence of this argument.
2791 Builder.push_back(Deduced[I]);
2792 continue;
2793 }
2794
2795 // We have deduced this argument, so it still needs to be
2796 // checked and converted.
2797
2798 // First, for a non-type template parameter type that is
2799 // initialized by a declaration, we need the type of the
2800 // corresponding non-type template parameter.
2801 QualType NTTPType;
2802 if (NonTypeTemplateParmDecl *NTTP
2803 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2804 NTTPType = NTTP->getType();
2805 if (NTTPType->isDependentType()) {
2806 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2807 Builder.data(), Builder.size());
2808 NTTPType = SubstType(NTTPType,
2809 MultiLevelTemplateArgumentList(TemplateArgs),
2810 NTTP->getLocation(),
2811 NTTP->getDeclName());
2812 if (NTTPType.isNull()) {
2813 Info.Param = makeTemplateParameter(Param);
2814 // FIXME: These template arguments are temporary. Free them!
2815 Info.reset(TemplateArgumentList::CreateCopy(Context,
2816 Builder.data(),
2817 Builder.size()));
2818 return TDK_SubstitutionFailure;
2819 }
2820 }
2821 }
2822
2823 if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2824 FunctionTemplate, NTTPType, 0, Info,
2825 true, Builder)) {
2826 Info.Param = makeTemplateParameter(Param);
2827 // FIXME: These template arguments are temporary. Free them!
2828 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2829 Builder.size()));
2830 return TDK_SubstitutionFailure;
2831 }
2832
2833 continue;
2834 }
2835
2836 // C++0x [temp.arg.explicit]p3:
2837 // A trailing template parameter pack (14.5.3) not otherwise deduced will
2838 // be deduced to an empty sequence of template arguments.
2839 // FIXME: Where did the word "trailing" come from?
2840 if (Param->isTemplateParameterPack()) {
2841 // We may have had explicitly-specified template arguments for this
2842 // template parameter pack. If so, our empty deduction extends the
2843 // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2844 const TemplateArgument *ExplicitArgs;
2845 unsigned NumExplicitArgs;
2846 if (CurrentInstantiationScope &&
2847 CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2848 &NumExplicitArgs)
2849 == Param) {
2850 Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2851
2852 // Forget the partially-substituted pack; it's substitution is now
2853 // complete.
2854 CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2855 } else {
2856 Builder.push_back(TemplateArgument::getEmptyPack());
2857 }
2858 continue;
2859 }
2860
2861 // Substitute into the default template argument, if available.
2862 bool HasDefaultArg = false;
2863 TemplateArgumentLoc DefArg
2864 = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2865 FunctionTemplate->getLocation(),
2866 FunctionTemplate->getSourceRange().getEnd(),
2867 Param,
2868 Builder, HasDefaultArg);
2869
2870 // If there was no default argument, deduction is incomplete.
2871 if (DefArg.getArgument().isNull()) {
2872 Info.Param = makeTemplateParameter(
2873 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2874 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2875 Builder.size()));
2876 return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
2877 }
2878
2879 // Check whether we can actually use the default argument.
2880 if (CheckTemplateArgument(Param, DefArg,
2881 FunctionTemplate,
2882 FunctionTemplate->getLocation(),
2883 FunctionTemplate->getSourceRange().getEnd(),
2884 0, Builder,
2885 CTAK_Specified)) {
2886 Info.Param = makeTemplateParameter(
2887 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2888 // FIXME: These template arguments are temporary. Free them!
2889 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2890 Builder.size()));
2891 return TDK_SubstitutionFailure;
2892 }
2893
2894 // If we get here, we successfully used the default template argument.
2895 }
2896
2897 // Form the template argument list from the deduced template arguments.
2898 TemplateArgumentList *DeducedArgumentList
2899 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2900 Info.reset(DeducedArgumentList);
2901
2902 // Substitute the deduced template arguments into the function template
2903 // declaration to produce the function template specialization.
2904 DeclContext *Owner = FunctionTemplate->getDeclContext();
2905 if (FunctionTemplate->getFriendObjectKind())
2906 Owner = FunctionTemplate->getLexicalDeclContext();
2907 Specialization = cast_or_null<FunctionDecl>(
2908 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2909 MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2910 if (!Specialization || Specialization->isInvalidDecl())
2911 return TDK_SubstitutionFailure;
2912
2913 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2914 FunctionTemplate->getCanonicalDecl());
2915
2916 // If the template argument list is owned by the function template
2917 // specialization, release it.
2918 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2919 !Trap.hasErrorOccurred())
2920 Info.take();
2921
2922 // There may have been an error that did not prevent us from constructing a
2923 // declaration. Mark the declaration invalid and return with a substitution
2924 // failure.
2925 if (Trap.hasErrorOccurred()) {
2926 Specialization->setInvalidDecl(true);
2927 return TDK_SubstitutionFailure;
2928 }
2929
2930 if (OriginalCallArgs) {
2931 // C++ [temp.deduct.call]p4:
2932 // In general, the deduction process attempts to find template argument
2933 // values that will make the deduced A identical to A (after the type A
2934 // is transformed as described above). [...]
2935 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2936 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2937 unsigned ParamIdx = OriginalArg.ArgIdx;
2938
2939 if (ParamIdx >= Specialization->getNumParams())
2940 continue;
2941
2942 QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2943 if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2944 return Sema::TDK_SubstitutionFailure;
2945 }
2946 }
2947
2948 // If we suppressed any diagnostics while performing template argument
2949 // deduction, and if we haven't already instantiated this declaration,
2950 // keep track of these diagnostics. They'll be emitted if this specialization
2951 // is actually used.
2952 if (Info.diag_begin() != Info.diag_end()) {
2953 SuppressedDiagnosticsMap::iterator
2954 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2955 if (Pos == SuppressedDiagnostics.end())
2956 SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2957 .append(Info.diag_begin(), Info.diag_end());
2958 }
2959
2960 return TDK_Success;
2961 }
2962
2963 /// Gets the type of a function for template-argument-deducton
2964 /// purposes when it's considered as part of an overload set.
GetTypeOfFunction(Sema & S,const OverloadExpr::FindResult & R,FunctionDecl * Fn)2965 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
2966 FunctionDecl *Fn) {
2967 // We may need to deduce the return type of the function now.
2968 if (S.getLangOpts().CPlusPlus1y && Fn->getResultType()->isUndeducedType() &&
2969 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/false))
2970 return QualType();
2971
2972 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2973 if (Method->isInstance()) {
2974 // An instance method that's referenced in a form that doesn't
2975 // look like a member pointer is just invalid.
2976 if (!R.HasFormOfMemberPointer) return QualType();
2977
2978 return S.Context.getMemberPointerType(Fn->getType(),
2979 S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
2980 }
2981
2982 if (!R.IsAddressOfOperand) return Fn->getType();
2983 return S.Context.getPointerType(Fn->getType());
2984 }
2985
2986 /// Apply the deduction rules for overload sets.
2987 ///
2988 /// \return the null type if this argument should be treated as an
2989 /// undeduced context
2990 static QualType
ResolveOverloadForDeduction(Sema & S,TemplateParameterList * TemplateParams,Expr * Arg,QualType ParamType,bool ParamWasReference)2991 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2992 Expr *Arg, QualType ParamType,
2993 bool ParamWasReference) {
2994
2995 OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2996
2997 OverloadExpr *Ovl = R.Expression;
2998
2999 // C++0x [temp.deduct.call]p4
3000 unsigned TDF = 0;
3001 if (ParamWasReference)
3002 TDF |= TDF_ParamWithReferenceType;
3003 if (R.IsAddressOfOperand)
3004 TDF |= TDF_IgnoreQualifiers;
3005
3006 // C++0x [temp.deduct.call]p6:
3007 // When P is a function type, pointer to function type, or pointer
3008 // to member function type:
3009
3010 if (!ParamType->isFunctionType() &&
3011 !ParamType->isFunctionPointerType() &&
3012 !ParamType->isMemberFunctionPointerType()) {
3013 if (Ovl->hasExplicitTemplateArgs()) {
3014 // But we can still look for an explicit specialization.
3015 if (FunctionDecl *ExplicitSpec
3016 = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
3017 return GetTypeOfFunction(S, R, ExplicitSpec);
3018 }
3019
3020 return QualType();
3021 }
3022
3023 // Gather the explicit template arguments, if any.
3024 TemplateArgumentListInfo ExplicitTemplateArgs;
3025 if (Ovl->hasExplicitTemplateArgs())
3026 Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
3027 QualType Match;
3028 for (UnresolvedSetIterator I = Ovl->decls_begin(),
3029 E = Ovl->decls_end(); I != E; ++I) {
3030 NamedDecl *D = (*I)->getUnderlyingDecl();
3031
3032 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
3033 // - If the argument is an overload set containing one or more
3034 // function templates, the parameter is treated as a
3035 // non-deduced context.
3036 if (!Ovl->hasExplicitTemplateArgs())
3037 return QualType();
3038
3039 // Otherwise, see if we can resolve a function type
3040 FunctionDecl *Specialization = 0;
3041 TemplateDeductionInfo Info(Ovl->getNameLoc());
3042 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
3043 Specialization, Info))
3044 continue;
3045
3046 D = Specialization;
3047 }
3048
3049 FunctionDecl *Fn = cast<FunctionDecl>(D);
3050 QualType ArgType = GetTypeOfFunction(S, R, Fn);
3051 if (ArgType.isNull()) continue;
3052
3053 // Function-to-pointer conversion.
3054 if (!ParamWasReference && ParamType->isPointerType() &&
3055 ArgType->isFunctionType())
3056 ArgType = S.Context.getPointerType(ArgType);
3057
3058 // - If the argument is an overload set (not containing function
3059 // templates), trial argument deduction is attempted using each
3060 // of the members of the set. If deduction succeeds for only one
3061 // of the overload set members, that member is used as the
3062 // argument value for the deduction. If deduction succeeds for
3063 // more than one member of the overload set the parameter is
3064 // treated as a non-deduced context.
3065
3066 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
3067 // Type deduction is done independently for each P/A pair, and
3068 // the deduced template argument values are then combined.
3069 // So we do not reject deductions which were made elsewhere.
3070 SmallVector<DeducedTemplateArgument, 8>
3071 Deduced(TemplateParams->size());
3072 TemplateDeductionInfo Info(Ovl->getNameLoc());
3073 Sema::TemplateDeductionResult Result
3074 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3075 ArgType, Info, Deduced, TDF);
3076 if (Result) continue;
3077 if (!Match.isNull()) return QualType();
3078 Match = ArgType;
3079 }
3080
3081 return Match;
3082 }
3083
3084 /// \brief Perform the adjustments to the parameter and argument types
3085 /// described in C++ [temp.deduct.call].
3086 ///
3087 /// \returns true if the caller should not attempt to perform any template
3088 /// argument deduction based on this P/A pair because the argument is an
3089 /// overloaded function set that could not be resolved.
AdjustFunctionParmAndArgTypesForDeduction(Sema & S,TemplateParameterList * TemplateParams,QualType & ParamType,QualType & ArgType,Expr * Arg,unsigned & TDF)3090 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
3091 TemplateParameterList *TemplateParams,
3092 QualType &ParamType,
3093 QualType &ArgType,
3094 Expr *Arg,
3095 unsigned &TDF) {
3096 // C++0x [temp.deduct.call]p3:
3097 // If P is a cv-qualified type, the top level cv-qualifiers of P's type
3098 // are ignored for type deduction.
3099 if (ParamType.hasQualifiers())
3100 ParamType = ParamType.getUnqualifiedType();
3101 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
3102 if (ParamRefType) {
3103 QualType PointeeType = ParamRefType->getPointeeType();
3104
3105 // If the argument has incomplete array type, try to complete its type.
3106 if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
3107 ArgType = Arg->getType();
3108
3109 // [C++0x] If P is an rvalue reference to a cv-unqualified
3110 // template parameter and the argument is an lvalue, the type
3111 // "lvalue reference to A" is used in place of A for type
3112 // deduction.
3113 if (isa<RValueReferenceType>(ParamType)) {
3114 if (!PointeeType.getQualifiers() &&
3115 isa<TemplateTypeParmType>(PointeeType) &&
3116 Arg->Classify(S.Context).isLValue() &&
3117 Arg->getType() != S.Context.OverloadTy &&
3118 Arg->getType() != S.Context.BoundMemberTy)
3119 ArgType = S.Context.getLValueReferenceType(ArgType);
3120 }
3121
3122 // [...] If P is a reference type, the type referred to by P is used
3123 // for type deduction.
3124 ParamType = PointeeType;
3125 }
3126
3127 // Overload sets usually make this parameter an undeduced
3128 // context, but there are sometimes special circumstances.
3129 if (ArgType == S.Context.OverloadTy) {
3130 ArgType = ResolveOverloadForDeduction(S, TemplateParams,
3131 Arg, ParamType,
3132 ParamRefType != 0);
3133 if (ArgType.isNull())
3134 return true;
3135 }
3136
3137 if (ParamRefType) {
3138 // C++0x [temp.deduct.call]p3:
3139 // [...] If P is of the form T&&, where T is a template parameter, and
3140 // the argument is an lvalue, the type A& is used in place of A for
3141 // type deduction.
3142 if (ParamRefType->isRValueReferenceType() &&
3143 ParamRefType->getAs<TemplateTypeParmType>() &&
3144 Arg->isLValue())
3145 ArgType = S.Context.getLValueReferenceType(ArgType);
3146 } else {
3147 // C++ [temp.deduct.call]p2:
3148 // If P is not a reference type:
3149 // - If A is an array type, the pointer type produced by the
3150 // array-to-pointer standard conversion (4.2) is used in place of
3151 // A for type deduction; otherwise,
3152 if (ArgType->isArrayType())
3153 ArgType = S.Context.getArrayDecayedType(ArgType);
3154 // - If A is a function type, the pointer type produced by the
3155 // function-to-pointer standard conversion (4.3) is used in place
3156 // of A for type deduction; otherwise,
3157 else if (ArgType->isFunctionType())
3158 ArgType = S.Context.getPointerType(ArgType);
3159 else {
3160 // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3161 // type are ignored for type deduction.
3162 ArgType = ArgType.getUnqualifiedType();
3163 }
3164 }
3165
3166 // C++0x [temp.deduct.call]p4:
3167 // In general, the deduction process attempts to find template argument
3168 // values that will make the deduced A identical to A (after the type A
3169 // is transformed as described above). [...]
3170 TDF = TDF_SkipNonDependent;
3171
3172 // - If the original P is a reference type, the deduced A (i.e., the
3173 // type referred to by the reference) can be more cv-qualified than
3174 // the transformed A.
3175 if (ParamRefType)
3176 TDF |= TDF_ParamWithReferenceType;
3177 // - The transformed A can be another pointer or pointer to member
3178 // type that can be converted to the deduced A via a qualification
3179 // conversion (4.4).
3180 if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3181 ArgType->isObjCObjectPointerType())
3182 TDF |= TDF_IgnoreQualifiers;
3183 // - If P is a class and P has the form simple-template-id, then the
3184 // transformed A can be a derived class of the deduced A. Likewise,
3185 // if P is a pointer to a class of the form simple-template-id, the
3186 // transformed A can be a pointer to a derived class pointed to by
3187 // the deduced A.
3188 if (isSimpleTemplateIdType(ParamType) ||
3189 (isa<PointerType>(ParamType) &&
3190 isSimpleTemplateIdType(
3191 ParamType->getAs<PointerType>()->getPointeeType())))
3192 TDF |= TDF_DerivedClass;
3193
3194 return false;
3195 }
3196
3197 static bool hasDeducibleTemplateParameters(Sema &S,
3198 FunctionTemplateDecl *FunctionTemplate,
3199 QualType T);
3200
3201 /// \brief Perform template argument deduction by matching a parameter type
3202 /// against a single expression, where the expression is an element of
3203 /// an initializer list that was originally matched against a parameter
3204 /// of type \c initializer_list\<ParamType\>.
3205 static Sema::TemplateDeductionResult
DeduceTemplateArgumentByListElement(Sema & S,TemplateParameterList * TemplateParams,QualType ParamType,Expr * Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF)3206 DeduceTemplateArgumentByListElement(Sema &S,
3207 TemplateParameterList *TemplateParams,
3208 QualType ParamType, Expr *Arg,
3209 TemplateDeductionInfo &Info,
3210 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3211 unsigned TDF) {
3212 // Handle the case where an init list contains another init list as the
3213 // element.
3214 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3215 QualType X;
3216 if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
3217 return Sema::TDK_Success; // Just ignore this expression.
3218
3219 // Recurse down into the init list.
3220 for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3221 if (Sema::TemplateDeductionResult Result =
3222 DeduceTemplateArgumentByListElement(S, TemplateParams, X,
3223 ILE->getInit(i),
3224 Info, Deduced, TDF))
3225 return Result;
3226 }
3227 return Sema::TDK_Success;
3228 }
3229
3230 // For all other cases, just match by type.
3231 QualType ArgType = Arg->getType();
3232 if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
3233 ArgType, Arg, TDF)) {
3234 Info.Expression = Arg;
3235 return Sema::TDK_FailedOverloadResolution;
3236 }
3237 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3238 ArgType, Info, Deduced, TDF);
3239 }
3240
3241 /// \brief Perform template argument deduction from a function call
3242 /// (C++ [temp.deduct.call]).
3243 ///
3244 /// \param FunctionTemplate the function template for which we are performing
3245 /// template argument deduction.
3246 ///
3247 /// \param ExplicitTemplateArgs the explicit template arguments provided
3248 /// for this call.
3249 ///
3250 /// \param Args the function call arguments
3251 ///
3252 /// \param Specialization if template argument deduction was successful,
3253 /// this will be set to the function template specialization produced by
3254 /// template argument deduction.
3255 ///
3256 /// \param Info the argument will be updated to provide additional information
3257 /// about template argument deduction.
3258 ///
3259 /// \returns the result of template argument deduction.
3260 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)3261 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3262 TemplateArgumentListInfo *ExplicitTemplateArgs,
3263 llvm::ArrayRef<Expr *> Args,
3264 FunctionDecl *&Specialization,
3265 TemplateDeductionInfo &Info) {
3266 if (FunctionTemplate->isInvalidDecl())
3267 return TDK_Invalid;
3268
3269 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3270
3271 // C++ [temp.deduct.call]p1:
3272 // Template argument deduction is done by comparing each function template
3273 // parameter type (call it P) with the type of the corresponding argument
3274 // of the call (call it A) as described below.
3275 unsigned CheckArgs = Args.size();
3276 if (Args.size() < Function->getMinRequiredArguments())
3277 return TDK_TooFewArguments;
3278 else if (Args.size() > Function->getNumParams()) {
3279 const FunctionProtoType *Proto
3280 = Function->getType()->getAs<FunctionProtoType>();
3281 if (Proto->isTemplateVariadic())
3282 /* Do nothing */;
3283 else if (Proto->isVariadic())
3284 CheckArgs = Function->getNumParams();
3285 else
3286 return TDK_TooManyArguments;
3287 }
3288
3289 // The types of the parameters from which we will perform template argument
3290 // deduction.
3291 LocalInstantiationScope InstScope(*this);
3292 TemplateParameterList *TemplateParams
3293 = FunctionTemplate->getTemplateParameters();
3294 SmallVector<DeducedTemplateArgument, 4> Deduced;
3295 SmallVector<QualType, 4> ParamTypes;
3296 unsigned NumExplicitlySpecified = 0;
3297 if (ExplicitTemplateArgs) {
3298 TemplateDeductionResult Result =
3299 SubstituteExplicitTemplateArguments(FunctionTemplate,
3300 *ExplicitTemplateArgs,
3301 Deduced,
3302 ParamTypes,
3303 0,
3304 Info);
3305 if (Result)
3306 return Result;
3307
3308 NumExplicitlySpecified = Deduced.size();
3309 } else {
3310 // Just fill in the parameter types from the function declaration.
3311 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3312 ParamTypes.push_back(Function->getParamDecl(I)->getType());
3313 }
3314
3315 // Deduce template arguments from the function parameters.
3316 Deduced.resize(TemplateParams->size());
3317 unsigned ArgIdx = 0;
3318 SmallVector<OriginalCallArg, 4> OriginalCallArgs;
3319 for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
3320 ParamIdx != NumParams; ++ParamIdx) {
3321 QualType OrigParamType = ParamTypes[ParamIdx];
3322 QualType ParamType = OrigParamType;
3323
3324 const PackExpansionType *ParamExpansion
3325 = dyn_cast<PackExpansionType>(ParamType);
3326 if (!ParamExpansion) {
3327 // Simple case: matching a function parameter to a function argument.
3328 if (ArgIdx >= CheckArgs)
3329 break;
3330
3331 Expr *Arg = Args[ArgIdx++];
3332 QualType ArgType = Arg->getType();
3333
3334 unsigned TDF = 0;
3335 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3336 ParamType, ArgType, Arg,
3337 TDF))
3338 continue;
3339
3340 // If we have nothing to deduce, we're done.
3341 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3342 continue;
3343
3344 // If the argument is an initializer list ...
3345 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3346 // ... then the parameter is an undeduced context, unless the parameter
3347 // type is (reference to cv) std::initializer_list<P'>, in which case
3348 // deduction is done for each element of the initializer list, and the
3349 // result is the deduced type if it's the same for all elements.
3350 QualType X;
3351 // Removing references was already done.
3352 if (!isStdInitializerList(ParamType, &X))
3353 continue;
3354
3355 for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3356 if (TemplateDeductionResult Result =
3357 DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
3358 ILE->getInit(i),
3359 Info, Deduced, TDF))
3360 return Result;
3361 }
3362 // Don't track the argument type, since an initializer list has none.
3363 continue;
3364 }
3365
3366 // Keep track of the argument type and corresponding parameter index,
3367 // so we can check for compatibility between the deduced A and A.
3368 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
3369 ArgType));
3370
3371 if (TemplateDeductionResult Result
3372 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3373 ParamType, ArgType,
3374 Info, Deduced, TDF))
3375 return Result;
3376
3377 continue;
3378 }
3379
3380 // C++0x [temp.deduct.call]p1:
3381 // For a function parameter pack that occurs at the end of the
3382 // parameter-declaration-list, the type A of each remaining argument of
3383 // the call is compared with the type P of the declarator-id of the
3384 // function parameter pack. Each comparison deduces template arguments
3385 // for subsequent positions in the template parameter packs expanded by
3386 // the function parameter pack. For a function parameter pack that does
3387 // not occur at the end of the parameter-declaration-list, the type of
3388 // the parameter pack is a non-deduced context.
3389 if (ParamIdx + 1 < NumParams)
3390 break;
3391
3392 QualType ParamPattern = ParamExpansion->getPattern();
3393 SmallVector<unsigned, 2> PackIndices;
3394 {
3395 llvm::SmallBitVector SawIndices(TemplateParams->size());
3396 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3397 collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
3398 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
3399 unsigned Depth, Index;
3400 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
3401 if (Depth == 0 && !SawIndices[Index]) {
3402 SawIndices[Index] = true;
3403 PackIndices.push_back(Index);
3404 }
3405 }
3406 }
3407 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
3408
3409 // Keep track of the deduced template arguments for each parameter pack
3410 // expanded by this pack expansion (the outer index) and for each
3411 // template argument (the inner SmallVectors).
3412 NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
3413 SmallVector<DeducedTemplateArgument, 2>
3414 SavedPacks(PackIndices.size());
3415 PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
3416 NewlyDeducedPacks);
3417 bool HasAnyArguments = false;
3418 for (; ArgIdx < Args.size(); ++ArgIdx) {
3419 HasAnyArguments = true;
3420
3421 QualType OrigParamType = ParamPattern;
3422 ParamType = OrigParamType;
3423 Expr *Arg = Args[ArgIdx];
3424 QualType ArgType = Arg->getType();
3425
3426 unsigned TDF = 0;
3427 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3428 ParamType, ArgType, Arg,
3429 TDF)) {
3430 // We can't actually perform any deduction for this argument, so stop
3431 // deduction at this point.
3432 ++ArgIdx;
3433 break;
3434 }
3435
3436 // As above, initializer lists need special handling.
3437 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3438 QualType X;
3439 if (!isStdInitializerList(ParamType, &X)) {
3440 ++ArgIdx;
3441 break;
3442 }
3443
3444 for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3445 if (TemplateDeductionResult Result =
3446 DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
3447 ILE->getInit(i)->getType(),
3448 Info, Deduced, TDF))
3449 return Result;
3450 }
3451 } else {
3452
3453 // Keep track of the argument type and corresponding argument index,
3454 // so we can check for compatibility between the deduced A and A.
3455 if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3456 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3457 ArgType));
3458
3459 if (TemplateDeductionResult Result
3460 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3461 ParamType, ArgType, Info,
3462 Deduced, TDF))
3463 return Result;
3464 }
3465
3466 // Capture the deduced template arguments for each parameter pack expanded
3467 // by this pack expansion, add them to the list of arguments we've deduced
3468 // for that pack, then clear out the deduced argument.
3469 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
3470 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
3471 if (!DeducedArg.isNull()) {
3472 NewlyDeducedPacks[I].push_back(DeducedArg);
3473 DeducedArg = DeducedTemplateArgument();
3474 }
3475 }
3476 }
3477
3478 // Build argument packs for each of the parameter packs expanded by this
3479 // pack expansion.
3480 if (Sema::TemplateDeductionResult Result
3481 = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
3482 Deduced, PackIndices, SavedPacks,
3483 NewlyDeducedPacks, Info))
3484 return Result;
3485
3486 // After we've matching against a parameter pack, we're done.
3487 break;
3488 }
3489
3490 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3491 NumExplicitlySpecified,
3492 Specialization, Info, &OriginalCallArgs);
3493 }
3494
3495 /// \brief Deduce template arguments when taking the address of a function
3496 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3497 /// a template.
3498 ///
3499 /// \param FunctionTemplate the function template for which we are performing
3500 /// template argument deduction.
3501 ///
3502 /// \param ExplicitTemplateArgs the explicitly-specified template
3503 /// arguments.
3504 ///
3505 /// \param ArgFunctionType the function type that will be used as the
3506 /// "argument" type (A) when performing template argument deduction from the
3507 /// function template's function type. This type may be NULL, if there is no
3508 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3509 ///
3510 /// \param Specialization if template argument deduction was successful,
3511 /// this will be set to the function template specialization produced by
3512 /// template argument deduction.
3513 ///
3514 /// \param Info the argument will be updated to provide additional information
3515 /// about template argument deduction.
3516 ///
3517 /// \returns the result of template argument deduction.
3518 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ArgFunctionType,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool InOverloadResolution)3519 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3520 TemplateArgumentListInfo *ExplicitTemplateArgs,
3521 QualType ArgFunctionType,
3522 FunctionDecl *&Specialization,
3523 TemplateDeductionInfo &Info,
3524 bool InOverloadResolution) {
3525 if (FunctionTemplate->isInvalidDecl())
3526 return TDK_Invalid;
3527
3528 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3529 TemplateParameterList *TemplateParams
3530 = FunctionTemplate->getTemplateParameters();
3531 QualType FunctionType = Function->getType();
3532
3533 // Substitute any explicit template arguments.
3534 LocalInstantiationScope InstScope(*this);
3535 SmallVector<DeducedTemplateArgument, 4> Deduced;
3536 unsigned NumExplicitlySpecified = 0;
3537 SmallVector<QualType, 4> ParamTypes;
3538 if (ExplicitTemplateArgs) {
3539 if (TemplateDeductionResult Result
3540 = SubstituteExplicitTemplateArguments(FunctionTemplate,
3541 *ExplicitTemplateArgs,
3542 Deduced, ParamTypes,
3543 &FunctionType, Info))
3544 return Result;
3545
3546 NumExplicitlySpecified = Deduced.size();
3547 }
3548
3549 // Unevaluated SFINAE context.
3550 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3551 SFINAETrap Trap(*this);
3552
3553 Deduced.resize(TemplateParams->size());
3554
3555 // If the function has a deduced return type, substitute it for a dependent
3556 // type so that we treat it as a non-deduced context in what follows.
3557 bool HasUndeducedReturnType = false;
3558 if (getLangOpts().CPlusPlus1y && InOverloadResolution &&
3559 Function->getResultType()->isUndeducedType()) {
3560 FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
3561 HasUndeducedReturnType = true;
3562 }
3563
3564 if (!ArgFunctionType.isNull()) {
3565 unsigned TDF = TDF_TopLevelParameterTypeList;
3566 if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
3567 // Deduce template arguments from the function type.
3568 if (TemplateDeductionResult Result
3569 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3570 FunctionType, ArgFunctionType,
3571 Info, Deduced, TDF))
3572 return Result;
3573 }
3574
3575 if (TemplateDeductionResult Result
3576 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3577 NumExplicitlySpecified,
3578 Specialization, Info))
3579 return Result;
3580
3581 // If the function has a deduced return type, deduce it now, so we can check
3582 // that the deduced function type matches the requested type.
3583 if (HasUndeducedReturnType &&
3584 Specialization->getResultType()->isUndeducedType() &&
3585 DeduceReturnType(Specialization, Info.getLocation(), false))
3586 return TDK_MiscellaneousDeductionFailure;
3587
3588 // If the requested function type does not match the actual type of the
3589 // specialization with respect to arguments of compatible pointer to function
3590 // types, template argument deduction fails.
3591 if (!ArgFunctionType.isNull()) {
3592 if (InOverloadResolution && !isSameOrCompatibleFunctionType(
3593 Context.getCanonicalType(Specialization->getType()),
3594 Context.getCanonicalType(ArgFunctionType)))
3595 return TDK_MiscellaneousDeductionFailure;
3596 else if(!InOverloadResolution &&
3597 !Context.hasSameType(Specialization->getType(), ArgFunctionType))
3598 return TDK_MiscellaneousDeductionFailure;
3599 }
3600
3601 return TDK_Success;
3602 }
3603
3604 /// \brief Deduce template arguments for a templated conversion
3605 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
3606 /// conversion function template specialization.
3607 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,QualType ToType,CXXConversionDecl * & Specialization,TemplateDeductionInfo & Info)3608 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3609 QualType ToType,
3610 CXXConversionDecl *&Specialization,
3611 TemplateDeductionInfo &Info) {
3612 if (FunctionTemplate->isInvalidDecl())
3613 return TDK_Invalid;
3614
3615 CXXConversionDecl *Conv
3616 = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
3617 QualType FromType = Conv->getConversionType();
3618
3619 // Canonicalize the types for deduction.
3620 QualType P = Context.getCanonicalType(FromType);
3621 QualType A = Context.getCanonicalType(ToType);
3622
3623 // C++0x [temp.deduct.conv]p2:
3624 // If P is a reference type, the type referred to by P is used for
3625 // type deduction.
3626 if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3627 P = PRef->getPointeeType();
3628
3629 // C++0x [temp.deduct.conv]p4:
3630 // [...] If A is a reference type, the type referred to by A is used
3631 // for type deduction.
3632 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3633 A = ARef->getPointeeType().getUnqualifiedType();
3634 // C++ [temp.deduct.conv]p3:
3635 //
3636 // If A is not a reference type:
3637 else {
3638 assert(!A->isReferenceType() && "Reference types were handled above");
3639
3640 // - If P is an array type, the pointer type produced by the
3641 // array-to-pointer standard conversion (4.2) is used in place
3642 // of P for type deduction; otherwise,
3643 if (P->isArrayType())
3644 P = Context.getArrayDecayedType(P);
3645 // - If P is a function type, the pointer type produced by the
3646 // function-to-pointer standard conversion (4.3) is used in
3647 // place of P for type deduction; otherwise,
3648 else if (P->isFunctionType())
3649 P = Context.getPointerType(P);
3650 // - If P is a cv-qualified type, the top level cv-qualifiers of
3651 // P's type are ignored for type deduction.
3652 else
3653 P = P.getUnqualifiedType();
3654
3655 // C++0x [temp.deduct.conv]p4:
3656 // If A is a cv-qualified type, the top level cv-qualifiers of A's
3657 // type are ignored for type deduction. If A is a reference type, the type
3658 // referred to by A is used for type deduction.
3659 A = A.getUnqualifiedType();
3660 }
3661
3662 // Unevaluated SFINAE context.
3663 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3664 SFINAETrap Trap(*this);
3665
3666 // C++ [temp.deduct.conv]p1:
3667 // Template argument deduction is done by comparing the return
3668 // type of the template conversion function (call it P) with the
3669 // type that is required as the result of the conversion (call it
3670 // A) as described in 14.8.2.4.
3671 TemplateParameterList *TemplateParams
3672 = FunctionTemplate->getTemplateParameters();
3673 SmallVector<DeducedTemplateArgument, 4> Deduced;
3674 Deduced.resize(TemplateParams->size());
3675
3676 // C++0x [temp.deduct.conv]p4:
3677 // In general, the deduction process attempts to find template
3678 // argument values that will make the deduced A identical to
3679 // A. However, there are two cases that allow a difference:
3680 unsigned TDF = 0;
3681 // - If the original A is a reference type, A can be more
3682 // cv-qualified than the deduced A (i.e., the type referred to
3683 // by the reference)
3684 if (ToType->isReferenceType())
3685 TDF |= TDF_ParamWithReferenceType;
3686 // - The deduced A can be another pointer or pointer to member
3687 // type that can be converted to A via a qualification
3688 // conversion.
3689 //
3690 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3691 // both P and A are pointers or member pointers. In this case, we
3692 // just ignore cv-qualifiers completely).
3693 if ((P->isPointerType() && A->isPointerType()) ||
3694 (P->isMemberPointerType() && A->isMemberPointerType()))
3695 TDF |= TDF_IgnoreQualifiers;
3696 if (TemplateDeductionResult Result
3697 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3698 P, A, Info, Deduced, TDF))
3699 return Result;
3700
3701 // Finish template argument deduction.
3702 LocalInstantiationScope InstScope(*this);
3703 FunctionDecl *Spec = 0;
3704 TemplateDeductionResult Result
3705 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
3706 Info);
3707 Specialization = cast_or_null<CXXConversionDecl>(Spec);
3708 return Result;
3709 }
3710
3711 /// \brief Deduce template arguments for a function template when there is
3712 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3713 ///
3714 /// \param FunctionTemplate the function template for which we are performing
3715 /// template argument deduction.
3716 ///
3717 /// \param ExplicitTemplateArgs the explicitly-specified template
3718 /// arguments.
3719 ///
3720 /// \param Specialization if template argument deduction was successful,
3721 /// this will be set to the function template specialization produced by
3722 /// template argument deduction.
3723 ///
3724 /// \param Info the argument will be updated to provide additional information
3725 /// about template argument deduction.
3726 ///
3727 /// \returns the result of template argument deduction.
3728 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool InOverloadResolution)3729 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3730 TemplateArgumentListInfo *ExplicitTemplateArgs,
3731 FunctionDecl *&Specialization,
3732 TemplateDeductionInfo &Info,
3733 bool InOverloadResolution) {
3734 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3735 QualType(), Specialization, Info,
3736 InOverloadResolution);
3737 }
3738
3739 namespace {
3740 /// Substitute the 'auto' type specifier within a type for a given replacement
3741 /// type.
3742 class SubstituteAutoTransform :
3743 public TreeTransform<SubstituteAutoTransform> {
3744 QualType Replacement;
3745 public:
SubstituteAutoTransform(Sema & SemaRef,QualType Replacement)3746 SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
3747 TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
3748 }
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)3749 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3750 // If we're building the type pattern to deduce against, don't wrap the
3751 // substituted type in an AutoType. Certain template deduction rules
3752 // apply only when a template type parameter appears directly (and not if
3753 // the parameter is found through desugaring). For instance:
3754 // auto &&lref = lvalue;
3755 // must transform into "rvalue reference to T" not "rvalue reference to
3756 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3757 if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
3758 QualType Result = Replacement;
3759 TemplateTypeParmTypeLoc NewTL =
3760 TLB.push<TemplateTypeParmTypeLoc>(Result);
3761 NewTL.setNameLoc(TL.getNameLoc());
3762 return Result;
3763 } else {
3764 bool Dependent =
3765 !Replacement.isNull() && Replacement->isDependentType();
3766 QualType Result =
3767 SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
3768 TL.getTypePtr()->isDecltypeAuto(),
3769 Dependent);
3770 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3771 NewTL.setNameLoc(TL.getNameLoc());
3772 return Result;
3773 }
3774 }
3775
TransformLambdaExpr(LambdaExpr * E)3776 ExprResult TransformLambdaExpr(LambdaExpr *E) {
3777 // Lambdas never need to be transformed.
3778 return E;
3779 }
3780
Apply(TypeLoc TL)3781 QualType Apply(TypeLoc TL) {
3782 // Create some scratch storage for the transformed type locations.
3783 // FIXME: We're just going to throw this information away. Don't build it.
3784 TypeLocBuilder TLB;
3785 TLB.reserve(TL.getFullDataSize());
3786 return TransformType(TLB, TL);
3787 }
3788 };
3789 }
3790
3791 Sema::DeduceAutoResult
DeduceAutoType(TypeSourceInfo * Type,Expr * & Init,QualType & Result)3792 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
3793 return DeduceAutoType(Type->getTypeLoc(), Init, Result);
3794 }
3795
3796 /// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
3797 ///
3798 /// \param Type the type pattern using the auto type-specifier.
3799 /// \param Init the initializer for the variable whose type is to be deduced.
3800 /// \param Result if type deduction was successful, this will be set to the
3801 /// deduced type.
3802 Sema::DeduceAutoResult
DeduceAutoType(TypeLoc Type,Expr * & Init,QualType & Result)3803 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
3804 if (Init->getType()->isNonOverloadPlaceholderType()) {
3805 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
3806 if (NonPlaceholder.isInvalid())
3807 return DAR_FailedAlreadyDiagnosed;
3808 Init = NonPlaceholder.take();
3809 }
3810
3811 if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
3812 Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
3813 assert(!Result.isNull() && "substituting DependentTy can't fail");
3814 return DAR_Succeeded;
3815 }
3816
3817 // If this is a 'decltype(auto)' specifier, do the decltype dance.
3818 // Since 'decltype(auto)' can only occur at the top of the type, we
3819 // don't need to go digging for it.
3820 if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
3821 if (AT->isDecltypeAuto()) {
3822 if (isa<InitListExpr>(Init)) {
3823 Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
3824 return DAR_FailedAlreadyDiagnosed;
3825 }
3826
3827 QualType Deduced = BuildDecltypeType(Init, Init->getLocStart());
3828 // FIXME: Support a non-canonical deduced type for 'auto'.
3829 Deduced = Context.getCanonicalType(Deduced);
3830 Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
3831 if (Result.isNull())
3832 return DAR_FailedAlreadyDiagnosed;
3833 return DAR_Succeeded;
3834 }
3835 }
3836
3837 SourceLocation Loc = Init->getExprLoc();
3838
3839 LocalInstantiationScope InstScope(*this);
3840
3841 // Build template<class TemplParam> void Func(FuncParam);
3842 TemplateTypeParmDecl *TemplParam =
3843 TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
3844 false, false);
3845 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
3846 NamedDecl *TemplParamPtr = TemplParam;
3847 FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
3848 Loc);
3849
3850 QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
3851 assert(!FuncParam.isNull() &&
3852 "substituting template parameter for 'auto' failed");
3853
3854 // Deduce type of TemplParam in Func(Init)
3855 SmallVector<DeducedTemplateArgument, 1> Deduced;
3856 Deduced.resize(1);
3857 QualType InitType = Init->getType();
3858 unsigned TDF = 0;
3859
3860 TemplateDeductionInfo Info(Loc);
3861
3862 InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
3863 if (InitList) {
3864 for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
3865 if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
3866 TemplArg,
3867 InitList->getInit(i),
3868 Info, Deduced, TDF))
3869 return DAR_Failed;
3870 }
3871 } else {
3872 if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
3873 FuncParam, InitType, Init,
3874 TDF))
3875 return DAR_Failed;
3876
3877 if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
3878 InitType, Info, Deduced, TDF))
3879 return DAR_Failed;
3880 }
3881
3882 if (Deduced[0].getKind() != TemplateArgument::Type)
3883 return DAR_Failed;
3884
3885 QualType DeducedType = Deduced[0].getAsType();
3886
3887 if (InitList) {
3888 DeducedType = BuildStdInitializerList(DeducedType, Loc);
3889 if (DeducedType.isNull())
3890 return DAR_FailedAlreadyDiagnosed;
3891 }
3892
3893 Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
3894 if (Result.isNull())
3895 return DAR_FailedAlreadyDiagnosed;
3896
3897 // Check that the deduced argument type is compatible with the original
3898 // argument type per C++ [temp.deduct.call]p4.
3899 if (!InitList && !Result.isNull() &&
3900 CheckOriginalCallArgDeduction(*this,
3901 Sema::OriginalCallArg(FuncParam,0,InitType),
3902 Result)) {
3903 Result = QualType();
3904 return DAR_Failed;
3905 }
3906
3907 return DAR_Succeeded;
3908 }
3909
SubstAutoType(QualType Type,QualType Deduced)3910 QualType Sema::SubstAutoType(QualType Type, QualType Deduced) {
3911 return SubstituteAutoTransform(*this, Deduced).TransformType(Type);
3912 }
3913
DiagnoseAutoDeductionFailure(VarDecl * VDecl,Expr * Init)3914 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
3915 if (isa<InitListExpr>(Init))
3916 Diag(VDecl->getLocation(),
3917 diag::err_auto_var_deduction_failure_from_init_list)
3918 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
3919 else
3920 Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
3921 << VDecl->getDeclName() << VDecl->getType() << Init->getType()
3922 << Init->getSourceRange();
3923 }
3924
DeduceReturnType(FunctionDecl * FD,SourceLocation Loc,bool Diagnose)3925 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
3926 bool Diagnose) {
3927 assert(FD->getResultType()->isUndeducedType());
3928
3929 if (FD->getTemplateInstantiationPattern())
3930 InstantiateFunctionDefinition(Loc, FD);
3931
3932 bool StillUndeduced = FD->getResultType()->isUndeducedType();
3933 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
3934 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
3935 Diag(FD->getLocation(), diag::note_callee_decl) << FD;
3936 }
3937
3938 return StillUndeduced;
3939 }
3940
3941 static void
3942 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
3943 bool OnlyDeduced,
3944 unsigned Level,
3945 llvm::SmallBitVector &Deduced);
3946
3947 /// \brief If this is a non-static member function,
3948 static void
AddImplicitObjectParameterType(ASTContext & Context,CXXMethodDecl * Method,SmallVectorImpl<QualType> & ArgTypes)3949 AddImplicitObjectParameterType(ASTContext &Context,
3950 CXXMethodDecl *Method,
3951 SmallVectorImpl<QualType> &ArgTypes) {
3952 // C++11 [temp.func.order]p3:
3953 // [...] The new parameter is of type "reference to cv A," where cv are
3954 // the cv-qualifiers of the function template (if any) and A is
3955 // the class of which the function template is a member.
3956 //
3957 // The standard doesn't say explicitly, but we pick the appropriate kind of
3958 // reference type based on [over.match.funcs]p4.
3959 QualType ArgTy = Context.getTypeDeclType(Method->getParent());
3960 ArgTy = Context.getQualifiedType(ArgTy,
3961 Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
3962 if (Method->getRefQualifier() == RQ_RValue)
3963 ArgTy = Context.getRValueReferenceType(ArgTy);
3964 else
3965 ArgTy = Context.getLValueReferenceType(ArgTy);
3966 ArgTypes.push_back(ArgTy);
3967 }
3968
3969 /// \brief Determine whether the function template \p FT1 is at least as
3970 /// specialized as \p FT2.
isAtLeastAsSpecializedAs(Sema & S,SourceLocation Loc,FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments,SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)3971 static bool isAtLeastAsSpecializedAs(Sema &S,
3972 SourceLocation Loc,
3973 FunctionTemplateDecl *FT1,
3974 FunctionTemplateDecl *FT2,
3975 TemplatePartialOrderingContext TPOC,
3976 unsigned NumCallArguments,
3977 SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
3978 FunctionDecl *FD1 = FT1->getTemplatedDecl();
3979 FunctionDecl *FD2 = FT2->getTemplatedDecl();
3980 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
3981 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
3982
3983 assert(Proto1 && Proto2 && "Function templates must have prototypes");
3984 TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
3985 SmallVector<DeducedTemplateArgument, 4> Deduced;
3986 Deduced.resize(TemplateParams->size());
3987
3988 // C++0x [temp.deduct.partial]p3:
3989 // The types used to determine the ordering depend on the context in which
3990 // the partial ordering is done:
3991 TemplateDeductionInfo Info(Loc);
3992 CXXMethodDecl *Method1 = 0;
3993 CXXMethodDecl *Method2 = 0;
3994 bool IsNonStatic2 = false;
3995 bool IsNonStatic1 = false;
3996 unsigned Skip2 = 0;
3997 switch (TPOC) {
3998 case TPOC_Call: {
3999 // - In the context of a function call, the function parameter types are
4000 // used.
4001 Method1 = dyn_cast<CXXMethodDecl>(FD1);
4002 Method2 = dyn_cast<CXXMethodDecl>(FD2);
4003 IsNonStatic1 = Method1 && !Method1->isStatic();
4004 IsNonStatic2 = Method2 && !Method2->isStatic();
4005
4006 // C++11 [temp.func.order]p3:
4007 // [...] If only one of the function templates is a non-static
4008 // member, that function template is considered to have a new
4009 // first parameter inserted in its function parameter list. The
4010 // new parameter is of type "reference to cv A," where cv are
4011 // the cv-qualifiers of the function template (if any) and A is
4012 // the class of which the function template is a member.
4013 //
4014 // Note that we interpret this to mean "if one of the function
4015 // templates is a non-static member and the other is a non-member";
4016 // otherwise, the ordering rules for static functions against non-static
4017 // functions don't make any sense.
4018 //
4019 // C++98/03 doesn't have this provision, so instead we drop the
4020 // first argument of the free function, which seems to match
4021 // existing practice.
4022 SmallVector<QualType, 4> Args1;
4023 unsigned Skip1 = !S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1;
4024 if (S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2)
4025 AddImplicitObjectParameterType(S.Context, Method1, Args1);
4026 Args1.insert(Args1.end(),
4027 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
4028
4029 SmallVector<QualType, 4> Args2;
4030 Skip2 = !S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2;
4031 if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1)
4032 AddImplicitObjectParameterType(S.Context, Method2, Args2);
4033 Args2.insert(Args2.end(),
4034 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
4035
4036 // C++ [temp.func.order]p5:
4037 // The presence of unused ellipsis and default arguments has no effect on
4038 // the partial ordering of function templates.
4039 if (Args1.size() > NumCallArguments)
4040 Args1.resize(NumCallArguments);
4041 if (Args2.size() > NumCallArguments)
4042 Args2.resize(NumCallArguments);
4043 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
4044 Args1.data(), Args1.size(), Info, Deduced,
4045 TDF_None, /*PartialOrdering=*/true,
4046 RefParamComparisons))
4047 return false;
4048
4049 break;
4050 }
4051
4052 case TPOC_Conversion:
4053 // - In the context of a call to a conversion operator, the return types
4054 // of the conversion function templates are used.
4055 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
4056 Proto2->getResultType(),
4057 Proto1->getResultType(),
4058 Info, Deduced, TDF_None,
4059 /*PartialOrdering=*/true,
4060 RefParamComparisons))
4061 return false;
4062 break;
4063
4064 case TPOC_Other:
4065 // - In other contexts (14.6.6.2) the function template's function type
4066 // is used.
4067 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
4068 FD2->getType(), FD1->getType(),
4069 Info, Deduced, TDF_None,
4070 /*PartialOrdering=*/true,
4071 RefParamComparisons))
4072 return false;
4073 break;
4074 }
4075
4076 // C++0x [temp.deduct.partial]p11:
4077 // In most cases, all template parameters must have values in order for
4078 // deduction to succeed, but for partial ordering purposes a template
4079 // parameter may remain without a value provided it is not used in the
4080 // types being used for partial ordering. [ Note: a template parameter used
4081 // in a non-deduced context is considered used. -end note]
4082 unsigned ArgIdx = 0, NumArgs = Deduced.size();
4083 for (; ArgIdx != NumArgs; ++ArgIdx)
4084 if (Deduced[ArgIdx].isNull())
4085 break;
4086
4087 if (ArgIdx == NumArgs) {
4088 // All template arguments were deduced. FT1 is at least as specialized
4089 // as FT2.
4090 return true;
4091 }
4092
4093 // Figure out which template parameters were used.
4094 llvm::SmallBitVector UsedParameters(TemplateParams->size());
4095 switch (TPOC) {
4096 case TPOC_Call: {
4097 unsigned NumParams = std::min(NumCallArguments,
4098 std::min(Proto1->getNumArgs(),
4099 Proto2->getNumArgs()));
4100 if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !IsNonStatic1)
4101 ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
4102 false,
4103 TemplateParams->getDepth(), UsedParameters);
4104 for (unsigned I = Skip2; I < NumParams; ++I)
4105 ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
4106 TemplateParams->getDepth(),
4107 UsedParameters);
4108 break;
4109 }
4110
4111 case TPOC_Conversion:
4112 ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
4113 TemplateParams->getDepth(),
4114 UsedParameters);
4115 break;
4116
4117 case TPOC_Other:
4118 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
4119 TemplateParams->getDepth(),
4120 UsedParameters);
4121 break;
4122 }
4123
4124 for (; ArgIdx != NumArgs; ++ArgIdx)
4125 // If this argument had no value deduced but was used in one of the types
4126 // used for partial ordering, then deduction fails.
4127 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
4128 return false;
4129
4130 return true;
4131 }
4132
4133 /// \brief Determine whether this a function template whose parameter-type-list
4134 /// ends with a function parameter pack.
isVariadicFunctionTemplate(FunctionTemplateDecl * FunTmpl)4135 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
4136 FunctionDecl *Function = FunTmpl->getTemplatedDecl();
4137 unsigned NumParams = Function->getNumParams();
4138 if (NumParams == 0)
4139 return false;
4140
4141 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
4142 if (!Last->isParameterPack())
4143 return false;
4144
4145 // Make sure that no previous parameter is a parameter pack.
4146 while (--NumParams > 0) {
4147 if (Function->getParamDecl(NumParams - 1)->isParameterPack())
4148 return false;
4149 }
4150
4151 return true;
4152 }
4153
4154 /// \brief Returns the more specialized function template according
4155 /// to the rules of function template partial ordering (C++ [temp.func.order]).
4156 ///
4157 /// \param FT1 the first function template
4158 ///
4159 /// \param FT2 the second function template
4160 ///
4161 /// \param TPOC the context in which we are performing partial ordering of
4162 /// function templates.
4163 ///
4164 /// \param NumCallArguments The number of arguments in a call, used only
4165 /// when \c TPOC is \c TPOC_Call.
4166 ///
4167 /// \returns the more specialized function template. If neither
4168 /// template is more specialized, returns NULL.
4169 FunctionTemplateDecl *
getMoreSpecializedTemplate(FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,SourceLocation Loc,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments)4170 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
4171 FunctionTemplateDecl *FT2,
4172 SourceLocation Loc,
4173 TemplatePartialOrderingContext TPOC,
4174 unsigned NumCallArguments) {
4175 SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
4176 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
4177 NumCallArguments, 0);
4178 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
4179 NumCallArguments,
4180 &RefParamComparisons);
4181
4182 if (Better1 != Better2) // We have a clear winner
4183 return Better1? FT1 : FT2;
4184
4185 if (!Better1 && !Better2) // Neither is better than the other
4186 return 0;
4187
4188 // C++0x [temp.deduct.partial]p10:
4189 // If for each type being considered a given template is at least as
4190 // specialized for all types and more specialized for some set of types and
4191 // the other template is not more specialized for any types or is not at
4192 // least as specialized for any types, then the given template is more
4193 // specialized than the other template. Otherwise, neither template is more
4194 // specialized than the other.
4195 Better1 = false;
4196 Better2 = false;
4197 for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
4198 // C++0x [temp.deduct.partial]p9:
4199 // If, for a given type, deduction succeeds in both directions (i.e., the
4200 // types are identical after the transformations above) and both P and A
4201 // were reference types (before being replaced with the type referred to
4202 // above):
4203
4204 // -- if the type from the argument template was an lvalue reference
4205 // and the type from the parameter template was not, the argument
4206 // type is considered to be more specialized than the other;
4207 // otherwise,
4208 if (!RefParamComparisons[I].ArgIsRvalueRef &&
4209 RefParamComparisons[I].ParamIsRvalueRef) {
4210 Better2 = true;
4211 if (Better1)
4212 return 0;
4213 continue;
4214 } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
4215 RefParamComparisons[I].ArgIsRvalueRef) {
4216 Better1 = true;
4217 if (Better2)
4218 return 0;
4219 continue;
4220 }
4221
4222 // -- if the type from the argument template is more cv-qualified than
4223 // the type from the parameter template (as described above), the
4224 // argument type is considered to be more specialized than the
4225 // other; otherwise,
4226 switch (RefParamComparisons[I].Qualifiers) {
4227 case NeitherMoreQualified:
4228 break;
4229
4230 case ParamMoreQualified:
4231 Better1 = true;
4232 if (Better2)
4233 return 0;
4234 continue;
4235
4236 case ArgMoreQualified:
4237 Better2 = true;
4238 if (Better1)
4239 return 0;
4240 continue;
4241 }
4242
4243 // -- neither type is more specialized than the other.
4244 }
4245
4246 assert(!(Better1 && Better2) && "Should have broken out in the loop above");
4247 if (Better1)
4248 return FT1;
4249 else if (Better2)
4250 return FT2;
4251
4252 // FIXME: This mimics what GCC implements, but doesn't match up with the
4253 // proposed resolution for core issue 692. This area needs to be sorted out,
4254 // but for now we attempt to maintain compatibility.
4255 bool Variadic1 = isVariadicFunctionTemplate(FT1);
4256 bool Variadic2 = isVariadicFunctionTemplate(FT2);
4257 if (Variadic1 != Variadic2)
4258 return Variadic1? FT2 : FT1;
4259
4260 return 0;
4261 }
4262
4263 /// \brief Determine if the two templates are equivalent.
isSameTemplate(TemplateDecl * T1,TemplateDecl * T2)4264 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
4265 if (T1 == T2)
4266 return true;
4267
4268 if (!T1 || !T2)
4269 return false;
4270
4271 return T1->getCanonicalDecl() == T2->getCanonicalDecl();
4272 }
4273
4274 /// \brief Retrieve the most specialized of the given function template
4275 /// specializations.
4276 ///
4277 /// \param SpecBegin the start iterator of the function template
4278 /// specializations that we will be comparing.
4279 ///
4280 /// \param SpecEnd the end iterator of the function template
4281 /// specializations, paired with \p SpecBegin.
4282 ///
4283 /// \param TPOC the partial ordering context to use to compare the function
4284 /// template specializations.
4285 ///
4286 /// \param NumCallArguments The number of arguments in a call, used only
4287 /// when \c TPOC is \c TPOC_Call.
4288 ///
4289 /// \param Loc the location where the ambiguity or no-specializations
4290 /// diagnostic should occur.
4291 ///
4292 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
4293 /// no matching candidates.
4294 ///
4295 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
4296 /// occurs.
4297 ///
4298 /// \param CandidateDiag partial diagnostic used for each function template
4299 /// specialization that is a candidate in the ambiguous ordering. One parameter
4300 /// in this diagnostic should be unbound, which will correspond to the string
4301 /// describing the template arguments for the function template specialization.
4302 ///
4303 /// \returns the most specialized function template specialization, if
4304 /// found. Otherwise, returns SpecEnd.
getMostSpecialized(UnresolvedSetIterator SpecBegin,UnresolvedSetIterator SpecEnd,TemplateSpecCandidateSet & FailedCandidates,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments,SourceLocation Loc,const PartialDiagnostic & NoneDiag,const PartialDiagnostic & AmbigDiag,const PartialDiagnostic & CandidateDiag,bool Complain,QualType TargetType)4305 UnresolvedSetIterator Sema::getMostSpecialized(
4306 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
4307 TemplateSpecCandidateSet &FailedCandidates,
4308 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments,
4309 SourceLocation Loc, const PartialDiagnostic &NoneDiag,
4310 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
4311 bool Complain, QualType TargetType) {
4312 if (SpecBegin == SpecEnd) {
4313 if (Complain) {
4314 Diag(Loc, NoneDiag);
4315 FailedCandidates.NoteCandidates(*this, Loc);
4316 }
4317 return SpecEnd;
4318 }
4319
4320 if (SpecBegin + 1 == SpecEnd)
4321 return SpecBegin;
4322
4323 // Find the function template that is better than all of the templates it
4324 // has been compared to.
4325 UnresolvedSetIterator Best = SpecBegin;
4326 FunctionTemplateDecl *BestTemplate
4327 = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
4328 assert(BestTemplate && "Not a function template specialization?");
4329 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
4330 FunctionTemplateDecl *Challenger
4331 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4332 assert(Challenger && "Not a function template specialization?");
4333 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4334 Loc, TPOC, NumCallArguments),
4335 Challenger)) {
4336 Best = I;
4337 BestTemplate = Challenger;
4338 }
4339 }
4340
4341 // Make sure that the "best" function template is more specialized than all
4342 // of the others.
4343 bool Ambiguous = false;
4344 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4345 FunctionTemplateDecl *Challenger
4346 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4347 if (I != Best &&
4348 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4349 Loc, TPOC, NumCallArguments),
4350 BestTemplate)) {
4351 Ambiguous = true;
4352 break;
4353 }
4354 }
4355
4356 if (!Ambiguous) {
4357 // We found an answer. Return it.
4358 return Best;
4359 }
4360
4361 // Diagnose the ambiguity.
4362 if (Complain) {
4363 Diag(Loc, AmbigDiag);
4364
4365 // FIXME: Can we order the candidates in some sane way?
4366 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4367 PartialDiagnostic PD = CandidateDiag;
4368 PD << getTemplateArgumentBindingsText(
4369 cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
4370 *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
4371 if (!TargetType.isNull())
4372 HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
4373 TargetType);
4374 Diag((*I)->getLocation(), PD);
4375 }
4376 }
4377
4378 return SpecEnd;
4379 }
4380
4381 /// \brief Returns the more specialized class template partial specialization
4382 /// according to the rules of partial ordering of class template partial
4383 /// specializations (C++ [temp.class.order]).
4384 ///
4385 /// \param PS1 the first class template partial specialization
4386 ///
4387 /// \param PS2 the second class template partial specialization
4388 ///
4389 /// \returns the more specialized class template partial specialization. If
4390 /// neither partial specialization is more specialized, returns NULL.
4391 ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(ClassTemplatePartialSpecializationDecl * PS1,ClassTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)4392 Sema::getMoreSpecializedPartialSpecialization(
4393 ClassTemplatePartialSpecializationDecl *PS1,
4394 ClassTemplatePartialSpecializationDecl *PS2,
4395 SourceLocation Loc) {
4396 // C++ [temp.class.order]p1:
4397 // For two class template partial specializations, the first is at least as
4398 // specialized as the second if, given the following rewrite to two
4399 // function templates, the first function template is at least as
4400 // specialized as the second according to the ordering rules for function
4401 // templates (14.6.6.2):
4402 // - the first function template has the same template parameters as the
4403 // first partial specialization and has a single function parameter
4404 // whose type is a class template specialization with the template
4405 // arguments of the first partial specialization, and
4406 // - the second function template has the same template parameters as the
4407 // second partial specialization and has a single function parameter
4408 // whose type is a class template specialization with the template
4409 // arguments of the second partial specialization.
4410 //
4411 // Rather than synthesize function templates, we merely perform the
4412 // equivalent partial ordering by performing deduction directly on
4413 // the template arguments of the class template partial
4414 // specializations. This computation is slightly simpler than the
4415 // general problem of function template partial ordering, because
4416 // class template partial specializations are more constrained. We
4417 // know that every template parameter is deducible from the class
4418 // template partial specialization's template arguments, for
4419 // example.
4420 SmallVector<DeducedTemplateArgument, 4> Deduced;
4421 TemplateDeductionInfo Info(Loc);
4422
4423 QualType PT1 = PS1->getInjectedSpecializationType();
4424 QualType PT2 = PS2->getInjectedSpecializationType();
4425
4426 // Determine whether PS1 is at least as specialized as PS2
4427 Deduced.resize(PS2->getTemplateParameters()->size());
4428 bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
4429 PS2->getTemplateParameters(),
4430 PT2, PT1, Info, Deduced, TDF_None,
4431 /*PartialOrdering=*/true,
4432 /*RefParamComparisons=*/0);
4433 if (Better1) {
4434 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4435 InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2, DeducedArgs,
4436 Info);
4437 Better1 = !::FinishTemplateArgumentDeduction(
4438 *this, PS2, PS1->getTemplateArgs(), Deduced, Info);
4439 }
4440
4441 // Determine whether PS2 is at least as specialized as PS1
4442 Deduced.clear();
4443 Deduced.resize(PS1->getTemplateParameters()->size());
4444 bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
4445 *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
4446 /*PartialOrdering=*/true,
4447 /*RefParamComparisons=*/0);
4448 if (Better2) {
4449 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
4450 Deduced.end());
4451 InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1, DeducedArgs,
4452 Info);
4453 Better2 = !::FinishTemplateArgumentDeduction(
4454 *this, PS1, PS2->getTemplateArgs(), Deduced, Info);
4455 }
4456
4457 if (Better1 == Better2)
4458 return 0;
4459
4460 return Better1 ? PS1 : PS2;
4461 }
4462
4463 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version.
4464 VarTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(VarTemplatePartialSpecializationDecl * PS1,VarTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)4465 Sema::getMoreSpecializedPartialSpecialization(
4466 VarTemplatePartialSpecializationDecl *PS1,
4467 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
4468 SmallVector<DeducedTemplateArgument, 4> Deduced;
4469 TemplateDeductionInfo Info(Loc);
4470
4471 assert(PS1->getSpecializedTemplate() == PS1->getSpecializedTemplate() &&
4472 "the partial specializations being compared should specialize"
4473 " the same template.");
4474 TemplateName Name(PS1->getSpecializedTemplate());
4475 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4476 QualType PT1 = Context.getTemplateSpecializationType(
4477 CanonTemplate, PS1->getTemplateArgs().data(),
4478 PS1->getTemplateArgs().size());
4479 QualType PT2 = Context.getTemplateSpecializationType(
4480 CanonTemplate, PS2->getTemplateArgs().data(),
4481 PS2->getTemplateArgs().size());
4482
4483 // Determine whether PS1 is at least as specialized as PS2
4484 Deduced.resize(PS2->getTemplateParameters()->size());
4485 bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
4486 *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
4487 /*PartialOrdering=*/true,
4488 /*RefParamComparisons=*/0);
4489 if (Better1) {
4490 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
4491 Deduced.end());
4492 InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
4493 DeducedArgs, Info);
4494 Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
4495 PS1->getTemplateArgs(),
4496 Deduced, Info);
4497 }
4498
4499 // Determine whether PS2 is at least as specialized as PS1
4500 Deduced.clear();
4501 Deduced.resize(PS1->getTemplateParameters()->size());
4502 bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
4503 PS1->getTemplateParameters(),
4504 PT1, PT2, Info, Deduced, TDF_None,
4505 /*PartialOrdering=*/true,
4506 /*RefParamComparisons=*/0);
4507 if (Better2) {
4508 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4509 InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
4510 DeducedArgs, Info);
4511 Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
4512 PS2->getTemplateArgs(),
4513 Deduced, Info);
4514 }
4515
4516 if (Better1 == Better2)
4517 return 0;
4518
4519 return Better1? PS1 : PS2;
4520 }
4521
4522 static void
4523 MarkUsedTemplateParameters(ASTContext &Ctx,
4524 const TemplateArgument &TemplateArg,
4525 bool OnlyDeduced,
4526 unsigned Depth,
4527 llvm::SmallBitVector &Used);
4528
4529 /// \brief Mark the template parameters that are used by the given
4530 /// expression.
4531 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const Expr * E,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4532 MarkUsedTemplateParameters(ASTContext &Ctx,
4533 const Expr *E,
4534 bool OnlyDeduced,
4535 unsigned Depth,
4536 llvm::SmallBitVector &Used) {
4537 // We can deduce from a pack expansion.
4538 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4539 E = Expansion->getPattern();
4540
4541 // Skip through any implicit casts we added while type-checking, and any
4542 // substitutions performed by template alias expansion.
4543 while (1) {
4544 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4545 E = ICE->getSubExpr();
4546 else if (const SubstNonTypeTemplateParmExpr *Subst =
4547 dyn_cast<SubstNonTypeTemplateParmExpr>(E))
4548 E = Subst->getReplacement();
4549 else
4550 break;
4551 }
4552
4553 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4554 // find other occurrences of template parameters.
4555 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4556 if (!DRE)
4557 return;
4558
4559 const NonTypeTemplateParmDecl *NTTP
4560 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4561 if (!NTTP)
4562 return;
4563
4564 if (NTTP->getDepth() == Depth)
4565 Used[NTTP->getIndex()] = true;
4566 }
4567
4568 /// \brief Mark the template parameters that are used by the given
4569 /// nested name specifier.
4570 static void
MarkUsedTemplateParameters(ASTContext & Ctx,NestedNameSpecifier * NNS,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4571 MarkUsedTemplateParameters(ASTContext &Ctx,
4572 NestedNameSpecifier *NNS,
4573 bool OnlyDeduced,
4574 unsigned Depth,
4575 llvm::SmallBitVector &Used) {
4576 if (!NNS)
4577 return;
4578
4579 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4580 Used);
4581 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4582 OnlyDeduced, Depth, Used);
4583 }
4584
4585 /// \brief Mark the template parameters that are used by the given
4586 /// template name.
4587 static void
MarkUsedTemplateParameters(ASTContext & Ctx,TemplateName Name,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4588 MarkUsedTemplateParameters(ASTContext &Ctx,
4589 TemplateName Name,
4590 bool OnlyDeduced,
4591 unsigned Depth,
4592 llvm::SmallBitVector &Used) {
4593 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4594 if (TemplateTemplateParmDecl *TTP
4595 = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4596 if (TTP->getDepth() == Depth)
4597 Used[TTP->getIndex()] = true;
4598 }
4599 return;
4600 }
4601
4602 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4603 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4604 Depth, Used);
4605 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4606 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4607 Depth, Used);
4608 }
4609
4610 /// \brief Mark the template parameters that are used by the given
4611 /// type.
4612 static void
MarkUsedTemplateParameters(ASTContext & Ctx,QualType T,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4613 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4614 bool OnlyDeduced,
4615 unsigned Depth,
4616 llvm::SmallBitVector &Used) {
4617 if (T.isNull())
4618 return;
4619
4620 // Non-dependent types have nothing deducible
4621 if (!T->isDependentType())
4622 return;
4623
4624 T = Ctx.getCanonicalType(T);
4625 switch (T->getTypeClass()) {
4626 case Type::Pointer:
4627 MarkUsedTemplateParameters(Ctx,
4628 cast<PointerType>(T)->getPointeeType(),
4629 OnlyDeduced,
4630 Depth,
4631 Used);
4632 break;
4633
4634 case Type::BlockPointer:
4635 MarkUsedTemplateParameters(Ctx,
4636 cast<BlockPointerType>(T)->getPointeeType(),
4637 OnlyDeduced,
4638 Depth,
4639 Used);
4640 break;
4641
4642 case Type::LValueReference:
4643 case Type::RValueReference:
4644 MarkUsedTemplateParameters(Ctx,
4645 cast<ReferenceType>(T)->getPointeeType(),
4646 OnlyDeduced,
4647 Depth,
4648 Used);
4649 break;
4650
4651 case Type::MemberPointer: {
4652 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4653 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4654 Depth, Used);
4655 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4656 OnlyDeduced, Depth, Used);
4657 break;
4658 }
4659
4660 case Type::DependentSizedArray:
4661 MarkUsedTemplateParameters(Ctx,
4662 cast<DependentSizedArrayType>(T)->getSizeExpr(),
4663 OnlyDeduced, Depth, Used);
4664 // Fall through to check the element type
4665
4666 case Type::ConstantArray:
4667 case Type::IncompleteArray:
4668 MarkUsedTemplateParameters(Ctx,
4669 cast<ArrayType>(T)->getElementType(),
4670 OnlyDeduced, Depth, Used);
4671 break;
4672
4673 case Type::Vector:
4674 case Type::ExtVector:
4675 MarkUsedTemplateParameters(Ctx,
4676 cast<VectorType>(T)->getElementType(),
4677 OnlyDeduced, Depth, Used);
4678 break;
4679
4680 case Type::DependentSizedExtVector: {
4681 const DependentSizedExtVectorType *VecType
4682 = cast<DependentSizedExtVectorType>(T);
4683 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4684 Depth, Used);
4685 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4686 Depth, Used);
4687 break;
4688 }
4689
4690 case Type::FunctionProto: {
4691 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4692 MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
4693 Depth, Used);
4694 for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
4695 MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
4696 Depth, Used);
4697 break;
4698 }
4699
4700 case Type::TemplateTypeParm: {
4701 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4702 if (TTP->getDepth() == Depth)
4703 Used[TTP->getIndex()] = true;
4704 break;
4705 }
4706
4707 case Type::SubstTemplateTypeParmPack: {
4708 const SubstTemplateTypeParmPackType *Subst
4709 = cast<SubstTemplateTypeParmPackType>(T);
4710 MarkUsedTemplateParameters(Ctx,
4711 QualType(Subst->getReplacedParameter(), 0),
4712 OnlyDeduced, Depth, Used);
4713 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4714 OnlyDeduced, Depth, Used);
4715 break;
4716 }
4717
4718 case Type::InjectedClassName:
4719 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4720 // fall through
4721
4722 case Type::TemplateSpecialization: {
4723 const TemplateSpecializationType *Spec
4724 = cast<TemplateSpecializationType>(T);
4725 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4726 Depth, Used);
4727
4728 // C++0x [temp.deduct.type]p9:
4729 // If the template argument list of P contains a pack expansion that is not
4730 // the last template argument, the entire template argument list is a
4731 // non-deduced context.
4732 if (OnlyDeduced &&
4733 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4734 break;
4735
4736 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4737 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4738 Used);
4739 break;
4740 }
4741
4742 case Type::Complex:
4743 if (!OnlyDeduced)
4744 MarkUsedTemplateParameters(Ctx,
4745 cast<ComplexType>(T)->getElementType(),
4746 OnlyDeduced, Depth, Used);
4747 break;
4748
4749 case Type::Atomic:
4750 if (!OnlyDeduced)
4751 MarkUsedTemplateParameters(Ctx,
4752 cast<AtomicType>(T)->getValueType(),
4753 OnlyDeduced, Depth, Used);
4754 break;
4755
4756 case Type::DependentName:
4757 if (!OnlyDeduced)
4758 MarkUsedTemplateParameters(Ctx,
4759 cast<DependentNameType>(T)->getQualifier(),
4760 OnlyDeduced, Depth, Used);
4761 break;
4762
4763 case Type::DependentTemplateSpecialization: {
4764 const DependentTemplateSpecializationType *Spec
4765 = cast<DependentTemplateSpecializationType>(T);
4766 if (!OnlyDeduced)
4767 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4768 OnlyDeduced, Depth, Used);
4769
4770 // C++0x [temp.deduct.type]p9:
4771 // If the template argument list of P contains a pack expansion that is not
4772 // the last template argument, the entire template argument list is a
4773 // non-deduced context.
4774 if (OnlyDeduced &&
4775 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4776 break;
4777
4778 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4779 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4780 Used);
4781 break;
4782 }
4783
4784 case Type::TypeOf:
4785 if (!OnlyDeduced)
4786 MarkUsedTemplateParameters(Ctx,
4787 cast<TypeOfType>(T)->getUnderlyingType(),
4788 OnlyDeduced, Depth, Used);
4789 break;
4790
4791 case Type::TypeOfExpr:
4792 if (!OnlyDeduced)
4793 MarkUsedTemplateParameters(Ctx,
4794 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4795 OnlyDeduced, Depth, Used);
4796 break;
4797
4798 case Type::Decltype:
4799 if (!OnlyDeduced)
4800 MarkUsedTemplateParameters(Ctx,
4801 cast<DecltypeType>(T)->getUnderlyingExpr(),
4802 OnlyDeduced, Depth, Used);
4803 break;
4804
4805 case Type::UnaryTransform:
4806 if (!OnlyDeduced)
4807 MarkUsedTemplateParameters(Ctx,
4808 cast<UnaryTransformType>(T)->getUnderlyingType(),
4809 OnlyDeduced, Depth, Used);
4810 break;
4811
4812 case Type::PackExpansion:
4813 MarkUsedTemplateParameters(Ctx,
4814 cast<PackExpansionType>(T)->getPattern(),
4815 OnlyDeduced, Depth, Used);
4816 break;
4817
4818 case Type::Auto:
4819 MarkUsedTemplateParameters(Ctx,
4820 cast<AutoType>(T)->getDeducedType(),
4821 OnlyDeduced, Depth, Used);
4822
4823 // None of these types have any template parameters in them.
4824 case Type::Builtin:
4825 case Type::VariableArray:
4826 case Type::FunctionNoProto:
4827 case Type::Record:
4828 case Type::Enum:
4829 case Type::ObjCInterface:
4830 case Type::ObjCObject:
4831 case Type::ObjCObjectPointer:
4832 case Type::UnresolvedUsing:
4833 #define TYPE(Class, Base)
4834 #define ABSTRACT_TYPE(Class, Base)
4835 #define DEPENDENT_TYPE(Class, Base)
4836 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4837 #include "clang/AST/TypeNodes.def"
4838 break;
4839 }
4840 }
4841
4842 /// \brief Mark the template parameters that are used by this
4843 /// template argument.
4844 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const TemplateArgument & TemplateArg,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4845 MarkUsedTemplateParameters(ASTContext &Ctx,
4846 const TemplateArgument &TemplateArg,
4847 bool OnlyDeduced,
4848 unsigned Depth,
4849 llvm::SmallBitVector &Used) {
4850 switch (TemplateArg.getKind()) {
4851 case TemplateArgument::Null:
4852 case TemplateArgument::Integral:
4853 case TemplateArgument::Declaration:
4854 break;
4855
4856 case TemplateArgument::NullPtr:
4857 MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
4858 Depth, Used);
4859 break;
4860
4861 case TemplateArgument::Type:
4862 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
4863 Depth, Used);
4864 break;
4865
4866 case TemplateArgument::Template:
4867 case TemplateArgument::TemplateExpansion:
4868 MarkUsedTemplateParameters(Ctx,
4869 TemplateArg.getAsTemplateOrTemplatePattern(),
4870 OnlyDeduced, Depth, Used);
4871 break;
4872
4873 case TemplateArgument::Expression:
4874 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
4875 Depth, Used);
4876 break;
4877
4878 case TemplateArgument::Pack:
4879 for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
4880 PEnd = TemplateArg.pack_end();
4881 P != PEnd; ++P)
4882 MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
4883 break;
4884 }
4885 }
4886
4887 /// \brief Mark which template parameters can be deduced from a given
4888 /// template argument list.
4889 ///
4890 /// \param TemplateArgs the template argument list from which template
4891 /// parameters will be deduced.
4892 ///
4893 /// \param Used a bit vector whose elements will be set to \c true
4894 /// to indicate when the corresponding template parameter will be
4895 /// deduced.
4896 void
MarkUsedTemplateParameters(const TemplateArgumentList & TemplateArgs,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)4897 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
4898 bool OnlyDeduced, unsigned Depth,
4899 llvm::SmallBitVector &Used) {
4900 // C++0x [temp.deduct.type]p9:
4901 // If the template argument list of P contains a pack expansion that is not
4902 // the last template argument, the entire template argument list is a
4903 // non-deduced context.
4904 if (OnlyDeduced &&
4905 hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
4906 return;
4907
4908 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4909 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
4910 Depth, Used);
4911 }
4912
4913 /// \brief Marks all of the template parameters that will be deduced by a
4914 /// call to the given function template.
4915 void
MarkDeducedTemplateParameters(ASTContext & Ctx,const FunctionTemplateDecl * FunctionTemplate,llvm::SmallBitVector & Deduced)4916 Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
4917 const FunctionTemplateDecl *FunctionTemplate,
4918 llvm::SmallBitVector &Deduced) {
4919 TemplateParameterList *TemplateParams
4920 = FunctionTemplate->getTemplateParameters();
4921 Deduced.clear();
4922 Deduced.resize(TemplateParams->size());
4923
4924 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4925 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
4926 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
4927 true, TemplateParams->getDepth(), Deduced);
4928 }
4929
hasDeducibleTemplateParameters(Sema & S,FunctionTemplateDecl * FunctionTemplate,QualType T)4930 bool hasDeducibleTemplateParameters(Sema &S,
4931 FunctionTemplateDecl *FunctionTemplate,
4932 QualType T) {
4933 if (!T->isDependentType())
4934 return false;
4935
4936 TemplateParameterList *TemplateParams
4937 = FunctionTemplate->getTemplateParameters();
4938 llvm::SmallBitVector Deduced(TemplateParams->size());
4939 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
4940 Deduced);
4941
4942 return Deduced.any();
4943 }
4944