• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Defines the clang::ASTContext interface.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16 #define LLVM_CLANG_AST_ASTCONTEXT_H
17 
18 #include "clang/AST/ASTTypeTraits.h"
19 #include "clang/AST/CanonicalType.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/MangleNumberingContext.h"
23 #include "clang/AST/NestedNameSpecifier.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/RawCommentList.h"
26 #include "clang/AST/TemplateName.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Basic/AddressSpaces.h"
29 #include "clang/Basic/IdentifierTable.h"
30 #include "clang/Basic/LangOptions.h"
31 #include "clang/Basic/OperatorKinds.h"
32 #include "clang/Basic/PartialDiagnostic.h"
33 #include "clang/Basic/VersionTuple.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/FoldingSet.h"
36 #include "llvm/ADT/IntrusiveRefCntPtr.h"
37 #include "llvm/ADT/OwningPtr.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/TinyPtrVector.h"
40 #include "llvm/Support/Allocator.h"
41 #include <vector>
42 
43 namespace llvm {
44   struct fltSemantics;
45 }
46 
47 namespace clang {
48   class FileManager;
49   class AtomicExpr;
50   class ASTRecordLayout;
51   class BlockExpr;
52   class CharUnits;
53   class DiagnosticsEngine;
54   class Expr;
55   class ExternalASTSource;
56   class ASTMutationListener;
57   class IdentifierTable;
58   class MaterializeTemporaryExpr;
59   class SelectorTable;
60   class TargetInfo;
61   class CXXABI;
62   // Decls
63   class MangleContext;
64   class ObjCIvarDecl;
65   class ObjCPropertyDecl;
66   class UnresolvedSetIterator;
67   class UsingDecl;
68   class UsingShadowDecl;
69 
70   namespace Builtin { class Context; }
71 
72   namespace comments {
73     class FullComment;
74   }
75 
76 /// \brief Holds long-lived AST nodes (such as types and decls) that can be
77 /// referred to throughout the semantic analysis of a file.
78 class ASTContext : public RefCountedBase<ASTContext> {
this_()79   ASTContext &this_() { return *this; }
80 
81   mutable SmallVector<Type *, 0> Types;
82   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
83   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
84   mutable llvm::FoldingSet<PointerType> PointerTypes;
85   mutable llvm::FoldingSet<DecayedType> DecayedTypes;
86   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
87   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
88   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
89   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
90   mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
91   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
92   mutable std::vector<VariableArrayType*> VariableArrayTypes;
93   mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
94   mutable llvm::FoldingSet<DependentSizedExtVectorType>
95     DependentSizedExtVectorTypes;
96   mutable llvm::FoldingSet<VectorType> VectorTypes;
97   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
98   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
99     FunctionProtoTypes;
100   mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
101   mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
102   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
103   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
104     SubstTemplateTypeParmTypes;
105   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
106     SubstTemplateTypeParmPackTypes;
107   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
108     TemplateSpecializationTypes;
109   mutable llvm::FoldingSet<ParenType> ParenTypes;
110   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
111   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
112   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
113                                      ASTContext&>
114     DependentTemplateSpecializationTypes;
115   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
116   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
117   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
118   mutable llvm::FoldingSet<AutoType> AutoTypes;
119   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
120   llvm::FoldingSet<AttributedType> AttributedTypes;
121 
122   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
123   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
124   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
125     SubstTemplateTemplateParms;
126   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
127                                      ASTContext&>
128     SubstTemplateTemplateParmPacks;
129 
130   /// \brief The set of nested name specifiers.
131   ///
132   /// This set is managed by the NestedNameSpecifier class.
133   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
134   mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
135   friend class NestedNameSpecifier;
136 
137   /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
138   ///
139   /// This is lazily created.  This is intentionally not serialized.
140   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
141     ASTRecordLayouts;
142   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
143     ObjCLayouts;
144 
145   /// \brief A cache from types to size and alignment information.
146   typedef llvm::DenseMap<const Type*,
147                          std::pair<uint64_t, unsigned> > TypeInfoMap;
148   mutable TypeInfoMap MemoizedTypeInfo;
149 
150   /// \brief A cache mapping from CXXRecordDecls to key functions.
151   llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
152 
153   /// \brief Mapping from ObjCContainers to their ObjCImplementations.
154   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
155 
156   /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
157   /// interface.
158   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
159 
160   /// \brief Mapping from __block VarDecls to their copy initialization expr.
161   llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
162 
163   /// \brief Mapping from class scope functions specialization to their
164   /// template patterns.
165   llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
166     ClassScopeSpecializationPattern;
167 
168   /// \brief Mapping from materialized temporaries with static storage duration
169   /// that appear in constant initializers to their evaluated values.
170   llvm::DenseMap<const MaterializeTemporaryExpr*, APValue>
171     MaterializedTemporaryValues;
172 
173   /// \brief Representation of a "canonical" template template parameter that
174   /// is used in canonical template names.
175   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
176     TemplateTemplateParmDecl *Parm;
177 
178   public:
CanonicalTemplateTemplateParm(TemplateTemplateParmDecl * Parm)179     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
180       : Parm(Parm) { }
181 
getParam()182     TemplateTemplateParmDecl *getParam() const { return Parm; }
183 
Profile(llvm::FoldingSetNodeID & ID)184     void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
185 
186     static void Profile(llvm::FoldingSetNodeID &ID,
187                         TemplateTemplateParmDecl *Parm);
188   };
189   mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
190     CanonTemplateTemplateParms;
191 
192   TemplateTemplateParmDecl *
193     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
194 
195   /// \brief The typedef for the __int128_t type.
196   mutable TypedefDecl *Int128Decl;
197 
198   /// \brief The typedef for the __uint128_t type.
199   mutable TypedefDecl *UInt128Decl;
200 
201   /// \brief The typedef for the __float128 stub type.
202   mutable TypeDecl *Float128StubDecl;
203 
204   /// \brief The typedef for the target specific predefined
205   /// __builtin_va_list type.
206   mutable TypedefDecl *BuiltinVaListDecl;
207 
208   /// \brief The typedef for the predefined \c id type.
209   mutable TypedefDecl *ObjCIdDecl;
210 
211   /// \brief The typedef for the predefined \c SEL type.
212   mutable TypedefDecl *ObjCSelDecl;
213 
214   /// \brief The typedef for the predefined \c Class type.
215   mutable TypedefDecl *ObjCClassDecl;
216 
217   /// \brief The typedef for the predefined \c Protocol class in Objective-C.
218   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
219 
220   /// \brief The typedef for the predefined 'BOOL' type.
221   mutable TypedefDecl *BOOLDecl;
222 
223   // Typedefs which may be provided defining the structure of Objective-C
224   // pseudo-builtins
225   QualType ObjCIdRedefinitionType;
226   QualType ObjCClassRedefinitionType;
227   QualType ObjCSelRedefinitionType;
228 
229   QualType ObjCConstantStringType;
230   mutable RecordDecl *CFConstantStringTypeDecl;
231 
232   mutable QualType ObjCSuperType;
233 
234   QualType ObjCNSStringType;
235 
236   /// \brief The typedef declaration for the Objective-C "instancetype" type.
237   TypedefDecl *ObjCInstanceTypeDecl;
238 
239   /// \brief The type for the C FILE type.
240   TypeDecl *FILEDecl;
241 
242   /// \brief The type for the C jmp_buf type.
243   TypeDecl *jmp_bufDecl;
244 
245   /// \brief The type for the C sigjmp_buf type.
246   TypeDecl *sigjmp_bufDecl;
247 
248   /// \brief The type for the C ucontext_t type.
249   TypeDecl *ucontext_tDecl;
250 
251   /// \brief Type for the Block descriptor for Blocks CodeGen.
252   ///
253   /// Since this is only used for generation of debug info, it is not
254   /// serialized.
255   mutable RecordDecl *BlockDescriptorType;
256 
257   /// \brief Type for the Block descriptor for Blocks CodeGen.
258   ///
259   /// Since this is only used for generation of debug info, it is not
260   /// serialized.
261   mutable RecordDecl *BlockDescriptorExtendedType;
262 
263   /// \brief Declaration for the CUDA cudaConfigureCall function.
264   FunctionDecl *cudaConfigureCallDecl;
265 
266   TypeSourceInfo NullTypeSourceInfo;
267 
268   /// \brief Keeps track of all declaration attributes.
269   ///
270   /// Since so few decls have attrs, we keep them in a hash map instead of
271   /// wasting space in the Decl class.
272   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
273 
274 public:
275   /// \brief A type synonym for the TemplateOrInstantiation mapping.
276   typedef llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>
277   TemplateOrSpecializationInfo;
278 
279 private:
280 
281   /// \brief A mapping to contain the template or declaration that
282   /// a variable declaration describes or was instantiated from,
283   /// respectively.
284   ///
285   /// For non-templates, this value will be NULL. For variable
286   /// declarations that describe a variable template, this will be a
287   /// pointer to a VarTemplateDecl. For static data members
288   /// of class template specializations, this will be the
289   /// MemberSpecializationInfo referring to the member variable that was
290   /// instantiated or specialized. Thus, the mapping will keep track of
291   /// the static data member templates from which static data members of
292   /// class template specializations were instantiated.
293   ///
294   /// Given the following example:
295   ///
296   /// \code
297   /// template<typename T>
298   /// struct X {
299   ///   static T value;
300   /// };
301   ///
302   /// template<typename T>
303   ///   T X<T>::value = T(17);
304   ///
305   /// int *x = &X<int>::value;
306   /// \endcode
307   ///
308   /// This mapping will contain an entry that maps from the VarDecl for
309   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
310   /// class template X) and will be marked TSK_ImplicitInstantiation.
311   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
312   TemplateOrInstantiation;
313 
314   /// \brief Keeps track of the declaration from which a UsingDecl was
315   /// created during instantiation.
316   ///
317   /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
318   /// or an UnresolvedUsingTypenameDecl.
319   ///
320   /// For example:
321   /// \code
322   /// template<typename T>
323   /// struct A {
324   ///   void f();
325   /// };
326   ///
327   /// template<typename T>
328   /// struct B : A<T> {
329   ///   using A<T>::f;
330   /// };
331   ///
332   /// template struct B<int>;
333   /// \endcode
334   ///
335   /// This mapping will contain an entry that maps from the UsingDecl in
336   /// B<int> to the UnresolvedUsingDecl in B<T>.
337   llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
338 
339   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
340     InstantiatedFromUsingShadowDecl;
341 
342   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
343 
344   /// \brief Mapping that stores the methods overridden by a given C++
345   /// member function.
346   ///
347   /// Since most C++ member functions aren't virtual and therefore
348   /// don't override anything, we store the overridden functions in
349   /// this map on the side rather than within the CXXMethodDecl structure.
350   typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
351   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
352 
353   /// \brief Mapping from each declaration context to its corresponding
354   /// mangling numbering context (used for constructs like lambdas which
355   /// need to be consistently numbered for the mangler).
356   llvm::DenseMap<const DeclContext *, MangleNumberingContext>
357       MangleNumberingContexts;
358 
359   /// \brief Side-table of mangling numbers for declarations which rarely
360   /// need them (like static local vars).
361   llvm::DenseMap<const NamedDecl *, unsigned> MangleNumbers;
362 
363   /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
364   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
365   typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
366   ParameterIndexTable ParamIndices;
367 
368   ImportDecl *FirstLocalImport;
369   ImportDecl *LastLocalImport;
370 
371   TranslationUnitDecl *TUDecl;
372 
373   /// \brief The associated SourceManager object.a
374   SourceManager &SourceMgr;
375 
376   /// \brief The language options used to create the AST associated with
377   ///  this ASTContext object.
378   LangOptions &LangOpts;
379 
380   /// \brief The allocator used to create AST objects.
381   ///
382   /// AST objects are never destructed; rather, all memory associated with the
383   /// AST objects will be released when the ASTContext itself is destroyed.
384   mutable llvm::BumpPtrAllocator BumpAlloc;
385 
386   /// \brief Allocator for partial diagnostics.
387   PartialDiagnostic::StorageAllocator DiagAllocator;
388 
389   /// \brief The current C++ ABI.
390   OwningPtr<CXXABI> ABI;
391   CXXABI *createCXXABI(const TargetInfo &T);
392 
393   /// \brief The logical -> physical address space map.
394   const LangAS::Map *AddrSpaceMap;
395 
396   friend class ASTDeclReader;
397   friend class ASTReader;
398   friend class ASTWriter;
399   friend class CXXRecordDecl;
400 
401   const TargetInfo *Target;
402   clang::PrintingPolicy PrintingPolicy;
403 
404 public:
405   IdentifierTable &Idents;
406   SelectorTable &Selectors;
407   Builtin::Context &BuiltinInfo;
408   mutable DeclarationNameTable DeclarationNames;
409   OwningPtr<ExternalASTSource> ExternalSource;
410   ASTMutationListener *Listener;
411 
412   /// \brief Contains parents of a node.
413   typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 1> ParentVector;
414 
415   /// \brief Maps from a node to its parents.
416   typedef llvm::DenseMap<const void *, ParentVector> ParentMap;
417 
418   /// \brief Returns the parents of the given node.
419   ///
420   /// Note that this will lazily compute the parents of all nodes
421   /// and store them for later retrieval. Thus, the first call is O(n)
422   /// in the number of AST nodes.
423   ///
424   /// Caveats and FIXMEs:
425   /// Calculating the parent map over all AST nodes will need to load the
426   /// full AST. This can be undesirable in the case where the full AST is
427   /// expensive to create (for example, when using precompiled header
428   /// preambles). Thus, there are good opportunities for optimization here.
429   /// One idea is to walk the given node downwards, looking for references
430   /// to declaration contexts - once a declaration context is found, compute
431   /// the parent map for the declaration context; if that can satisfy the
432   /// request, loading the whole AST can be avoided. Note that this is made
433   /// more complex by statements in templates having multiple parents - those
434   /// problems can be solved by building closure over the templated parts of
435   /// the AST, which also avoids touching large parts of the AST.
436   /// Additionally, we will want to add an interface to already give a hint
437   /// where to search for the parents, for example when looking at a statement
438   /// inside a certain function.
439   ///
440   /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
441   /// NestedNameSpecifier or NestedNameSpecifierLoc.
442   template <typename NodeT>
getParents(const NodeT & Node)443   ParentVector getParents(const NodeT &Node) {
444     return getParents(ast_type_traits::DynTypedNode::create(Node));
445   }
446 
447   ParentVector getParents(const ast_type_traits::DynTypedNode &Node);
448 
getPrintingPolicy()449   const clang::PrintingPolicy &getPrintingPolicy() const {
450     return PrintingPolicy;
451   }
452 
setPrintingPolicy(const clang::PrintingPolicy & Policy)453   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
454     PrintingPolicy = Policy;
455   }
456 
getSourceManager()457   SourceManager& getSourceManager() { return SourceMgr; }
getSourceManager()458   const SourceManager& getSourceManager() const { return SourceMgr; }
459 
getAllocator()460   llvm::BumpPtrAllocator &getAllocator() const {
461     return BumpAlloc;
462   }
463 
464   void *Allocate(size_t Size, unsigned Align = 8) const {
465     return BumpAlloc.Allocate(Size, Align);
466   }
Deallocate(void * Ptr)467   void Deallocate(void *Ptr) const { }
468 
469   /// Return the total amount of physical memory allocated for representing
470   /// AST nodes and type information.
getASTAllocatedMemory()471   size_t getASTAllocatedMemory() const {
472     return BumpAlloc.getTotalMemory();
473   }
474   /// Return the total memory used for various side tables.
475   size_t getSideTableAllocatedMemory() const;
476 
getDiagAllocator()477   PartialDiagnostic::StorageAllocator &getDiagAllocator() {
478     return DiagAllocator;
479   }
480 
getTargetInfo()481   const TargetInfo &getTargetInfo() const { return *Target; }
482 
483   bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
484 
getLangOpts()485   const LangOptions& getLangOpts() const { return LangOpts; }
486 
487   DiagnosticsEngine &getDiagnostics() const;
488 
getFullLoc(SourceLocation Loc)489   FullSourceLoc getFullLoc(SourceLocation Loc) const {
490     return FullSourceLoc(Loc,SourceMgr);
491   }
492 
493   /// \brief All comments in this translation unit.
494   RawCommentList Comments;
495 
496   /// \brief True if comments are already loaded from ExternalASTSource.
497   mutable bool CommentsLoaded;
498 
499   class RawCommentAndCacheFlags {
500   public:
501     enum Kind {
502       /// We searched for a comment attached to the particular declaration, but
503       /// didn't find any.
504       ///
505       /// getRaw() == 0.
506       NoCommentInDecl = 0,
507 
508       /// We have found a comment attached to this particular declaration.
509       ///
510       /// getRaw() != 0.
511       FromDecl,
512 
513       /// This declaration does not have an attached comment, and we have
514       /// searched the redeclaration chain.
515       ///
516       /// If getRaw() == 0, the whole redeclaration chain does not have any
517       /// comments.
518       ///
519       /// If getRaw() != 0, it is a comment propagated from other
520       /// redeclaration.
521       FromRedecl
522     };
523 
getKind()524     Kind getKind() const LLVM_READONLY {
525       return Data.getInt();
526     }
527 
setKind(Kind K)528     void setKind(Kind K) {
529       Data.setInt(K);
530     }
531 
getRaw()532     const RawComment *getRaw() const LLVM_READONLY {
533       return Data.getPointer();
534     }
535 
setRaw(const RawComment * RC)536     void setRaw(const RawComment *RC) {
537       Data.setPointer(RC);
538     }
539 
getOriginalDecl()540     const Decl *getOriginalDecl() const LLVM_READONLY {
541       return OriginalDecl;
542     }
543 
setOriginalDecl(const Decl * Orig)544     void setOriginalDecl(const Decl *Orig) {
545       OriginalDecl = Orig;
546     }
547 
548   private:
549     llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
550     const Decl *OriginalDecl;
551   };
552 
553   /// \brief Mapping from declarations to comments attached to any
554   /// redeclaration.
555   ///
556   /// Raw comments are owned by Comments list.  This mapping is populated
557   /// lazily.
558   mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
559 
560   /// \brief Mapping from declarations to parsed comments attached to any
561   /// redeclaration.
562   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
563 
564   /// \brief Return the documentation comment attached to a given declaration,
565   /// without looking into cache.
566   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
567 
568 public:
getRawCommentList()569   RawCommentList &getRawCommentList() {
570     return Comments;
571   }
572 
addComment(const RawComment & RC)573   void addComment(const RawComment &RC) {
574     assert(LangOpts.RetainCommentsFromSystemHeaders ||
575            !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
576     Comments.addComment(RC, BumpAlloc);
577   }
578 
579   /// \brief Return the documentation comment attached to a given declaration.
580   /// Returns NULL if no comment is attached.
581   ///
582   /// \param OriginalDecl if not NULL, is set to declaration AST node that had
583   /// the comment, if the comment we found comes from a redeclaration.
584   const RawComment *getRawCommentForAnyRedecl(
585                                       const Decl *D,
586                                       const Decl **OriginalDecl = NULL) const;
587 
588   /// Return parsed documentation comment attached to a given declaration.
589   /// Returns NULL if no comment is attached.
590   ///
591   /// \param PP the Preprocessor used with this TU.  Could be NULL if
592   /// preprocessor is not available.
593   comments::FullComment *getCommentForDecl(const Decl *D,
594                                            const Preprocessor *PP) const;
595 
596   /// Return parsed documentation comment attached to a given declaration.
597   /// Returns NULL if no comment is attached. Does not look at any
598   /// redeclarations of the declaration.
599   comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
600 
601   comments::FullComment *cloneFullComment(comments::FullComment *FC,
602                                          const Decl *D) const;
603 
604 private:
605   mutable comments::CommandTraits CommentCommandTraits;
606 
607 public:
getCommentCommandTraits()608   comments::CommandTraits &getCommentCommandTraits() const {
609     return CommentCommandTraits;
610   }
611 
612   /// \brief Retrieve the attributes for the given declaration.
613   AttrVec& getDeclAttrs(const Decl *D);
614 
615   /// \brief Erase the attributes corresponding to the given declaration.
616   void eraseDeclAttrs(const Decl *D);
617 
618   /// \brief If this variable is an instantiated static data member of a
619   /// class template specialization, returns the templated static data member
620   /// from which it was instantiated.
621   // FIXME: Remove ?
622   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
623                                                            const VarDecl *Var);
624 
625   TemplateOrSpecializationInfo
626   getTemplateOrSpecializationInfo(const VarDecl *Var);
627 
628   FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
629 
630   void setClassScopeSpecializationPattern(FunctionDecl *FD,
631                                           FunctionDecl *Pattern);
632 
633   /// \brief Note that the static data member \p Inst is an instantiation of
634   /// the static data member template \p Tmpl of a class template.
635   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
636                                            TemplateSpecializationKind TSK,
637                         SourceLocation PointOfInstantiation = SourceLocation());
638 
639   void setTemplateOrSpecializationInfo(VarDecl *Inst,
640                                        TemplateOrSpecializationInfo TSI);
641 
642   /// \brief If the given using decl \p Inst is an instantiation of a
643   /// (possibly unresolved) using decl from a template instantiation,
644   /// return it.
645   NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
646 
647   /// \brief Remember that the using decl \p Inst is an instantiation
648   /// of the using decl \p Pattern of a class template.
649   void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
650 
651   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
652                                           UsingShadowDecl *Pattern);
653   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
654 
655   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
656 
657   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
658 
659   // Access to the set of methods overridden by the given C++ method.
660   typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
661   overridden_cxx_method_iterator
662   overridden_methods_begin(const CXXMethodDecl *Method) const;
663 
664   overridden_cxx_method_iterator
665   overridden_methods_end(const CXXMethodDecl *Method) const;
666 
667   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
668 
669   /// \brief Note that the given C++ \p Method overrides the given \p
670   /// Overridden method.
671   void addOverriddenMethod(const CXXMethodDecl *Method,
672                            const CXXMethodDecl *Overridden);
673 
674   /// \brief Return C++ or ObjC overridden methods for the given \p Method.
675   ///
676   /// An ObjC method is considered to override any method in the class's
677   /// base classes, its protocols, or its categories' protocols, that has
678   /// the same selector and is of the same kind (class or instance).
679   /// A method in an implementation is not considered as overriding the same
680   /// method in the interface or its categories.
681   void getOverriddenMethods(
682                         const NamedDecl *Method,
683                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
684 
685   /// \brief Notify the AST context that a new import declaration has been
686   /// parsed or implicitly created within this translation unit.
687   void addedLocalImportDecl(ImportDecl *Import);
688 
getNextLocalImport(ImportDecl * Import)689   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
690     return Import->NextLocalImport;
691   }
692 
693   /// \brief Iterator that visits import declarations.
694   class import_iterator {
695     ImportDecl *Import;
696 
697   public:
698     typedef ImportDecl               *value_type;
699     typedef ImportDecl               *reference;
700     typedef ImportDecl               *pointer;
701     typedef int                       difference_type;
702     typedef std::forward_iterator_tag iterator_category;
703 
import_iterator()704     import_iterator() : Import() { }
import_iterator(ImportDecl * Import)705     explicit import_iterator(ImportDecl *Import) : Import(Import) { }
706 
707     reference operator*() const { return Import; }
708     pointer operator->() const { return Import; }
709 
710     import_iterator &operator++() {
711       Import = ASTContext::getNextLocalImport(Import);
712       return *this;
713     }
714 
715     import_iterator operator++(int) {
716       import_iterator Other(*this);
717       ++(*this);
718       return Other;
719     }
720 
721     friend bool operator==(import_iterator X, import_iterator Y) {
722       return X.Import == Y.Import;
723     }
724 
725     friend bool operator!=(import_iterator X, import_iterator Y) {
726       return X.Import != Y.Import;
727     }
728   };
729 
local_import_begin()730   import_iterator local_import_begin() const {
731     return import_iterator(FirstLocalImport);
732   }
local_import_end()733   import_iterator local_import_end() const { return import_iterator(); }
734 
getTranslationUnitDecl()735   TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
736 
737 
738   // Builtin Types.
739   CanQualType VoidTy;
740   CanQualType BoolTy;
741   CanQualType CharTy;
742   CanQualType WCharTy;  // [C++ 3.9.1p5].
743   CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
744   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
745   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
746   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
747   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
748   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
749   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
750   CanQualType FloatTy, DoubleTy, LongDoubleTy;
751   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
752   CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
753   CanQualType VoidPtrTy, NullPtrTy;
754   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
755   CanQualType BuiltinFnTy;
756   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
757   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
758   CanQualType ObjCBuiltinBoolTy;
759   CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
760   CanQualType OCLImage2dTy, OCLImage2dArrayTy;
761   CanQualType OCLImage3dTy;
762   CanQualType OCLSamplerTy, OCLEventTy;
763 
764   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
765   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
766   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
767 
768   // Type used to help define __builtin_va_list for some targets.
769   // The type is built when constructing 'BuiltinVaListDecl'.
770   mutable QualType VaListTagTy;
771 
772   ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
773              IdentifierTable &idents, SelectorTable &sels,
774              Builtin::Context &builtins,
775              unsigned size_reserve,
776              bool DelayInitialization = false);
777 
778   ~ASTContext();
779 
780   /// \brief Attach an external AST source to the AST context.
781   ///
782   /// The external AST source provides the ability to load parts of
783   /// the abstract syntax tree as needed from some external storage,
784   /// e.g., a precompiled header.
785   void setExternalSource(OwningPtr<ExternalASTSource> &Source);
786 
787   /// \brief Retrieve a pointer to the external AST source associated
788   /// with this AST context, if any.
getExternalSource()789   ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
790 
791   /// \brief Attach an AST mutation listener to the AST context.
792   ///
793   /// The AST mutation listener provides the ability to track modifications to
794   /// the abstract syntax tree entities committed after they were initially
795   /// created.
setASTMutationListener(ASTMutationListener * Listener)796   void setASTMutationListener(ASTMutationListener *Listener) {
797     this->Listener = Listener;
798   }
799 
800   /// \brief Retrieve a pointer to the AST mutation listener associated
801   /// with this AST context, if any.
getASTMutationListener()802   ASTMutationListener *getASTMutationListener() const { return Listener; }
803 
804   void PrintStats() const;
getTypes()805   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
806 
807   /// \brief Retrieve the declaration for the 128-bit signed integer type.
808   TypedefDecl *getInt128Decl() const;
809 
810   /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
811   TypedefDecl *getUInt128Decl() const;
812 
813   /// \brief Retrieve the declaration for a 128-bit float stub type.
814   TypeDecl *getFloat128StubType() const;
815 
816   //===--------------------------------------------------------------------===//
817   //                           Type Constructors
818   //===--------------------------------------------------------------------===//
819 
820 private:
821   /// \brief Return a type with extended qualifiers.
822   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
823 
824   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
825 
826 public:
827   /// \brief Return the uniqued reference to the type for an address space
828   /// qualified type with the specified type and address space.
829   ///
830   /// The resulting type has a union of the qualifiers from T and the address
831   /// space. If T already has an address space specifier, it is silently
832   /// replaced.
833   QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
834 
835   /// \brief Return the uniqued reference to the type for an Objective-C
836   /// gc-qualified type.
837   ///
838   /// The retulting type has a union of the qualifiers from T and the gc
839   /// attribute.
840   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
841 
842   /// \brief Return the uniqued reference to the type for a \c restrict
843   /// qualified type.
844   ///
845   /// The resulting type has a union of the qualifiers from \p T and
846   /// \c restrict.
getRestrictType(QualType T)847   QualType getRestrictType(QualType T) const {
848     return T.withFastQualifiers(Qualifiers::Restrict);
849   }
850 
851   /// \brief Return the uniqued reference to the type for a \c volatile
852   /// qualified type.
853   ///
854   /// The resulting type has a union of the qualifiers from \p T and
855   /// \c volatile.
getVolatileType(QualType T)856   QualType getVolatileType(QualType T) const {
857     return T.withFastQualifiers(Qualifiers::Volatile);
858   }
859 
860   /// \brief Return the uniqued reference to the type for a \c const
861   /// qualified type.
862   ///
863   /// The resulting type has a union of the qualifiers from \p T and \c const.
864   ///
865   /// It can be reasonably expected that this will always be equivalent to
866   /// calling T.withConst().
getConstType(QualType T)867   QualType getConstType(QualType T) const { return T.withConst(); }
868 
869   /// \brief Change the ExtInfo on a function type.
870   const FunctionType *adjustFunctionType(const FunctionType *Fn,
871                                          FunctionType::ExtInfo EInfo);
872 
873   /// \brief Change the result type of a function type once it is deduced.
874   void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
875 
876   /// \brief Return the uniqued reference to the type for a complex
877   /// number with the specified element type.
878   QualType getComplexType(QualType T) const;
getComplexType(CanQualType T)879   CanQualType getComplexType(CanQualType T) const {
880     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
881   }
882 
883   /// \brief Return the uniqued reference to the type for a pointer to
884   /// the specified type.
885   QualType getPointerType(QualType T) const;
getPointerType(CanQualType T)886   CanQualType getPointerType(CanQualType T) const {
887     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
888   }
889 
890   /// \brief Return the uniqued reference to the decayed version of the given
891   /// type.  Can only be called on array and function types which decay to
892   /// pointer types.
893   QualType getDecayedType(QualType T) const;
getDecayedType(CanQualType T)894   CanQualType getDecayedType(CanQualType T) const {
895     return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
896   }
897 
898   /// \brief Return the uniqued reference to the atomic type for the specified
899   /// type.
900   QualType getAtomicType(QualType T) const;
901 
902   /// \brief Return the uniqued reference to the type for a block of the
903   /// specified type.
904   QualType getBlockPointerType(QualType T) const;
905 
906   /// Gets the struct used to keep track of the descriptor for pointer to
907   /// blocks.
908   QualType getBlockDescriptorType() const;
909 
910   /// Gets the struct used to keep track of the extended descriptor for
911   /// pointer to blocks.
912   QualType getBlockDescriptorExtendedType() const;
913 
setcudaConfigureCallDecl(FunctionDecl * FD)914   void setcudaConfigureCallDecl(FunctionDecl *FD) {
915     cudaConfigureCallDecl = FD;
916   }
getcudaConfigureCallDecl()917   FunctionDecl *getcudaConfigureCallDecl() {
918     return cudaConfigureCallDecl;
919   }
920 
921   /// Returns true iff we need copy/dispose helpers for the given type.
922   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
923 
924 
925   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
926   /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
927   /// has extended lifetime.
928   bool getByrefLifetime(QualType Ty,
929                         Qualifiers::ObjCLifetime &Lifetime,
930                         bool &HasByrefExtendedLayout) const;
931 
932   /// \brief Return the uniqued reference to the type for an lvalue reference
933   /// to the specified type.
934   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
935     const;
936 
937   /// \brief Return the uniqued reference to the type for an rvalue reference
938   /// to the specified type.
939   QualType getRValueReferenceType(QualType T) const;
940 
941   /// \brief Return the uniqued reference to the type for a member pointer to
942   /// the specified type in the specified class.
943   ///
944   /// The class \p Cls is a \c Type because it could be a dependent name.
945   QualType getMemberPointerType(QualType T, const Type *Cls) const;
946 
947   /// \brief Return a non-unique reference to the type for a variable array of
948   /// the specified element type.
949   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
950                                 ArrayType::ArraySizeModifier ASM,
951                                 unsigned IndexTypeQuals,
952                                 SourceRange Brackets) const;
953 
954   /// \brief Return a non-unique reference to the type for a dependently-sized
955   /// array of the specified element type.
956   ///
957   /// FIXME: We will need these to be uniqued, or at least comparable, at some
958   /// point.
959   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
960                                       ArrayType::ArraySizeModifier ASM,
961                                       unsigned IndexTypeQuals,
962                                       SourceRange Brackets) const;
963 
964   /// \brief Return a unique reference to the type for an incomplete array of
965   /// the specified element type.
966   QualType getIncompleteArrayType(QualType EltTy,
967                                   ArrayType::ArraySizeModifier ASM,
968                                   unsigned IndexTypeQuals) const;
969 
970   /// \brief Return the unique reference to the type for a constant array of
971   /// the specified element type.
972   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
973                                 ArrayType::ArraySizeModifier ASM,
974                                 unsigned IndexTypeQuals) const;
975 
976   /// \brief Returns a vla type where known sizes are replaced with [*].
977   QualType getVariableArrayDecayedType(QualType Ty) const;
978 
979   /// \brief Return the unique reference to a vector type of the specified
980   /// element type and size.
981   ///
982   /// \pre \p VectorType must be a built-in type.
983   QualType getVectorType(QualType VectorType, unsigned NumElts,
984                          VectorType::VectorKind VecKind) const;
985 
986   /// \brief Return the unique reference to an extended vector type
987   /// of the specified element type and size.
988   ///
989   /// \pre \p VectorType must be a built-in type.
990   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
991 
992   /// \pre Return a non-unique reference to the type for a dependently-sized
993   /// vector of the specified element type.
994   ///
995   /// FIXME: We will need these to be uniqued, or at least comparable, at some
996   /// point.
997   QualType getDependentSizedExtVectorType(QualType VectorType,
998                                           Expr *SizeExpr,
999                                           SourceLocation AttrLoc) const;
1000 
1001   /// \brief Return a K&R style C function type like 'int()'.
1002   QualType getFunctionNoProtoType(QualType ResultTy,
1003                                   const FunctionType::ExtInfo &Info) const;
1004 
getFunctionNoProtoType(QualType ResultTy)1005   QualType getFunctionNoProtoType(QualType ResultTy) const {
1006     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1007   }
1008 
1009   /// \brief Return a normal function type with a typed argument list.
1010   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1011                            const FunctionProtoType::ExtProtoInfo &EPI) const;
1012 
1013   /// \brief Return the unique reference to the type for the specified type
1014   /// declaration.
1015   QualType getTypeDeclType(const TypeDecl *Decl,
1016                            const TypeDecl *PrevDecl = 0) const {
1017     assert(Decl && "Passed null for Decl param");
1018     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1019 
1020     if (PrevDecl) {
1021       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1022       Decl->TypeForDecl = PrevDecl->TypeForDecl;
1023       return QualType(PrevDecl->TypeForDecl, 0);
1024     }
1025 
1026     return getTypeDeclTypeSlow(Decl);
1027   }
1028 
1029   /// \brief Return the unique reference to the type for the specified
1030   /// typedef-name decl.
1031   QualType getTypedefType(const TypedefNameDecl *Decl,
1032                           QualType Canon = QualType()) const;
1033 
1034   QualType getRecordType(const RecordDecl *Decl) const;
1035 
1036   QualType getEnumType(const EnumDecl *Decl) const;
1037 
1038   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1039 
1040   QualType getAttributedType(AttributedType::Kind attrKind,
1041                              QualType modifiedType,
1042                              QualType equivalentType);
1043 
1044   QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1045                                         QualType Replacement) const;
1046   QualType getSubstTemplateTypeParmPackType(
1047                                           const TemplateTypeParmType *Replaced,
1048                                             const TemplateArgument &ArgPack);
1049 
1050   QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
1051                                    bool ParameterPack,
1052                                    TemplateTypeParmDecl *ParmDecl = 0) const;
1053 
1054   QualType getTemplateSpecializationType(TemplateName T,
1055                                          const TemplateArgument *Args,
1056                                          unsigned NumArgs,
1057                                          QualType Canon = QualType()) const;
1058 
1059   QualType getCanonicalTemplateSpecializationType(TemplateName T,
1060                                                   const TemplateArgument *Args,
1061                                                   unsigned NumArgs) const;
1062 
1063   QualType getTemplateSpecializationType(TemplateName T,
1064                                          const TemplateArgumentListInfo &Args,
1065                                          QualType Canon = QualType()) const;
1066 
1067   TypeSourceInfo *
1068   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1069                                     const TemplateArgumentListInfo &Args,
1070                                     QualType Canon = QualType()) const;
1071 
1072   QualType getParenType(QualType NamedType) const;
1073 
1074   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1075                              NestedNameSpecifier *NNS,
1076                              QualType NamedType) const;
1077   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1078                                 NestedNameSpecifier *NNS,
1079                                 const IdentifierInfo *Name,
1080                                 QualType Canon = QualType()) const;
1081 
1082   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1083                                                   NestedNameSpecifier *NNS,
1084                                                   const IdentifierInfo *Name,
1085                                     const TemplateArgumentListInfo &Args) const;
1086   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1087                                                   NestedNameSpecifier *NNS,
1088                                                   const IdentifierInfo *Name,
1089                                                   unsigned NumArgs,
1090                                             const TemplateArgument *Args) const;
1091 
1092   QualType getPackExpansionType(QualType Pattern,
1093                                 Optional<unsigned> NumExpansions);
1094 
1095   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1096                                 ObjCInterfaceDecl *PrevDecl = 0) const;
1097 
1098   QualType getObjCObjectType(QualType Base,
1099                              ObjCProtocolDecl * const *Protocols,
1100                              unsigned NumProtocols) const;
1101 
1102   /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1103   QualType getObjCObjectPointerType(QualType OIT) const;
1104 
1105   /// \brief GCC extension.
1106   QualType getTypeOfExprType(Expr *e) const;
1107   QualType getTypeOfType(QualType t) const;
1108 
1109   /// \brief C++11 decltype.
1110   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1111 
1112   /// \brief Unary type transforms
1113   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1114                                  UnaryTransformType::UTTKind UKind) const;
1115 
1116   /// \brief C++11 deduced auto type.
1117   QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
1118                        bool IsDependent = false) const;
1119 
1120   /// \brief C++11 deduction pattern for 'auto' type.
1121   QualType getAutoDeductType() const;
1122 
1123   /// \brief C++11 deduction pattern for 'auto &&' type.
1124   QualType getAutoRRefDeductType() const;
1125 
1126   /// \brief Return the unique reference to the type for the specified TagDecl
1127   /// (struct/union/class/enum) decl.
1128   QualType getTagDeclType(const TagDecl *Decl) const;
1129 
1130   /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1131   /// <stddef.h>.
1132   ///
1133   /// The sizeof operator requires this (C99 6.5.3.4p4).
1134   CanQualType getSizeType() const;
1135 
1136   /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1137   /// <stdint.h>.
1138   CanQualType getIntMaxType() const;
1139 
1140   /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1141   /// <stdint.h>.
1142   CanQualType getUIntMaxType() const;
1143 
1144   /// \brief Return the unique wchar_t type available in C++ (and available as
1145   /// __wchar_t as a Microsoft extension).
getWCharType()1146   QualType getWCharType() const { return WCharTy; }
1147 
1148   /// \brief Return the type of wide characters. In C++, this returns the
1149   /// unique wchar_t type. In C99, this returns a type compatible with the type
1150   /// defined in <stddef.h> as defined by the target.
getWideCharType()1151   QualType getWideCharType() const { return WideCharTy; }
1152 
1153   /// \brief Return the type of "signed wchar_t".
1154   ///
1155   /// Used when in C++, as a GCC extension.
1156   QualType getSignedWCharType() const;
1157 
1158   /// \brief Return the type of "unsigned wchar_t".
1159   ///
1160   /// Used when in C++, as a GCC extension.
1161   QualType getUnsignedWCharType() const;
1162 
1163   /// \brief In C99, this returns a type compatible with the type
1164   /// defined in <stddef.h> as defined by the target.
getWIntType()1165   QualType getWIntType() const { return WIntTy; }
1166 
1167   /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
1168   /// as defined by the target.
1169   QualType getIntPtrType() const;
1170 
1171   /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1172   /// as defined by the target.
1173   QualType getUIntPtrType() const;
1174 
1175   /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1176   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1177   QualType getPointerDiffType() const;
1178 
1179   /// \brief Return the unique type for "pid_t" defined in
1180   /// <sys/types.h>. We need this to compute the correct type for vfork().
1181   QualType getProcessIDType() const;
1182 
1183   /// \brief Return the C structure type used to represent constant CFStrings.
1184   QualType getCFConstantStringType() const;
1185 
1186   /// \brief Returns the C struct type for objc_super
1187   QualType getObjCSuperType() const;
setObjCSuperType(QualType ST)1188   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1189 
1190   /// Get the structure type used to representation CFStrings, or NULL
1191   /// if it hasn't yet been built.
getRawCFConstantStringType()1192   QualType getRawCFConstantStringType() const {
1193     if (CFConstantStringTypeDecl)
1194       return getTagDeclType(CFConstantStringTypeDecl);
1195     return QualType();
1196   }
1197   void setCFConstantStringType(QualType T);
1198 
1199   // This setter/getter represents the ObjC type for an NSConstantString.
1200   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
getObjCConstantStringInterface()1201   QualType getObjCConstantStringInterface() const {
1202     return ObjCConstantStringType;
1203   }
1204 
getObjCNSStringType()1205   QualType getObjCNSStringType() const {
1206     return ObjCNSStringType;
1207   }
1208 
setObjCNSStringType(QualType T)1209   void setObjCNSStringType(QualType T) {
1210     ObjCNSStringType = T;
1211   }
1212 
1213   /// \brief Retrieve the type that \c id has been defined to, which may be
1214   /// different from the built-in \c id if \c id has been typedef'd.
getObjCIdRedefinitionType()1215   QualType getObjCIdRedefinitionType() const {
1216     if (ObjCIdRedefinitionType.isNull())
1217       return getObjCIdType();
1218     return ObjCIdRedefinitionType;
1219   }
1220 
1221   /// \brief Set the user-written type that redefines \c id.
setObjCIdRedefinitionType(QualType RedefType)1222   void setObjCIdRedefinitionType(QualType RedefType) {
1223     ObjCIdRedefinitionType = RedefType;
1224   }
1225 
1226   /// \brief Retrieve the type that \c Class has been defined to, which may be
1227   /// different from the built-in \c Class if \c Class has been typedef'd.
getObjCClassRedefinitionType()1228   QualType getObjCClassRedefinitionType() const {
1229     if (ObjCClassRedefinitionType.isNull())
1230       return getObjCClassType();
1231     return ObjCClassRedefinitionType;
1232   }
1233 
1234   /// \brief Set the user-written type that redefines 'SEL'.
setObjCClassRedefinitionType(QualType RedefType)1235   void setObjCClassRedefinitionType(QualType RedefType) {
1236     ObjCClassRedefinitionType = RedefType;
1237   }
1238 
1239   /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1240   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
getObjCSelRedefinitionType()1241   QualType getObjCSelRedefinitionType() const {
1242     if (ObjCSelRedefinitionType.isNull())
1243       return getObjCSelType();
1244     return ObjCSelRedefinitionType;
1245   }
1246 
1247 
1248   /// \brief Set the user-written type that redefines 'SEL'.
setObjCSelRedefinitionType(QualType RedefType)1249   void setObjCSelRedefinitionType(QualType RedefType) {
1250     ObjCSelRedefinitionType = RedefType;
1251   }
1252 
1253   /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1254   /// otherwise, returns a NULL type;
getObjCInstanceType()1255   QualType getObjCInstanceType() {
1256     return getTypeDeclType(getObjCInstanceTypeDecl());
1257   }
1258 
1259   /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1260   /// "instancetype" type.
1261   TypedefDecl *getObjCInstanceTypeDecl();
1262 
1263   /// \brief Set the type for the C FILE type.
setFILEDecl(TypeDecl * FILEDecl)1264   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1265 
1266   /// \brief Retrieve the C FILE type.
getFILEType()1267   QualType getFILEType() const {
1268     if (FILEDecl)
1269       return getTypeDeclType(FILEDecl);
1270     return QualType();
1271   }
1272 
1273   /// \brief Set the type for the C jmp_buf type.
setjmp_bufDecl(TypeDecl * jmp_bufDecl)1274   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1275     this->jmp_bufDecl = jmp_bufDecl;
1276   }
1277 
1278   /// \brief Retrieve the C jmp_buf type.
getjmp_bufType()1279   QualType getjmp_bufType() const {
1280     if (jmp_bufDecl)
1281       return getTypeDeclType(jmp_bufDecl);
1282     return QualType();
1283   }
1284 
1285   /// \brief Set the type for the C sigjmp_buf type.
setsigjmp_bufDecl(TypeDecl * sigjmp_bufDecl)1286   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1287     this->sigjmp_bufDecl = sigjmp_bufDecl;
1288   }
1289 
1290   /// \brief Retrieve the C sigjmp_buf type.
getsigjmp_bufType()1291   QualType getsigjmp_bufType() const {
1292     if (sigjmp_bufDecl)
1293       return getTypeDeclType(sigjmp_bufDecl);
1294     return QualType();
1295   }
1296 
1297   /// \brief Set the type for the C ucontext_t type.
setucontext_tDecl(TypeDecl * ucontext_tDecl)1298   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1299     this->ucontext_tDecl = ucontext_tDecl;
1300   }
1301 
1302   /// \brief Retrieve the C ucontext_t type.
getucontext_tType()1303   QualType getucontext_tType() const {
1304     if (ucontext_tDecl)
1305       return getTypeDeclType(ucontext_tDecl);
1306     return QualType();
1307   }
1308 
1309   /// \brief The result type of logical operations, '<', '>', '!=', etc.
getLogicalOperationType()1310   QualType getLogicalOperationType() const {
1311     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1312   }
1313 
1314   /// \brief Emit the Objective-CC type encoding for the given type \p T into
1315   /// \p S.
1316   ///
1317   /// If \p Field is specified then record field names are also encoded.
1318   void getObjCEncodingForType(QualType T, std::string &S,
1319                               const FieldDecl *Field=0) const;
1320 
1321   void getLegacyIntegralTypeEncoding(QualType &t) const;
1322 
1323   /// \brief Put the string version of the type qualifiers \p QT into \p S.
1324   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1325                                        std::string &S) const;
1326 
1327   /// \brief Emit the encoded type for the function \p Decl into \p S.
1328   ///
1329   /// This is in the same format as Objective-C method encodings.
1330   ///
1331   /// \returns true if an error occurred (e.g., because one of the parameter
1332   /// types is incomplete), false otherwise.
1333   bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1334 
1335   /// \brief Emit the encoded type for the method declaration \p Decl into
1336   /// \p S.
1337   ///
1338   /// \returns true if an error occurred (e.g., because one of the parameter
1339   /// types is incomplete), false otherwise.
1340   bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1341                                     bool Extended = false)
1342     const;
1343 
1344   /// \brief Return the encoded type for this block declaration.
1345   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1346 
1347   /// getObjCEncodingForPropertyDecl - Return the encoded type for
1348   /// this method declaration. If non-NULL, Container must be either
1349   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1350   /// only be NULL when getting encodings for protocol properties.
1351   void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1352                                       const Decl *Container,
1353                                       std::string &S) const;
1354 
1355   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1356                                       ObjCProtocolDecl *rProto) const;
1357 
1358   /// \brief Return the size of type \p T for Objective-C encoding purpose,
1359   /// in characters.
1360   CharUnits getObjCEncodingTypeSize(QualType T) const;
1361 
1362   /// \brief Retrieve the typedef corresponding to the predefined \c id type
1363   /// in Objective-C.
1364   TypedefDecl *getObjCIdDecl() const;
1365 
1366   /// \brief Represents the Objective-CC \c id type.
1367   ///
1368   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1369   /// pointer type, a pointer to a struct.
getObjCIdType()1370   QualType getObjCIdType() const {
1371     return getTypeDeclType(getObjCIdDecl());
1372   }
1373 
1374   /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1375   /// in Objective-C.
1376   TypedefDecl *getObjCSelDecl() const;
1377 
1378   /// \brief Retrieve the type that corresponds to the predefined Objective-C
1379   /// 'SEL' type.
getObjCSelType()1380   QualType getObjCSelType() const {
1381     return getTypeDeclType(getObjCSelDecl());
1382   }
1383 
1384   /// \brief Retrieve the typedef declaration corresponding to the predefined
1385   /// Objective-C 'Class' type.
1386   TypedefDecl *getObjCClassDecl() const;
1387 
1388   /// \brief Represents the Objective-C \c Class type.
1389   ///
1390   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1391   /// pointer type, a pointer to a struct.
getObjCClassType()1392   QualType getObjCClassType() const {
1393     return getTypeDeclType(getObjCClassDecl());
1394   }
1395 
1396   /// \brief Retrieve the Objective-C class declaration corresponding to
1397   /// the predefined \c Protocol class.
1398   ObjCInterfaceDecl *getObjCProtocolDecl() const;
1399 
1400   /// \brief Retrieve declaration of 'BOOL' typedef
getBOOLDecl()1401   TypedefDecl *getBOOLDecl() const {
1402     return BOOLDecl;
1403   }
1404 
1405   /// \brief Save declaration of 'BOOL' typedef
setBOOLDecl(TypedefDecl * TD)1406   void setBOOLDecl(TypedefDecl *TD) {
1407     BOOLDecl = TD;
1408   }
1409 
1410   /// \brief type of 'BOOL' type.
getBOOLType()1411   QualType getBOOLType() const {
1412     return getTypeDeclType(getBOOLDecl());
1413   }
1414 
1415   /// \brief Retrieve the type of the Objective-C \c Protocol class.
getObjCProtoType()1416   QualType getObjCProtoType() const {
1417     return getObjCInterfaceType(getObjCProtocolDecl());
1418   }
1419 
1420   /// \brief Retrieve the C type declaration corresponding to the predefined
1421   /// \c __builtin_va_list type.
1422   TypedefDecl *getBuiltinVaListDecl() const;
1423 
1424   /// \brief Retrieve the type of the \c __builtin_va_list type.
getBuiltinVaListType()1425   QualType getBuiltinVaListType() const {
1426     return getTypeDeclType(getBuiltinVaListDecl());
1427   }
1428 
1429   /// \brief Retrieve the C type declaration corresponding to the predefined
1430   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1431   /// for some targets.
1432   QualType getVaListTagType() const;
1433 
1434   /// \brief Return a type with additional \c const, \c volatile, or
1435   /// \c restrict qualifiers.
getCVRQualifiedType(QualType T,unsigned CVR)1436   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1437     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1438   }
1439 
1440   /// \brief Un-split a SplitQualType.
getQualifiedType(SplitQualType split)1441   QualType getQualifiedType(SplitQualType split) const {
1442     return getQualifiedType(split.Ty, split.Quals);
1443   }
1444 
1445   /// \brief Return a type with additional qualifiers.
getQualifiedType(QualType T,Qualifiers Qs)1446   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1447     if (!Qs.hasNonFastQualifiers())
1448       return T.withFastQualifiers(Qs.getFastQualifiers());
1449     QualifierCollector Qc(Qs);
1450     const Type *Ptr = Qc.strip(T);
1451     return getExtQualType(Ptr, Qc);
1452   }
1453 
1454   /// \brief Return a type with additional qualifiers.
getQualifiedType(const Type * T,Qualifiers Qs)1455   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1456     if (!Qs.hasNonFastQualifiers())
1457       return QualType(T, Qs.getFastQualifiers());
1458     return getExtQualType(T, Qs);
1459   }
1460 
1461   /// \brief Return a type with the given lifetime qualifier.
1462   ///
1463   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
getLifetimeQualifiedType(QualType type,Qualifiers::ObjCLifetime lifetime)1464   QualType getLifetimeQualifiedType(QualType type,
1465                                     Qualifiers::ObjCLifetime lifetime) {
1466     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1467     assert(lifetime != Qualifiers::OCL_None);
1468 
1469     Qualifiers qs;
1470     qs.addObjCLifetime(lifetime);
1471     return getQualifiedType(type, qs);
1472   }
1473 
1474   /// getUnqualifiedObjCPointerType - Returns version of
1475   /// Objective-C pointer type with lifetime qualifier removed.
getUnqualifiedObjCPointerType(QualType type)1476   QualType getUnqualifiedObjCPointerType(QualType type) const {
1477     if (!type.getTypePtr()->isObjCObjectPointerType() ||
1478         !type.getQualifiers().hasObjCLifetime())
1479       return type;
1480     Qualifiers Qs = type.getQualifiers();
1481     Qs.removeObjCLifetime();
1482     return getQualifiedType(type.getUnqualifiedType(), Qs);
1483   }
1484 
1485   DeclarationNameInfo getNameForTemplate(TemplateName Name,
1486                                          SourceLocation NameLoc) const;
1487 
1488   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1489                                          UnresolvedSetIterator End) const;
1490 
1491   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1492                                         bool TemplateKeyword,
1493                                         TemplateDecl *Template) const;
1494 
1495   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1496                                         const IdentifierInfo *Name) const;
1497   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1498                                         OverloadedOperatorKind Operator) const;
1499   TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1500                                             TemplateName replacement) const;
1501   TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1502                                         const TemplateArgument &ArgPack) const;
1503 
1504   enum GetBuiltinTypeError {
1505     GE_None,              ///< No error
1506     GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1507     GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1508     GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1509   };
1510 
1511   /// \brief Return the type for the specified builtin.
1512   ///
1513   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1514   /// arguments to the builtin that are required to be integer constant
1515   /// expressions.
1516   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1517                           unsigned *IntegerConstantArgs = 0) const;
1518 
1519 private:
1520   CanQualType getFromTargetType(unsigned Type) const;
1521   std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1522 
1523   //===--------------------------------------------------------------------===//
1524   //                         Type Predicates.
1525   //===--------------------------------------------------------------------===//
1526 
1527 public:
1528   /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1529   /// collection attributes.
1530   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1531 
1532   /// \brief Return true if the given vector types are of the same unqualified
1533   /// type or if they are equivalent to the same GCC vector type.
1534   ///
1535   /// \note This ignores whether they are target-specific (AltiVec or Neon)
1536   /// types.
1537   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1538 
1539   /// \brief Return true if this is an \c NSObject object with its \c NSObject
1540   /// attribute set.
isObjCNSObjectType(QualType Ty)1541   static bool isObjCNSObjectType(QualType Ty) {
1542     return Ty->isObjCNSObjectType();
1543   }
1544 
1545   //===--------------------------------------------------------------------===//
1546   //                         Type Sizing and Analysis
1547   //===--------------------------------------------------------------------===//
1548 
1549   /// \brief Return the APFloat 'semantics' for the specified scalar floating
1550   /// point type.
1551   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1552 
1553   /// \brief Get the size and alignment of the specified complete type in bits.
1554   std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
getTypeInfo(QualType T)1555   std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1556     return getTypeInfo(T.getTypePtr());
1557   }
1558 
1559   /// \brief Return the size of the specified (complete) type \p T, in bits.
getTypeSize(QualType T)1560   uint64_t getTypeSize(QualType T) const {
1561     return getTypeInfo(T).first;
1562   }
getTypeSize(const Type * T)1563   uint64_t getTypeSize(const Type *T) const {
1564     return getTypeInfo(T).first;
1565   }
1566 
1567   /// \brief Return the size of the character type, in bits.
getCharWidth()1568   uint64_t getCharWidth() const {
1569     return getTypeSize(CharTy);
1570   }
1571 
1572   /// \brief Convert a size in bits to a size in characters.
1573   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1574 
1575   /// \brief Convert a size in characters to a size in bits.
1576   int64_t toBits(CharUnits CharSize) const;
1577 
1578   /// \brief Return the size of the specified (complete) type \p T, in
1579   /// characters.
1580   CharUnits getTypeSizeInChars(QualType T) const;
1581   CharUnits getTypeSizeInChars(const Type *T) const;
1582 
1583   /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1584   /// bits.
getTypeAlign(QualType T)1585   unsigned getTypeAlign(QualType T) const {
1586     return getTypeInfo(T).second;
1587   }
getTypeAlign(const Type * T)1588   unsigned getTypeAlign(const Type *T) const {
1589     return getTypeInfo(T).second;
1590   }
1591 
1592   /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1593   /// characters.
1594   CharUnits getTypeAlignInChars(QualType T) const;
1595   CharUnits getTypeAlignInChars(const Type *T) const;
1596 
1597   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1598   // type is a record, its data size is returned.
1599   std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1600 
1601   std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1602   std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1603 
1604   /// \brief Return the "preferred" alignment of the specified type \p T for
1605   /// the current target, in bits.
1606   ///
1607   /// This can be different than the ABI alignment in cases where it is
1608   /// beneficial for performance to overalign a data type.
1609   unsigned getPreferredTypeAlign(const Type *T) const;
1610 
1611   /// \brief Return the alignment in bits that should be given to a
1612   /// global variable with type \p T.
1613   unsigned getAlignOfGlobalVar(QualType T) const;
1614 
1615   /// \brief Return the alignment in characters that should be given to a
1616   /// global variable with type \p T.
1617   CharUnits getAlignOfGlobalVarInChars(QualType T) const;
1618 
1619   /// \brief Return a conservative estimate of the alignment of the specified
1620   /// decl \p D.
1621   ///
1622   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1623   /// alignment.
1624   ///
1625   /// If \p RefAsPointee, references are treated like their underlying type
1626   /// (for alignof), else they're treated like pointers (for CodeGen).
1627   CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1628 
1629   /// \brief Get or compute information about the layout of the specified
1630   /// record (struct/union/class) \p D, which indicates its size and field
1631   /// position information.
1632   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1633 
1634   /// \brief Get or compute information about the layout of the specified
1635   /// Objective-C interface.
1636   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1637     const;
1638 
1639   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1640                         bool Simple = false) const;
1641 
1642   /// \brief Get or compute information about the layout of the specified
1643   /// Objective-C implementation.
1644   ///
1645   /// This may differ from the interface if synthesized ivars are present.
1646   const ASTRecordLayout &
1647   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1648 
1649   /// \brief Get our current best idea for the key function of the
1650   /// given record decl, or NULL if there isn't one.
1651   ///
1652   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1653   ///   ...the first non-pure virtual function that is not inline at the
1654   ///   point of class definition.
1655   ///
1656   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
1657   /// virtual functions that are defined 'inline', which means that
1658   /// the result of this computation can change.
1659   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
1660 
1661   /// \brief Observe that the given method cannot be a key function.
1662   /// Checks the key-function cache for the method's class and clears it
1663   /// if matches the given declaration.
1664   ///
1665   /// This is used in ABIs where out-of-line definitions marked
1666   /// inline are not considered to be key functions.
1667   ///
1668   /// \param method should be the declaration from the class definition
1669   void setNonKeyFunction(const CXXMethodDecl *method);
1670 
1671   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1672   uint64_t getFieldOffset(const ValueDecl *FD) const;
1673 
1674   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1675 
1676   MangleContext *createMangleContext();
1677 
1678   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1679                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1680 
1681   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1682   void CollectInheritedProtocols(const Decl *CDecl,
1683                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1684 
1685   //===--------------------------------------------------------------------===//
1686   //                            Type Operators
1687   //===--------------------------------------------------------------------===//
1688 
1689   /// \brief Return the canonical (structural) type corresponding to the
1690   /// specified potentially non-canonical type \p T.
1691   ///
1692   /// The non-canonical version of a type may have many "decorated" versions of
1693   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1694   /// returned type is guaranteed to be free of any of these, allowing two
1695   /// canonical types to be compared for exact equality with a simple pointer
1696   /// comparison.
getCanonicalType(QualType T)1697   CanQualType getCanonicalType(QualType T) const {
1698     return CanQualType::CreateUnsafe(T.getCanonicalType());
1699   }
1700 
getCanonicalType(const Type * T)1701   const Type *getCanonicalType(const Type *T) const {
1702     return T->getCanonicalTypeInternal().getTypePtr();
1703   }
1704 
1705   /// \brief Return the canonical parameter type corresponding to the specific
1706   /// potentially non-canonical one.
1707   ///
1708   /// Qualifiers are stripped off, functions are turned into function
1709   /// pointers, and arrays decay one level into pointers.
1710   CanQualType getCanonicalParamType(QualType T) const;
1711 
1712   /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
hasSameType(QualType T1,QualType T2)1713   bool hasSameType(QualType T1, QualType T2) const {
1714     return getCanonicalType(T1) == getCanonicalType(T2);
1715   }
1716 
1717   /// \brief Return this type as a completely-unqualified array type,
1718   /// capturing the qualifiers in \p Quals.
1719   ///
1720   /// This will remove the minimal amount of sugaring from the types, similar
1721   /// to the behavior of QualType::getUnqualifiedType().
1722   ///
1723   /// \param T is the qualified type, which may be an ArrayType
1724   ///
1725   /// \param Quals will receive the full set of qualifiers that were
1726   /// applied to the array.
1727   ///
1728   /// \returns if this is an array type, the completely unqualified array type
1729   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1730   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1731 
1732   /// \brief Determine whether the given types are equivalent after
1733   /// cvr-qualifiers have been removed.
hasSameUnqualifiedType(QualType T1,QualType T2)1734   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1735     return getCanonicalType(T1).getTypePtr() ==
1736            getCanonicalType(T2).getTypePtr();
1737   }
1738 
1739   bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
1740                            const ObjCMethodDecl *MethodImp);
1741 
1742   bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1743 
1744   /// \brief Retrieves the "canonical" nested name specifier for a
1745   /// given nested name specifier.
1746   ///
1747   /// The canonical nested name specifier is a nested name specifier
1748   /// that uniquely identifies a type or namespace within the type
1749   /// system. For example, given:
1750   ///
1751   /// \code
1752   /// namespace N {
1753   ///   struct S {
1754   ///     template<typename T> struct X { typename T* type; };
1755   ///   };
1756   /// }
1757   ///
1758   /// template<typename T> struct Y {
1759   ///   typename N::S::X<T>::type member;
1760   /// };
1761   /// \endcode
1762   ///
1763   /// Here, the nested-name-specifier for N::S::X<T>:: will be
1764   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1765   /// by declarations in the type system and the canonical type for
1766   /// the template type parameter 'T' is template-param-0-0.
1767   NestedNameSpecifier *
1768   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1769 
1770   /// \brief Retrieves the default calling convention to use for
1771   /// C++ instance methods.
1772   CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
1773 
1774   /// \brief Retrieves the canonical representation of the given
1775   /// calling convention.
1776   CallingConv getCanonicalCallConv(CallingConv CC) const;
1777 
1778   /// \brief Determines whether two calling conventions name the same
1779   /// calling convention.
isSameCallConv(CallingConv lcc,CallingConv rcc)1780   bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1781     return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1782   }
1783 
1784   /// \brief Retrieves the "canonical" template name that refers to a
1785   /// given template.
1786   ///
1787   /// The canonical template name is the simplest expression that can
1788   /// be used to refer to a given template. For most templates, this
1789   /// expression is just the template declaration itself. For example,
1790   /// the template std::vector can be referred to via a variety of
1791   /// names---std::vector, \::std::vector, vector (if vector is in
1792   /// scope), etc.---but all of these names map down to the same
1793   /// TemplateDecl, which is used to form the canonical template name.
1794   ///
1795   /// Dependent template names are more interesting. Here, the
1796   /// template name could be something like T::template apply or
1797   /// std::allocator<T>::template rebind, where the nested name
1798   /// specifier itself is dependent. In this case, the canonical
1799   /// template name uses the shortest form of the dependent
1800   /// nested-name-specifier, which itself contains all canonical
1801   /// types, values, and templates.
1802   TemplateName getCanonicalTemplateName(TemplateName Name) const;
1803 
1804   /// \brief Determine whether the given template names refer to the same
1805   /// template.
1806   bool hasSameTemplateName(TemplateName X, TemplateName Y);
1807 
1808   /// \brief Retrieve the "canonical" template argument.
1809   ///
1810   /// The canonical template argument is the simplest template argument
1811   /// (which may be a type, value, expression, or declaration) that
1812   /// expresses the value of the argument.
1813   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1814     const;
1815 
1816   /// Type Query functions.  If the type is an instance of the specified class,
1817   /// return the Type pointer for the underlying maximally pretty type.  This
1818   /// is a member of ASTContext because this may need to do some amount of
1819   /// canonicalization, e.g. to move type qualifiers into the element type.
1820   const ArrayType *getAsArrayType(QualType T) const;
getAsConstantArrayType(QualType T)1821   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1822     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1823   }
getAsVariableArrayType(QualType T)1824   const VariableArrayType *getAsVariableArrayType(QualType T) const {
1825     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1826   }
getAsIncompleteArrayType(QualType T)1827   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1828     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1829   }
getAsDependentSizedArrayType(QualType T)1830   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1831     const {
1832     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1833   }
1834 
1835   /// \brief Return the innermost element type of an array type.
1836   ///
1837   /// For example, will return "int" for int[m][n]
1838   QualType getBaseElementType(const ArrayType *VAT) const;
1839 
1840   /// \brief Return the innermost element type of a type (which needn't
1841   /// actually be an array type).
1842   QualType getBaseElementType(QualType QT) const;
1843 
1844   /// \brief Return number of constant array elements.
1845   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1846 
1847   /// \brief Perform adjustment on the parameter type of a function.
1848   ///
1849   /// This routine adjusts the given parameter type @p T to the actual
1850   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1851   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1852   QualType getAdjustedParameterType(QualType T) const;
1853 
1854   /// \brief Retrieve the parameter type as adjusted for use in the signature
1855   /// of a function, decaying array and function types and removing top-level
1856   /// cv-qualifiers.
1857   QualType getSignatureParameterType(QualType T) const;
1858 
1859   /// \brief Return the properly qualified result of decaying the specified
1860   /// array type to a pointer.
1861   ///
1862   /// This operation is non-trivial when handling typedefs etc.  The canonical
1863   /// type of \p T must be an array type, this returns a pointer to a properly
1864   /// qualified element of the array.
1865   ///
1866   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1867   QualType getArrayDecayedType(QualType T) const;
1868 
1869   /// \brief Return the type that \p PromotableType will promote to: C99
1870   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1871   QualType getPromotedIntegerType(QualType PromotableType) const;
1872 
1873   /// \brief Recurses in pointer/array types until it finds an Objective-C
1874   /// retainable type and returns its ownership.
1875   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1876 
1877   /// \brief Whether this is a promotable bitfield reference according
1878   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1879   ///
1880   /// \returns the type this bit-field will promote to, or NULL if no
1881   /// promotion occurs.
1882   QualType isPromotableBitField(Expr *E) const;
1883 
1884   /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1885   ///
1886   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1887   /// \p LHS < \p RHS, return -1.
1888   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1889 
1890   /// \brief Compare the rank of the two specified floating point types,
1891   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1892   ///
1893   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1894   /// \p LHS < \p RHS, return -1.
1895   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1896 
1897   /// \brief Return a real floating point or a complex type (based on
1898   /// \p typeDomain/\p typeSize).
1899   ///
1900   /// \param typeDomain a real floating point or complex type.
1901   /// \param typeSize a real floating point or complex type.
1902   QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1903                                              QualType typeDomain) const;
1904 
getTargetAddressSpace(QualType T)1905   unsigned getTargetAddressSpace(QualType T) const {
1906     return getTargetAddressSpace(T.getQualifiers());
1907   }
1908 
getTargetAddressSpace(Qualifiers Q)1909   unsigned getTargetAddressSpace(Qualifiers Q) const {
1910     return getTargetAddressSpace(Q.getAddressSpace());
1911   }
1912 
getTargetAddressSpace(unsigned AS)1913   unsigned getTargetAddressSpace(unsigned AS) const {
1914     if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1915       return AS;
1916     else
1917       return (*AddrSpaceMap)[AS - LangAS::Offset];
1918   }
1919 
1920 private:
1921   // Helper for integer ordering
1922   unsigned getIntegerRank(const Type *T) const;
1923 
1924 public:
1925 
1926   //===--------------------------------------------------------------------===//
1927   //                    Type Compatibility Predicates
1928   //===--------------------------------------------------------------------===//
1929 
1930   /// Compatibility predicates used to check assignment expressions.
1931   bool typesAreCompatible(QualType T1, QualType T2,
1932                           bool CompareUnqualified = false); // C99 6.2.7p1
1933 
1934   bool propertyTypesAreCompatible(QualType, QualType);
1935   bool typesAreBlockPointerCompatible(QualType, QualType);
1936 
isObjCIdType(QualType T)1937   bool isObjCIdType(QualType T) const {
1938     return T == getObjCIdType();
1939   }
isObjCClassType(QualType T)1940   bool isObjCClassType(QualType T) const {
1941     return T == getObjCClassType();
1942   }
isObjCSelType(QualType T)1943   bool isObjCSelType(QualType T) const {
1944     return T == getObjCSelType();
1945   }
1946   bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1947                                          bool ForCompare);
1948 
1949   bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1950 
1951   // Check the safety of assignment from LHS to RHS
1952   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1953                                const ObjCObjectPointerType *RHSOPT);
1954   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1955                                const ObjCObjectType *RHS);
1956   bool canAssignObjCInterfacesInBlockPointer(
1957                                           const ObjCObjectPointerType *LHSOPT,
1958                                           const ObjCObjectPointerType *RHSOPT,
1959                                           bool BlockReturnType);
1960   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1961   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1962                                    const ObjCObjectPointerType *RHSOPT);
1963   bool canBindObjCObjectType(QualType To, QualType From);
1964 
1965   // Functions for calculating composite types
1966   QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1967                       bool Unqualified = false, bool BlockReturnType = false);
1968   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1969                               bool Unqualified = false);
1970   QualType mergeFunctionArgumentTypes(QualType, QualType,
1971                                       bool OfBlockPointer=false,
1972                                       bool Unqualified = false);
1973   QualType mergeTransparentUnionType(QualType, QualType,
1974                                      bool OfBlockPointer=false,
1975                                      bool Unqualified = false);
1976 
1977   QualType mergeObjCGCQualifiers(QualType, QualType);
1978 
1979   bool FunctionTypesMatchOnNSConsumedAttrs(
1980          const FunctionProtoType *FromFunctionType,
1981          const FunctionProtoType *ToFunctionType);
1982 
ResetObjCLayout(const ObjCContainerDecl * CD)1983   void ResetObjCLayout(const ObjCContainerDecl *CD) {
1984     ObjCLayouts[CD] = 0;
1985   }
1986 
1987   //===--------------------------------------------------------------------===//
1988   //                    Integer Predicates
1989   //===--------------------------------------------------------------------===//
1990 
1991   // The width of an integer, as defined in C99 6.2.6.2. This is the number
1992   // of bits in an integer type excluding any padding bits.
1993   unsigned getIntWidth(QualType T) const;
1994 
1995   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1996   // unsigned integer type.  This method takes a signed type, and returns the
1997   // corresponding unsigned integer type.
1998   QualType getCorrespondingUnsignedType(QualType T) const;
1999 
2000   //===--------------------------------------------------------------------===//
2001   //                    Type Iterators.
2002   //===--------------------------------------------------------------------===//
2003 
2004   typedef SmallVectorImpl<Type *>::iterator       type_iterator;
2005   typedef SmallVectorImpl<Type *>::const_iterator const_type_iterator;
2006 
types_begin()2007   type_iterator types_begin() { return Types.begin(); }
types_end()2008   type_iterator types_end() { return Types.end(); }
types_begin()2009   const_type_iterator types_begin() const { return Types.begin(); }
types_end()2010   const_type_iterator types_end() const { return Types.end(); }
2011 
2012   //===--------------------------------------------------------------------===//
2013   //                    Integer Values
2014   //===--------------------------------------------------------------------===//
2015 
2016   /// \brief Make an APSInt of the appropriate width and signedness for the
2017   /// given \p Value and integer \p Type.
MakeIntValue(uint64_t Value,QualType Type)2018   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2019     llvm::APSInt Res(getIntWidth(Type),
2020                      !Type->isSignedIntegerOrEnumerationType());
2021     Res = Value;
2022     return Res;
2023   }
2024 
2025   bool isSentinelNullExpr(const Expr *E);
2026 
2027   /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
2028   /// none exists.
2029   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2030   /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
2031   /// none exists.
2032   ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
2033 
2034   /// \brief Return true if there is at least one \@implementation in the TU.
AnyObjCImplementation()2035   bool AnyObjCImplementation() {
2036     return !ObjCImpls.empty();
2037   }
2038 
2039   /// \brief Set the implementation of ObjCInterfaceDecl.
2040   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2041                              ObjCImplementationDecl *ImplD);
2042   /// \brief Set the implementation of ObjCCategoryDecl.
2043   void setObjCImplementation(ObjCCategoryDecl *CatD,
2044                              ObjCCategoryImplDecl *ImplD);
2045 
2046   /// \brief Get the duplicate declaration of a ObjCMethod in the same
2047   /// interface, or null if none exists.
getObjCMethodRedeclaration(const ObjCMethodDecl * MD)2048   const ObjCMethodDecl *getObjCMethodRedeclaration(
2049                                                const ObjCMethodDecl *MD) const {
2050     return ObjCMethodRedecls.lookup(MD);
2051   }
2052 
setObjCMethodRedeclaration(const ObjCMethodDecl * MD,const ObjCMethodDecl * Redecl)2053   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2054                                   const ObjCMethodDecl *Redecl) {
2055     assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2056     ObjCMethodRedecls[MD] = Redecl;
2057   }
2058 
2059   /// \brief Returns the Objective-C interface that \p ND belongs to if it is
2060   /// an Objective-C method/property/ivar etc. that is part of an interface,
2061   /// otherwise returns null.
2062   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2063 
2064   /// \brief Set the copy inialization expression of a block var decl.
2065   void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
2066   /// \brief Get the copy initialization expression of the VarDecl \p VD, or
2067   /// NULL if none exists.
2068   Expr *getBlockVarCopyInits(const VarDecl* VD);
2069 
2070   /// \brief Allocate an uninitialized TypeSourceInfo.
2071   ///
2072   /// The caller should initialize the memory held by TypeSourceInfo using
2073   /// the TypeLoc wrappers.
2074   ///
2075   /// \param T the type that will be the basis for type source info. This type
2076   /// should refer to how the declarator was written in source code, not to
2077   /// what type semantic analysis resolved the declarator to.
2078   ///
2079   /// \param Size the size of the type info to create, or 0 if the size
2080   /// should be calculated based on the type.
2081   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2082 
2083   /// \brief Allocate a TypeSourceInfo where all locations have been
2084   /// initialized to a given location, which defaults to the empty
2085   /// location.
2086   TypeSourceInfo *
2087   getTrivialTypeSourceInfo(QualType T,
2088                            SourceLocation Loc = SourceLocation()) const;
2089 
getNullTypeSourceInfo()2090   TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
2091 
2092   /// \brief Add a deallocation callback that will be invoked when the
2093   /// ASTContext is destroyed.
2094   ///
2095   /// \param Callback A callback function that will be invoked on destruction.
2096   ///
2097   /// \param Data Pointer data that will be provided to the callback function
2098   /// when it is called.
2099   void AddDeallocation(void (*Callback)(void*), void *Data);
2100 
2101   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
2102   GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2103 
2104   /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
2105   /// lazily, only when used; this is only relevant for function or file scoped
2106   /// var definitions.
2107   ///
2108   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2109   /// it is not used.
2110   bool DeclMustBeEmitted(const Decl *D);
2111 
2112   void setManglingNumber(const NamedDecl *ND, unsigned Number);
2113   unsigned getManglingNumber(const NamedDecl *ND) const;
2114 
2115   /// \brief Retrieve the context for computing mangling numbers in the given
2116   /// DeclContext.
2117   MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2118 
2119   /// \brief Used by ParmVarDecl to store on the side the
2120   /// index of the parameter when it exceeds the size of the normal bitfield.
2121   void setParameterIndex(const ParmVarDecl *D, unsigned index);
2122 
2123   /// \brief Used by ParmVarDecl to retrieve on the side the
2124   /// index of the parameter when it exceeds the size of the normal bitfield.
2125   unsigned getParameterIndex(const ParmVarDecl *D) const;
2126 
2127   /// \brief Get the storage for the constant value of a materialized temporary
2128   /// of static storage duration.
2129   APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
2130                                          bool MayCreate);
2131 
2132   //===--------------------------------------------------------------------===//
2133   //                    Statistics
2134   //===--------------------------------------------------------------------===//
2135 
2136   /// \brief The number of implicitly-declared default constructors.
2137   static unsigned NumImplicitDefaultConstructors;
2138 
2139   /// \brief The number of implicitly-declared default constructors for
2140   /// which declarations were built.
2141   static unsigned NumImplicitDefaultConstructorsDeclared;
2142 
2143   /// \brief The number of implicitly-declared copy constructors.
2144   static unsigned NumImplicitCopyConstructors;
2145 
2146   /// \brief The number of implicitly-declared copy constructors for
2147   /// which declarations were built.
2148   static unsigned NumImplicitCopyConstructorsDeclared;
2149 
2150   /// \brief The number of implicitly-declared move constructors.
2151   static unsigned NumImplicitMoveConstructors;
2152 
2153   /// \brief The number of implicitly-declared move constructors for
2154   /// which declarations were built.
2155   static unsigned NumImplicitMoveConstructorsDeclared;
2156 
2157   /// \brief The number of implicitly-declared copy assignment operators.
2158   static unsigned NumImplicitCopyAssignmentOperators;
2159 
2160   /// \brief The number of implicitly-declared copy assignment operators for
2161   /// which declarations were built.
2162   static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2163 
2164   /// \brief The number of implicitly-declared move assignment operators.
2165   static unsigned NumImplicitMoveAssignmentOperators;
2166 
2167   /// \brief The number of implicitly-declared move assignment operators for
2168   /// which declarations were built.
2169   static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2170 
2171   /// \brief The number of implicitly-declared destructors.
2172   static unsigned NumImplicitDestructors;
2173 
2174   /// \brief The number of implicitly-declared destructors for which
2175   /// declarations were built.
2176   static unsigned NumImplicitDestructorsDeclared;
2177 
2178 private:
2179   ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2180   void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2181 
2182 public:
2183   /// \brief Initialize built-in types.
2184   ///
2185   /// This routine may only be invoked once for a given ASTContext object.
2186   /// It is normally invoked by the ASTContext constructor. However, the
2187   /// constructor can be asked to delay initialization, which places the burden
2188   /// of calling this function on the user of that object.
2189   ///
2190   /// \param Target The target
2191   void InitBuiltinTypes(const TargetInfo &Target);
2192 
2193 private:
2194   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2195 
2196   // Return the Objective-C type encoding for a given type.
2197   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2198                                   bool ExpandPointedToStructures,
2199                                   bool ExpandStructures,
2200                                   const FieldDecl *Field,
2201                                   bool OutermostType = false,
2202                                   bool EncodingProperty = false,
2203                                   bool StructField = false,
2204                                   bool EncodeBlockParameters = false,
2205                                   bool EncodeClassNames = false,
2206                                   bool EncodePointerToObjCTypedef = false) const;
2207 
2208   // Adds the encoding of the structure's members.
2209   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2210                                        const FieldDecl *Field,
2211                                        bool includeVBases = true) const;
2212 
2213   // Adds the encoding of a method parameter or return type.
2214   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2215                                          QualType T, std::string& S,
2216                                          bool Extended) const;
2217 
2218   const ASTRecordLayout &
2219   getObjCLayout(const ObjCInterfaceDecl *D,
2220                 const ObjCImplementationDecl *Impl) const;
2221 
2222 private:
2223   /// \brief A set of deallocations that should be performed when the
2224   /// ASTContext is destroyed.
2225   typedef llvm::SmallDenseMap<void(*)(void*), llvm::SmallVector<void*, 16> >
2226     DeallocationMap;
2227   DeallocationMap Deallocations;
2228 
2229   // FIXME: This currently contains the set of StoredDeclMaps used
2230   // by DeclContext objects.  This probably should not be in ASTContext,
2231   // but we include it here so that ASTContext can quickly deallocate them.
2232   llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2233 
2234   friend class DeclContext;
2235   friend class DeclarationNameTable;
2236   void ReleaseDeclContextMaps();
2237 
2238   llvm::OwningPtr<ParentMap> AllParents;
2239 };
2240 
2241 /// \brief Utility function for constructing a nullary selector.
GetNullarySelector(StringRef name,ASTContext & Ctx)2242 static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2243   IdentifierInfo* II = &Ctx.Idents.get(name);
2244   return Ctx.Selectors.getSelector(0, &II);
2245 }
2246 
2247 /// \brief Utility function for constructing an unary selector.
GetUnarySelector(StringRef name,ASTContext & Ctx)2248 static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2249   IdentifierInfo* II = &Ctx.Idents.get(name);
2250   return Ctx.Selectors.getSelector(1, &II);
2251 }
2252 
2253 }  // end namespace clang
2254 
2255 // operator new and delete aren't allowed inside namespaces.
2256 
2257 /// @brief Placement new for using the ASTContext's allocator.
2258 ///
2259 /// This placement form of operator new uses the ASTContext's allocator for
2260 /// obtaining memory.
2261 ///
2262 /// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2263 /// here need to also be made there.
2264 ///
2265 /// We intentionally avoid using a nothrow specification here so that the calls
2266 /// to this operator will not perform a null check on the result -- the
2267 /// underlying allocator never returns null pointers.
2268 ///
2269 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2270 /// @code
2271 /// // Default alignment (8)
2272 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2273 /// // Specific alignment
2274 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2275 /// @endcode
2276 /// Please note that you cannot use delete on the pointer; it must be
2277 /// deallocated using an explicit destructor call followed by
2278 /// @c Context.Deallocate(Ptr).
2279 ///
2280 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2281 /// @param C The ASTContext that provides the allocator.
2282 /// @param Alignment The alignment of the allocated memory (if the underlying
2283 ///                  allocator supports it).
2284 /// @return The allocated memory. Could be NULL.
new(size_t Bytes,const clang::ASTContext & C,size_t Alignment)2285 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2286                           size_t Alignment) {
2287   return C.Allocate(Bytes, Alignment);
2288 }
2289 /// @brief Placement delete companion to the new above.
2290 ///
2291 /// This operator is just a companion to the new above. There is no way of
2292 /// invoking it directly; see the new operator for more details. This operator
2293 /// is called implicitly by the compiler if a placement new expression using
2294 /// the ASTContext throws in the object constructor.
delete(void * Ptr,const clang::ASTContext & C,size_t)2295 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2296   C.Deallocate(Ptr);
2297 }
2298 
2299 /// This placement form of operator new[] uses the ASTContext's allocator for
2300 /// obtaining memory.
2301 ///
2302 /// We intentionally avoid using a nothrow specification here so that the calls
2303 /// to this operator will not perform a null check on the result -- the
2304 /// underlying allocator never returns null pointers.
2305 ///
2306 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2307 /// @code
2308 /// // Default alignment (8)
2309 /// char *data = new (Context) char[10];
2310 /// // Specific alignment
2311 /// char *data = new (Context, 4) char[10];
2312 /// @endcode
2313 /// Please note that you cannot use delete on the pointer; it must be
2314 /// deallocated using an explicit destructor call followed by
2315 /// @c Context.Deallocate(Ptr).
2316 ///
2317 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2318 /// @param C The ASTContext that provides the allocator.
2319 /// @param Alignment The alignment of the allocated memory (if the underlying
2320 ///                  allocator supports it).
2321 /// @return The allocated memory. Could be NULL.
2322 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2323                             size_t Alignment = 8) {
2324   return C.Allocate(Bytes, Alignment);
2325 }
2326 
2327 /// @brief Placement delete[] companion to the new[] above.
2328 ///
2329 /// This operator is just a companion to the new[] above. There is no way of
2330 /// invoking it directly; see the new[] operator for more details. This operator
2331 /// is called implicitly by the compiler if a placement new[] expression using
2332 /// the ASTContext throws in the object constructor.
2333 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2334   C.Deallocate(Ptr);
2335 }
2336 
2337 #endif
2338