• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- CostModel.cpp ------ Cost Model Analysis ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the cost model analysis. It provides a very basic cost
11 // estimation for LLVM-IR. This analysis uses the services of the codegen
12 // to approximate the cost of any IR instruction when lowered to machine
13 // instructions. The cost results are unit-less and the cost number represents
14 // the throughput of the machine assuming that all loads hit the cache, all
15 // branches are predicted, etc. The cost numbers can be added in order to
16 // compare two or more transformation alternatives.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #define CM_NAME "cost-model"
21 #define DEBUG_TYPE CM_NAME
22 #include "llvm/Analysis/Passes.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Value.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 using namespace llvm;
32 
33 namespace {
34   class CostModelAnalysis : public FunctionPass {
35 
36   public:
37     static char ID; // Class identification, replacement for typeinfo
CostModelAnalysis()38     CostModelAnalysis() : FunctionPass(ID), F(0), TTI(0) {
39       initializeCostModelAnalysisPass(
40         *PassRegistry::getPassRegistry());
41     }
42 
43     /// Returns the expected cost of the instruction.
44     /// Returns -1 if the cost is unknown.
45     /// Note, this method does not cache the cost calculation and it
46     /// can be expensive in some cases.
47     unsigned getInstructionCost(const Instruction *I) const;
48 
49   private:
50     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
51     virtual bool runOnFunction(Function &F);
52     virtual void print(raw_ostream &OS, const Module*) const;
53 
54     /// The function that we analyze.
55     Function *F;
56     /// Target information.
57     const TargetTransformInfo *TTI;
58   };
59 }  // End of anonymous namespace
60 
61 // Register this pass.
62 char CostModelAnalysis::ID = 0;
63 static const char cm_name[] = "Cost Model Analysis";
INITIALIZE_PASS_BEGIN(CostModelAnalysis,CM_NAME,cm_name,false,true)64 INITIALIZE_PASS_BEGIN(CostModelAnalysis, CM_NAME, cm_name, false, true)
65 INITIALIZE_PASS_END  (CostModelAnalysis, CM_NAME, cm_name, false, true)
66 
67 FunctionPass *llvm::createCostModelAnalysisPass() {
68   return new CostModelAnalysis();
69 }
70 
71 void
getAnalysisUsage(AnalysisUsage & AU) const72 CostModelAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
73   AU.setPreservesAll();
74 }
75 
76 bool
runOnFunction(Function & F)77 CostModelAnalysis::runOnFunction(Function &F) {
78  this->F = &F;
79  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
80 
81  return false;
82 }
83 
isReverseVectorMask(SmallVectorImpl<int> & Mask)84 static bool isReverseVectorMask(SmallVectorImpl<int> &Mask) {
85   for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
86     if (Mask[i] > 0 && Mask[i] != (int)(MaskSize - 1 - i))
87       return false;
88   return true;
89 }
90 
getOperandInfo(Value * V)91 static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
92   TargetTransformInfo::OperandValueKind OpInfo =
93     TargetTransformInfo::OK_AnyValue;
94 
95   // Check for a splat of a constant.
96   ConstantDataVector *CDV = 0;
97   if ((CDV = dyn_cast<ConstantDataVector>(V)))
98     if (CDV->getSplatValue() != NULL)
99       OpInfo = TargetTransformInfo::OK_UniformConstantValue;
100   ConstantVector *CV = 0;
101   if ((CV = dyn_cast<ConstantVector>(V)))
102     if (CV->getSplatValue() != NULL)
103       OpInfo = TargetTransformInfo::OK_UniformConstantValue;
104 
105   return OpInfo;
106 }
107 
getInstructionCost(const Instruction * I) const108 unsigned CostModelAnalysis::getInstructionCost(const Instruction *I) const {
109   if (!TTI)
110     return -1;
111 
112   switch (I->getOpcode()) {
113   case Instruction::GetElementPtr:{
114     Type *ValTy = I->getOperand(0)->getType()->getPointerElementType();
115     return TTI->getAddressComputationCost(ValTy);
116   }
117 
118   case Instruction::Ret:
119   case Instruction::PHI:
120   case Instruction::Br: {
121     return TTI->getCFInstrCost(I->getOpcode());
122   }
123   case Instruction::Add:
124   case Instruction::FAdd:
125   case Instruction::Sub:
126   case Instruction::FSub:
127   case Instruction::Mul:
128   case Instruction::FMul:
129   case Instruction::UDiv:
130   case Instruction::SDiv:
131   case Instruction::FDiv:
132   case Instruction::URem:
133   case Instruction::SRem:
134   case Instruction::FRem:
135   case Instruction::Shl:
136   case Instruction::LShr:
137   case Instruction::AShr:
138   case Instruction::And:
139   case Instruction::Or:
140   case Instruction::Xor: {
141     TargetTransformInfo::OperandValueKind Op1VK =
142       getOperandInfo(I->getOperand(0));
143     TargetTransformInfo::OperandValueKind Op2VK =
144       getOperandInfo(I->getOperand(1));
145     return TTI->getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK,
146                                        Op2VK);
147   }
148   case Instruction::Select: {
149     const SelectInst *SI = cast<SelectInst>(I);
150     Type *CondTy = SI->getCondition()->getType();
151     return TTI->getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy);
152   }
153   case Instruction::ICmp:
154   case Instruction::FCmp: {
155     Type *ValTy = I->getOperand(0)->getType();
156     return TTI->getCmpSelInstrCost(I->getOpcode(), ValTy);
157   }
158   case Instruction::Store: {
159     const StoreInst *SI = cast<StoreInst>(I);
160     Type *ValTy = SI->getValueOperand()->getType();
161     return TTI->getMemoryOpCost(I->getOpcode(), ValTy,
162                                  SI->getAlignment(),
163                                  SI->getPointerAddressSpace());
164   }
165   case Instruction::Load: {
166     const LoadInst *LI = cast<LoadInst>(I);
167     return TTI->getMemoryOpCost(I->getOpcode(), I->getType(),
168                                  LI->getAlignment(),
169                                  LI->getPointerAddressSpace());
170   }
171   case Instruction::ZExt:
172   case Instruction::SExt:
173   case Instruction::FPToUI:
174   case Instruction::FPToSI:
175   case Instruction::FPExt:
176   case Instruction::PtrToInt:
177   case Instruction::IntToPtr:
178   case Instruction::SIToFP:
179   case Instruction::UIToFP:
180   case Instruction::Trunc:
181   case Instruction::FPTrunc:
182   case Instruction::BitCast: {
183     Type *SrcTy = I->getOperand(0)->getType();
184     return TTI->getCastInstrCost(I->getOpcode(), I->getType(), SrcTy);
185   }
186   case Instruction::ExtractElement: {
187     const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
188     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
189     unsigned Idx = -1;
190     if (CI)
191       Idx = CI->getZExtValue();
192     return TTI->getVectorInstrCost(I->getOpcode(),
193                                    EEI->getOperand(0)->getType(), Idx);
194   }
195   case Instruction::InsertElement: {
196     const InsertElementInst * IE = cast<InsertElementInst>(I);
197     ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
198     unsigned Idx = -1;
199     if (CI)
200       Idx = CI->getZExtValue();
201     return TTI->getVectorInstrCost(I->getOpcode(),
202                                    IE->getType(), Idx);
203   }
204   case Instruction::ShuffleVector: {
205     const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
206     Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
207     unsigned NumVecElems = VecTypOp0->getVectorNumElements();
208     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
209 
210     if (NumVecElems == Mask.size() && isReverseVectorMask(Mask))
211       return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0, 0,
212                                  0);
213     return -1;
214   }
215   case Instruction::Call:
216     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
217       SmallVector<Type*, 4> Tys;
218       for (unsigned J = 0, JE = II->getNumArgOperands(); J != JE; ++J)
219         Tys.push_back(II->getArgOperand(J)->getType());
220 
221       return TTI->getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
222                                         Tys);
223     }
224     return -1;
225   default:
226     // We don't have any information on this instruction.
227     return -1;
228   }
229 }
230 
print(raw_ostream & OS,const Module *) const231 void CostModelAnalysis::print(raw_ostream &OS, const Module*) const {
232   if (!F)
233     return;
234 
235   for (Function::iterator B = F->begin(), BE = F->end(); B != BE; ++B) {
236     for (BasicBlock::iterator it = B->begin(), e = B->end(); it != e; ++it) {
237       Instruction *Inst = it;
238       unsigned Cost = getInstructionCost(Inst);
239       if (Cost != (unsigned)-1)
240         OS << "Cost Model: Found an estimated cost of " << Cost;
241       else
242         OS << "Cost Model: Unknown cost";
243 
244       OS << " for instruction: "<< *Inst << "\n";
245     }
246   }
247 }
248