1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/PrettyPrinter.h"
24 #include "clang/AST/Stmt.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/IdentifierTable.h"
28 #include "clang/Basic/Module.h"
29 #include "clang/Basic/Specifiers.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/type_traits.h"
33 #include <algorithm>
34
35 using namespace clang;
36
37 //===----------------------------------------------------------------------===//
38 // NamedDecl Implementation
39 //===----------------------------------------------------------------------===//
40
41 // Visibility rules aren't rigorously externally specified, but here
42 // are the basic principles behind what we implement:
43 //
44 // 1. An explicit visibility attribute is generally a direct expression
45 // of the user's intent and should be honored. Only the innermost
46 // visibility attribute applies. If no visibility attribute applies,
47 // global visibility settings are considered.
48 //
49 // 2. There is one caveat to the above: on or in a template pattern,
50 // an explicit visibility attribute is just a default rule, and
51 // visibility can be decreased by the visibility of template
52 // arguments. But this, too, has an exception: an attribute on an
53 // explicit specialization or instantiation causes all the visibility
54 // restrictions of the template arguments to be ignored.
55 //
56 // 3. A variable that does not otherwise have explicit visibility can
57 // be restricted by the visibility of its type.
58 //
59 // 4. A visibility restriction is explicit if it comes from an
60 // attribute (or something like it), not a global visibility setting.
61 // When emitting a reference to an external symbol, visibility
62 // restrictions are ignored unless they are explicit.
63 //
64 // 5. When computing the visibility of a non-type, including a
65 // non-type member of a class, only non-type visibility restrictions
66 // are considered: the 'visibility' attribute, global value-visibility
67 // settings, and a few special cases like __private_extern.
68 //
69 // 6. When computing the visibility of a type, including a type member
70 // of a class, only type visibility restrictions are considered:
71 // the 'type_visibility' attribute and global type-visibility settings.
72 // However, a 'visibility' attribute counts as a 'type_visibility'
73 // attribute on any declaration that only has the former.
74 //
75 // The visibility of a "secondary" entity, like a template argument,
76 // is computed using the kind of that entity, not the kind of the
77 // primary entity for which we are computing visibility. For example,
78 // the visibility of a specialization of either of these templates:
79 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
80 // template <class T, bool (&compare)(T, X)> class matcher;
81 // is restricted according to the type visibility of the argument 'T',
82 // the type visibility of 'bool(&)(T,X)', and the value visibility of
83 // the argument function 'compare'. That 'has_match' is a value
84 // and 'matcher' is a type only matters when looking for attributes
85 // and settings from the immediate context.
86
87 const unsigned IgnoreExplicitVisibilityBit = 2;
88 const unsigned IgnoreAllVisibilityBit = 4;
89
90 /// Kinds of LV computation. The linkage side of the computation is
91 /// always the same, but different things can change how visibility is
92 /// computed.
93 enum LVComputationKind {
94 /// Do an LV computation for, ultimately, a type.
95 /// Visibility may be restricted by type visibility settings and
96 /// the visibility of template arguments.
97 LVForType = NamedDecl::VisibilityForType,
98
99 /// Do an LV computation for, ultimately, a non-type declaration.
100 /// Visibility may be restricted by value visibility settings and
101 /// the visibility of template arguments.
102 LVForValue = NamedDecl::VisibilityForValue,
103
104 /// Do an LV computation for, ultimately, a type that already has
105 /// some sort of explicit visibility. Visibility may only be
106 /// restricted by the visibility of template arguments.
107 LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
108
109 /// Do an LV computation for, ultimately, a non-type declaration
110 /// that already has some sort of explicit visibility. Visibility
111 /// may only be restricted by the visibility of template arguments.
112 LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
113
114 /// Do an LV computation when we only care about the linkage.
115 LVForLinkageOnly =
116 LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
117 };
118
119 /// Does this computation kind permit us to consider additional
120 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)121 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
122 return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
123 }
124
125 /// Given an LVComputationKind, return one of the same type/value sort
126 /// that records that it already has explicit visibility.
127 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind oldKind)128 withExplicitVisibilityAlready(LVComputationKind oldKind) {
129 LVComputationKind newKind =
130 static_cast<LVComputationKind>(unsigned(oldKind) |
131 IgnoreExplicitVisibilityBit);
132 assert(oldKind != LVForType || newKind == LVForExplicitType);
133 assert(oldKind != LVForValue || newKind == LVForExplicitValue);
134 assert(oldKind != LVForExplicitType || newKind == LVForExplicitType);
135 assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
136 return newKind;
137 }
138
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)139 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
140 LVComputationKind kind) {
141 assert(!hasExplicitVisibilityAlready(kind) &&
142 "asking for explicit visibility when we shouldn't be");
143 return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
144 }
145
146 /// Is the given declaration a "type" or a "value" for the purposes of
147 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)148 static bool usesTypeVisibility(const NamedDecl *D) {
149 return isa<TypeDecl>(D) ||
150 isa<ClassTemplateDecl>(D) ||
151 isa<ObjCInterfaceDecl>(D);
152 }
153
154 /// Does the given declaration have member specialization information,
155 /// and if so, is it an explicit specialization?
156 template <class T> static typename
157 llvm::enable_if_c<!llvm::is_base_of<RedeclarableTemplateDecl, T>::value,
158 bool>::type
isExplicitMemberSpecialization(const T * D)159 isExplicitMemberSpecialization(const T *D) {
160 if (const MemberSpecializationInfo *member =
161 D->getMemberSpecializationInfo()) {
162 return member->isExplicitSpecialization();
163 }
164 return false;
165 }
166
167 /// For templates, this question is easier: a member template can't be
168 /// explicitly instantiated, so there's a single bit indicating whether
169 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)170 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
171 return D->isMemberSpecialization();
172 }
173
174 /// Given a visibility attribute, return the explicit visibility
175 /// associated with it.
176 template <class T>
getVisibilityFromAttr(const T * attr)177 static Visibility getVisibilityFromAttr(const T *attr) {
178 switch (attr->getVisibility()) {
179 case T::Default:
180 return DefaultVisibility;
181 case T::Hidden:
182 return HiddenVisibility;
183 case T::Protected:
184 return ProtectedVisibility;
185 }
186 llvm_unreachable("bad visibility kind");
187 }
188
189 /// Return the explicit visibility of the given declaration.
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)190 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
191 NamedDecl::ExplicitVisibilityKind kind) {
192 // If we're ultimately computing the visibility of a type, look for
193 // a 'type_visibility' attribute before looking for 'visibility'.
194 if (kind == NamedDecl::VisibilityForType) {
195 if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
196 return getVisibilityFromAttr(A);
197 }
198 }
199
200 // If this declaration has an explicit visibility attribute, use it.
201 if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
202 return getVisibilityFromAttr(A);
203 }
204
205 // If we're on Mac OS X, an 'availability' for Mac OS X attribute
206 // implies visibility(default).
207 if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
208 for (specific_attr_iterator<AvailabilityAttr>
209 A = D->specific_attr_begin<AvailabilityAttr>(),
210 AEnd = D->specific_attr_end<AvailabilityAttr>();
211 A != AEnd; ++A)
212 if ((*A)->getPlatform()->getName().equals("macosx"))
213 return DefaultVisibility;
214 }
215
216 return None;
217 }
218
219 static LinkageInfo
getLVForType(const Type & T,LVComputationKind computation)220 getLVForType(const Type &T, LVComputationKind computation) {
221 if (computation == LVForLinkageOnly)
222 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
223 return T.getLinkageAndVisibility();
224 }
225
226 /// \brief Get the most restrictive linkage for the types in the given
227 /// template parameter list. For visibility purposes, template
228 /// parameters are part of the signature of a template.
229 static LinkageInfo
getLVForTemplateParameterList(const TemplateParameterList * params,LVComputationKind computation)230 getLVForTemplateParameterList(const TemplateParameterList *params,
231 LVComputationKind computation) {
232 LinkageInfo LV;
233 for (TemplateParameterList::const_iterator P = params->begin(),
234 PEnd = params->end();
235 P != PEnd; ++P) {
236
237 // Template type parameters are the most common and never
238 // contribute to visibility, pack or not.
239 if (isa<TemplateTypeParmDecl>(*P))
240 continue;
241
242 // Non-type template parameters can be restricted by the value type, e.g.
243 // template <enum X> class A { ... };
244 // We have to be careful here, though, because we can be dealing with
245 // dependent types.
246 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
247 // Handle the non-pack case first.
248 if (!NTTP->isExpandedParameterPack()) {
249 if (!NTTP->getType()->isDependentType()) {
250 LV.merge(getLVForType(*NTTP->getType(), computation));
251 }
252 continue;
253 }
254
255 // Look at all the types in an expanded pack.
256 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
257 QualType type = NTTP->getExpansionType(i);
258 if (!type->isDependentType())
259 LV.merge(type->getLinkageAndVisibility());
260 }
261 continue;
262 }
263
264 // Template template parameters can be restricted by their
265 // template parameters, recursively.
266 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
267
268 // Handle the non-pack case first.
269 if (!TTP->isExpandedParameterPack()) {
270 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
271 computation));
272 continue;
273 }
274
275 // Look at all expansions in an expanded pack.
276 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
277 i != n; ++i) {
278 LV.merge(getLVForTemplateParameterList(
279 TTP->getExpansionTemplateParameters(i), computation));
280 }
281 }
282
283 return LV;
284 }
285
286 /// getLVForDecl - Get the linkage and visibility for the given declaration.
287 static LinkageInfo getLVForDecl(const NamedDecl *D,
288 LVComputationKind computation);
289
getOutermostFuncOrBlockContext(const Decl * D)290 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
291 const Decl *Ret = NULL;
292 const DeclContext *DC = D->getDeclContext();
293 while (DC->getDeclKind() != Decl::TranslationUnit) {
294 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
295 Ret = cast<Decl>(DC);
296 DC = DC->getParent();
297 }
298 return Ret;
299 }
300
301 /// \brief Get the most restrictive linkage for the types and
302 /// declarations in the given template argument list.
303 ///
304 /// Note that we don't take an LVComputationKind because we always
305 /// want to honor the visibility of template arguments in the same way.
306 static LinkageInfo
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args,LVComputationKind computation)307 getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args,
308 LVComputationKind computation) {
309 LinkageInfo LV;
310
311 for (unsigned i = 0, e = args.size(); i != e; ++i) {
312 const TemplateArgument &arg = args[i];
313 switch (arg.getKind()) {
314 case TemplateArgument::Null:
315 case TemplateArgument::Integral:
316 case TemplateArgument::Expression:
317 continue;
318
319 case TemplateArgument::Type:
320 LV.merge(getLVForType(*arg.getAsType(), computation));
321 continue;
322
323 case TemplateArgument::Declaration:
324 if (NamedDecl *ND = dyn_cast<NamedDecl>(arg.getAsDecl())) {
325 assert(!usesTypeVisibility(ND));
326 LV.merge(getLVForDecl(ND, computation));
327 }
328 continue;
329
330 case TemplateArgument::NullPtr:
331 LV.merge(arg.getNullPtrType()->getLinkageAndVisibility());
332 continue;
333
334 case TemplateArgument::Template:
335 case TemplateArgument::TemplateExpansion:
336 if (TemplateDecl *Template
337 = arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
338 LV.merge(getLVForDecl(Template, computation));
339 continue;
340
341 case TemplateArgument::Pack:
342 LV.merge(getLVForTemplateArgumentList(arg.getPackAsArray(), computation));
343 continue;
344 }
345 llvm_unreachable("bad template argument kind");
346 }
347
348 return LV;
349 }
350
351 static LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs,LVComputationKind computation)352 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
353 LVComputationKind computation) {
354 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
355 }
356
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)357 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
358 const FunctionTemplateSpecializationInfo *specInfo) {
359 // Include visibility from the template parameters and arguments
360 // only if this is not an explicit instantiation or specialization
361 // with direct explicit visibility. (Implicit instantiations won't
362 // have a direct attribute.)
363 if (!specInfo->isExplicitInstantiationOrSpecialization())
364 return true;
365
366 return !fn->hasAttr<VisibilityAttr>();
367 }
368
369 /// Merge in template-related linkage and visibility for the given
370 /// function template specialization.
371 ///
372 /// We don't need a computation kind here because we can assume
373 /// LVForValue.
374 ///
375 /// \param[out] LV the computation to use for the parent
376 static void
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo,LVComputationKind computation)377 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
378 const FunctionTemplateSpecializationInfo *specInfo,
379 LVComputationKind computation) {
380 bool considerVisibility =
381 shouldConsiderTemplateVisibility(fn, specInfo);
382
383 // Merge information from the template parameters.
384 FunctionTemplateDecl *temp = specInfo->getTemplate();
385 LinkageInfo tempLV =
386 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
387 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
388
389 // Merge information from the template arguments.
390 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
391 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
392 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
393 }
394
395 /// Does the given declaration have a direct visibility attribute
396 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)397 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
398 LVComputationKind computation) {
399 switch (computation) {
400 case LVForType:
401 case LVForExplicitType:
402 if (D->hasAttr<TypeVisibilityAttr>())
403 return true;
404 // fallthrough
405 case LVForValue:
406 case LVForExplicitValue:
407 if (D->hasAttr<VisibilityAttr>())
408 return true;
409 return false;
410 case LVForLinkageOnly:
411 return false;
412 }
413 llvm_unreachable("bad visibility computation kind");
414 }
415
416 /// Should we consider visibility associated with the template
417 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)418 static bool shouldConsiderTemplateVisibility(
419 const ClassTemplateSpecializationDecl *spec,
420 LVComputationKind computation) {
421 // Include visibility from the template parameters and arguments
422 // only if this is not an explicit instantiation or specialization
423 // with direct explicit visibility (and note that implicit
424 // instantiations won't have a direct attribute).
425 //
426 // Furthermore, we want to ignore template parameters and arguments
427 // for an explicit specialization when computing the visibility of a
428 // member thereof with explicit visibility.
429 //
430 // This is a bit complex; let's unpack it.
431 //
432 // An explicit class specialization is an independent, top-level
433 // declaration. As such, if it or any of its members has an
434 // explicit visibility attribute, that must directly express the
435 // user's intent, and we should honor it. The same logic applies to
436 // an explicit instantiation of a member of such a thing.
437
438 // Fast path: if this is not an explicit instantiation or
439 // specialization, we always want to consider template-related
440 // visibility restrictions.
441 if (!spec->isExplicitInstantiationOrSpecialization())
442 return true;
443
444 // This is the 'member thereof' check.
445 if (spec->isExplicitSpecialization() &&
446 hasExplicitVisibilityAlready(computation))
447 return false;
448
449 return !hasDirectVisibilityAttribute(spec, computation);
450 }
451
452 /// Merge in template-related linkage and visibility for the given
453 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)454 static void mergeTemplateLV(LinkageInfo &LV,
455 const ClassTemplateSpecializationDecl *spec,
456 LVComputationKind computation) {
457 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
458
459 // Merge information from the template parameters, but ignore
460 // visibility if we're only considering template arguments.
461
462 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
463 LinkageInfo tempLV =
464 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
465 LV.mergeMaybeWithVisibility(tempLV,
466 considerVisibility && !hasExplicitVisibilityAlready(computation));
467
468 // Merge information from the template arguments. We ignore
469 // template-argument visibility if we've got an explicit
470 // instantiation with a visibility attribute.
471 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
472 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
473 if (considerVisibility)
474 LV.mergeVisibility(argsLV);
475 LV.mergeExternalVisibility(argsLV);
476 }
477
useInlineVisibilityHidden(const NamedDecl * D)478 static bool useInlineVisibilityHidden(const NamedDecl *D) {
479 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
480 const LangOptions &Opts = D->getASTContext().getLangOpts();
481 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
482 return false;
483
484 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
485 if (!FD)
486 return false;
487
488 TemplateSpecializationKind TSK = TSK_Undeclared;
489 if (FunctionTemplateSpecializationInfo *spec
490 = FD->getTemplateSpecializationInfo()) {
491 TSK = spec->getTemplateSpecializationKind();
492 } else if (MemberSpecializationInfo *MSI =
493 FD->getMemberSpecializationInfo()) {
494 TSK = MSI->getTemplateSpecializationKind();
495 }
496
497 const FunctionDecl *Def = 0;
498 // InlineVisibilityHidden only applies to definitions, and
499 // isInlined() only gives meaningful answers on definitions
500 // anyway.
501 return TSK != TSK_ExplicitInstantiationDeclaration &&
502 TSK != TSK_ExplicitInstantiationDefinition &&
503 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
504 }
505
isFirstInExternCContext(T * D)506 template <typename T> static bool isFirstInExternCContext(T *D) {
507 const T *First = D->getFirstDeclaration();
508 return First->isInExternCContext();
509 }
510
isSingleLineExternC(const Decl & D)511 static bool isSingleLineExternC(const Decl &D) {
512 if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
513 if (SD->getLanguage() == LinkageSpecDecl::lang_c && !SD->hasBraces())
514 return true;
515 return false;
516 }
517
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation)518 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
519 LVComputationKind computation) {
520 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
521 "Not a name having namespace scope");
522 ASTContext &Context = D->getASTContext();
523
524 // C++ [basic.link]p3:
525 // A name having namespace scope (3.3.6) has internal linkage if it
526 // is the name of
527 // - an object, reference, function or function template that is
528 // explicitly declared static; or,
529 // (This bullet corresponds to C99 6.2.2p3.)
530 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
531 // Explicitly declared static.
532 if (Var->getStorageClass() == SC_Static)
533 return LinkageInfo::internal();
534
535 // - a non-volatile object or reference that is explicitly declared const
536 // or constexpr and neither explicitly declared extern nor previously
537 // declared to have external linkage; or (there is no equivalent in C99)
538 if (Context.getLangOpts().CPlusPlus &&
539 Var->getType().isConstQualified() &&
540 !Var->getType().isVolatileQualified()) {
541 const VarDecl *PrevVar = Var->getPreviousDecl();
542 if (PrevVar)
543 return getLVForDecl(PrevVar, computation);
544
545 if (Var->getStorageClass() != SC_Extern &&
546 Var->getStorageClass() != SC_PrivateExtern &&
547 !isSingleLineExternC(*Var))
548 return LinkageInfo::internal();
549 }
550
551 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
552 PrevVar = PrevVar->getPreviousDecl()) {
553 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
554 Var->getStorageClass() == SC_None)
555 return PrevVar->getLinkageAndVisibility();
556 // Explicitly declared static.
557 if (PrevVar->getStorageClass() == SC_Static)
558 return LinkageInfo::internal();
559 }
560 } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
561 // C++ [temp]p4:
562 // A non-member function template can have internal linkage; any
563 // other template name shall have external linkage.
564 const FunctionDecl *Function = 0;
565 if (const FunctionTemplateDecl *FunTmpl
566 = dyn_cast<FunctionTemplateDecl>(D))
567 Function = FunTmpl->getTemplatedDecl();
568 else
569 Function = cast<FunctionDecl>(D);
570
571 // Explicitly declared static.
572 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
573 return LinkageInfo(InternalLinkage, DefaultVisibility, false);
574 } else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
575 // - a data member of an anonymous union.
576 if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
577 return LinkageInfo::internal();
578 }
579
580 if (D->isInAnonymousNamespace()) {
581 const VarDecl *Var = dyn_cast<VarDecl>(D);
582 const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
583 if ((!Var || !isFirstInExternCContext(Var)) &&
584 (!Func || !isFirstInExternCContext(Func)))
585 return LinkageInfo::uniqueExternal();
586 }
587
588 // Set up the defaults.
589
590 // C99 6.2.2p5:
591 // If the declaration of an identifier for an object has file
592 // scope and no storage-class specifier, its linkage is
593 // external.
594 LinkageInfo LV;
595
596 if (!hasExplicitVisibilityAlready(computation)) {
597 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
598 LV.mergeVisibility(*Vis, true);
599 } else {
600 // If we're declared in a namespace with a visibility attribute,
601 // use that namespace's visibility, and it still counts as explicit.
602 for (const DeclContext *DC = D->getDeclContext();
603 !isa<TranslationUnitDecl>(DC);
604 DC = DC->getParent()) {
605 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
606 if (!ND) continue;
607 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
608 LV.mergeVisibility(*Vis, true);
609 break;
610 }
611 }
612 }
613
614 // Add in global settings if the above didn't give us direct visibility.
615 if (!LV.isVisibilityExplicit()) {
616 // Use global type/value visibility as appropriate.
617 Visibility globalVisibility;
618 if (computation == LVForValue) {
619 globalVisibility = Context.getLangOpts().getValueVisibilityMode();
620 } else {
621 assert(computation == LVForType);
622 globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
623 }
624 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
625
626 // If we're paying attention to global visibility, apply
627 // -finline-visibility-hidden if this is an inline method.
628 if (useInlineVisibilityHidden(D))
629 LV.mergeVisibility(HiddenVisibility, true);
630 }
631 }
632
633 // C++ [basic.link]p4:
634
635 // A name having namespace scope has external linkage if it is the
636 // name of
637 //
638 // - an object or reference, unless it has internal linkage; or
639 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
640 // GCC applies the following optimization to variables and static
641 // data members, but not to functions:
642 //
643 // Modify the variable's LV by the LV of its type unless this is
644 // C or extern "C". This follows from [basic.link]p9:
645 // A type without linkage shall not be used as the type of a
646 // variable or function with external linkage unless
647 // - the entity has C language linkage, or
648 // - the entity is declared within an unnamed namespace, or
649 // - the entity is not used or is defined in the same
650 // translation unit.
651 // and [basic.link]p10:
652 // ...the types specified by all declarations referring to a
653 // given variable or function shall be identical...
654 // C does not have an equivalent rule.
655 //
656 // Ignore this if we've got an explicit attribute; the user
657 // probably knows what they're doing.
658 //
659 // Note that we don't want to make the variable non-external
660 // because of this, but unique-external linkage suits us.
661 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
662 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
663 if (TypeLV.getLinkage() != ExternalLinkage)
664 return LinkageInfo::uniqueExternal();
665 if (!LV.isVisibilityExplicit())
666 LV.mergeVisibility(TypeLV);
667 }
668
669 if (Var->getStorageClass() == SC_PrivateExtern)
670 LV.mergeVisibility(HiddenVisibility, true);
671
672 // Note that Sema::MergeVarDecl already takes care of implementing
673 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
674 // to do it here.
675
676 // - a function, unless it has internal linkage; or
677 } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
678 // In theory, we can modify the function's LV by the LV of its
679 // type unless it has C linkage (see comment above about variables
680 // for justification). In practice, GCC doesn't do this, so it's
681 // just too painful to make work.
682
683 if (Function->getStorageClass() == SC_PrivateExtern)
684 LV.mergeVisibility(HiddenVisibility, true);
685
686 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
687 // merging storage classes and visibility attributes, so we don't have to
688 // look at previous decls in here.
689
690 // In C++, then if the type of the function uses a type with
691 // unique-external linkage, it's not legally usable from outside
692 // this translation unit. However, we should use the C linkage
693 // rules instead for extern "C" declarations.
694 if (Context.getLangOpts().CPlusPlus &&
695 !Function->isInExternCContext()) {
696 // Only look at the type-as-written. If this function has an auto-deduced
697 // return type, we can't compute the linkage of that type because it could
698 // require looking at the linkage of this function, and we don't need this
699 // for correctness because the type is not part of the function's
700 // signature.
701 // FIXME: This is a hack. We should be able to solve this circularity some
702 // other way.
703 QualType TypeAsWritten = Function->getType();
704 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
705 TypeAsWritten = TSI->getType();
706 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
707 return LinkageInfo::uniqueExternal();
708 }
709
710 // Consider LV from the template and the template arguments.
711 // We're at file scope, so we do not need to worry about nested
712 // specializations.
713 if (FunctionTemplateSpecializationInfo *specInfo
714 = Function->getTemplateSpecializationInfo()) {
715 mergeTemplateLV(LV, Function, specInfo, computation);
716 }
717
718 // - a named class (Clause 9), or an unnamed class defined in a
719 // typedef declaration in which the class has the typedef name
720 // for linkage purposes (7.1.3); or
721 // - a named enumeration (7.2), or an unnamed enumeration
722 // defined in a typedef declaration in which the enumeration
723 // has the typedef name for linkage purposes (7.1.3); or
724 } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
725 // Unnamed tags have no linkage.
726 if (!Tag->hasNameForLinkage())
727 return LinkageInfo::none();
728
729 // If this is a class template specialization, consider the
730 // linkage of the template and template arguments. We're at file
731 // scope, so we do not need to worry about nested specializations.
732 if (const ClassTemplateSpecializationDecl *spec
733 = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
734 mergeTemplateLV(LV, spec, computation);
735 }
736
737 // - an enumerator belonging to an enumeration with external linkage;
738 } else if (isa<EnumConstantDecl>(D)) {
739 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
740 computation);
741 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
742 return LinkageInfo::none();
743 LV.merge(EnumLV);
744
745 // - a template, unless it is a function template that has
746 // internal linkage (Clause 14);
747 } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
748 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
749 LinkageInfo tempLV =
750 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
751 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
752
753 // - a namespace (7.3), unless it is declared within an unnamed
754 // namespace.
755 } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
756 return LV;
757
758 // By extension, we assign external linkage to Objective-C
759 // interfaces.
760 } else if (isa<ObjCInterfaceDecl>(D)) {
761 // fallout
762
763 // Everything not covered here has no linkage.
764 } else {
765 return LinkageInfo::none();
766 }
767
768 // If we ended up with non-external linkage, visibility should
769 // always be default.
770 if (LV.getLinkage() != ExternalLinkage)
771 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
772
773 return LV;
774 }
775
getLVForClassMember(const NamedDecl * D,LVComputationKind computation)776 static LinkageInfo getLVForClassMember(const NamedDecl *D,
777 LVComputationKind computation) {
778 // Only certain class members have linkage. Note that fields don't
779 // really have linkage, but it's convenient to say they do for the
780 // purposes of calculating linkage of pointer-to-data-member
781 // template arguments.
782 if (!(isa<CXXMethodDecl>(D) ||
783 isa<VarDecl>(D) ||
784 isa<FieldDecl>(D) ||
785 isa<TagDecl>(D)))
786 return LinkageInfo::none();
787
788 LinkageInfo LV;
789
790 // If we have an explicit visibility attribute, merge that in.
791 if (!hasExplicitVisibilityAlready(computation)) {
792 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
793 LV.mergeVisibility(*Vis, true);
794 // If we're paying attention to global visibility, apply
795 // -finline-visibility-hidden if this is an inline method.
796 //
797 // Note that we do this before merging information about
798 // the class visibility.
799 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
800 LV.mergeVisibility(HiddenVisibility, true);
801 }
802
803 // If this class member has an explicit visibility attribute, the only
804 // thing that can change its visibility is the template arguments, so
805 // only look for them when processing the class.
806 LVComputationKind classComputation = computation;
807 if (LV.isVisibilityExplicit())
808 classComputation = withExplicitVisibilityAlready(computation);
809
810 LinkageInfo classLV =
811 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
812 // If the class already has unique-external linkage, we can't improve.
813 if (classLV.getLinkage() == UniqueExternalLinkage)
814 return LinkageInfo::uniqueExternal();
815
816 if (!isExternallyVisible(classLV.getLinkage()))
817 return LinkageInfo::none();
818
819
820 // Otherwise, don't merge in classLV yet, because in certain cases
821 // we need to completely ignore the visibility from it.
822
823 // Specifically, if this decl exists and has an explicit attribute.
824 const NamedDecl *explicitSpecSuppressor = 0;
825
826 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
827 // If the type of the function uses a type with unique-external
828 // linkage, it's not legally usable from outside this translation unit.
829 if (MD->getType()->getLinkage() == UniqueExternalLinkage)
830 return LinkageInfo::uniqueExternal();
831
832 // If this is a method template specialization, use the linkage for
833 // the template parameters and arguments.
834 if (FunctionTemplateSpecializationInfo *spec
835 = MD->getTemplateSpecializationInfo()) {
836 mergeTemplateLV(LV, MD, spec, computation);
837 if (spec->isExplicitSpecialization()) {
838 explicitSpecSuppressor = MD;
839 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
840 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
841 }
842 } else if (isExplicitMemberSpecialization(MD)) {
843 explicitSpecSuppressor = MD;
844 }
845
846 } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
847 if (const ClassTemplateSpecializationDecl *spec
848 = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
849 mergeTemplateLV(LV, spec, computation);
850 if (spec->isExplicitSpecialization()) {
851 explicitSpecSuppressor = spec;
852 } else {
853 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
854 if (isExplicitMemberSpecialization(temp)) {
855 explicitSpecSuppressor = temp->getTemplatedDecl();
856 }
857 }
858 } else if (isExplicitMemberSpecialization(RD)) {
859 explicitSpecSuppressor = RD;
860 }
861
862 // Static data members.
863 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
864 // Modify the variable's linkage by its type, but ignore the
865 // type's visibility unless it's a definition.
866 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
867 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
868 LV.mergeVisibility(typeLV);
869 LV.mergeExternalVisibility(typeLV);
870
871 if (isExplicitMemberSpecialization(VD)) {
872 explicitSpecSuppressor = VD;
873 }
874
875 // Template members.
876 } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
877 bool considerVisibility =
878 (!LV.isVisibilityExplicit() &&
879 !classLV.isVisibilityExplicit() &&
880 !hasExplicitVisibilityAlready(computation));
881 LinkageInfo tempLV =
882 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
883 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
884
885 if (const RedeclarableTemplateDecl *redeclTemp =
886 dyn_cast<RedeclarableTemplateDecl>(temp)) {
887 if (isExplicitMemberSpecialization(redeclTemp)) {
888 explicitSpecSuppressor = temp->getTemplatedDecl();
889 }
890 }
891 }
892
893 // We should never be looking for an attribute directly on a template.
894 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
895
896 // If this member is an explicit member specialization, and it has
897 // an explicit attribute, ignore visibility from the parent.
898 bool considerClassVisibility = true;
899 if (explicitSpecSuppressor &&
900 // optimization: hasDVA() is true only with explicit visibility.
901 LV.isVisibilityExplicit() &&
902 classLV.getVisibility() != DefaultVisibility &&
903 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
904 considerClassVisibility = false;
905 }
906
907 // Finally, merge in information from the class.
908 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
909 return LV;
910 }
911
anchor()912 void NamedDecl::anchor() { }
913
914 static LinkageInfo computeLVForDecl(const NamedDecl *D,
915 LVComputationKind computation);
916
isLinkageValid() const917 bool NamedDecl::isLinkageValid() const {
918 if (!hasCachedLinkage())
919 return true;
920
921 return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
922 getCachedLinkage();
923 }
924
getLinkageInternal() const925 Linkage NamedDecl::getLinkageInternal() const {
926 // We don't care about visibility here, so ask for the cheapest
927 // possible visibility analysis.
928 return getLVForDecl(this, LVForLinkageOnly).getLinkage();
929 }
930
getLinkageAndVisibility() const931 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
932 LVComputationKind computation =
933 (usesTypeVisibility(this) ? LVForType : LVForValue);
934 return getLVForDecl(this, computation);
935 }
936
937 Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const938 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
939 // Check the declaration itself first.
940 if (Optional<Visibility> V = getVisibilityOf(this, kind))
941 return V;
942
943 // If this is a member class of a specialization of a class template
944 // and the corresponding decl has explicit visibility, use that.
945 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) {
946 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
947 if (InstantiatedFrom)
948 return getVisibilityOf(InstantiatedFrom, kind);
949 }
950
951 // If there wasn't explicit visibility there, and this is a
952 // specialization of a class template, check for visibility
953 // on the pattern.
954 if (const ClassTemplateSpecializationDecl *spec
955 = dyn_cast<ClassTemplateSpecializationDecl>(this))
956 return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
957 kind);
958
959 // Use the most recent declaration.
960 const NamedDecl *MostRecent = cast<NamedDecl>(this->getMostRecentDecl());
961 if (MostRecent != this)
962 return MostRecent->getExplicitVisibility(kind);
963
964 if (const VarDecl *Var = dyn_cast<VarDecl>(this)) {
965 if (Var->isStaticDataMember()) {
966 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
967 if (InstantiatedFrom)
968 return getVisibilityOf(InstantiatedFrom, kind);
969 }
970
971 return None;
972 }
973 // Also handle function template specializations.
974 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) {
975 // If the function is a specialization of a template with an
976 // explicit visibility attribute, use that.
977 if (FunctionTemplateSpecializationInfo *templateInfo
978 = fn->getTemplateSpecializationInfo())
979 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
980 kind);
981
982 // If the function is a member of a specialization of a class template
983 // and the corresponding decl has explicit visibility, use that.
984 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
985 if (InstantiatedFrom)
986 return getVisibilityOf(InstantiatedFrom, kind);
987
988 return None;
989 }
990
991 // The visibility of a template is stored in the templated decl.
992 if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(this))
993 return getVisibilityOf(TD->getTemplatedDecl(), kind);
994
995 return None;
996 }
997
getLVForClosure(const DeclContext * DC,Decl * ContextDecl,LVComputationKind computation)998 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
999 LVComputationKind computation) {
1000 // This lambda has its linkage/visibility determined by its owner.
1001 if (ContextDecl) {
1002 if (isa<ParmVarDecl>(ContextDecl))
1003 DC = ContextDecl->getDeclContext()->getRedeclContext();
1004 else
1005 return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1006 }
1007
1008 if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
1009 return getLVForDecl(ND, computation);
1010
1011 return LinkageInfo::external();
1012 }
1013
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)1014 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1015 LVComputationKind computation) {
1016 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1017 if (Function->isInAnonymousNamespace() &&
1018 !Function->isInExternCContext())
1019 return LinkageInfo::uniqueExternal();
1020
1021 // This is a "void f();" which got merged with a file static.
1022 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1023 return LinkageInfo::internal();
1024
1025 LinkageInfo LV;
1026 if (!hasExplicitVisibilityAlready(computation)) {
1027 if (Optional<Visibility> Vis =
1028 getExplicitVisibility(Function, computation))
1029 LV.mergeVisibility(*Vis, true);
1030 }
1031
1032 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1033 // merging storage classes and visibility attributes, so we don't have to
1034 // look at previous decls in here.
1035
1036 return LV;
1037 }
1038
1039 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1040 if (Var->hasExternalStorage()) {
1041 if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1042 return LinkageInfo::uniqueExternal();
1043
1044 LinkageInfo LV;
1045 if (Var->getStorageClass() == SC_PrivateExtern)
1046 LV.mergeVisibility(HiddenVisibility, true);
1047 else if (!hasExplicitVisibilityAlready(computation)) {
1048 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1049 LV.mergeVisibility(*Vis, true);
1050 }
1051
1052 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1053 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1054 if (PrevLV.getLinkage())
1055 LV.setLinkage(PrevLV.getLinkage());
1056 LV.mergeVisibility(PrevLV);
1057 }
1058
1059 return LV;
1060 }
1061
1062 if (!Var->isStaticLocal())
1063 return LinkageInfo::none();
1064 }
1065
1066 ASTContext &Context = D->getASTContext();
1067 if (!Context.getLangOpts().CPlusPlus)
1068 return LinkageInfo::none();
1069
1070 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1071 if (!OuterD)
1072 return LinkageInfo::none();
1073
1074 LinkageInfo LV;
1075 if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
1076 if (!BD->getBlockManglingNumber())
1077 return LinkageInfo::none();
1078
1079 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1080 BD->getBlockManglingContextDecl(), computation);
1081 } else {
1082 const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
1083 if (!FD->isInlined() &&
1084 FD->getTemplateSpecializationKind() == TSK_Undeclared)
1085 return LinkageInfo::none();
1086
1087 LV = getLVForDecl(FD, computation);
1088 }
1089 if (!isExternallyVisible(LV.getLinkage()))
1090 return LinkageInfo::none();
1091 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1092 LV.isVisibilityExplicit());
1093 }
1094
computeLVForDecl(const NamedDecl * D,LVComputationKind computation)1095 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1096 LVComputationKind computation) {
1097 // Objective-C: treat all Objective-C declarations as having external
1098 // linkage.
1099 switch (D->getKind()) {
1100 default:
1101 break;
1102 case Decl::ParmVar:
1103 return LinkageInfo::none();
1104 case Decl::TemplateTemplateParm: // count these as external
1105 case Decl::NonTypeTemplateParm:
1106 case Decl::ObjCAtDefsField:
1107 case Decl::ObjCCategory:
1108 case Decl::ObjCCategoryImpl:
1109 case Decl::ObjCCompatibleAlias:
1110 case Decl::ObjCImplementation:
1111 case Decl::ObjCMethod:
1112 case Decl::ObjCProperty:
1113 case Decl::ObjCPropertyImpl:
1114 case Decl::ObjCProtocol:
1115 return LinkageInfo::external();
1116
1117 case Decl::CXXRecord: {
1118 const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
1119 if (Record->isLambda()) {
1120 if (!Record->getLambdaManglingNumber()) {
1121 // This lambda has no mangling number, so it's internal.
1122 return LinkageInfo::internal();
1123 }
1124
1125 // This lambda has its linkage/visibility determined by its owner.
1126 return getLVForClosure(D->getDeclContext()->getRedeclContext(),
1127 Record->getLambdaContextDecl(), computation);
1128 }
1129
1130 break;
1131 }
1132 }
1133
1134 // Handle linkage for namespace-scope names.
1135 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1136 return getLVForNamespaceScopeDecl(D, computation);
1137
1138 // C++ [basic.link]p5:
1139 // In addition, a member function, static data member, a named
1140 // class or enumeration of class scope, or an unnamed class or
1141 // enumeration defined in a class-scope typedef declaration such
1142 // that the class or enumeration has the typedef name for linkage
1143 // purposes (7.1.3), has external linkage if the name of the class
1144 // has external linkage.
1145 if (D->getDeclContext()->isRecord())
1146 return getLVForClassMember(D, computation);
1147
1148 // C++ [basic.link]p6:
1149 // The name of a function declared in block scope and the name of
1150 // an object declared by a block scope extern declaration have
1151 // linkage. If there is a visible declaration of an entity with
1152 // linkage having the same name and type, ignoring entities
1153 // declared outside the innermost enclosing namespace scope, the
1154 // block scope declaration declares that same entity and receives
1155 // the linkage of the previous declaration. If there is more than
1156 // one such matching entity, the program is ill-formed. Otherwise,
1157 // if no matching entity is found, the block scope entity receives
1158 // external linkage.
1159 if (D->getDeclContext()->isFunctionOrMethod())
1160 return getLVForLocalDecl(D, computation);
1161
1162 // C++ [basic.link]p6:
1163 // Names not covered by these rules have no linkage.
1164 return LinkageInfo::none();
1165 }
1166
1167 namespace clang {
1168 class LinkageComputer {
1169 public:
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1170 static LinkageInfo getLVForDecl(const NamedDecl *D,
1171 LVComputationKind computation) {
1172 if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1173 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1174
1175 LinkageInfo LV = computeLVForDecl(D, computation);
1176 if (D->hasCachedLinkage())
1177 assert(D->getCachedLinkage() == LV.getLinkage());
1178
1179 D->setCachedLinkage(LV.getLinkage());
1180
1181 #ifndef NDEBUG
1182 // In C (because of gnu inline) and in c++ with microsoft extensions an
1183 // static can follow an extern, so we can have two decls with different
1184 // linkages.
1185 const LangOptions &Opts = D->getASTContext().getLangOpts();
1186 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1187 return LV;
1188
1189 // We have just computed the linkage for this decl. By induction we know
1190 // that all other computed linkages match, check that the one we just
1191 // computed
1192 // also does.
1193 NamedDecl *Old = NULL;
1194 for (NamedDecl::redecl_iterator I = D->redecls_begin(),
1195 E = D->redecls_end();
1196 I != E; ++I) {
1197 NamedDecl *T = cast<NamedDecl>(*I);
1198 if (T == D)
1199 continue;
1200 if (T->hasCachedLinkage()) {
1201 Old = T;
1202 break;
1203 }
1204 }
1205 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1206 #endif
1207
1208 return LV;
1209 }
1210 };
1211 }
1212
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1213 static LinkageInfo getLVForDecl(const NamedDecl *D,
1214 LVComputationKind computation) {
1215 return clang::LinkageComputer::getLVForDecl(D, computation);
1216 }
1217
getQualifiedNameAsString() const1218 std::string NamedDecl::getQualifiedNameAsString() const {
1219 return getQualifiedNameAsString(getASTContext().getPrintingPolicy());
1220 }
1221
getQualifiedNameAsString(const PrintingPolicy & P) const1222 std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
1223 std::string QualName;
1224 llvm::raw_string_ostream OS(QualName);
1225 printQualifiedName(OS, P);
1226 return OS.str();
1227 }
1228
printQualifiedName(raw_ostream & OS) const1229 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1230 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1231 }
1232
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1233 void NamedDecl::printQualifiedName(raw_ostream &OS,
1234 const PrintingPolicy &P) const {
1235 const DeclContext *Ctx = getDeclContext();
1236
1237 if (Ctx->isFunctionOrMethod()) {
1238 printName(OS);
1239 return;
1240 }
1241
1242 typedef SmallVector<const DeclContext *, 8> ContextsTy;
1243 ContextsTy Contexts;
1244
1245 // Collect contexts.
1246 while (Ctx && isa<NamedDecl>(Ctx)) {
1247 Contexts.push_back(Ctx);
1248 Ctx = Ctx->getParent();
1249 }
1250
1251 for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1252 I != E; ++I) {
1253 if (const ClassTemplateSpecializationDecl *Spec
1254 = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1255 OS << Spec->getName();
1256 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1257 TemplateSpecializationType::PrintTemplateArgumentList(OS,
1258 TemplateArgs.data(),
1259 TemplateArgs.size(),
1260 P);
1261 } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
1262 if (ND->isAnonymousNamespace())
1263 OS << "<anonymous namespace>";
1264 else
1265 OS << *ND;
1266 } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
1267 if (!RD->getIdentifier())
1268 OS << "<anonymous " << RD->getKindName() << '>';
1269 else
1270 OS << *RD;
1271 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1272 const FunctionProtoType *FT = 0;
1273 if (FD->hasWrittenPrototype())
1274 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1275
1276 OS << *FD << '(';
1277 if (FT) {
1278 unsigned NumParams = FD->getNumParams();
1279 for (unsigned i = 0; i < NumParams; ++i) {
1280 if (i)
1281 OS << ", ";
1282 OS << FD->getParamDecl(i)->getType().stream(P);
1283 }
1284
1285 if (FT->isVariadic()) {
1286 if (NumParams > 0)
1287 OS << ", ";
1288 OS << "...";
1289 }
1290 }
1291 OS << ')';
1292 } else {
1293 OS << *cast<NamedDecl>(*I);
1294 }
1295 OS << "::";
1296 }
1297
1298 if (getDeclName())
1299 OS << *this;
1300 else
1301 OS << "<anonymous>";
1302 }
1303
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1304 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1305 const PrintingPolicy &Policy,
1306 bool Qualified) const {
1307 if (Qualified)
1308 printQualifiedName(OS, Policy);
1309 else
1310 printName(OS);
1311 }
1312
declarationReplaces(NamedDecl * OldD) const1313 bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
1314 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1315
1316 // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1317 // We want to keep it, unless it nominates same namespace.
1318 if (getKind() == Decl::UsingDirective) {
1319 return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
1320 ->getOriginalNamespace() ==
1321 cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1322 ->getOriginalNamespace();
1323 }
1324
1325 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
1326 // For function declarations, we keep track of redeclarations.
1327 return FD->getPreviousDecl() == OldD;
1328
1329 // For function templates, the underlying function declarations are linked.
1330 if (const FunctionTemplateDecl *FunctionTemplate
1331 = dyn_cast<FunctionTemplateDecl>(this))
1332 if (const FunctionTemplateDecl *OldFunctionTemplate
1333 = dyn_cast<FunctionTemplateDecl>(OldD))
1334 return FunctionTemplate->getTemplatedDecl()
1335 ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
1336
1337 // For method declarations, we keep track of redeclarations.
1338 if (isa<ObjCMethodDecl>(this))
1339 return false;
1340
1341 if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
1342 return true;
1343
1344 if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
1345 return cast<UsingShadowDecl>(this)->getTargetDecl() ==
1346 cast<UsingShadowDecl>(OldD)->getTargetDecl();
1347
1348 if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
1349 ASTContext &Context = getASTContext();
1350 return Context.getCanonicalNestedNameSpecifier(
1351 cast<UsingDecl>(this)->getQualifier()) ==
1352 Context.getCanonicalNestedNameSpecifier(
1353 cast<UsingDecl>(OldD)->getQualifier());
1354 }
1355
1356 // A typedef of an Objective-C class type can replace an Objective-C class
1357 // declaration or definition, and vice versa.
1358 if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
1359 (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
1360 return true;
1361
1362 // For non-function declarations, if the declarations are of the
1363 // same kind then this must be a redeclaration, or semantic analysis
1364 // would not have given us the new declaration.
1365 return this->getKind() == OldD->getKind();
1366 }
1367
hasLinkage() const1368 bool NamedDecl::hasLinkage() const {
1369 return getFormalLinkage() != NoLinkage;
1370 }
1371
getUnderlyingDeclImpl()1372 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1373 NamedDecl *ND = this;
1374 while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
1375 ND = UD->getTargetDecl();
1376
1377 if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1378 return AD->getClassInterface();
1379
1380 return ND;
1381 }
1382
isCXXInstanceMember() const1383 bool NamedDecl::isCXXInstanceMember() const {
1384 if (!isCXXClassMember())
1385 return false;
1386
1387 const NamedDecl *D = this;
1388 if (isa<UsingShadowDecl>(D))
1389 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1390
1391 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1392 return true;
1393 if (isa<CXXMethodDecl>(D))
1394 return cast<CXXMethodDecl>(D)->isInstance();
1395 if (isa<FunctionTemplateDecl>(D))
1396 return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D)
1397 ->getTemplatedDecl())->isInstance();
1398 return false;
1399 }
1400
1401 //===----------------------------------------------------------------------===//
1402 // DeclaratorDecl Implementation
1403 //===----------------------------------------------------------------------===//
1404
1405 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1406 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1407 if (decl->getNumTemplateParameterLists() > 0)
1408 return decl->getTemplateParameterList(0)->getTemplateLoc();
1409 else
1410 return decl->getInnerLocStart();
1411 }
1412
getTypeSpecStartLoc() const1413 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1414 TypeSourceInfo *TSI = getTypeSourceInfo();
1415 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1416 return SourceLocation();
1417 }
1418
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1419 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1420 if (QualifierLoc) {
1421 // Make sure the extended decl info is allocated.
1422 if (!hasExtInfo()) {
1423 // Save (non-extended) type source info pointer.
1424 TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1425 // Allocate external info struct.
1426 DeclInfo = new (getASTContext()) ExtInfo;
1427 // Restore savedTInfo into (extended) decl info.
1428 getExtInfo()->TInfo = savedTInfo;
1429 }
1430 // Set qualifier info.
1431 getExtInfo()->QualifierLoc = QualifierLoc;
1432 } else {
1433 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1434 if (hasExtInfo()) {
1435 if (getExtInfo()->NumTemplParamLists == 0) {
1436 // Save type source info pointer.
1437 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1438 // Deallocate the extended decl info.
1439 getASTContext().Deallocate(getExtInfo());
1440 // Restore savedTInfo into (non-extended) decl info.
1441 DeclInfo = savedTInfo;
1442 }
1443 else
1444 getExtInfo()->QualifierLoc = QualifierLoc;
1445 }
1446 }
1447 }
1448
1449 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1450 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
1451 unsigned NumTPLists,
1452 TemplateParameterList **TPLists) {
1453 assert(NumTPLists > 0);
1454 // Make sure the extended decl info is allocated.
1455 if (!hasExtInfo()) {
1456 // Save (non-extended) type source info pointer.
1457 TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1458 // Allocate external info struct.
1459 DeclInfo = new (getASTContext()) ExtInfo;
1460 // Restore savedTInfo into (extended) decl info.
1461 getExtInfo()->TInfo = savedTInfo;
1462 }
1463 // Set the template parameter lists info.
1464 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1465 }
1466
getOuterLocStart() const1467 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1468 return getTemplateOrInnerLocStart(this);
1469 }
1470
1471 namespace {
1472
1473 // Helper function: returns true if QT is or contains a type
1474 // having a postfix component.
typeIsPostfix(clang::QualType QT)1475 bool typeIsPostfix(clang::QualType QT) {
1476 while (true) {
1477 const Type* T = QT.getTypePtr();
1478 switch (T->getTypeClass()) {
1479 default:
1480 return false;
1481 case Type::Pointer:
1482 QT = cast<PointerType>(T)->getPointeeType();
1483 break;
1484 case Type::BlockPointer:
1485 QT = cast<BlockPointerType>(T)->getPointeeType();
1486 break;
1487 case Type::MemberPointer:
1488 QT = cast<MemberPointerType>(T)->getPointeeType();
1489 break;
1490 case Type::LValueReference:
1491 case Type::RValueReference:
1492 QT = cast<ReferenceType>(T)->getPointeeType();
1493 break;
1494 case Type::PackExpansion:
1495 QT = cast<PackExpansionType>(T)->getPattern();
1496 break;
1497 case Type::Paren:
1498 case Type::ConstantArray:
1499 case Type::DependentSizedArray:
1500 case Type::IncompleteArray:
1501 case Type::VariableArray:
1502 case Type::FunctionProto:
1503 case Type::FunctionNoProto:
1504 return true;
1505 }
1506 }
1507 }
1508
1509 } // namespace
1510
getSourceRange() const1511 SourceRange DeclaratorDecl::getSourceRange() const {
1512 SourceLocation RangeEnd = getLocation();
1513 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1514 if (typeIsPostfix(TInfo->getType()))
1515 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1516 }
1517 return SourceRange(getOuterLocStart(), RangeEnd);
1518 }
1519
1520 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1521 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
1522 unsigned NumTPLists,
1523 TemplateParameterList **TPLists) {
1524 assert((NumTPLists == 0 || TPLists != 0) &&
1525 "Empty array of template parameters with positive size!");
1526
1527 // Free previous template parameters (if any).
1528 if (NumTemplParamLists > 0) {
1529 Context.Deallocate(TemplParamLists);
1530 TemplParamLists = 0;
1531 NumTemplParamLists = 0;
1532 }
1533 // Set info on matched template parameter lists (if any).
1534 if (NumTPLists > 0) {
1535 TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
1536 NumTemplParamLists = NumTPLists;
1537 for (unsigned i = NumTPLists; i-- > 0; )
1538 TemplParamLists[i] = TPLists[i];
1539 }
1540 }
1541
1542 //===----------------------------------------------------------------------===//
1543 // VarDecl Implementation
1544 //===----------------------------------------------------------------------===//
1545
getStorageClassSpecifierString(StorageClass SC)1546 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1547 switch (SC) {
1548 case SC_None: break;
1549 case SC_Auto: return "auto";
1550 case SC_Extern: return "extern";
1551 case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
1552 case SC_PrivateExtern: return "__private_extern__";
1553 case SC_Register: return "register";
1554 case SC_Static: return "static";
1555 }
1556
1557 llvm_unreachable("Invalid storage class");
1558 }
1559
VarDecl(Kind DK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass SC)1560 VarDecl::VarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
1561 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1562 TypeSourceInfo *TInfo, StorageClass SC)
1563 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), Init() {
1564 assert(sizeof(VarDeclBitfields) <= sizeof(unsigned));
1565 assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned));
1566 AllBits = 0;
1567 VarDeclBits.SClass = SC;
1568 // Everything else is implicitly initialized to false.
1569 }
1570
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S)1571 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1572 SourceLocation StartL, SourceLocation IdL,
1573 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1574 StorageClass S) {
1575 return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S);
1576 }
1577
CreateDeserialized(ASTContext & C,unsigned ID)1578 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1579 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl));
1580 return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0,
1581 QualType(), 0, SC_None);
1582 }
1583
setStorageClass(StorageClass SC)1584 void VarDecl::setStorageClass(StorageClass SC) {
1585 assert(isLegalForVariable(SC));
1586 VarDeclBits.SClass = SC;
1587 }
1588
getSourceRange() const1589 SourceRange VarDecl::getSourceRange() const {
1590 if (const Expr *Init = getInit()) {
1591 SourceLocation InitEnd = Init->getLocEnd();
1592 // If Init is implicit, ignore its source range and fallback on
1593 // DeclaratorDecl::getSourceRange() to handle postfix elements.
1594 if (InitEnd.isValid() && InitEnd != getLocation())
1595 return SourceRange(getOuterLocStart(), InitEnd);
1596 }
1597 return DeclaratorDecl::getSourceRange();
1598 }
1599
1600 template<typename T>
getLanguageLinkageTemplate(const T & D)1601 static LanguageLinkage getLanguageLinkageTemplate(const T &D) {
1602 // C++ [dcl.link]p1: All function types, function names with external linkage,
1603 // and variable names with external linkage have a language linkage.
1604 if (!D.hasExternalFormalLinkage())
1605 return NoLanguageLinkage;
1606
1607 // Language linkage is a C++ concept, but saying that everything else in C has
1608 // C language linkage fits the implementation nicely.
1609 ASTContext &Context = D.getASTContext();
1610 if (!Context.getLangOpts().CPlusPlus)
1611 return CLanguageLinkage;
1612
1613 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1614 // language linkage of the names of class members and the function type of
1615 // class member functions.
1616 const DeclContext *DC = D.getDeclContext();
1617 if (DC->isRecord())
1618 return CXXLanguageLinkage;
1619
1620 // If the first decl is in an extern "C" context, any other redeclaration
1621 // will have C language linkage. If the first one is not in an extern "C"
1622 // context, we would have reported an error for any other decl being in one.
1623 if (isFirstInExternCContext(&D))
1624 return CLanguageLinkage;
1625 return CXXLanguageLinkage;
1626 }
1627
1628 template<typename T>
isExternCTemplate(const T & D)1629 static bool isExternCTemplate(const T &D) {
1630 // Since the context is ignored for class members, they can only have C++
1631 // language linkage or no language linkage.
1632 const DeclContext *DC = D.getDeclContext();
1633 if (DC->isRecord()) {
1634 assert(D.getASTContext().getLangOpts().CPlusPlus);
1635 return false;
1636 }
1637
1638 return D.getLanguageLinkage() == CLanguageLinkage;
1639 }
1640
getLanguageLinkage() const1641 LanguageLinkage VarDecl::getLanguageLinkage() const {
1642 return getLanguageLinkageTemplate(*this);
1643 }
1644
isExternC() const1645 bool VarDecl::isExternC() const {
1646 return isExternCTemplate(*this);
1647 }
1648
isLinkageSpecContext(const DeclContext * DC,LinkageSpecDecl::LanguageIDs ID)1649 static bool isLinkageSpecContext(const DeclContext *DC,
1650 LinkageSpecDecl::LanguageIDs ID) {
1651 while (DC->getDeclKind() != Decl::TranslationUnit) {
1652 if (DC->getDeclKind() == Decl::LinkageSpec)
1653 return cast<LinkageSpecDecl>(DC)->getLanguage() == ID;
1654 DC = DC->getParent();
1655 }
1656 return false;
1657 }
1658
1659 template <typename T>
isInLanguageSpecContext(T * D,LinkageSpecDecl::LanguageIDs ID)1660 static bool isInLanguageSpecContext(T *D, LinkageSpecDecl::LanguageIDs ID) {
1661 return isLinkageSpecContext(D->getLexicalDeclContext(), ID);
1662 }
1663
isInExternCContext() const1664 bool VarDecl::isInExternCContext() const {
1665 return isInLanguageSpecContext(this, LinkageSpecDecl::lang_c);
1666 }
1667
isInExternCXXContext() const1668 bool VarDecl::isInExternCXXContext() const {
1669 return isInLanguageSpecContext(this, LinkageSpecDecl::lang_cxx);
1670 }
1671
getCanonicalDecl()1672 VarDecl *VarDecl::getCanonicalDecl() {
1673 return getFirstDeclaration();
1674 }
1675
isThisDeclarationADefinition(ASTContext & C) const1676 VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
1677 ASTContext &C) const
1678 {
1679 // C++ [basic.def]p2:
1680 // A declaration is a definition unless [...] it contains the 'extern'
1681 // specifier or a linkage-specification and neither an initializer [...],
1682 // it declares a static data member in a class declaration [...].
1683 // C++ [temp.expl.spec]p15:
1684 // An explicit specialization of a static data member of a template is a
1685 // definition if the declaration includes an initializer; otherwise, it is
1686 // a declaration.
1687 if (isStaticDataMember()) {
1688 if (isOutOfLine() && (hasInit() ||
1689 getTemplateSpecializationKind() != TSK_ExplicitSpecialization))
1690 return Definition;
1691 else
1692 return DeclarationOnly;
1693 }
1694 // C99 6.7p5:
1695 // A definition of an identifier is a declaration for that identifier that
1696 // [...] causes storage to be reserved for that object.
1697 // Note: that applies for all non-file-scope objects.
1698 // C99 6.9.2p1:
1699 // If the declaration of an identifier for an object has file scope and an
1700 // initializer, the declaration is an external definition for the identifier
1701 if (hasInit())
1702 return Definition;
1703
1704 if (hasExternalStorage())
1705 return DeclarationOnly;
1706
1707 // [dcl.link] p7:
1708 // A declaration directly contained in a linkage-specification is treated
1709 // as if it contains the extern specifier for the purpose of determining
1710 // the linkage of the declared name and whether it is a definition.
1711 if (isSingleLineExternC(*this))
1712 return DeclarationOnly;
1713
1714 // C99 6.9.2p2:
1715 // A declaration of an object that has file scope without an initializer,
1716 // and without a storage class specifier or the scs 'static', constitutes
1717 // a tentative definition.
1718 // No such thing in C++.
1719 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1720 return TentativeDefinition;
1721
1722 // What's left is (in C, block-scope) declarations without initializers or
1723 // external storage. These are definitions.
1724 return Definition;
1725 }
1726
getActingDefinition()1727 VarDecl *VarDecl::getActingDefinition() {
1728 DefinitionKind Kind = isThisDeclarationADefinition();
1729 if (Kind != TentativeDefinition)
1730 return 0;
1731
1732 VarDecl *LastTentative = 0;
1733 VarDecl *First = getFirstDeclaration();
1734 for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1735 I != E; ++I) {
1736 Kind = (*I)->isThisDeclarationADefinition();
1737 if (Kind == Definition)
1738 return 0;
1739 else if (Kind == TentativeDefinition)
1740 LastTentative = *I;
1741 }
1742 return LastTentative;
1743 }
1744
getDefinition(ASTContext & C)1745 VarDecl *VarDecl::getDefinition(ASTContext &C) {
1746 VarDecl *First = getFirstDeclaration();
1747 for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1748 I != E; ++I) {
1749 if ((*I)->isThisDeclarationADefinition(C) == Definition)
1750 return *I;
1751 }
1752 return 0;
1753 }
1754
hasDefinition(ASTContext & C) const1755 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
1756 DefinitionKind Kind = DeclarationOnly;
1757
1758 const VarDecl *First = getFirstDeclaration();
1759 for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1760 I != E; ++I) {
1761 Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C));
1762 if (Kind == Definition)
1763 break;
1764 }
1765
1766 return Kind;
1767 }
1768
getAnyInitializer(const VarDecl * & D) const1769 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
1770 redecl_iterator I = redecls_begin(), E = redecls_end();
1771 while (I != E && !I->getInit())
1772 ++I;
1773
1774 if (I != E) {
1775 D = *I;
1776 return I->getInit();
1777 }
1778 return 0;
1779 }
1780
isOutOfLine() const1781 bool VarDecl::isOutOfLine() const {
1782 if (Decl::isOutOfLine())
1783 return true;
1784
1785 if (!isStaticDataMember())
1786 return false;
1787
1788 // If this static data member was instantiated from a static data member of
1789 // a class template, check whether that static data member was defined
1790 // out-of-line.
1791 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
1792 return VD->isOutOfLine();
1793
1794 return false;
1795 }
1796
getOutOfLineDefinition()1797 VarDecl *VarDecl::getOutOfLineDefinition() {
1798 if (!isStaticDataMember())
1799 return 0;
1800
1801 for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
1802 RD != RDEnd; ++RD) {
1803 if (RD->getLexicalDeclContext()->isFileContext())
1804 return *RD;
1805 }
1806
1807 return 0;
1808 }
1809
setInit(Expr * I)1810 void VarDecl::setInit(Expr *I) {
1811 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
1812 Eval->~EvaluatedStmt();
1813 getASTContext().Deallocate(Eval);
1814 }
1815
1816 Init = I;
1817 }
1818
isUsableInConstantExpressions(ASTContext & C) const1819 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
1820 const LangOptions &Lang = C.getLangOpts();
1821
1822 if (!Lang.CPlusPlus)
1823 return false;
1824
1825 // In C++11, any variable of reference type can be used in a constant
1826 // expression if it is initialized by a constant expression.
1827 if (Lang.CPlusPlus11 && getType()->isReferenceType())
1828 return true;
1829
1830 // Only const objects can be used in constant expressions in C++. C++98 does
1831 // not require the variable to be non-volatile, but we consider this to be a
1832 // defect.
1833 if (!getType().isConstQualified() || getType().isVolatileQualified())
1834 return false;
1835
1836 // In C++, const, non-volatile variables of integral or enumeration types
1837 // can be used in constant expressions.
1838 if (getType()->isIntegralOrEnumerationType())
1839 return true;
1840
1841 // Additionally, in C++11, non-volatile constexpr variables can be used in
1842 // constant expressions.
1843 return Lang.CPlusPlus11 && isConstexpr();
1844 }
1845
1846 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
1847 /// form, which contains extra information on the evaluated value of the
1848 /// initializer.
ensureEvaluatedStmt() const1849 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
1850 EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
1851 if (!Eval) {
1852 Stmt *S = Init.get<Stmt *>();
1853 // Note: EvaluatedStmt contains an APValue, which usually holds
1854 // resources not allocated from the ASTContext. We need to do some
1855 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
1856 // where we can detect whether there's anything to clean up or not.
1857 Eval = new (getASTContext()) EvaluatedStmt;
1858 Eval->Value = S;
1859 Init = Eval;
1860 }
1861 return Eval;
1862 }
1863
evaluateValue() const1864 APValue *VarDecl::evaluateValue() const {
1865 SmallVector<PartialDiagnosticAt, 8> Notes;
1866 return evaluateValue(Notes);
1867 }
1868
1869 namespace {
1870 // Destroy an APValue that was allocated in an ASTContext.
DestroyAPValue(void * UntypedValue)1871 void DestroyAPValue(void* UntypedValue) {
1872 static_cast<APValue*>(UntypedValue)->~APValue();
1873 }
1874 } // namespace
1875
evaluateValue(SmallVectorImpl<PartialDiagnosticAt> & Notes) const1876 APValue *VarDecl::evaluateValue(
1877 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
1878 EvaluatedStmt *Eval = ensureEvaluatedStmt();
1879
1880 // We only produce notes indicating why an initializer is non-constant the
1881 // first time it is evaluated. FIXME: The notes won't always be emitted the
1882 // first time we try evaluation, so might not be produced at all.
1883 if (Eval->WasEvaluated)
1884 return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated;
1885
1886 const Expr *Init = cast<Expr>(Eval->Value);
1887 assert(!Init->isValueDependent());
1888
1889 if (Eval->IsEvaluating) {
1890 // FIXME: Produce a diagnostic for self-initialization.
1891 Eval->CheckedICE = true;
1892 Eval->IsICE = false;
1893 return 0;
1894 }
1895
1896 Eval->IsEvaluating = true;
1897
1898 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
1899 this, Notes);
1900
1901 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
1902 // or that it's empty (so that there's nothing to clean up) if evaluation
1903 // failed.
1904 if (!Result)
1905 Eval->Evaluated = APValue();
1906 else if (Eval->Evaluated.needsCleanup())
1907 getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
1908
1909 Eval->IsEvaluating = false;
1910 Eval->WasEvaluated = true;
1911
1912 // In C++11, we have determined whether the initializer was a constant
1913 // expression as a side-effect.
1914 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
1915 Eval->CheckedICE = true;
1916 Eval->IsICE = Result && Notes.empty();
1917 }
1918
1919 return Result ? &Eval->Evaluated : 0;
1920 }
1921
checkInitIsICE() const1922 bool VarDecl::checkInitIsICE() const {
1923 // Initializers of weak variables are never ICEs.
1924 if (isWeak())
1925 return false;
1926
1927 EvaluatedStmt *Eval = ensureEvaluatedStmt();
1928 if (Eval->CheckedICE)
1929 // We have already checked whether this subexpression is an
1930 // integral constant expression.
1931 return Eval->IsICE;
1932
1933 const Expr *Init = cast<Expr>(Eval->Value);
1934 assert(!Init->isValueDependent());
1935
1936 // In C++11, evaluate the initializer to check whether it's a constant
1937 // expression.
1938 if (getASTContext().getLangOpts().CPlusPlus11) {
1939 SmallVector<PartialDiagnosticAt, 8> Notes;
1940 evaluateValue(Notes);
1941 return Eval->IsICE;
1942 }
1943
1944 // It's an ICE whether or not the definition we found is
1945 // out-of-line. See DR 721 and the discussion in Clang PR
1946 // 6206 for details.
1947
1948 if (Eval->CheckingICE)
1949 return false;
1950 Eval->CheckingICE = true;
1951
1952 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
1953 Eval->CheckingICE = false;
1954 Eval->CheckedICE = true;
1955 return Eval->IsICE;
1956 }
1957
getInstantiatedFromStaticDataMember() const1958 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
1959 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
1960 return cast<VarDecl>(MSI->getInstantiatedFrom());
1961
1962 return 0;
1963 }
1964
getTemplateSpecializationKind() const1965 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
1966 if (const VarTemplateSpecializationDecl *Spec =
1967 dyn_cast<VarTemplateSpecializationDecl>(this))
1968 return Spec->getSpecializationKind();
1969
1970 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
1971 return MSI->getTemplateSpecializationKind();
1972
1973 return TSK_Undeclared;
1974 }
1975
getDescribedVarTemplate() const1976 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
1977 return getASTContext().getTemplateOrSpecializationInfo(this)
1978 .dyn_cast<VarTemplateDecl *>();
1979 }
1980
setDescribedVarTemplate(VarTemplateDecl * Template)1981 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
1982 getASTContext().setTemplateOrSpecializationInfo(this, Template);
1983 }
1984
getMemberSpecializationInfo() const1985 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
1986 if (isStaticDataMember())
1987 // FIXME: Remove ?
1988 // return getASTContext().getInstantiatedFromStaticDataMember(this);
1989 return getASTContext().getTemplateOrSpecializationInfo(this)
1990 .dyn_cast<MemberSpecializationInfo *>();
1991 return 0;
1992 }
1993
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1994 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1995 SourceLocation PointOfInstantiation) {
1996 if (VarTemplateSpecializationDecl *Spec =
1997 dyn_cast<VarTemplateSpecializationDecl>(this)) {
1998 Spec->setSpecializationKind(TSK);
1999 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2000 Spec->getPointOfInstantiation().isInvalid())
2001 Spec->setPointOfInstantiation(PointOfInstantiation);
2002 return;
2003 }
2004
2005 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2006 MSI->setTemplateSpecializationKind(TSK);
2007 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2008 MSI->getPointOfInstantiation().isInvalid())
2009 MSI->setPointOfInstantiation(PointOfInstantiation);
2010 return;
2011 }
2012
2013 llvm_unreachable(
2014 "Not a variable or static data member template specialization");
2015 }
2016
2017 void
setInstantiationOfStaticDataMember(VarDecl * VD,TemplateSpecializationKind TSK)2018 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2019 TemplateSpecializationKind TSK) {
2020 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2021 "Previous template or instantiation?");
2022 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2023 }
2024
2025 //===----------------------------------------------------------------------===//
2026 // ParmVarDecl Implementation
2027 //===----------------------------------------------------------------------===//
2028
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)2029 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2030 SourceLocation StartLoc,
2031 SourceLocation IdLoc, IdentifierInfo *Id,
2032 QualType T, TypeSourceInfo *TInfo,
2033 StorageClass S, Expr *DefArg) {
2034 return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo,
2035 S, DefArg);
2036 }
2037
getOriginalType() const2038 QualType ParmVarDecl::getOriginalType() const {
2039 TypeSourceInfo *TSI = getTypeSourceInfo();
2040 QualType T = TSI ? TSI->getType() : getType();
2041 if (const DecayedType *DT = dyn_cast<DecayedType>(T))
2042 return DT->getOriginalType();
2043 return T;
2044 }
2045
CreateDeserialized(ASTContext & C,unsigned ID)2046 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2047 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl));
2048 return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(),
2049 0, QualType(), 0, SC_None, 0);
2050 }
2051
getSourceRange() const2052 SourceRange ParmVarDecl::getSourceRange() const {
2053 if (!hasInheritedDefaultArg()) {
2054 SourceRange ArgRange = getDefaultArgRange();
2055 if (ArgRange.isValid())
2056 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2057 }
2058
2059 // DeclaratorDecl considers the range of postfix types as overlapping with the
2060 // declaration name, but this is not the case with parameters in ObjC methods.
2061 if (isa<ObjCMethodDecl>(getDeclContext()))
2062 return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2063
2064 return DeclaratorDecl::getSourceRange();
2065 }
2066
getDefaultArg()2067 Expr *ParmVarDecl::getDefaultArg() {
2068 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2069 assert(!hasUninstantiatedDefaultArg() &&
2070 "Default argument is not yet instantiated!");
2071
2072 Expr *Arg = getInit();
2073 if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2074 return E->getSubExpr();
2075
2076 return Arg;
2077 }
2078
getDefaultArgRange() const2079 SourceRange ParmVarDecl::getDefaultArgRange() const {
2080 if (const Expr *E = getInit())
2081 return E->getSourceRange();
2082
2083 if (hasUninstantiatedDefaultArg())
2084 return getUninstantiatedDefaultArg()->getSourceRange();
2085
2086 return SourceRange();
2087 }
2088
isParameterPack() const2089 bool ParmVarDecl::isParameterPack() const {
2090 return isa<PackExpansionType>(getType());
2091 }
2092
setParameterIndexLarge(unsigned parameterIndex)2093 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2094 getASTContext().setParameterIndex(this, parameterIndex);
2095 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2096 }
2097
getParameterIndexLarge() const2098 unsigned ParmVarDecl::getParameterIndexLarge() const {
2099 return getASTContext().getParameterIndex(this);
2100 }
2101
2102 //===----------------------------------------------------------------------===//
2103 // FunctionDecl Implementation
2104 //===----------------------------------------------------------------------===//
2105
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const2106 void FunctionDecl::getNameForDiagnostic(
2107 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2108 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2109 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2110 if (TemplateArgs)
2111 TemplateSpecializationType::PrintTemplateArgumentList(
2112 OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
2113 }
2114
isVariadic() const2115 bool FunctionDecl::isVariadic() const {
2116 if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
2117 return FT->isVariadic();
2118 return false;
2119 }
2120
hasBody(const FunctionDecl * & Definition) const2121 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2122 for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
2123 if (I->Body || I->IsLateTemplateParsed) {
2124 Definition = *I;
2125 return true;
2126 }
2127 }
2128
2129 return false;
2130 }
2131
hasTrivialBody() const2132 bool FunctionDecl::hasTrivialBody() const
2133 {
2134 Stmt *S = getBody();
2135 if (!S) {
2136 // Since we don't have a body for this function, we don't know if it's
2137 // trivial or not.
2138 return false;
2139 }
2140
2141 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2142 return true;
2143 return false;
2144 }
2145
isDefined(const FunctionDecl * & Definition) const2146 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2147 for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
2148 if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) {
2149 Definition = I->IsDeleted ? I->getCanonicalDecl() : *I;
2150 return true;
2151 }
2152 }
2153
2154 return false;
2155 }
2156
getBody(const FunctionDecl * & Definition) const2157 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2158 for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
2159 if (I->Body) {
2160 Definition = *I;
2161 return I->Body.get(getASTContext().getExternalSource());
2162 } else if (I->IsLateTemplateParsed) {
2163 Definition = *I;
2164 return 0;
2165 }
2166 }
2167
2168 return 0;
2169 }
2170
setBody(Stmt * B)2171 void FunctionDecl::setBody(Stmt *B) {
2172 Body = B;
2173 if (B)
2174 EndRangeLoc = B->getLocEnd();
2175 }
2176
setPure(bool P)2177 void FunctionDecl::setPure(bool P) {
2178 IsPure = P;
2179 if (P)
2180 if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2181 Parent->markedVirtualFunctionPure();
2182 }
2183
2184 template<std::size_t Len>
isNamed(const NamedDecl * ND,const char (& Str)[Len])2185 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2186 IdentifierInfo *II = ND->getIdentifier();
2187 return II && II->isStr(Str);
2188 }
2189
isMain() const2190 bool FunctionDecl::isMain() const {
2191 const TranslationUnitDecl *tunit =
2192 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2193 return tunit &&
2194 !tunit->getASTContext().getLangOpts().Freestanding &&
2195 isNamed(this, "main");
2196 }
2197
isReservedGlobalPlacementOperator() const2198 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2199 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2200 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2201 getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2202 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2203 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2204
2205 if (isa<CXXRecordDecl>(getDeclContext())) return false;
2206 assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
2207
2208 const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
2209 if (proto->getNumArgs() != 2 || proto->isVariadic()) return false;
2210
2211 ASTContext &Context =
2212 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2213 ->getASTContext();
2214
2215 // The result type and first argument type are constant across all
2216 // these operators. The second argument must be exactly void*.
2217 return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy);
2218 }
2219
isNamespaceStd(const DeclContext * DC)2220 static bool isNamespaceStd(const DeclContext *DC) {
2221 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC->getRedeclContext());
2222 return ND && isNamed(ND, "std") &&
2223 ND->getParent()->getRedeclContext()->isTranslationUnit();
2224 }
2225
isReplaceableGlobalAllocationFunction() const2226 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2227 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2228 return false;
2229 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2230 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2231 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2232 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2233 return false;
2234
2235 if (isa<CXXRecordDecl>(getDeclContext()))
2236 return false;
2237 assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
2238
2239 const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
2240 if (FPT->getNumArgs() > 2 || FPT->isVariadic())
2241 return false;
2242
2243 // If this is a single-parameter function, it must be a replaceable global
2244 // allocation or deallocation function.
2245 if (FPT->getNumArgs() == 1)
2246 return true;
2247
2248 // Otherwise, we're looking for a second parameter whose type is
2249 // 'const std::nothrow_t &'.
2250 QualType Ty = FPT->getArgType(1);
2251 if (!Ty->isReferenceType())
2252 return false;
2253 Ty = Ty->getPointeeType();
2254 if (Ty.getCVRQualifiers() != Qualifiers::Const)
2255 return false;
2256 // FIXME: Recognise nothrow_t in an inline namespace inside std?
2257 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2258 return RD && isNamed(RD, "nothrow_t") && isNamespaceStd(RD->getDeclContext());
2259 }
2260
getLanguageLinkage() const2261 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2262 // Users expect to be able to write
2263 // extern "C" void *__builtin_alloca (size_t);
2264 // so consider builtins as having C language linkage.
2265 if (getBuiltinID())
2266 return CLanguageLinkage;
2267
2268 return getLanguageLinkageTemplate(*this);
2269 }
2270
isExternC() const2271 bool FunctionDecl::isExternC() const {
2272 return isExternCTemplate(*this);
2273 }
2274
isInExternCContext() const2275 bool FunctionDecl::isInExternCContext() const {
2276 return isInLanguageSpecContext(this, LinkageSpecDecl::lang_c);
2277 }
2278
isInExternCXXContext() const2279 bool FunctionDecl::isInExternCXXContext() const {
2280 return isInLanguageSpecContext(this, LinkageSpecDecl::lang_cxx);
2281 }
2282
isGlobal() const2283 bool FunctionDecl::isGlobal() const {
2284 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
2285 return Method->isStatic();
2286
2287 if (getCanonicalDecl()->getStorageClass() == SC_Static)
2288 return false;
2289
2290 for (const DeclContext *DC = getDeclContext();
2291 DC->isNamespace();
2292 DC = DC->getParent()) {
2293 if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
2294 if (!Namespace->getDeclName())
2295 return false;
2296 break;
2297 }
2298 }
2299
2300 return true;
2301 }
2302
isNoReturn() const2303 bool FunctionDecl::isNoReturn() const {
2304 return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2305 hasAttr<C11NoReturnAttr>() ||
2306 getType()->getAs<FunctionType>()->getNoReturnAttr();
2307 }
2308
2309 void
setPreviousDeclaration(FunctionDecl * PrevDecl)2310 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2311 redeclarable_base::setPreviousDeclaration(PrevDecl);
2312
2313 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2314 FunctionTemplateDecl *PrevFunTmpl
2315 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
2316 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2317 FunTmpl->setPreviousDeclaration(PrevFunTmpl);
2318 }
2319
2320 if (PrevDecl && PrevDecl->IsInline)
2321 IsInline = true;
2322 }
2323
getCanonicalDecl() const2324 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
2325 return getFirstDeclaration();
2326 }
2327
getCanonicalDecl()2328 FunctionDecl *FunctionDecl::getCanonicalDecl() {
2329 return getFirstDeclaration();
2330 }
2331
2332 /// \brief Returns a value indicating whether this function
2333 /// corresponds to a builtin function.
2334 ///
2335 /// The function corresponds to a built-in function if it is
2336 /// declared at translation scope or within an extern "C" block and
2337 /// its name matches with the name of a builtin. The returned value
2338 /// will be 0 for functions that do not correspond to a builtin, a
2339 /// value of type \c Builtin::ID if in the target-independent range
2340 /// \c [1,Builtin::First), or a target-specific builtin value.
getBuiltinID() const2341 unsigned FunctionDecl::getBuiltinID() const {
2342 if (!getIdentifier())
2343 return 0;
2344
2345 unsigned BuiltinID = getIdentifier()->getBuiltinID();
2346 if (!BuiltinID)
2347 return 0;
2348
2349 ASTContext &Context = getASTContext();
2350 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2351 return BuiltinID;
2352
2353 // This function has the name of a known C library
2354 // function. Determine whether it actually refers to the C library
2355 // function or whether it just has the same name.
2356
2357 // If this is a static function, it's not a builtin.
2358 if (getStorageClass() == SC_Static)
2359 return 0;
2360
2361 // If this function is at translation-unit scope and we're not in
2362 // C++, it refers to the C library function.
2363 if (!Context.getLangOpts().CPlusPlus &&
2364 getDeclContext()->isTranslationUnit())
2365 return BuiltinID;
2366
2367 // If the function is in an extern "C" linkage specification and is
2368 // not marked "overloadable", it's the real function.
2369 if (isa<LinkageSpecDecl>(getDeclContext()) &&
2370 cast<LinkageSpecDecl>(getDeclContext())->getLanguage()
2371 == LinkageSpecDecl::lang_c &&
2372 !getAttr<OverloadableAttr>())
2373 return BuiltinID;
2374
2375 // Not a builtin
2376 return 0;
2377 }
2378
2379
2380 /// getNumParams - Return the number of parameters this function must have
2381 /// based on its FunctionType. This is the length of the ParamInfo array
2382 /// after it has been created.
getNumParams() const2383 unsigned FunctionDecl::getNumParams() const {
2384 const FunctionType *FT = getType()->castAs<FunctionType>();
2385 if (isa<FunctionNoProtoType>(FT))
2386 return 0;
2387 return cast<FunctionProtoType>(FT)->getNumArgs();
2388
2389 }
2390
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)2391 void FunctionDecl::setParams(ASTContext &C,
2392 ArrayRef<ParmVarDecl *> NewParamInfo) {
2393 assert(ParamInfo == 0 && "Already has param info!");
2394 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2395
2396 // Zero params -> null pointer.
2397 if (!NewParamInfo.empty()) {
2398 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2399 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2400 }
2401 }
2402
setDeclsInPrototypeScope(ArrayRef<NamedDecl * > NewDecls)2403 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2404 assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2405
2406 if (!NewDecls.empty()) {
2407 NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2408 std::copy(NewDecls.begin(), NewDecls.end(), A);
2409 DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size());
2410 }
2411 }
2412
2413 /// getMinRequiredArguments - Returns the minimum number of arguments
2414 /// needed to call this function. This may be fewer than the number of
2415 /// function parameters, if some of the parameters have default
2416 /// arguments (in C++) or the last parameter is a parameter pack.
getMinRequiredArguments() const2417 unsigned FunctionDecl::getMinRequiredArguments() const {
2418 if (!getASTContext().getLangOpts().CPlusPlus)
2419 return getNumParams();
2420
2421 unsigned NumRequiredArgs = getNumParams();
2422
2423 // If the last parameter is a parameter pack, we don't need an argument for
2424 // it.
2425 if (NumRequiredArgs > 0 &&
2426 getParamDecl(NumRequiredArgs - 1)->isParameterPack())
2427 --NumRequiredArgs;
2428
2429 // If this parameter has a default argument, we don't need an argument for
2430 // it.
2431 while (NumRequiredArgs > 0 &&
2432 getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
2433 --NumRequiredArgs;
2434
2435 // We might have parameter packs before the end. These can't be deduced,
2436 // but they can still handle multiple arguments.
2437 unsigned ArgIdx = NumRequiredArgs;
2438 while (ArgIdx > 0) {
2439 if (getParamDecl(ArgIdx - 1)->isParameterPack())
2440 NumRequiredArgs = ArgIdx;
2441
2442 --ArgIdx;
2443 }
2444
2445 return NumRequiredArgs;
2446 }
2447
RedeclForcesDefC99(const FunctionDecl * Redecl)2448 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2449 // Only consider file-scope declarations in this test.
2450 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2451 return false;
2452
2453 // Only consider explicit declarations; the presence of a builtin for a
2454 // libcall shouldn't affect whether a definition is externally visible.
2455 if (Redecl->isImplicit())
2456 return false;
2457
2458 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2459 return true; // Not an inline definition
2460
2461 return false;
2462 }
2463
2464 /// \brief For a function declaration in C or C++, determine whether this
2465 /// declaration causes the definition to be externally visible.
2466 ///
2467 /// Specifically, this determines if adding the current declaration to the set
2468 /// of redeclarations of the given functions causes
2469 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const2470 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2471 assert(!doesThisDeclarationHaveABody() &&
2472 "Must have a declaration without a body.");
2473
2474 ASTContext &Context = getASTContext();
2475
2476 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2477 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2478 // an externally visible definition.
2479 //
2480 // FIXME: What happens if gnu_inline gets added on after the first
2481 // declaration?
2482 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2483 return false;
2484
2485 const FunctionDecl *Prev = this;
2486 bool FoundBody = false;
2487 while ((Prev = Prev->getPreviousDecl())) {
2488 FoundBody |= Prev->Body.isValid();
2489
2490 if (Prev->Body) {
2491 // If it's not the case that both 'inline' and 'extern' are
2492 // specified on the definition, then it is always externally visible.
2493 if (!Prev->isInlineSpecified() ||
2494 Prev->getStorageClass() != SC_Extern)
2495 return false;
2496 } else if (Prev->isInlineSpecified() &&
2497 Prev->getStorageClass() != SC_Extern) {
2498 return false;
2499 }
2500 }
2501 return FoundBody;
2502 }
2503
2504 if (Context.getLangOpts().CPlusPlus)
2505 return false;
2506
2507 // C99 6.7.4p6:
2508 // [...] If all of the file scope declarations for a function in a
2509 // translation unit include the inline function specifier without extern,
2510 // then the definition in that translation unit is an inline definition.
2511 if (isInlineSpecified() && getStorageClass() != SC_Extern)
2512 return false;
2513 const FunctionDecl *Prev = this;
2514 bool FoundBody = false;
2515 while ((Prev = Prev->getPreviousDecl())) {
2516 FoundBody |= Prev->Body.isValid();
2517 if (RedeclForcesDefC99(Prev))
2518 return false;
2519 }
2520 return FoundBody;
2521 }
2522
2523 /// \brief For an inline function definition in C, or for a gnu_inline function
2524 /// in C++, determine whether the definition will be externally visible.
2525 ///
2526 /// Inline function definitions are always available for inlining optimizations.
2527 /// However, depending on the language dialect, declaration specifiers, and
2528 /// attributes, the definition of an inline function may or may not be
2529 /// "externally" visible to other translation units in the program.
2530 ///
2531 /// In C99, inline definitions are not externally visible by default. However,
2532 /// if even one of the global-scope declarations is marked "extern inline", the
2533 /// inline definition becomes externally visible (C99 6.7.4p6).
2534 ///
2535 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2536 /// definition, we use the GNU semantics for inline, which are nearly the
2537 /// opposite of C99 semantics. In particular, "inline" by itself will create
2538 /// an externally visible symbol, but "extern inline" will not create an
2539 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const2540 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2541 assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2542 assert(isInlined() && "Function must be inline");
2543 ASTContext &Context = getASTContext();
2544
2545 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2546 // Note: If you change the logic here, please change
2547 // doesDeclarationForceExternallyVisibleDefinition as well.
2548 //
2549 // If it's not the case that both 'inline' and 'extern' are
2550 // specified on the definition, then this inline definition is
2551 // externally visible.
2552 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2553 return true;
2554
2555 // If any declaration is 'inline' but not 'extern', then this definition
2556 // is externally visible.
2557 for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
2558 Redecl != RedeclEnd;
2559 ++Redecl) {
2560 if (Redecl->isInlineSpecified() &&
2561 Redecl->getStorageClass() != SC_Extern)
2562 return true;
2563 }
2564
2565 return false;
2566 }
2567
2568 // The rest of this function is C-only.
2569 assert(!Context.getLangOpts().CPlusPlus &&
2570 "should not use C inline rules in C++");
2571
2572 // C99 6.7.4p6:
2573 // [...] If all of the file scope declarations for a function in a
2574 // translation unit include the inline function specifier without extern,
2575 // then the definition in that translation unit is an inline definition.
2576 for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
2577 Redecl != RedeclEnd;
2578 ++Redecl) {
2579 if (RedeclForcesDefC99(*Redecl))
2580 return true;
2581 }
2582
2583 // C99 6.7.4p6:
2584 // An inline definition does not provide an external definition for the
2585 // function, and does not forbid an external definition in another
2586 // translation unit.
2587 return false;
2588 }
2589
2590 /// getOverloadedOperator - Which C++ overloaded operator this
2591 /// function represents, if any.
getOverloadedOperator() const2592 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2593 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2594 return getDeclName().getCXXOverloadedOperator();
2595 else
2596 return OO_None;
2597 }
2598
2599 /// getLiteralIdentifier - The literal suffix identifier this function
2600 /// represents, if any.
getLiteralIdentifier() const2601 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2602 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2603 return getDeclName().getCXXLiteralIdentifier();
2604 else
2605 return 0;
2606 }
2607
getTemplatedKind() const2608 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2609 if (TemplateOrSpecialization.isNull())
2610 return TK_NonTemplate;
2611 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2612 return TK_FunctionTemplate;
2613 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2614 return TK_MemberSpecialization;
2615 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2616 return TK_FunctionTemplateSpecialization;
2617 if (TemplateOrSpecialization.is
2618 <DependentFunctionTemplateSpecializationInfo*>())
2619 return TK_DependentFunctionTemplateSpecialization;
2620
2621 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2622 }
2623
getInstantiatedFromMemberFunction() const2624 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2625 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2626 return cast<FunctionDecl>(Info->getInstantiatedFrom());
2627
2628 return 0;
2629 }
2630
2631 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)2632 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2633 FunctionDecl *FD,
2634 TemplateSpecializationKind TSK) {
2635 assert(TemplateOrSpecialization.isNull() &&
2636 "Member function is already a specialization");
2637 MemberSpecializationInfo *Info
2638 = new (C) MemberSpecializationInfo(FD, TSK);
2639 TemplateOrSpecialization = Info;
2640 }
2641
isImplicitlyInstantiable() const2642 bool FunctionDecl::isImplicitlyInstantiable() const {
2643 // If the function is invalid, it can't be implicitly instantiated.
2644 if (isInvalidDecl())
2645 return false;
2646
2647 switch (getTemplateSpecializationKind()) {
2648 case TSK_Undeclared:
2649 case TSK_ExplicitInstantiationDefinition:
2650 return false;
2651
2652 case TSK_ImplicitInstantiation:
2653 return true;
2654
2655 // It is possible to instantiate TSK_ExplicitSpecialization kind
2656 // if the FunctionDecl has a class scope specialization pattern.
2657 case TSK_ExplicitSpecialization:
2658 return getClassScopeSpecializationPattern() != 0;
2659
2660 case TSK_ExplicitInstantiationDeclaration:
2661 // Handled below.
2662 break;
2663 }
2664
2665 // Find the actual template from which we will instantiate.
2666 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
2667 bool HasPattern = false;
2668 if (PatternDecl)
2669 HasPattern = PatternDecl->hasBody(PatternDecl);
2670
2671 // C++0x [temp.explicit]p9:
2672 // Except for inline functions, other explicit instantiation declarations
2673 // have the effect of suppressing the implicit instantiation of the entity
2674 // to which they refer.
2675 if (!HasPattern || !PatternDecl)
2676 return true;
2677
2678 return PatternDecl->isInlined();
2679 }
2680
isTemplateInstantiation() const2681 bool FunctionDecl::isTemplateInstantiation() const {
2682 switch (getTemplateSpecializationKind()) {
2683 case TSK_Undeclared:
2684 case TSK_ExplicitSpecialization:
2685 return false;
2686 case TSK_ImplicitInstantiation:
2687 case TSK_ExplicitInstantiationDeclaration:
2688 case TSK_ExplicitInstantiationDefinition:
2689 return true;
2690 }
2691 llvm_unreachable("All TSK values handled.");
2692 }
2693
getTemplateInstantiationPattern() const2694 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
2695 // Handle class scope explicit specialization special case.
2696 if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
2697 return getClassScopeSpecializationPattern();
2698
2699 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
2700 while (Primary->getInstantiatedFromMemberTemplate()) {
2701 // If we have hit a point where the user provided a specialization of
2702 // this template, we're done looking.
2703 if (Primary->isMemberSpecialization())
2704 break;
2705
2706 Primary = Primary->getInstantiatedFromMemberTemplate();
2707 }
2708
2709 return Primary->getTemplatedDecl();
2710 }
2711
2712 return getInstantiatedFromMemberFunction();
2713 }
2714
getPrimaryTemplate() const2715 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
2716 if (FunctionTemplateSpecializationInfo *Info
2717 = TemplateOrSpecialization
2718 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2719 return Info->Template.getPointer();
2720 }
2721 return 0;
2722 }
2723
getClassScopeSpecializationPattern() const2724 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
2725 return getASTContext().getClassScopeSpecializationPattern(this);
2726 }
2727
2728 const TemplateArgumentList *
getTemplateSpecializationArgs() const2729 FunctionDecl::getTemplateSpecializationArgs() const {
2730 if (FunctionTemplateSpecializationInfo *Info
2731 = TemplateOrSpecialization
2732 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2733 return Info->TemplateArguments;
2734 }
2735 return 0;
2736 }
2737
2738 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const2739 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
2740 if (FunctionTemplateSpecializationInfo *Info
2741 = TemplateOrSpecialization
2742 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2743 return Info->TemplateArgumentsAsWritten;
2744 }
2745 return 0;
2746 }
2747
2748 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)2749 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
2750 FunctionTemplateDecl *Template,
2751 const TemplateArgumentList *TemplateArgs,
2752 void *InsertPos,
2753 TemplateSpecializationKind TSK,
2754 const TemplateArgumentListInfo *TemplateArgsAsWritten,
2755 SourceLocation PointOfInstantiation) {
2756 assert(TSK != TSK_Undeclared &&
2757 "Must specify the type of function template specialization");
2758 FunctionTemplateSpecializationInfo *Info
2759 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2760 if (!Info)
2761 Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
2762 TemplateArgs,
2763 TemplateArgsAsWritten,
2764 PointOfInstantiation);
2765 TemplateOrSpecialization = Info;
2766 Template->addSpecialization(Info, InsertPos);
2767 }
2768
2769 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)2770 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
2771 const UnresolvedSetImpl &Templates,
2772 const TemplateArgumentListInfo &TemplateArgs) {
2773 assert(TemplateOrSpecialization.isNull());
2774 size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
2775 Size += Templates.size() * sizeof(FunctionTemplateDecl*);
2776 Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
2777 void *Buffer = Context.Allocate(Size);
2778 DependentFunctionTemplateSpecializationInfo *Info =
2779 new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
2780 TemplateArgs);
2781 TemplateOrSpecialization = Info;
2782 }
2783
2784 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)2785 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
2786 const TemplateArgumentListInfo &TArgs)
2787 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
2788
2789 d.NumTemplates = Ts.size();
2790 d.NumArgs = TArgs.size();
2791
2792 FunctionTemplateDecl **TsArray =
2793 const_cast<FunctionTemplateDecl**>(getTemplates());
2794 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
2795 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
2796
2797 TemplateArgumentLoc *ArgsArray =
2798 const_cast<TemplateArgumentLoc*>(getTemplateArgs());
2799 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
2800 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
2801 }
2802
getTemplateSpecializationKind() const2803 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
2804 // For a function template specialization, query the specialization
2805 // information object.
2806 FunctionTemplateSpecializationInfo *FTSInfo
2807 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2808 if (FTSInfo)
2809 return FTSInfo->getTemplateSpecializationKind();
2810
2811 MemberSpecializationInfo *MSInfo
2812 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
2813 if (MSInfo)
2814 return MSInfo->getTemplateSpecializationKind();
2815
2816 return TSK_Undeclared;
2817 }
2818
2819 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2820 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2821 SourceLocation PointOfInstantiation) {
2822 if (FunctionTemplateSpecializationInfo *FTSInfo
2823 = TemplateOrSpecialization.dyn_cast<
2824 FunctionTemplateSpecializationInfo*>()) {
2825 FTSInfo->setTemplateSpecializationKind(TSK);
2826 if (TSK != TSK_ExplicitSpecialization &&
2827 PointOfInstantiation.isValid() &&
2828 FTSInfo->getPointOfInstantiation().isInvalid())
2829 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
2830 } else if (MemberSpecializationInfo *MSInfo
2831 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
2832 MSInfo->setTemplateSpecializationKind(TSK);
2833 if (TSK != TSK_ExplicitSpecialization &&
2834 PointOfInstantiation.isValid() &&
2835 MSInfo->getPointOfInstantiation().isInvalid())
2836 MSInfo->setPointOfInstantiation(PointOfInstantiation);
2837 } else
2838 llvm_unreachable("Function cannot have a template specialization kind");
2839 }
2840
getPointOfInstantiation() const2841 SourceLocation FunctionDecl::getPointOfInstantiation() const {
2842 if (FunctionTemplateSpecializationInfo *FTSInfo
2843 = TemplateOrSpecialization.dyn_cast<
2844 FunctionTemplateSpecializationInfo*>())
2845 return FTSInfo->getPointOfInstantiation();
2846 else if (MemberSpecializationInfo *MSInfo
2847 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
2848 return MSInfo->getPointOfInstantiation();
2849
2850 return SourceLocation();
2851 }
2852
isOutOfLine() const2853 bool FunctionDecl::isOutOfLine() const {
2854 if (Decl::isOutOfLine())
2855 return true;
2856
2857 // If this function was instantiated from a member function of a
2858 // class template, check whether that member function was defined out-of-line.
2859 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
2860 const FunctionDecl *Definition;
2861 if (FD->hasBody(Definition))
2862 return Definition->isOutOfLine();
2863 }
2864
2865 // If this function was instantiated from a function template,
2866 // check whether that function template was defined out-of-line.
2867 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
2868 const FunctionDecl *Definition;
2869 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
2870 return Definition->isOutOfLine();
2871 }
2872
2873 return false;
2874 }
2875
getSourceRange() const2876 SourceRange FunctionDecl::getSourceRange() const {
2877 return SourceRange(getOuterLocStart(), EndRangeLoc);
2878 }
2879
getMemoryFunctionKind() const2880 unsigned FunctionDecl::getMemoryFunctionKind() const {
2881 IdentifierInfo *FnInfo = getIdentifier();
2882
2883 if (!FnInfo)
2884 return 0;
2885
2886 // Builtin handling.
2887 switch (getBuiltinID()) {
2888 case Builtin::BI__builtin_memset:
2889 case Builtin::BI__builtin___memset_chk:
2890 case Builtin::BImemset:
2891 return Builtin::BImemset;
2892
2893 case Builtin::BI__builtin_memcpy:
2894 case Builtin::BI__builtin___memcpy_chk:
2895 case Builtin::BImemcpy:
2896 return Builtin::BImemcpy;
2897
2898 case Builtin::BI__builtin_memmove:
2899 case Builtin::BI__builtin___memmove_chk:
2900 case Builtin::BImemmove:
2901 return Builtin::BImemmove;
2902
2903 case Builtin::BIstrlcpy:
2904 return Builtin::BIstrlcpy;
2905 case Builtin::BIstrlcat:
2906 return Builtin::BIstrlcat;
2907
2908 case Builtin::BI__builtin_memcmp:
2909 case Builtin::BImemcmp:
2910 return Builtin::BImemcmp;
2911
2912 case Builtin::BI__builtin_strncpy:
2913 case Builtin::BI__builtin___strncpy_chk:
2914 case Builtin::BIstrncpy:
2915 return Builtin::BIstrncpy;
2916
2917 case Builtin::BI__builtin_strncmp:
2918 case Builtin::BIstrncmp:
2919 return Builtin::BIstrncmp;
2920
2921 case Builtin::BI__builtin_strncasecmp:
2922 case Builtin::BIstrncasecmp:
2923 return Builtin::BIstrncasecmp;
2924
2925 case Builtin::BI__builtin_strncat:
2926 case Builtin::BI__builtin___strncat_chk:
2927 case Builtin::BIstrncat:
2928 return Builtin::BIstrncat;
2929
2930 case Builtin::BI__builtin_strndup:
2931 case Builtin::BIstrndup:
2932 return Builtin::BIstrndup;
2933
2934 case Builtin::BI__builtin_strlen:
2935 case Builtin::BIstrlen:
2936 return Builtin::BIstrlen;
2937
2938 default:
2939 if (isExternC()) {
2940 if (FnInfo->isStr("memset"))
2941 return Builtin::BImemset;
2942 else if (FnInfo->isStr("memcpy"))
2943 return Builtin::BImemcpy;
2944 else if (FnInfo->isStr("memmove"))
2945 return Builtin::BImemmove;
2946 else if (FnInfo->isStr("memcmp"))
2947 return Builtin::BImemcmp;
2948 else if (FnInfo->isStr("strncpy"))
2949 return Builtin::BIstrncpy;
2950 else if (FnInfo->isStr("strncmp"))
2951 return Builtin::BIstrncmp;
2952 else if (FnInfo->isStr("strncasecmp"))
2953 return Builtin::BIstrncasecmp;
2954 else if (FnInfo->isStr("strncat"))
2955 return Builtin::BIstrncat;
2956 else if (FnInfo->isStr("strndup"))
2957 return Builtin::BIstrndup;
2958 else if (FnInfo->isStr("strlen"))
2959 return Builtin::BIstrlen;
2960 }
2961 break;
2962 }
2963 return 0;
2964 }
2965
2966 //===----------------------------------------------------------------------===//
2967 // FieldDecl Implementation
2968 //===----------------------------------------------------------------------===//
2969
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)2970 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
2971 SourceLocation StartLoc, SourceLocation IdLoc,
2972 IdentifierInfo *Id, QualType T,
2973 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2974 InClassInitStyle InitStyle) {
2975 return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
2976 BW, Mutable, InitStyle);
2977 }
2978
CreateDeserialized(ASTContext & C,unsigned ID)2979 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2980 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl));
2981 return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(),
2982 0, QualType(), 0, 0, false, ICIS_NoInit);
2983 }
2984
isAnonymousStructOrUnion() const2985 bool FieldDecl::isAnonymousStructOrUnion() const {
2986 if (!isImplicit() || getDeclName())
2987 return false;
2988
2989 if (const RecordType *Record = getType()->getAs<RecordType>())
2990 return Record->getDecl()->isAnonymousStructOrUnion();
2991
2992 return false;
2993 }
2994
getBitWidthValue(const ASTContext & Ctx) const2995 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
2996 assert(isBitField() && "not a bitfield");
2997 Expr *BitWidth = InitializerOrBitWidth.getPointer();
2998 return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
2999 }
3000
getFieldIndex() const3001 unsigned FieldDecl::getFieldIndex() const {
3002 if (CachedFieldIndex) return CachedFieldIndex - 1;
3003
3004 unsigned Index = 0;
3005 const RecordDecl *RD = getParent();
3006
3007 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
3008 I != E; ++I, ++Index)
3009 I->CachedFieldIndex = Index + 1;
3010
3011 assert(CachedFieldIndex && "failed to find field in parent");
3012 return CachedFieldIndex - 1;
3013 }
3014
getSourceRange() const3015 SourceRange FieldDecl::getSourceRange() const {
3016 if (const Expr *E = InitializerOrBitWidth.getPointer())
3017 return SourceRange(getInnerLocStart(), E->getLocEnd());
3018 return DeclaratorDecl::getSourceRange();
3019 }
3020
setBitWidth(Expr * Width)3021 void FieldDecl::setBitWidth(Expr *Width) {
3022 assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() &&
3023 "bit width or initializer already set");
3024 InitializerOrBitWidth.setPointer(Width);
3025 }
3026
setInClassInitializer(Expr * Init)3027 void FieldDecl::setInClassInitializer(Expr *Init) {
3028 assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() &&
3029 "bit width or initializer already set");
3030 InitializerOrBitWidth.setPointer(Init);
3031 }
3032
3033 //===----------------------------------------------------------------------===//
3034 // TagDecl Implementation
3035 //===----------------------------------------------------------------------===//
3036
getOuterLocStart() const3037 SourceLocation TagDecl::getOuterLocStart() const {
3038 return getTemplateOrInnerLocStart(this);
3039 }
3040
getSourceRange() const3041 SourceRange TagDecl::getSourceRange() const {
3042 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3043 return SourceRange(getOuterLocStart(), E);
3044 }
3045
getCanonicalDecl()3046 TagDecl* TagDecl::getCanonicalDecl() {
3047 return getFirstDeclaration();
3048 }
3049
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)3050 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3051 TypedefNameDeclOrQualifier = TDD;
3052 if (TypeForDecl)
3053 assert(TypeForDecl->isLinkageValid());
3054 assert(isLinkageValid());
3055 }
3056
startDefinition()3057 void TagDecl::startDefinition() {
3058 IsBeingDefined = true;
3059
3060 if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
3061 struct CXXRecordDecl::DefinitionData *Data =
3062 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3063 for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I)
3064 cast<CXXRecordDecl>(*I)->DefinitionData = Data;
3065 }
3066 }
3067
completeDefinition()3068 void TagDecl::completeDefinition() {
3069 assert((!isa<CXXRecordDecl>(this) ||
3070 cast<CXXRecordDecl>(this)->hasDefinition()) &&
3071 "definition completed but not started");
3072
3073 IsCompleteDefinition = true;
3074 IsBeingDefined = false;
3075
3076 if (ASTMutationListener *L = getASTMutationListener())
3077 L->CompletedTagDefinition(this);
3078 }
3079
getDefinition() const3080 TagDecl *TagDecl::getDefinition() const {
3081 if (isCompleteDefinition())
3082 return const_cast<TagDecl *>(this);
3083
3084 // If it's possible for us to have an out-of-date definition, check now.
3085 if (MayHaveOutOfDateDef) {
3086 if (IdentifierInfo *II = getIdentifier()) {
3087 if (II->isOutOfDate()) {
3088 updateOutOfDate(*II);
3089 }
3090 }
3091 }
3092
3093 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
3094 return CXXRD->getDefinition();
3095
3096 for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
3097 R != REnd; ++R)
3098 if (R->isCompleteDefinition())
3099 return *R;
3100
3101 return 0;
3102 }
3103
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)3104 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3105 if (QualifierLoc) {
3106 // Make sure the extended qualifier info is allocated.
3107 if (!hasExtInfo())
3108 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3109 // Set qualifier info.
3110 getExtInfo()->QualifierLoc = QualifierLoc;
3111 } else {
3112 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3113 if (hasExtInfo()) {
3114 if (getExtInfo()->NumTemplParamLists == 0) {
3115 getASTContext().Deallocate(getExtInfo());
3116 TypedefNameDeclOrQualifier = (TypedefNameDecl*) 0;
3117 }
3118 else
3119 getExtInfo()->QualifierLoc = QualifierLoc;
3120 }
3121 }
3122 }
3123
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)3124 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
3125 unsigned NumTPLists,
3126 TemplateParameterList **TPLists) {
3127 assert(NumTPLists > 0);
3128 // Make sure the extended decl info is allocated.
3129 if (!hasExtInfo())
3130 // Allocate external info struct.
3131 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3132 // Set the template parameter lists info.
3133 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
3134 }
3135
3136 //===----------------------------------------------------------------------===//
3137 // EnumDecl Implementation
3138 //===----------------------------------------------------------------------===//
3139
anchor()3140 void EnumDecl::anchor() { }
3141
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)3142 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3143 SourceLocation StartLoc, SourceLocation IdLoc,
3144 IdentifierInfo *Id,
3145 EnumDecl *PrevDecl, bool IsScoped,
3146 bool IsScopedUsingClassTag, bool IsFixed) {
3147 EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl,
3148 IsScoped, IsScopedUsingClassTag, IsFixed);
3149 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3150 C.getTypeDeclType(Enum, PrevDecl);
3151 return Enum;
3152 }
3153
CreateDeserialized(ASTContext & C,unsigned ID)3154 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3155 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl));
3156 EnumDecl *Enum = new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(),
3157 0, 0, false, false, false);
3158 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3159 return Enum;
3160 }
3161
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)3162 void EnumDecl::completeDefinition(QualType NewType,
3163 QualType NewPromotionType,
3164 unsigned NumPositiveBits,
3165 unsigned NumNegativeBits) {
3166 assert(!isCompleteDefinition() && "Cannot redefine enums!");
3167 if (!IntegerType)
3168 IntegerType = NewType.getTypePtr();
3169 PromotionType = NewPromotionType;
3170 setNumPositiveBits(NumPositiveBits);
3171 setNumNegativeBits(NumNegativeBits);
3172 TagDecl::completeDefinition();
3173 }
3174
getTemplateSpecializationKind() const3175 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3176 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3177 return MSI->getTemplateSpecializationKind();
3178
3179 return TSK_Undeclared;
3180 }
3181
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3182 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3183 SourceLocation PointOfInstantiation) {
3184 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3185 assert(MSI && "Not an instantiated member enumeration?");
3186 MSI->setTemplateSpecializationKind(TSK);
3187 if (TSK != TSK_ExplicitSpecialization &&
3188 PointOfInstantiation.isValid() &&
3189 MSI->getPointOfInstantiation().isInvalid())
3190 MSI->setPointOfInstantiation(PointOfInstantiation);
3191 }
3192
getInstantiatedFromMemberEnum() const3193 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3194 if (SpecializationInfo)
3195 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3196
3197 return 0;
3198 }
3199
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)3200 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3201 TemplateSpecializationKind TSK) {
3202 assert(!SpecializationInfo && "Member enum is already a specialization");
3203 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3204 }
3205
3206 //===----------------------------------------------------------------------===//
3207 // RecordDecl Implementation
3208 //===----------------------------------------------------------------------===//
3209
RecordDecl(Kind DK,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3210 RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
3211 SourceLocation StartLoc, SourceLocation IdLoc,
3212 IdentifierInfo *Id, RecordDecl *PrevDecl)
3213 : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) {
3214 HasFlexibleArrayMember = false;
3215 AnonymousStructOrUnion = false;
3216 HasObjectMember = false;
3217 HasVolatileMember = false;
3218 LoadedFieldsFromExternalStorage = false;
3219 assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3220 }
3221
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3222 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3223 SourceLocation StartLoc, SourceLocation IdLoc,
3224 IdentifierInfo *Id, RecordDecl* PrevDecl) {
3225 RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id,
3226 PrevDecl);
3227 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3228
3229 C.getTypeDeclType(R, PrevDecl);
3230 return R;
3231 }
3232
CreateDeserialized(const ASTContext & C,unsigned ID)3233 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3234 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl));
3235 RecordDecl *R = new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(),
3236 SourceLocation(), 0, 0);
3237 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3238 return R;
3239 }
3240
isInjectedClassName() const3241 bool RecordDecl::isInjectedClassName() const {
3242 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3243 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3244 }
3245
field_begin() const3246 RecordDecl::field_iterator RecordDecl::field_begin() const {
3247 if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3248 LoadFieldsFromExternalStorage();
3249
3250 return field_iterator(decl_iterator(FirstDecl));
3251 }
3252
3253 /// completeDefinition - Notes that the definition of this type is now
3254 /// complete.
completeDefinition()3255 void RecordDecl::completeDefinition() {
3256 assert(!isCompleteDefinition() && "Cannot redefine record!");
3257 TagDecl::completeDefinition();
3258 }
3259
3260 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3261 /// This which can be turned on with an attribute, pragma, or the
3262 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const3263 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3264 return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1;
3265 }
3266
isFieldOrIndirectField(Decl::Kind K)3267 static bool isFieldOrIndirectField(Decl::Kind K) {
3268 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3269 }
3270
LoadFieldsFromExternalStorage() const3271 void RecordDecl::LoadFieldsFromExternalStorage() const {
3272 ExternalASTSource *Source = getASTContext().getExternalSource();
3273 assert(hasExternalLexicalStorage() && Source && "No external storage?");
3274
3275 // Notify that we have a RecordDecl doing some initialization.
3276 ExternalASTSource::Deserializing TheFields(Source);
3277
3278 SmallVector<Decl*, 64> Decls;
3279 LoadedFieldsFromExternalStorage = true;
3280 switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
3281 Decls)) {
3282 case ELR_Success:
3283 break;
3284
3285 case ELR_AlreadyLoaded:
3286 case ELR_Failure:
3287 return;
3288 }
3289
3290 #ifndef NDEBUG
3291 // Check that all decls we got were FieldDecls.
3292 for (unsigned i=0, e=Decls.size(); i != e; ++i)
3293 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3294 #endif
3295
3296 if (Decls.empty())
3297 return;
3298
3299 llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3300 /*FieldsAlreadyLoaded=*/false);
3301 }
3302
3303 //===----------------------------------------------------------------------===//
3304 // BlockDecl Implementation
3305 //===----------------------------------------------------------------------===//
3306
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)3307 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3308 assert(ParamInfo == 0 && "Already has param info!");
3309
3310 // Zero params -> null pointer.
3311 if (!NewParamInfo.empty()) {
3312 NumParams = NewParamInfo.size();
3313 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3314 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3315 }
3316 }
3317
setCaptures(ASTContext & Context,const Capture * begin,const Capture * end,bool capturesCXXThis)3318 void BlockDecl::setCaptures(ASTContext &Context,
3319 const Capture *begin,
3320 const Capture *end,
3321 bool capturesCXXThis) {
3322 CapturesCXXThis = capturesCXXThis;
3323
3324 if (begin == end) {
3325 NumCaptures = 0;
3326 Captures = 0;
3327 return;
3328 }
3329
3330 NumCaptures = end - begin;
3331
3332 // Avoid new Capture[] because we don't want to provide a default
3333 // constructor.
3334 size_t allocationSize = NumCaptures * sizeof(Capture);
3335 void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
3336 memcpy(buffer, begin, allocationSize);
3337 Captures = static_cast<Capture*>(buffer);
3338 }
3339
capturesVariable(const VarDecl * variable) const3340 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3341 for (capture_const_iterator
3342 i = capture_begin(), e = capture_end(); i != e; ++i)
3343 // Only auto vars can be captured, so no redeclaration worries.
3344 if (i->getVariable() == variable)
3345 return true;
3346
3347 return false;
3348 }
3349
getSourceRange() const3350 SourceRange BlockDecl::getSourceRange() const {
3351 return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3352 }
3353
3354 //===----------------------------------------------------------------------===//
3355 // Other Decl Allocation/Deallocation Method Implementations
3356 //===----------------------------------------------------------------------===//
3357
anchor()3358 void TranslationUnitDecl::anchor() { }
3359
Create(ASTContext & C)3360 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3361 return new (C) TranslationUnitDecl(C);
3362 }
3363
anchor()3364 void LabelDecl::anchor() { }
3365
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)3366 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3367 SourceLocation IdentL, IdentifierInfo *II) {
3368 return new (C) LabelDecl(DC, IdentL, II, 0, IdentL);
3369 }
3370
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)3371 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3372 SourceLocation IdentL, IdentifierInfo *II,
3373 SourceLocation GnuLabelL) {
3374 assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3375 return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL);
3376 }
3377
CreateDeserialized(ASTContext & C,unsigned ID)3378 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3379 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl));
3380 return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation());
3381 }
3382
anchor()3383 void ValueDecl::anchor() { }
3384
isWeak() const3385 bool ValueDecl::isWeak() const {
3386 for (attr_iterator I = attr_begin(), E = attr_end(); I != E; ++I)
3387 if (isa<WeakAttr>(*I) || isa<WeakRefAttr>(*I))
3388 return true;
3389
3390 return isWeakImported();
3391 }
3392
anchor()3393 void ImplicitParamDecl::anchor() { }
3394
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type)3395 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3396 SourceLocation IdLoc,
3397 IdentifierInfo *Id,
3398 QualType Type) {
3399 return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type);
3400 }
3401
CreateDeserialized(ASTContext & C,unsigned ID)3402 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3403 unsigned ID) {
3404 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl));
3405 return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType());
3406 }
3407
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInlineSpecified,bool hasWrittenPrototype,bool isConstexprSpecified)3408 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3409 SourceLocation StartLoc,
3410 const DeclarationNameInfo &NameInfo,
3411 QualType T, TypeSourceInfo *TInfo,
3412 StorageClass SC,
3413 bool isInlineSpecified,
3414 bool hasWrittenPrototype,
3415 bool isConstexprSpecified) {
3416 FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo,
3417 T, TInfo, SC,
3418 isInlineSpecified,
3419 isConstexprSpecified);
3420 New->HasWrittenPrototype = hasWrittenPrototype;
3421 return New;
3422 }
3423
CreateDeserialized(ASTContext & C,unsigned ID)3424 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3425 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl));
3426 return new (Mem) FunctionDecl(Function, 0, SourceLocation(),
3427 DeclarationNameInfo(), QualType(), 0,
3428 SC_None, false, false);
3429 }
3430
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3431 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3432 return new (C) BlockDecl(DC, L);
3433 }
3434
CreateDeserialized(ASTContext & C,unsigned ID)3435 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3436 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl));
3437 return new (Mem) BlockDecl(0, SourceLocation());
3438 }
3439
CreateDeserialized(ASTContext & C,unsigned ID)3440 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3441 unsigned ID) {
3442 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(MSPropertyDecl));
3443 return new (Mem) MSPropertyDecl(0, SourceLocation(), DeclarationName(),
3444 QualType(), 0, SourceLocation(),
3445 0, 0);
3446 }
3447
Create(ASTContext & C,DeclContext * DC,unsigned NumParams)3448 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
3449 unsigned NumParams) {
3450 unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*);
3451 return new (C.Allocate(Size)) CapturedDecl(DC, NumParams);
3452 }
3453
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumParams)3454 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3455 unsigned NumParams) {
3456 unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*);
3457 void *Mem = AllocateDeserializedDecl(C, ID, Size);
3458 return new (Mem) CapturedDecl(0, NumParams);
3459 }
3460
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)3461 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3462 SourceLocation L,
3463 IdentifierInfo *Id, QualType T,
3464 Expr *E, const llvm::APSInt &V) {
3465 return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
3466 }
3467
3468 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3469 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3470 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl));
3471 return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0,
3472 llvm::APSInt());
3473 }
3474
anchor()3475 void IndirectFieldDecl::anchor() { }
3476
3477 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,NamedDecl ** CH,unsigned CHS)3478 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3479 IdentifierInfo *Id, QualType T, NamedDecl **CH,
3480 unsigned CHS) {
3481 return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3482 }
3483
CreateDeserialized(ASTContext & C,unsigned ID)3484 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3485 unsigned ID) {
3486 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl));
3487 return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(),
3488 QualType(), 0, 0);
3489 }
3490
getSourceRange() const3491 SourceRange EnumConstantDecl::getSourceRange() const {
3492 SourceLocation End = getLocation();
3493 if (Init)
3494 End = Init->getLocEnd();
3495 return SourceRange(getLocation(), End);
3496 }
3497
anchor()3498 void TypeDecl::anchor() { }
3499
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3500 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3501 SourceLocation StartLoc, SourceLocation IdLoc,
3502 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3503 return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo);
3504 }
3505
anchor()3506 void TypedefNameDecl::anchor() { }
3507
CreateDeserialized(ASTContext & C,unsigned ID)3508 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3509 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl));
3510 return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0);
3511 }
3512
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3513 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3514 SourceLocation StartLoc,
3515 SourceLocation IdLoc, IdentifierInfo *Id,
3516 TypeSourceInfo *TInfo) {
3517 return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo);
3518 }
3519
CreateDeserialized(ASTContext & C,unsigned ID)3520 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3521 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl));
3522 return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0);
3523 }
3524
getSourceRange() const3525 SourceRange TypedefDecl::getSourceRange() const {
3526 SourceLocation RangeEnd = getLocation();
3527 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3528 if (typeIsPostfix(TInfo->getType()))
3529 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3530 }
3531 return SourceRange(getLocStart(), RangeEnd);
3532 }
3533
getSourceRange() const3534 SourceRange TypeAliasDecl::getSourceRange() const {
3535 SourceLocation RangeEnd = getLocStart();
3536 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3537 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3538 return SourceRange(getLocStart(), RangeEnd);
3539 }
3540
anchor()3541 void FileScopeAsmDecl::anchor() { }
3542
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)3543 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3544 StringLiteral *Str,
3545 SourceLocation AsmLoc,
3546 SourceLocation RParenLoc) {
3547 return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3548 }
3549
CreateDeserialized(ASTContext & C,unsigned ID)3550 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
3551 unsigned ID) {
3552 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl));
3553 return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation());
3554 }
3555
anchor()3556 void EmptyDecl::anchor() {}
3557
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3558 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3559 return new (C) EmptyDecl(DC, L);
3560 }
3561
CreateDeserialized(ASTContext & C,unsigned ID)3562 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3563 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EmptyDecl));
3564 return new (Mem) EmptyDecl(0, SourceLocation());
3565 }
3566
3567 //===----------------------------------------------------------------------===//
3568 // ImportDecl Implementation
3569 //===----------------------------------------------------------------------===//
3570
3571 /// \brief Retrieve the number of module identifiers needed to name the given
3572 /// module.
getNumModuleIdentifiers(Module * Mod)3573 static unsigned getNumModuleIdentifiers(Module *Mod) {
3574 unsigned Result = 1;
3575 while (Mod->Parent) {
3576 Mod = Mod->Parent;
3577 ++Result;
3578 }
3579 return Result;
3580 }
3581
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)3582 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3583 Module *Imported,
3584 ArrayRef<SourceLocation> IdentifierLocs)
3585 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
3586 NextLocalImport()
3587 {
3588 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
3589 SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
3590 memcpy(StoredLocs, IdentifierLocs.data(),
3591 IdentifierLocs.size() * sizeof(SourceLocation));
3592 }
3593
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)3594 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3595 Module *Imported, SourceLocation EndLoc)
3596 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
3597 NextLocalImport()
3598 {
3599 *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
3600 }
3601
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)3602 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
3603 SourceLocation StartLoc, Module *Imported,
3604 ArrayRef<SourceLocation> IdentifierLocs) {
3605 void *Mem = C.Allocate(sizeof(ImportDecl) +
3606 IdentifierLocs.size() * sizeof(SourceLocation));
3607 return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
3608 }
3609
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)3610 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
3611 SourceLocation StartLoc,
3612 Module *Imported,
3613 SourceLocation EndLoc) {
3614 void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation));
3615 ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc);
3616 Import->setImplicit();
3617 return Import;
3618 }
3619
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)3620 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3621 unsigned NumLocations) {
3622 void *Mem = AllocateDeserializedDecl(C, ID,
3623 (sizeof(ImportDecl) +
3624 NumLocations * sizeof(SourceLocation)));
3625 return new (Mem) ImportDecl(EmptyShell());
3626 }
3627
getIdentifierLocs() const3628 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
3629 if (!ImportedAndComplete.getInt())
3630 return None;
3631
3632 const SourceLocation *StoredLocs
3633 = reinterpret_cast<const SourceLocation *>(this + 1);
3634 return ArrayRef<SourceLocation>(StoredLocs,
3635 getNumModuleIdentifiers(getImportedModule()));
3636 }
3637
getSourceRange() const3638 SourceRange ImportDecl::getSourceRange() const {
3639 if (!ImportedAndComplete.getInt())
3640 return SourceRange(getLocation(),
3641 *reinterpret_cast<const SourceLocation *>(this + 1));
3642
3643 return SourceRange(getLocation(), getIdentifierLocs().back());
3644 }
3645