• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/PrettyPrinter.h"
24 #include "clang/AST/Stmt.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/IdentifierTable.h"
28 #include "clang/Basic/Module.h"
29 #include "clang/Basic/Specifiers.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/type_traits.h"
33 #include <algorithm>
34 
35 using namespace clang;
36 
37 //===----------------------------------------------------------------------===//
38 // NamedDecl Implementation
39 //===----------------------------------------------------------------------===//
40 
41 // Visibility rules aren't rigorously externally specified, but here
42 // are the basic principles behind what we implement:
43 //
44 // 1. An explicit visibility attribute is generally a direct expression
45 // of the user's intent and should be honored.  Only the innermost
46 // visibility attribute applies.  If no visibility attribute applies,
47 // global visibility settings are considered.
48 //
49 // 2. There is one caveat to the above: on or in a template pattern,
50 // an explicit visibility attribute is just a default rule, and
51 // visibility can be decreased by the visibility of template
52 // arguments.  But this, too, has an exception: an attribute on an
53 // explicit specialization or instantiation causes all the visibility
54 // restrictions of the template arguments to be ignored.
55 //
56 // 3. A variable that does not otherwise have explicit visibility can
57 // be restricted by the visibility of its type.
58 //
59 // 4. A visibility restriction is explicit if it comes from an
60 // attribute (or something like it), not a global visibility setting.
61 // When emitting a reference to an external symbol, visibility
62 // restrictions are ignored unless they are explicit.
63 //
64 // 5. When computing the visibility of a non-type, including a
65 // non-type member of a class, only non-type visibility restrictions
66 // are considered: the 'visibility' attribute, global value-visibility
67 // settings, and a few special cases like __private_extern.
68 //
69 // 6. When computing the visibility of a type, including a type member
70 // of a class, only type visibility restrictions are considered:
71 // the 'type_visibility' attribute and global type-visibility settings.
72 // However, a 'visibility' attribute counts as a 'type_visibility'
73 // attribute on any declaration that only has the former.
74 //
75 // The visibility of a "secondary" entity, like a template argument,
76 // is computed using the kind of that entity, not the kind of the
77 // primary entity for which we are computing visibility.  For example,
78 // the visibility of a specialization of either of these templates:
79 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
80 //   template <class T, bool (&compare)(T, X)> class matcher;
81 // is restricted according to the type visibility of the argument 'T',
82 // the type visibility of 'bool(&)(T,X)', and the value visibility of
83 // the argument function 'compare'.  That 'has_match' is a value
84 // and 'matcher' is a type only matters when looking for attributes
85 // and settings from the immediate context.
86 
87 const unsigned IgnoreExplicitVisibilityBit = 2;
88 const unsigned IgnoreAllVisibilityBit = 4;
89 
90 /// Kinds of LV computation.  The linkage side of the computation is
91 /// always the same, but different things can change how visibility is
92 /// computed.
93 enum LVComputationKind {
94   /// Do an LV computation for, ultimately, a type.
95   /// Visibility may be restricted by type visibility settings and
96   /// the visibility of template arguments.
97   LVForType = NamedDecl::VisibilityForType,
98 
99   /// Do an LV computation for, ultimately, a non-type declaration.
100   /// Visibility may be restricted by value visibility settings and
101   /// the visibility of template arguments.
102   LVForValue = NamedDecl::VisibilityForValue,
103 
104   /// Do an LV computation for, ultimately, a type that already has
105   /// some sort of explicit visibility.  Visibility may only be
106   /// restricted by the visibility of template arguments.
107   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
108 
109   /// Do an LV computation for, ultimately, a non-type declaration
110   /// that already has some sort of explicit visibility.  Visibility
111   /// may only be restricted by the visibility of template arguments.
112   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
113 
114   /// Do an LV computation when we only care about the linkage.
115   LVForLinkageOnly =
116       LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
117 };
118 
119 /// Does this computation kind permit us to consider additional
120 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)121 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
122   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
123 }
124 
125 /// Given an LVComputationKind, return one of the same type/value sort
126 /// that records that it already has explicit visibility.
127 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind oldKind)128 withExplicitVisibilityAlready(LVComputationKind oldKind) {
129   LVComputationKind newKind =
130     static_cast<LVComputationKind>(unsigned(oldKind) |
131                                    IgnoreExplicitVisibilityBit);
132   assert(oldKind != LVForType          || newKind == LVForExplicitType);
133   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
134   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
135   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
136   return newKind;
137 }
138 
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)139 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
140                                                   LVComputationKind kind) {
141   assert(!hasExplicitVisibilityAlready(kind) &&
142          "asking for explicit visibility when we shouldn't be");
143   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
144 }
145 
146 /// Is the given declaration a "type" or a "value" for the purposes of
147 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)148 static bool usesTypeVisibility(const NamedDecl *D) {
149   return isa<TypeDecl>(D) ||
150          isa<ClassTemplateDecl>(D) ||
151          isa<ObjCInterfaceDecl>(D);
152 }
153 
154 /// Does the given declaration have member specialization information,
155 /// and if so, is it an explicit specialization?
156 template <class T> static typename
157 llvm::enable_if_c<!llvm::is_base_of<RedeclarableTemplateDecl, T>::value,
158                   bool>::type
isExplicitMemberSpecialization(const T * D)159 isExplicitMemberSpecialization(const T *D) {
160   if (const MemberSpecializationInfo *member =
161         D->getMemberSpecializationInfo()) {
162     return member->isExplicitSpecialization();
163   }
164   return false;
165 }
166 
167 /// For templates, this question is easier: a member template can't be
168 /// explicitly instantiated, so there's a single bit indicating whether
169 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)170 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
171   return D->isMemberSpecialization();
172 }
173 
174 /// Given a visibility attribute, return the explicit visibility
175 /// associated with it.
176 template <class T>
getVisibilityFromAttr(const T * attr)177 static Visibility getVisibilityFromAttr(const T *attr) {
178   switch (attr->getVisibility()) {
179   case T::Default:
180     return DefaultVisibility;
181   case T::Hidden:
182     return HiddenVisibility;
183   case T::Protected:
184     return ProtectedVisibility;
185   }
186   llvm_unreachable("bad visibility kind");
187 }
188 
189 /// Return the explicit visibility of the given declaration.
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)190 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
191                                     NamedDecl::ExplicitVisibilityKind kind) {
192   // If we're ultimately computing the visibility of a type, look for
193   // a 'type_visibility' attribute before looking for 'visibility'.
194   if (kind == NamedDecl::VisibilityForType) {
195     if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
196       return getVisibilityFromAttr(A);
197     }
198   }
199 
200   // If this declaration has an explicit visibility attribute, use it.
201   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
202     return getVisibilityFromAttr(A);
203   }
204 
205   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
206   // implies visibility(default).
207   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
208     for (specific_attr_iterator<AvailabilityAttr>
209               A = D->specific_attr_begin<AvailabilityAttr>(),
210            AEnd = D->specific_attr_end<AvailabilityAttr>();
211          A != AEnd; ++A)
212       if ((*A)->getPlatform()->getName().equals("macosx"))
213         return DefaultVisibility;
214   }
215 
216   return None;
217 }
218 
219 static LinkageInfo
getLVForType(const Type & T,LVComputationKind computation)220 getLVForType(const Type &T, LVComputationKind computation) {
221   if (computation == LVForLinkageOnly)
222     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
223   return T.getLinkageAndVisibility();
224 }
225 
226 /// \brief Get the most restrictive linkage for the types in the given
227 /// template parameter list.  For visibility purposes, template
228 /// parameters are part of the signature of a template.
229 static LinkageInfo
getLVForTemplateParameterList(const TemplateParameterList * params,LVComputationKind computation)230 getLVForTemplateParameterList(const TemplateParameterList *params,
231                               LVComputationKind computation) {
232   LinkageInfo LV;
233   for (TemplateParameterList::const_iterator P = params->begin(),
234                                           PEnd = params->end();
235        P != PEnd; ++P) {
236 
237     // Template type parameters are the most common and never
238     // contribute to visibility, pack or not.
239     if (isa<TemplateTypeParmDecl>(*P))
240       continue;
241 
242     // Non-type template parameters can be restricted by the value type, e.g.
243     //   template <enum X> class A { ... };
244     // We have to be careful here, though, because we can be dealing with
245     // dependent types.
246     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
247       // Handle the non-pack case first.
248       if (!NTTP->isExpandedParameterPack()) {
249         if (!NTTP->getType()->isDependentType()) {
250           LV.merge(getLVForType(*NTTP->getType(), computation));
251         }
252         continue;
253       }
254 
255       // Look at all the types in an expanded pack.
256       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
257         QualType type = NTTP->getExpansionType(i);
258         if (!type->isDependentType())
259           LV.merge(type->getLinkageAndVisibility());
260       }
261       continue;
262     }
263 
264     // Template template parameters can be restricted by their
265     // template parameters, recursively.
266     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
267 
268     // Handle the non-pack case first.
269     if (!TTP->isExpandedParameterPack()) {
270       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
271                                              computation));
272       continue;
273     }
274 
275     // Look at all expansions in an expanded pack.
276     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
277            i != n; ++i) {
278       LV.merge(getLVForTemplateParameterList(
279           TTP->getExpansionTemplateParameters(i), computation));
280     }
281   }
282 
283   return LV;
284 }
285 
286 /// getLVForDecl - Get the linkage and visibility for the given declaration.
287 static LinkageInfo getLVForDecl(const NamedDecl *D,
288                                 LVComputationKind computation);
289 
getOutermostFuncOrBlockContext(const Decl * D)290 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
291   const Decl *Ret = NULL;
292   const DeclContext *DC = D->getDeclContext();
293   while (DC->getDeclKind() != Decl::TranslationUnit) {
294     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
295       Ret = cast<Decl>(DC);
296     DC = DC->getParent();
297   }
298   return Ret;
299 }
300 
301 /// \brief Get the most restrictive linkage for the types and
302 /// declarations in the given template argument list.
303 ///
304 /// Note that we don't take an LVComputationKind because we always
305 /// want to honor the visibility of template arguments in the same way.
306 static LinkageInfo
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args,LVComputationKind computation)307 getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args,
308                              LVComputationKind computation) {
309   LinkageInfo LV;
310 
311   for (unsigned i = 0, e = args.size(); i != e; ++i) {
312     const TemplateArgument &arg = args[i];
313     switch (arg.getKind()) {
314     case TemplateArgument::Null:
315     case TemplateArgument::Integral:
316     case TemplateArgument::Expression:
317       continue;
318 
319     case TemplateArgument::Type:
320       LV.merge(getLVForType(*arg.getAsType(), computation));
321       continue;
322 
323     case TemplateArgument::Declaration:
324       if (NamedDecl *ND = dyn_cast<NamedDecl>(arg.getAsDecl())) {
325         assert(!usesTypeVisibility(ND));
326         LV.merge(getLVForDecl(ND, computation));
327       }
328       continue;
329 
330     case TemplateArgument::NullPtr:
331       LV.merge(arg.getNullPtrType()->getLinkageAndVisibility());
332       continue;
333 
334     case TemplateArgument::Template:
335     case TemplateArgument::TemplateExpansion:
336       if (TemplateDecl *Template
337                 = arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
338         LV.merge(getLVForDecl(Template, computation));
339       continue;
340 
341     case TemplateArgument::Pack:
342       LV.merge(getLVForTemplateArgumentList(arg.getPackAsArray(), computation));
343       continue;
344     }
345     llvm_unreachable("bad template argument kind");
346   }
347 
348   return LV;
349 }
350 
351 static LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs,LVComputationKind computation)352 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
353                              LVComputationKind computation) {
354   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
355 }
356 
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)357 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
358                         const FunctionTemplateSpecializationInfo *specInfo) {
359   // Include visibility from the template parameters and arguments
360   // only if this is not an explicit instantiation or specialization
361   // with direct explicit visibility.  (Implicit instantiations won't
362   // have a direct attribute.)
363   if (!specInfo->isExplicitInstantiationOrSpecialization())
364     return true;
365 
366   return !fn->hasAttr<VisibilityAttr>();
367 }
368 
369 /// Merge in template-related linkage and visibility for the given
370 /// function template specialization.
371 ///
372 /// We don't need a computation kind here because we can assume
373 /// LVForValue.
374 ///
375 /// \param[out] LV the computation to use for the parent
376 static void
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo,LVComputationKind computation)377 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
378                 const FunctionTemplateSpecializationInfo *specInfo,
379                 LVComputationKind computation) {
380   bool considerVisibility =
381     shouldConsiderTemplateVisibility(fn, specInfo);
382 
383   // Merge information from the template parameters.
384   FunctionTemplateDecl *temp = specInfo->getTemplate();
385   LinkageInfo tempLV =
386     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
387   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
388 
389   // Merge information from the template arguments.
390   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
391   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
392   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
393 }
394 
395 /// Does the given declaration have a direct visibility attribute
396 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)397 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
398                                          LVComputationKind computation) {
399   switch (computation) {
400   case LVForType:
401   case LVForExplicitType:
402     if (D->hasAttr<TypeVisibilityAttr>())
403       return true;
404     // fallthrough
405   case LVForValue:
406   case LVForExplicitValue:
407     if (D->hasAttr<VisibilityAttr>())
408       return true;
409     return false;
410   case LVForLinkageOnly:
411     return false;
412   }
413   llvm_unreachable("bad visibility computation kind");
414 }
415 
416 /// Should we consider visibility associated with the template
417 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)418 static bool shouldConsiderTemplateVisibility(
419                                  const ClassTemplateSpecializationDecl *spec,
420                                  LVComputationKind computation) {
421   // Include visibility from the template parameters and arguments
422   // only if this is not an explicit instantiation or specialization
423   // with direct explicit visibility (and note that implicit
424   // instantiations won't have a direct attribute).
425   //
426   // Furthermore, we want to ignore template parameters and arguments
427   // for an explicit specialization when computing the visibility of a
428   // member thereof with explicit visibility.
429   //
430   // This is a bit complex; let's unpack it.
431   //
432   // An explicit class specialization is an independent, top-level
433   // declaration.  As such, if it or any of its members has an
434   // explicit visibility attribute, that must directly express the
435   // user's intent, and we should honor it.  The same logic applies to
436   // an explicit instantiation of a member of such a thing.
437 
438   // Fast path: if this is not an explicit instantiation or
439   // specialization, we always want to consider template-related
440   // visibility restrictions.
441   if (!spec->isExplicitInstantiationOrSpecialization())
442     return true;
443 
444   // This is the 'member thereof' check.
445   if (spec->isExplicitSpecialization() &&
446       hasExplicitVisibilityAlready(computation))
447     return false;
448 
449   return !hasDirectVisibilityAttribute(spec, computation);
450 }
451 
452 /// Merge in template-related linkage and visibility for the given
453 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)454 static void mergeTemplateLV(LinkageInfo &LV,
455                             const ClassTemplateSpecializationDecl *spec,
456                             LVComputationKind computation) {
457   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
458 
459   // Merge information from the template parameters, but ignore
460   // visibility if we're only considering template arguments.
461 
462   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
463   LinkageInfo tempLV =
464     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
465   LV.mergeMaybeWithVisibility(tempLV,
466            considerVisibility && !hasExplicitVisibilityAlready(computation));
467 
468   // Merge information from the template arguments.  We ignore
469   // template-argument visibility if we've got an explicit
470   // instantiation with a visibility attribute.
471   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
472   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
473   if (considerVisibility)
474     LV.mergeVisibility(argsLV);
475   LV.mergeExternalVisibility(argsLV);
476 }
477 
useInlineVisibilityHidden(const NamedDecl * D)478 static bool useInlineVisibilityHidden(const NamedDecl *D) {
479   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
480   const LangOptions &Opts = D->getASTContext().getLangOpts();
481   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
482     return false;
483 
484   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
485   if (!FD)
486     return false;
487 
488   TemplateSpecializationKind TSK = TSK_Undeclared;
489   if (FunctionTemplateSpecializationInfo *spec
490       = FD->getTemplateSpecializationInfo()) {
491     TSK = spec->getTemplateSpecializationKind();
492   } else if (MemberSpecializationInfo *MSI =
493              FD->getMemberSpecializationInfo()) {
494     TSK = MSI->getTemplateSpecializationKind();
495   }
496 
497   const FunctionDecl *Def = 0;
498   // InlineVisibilityHidden only applies to definitions, and
499   // isInlined() only gives meaningful answers on definitions
500   // anyway.
501   return TSK != TSK_ExplicitInstantiationDeclaration &&
502     TSK != TSK_ExplicitInstantiationDefinition &&
503     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
504 }
505 
isFirstInExternCContext(T * D)506 template <typename T> static bool isFirstInExternCContext(T *D) {
507   const T *First = D->getFirstDeclaration();
508   return First->isInExternCContext();
509 }
510 
isSingleLineExternC(const Decl & D)511 static bool isSingleLineExternC(const Decl &D) {
512   if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
513     if (SD->getLanguage() == LinkageSpecDecl::lang_c && !SD->hasBraces())
514       return true;
515   return false;
516 }
517 
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation)518 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
519                                               LVComputationKind computation) {
520   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
521          "Not a name having namespace scope");
522   ASTContext &Context = D->getASTContext();
523 
524   // C++ [basic.link]p3:
525   //   A name having namespace scope (3.3.6) has internal linkage if it
526   //   is the name of
527   //     - an object, reference, function or function template that is
528   //       explicitly declared static; or,
529   // (This bullet corresponds to C99 6.2.2p3.)
530   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
531     // Explicitly declared static.
532     if (Var->getStorageClass() == SC_Static)
533       return LinkageInfo::internal();
534 
535     // - a non-volatile object or reference that is explicitly declared const
536     //   or constexpr and neither explicitly declared extern nor previously
537     //   declared to have external linkage; or (there is no equivalent in C99)
538     if (Context.getLangOpts().CPlusPlus &&
539         Var->getType().isConstQualified() &&
540         !Var->getType().isVolatileQualified()) {
541       const VarDecl *PrevVar = Var->getPreviousDecl();
542       if (PrevVar)
543         return getLVForDecl(PrevVar, computation);
544 
545       if (Var->getStorageClass() != SC_Extern &&
546           Var->getStorageClass() != SC_PrivateExtern &&
547           !isSingleLineExternC(*Var))
548         return LinkageInfo::internal();
549     }
550 
551     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
552          PrevVar = PrevVar->getPreviousDecl()) {
553       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
554           Var->getStorageClass() == SC_None)
555         return PrevVar->getLinkageAndVisibility();
556       // Explicitly declared static.
557       if (PrevVar->getStorageClass() == SC_Static)
558         return LinkageInfo::internal();
559     }
560   } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
561     // C++ [temp]p4:
562     //   A non-member function template can have internal linkage; any
563     //   other template name shall have external linkage.
564     const FunctionDecl *Function = 0;
565     if (const FunctionTemplateDecl *FunTmpl
566                                         = dyn_cast<FunctionTemplateDecl>(D))
567       Function = FunTmpl->getTemplatedDecl();
568     else
569       Function = cast<FunctionDecl>(D);
570 
571     // Explicitly declared static.
572     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
573       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
574   } else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
575     //   - a data member of an anonymous union.
576     if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
577       return LinkageInfo::internal();
578   }
579 
580   if (D->isInAnonymousNamespace()) {
581     const VarDecl *Var = dyn_cast<VarDecl>(D);
582     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
583     if ((!Var || !isFirstInExternCContext(Var)) &&
584         (!Func || !isFirstInExternCContext(Func)))
585       return LinkageInfo::uniqueExternal();
586   }
587 
588   // Set up the defaults.
589 
590   // C99 6.2.2p5:
591   //   If the declaration of an identifier for an object has file
592   //   scope and no storage-class specifier, its linkage is
593   //   external.
594   LinkageInfo LV;
595 
596   if (!hasExplicitVisibilityAlready(computation)) {
597     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
598       LV.mergeVisibility(*Vis, true);
599     } else {
600       // If we're declared in a namespace with a visibility attribute,
601       // use that namespace's visibility, and it still counts as explicit.
602       for (const DeclContext *DC = D->getDeclContext();
603            !isa<TranslationUnitDecl>(DC);
604            DC = DC->getParent()) {
605         const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
606         if (!ND) continue;
607         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
608           LV.mergeVisibility(*Vis, true);
609           break;
610         }
611       }
612     }
613 
614     // Add in global settings if the above didn't give us direct visibility.
615     if (!LV.isVisibilityExplicit()) {
616       // Use global type/value visibility as appropriate.
617       Visibility globalVisibility;
618       if (computation == LVForValue) {
619         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
620       } else {
621         assert(computation == LVForType);
622         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
623       }
624       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
625 
626       // If we're paying attention to global visibility, apply
627       // -finline-visibility-hidden if this is an inline method.
628       if (useInlineVisibilityHidden(D))
629         LV.mergeVisibility(HiddenVisibility, true);
630     }
631   }
632 
633   // C++ [basic.link]p4:
634 
635   //   A name having namespace scope has external linkage if it is the
636   //   name of
637   //
638   //     - an object or reference, unless it has internal linkage; or
639   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
640     // GCC applies the following optimization to variables and static
641     // data members, but not to functions:
642     //
643     // Modify the variable's LV by the LV of its type unless this is
644     // C or extern "C".  This follows from [basic.link]p9:
645     //   A type without linkage shall not be used as the type of a
646     //   variable or function with external linkage unless
647     //    - the entity has C language linkage, or
648     //    - the entity is declared within an unnamed namespace, or
649     //    - the entity is not used or is defined in the same
650     //      translation unit.
651     // and [basic.link]p10:
652     //   ...the types specified by all declarations referring to a
653     //   given variable or function shall be identical...
654     // C does not have an equivalent rule.
655     //
656     // Ignore this if we've got an explicit attribute;  the user
657     // probably knows what they're doing.
658     //
659     // Note that we don't want to make the variable non-external
660     // because of this, but unique-external linkage suits us.
661     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
662       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
663       if (TypeLV.getLinkage() != ExternalLinkage)
664         return LinkageInfo::uniqueExternal();
665       if (!LV.isVisibilityExplicit())
666         LV.mergeVisibility(TypeLV);
667     }
668 
669     if (Var->getStorageClass() == SC_PrivateExtern)
670       LV.mergeVisibility(HiddenVisibility, true);
671 
672     // Note that Sema::MergeVarDecl already takes care of implementing
673     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
674     // to do it here.
675 
676   //     - a function, unless it has internal linkage; or
677   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
678     // In theory, we can modify the function's LV by the LV of its
679     // type unless it has C linkage (see comment above about variables
680     // for justification).  In practice, GCC doesn't do this, so it's
681     // just too painful to make work.
682 
683     if (Function->getStorageClass() == SC_PrivateExtern)
684       LV.mergeVisibility(HiddenVisibility, true);
685 
686     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
687     // merging storage classes and visibility attributes, so we don't have to
688     // look at previous decls in here.
689 
690     // In C++, then if the type of the function uses a type with
691     // unique-external linkage, it's not legally usable from outside
692     // this translation unit.  However, we should use the C linkage
693     // rules instead for extern "C" declarations.
694     if (Context.getLangOpts().CPlusPlus &&
695         !Function->isInExternCContext()) {
696       // Only look at the type-as-written. If this function has an auto-deduced
697       // return type, we can't compute the linkage of that type because it could
698       // require looking at the linkage of this function, and we don't need this
699       // for correctness because the type is not part of the function's
700       // signature.
701       // FIXME: This is a hack. We should be able to solve this circularity some
702       // other way.
703       QualType TypeAsWritten = Function->getType();
704       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
705         TypeAsWritten = TSI->getType();
706       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
707         return LinkageInfo::uniqueExternal();
708     }
709 
710     // Consider LV from the template and the template arguments.
711     // We're at file scope, so we do not need to worry about nested
712     // specializations.
713     if (FunctionTemplateSpecializationInfo *specInfo
714                                = Function->getTemplateSpecializationInfo()) {
715       mergeTemplateLV(LV, Function, specInfo, computation);
716     }
717 
718   //     - a named class (Clause 9), or an unnamed class defined in a
719   //       typedef declaration in which the class has the typedef name
720   //       for linkage purposes (7.1.3); or
721   //     - a named enumeration (7.2), or an unnamed enumeration
722   //       defined in a typedef declaration in which the enumeration
723   //       has the typedef name for linkage purposes (7.1.3); or
724   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
725     // Unnamed tags have no linkage.
726     if (!Tag->hasNameForLinkage())
727       return LinkageInfo::none();
728 
729     // If this is a class template specialization, consider the
730     // linkage of the template and template arguments.  We're at file
731     // scope, so we do not need to worry about nested specializations.
732     if (const ClassTemplateSpecializationDecl *spec
733           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
734       mergeTemplateLV(LV, spec, computation);
735     }
736 
737   //     - an enumerator belonging to an enumeration with external linkage;
738   } else if (isa<EnumConstantDecl>(D)) {
739     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
740                                       computation);
741     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
742       return LinkageInfo::none();
743     LV.merge(EnumLV);
744 
745   //     - a template, unless it is a function template that has
746   //       internal linkage (Clause 14);
747   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
748     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
749     LinkageInfo tempLV =
750       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
751     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
752 
753   //     - a namespace (7.3), unless it is declared within an unnamed
754   //       namespace.
755   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
756     return LV;
757 
758   // By extension, we assign external linkage to Objective-C
759   // interfaces.
760   } else if (isa<ObjCInterfaceDecl>(D)) {
761     // fallout
762 
763   // Everything not covered here has no linkage.
764   } else {
765     return LinkageInfo::none();
766   }
767 
768   // If we ended up with non-external linkage, visibility should
769   // always be default.
770   if (LV.getLinkage() != ExternalLinkage)
771     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
772 
773   return LV;
774 }
775 
getLVForClassMember(const NamedDecl * D,LVComputationKind computation)776 static LinkageInfo getLVForClassMember(const NamedDecl *D,
777                                        LVComputationKind computation) {
778   // Only certain class members have linkage.  Note that fields don't
779   // really have linkage, but it's convenient to say they do for the
780   // purposes of calculating linkage of pointer-to-data-member
781   // template arguments.
782   if (!(isa<CXXMethodDecl>(D) ||
783         isa<VarDecl>(D) ||
784         isa<FieldDecl>(D) ||
785         isa<TagDecl>(D)))
786     return LinkageInfo::none();
787 
788   LinkageInfo LV;
789 
790   // If we have an explicit visibility attribute, merge that in.
791   if (!hasExplicitVisibilityAlready(computation)) {
792     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
793       LV.mergeVisibility(*Vis, true);
794     // If we're paying attention to global visibility, apply
795     // -finline-visibility-hidden if this is an inline method.
796     //
797     // Note that we do this before merging information about
798     // the class visibility.
799     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
800       LV.mergeVisibility(HiddenVisibility, true);
801   }
802 
803   // If this class member has an explicit visibility attribute, the only
804   // thing that can change its visibility is the template arguments, so
805   // only look for them when processing the class.
806   LVComputationKind classComputation = computation;
807   if (LV.isVisibilityExplicit())
808     classComputation = withExplicitVisibilityAlready(computation);
809 
810   LinkageInfo classLV =
811     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
812   // If the class already has unique-external linkage, we can't improve.
813   if (classLV.getLinkage() == UniqueExternalLinkage)
814     return LinkageInfo::uniqueExternal();
815 
816   if (!isExternallyVisible(classLV.getLinkage()))
817     return LinkageInfo::none();
818 
819 
820   // Otherwise, don't merge in classLV yet, because in certain cases
821   // we need to completely ignore the visibility from it.
822 
823   // Specifically, if this decl exists and has an explicit attribute.
824   const NamedDecl *explicitSpecSuppressor = 0;
825 
826   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
827     // If the type of the function uses a type with unique-external
828     // linkage, it's not legally usable from outside this translation unit.
829     if (MD->getType()->getLinkage() == UniqueExternalLinkage)
830       return LinkageInfo::uniqueExternal();
831 
832     // If this is a method template specialization, use the linkage for
833     // the template parameters and arguments.
834     if (FunctionTemplateSpecializationInfo *spec
835            = MD->getTemplateSpecializationInfo()) {
836       mergeTemplateLV(LV, MD, spec, computation);
837       if (spec->isExplicitSpecialization()) {
838         explicitSpecSuppressor = MD;
839       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
840         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
841       }
842     } else if (isExplicitMemberSpecialization(MD)) {
843       explicitSpecSuppressor = MD;
844     }
845 
846   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
847     if (const ClassTemplateSpecializationDecl *spec
848         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
849       mergeTemplateLV(LV, spec, computation);
850       if (spec->isExplicitSpecialization()) {
851         explicitSpecSuppressor = spec;
852       } else {
853         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
854         if (isExplicitMemberSpecialization(temp)) {
855           explicitSpecSuppressor = temp->getTemplatedDecl();
856         }
857       }
858     } else if (isExplicitMemberSpecialization(RD)) {
859       explicitSpecSuppressor = RD;
860     }
861 
862   // Static data members.
863   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
864     // Modify the variable's linkage by its type, but ignore the
865     // type's visibility unless it's a definition.
866     LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
867     if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
868       LV.mergeVisibility(typeLV);
869     LV.mergeExternalVisibility(typeLV);
870 
871     if (isExplicitMemberSpecialization(VD)) {
872       explicitSpecSuppressor = VD;
873     }
874 
875   // Template members.
876   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
877     bool considerVisibility =
878       (!LV.isVisibilityExplicit() &&
879        !classLV.isVisibilityExplicit() &&
880        !hasExplicitVisibilityAlready(computation));
881     LinkageInfo tempLV =
882       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
883     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
884 
885     if (const RedeclarableTemplateDecl *redeclTemp =
886           dyn_cast<RedeclarableTemplateDecl>(temp)) {
887       if (isExplicitMemberSpecialization(redeclTemp)) {
888         explicitSpecSuppressor = temp->getTemplatedDecl();
889       }
890     }
891   }
892 
893   // We should never be looking for an attribute directly on a template.
894   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
895 
896   // If this member is an explicit member specialization, and it has
897   // an explicit attribute, ignore visibility from the parent.
898   bool considerClassVisibility = true;
899   if (explicitSpecSuppressor &&
900       // optimization: hasDVA() is true only with explicit visibility.
901       LV.isVisibilityExplicit() &&
902       classLV.getVisibility() != DefaultVisibility &&
903       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
904     considerClassVisibility = false;
905   }
906 
907   // Finally, merge in information from the class.
908   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
909   return LV;
910 }
911 
anchor()912 void NamedDecl::anchor() { }
913 
914 static LinkageInfo computeLVForDecl(const NamedDecl *D,
915                                     LVComputationKind computation);
916 
isLinkageValid() const917 bool NamedDecl::isLinkageValid() const {
918   if (!hasCachedLinkage())
919     return true;
920 
921   return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
922          getCachedLinkage();
923 }
924 
getLinkageInternal() const925 Linkage NamedDecl::getLinkageInternal() const {
926   // We don't care about visibility here, so ask for the cheapest
927   // possible visibility analysis.
928   return getLVForDecl(this, LVForLinkageOnly).getLinkage();
929 }
930 
getLinkageAndVisibility() const931 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
932   LVComputationKind computation =
933     (usesTypeVisibility(this) ? LVForType : LVForValue);
934   return getLVForDecl(this, computation);
935 }
936 
937 Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const938 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
939   // Check the declaration itself first.
940   if (Optional<Visibility> V = getVisibilityOf(this, kind))
941     return V;
942 
943   // If this is a member class of a specialization of a class template
944   // and the corresponding decl has explicit visibility, use that.
945   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) {
946     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
947     if (InstantiatedFrom)
948       return getVisibilityOf(InstantiatedFrom, kind);
949   }
950 
951   // If there wasn't explicit visibility there, and this is a
952   // specialization of a class template, check for visibility
953   // on the pattern.
954   if (const ClassTemplateSpecializationDecl *spec
955         = dyn_cast<ClassTemplateSpecializationDecl>(this))
956     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
957                            kind);
958 
959   // Use the most recent declaration.
960   const NamedDecl *MostRecent = cast<NamedDecl>(this->getMostRecentDecl());
961   if (MostRecent != this)
962     return MostRecent->getExplicitVisibility(kind);
963 
964   if (const VarDecl *Var = dyn_cast<VarDecl>(this)) {
965     if (Var->isStaticDataMember()) {
966       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
967       if (InstantiatedFrom)
968         return getVisibilityOf(InstantiatedFrom, kind);
969     }
970 
971     return None;
972   }
973   // Also handle function template specializations.
974   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) {
975     // If the function is a specialization of a template with an
976     // explicit visibility attribute, use that.
977     if (FunctionTemplateSpecializationInfo *templateInfo
978           = fn->getTemplateSpecializationInfo())
979       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
980                              kind);
981 
982     // If the function is a member of a specialization of a class template
983     // and the corresponding decl has explicit visibility, use that.
984     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
985     if (InstantiatedFrom)
986       return getVisibilityOf(InstantiatedFrom, kind);
987 
988     return None;
989   }
990 
991   // The visibility of a template is stored in the templated decl.
992   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(this))
993     return getVisibilityOf(TD->getTemplatedDecl(), kind);
994 
995   return None;
996 }
997 
getLVForClosure(const DeclContext * DC,Decl * ContextDecl,LVComputationKind computation)998 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
999                                    LVComputationKind computation) {
1000   // This lambda has its linkage/visibility determined by its owner.
1001   if (ContextDecl) {
1002     if (isa<ParmVarDecl>(ContextDecl))
1003       DC = ContextDecl->getDeclContext()->getRedeclContext();
1004     else
1005       return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1006   }
1007 
1008   if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
1009     return getLVForDecl(ND, computation);
1010 
1011   return LinkageInfo::external();
1012 }
1013 
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)1014 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1015                                      LVComputationKind computation) {
1016   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1017     if (Function->isInAnonymousNamespace() &&
1018         !Function->isInExternCContext())
1019       return LinkageInfo::uniqueExternal();
1020 
1021     // This is a "void f();" which got merged with a file static.
1022     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1023       return LinkageInfo::internal();
1024 
1025     LinkageInfo LV;
1026     if (!hasExplicitVisibilityAlready(computation)) {
1027       if (Optional<Visibility> Vis =
1028               getExplicitVisibility(Function, computation))
1029         LV.mergeVisibility(*Vis, true);
1030     }
1031 
1032     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1033     // merging storage classes and visibility attributes, so we don't have to
1034     // look at previous decls in here.
1035 
1036     return LV;
1037   }
1038 
1039   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1040     if (Var->hasExternalStorage()) {
1041       if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1042         return LinkageInfo::uniqueExternal();
1043 
1044       LinkageInfo LV;
1045       if (Var->getStorageClass() == SC_PrivateExtern)
1046         LV.mergeVisibility(HiddenVisibility, true);
1047       else if (!hasExplicitVisibilityAlready(computation)) {
1048         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1049           LV.mergeVisibility(*Vis, true);
1050       }
1051 
1052       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1053         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1054         if (PrevLV.getLinkage())
1055           LV.setLinkage(PrevLV.getLinkage());
1056         LV.mergeVisibility(PrevLV);
1057       }
1058 
1059       return LV;
1060     }
1061 
1062     if (!Var->isStaticLocal())
1063       return LinkageInfo::none();
1064   }
1065 
1066   ASTContext &Context = D->getASTContext();
1067   if (!Context.getLangOpts().CPlusPlus)
1068     return LinkageInfo::none();
1069 
1070   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1071   if (!OuterD)
1072     return LinkageInfo::none();
1073 
1074   LinkageInfo LV;
1075   if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
1076     if (!BD->getBlockManglingNumber())
1077       return LinkageInfo::none();
1078 
1079     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1080                          BD->getBlockManglingContextDecl(), computation);
1081   } else {
1082     const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
1083     if (!FD->isInlined() &&
1084         FD->getTemplateSpecializationKind() == TSK_Undeclared)
1085       return LinkageInfo::none();
1086 
1087     LV = getLVForDecl(FD, computation);
1088   }
1089   if (!isExternallyVisible(LV.getLinkage()))
1090     return LinkageInfo::none();
1091   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1092                      LV.isVisibilityExplicit());
1093 }
1094 
computeLVForDecl(const NamedDecl * D,LVComputationKind computation)1095 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1096                                     LVComputationKind computation) {
1097   // Objective-C: treat all Objective-C declarations as having external
1098   // linkage.
1099   switch (D->getKind()) {
1100     default:
1101       break;
1102     case Decl::ParmVar:
1103       return LinkageInfo::none();
1104     case Decl::TemplateTemplateParm: // count these as external
1105     case Decl::NonTypeTemplateParm:
1106     case Decl::ObjCAtDefsField:
1107     case Decl::ObjCCategory:
1108     case Decl::ObjCCategoryImpl:
1109     case Decl::ObjCCompatibleAlias:
1110     case Decl::ObjCImplementation:
1111     case Decl::ObjCMethod:
1112     case Decl::ObjCProperty:
1113     case Decl::ObjCPropertyImpl:
1114     case Decl::ObjCProtocol:
1115       return LinkageInfo::external();
1116 
1117     case Decl::CXXRecord: {
1118       const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
1119       if (Record->isLambda()) {
1120         if (!Record->getLambdaManglingNumber()) {
1121           // This lambda has no mangling number, so it's internal.
1122           return LinkageInfo::internal();
1123         }
1124 
1125         // This lambda has its linkage/visibility determined by its owner.
1126         return getLVForClosure(D->getDeclContext()->getRedeclContext(),
1127                                Record->getLambdaContextDecl(), computation);
1128       }
1129 
1130       break;
1131     }
1132   }
1133 
1134   // Handle linkage for namespace-scope names.
1135   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1136     return getLVForNamespaceScopeDecl(D, computation);
1137 
1138   // C++ [basic.link]p5:
1139   //   In addition, a member function, static data member, a named
1140   //   class or enumeration of class scope, or an unnamed class or
1141   //   enumeration defined in a class-scope typedef declaration such
1142   //   that the class or enumeration has the typedef name for linkage
1143   //   purposes (7.1.3), has external linkage if the name of the class
1144   //   has external linkage.
1145   if (D->getDeclContext()->isRecord())
1146     return getLVForClassMember(D, computation);
1147 
1148   // C++ [basic.link]p6:
1149   //   The name of a function declared in block scope and the name of
1150   //   an object declared by a block scope extern declaration have
1151   //   linkage. If there is a visible declaration of an entity with
1152   //   linkage having the same name and type, ignoring entities
1153   //   declared outside the innermost enclosing namespace scope, the
1154   //   block scope declaration declares that same entity and receives
1155   //   the linkage of the previous declaration. If there is more than
1156   //   one such matching entity, the program is ill-formed. Otherwise,
1157   //   if no matching entity is found, the block scope entity receives
1158   //   external linkage.
1159   if (D->getDeclContext()->isFunctionOrMethod())
1160     return getLVForLocalDecl(D, computation);
1161 
1162   // C++ [basic.link]p6:
1163   //   Names not covered by these rules have no linkage.
1164   return LinkageInfo::none();
1165 }
1166 
1167 namespace clang {
1168 class LinkageComputer {
1169 public:
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1170   static LinkageInfo getLVForDecl(const NamedDecl *D,
1171                                   LVComputationKind computation) {
1172     if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1173       return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1174 
1175     LinkageInfo LV = computeLVForDecl(D, computation);
1176     if (D->hasCachedLinkage())
1177       assert(D->getCachedLinkage() == LV.getLinkage());
1178 
1179     D->setCachedLinkage(LV.getLinkage());
1180 
1181 #ifndef NDEBUG
1182     // In C (because of gnu inline) and in c++ with microsoft extensions an
1183     // static can follow an extern, so we can have two decls with different
1184     // linkages.
1185     const LangOptions &Opts = D->getASTContext().getLangOpts();
1186     if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1187       return LV;
1188 
1189     // We have just computed the linkage for this decl. By induction we know
1190     // that all other computed linkages match, check that the one we just
1191     // computed
1192     // also does.
1193     NamedDecl *Old = NULL;
1194     for (NamedDecl::redecl_iterator I = D->redecls_begin(),
1195                                     E = D->redecls_end();
1196          I != E; ++I) {
1197       NamedDecl *T = cast<NamedDecl>(*I);
1198       if (T == D)
1199         continue;
1200       if (T->hasCachedLinkage()) {
1201         Old = T;
1202         break;
1203       }
1204     }
1205     assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1206 #endif
1207 
1208     return LV;
1209   }
1210 };
1211 }
1212 
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1213 static LinkageInfo getLVForDecl(const NamedDecl *D,
1214                                 LVComputationKind computation) {
1215   return clang::LinkageComputer::getLVForDecl(D, computation);
1216 }
1217 
getQualifiedNameAsString() const1218 std::string NamedDecl::getQualifiedNameAsString() const {
1219   return getQualifiedNameAsString(getASTContext().getPrintingPolicy());
1220 }
1221 
getQualifiedNameAsString(const PrintingPolicy & P) const1222 std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
1223   std::string QualName;
1224   llvm::raw_string_ostream OS(QualName);
1225   printQualifiedName(OS, P);
1226   return OS.str();
1227 }
1228 
printQualifiedName(raw_ostream & OS) const1229 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1230   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1231 }
1232 
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1233 void NamedDecl::printQualifiedName(raw_ostream &OS,
1234                                    const PrintingPolicy &P) const {
1235   const DeclContext *Ctx = getDeclContext();
1236 
1237   if (Ctx->isFunctionOrMethod()) {
1238     printName(OS);
1239     return;
1240   }
1241 
1242   typedef SmallVector<const DeclContext *, 8> ContextsTy;
1243   ContextsTy Contexts;
1244 
1245   // Collect contexts.
1246   while (Ctx && isa<NamedDecl>(Ctx)) {
1247     Contexts.push_back(Ctx);
1248     Ctx = Ctx->getParent();
1249   }
1250 
1251   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1252        I != E; ++I) {
1253     if (const ClassTemplateSpecializationDecl *Spec
1254           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1255       OS << Spec->getName();
1256       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1257       TemplateSpecializationType::PrintTemplateArgumentList(OS,
1258                                                             TemplateArgs.data(),
1259                                                             TemplateArgs.size(),
1260                                                             P);
1261     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
1262       if (ND->isAnonymousNamespace())
1263         OS << "<anonymous namespace>";
1264       else
1265         OS << *ND;
1266     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
1267       if (!RD->getIdentifier())
1268         OS << "<anonymous " << RD->getKindName() << '>';
1269       else
1270         OS << *RD;
1271     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1272       const FunctionProtoType *FT = 0;
1273       if (FD->hasWrittenPrototype())
1274         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1275 
1276       OS << *FD << '(';
1277       if (FT) {
1278         unsigned NumParams = FD->getNumParams();
1279         for (unsigned i = 0; i < NumParams; ++i) {
1280           if (i)
1281             OS << ", ";
1282           OS << FD->getParamDecl(i)->getType().stream(P);
1283         }
1284 
1285         if (FT->isVariadic()) {
1286           if (NumParams > 0)
1287             OS << ", ";
1288           OS << "...";
1289         }
1290       }
1291       OS << ')';
1292     } else {
1293       OS << *cast<NamedDecl>(*I);
1294     }
1295     OS << "::";
1296   }
1297 
1298   if (getDeclName())
1299     OS << *this;
1300   else
1301     OS << "<anonymous>";
1302 }
1303 
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1304 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1305                                      const PrintingPolicy &Policy,
1306                                      bool Qualified) const {
1307   if (Qualified)
1308     printQualifiedName(OS, Policy);
1309   else
1310     printName(OS);
1311 }
1312 
declarationReplaces(NamedDecl * OldD) const1313 bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
1314   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1315 
1316   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1317   // We want to keep it, unless it nominates same namespace.
1318   if (getKind() == Decl::UsingDirective) {
1319     return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
1320              ->getOriginalNamespace() ==
1321            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1322              ->getOriginalNamespace();
1323   }
1324 
1325   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
1326     // For function declarations, we keep track of redeclarations.
1327     return FD->getPreviousDecl() == OldD;
1328 
1329   // For function templates, the underlying function declarations are linked.
1330   if (const FunctionTemplateDecl *FunctionTemplate
1331         = dyn_cast<FunctionTemplateDecl>(this))
1332     if (const FunctionTemplateDecl *OldFunctionTemplate
1333           = dyn_cast<FunctionTemplateDecl>(OldD))
1334       return FunctionTemplate->getTemplatedDecl()
1335                ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
1336 
1337   // For method declarations, we keep track of redeclarations.
1338   if (isa<ObjCMethodDecl>(this))
1339     return false;
1340 
1341   if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
1342     return true;
1343 
1344   if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
1345     return cast<UsingShadowDecl>(this)->getTargetDecl() ==
1346            cast<UsingShadowDecl>(OldD)->getTargetDecl();
1347 
1348   if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
1349     ASTContext &Context = getASTContext();
1350     return Context.getCanonicalNestedNameSpecifier(
1351                                      cast<UsingDecl>(this)->getQualifier()) ==
1352            Context.getCanonicalNestedNameSpecifier(
1353                                         cast<UsingDecl>(OldD)->getQualifier());
1354   }
1355 
1356   // A typedef of an Objective-C class type can replace an Objective-C class
1357   // declaration or definition, and vice versa.
1358   if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
1359       (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
1360     return true;
1361 
1362   // For non-function declarations, if the declarations are of the
1363   // same kind then this must be a redeclaration, or semantic analysis
1364   // would not have given us the new declaration.
1365   return this->getKind() == OldD->getKind();
1366 }
1367 
hasLinkage() const1368 bool NamedDecl::hasLinkage() const {
1369   return getFormalLinkage() != NoLinkage;
1370 }
1371 
getUnderlyingDeclImpl()1372 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1373   NamedDecl *ND = this;
1374   while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
1375     ND = UD->getTargetDecl();
1376 
1377   if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1378     return AD->getClassInterface();
1379 
1380   return ND;
1381 }
1382 
isCXXInstanceMember() const1383 bool NamedDecl::isCXXInstanceMember() const {
1384   if (!isCXXClassMember())
1385     return false;
1386 
1387   const NamedDecl *D = this;
1388   if (isa<UsingShadowDecl>(D))
1389     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1390 
1391   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1392     return true;
1393   if (isa<CXXMethodDecl>(D))
1394     return cast<CXXMethodDecl>(D)->isInstance();
1395   if (isa<FunctionTemplateDecl>(D))
1396     return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D)
1397                                  ->getTemplatedDecl())->isInstance();
1398   return false;
1399 }
1400 
1401 //===----------------------------------------------------------------------===//
1402 // DeclaratorDecl Implementation
1403 //===----------------------------------------------------------------------===//
1404 
1405 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1406 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1407   if (decl->getNumTemplateParameterLists() > 0)
1408     return decl->getTemplateParameterList(0)->getTemplateLoc();
1409   else
1410     return decl->getInnerLocStart();
1411 }
1412 
getTypeSpecStartLoc() const1413 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1414   TypeSourceInfo *TSI = getTypeSourceInfo();
1415   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1416   return SourceLocation();
1417 }
1418 
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1419 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1420   if (QualifierLoc) {
1421     // Make sure the extended decl info is allocated.
1422     if (!hasExtInfo()) {
1423       // Save (non-extended) type source info pointer.
1424       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1425       // Allocate external info struct.
1426       DeclInfo = new (getASTContext()) ExtInfo;
1427       // Restore savedTInfo into (extended) decl info.
1428       getExtInfo()->TInfo = savedTInfo;
1429     }
1430     // Set qualifier info.
1431     getExtInfo()->QualifierLoc = QualifierLoc;
1432   } else {
1433     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1434     if (hasExtInfo()) {
1435       if (getExtInfo()->NumTemplParamLists == 0) {
1436         // Save type source info pointer.
1437         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1438         // Deallocate the extended decl info.
1439         getASTContext().Deallocate(getExtInfo());
1440         // Restore savedTInfo into (non-extended) decl info.
1441         DeclInfo = savedTInfo;
1442       }
1443       else
1444         getExtInfo()->QualifierLoc = QualifierLoc;
1445     }
1446   }
1447 }
1448 
1449 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1450 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
1451                                               unsigned NumTPLists,
1452                                               TemplateParameterList **TPLists) {
1453   assert(NumTPLists > 0);
1454   // Make sure the extended decl info is allocated.
1455   if (!hasExtInfo()) {
1456     // Save (non-extended) type source info pointer.
1457     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1458     // Allocate external info struct.
1459     DeclInfo = new (getASTContext()) ExtInfo;
1460     // Restore savedTInfo into (extended) decl info.
1461     getExtInfo()->TInfo = savedTInfo;
1462   }
1463   // Set the template parameter lists info.
1464   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1465 }
1466 
getOuterLocStart() const1467 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1468   return getTemplateOrInnerLocStart(this);
1469 }
1470 
1471 namespace {
1472 
1473 // Helper function: returns true if QT is or contains a type
1474 // having a postfix component.
typeIsPostfix(clang::QualType QT)1475 bool typeIsPostfix(clang::QualType QT) {
1476   while (true) {
1477     const Type* T = QT.getTypePtr();
1478     switch (T->getTypeClass()) {
1479     default:
1480       return false;
1481     case Type::Pointer:
1482       QT = cast<PointerType>(T)->getPointeeType();
1483       break;
1484     case Type::BlockPointer:
1485       QT = cast<BlockPointerType>(T)->getPointeeType();
1486       break;
1487     case Type::MemberPointer:
1488       QT = cast<MemberPointerType>(T)->getPointeeType();
1489       break;
1490     case Type::LValueReference:
1491     case Type::RValueReference:
1492       QT = cast<ReferenceType>(T)->getPointeeType();
1493       break;
1494     case Type::PackExpansion:
1495       QT = cast<PackExpansionType>(T)->getPattern();
1496       break;
1497     case Type::Paren:
1498     case Type::ConstantArray:
1499     case Type::DependentSizedArray:
1500     case Type::IncompleteArray:
1501     case Type::VariableArray:
1502     case Type::FunctionProto:
1503     case Type::FunctionNoProto:
1504       return true;
1505     }
1506   }
1507 }
1508 
1509 } // namespace
1510 
getSourceRange() const1511 SourceRange DeclaratorDecl::getSourceRange() const {
1512   SourceLocation RangeEnd = getLocation();
1513   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1514     if (typeIsPostfix(TInfo->getType()))
1515       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1516   }
1517   return SourceRange(getOuterLocStart(), RangeEnd);
1518 }
1519 
1520 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1521 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
1522                                              unsigned NumTPLists,
1523                                              TemplateParameterList **TPLists) {
1524   assert((NumTPLists == 0 || TPLists != 0) &&
1525          "Empty array of template parameters with positive size!");
1526 
1527   // Free previous template parameters (if any).
1528   if (NumTemplParamLists > 0) {
1529     Context.Deallocate(TemplParamLists);
1530     TemplParamLists = 0;
1531     NumTemplParamLists = 0;
1532   }
1533   // Set info on matched template parameter lists (if any).
1534   if (NumTPLists > 0) {
1535     TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
1536     NumTemplParamLists = NumTPLists;
1537     for (unsigned i = NumTPLists; i-- > 0; )
1538       TemplParamLists[i] = TPLists[i];
1539   }
1540 }
1541 
1542 //===----------------------------------------------------------------------===//
1543 // VarDecl Implementation
1544 //===----------------------------------------------------------------------===//
1545 
getStorageClassSpecifierString(StorageClass SC)1546 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1547   switch (SC) {
1548   case SC_None:                 break;
1549   case SC_Auto:                 return "auto";
1550   case SC_Extern:               return "extern";
1551   case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
1552   case SC_PrivateExtern:        return "__private_extern__";
1553   case SC_Register:             return "register";
1554   case SC_Static:               return "static";
1555   }
1556 
1557   llvm_unreachable("Invalid storage class");
1558 }
1559 
VarDecl(Kind DK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass SC)1560 VarDecl::VarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
1561                  SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1562                  TypeSourceInfo *TInfo, StorageClass SC)
1563     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), Init() {
1564   assert(sizeof(VarDeclBitfields) <= sizeof(unsigned));
1565   assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned));
1566   AllBits = 0;
1567   VarDeclBits.SClass = SC;
1568   // Everything else is implicitly initialized to false.
1569 }
1570 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S)1571 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1572                          SourceLocation StartL, SourceLocation IdL,
1573                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1574                          StorageClass S) {
1575   return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S);
1576 }
1577 
CreateDeserialized(ASTContext & C,unsigned ID)1578 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1579   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl));
1580   return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0,
1581                            QualType(), 0, SC_None);
1582 }
1583 
setStorageClass(StorageClass SC)1584 void VarDecl::setStorageClass(StorageClass SC) {
1585   assert(isLegalForVariable(SC));
1586   VarDeclBits.SClass = SC;
1587 }
1588 
getSourceRange() const1589 SourceRange VarDecl::getSourceRange() const {
1590   if (const Expr *Init = getInit()) {
1591     SourceLocation InitEnd = Init->getLocEnd();
1592     // If Init is implicit, ignore its source range and fallback on
1593     // DeclaratorDecl::getSourceRange() to handle postfix elements.
1594     if (InitEnd.isValid() && InitEnd != getLocation())
1595       return SourceRange(getOuterLocStart(), InitEnd);
1596   }
1597   return DeclaratorDecl::getSourceRange();
1598 }
1599 
1600 template<typename T>
getLanguageLinkageTemplate(const T & D)1601 static LanguageLinkage getLanguageLinkageTemplate(const T &D) {
1602   // C++ [dcl.link]p1: All function types, function names with external linkage,
1603   // and variable names with external linkage have a language linkage.
1604   if (!D.hasExternalFormalLinkage())
1605     return NoLanguageLinkage;
1606 
1607   // Language linkage is a C++ concept, but saying that everything else in C has
1608   // C language linkage fits the implementation nicely.
1609   ASTContext &Context = D.getASTContext();
1610   if (!Context.getLangOpts().CPlusPlus)
1611     return CLanguageLinkage;
1612 
1613   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1614   // language linkage of the names of class members and the function type of
1615   // class member functions.
1616   const DeclContext *DC = D.getDeclContext();
1617   if (DC->isRecord())
1618     return CXXLanguageLinkage;
1619 
1620   // If the first decl is in an extern "C" context, any other redeclaration
1621   // will have C language linkage. If the first one is not in an extern "C"
1622   // context, we would have reported an error for any other decl being in one.
1623   if (isFirstInExternCContext(&D))
1624     return CLanguageLinkage;
1625   return CXXLanguageLinkage;
1626 }
1627 
1628 template<typename T>
isExternCTemplate(const T & D)1629 static bool isExternCTemplate(const T &D) {
1630   // Since the context is ignored for class members, they can only have C++
1631   // language linkage or no language linkage.
1632   const DeclContext *DC = D.getDeclContext();
1633   if (DC->isRecord()) {
1634     assert(D.getASTContext().getLangOpts().CPlusPlus);
1635     return false;
1636   }
1637 
1638   return D.getLanguageLinkage() == CLanguageLinkage;
1639 }
1640 
getLanguageLinkage() const1641 LanguageLinkage VarDecl::getLanguageLinkage() const {
1642   return getLanguageLinkageTemplate(*this);
1643 }
1644 
isExternC() const1645 bool VarDecl::isExternC() const {
1646   return isExternCTemplate(*this);
1647 }
1648 
isLinkageSpecContext(const DeclContext * DC,LinkageSpecDecl::LanguageIDs ID)1649 static bool isLinkageSpecContext(const DeclContext *DC,
1650                                  LinkageSpecDecl::LanguageIDs ID) {
1651   while (DC->getDeclKind() != Decl::TranslationUnit) {
1652     if (DC->getDeclKind() == Decl::LinkageSpec)
1653       return cast<LinkageSpecDecl>(DC)->getLanguage() == ID;
1654     DC = DC->getParent();
1655   }
1656   return false;
1657 }
1658 
1659 template <typename T>
isInLanguageSpecContext(T * D,LinkageSpecDecl::LanguageIDs ID)1660 static bool isInLanguageSpecContext(T *D, LinkageSpecDecl::LanguageIDs ID) {
1661   return isLinkageSpecContext(D->getLexicalDeclContext(), ID);
1662 }
1663 
isInExternCContext() const1664 bool VarDecl::isInExternCContext() const {
1665   return isInLanguageSpecContext(this, LinkageSpecDecl::lang_c);
1666 }
1667 
isInExternCXXContext() const1668 bool VarDecl::isInExternCXXContext() const {
1669   return isInLanguageSpecContext(this, LinkageSpecDecl::lang_cxx);
1670 }
1671 
getCanonicalDecl()1672 VarDecl *VarDecl::getCanonicalDecl() {
1673   return getFirstDeclaration();
1674 }
1675 
isThisDeclarationADefinition(ASTContext & C) const1676 VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
1677   ASTContext &C) const
1678 {
1679   // C++ [basic.def]p2:
1680   //   A declaration is a definition unless [...] it contains the 'extern'
1681   //   specifier or a linkage-specification and neither an initializer [...],
1682   //   it declares a static data member in a class declaration [...].
1683   // C++ [temp.expl.spec]p15:
1684   //   An explicit specialization of a static data member of a template is a
1685   //   definition if the declaration includes an initializer; otherwise, it is
1686   //   a declaration.
1687   if (isStaticDataMember()) {
1688     if (isOutOfLine() && (hasInit() ||
1689           getTemplateSpecializationKind() != TSK_ExplicitSpecialization))
1690       return Definition;
1691     else
1692       return DeclarationOnly;
1693   }
1694   // C99 6.7p5:
1695   //   A definition of an identifier is a declaration for that identifier that
1696   //   [...] causes storage to be reserved for that object.
1697   // Note: that applies for all non-file-scope objects.
1698   // C99 6.9.2p1:
1699   //   If the declaration of an identifier for an object has file scope and an
1700   //   initializer, the declaration is an external definition for the identifier
1701   if (hasInit())
1702     return Definition;
1703 
1704   if (hasExternalStorage())
1705     return DeclarationOnly;
1706 
1707   // [dcl.link] p7:
1708   //   A declaration directly contained in a linkage-specification is treated
1709   //   as if it contains the extern specifier for the purpose of determining
1710   //   the linkage of the declared name and whether it is a definition.
1711   if (isSingleLineExternC(*this))
1712     return DeclarationOnly;
1713 
1714   // C99 6.9.2p2:
1715   //   A declaration of an object that has file scope without an initializer,
1716   //   and without a storage class specifier or the scs 'static', constitutes
1717   //   a tentative definition.
1718   // No such thing in C++.
1719   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1720     return TentativeDefinition;
1721 
1722   // What's left is (in C, block-scope) declarations without initializers or
1723   // external storage. These are definitions.
1724   return Definition;
1725 }
1726 
getActingDefinition()1727 VarDecl *VarDecl::getActingDefinition() {
1728   DefinitionKind Kind = isThisDeclarationADefinition();
1729   if (Kind != TentativeDefinition)
1730     return 0;
1731 
1732   VarDecl *LastTentative = 0;
1733   VarDecl *First = getFirstDeclaration();
1734   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1735        I != E; ++I) {
1736     Kind = (*I)->isThisDeclarationADefinition();
1737     if (Kind == Definition)
1738       return 0;
1739     else if (Kind == TentativeDefinition)
1740       LastTentative = *I;
1741   }
1742   return LastTentative;
1743 }
1744 
getDefinition(ASTContext & C)1745 VarDecl *VarDecl::getDefinition(ASTContext &C) {
1746   VarDecl *First = getFirstDeclaration();
1747   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1748        I != E; ++I) {
1749     if ((*I)->isThisDeclarationADefinition(C) == Definition)
1750       return *I;
1751   }
1752   return 0;
1753 }
1754 
hasDefinition(ASTContext & C) const1755 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
1756   DefinitionKind Kind = DeclarationOnly;
1757 
1758   const VarDecl *First = getFirstDeclaration();
1759   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1760        I != E; ++I) {
1761     Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C));
1762     if (Kind == Definition)
1763       break;
1764   }
1765 
1766   return Kind;
1767 }
1768 
getAnyInitializer(const VarDecl * & D) const1769 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
1770   redecl_iterator I = redecls_begin(), E = redecls_end();
1771   while (I != E && !I->getInit())
1772     ++I;
1773 
1774   if (I != E) {
1775     D = *I;
1776     return I->getInit();
1777   }
1778   return 0;
1779 }
1780 
isOutOfLine() const1781 bool VarDecl::isOutOfLine() const {
1782   if (Decl::isOutOfLine())
1783     return true;
1784 
1785   if (!isStaticDataMember())
1786     return false;
1787 
1788   // If this static data member was instantiated from a static data member of
1789   // a class template, check whether that static data member was defined
1790   // out-of-line.
1791   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
1792     return VD->isOutOfLine();
1793 
1794   return false;
1795 }
1796 
getOutOfLineDefinition()1797 VarDecl *VarDecl::getOutOfLineDefinition() {
1798   if (!isStaticDataMember())
1799     return 0;
1800 
1801   for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
1802        RD != RDEnd; ++RD) {
1803     if (RD->getLexicalDeclContext()->isFileContext())
1804       return *RD;
1805   }
1806 
1807   return 0;
1808 }
1809 
setInit(Expr * I)1810 void VarDecl::setInit(Expr *I) {
1811   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
1812     Eval->~EvaluatedStmt();
1813     getASTContext().Deallocate(Eval);
1814   }
1815 
1816   Init = I;
1817 }
1818 
isUsableInConstantExpressions(ASTContext & C) const1819 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
1820   const LangOptions &Lang = C.getLangOpts();
1821 
1822   if (!Lang.CPlusPlus)
1823     return false;
1824 
1825   // In C++11, any variable of reference type can be used in a constant
1826   // expression if it is initialized by a constant expression.
1827   if (Lang.CPlusPlus11 && getType()->isReferenceType())
1828     return true;
1829 
1830   // Only const objects can be used in constant expressions in C++. C++98 does
1831   // not require the variable to be non-volatile, but we consider this to be a
1832   // defect.
1833   if (!getType().isConstQualified() || getType().isVolatileQualified())
1834     return false;
1835 
1836   // In C++, const, non-volatile variables of integral or enumeration types
1837   // can be used in constant expressions.
1838   if (getType()->isIntegralOrEnumerationType())
1839     return true;
1840 
1841   // Additionally, in C++11, non-volatile constexpr variables can be used in
1842   // constant expressions.
1843   return Lang.CPlusPlus11 && isConstexpr();
1844 }
1845 
1846 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
1847 /// form, which contains extra information on the evaluated value of the
1848 /// initializer.
ensureEvaluatedStmt() const1849 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
1850   EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
1851   if (!Eval) {
1852     Stmt *S = Init.get<Stmt *>();
1853     // Note: EvaluatedStmt contains an APValue, which usually holds
1854     // resources not allocated from the ASTContext.  We need to do some
1855     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
1856     // where we can detect whether there's anything to clean up or not.
1857     Eval = new (getASTContext()) EvaluatedStmt;
1858     Eval->Value = S;
1859     Init = Eval;
1860   }
1861   return Eval;
1862 }
1863 
evaluateValue() const1864 APValue *VarDecl::evaluateValue() const {
1865   SmallVector<PartialDiagnosticAt, 8> Notes;
1866   return evaluateValue(Notes);
1867 }
1868 
1869 namespace {
1870 // Destroy an APValue that was allocated in an ASTContext.
DestroyAPValue(void * UntypedValue)1871 void DestroyAPValue(void* UntypedValue) {
1872   static_cast<APValue*>(UntypedValue)->~APValue();
1873 }
1874 } // namespace
1875 
evaluateValue(SmallVectorImpl<PartialDiagnosticAt> & Notes) const1876 APValue *VarDecl::evaluateValue(
1877     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
1878   EvaluatedStmt *Eval = ensureEvaluatedStmt();
1879 
1880   // We only produce notes indicating why an initializer is non-constant the
1881   // first time it is evaluated. FIXME: The notes won't always be emitted the
1882   // first time we try evaluation, so might not be produced at all.
1883   if (Eval->WasEvaluated)
1884     return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated;
1885 
1886   const Expr *Init = cast<Expr>(Eval->Value);
1887   assert(!Init->isValueDependent());
1888 
1889   if (Eval->IsEvaluating) {
1890     // FIXME: Produce a diagnostic for self-initialization.
1891     Eval->CheckedICE = true;
1892     Eval->IsICE = false;
1893     return 0;
1894   }
1895 
1896   Eval->IsEvaluating = true;
1897 
1898   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
1899                                             this, Notes);
1900 
1901   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
1902   // or that it's empty (so that there's nothing to clean up) if evaluation
1903   // failed.
1904   if (!Result)
1905     Eval->Evaluated = APValue();
1906   else if (Eval->Evaluated.needsCleanup())
1907     getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
1908 
1909   Eval->IsEvaluating = false;
1910   Eval->WasEvaluated = true;
1911 
1912   // In C++11, we have determined whether the initializer was a constant
1913   // expression as a side-effect.
1914   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
1915     Eval->CheckedICE = true;
1916     Eval->IsICE = Result && Notes.empty();
1917   }
1918 
1919   return Result ? &Eval->Evaluated : 0;
1920 }
1921 
checkInitIsICE() const1922 bool VarDecl::checkInitIsICE() const {
1923   // Initializers of weak variables are never ICEs.
1924   if (isWeak())
1925     return false;
1926 
1927   EvaluatedStmt *Eval = ensureEvaluatedStmt();
1928   if (Eval->CheckedICE)
1929     // We have already checked whether this subexpression is an
1930     // integral constant expression.
1931     return Eval->IsICE;
1932 
1933   const Expr *Init = cast<Expr>(Eval->Value);
1934   assert(!Init->isValueDependent());
1935 
1936   // In C++11, evaluate the initializer to check whether it's a constant
1937   // expression.
1938   if (getASTContext().getLangOpts().CPlusPlus11) {
1939     SmallVector<PartialDiagnosticAt, 8> Notes;
1940     evaluateValue(Notes);
1941     return Eval->IsICE;
1942   }
1943 
1944   // It's an ICE whether or not the definition we found is
1945   // out-of-line.  See DR 721 and the discussion in Clang PR
1946   // 6206 for details.
1947 
1948   if (Eval->CheckingICE)
1949     return false;
1950   Eval->CheckingICE = true;
1951 
1952   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
1953   Eval->CheckingICE = false;
1954   Eval->CheckedICE = true;
1955   return Eval->IsICE;
1956 }
1957 
getInstantiatedFromStaticDataMember() const1958 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
1959   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
1960     return cast<VarDecl>(MSI->getInstantiatedFrom());
1961 
1962   return 0;
1963 }
1964 
getTemplateSpecializationKind() const1965 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
1966   if (const VarTemplateSpecializationDecl *Spec =
1967           dyn_cast<VarTemplateSpecializationDecl>(this))
1968     return Spec->getSpecializationKind();
1969 
1970   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
1971     return MSI->getTemplateSpecializationKind();
1972 
1973   return TSK_Undeclared;
1974 }
1975 
getDescribedVarTemplate() const1976 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
1977   return getASTContext().getTemplateOrSpecializationInfo(this)
1978       .dyn_cast<VarTemplateDecl *>();
1979 }
1980 
setDescribedVarTemplate(VarTemplateDecl * Template)1981 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
1982   getASTContext().setTemplateOrSpecializationInfo(this, Template);
1983 }
1984 
getMemberSpecializationInfo() const1985 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
1986   if (isStaticDataMember())
1987     // FIXME: Remove ?
1988     // return getASTContext().getInstantiatedFromStaticDataMember(this);
1989     return getASTContext().getTemplateOrSpecializationInfo(this)
1990         .dyn_cast<MemberSpecializationInfo *>();
1991   return 0;
1992 }
1993 
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1994 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1995                                          SourceLocation PointOfInstantiation) {
1996   if (VarTemplateSpecializationDecl *Spec =
1997           dyn_cast<VarTemplateSpecializationDecl>(this)) {
1998     Spec->setSpecializationKind(TSK);
1999     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2000         Spec->getPointOfInstantiation().isInvalid())
2001       Spec->setPointOfInstantiation(PointOfInstantiation);
2002     return;
2003   }
2004 
2005   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2006     MSI->setTemplateSpecializationKind(TSK);
2007     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2008         MSI->getPointOfInstantiation().isInvalid())
2009       MSI->setPointOfInstantiation(PointOfInstantiation);
2010     return;
2011   }
2012 
2013   llvm_unreachable(
2014       "Not a variable or static data member template specialization");
2015 }
2016 
2017 void
setInstantiationOfStaticDataMember(VarDecl * VD,TemplateSpecializationKind TSK)2018 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2019                                             TemplateSpecializationKind TSK) {
2020   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2021          "Previous template or instantiation?");
2022   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2023 }
2024 
2025 //===----------------------------------------------------------------------===//
2026 // ParmVarDecl Implementation
2027 //===----------------------------------------------------------------------===//
2028 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)2029 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2030                                  SourceLocation StartLoc,
2031                                  SourceLocation IdLoc, IdentifierInfo *Id,
2032                                  QualType T, TypeSourceInfo *TInfo,
2033                                  StorageClass S, Expr *DefArg) {
2034   return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo,
2035                              S, DefArg);
2036 }
2037 
getOriginalType() const2038 QualType ParmVarDecl::getOriginalType() const {
2039   TypeSourceInfo *TSI = getTypeSourceInfo();
2040   QualType T = TSI ? TSI->getType() : getType();
2041   if (const DecayedType *DT = dyn_cast<DecayedType>(T))
2042     return DT->getOriginalType();
2043   return T;
2044 }
2045 
CreateDeserialized(ASTContext & C,unsigned ID)2046 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2047   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl));
2048   return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(),
2049                                0, QualType(), 0, SC_None, 0);
2050 }
2051 
getSourceRange() const2052 SourceRange ParmVarDecl::getSourceRange() const {
2053   if (!hasInheritedDefaultArg()) {
2054     SourceRange ArgRange = getDefaultArgRange();
2055     if (ArgRange.isValid())
2056       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2057   }
2058 
2059   // DeclaratorDecl considers the range of postfix types as overlapping with the
2060   // declaration name, but this is not the case with parameters in ObjC methods.
2061   if (isa<ObjCMethodDecl>(getDeclContext()))
2062     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2063 
2064   return DeclaratorDecl::getSourceRange();
2065 }
2066 
getDefaultArg()2067 Expr *ParmVarDecl::getDefaultArg() {
2068   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2069   assert(!hasUninstantiatedDefaultArg() &&
2070          "Default argument is not yet instantiated!");
2071 
2072   Expr *Arg = getInit();
2073   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2074     return E->getSubExpr();
2075 
2076   return Arg;
2077 }
2078 
getDefaultArgRange() const2079 SourceRange ParmVarDecl::getDefaultArgRange() const {
2080   if (const Expr *E = getInit())
2081     return E->getSourceRange();
2082 
2083   if (hasUninstantiatedDefaultArg())
2084     return getUninstantiatedDefaultArg()->getSourceRange();
2085 
2086   return SourceRange();
2087 }
2088 
isParameterPack() const2089 bool ParmVarDecl::isParameterPack() const {
2090   return isa<PackExpansionType>(getType());
2091 }
2092 
setParameterIndexLarge(unsigned parameterIndex)2093 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2094   getASTContext().setParameterIndex(this, parameterIndex);
2095   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2096 }
2097 
getParameterIndexLarge() const2098 unsigned ParmVarDecl::getParameterIndexLarge() const {
2099   return getASTContext().getParameterIndex(this);
2100 }
2101 
2102 //===----------------------------------------------------------------------===//
2103 // FunctionDecl Implementation
2104 //===----------------------------------------------------------------------===//
2105 
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const2106 void FunctionDecl::getNameForDiagnostic(
2107     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2108   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2109   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2110   if (TemplateArgs)
2111     TemplateSpecializationType::PrintTemplateArgumentList(
2112         OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
2113 }
2114 
isVariadic() const2115 bool FunctionDecl::isVariadic() const {
2116   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
2117     return FT->isVariadic();
2118   return false;
2119 }
2120 
hasBody(const FunctionDecl * & Definition) const2121 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2122   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
2123     if (I->Body || I->IsLateTemplateParsed) {
2124       Definition = *I;
2125       return true;
2126     }
2127   }
2128 
2129   return false;
2130 }
2131 
hasTrivialBody() const2132 bool FunctionDecl::hasTrivialBody() const
2133 {
2134   Stmt *S = getBody();
2135   if (!S) {
2136     // Since we don't have a body for this function, we don't know if it's
2137     // trivial or not.
2138     return false;
2139   }
2140 
2141   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2142     return true;
2143   return false;
2144 }
2145 
isDefined(const FunctionDecl * & Definition) const2146 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2147   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
2148     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) {
2149       Definition = I->IsDeleted ? I->getCanonicalDecl() : *I;
2150       return true;
2151     }
2152   }
2153 
2154   return false;
2155 }
2156 
getBody(const FunctionDecl * & Definition) const2157 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2158   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
2159     if (I->Body) {
2160       Definition = *I;
2161       return I->Body.get(getASTContext().getExternalSource());
2162     } else if (I->IsLateTemplateParsed) {
2163       Definition = *I;
2164       return 0;
2165     }
2166   }
2167 
2168   return 0;
2169 }
2170 
setBody(Stmt * B)2171 void FunctionDecl::setBody(Stmt *B) {
2172   Body = B;
2173   if (B)
2174     EndRangeLoc = B->getLocEnd();
2175 }
2176 
setPure(bool P)2177 void FunctionDecl::setPure(bool P) {
2178   IsPure = P;
2179   if (P)
2180     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2181       Parent->markedVirtualFunctionPure();
2182 }
2183 
2184 template<std::size_t Len>
isNamed(const NamedDecl * ND,const char (& Str)[Len])2185 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2186   IdentifierInfo *II = ND->getIdentifier();
2187   return II && II->isStr(Str);
2188 }
2189 
isMain() const2190 bool FunctionDecl::isMain() const {
2191   const TranslationUnitDecl *tunit =
2192     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2193   return tunit &&
2194          !tunit->getASTContext().getLangOpts().Freestanding &&
2195          isNamed(this, "main");
2196 }
2197 
isReservedGlobalPlacementOperator() const2198 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2199   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2200   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2201          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2202          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2203          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2204 
2205   if (isa<CXXRecordDecl>(getDeclContext())) return false;
2206   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
2207 
2208   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
2209   if (proto->getNumArgs() != 2 || proto->isVariadic()) return false;
2210 
2211   ASTContext &Context =
2212     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2213       ->getASTContext();
2214 
2215   // The result type and first argument type are constant across all
2216   // these operators.  The second argument must be exactly void*.
2217   return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy);
2218 }
2219 
isNamespaceStd(const DeclContext * DC)2220 static bool isNamespaceStd(const DeclContext *DC) {
2221   const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC->getRedeclContext());
2222   return ND && isNamed(ND, "std") &&
2223          ND->getParent()->getRedeclContext()->isTranslationUnit();
2224 }
2225 
isReplaceableGlobalAllocationFunction() const2226 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2227   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2228     return false;
2229   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2230       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2231       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2232       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2233     return false;
2234 
2235   if (isa<CXXRecordDecl>(getDeclContext()))
2236     return false;
2237   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
2238 
2239   const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
2240   if (FPT->getNumArgs() > 2 || FPT->isVariadic())
2241     return false;
2242 
2243   // If this is a single-parameter function, it must be a replaceable global
2244   // allocation or deallocation function.
2245   if (FPT->getNumArgs() == 1)
2246     return true;
2247 
2248   // Otherwise, we're looking for a second parameter whose type is
2249   // 'const std::nothrow_t &'.
2250   QualType Ty = FPT->getArgType(1);
2251   if (!Ty->isReferenceType())
2252     return false;
2253   Ty = Ty->getPointeeType();
2254   if (Ty.getCVRQualifiers() != Qualifiers::Const)
2255     return false;
2256   // FIXME: Recognise nothrow_t in an inline namespace inside std?
2257   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2258   return RD && isNamed(RD, "nothrow_t") && isNamespaceStd(RD->getDeclContext());
2259 }
2260 
getLanguageLinkage() const2261 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2262   // Users expect to be able to write
2263   // extern "C" void *__builtin_alloca (size_t);
2264   // so consider builtins as having C language linkage.
2265   if (getBuiltinID())
2266     return CLanguageLinkage;
2267 
2268   return getLanguageLinkageTemplate(*this);
2269 }
2270 
isExternC() const2271 bool FunctionDecl::isExternC() const {
2272   return isExternCTemplate(*this);
2273 }
2274 
isInExternCContext() const2275 bool FunctionDecl::isInExternCContext() const {
2276   return isInLanguageSpecContext(this, LinkageSpecDecl::lang_c);
2277 }
2278 
isInExternCXXContext() const2279 bool FunctionDecl::isInExternCXXContext() const {
2280   return isInLanguageSpecContext(this, LinkageSpecDecl::lang_cxx);
2281 }
2282 
isGlobal() const2283 bool FunctionDecl::isGlobal() const {
2284   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
2285     return Method->isStatic();
2286 
2287   if (getCanonicalDecl()->getStorageClass() == SC_Static)
2288     return false;
2289 
2290   for (const DeclContext *DC = getDeclContext();
2291        DC->isNamespace();
2292        DC = DC->getParent()) {
2293     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
2294       if (!Namespace->getDeclName())
2295         return false;
2296       break;
2297     }
2298   }
2299 
2300   return true;
2301 }
2302 
isNoReturn() const2303 bool FunctionDecl::isNoReturn() const {
2304   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2305          hasAttr<C11NoReturnAttr>() ||
2306          getType()->getAs<FunctionType>()->getNoReturnAttr();
2307 }
2308 
2309 void
setPreviousDeclaration(FunctionDecl * PrevDecl)2310 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2311   redeclarable_base::setPreviousDeclaration(PrevDecl);
2312 
2313   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2314     FunctionTemplateDecl *PrevFunTmpl
2315       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
2316     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2317     FunTmpl->setPreviousDeclaration(PrevFunTmpl);
2318   }
2319 
2320   if (PrevDecl && PrevDecl->IsInline)
2321     IsInline = true;
2322 }
2323 
getCanonicalDecl() const2324 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
2325   return getFirstDeclaration();
2326 }
2327 
getCanonicalDecl()2328 FunctionDecl *FunctionDecl::getCanonicalDecl() {
2329   return getFirstDeclaration();
2330 }
2331 
2332 /// \brief Returns a value indicating whether this function
2333 /// corresponds to a builtin function.
2334 ///
2335 /// The function corresponds to a built-in function if it is
2336 /// declared at translation scope or within an extern "C" block and
2337 /// its name matches with the name of a builtin. The returned value
2338 /// will be 0 for functions that do not correspond to a builtin, a
2339 /// value of type \c Builtin::ID if in the target-independent range
2340 /// \c [1,Builtin::First), or a target-specific builtin value.
getBuiltinID() const2341 unsigned FunctionDecl::getBuiltinID() const {
2342   if (!getIdentifier())
2343     return 0;
2344 
2345   unsigned BuiltinID = getIdentifier()->getBuiltinID();
2346   if (!BuiltinID)
2347     return 0;
2348 
2349   ASTContext &Context = getASTContext();
2350   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2351     return BuiltinID;
2352 
2353   // This function has the name of a known C library
2354   // function. Determine whether it actually refers to the C library
2355   // function or whether it just has the same name.
2356 
2357   // If this is a static function, it's not a builtin.
2358   if (getStorageClass() == SC_Static)
2359     return 0;
2360 
2361   // If this function is at translation-unit scope and we're not in
2362   // C++, it refers to the C library function.
2363   if (!Context.getLangOpts().CPlusPlus &&
2364       getDeclContext()->isTranslationUnit())
2365     return BuiltinID;
2366 
2367   // If the function is in an extern "C" linkage specification and is
2368   // not marked "overloadable", it's the real function.
2369   if (isa<LinkageSpecDecl>(getDeclContext()) &&
2370       cast<LinkageSpecDecl>(getDeclContext())->getLanguage()
2371         == LinkageSpecDecl::lang_c &&
2372       !getAttr<OverloadableAttr>())
2373     return BuiltinID;
2374 
2375   // Not a builtin
2376   return 0;
2377 }
2378 
2379 
2380 /// getNumParams - Return the number of parameters this function must have
2381 /// based on its FunctionType.  This is the length of the ParamInfo array
2382 /// after it has been created.
getNumParams() const2383 unsigned FunctionDecl::getNumParams() const {
2384   const FunctionType *FT = getType()->castAs<FunctionType>();
2385   if (isa<FunctionNoProtoType>(FT))
2386     return 0;
2387   return cast<FunctionProtoType>(FT)->getNumArgs();
2388 
2389 }
2390 
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)2391 void FunctionDecl::setParams(ASTContext &C,
2392                              ArrayRef<ParmVarDecl *> NewParamInfo) {
2393   assert(ParamInfo == 0 && "Already has param info!");
2394   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2395 
2396   // Zero params -> null pointer.
2397   if (!NewParamInfo.empty()) {
2398     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2399     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2400   }
2401 }
2402 
setDeclsInPrototypeScope(ArrayRef<NamedDecl * > NewDecls)2403 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2404   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2405 
2406   if (!NewDecls.empty()) {
2407     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2408     std::copy(NewDecls.begin(), NewDecls.end(), A);
2409     DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size());
2410   }
2411 }
2412 
2413 /// getMinRequiredArguments - Returns the minimum number of arguments
2414 /// needed to call this function. This may be fewer than the number of
2415 /// function parameters, if some of the parameters have default
2416 /// arguments (in C++) or the last parameter is a parameter pack.
getMinRequiredArguments() const2417 unsigned FunctionDecl::getMinRequiredArguments() const {
2418   if (!getASTContext().getLangOpts().CPlusPlus)
2419     return getNumParams();
2420 
2421   unsigned NumRequiredArgs = getNumParams();
2422 
2423   // If the last parameter is a parameter pack, we don't need an argument for
2424   // it.
2425   if (NumRequiredArgs > 0 &&
2426       getParamDecl(NumRequiredArgs - 1)->isParameterPack())
2427     --NumRequiredArgs;
2428 
2429   // If this parameter has a default argument, we don't need an argument for
2430   // it.
2431   while (NumRequiredArgs > 0 &&
2432          getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
2433     --NumRequiredArgs;
2434 
2435   // We might have parameter packs before the end. These can't be deduced,
2436   // but they can still handle multiple arguments.
2437   unsigned ArgIdx = NumRequiredArgs;
2438   while (ArgIdx > 0) {
2439     if (getParamDecl(ArgIdx - 1)->isParameterPack())
2440       NumRequiredArgs = ArgIdx;
2441 
2442     --ArgIdx;
2443   }
2444 
2445   return NumRequiredArgs;
2446 }
2447 
RedeclForcesDefC99(const FunctionDecl * Redecl)2448 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2449   // Only consider file-scope declarations in this test.
2450   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2451     return false;
2452 
2453   // Only consider explicit declarations; the presence of a builtin for a
2454   // libcall shouldn't affect whether a definition is externally visible.
2455   if (Redecl->isImplicit())
2456     return false;
2457 
2458   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2459     return true; // Not an inline definition
2460 
2461   return false;
2462 }
2463 
2464 /// \brief For a function declaration in C or C++, determine whether this
2465 /// declaration causes the definition to be externally visible.
2466 ///
2467 /// Specifically, this determines if adding the current declaration to the set
2468 /// of redeclarations of the given functions causes
2469 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const2470 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2471   assert(!doesThisDeclarationHaveABody() &&
2472          "Must have a declaration without a body.");
2473 
2474   ASTContext &Context = getASTContext();
2475 
2476   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2477     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2478     // an externally visible definition.
2479     //
2480     // FIXME: What happens if gnu_inline gets added on after the first
2481     // declaration?
2482     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2483       return false;
2484 
2485     const FunctionDecl *Prev = this;
2486     bool FoundBody = false;
2487     while ((Prev = Prev->getPreviousDecl())) {
2488       FoundBody |= Prev->Body.isValid();
2489 
2490       if (Prev->Body) {
2491         // If it's not the case that both 'inline' and 'extern' are
2492         // specified on the definition, then it is always externally visible.
2493         if (!Prev->isInlineSpecified() ||
2494             Prev->getStorageClass() != SC_Extern)
2495           return false;
2496       } else if (Prev->isInlineSpecified() &&
2497                  Prev->getStorageClass() != SC_Extern) {
2498         return false;
2499       }
2500     }
2501     return FoundBody;
2502   }
2503 
2504   if (Context.getLangOpts().CPlusPlus)
2505     return false;
2506 
2507   // C99 6.7.4p6:
2508   //   [...] If all of the file scope declarations for a function in a
2509   //   translation unit include the inline function specifier without extern,
2510   //   then the definition in that translation unit is an inline definition.
2511   if (isInlineSpecified() && getStorageClass() != SC_Extern)
2512     return false;
2513   const FunctionDecl *Prev = this;
2514   bool FoundBody = false;
2515   while ((Prev = Prev->getPreviousDecl())) {
2516     FoundBody |= Prev->Body.isValid();
2517     if (RedeclForcesDefC99(Prev))
2518       return false;
2519   }
2520   return FoundBody;
2521 }
2522 
2523 /// \brief For an inline function definition in C, or for a gnu_inline function
2524 /// in C++, determine whether the definition will be externally visible.
2525 ///
2526 /// Inline function definitions are always available for inlining optimizations.
2527 /// However, depending on the language dialect, declaration specifiers, and
2528 /// attributes, the definition of an inline function may or may not be
2529 /// "externally" visible to other translation units in the program.
2530 ///
2531 /// In C99, inline definitions are not externally visible by default. However,
2532 /// if even one of the global-scope declarations is marked "extern inline", the
2533 /// inline definition becomes externally visible (C99 6.7.4p6).
2534 ///
2535 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2536 /// definition, we use the GNU semantics for inline, which are nearly the
2537 /// opposite of C99 semantics. In particular, "inline" by itself will create
2538 /// an externally visible symbol, but "extern inline" will not create an
2539 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const2540 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2541   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2542   assert(isInlined() && "Function must be inline");
2543   ASTContext &Context = getASTContext();
2544 
2545   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2546     // Note: If you change the logic here, please change
2547     // doesDeclarationForceExternallyVisibleDefinition as well.
2548     //
2549     // If it's not the case that both 'inline' and 'extern' are
2550     // specified on the definition, then this inline definition is
2551     // externally visible.
2552     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2553       return true;
2554 
2555     // If any declaration is 'inline' but not 'extern', then this definition
2556     // is externally visible.
2557     for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
2558          Redecl != RedeclEnd;
2559          ++Redecl) {
2560       if (Redecl->isInlineSpecified() &&
2561           Redecl->getStorageClass() != SC_Extern)
2562         return true;
2563     }
2564 
2565     return false;
2566   }
2567 
2568   // The rest of this function is C-only.
2569   assert(!Context.getLangOpts().CPlusPlus &&
2570          "should not use C inline rules in C++");
2571 
2572   // C99 6.7.4p6:
2573   //   [...] If all of the file scope declarations for a function in a
2574   //   translation unit include the inline function specifier without extern,
2575   //   then the definition in that translation unit is an inline definition.
2576   for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
2577        Redecl != RedeclEnd;
2578        ++Redecl) {
2579     if (RedeclForcesDefC99(*Redecl))
2580       return true;
2581   }
2582 
2583   // C99 6.7.4p6:
2584   //   An inline definition does not provide an external definition for the
2585   //   function, and does not forbid an external definition in another
2586   //   translation unit.
2587   return false;
2588 }
2589 
2590 /// getOverloadedOperator - Which C++ overloaded operator this
2591 /// function represents, if any.
getOverloadedOperator() const2592 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2593   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2594     return getDeclName().getCXXOverloadedOperator();
2595   else
2596     return OO_None;
2597 }
2598 
2599 /// getLiteralIdentifier - The literal suffix identifier this function
2600 /// represents, if any.
getLiteralIdentifier() const2601 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2602   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2603     return getDeclName().getCXXLiteralIdentifier();
2604   else
2605     return 0;
2606 }
2607 
getTemplatedKind() const2608 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2609   if (TemplateOrSpecialization.isNull())
2610     return TK_NonTemplate;
2611   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2612     return TK_FunctionTemplate;
2613   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2614     return TK_MemberSpecialization;
2615   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2616     return TK_FunctionTemplateSpecialization;
2617   if (TemplateOrSpecialization.is
2618                                <DependentFunctionTemplateSpecializationInfo*>())
2619     return TK_DependentFunctionTemplateSpecialization;
2620 
2621   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2622 }
2623 
getInstantiatedFromMemberFunction() const2624 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2625   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2626     return cast<FunctionDecl>(Info->getInstantiatedFrom());
2627 
2628   return 0;
2629 }
2630 
2631 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)2632 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2633                                                FunctionDecl *FD,
2634                                                TemplateSpecializationKind TSK) {
2635   assert(TemplateOrSpecialization.isNull() &&
2636          "Member function is already a specialization");
2637   MemberSpecializationInfo *Info
2638     = new (C) MemberSpecializationInfo(FD, TSK);
2639   TemplateOrSpecialization = Info;
2640 }
2641 
isImplicitlyInstantiable() const2642 bool FunctionDecl::isImplicitlyInstantiable() const {
2643   // If the function is invalid, it can't be implicitly instantiated.
2644   if (isInvalidDecl())
2645     return false;
2646 
2647   switch (getTemplateSpecializationKind()) {
2648   case TSK_Undeclared:
2649   case TSK_ExplicitInstantiationDefinition:
2650     return false;
2651 
2652   case TSK_ImplicitInstantiation:
2653     return true;
2654 
2655   // It is possible to instantiate TSK_ExplicitSpecialization kind
2656   // if the FunctionDecl has a class scope specialization pattern.
2657   case TSK_ExplicitSpecialization:
2658     return getClassScopeSpecializationPattern() != 0;
2659 
2660   case TSK_ExplicitInstantiationDeclaration:
2661     // Handled below.
2662     break;
2663   }
2664 
2665   // Find the actual template from which we will instantiate.
2666   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
2667   bool HasPattern = false;
2668   if (PatternDecl)
2669     HasPattern = PatternDecl->hasBody(PatternDecl);
2670 
2671   // C++0x [temp.explicit]p9:
2672   //   Except for inline functions, other explicit instantiation declarations
2673   //   have the effect of suppressing the implicit instantiation of the entity
2674   //   to which they refer.
2675   if (!HasPattern || !PatternDecl)
2676     return true;
2677 
2678   return PatternDecl->isInlined();
2679 }
2680 
isTemplateInstantiation() const2681 bool FunctionDecl::isTemplateInstantiation() const {
2682   switch (getTemplateSpecializationKind()) {
2683     case TSK_Undeclared:
2684     case TSK_ExplicitSpecialization:
2685       return false;
2686     case TSK_ImplicitInstantiation:
2687     case TSK_ExplicitInstantiationDeclaration:
2688     case TSK_ExplicitInstantiationDefinition:
2689       return true;
2690   }
2691   llvm_unreachable("All TSK values handled.");
2692 }
2693 
getTemplateInstantiationPattern() const2694 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
2695   // Handle class scope explicit specialization special case.
2696   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
2697     return getClassScopeSpecializationPattern();
2698 
2699   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
2700     while (Primary->getInstantiatedFromMemberTemplate()) {
2701       // If we have hit a point where the user provided a specialization of
2702       // this template, we're done looking.
2703       if (Primary->isMemberSpecialization())
2704         break;
2705 
2706       Primary = Primary->getInstantiatedFromMemberTemplate();
2707     }
2708 
2709     return Primary->getTemplatedDecl();
2710   }
2711 
2712   return getInstantiatedFromMemberFunction();
2713 }
2714 
getPrimaryTemplate() const2715 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
2716   if (FunctionTemplateSpecializationInfo *Info
2717         = TemplateOrSpecialization
2718             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2719     return Info->Template.getPointer();
2720   }
2721   return 0;
2722 }
2723 
getClassScopeSpecializationPattern() const2724 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
2725     return getASTContext().getClassScopeSpecializationPattern(this);
2726 }
2727 
2728 const TemplateArgumentList *
getTemplateSpecializationArgs() const2729 FunctionDecl::getTemplateSpecializationArgs() const {
2730   if (FunctionTemplateSpecializationInfo *Info
2731         = TemplateOrSpecialization
2732             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2733     return Info->TemplateArguments;
2734   }
2735   return 0;
2736 }
2737 
2738 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const2739 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
2740   if (FunctionTemplateSpecializationInfo *Info
2741         = TemplateOrSpecialization
2742             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2743     return Info->TemplateArgumentsAsWritten;
2744   }
2745   return 0;
2746 }
2747 
2748 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)2749 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
2750                                                 FunctionTemplateDecl *Template,
2751                                      const TemplateArgumentList *TemplateArgs,
2752                                                 void *InsertPos,
2753                                                 TemplateSpecializationKind TSK,
2754                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
2755                                           SourceLocation PointOfInstantiation) {
2756   assert(TSK != TSK_Undeclared &&
2757          "Must specify the type of function template specialization");
2758   FunctionTemplateSpecializationInfo *Info
2759     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2760   if (!Info)
2761     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
2762                                                       TemplateArgs,
2763                                                       TemplateArgsAsWritten,
2764                                                       PointOfInstantiation);
2765   TemplateOrSpecialization = Info;
2766   Template->addSpecialization(Info, InsertPos);
2767 }
2768 
2769 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)2770 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
2771                                     const UnresolvedSetImpl &Templates,
2772                              const TemplateArgumentListInfo &TemplateArgs) {
2773   assert(TemplateOrSpecialization.isNull());
2774   size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
2775   Size += Templates.size() * sizeof(FunctionTemplateDecl*);
2776   Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
2777   void *Buffer = Context.Allocate(Size);
2778   DependentFunctionTemplateSpecializationInfo *Info =
2779     new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
2780                                                              TemplateArgs);
2781   TemplateOrSpecialization = Info;
2782 }
2783 
2784 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)2785 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
2786                                       const TemplateArgumentListInfo &TArgs)
2787   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
2788 
2789   d.NumTemplates = Ts.size();
2790   d.NumArgs = TArgs.size();
2791 
2792   FunctionTemplateDecl **TsArray =
2793     const_cast<FunctionTemplateDecl**>(getTemplates());
2794   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
2795     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
2796 
2797   TemplateArgumentLoc *ArgsArray =
2798     const_cast<TemplateArgumentLoc*>(getTemplateArgs());
2799   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
2800     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
2801 }
2802 
getTemplateSpecializationKind() const2803 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
2804   // For a function template specialization, query the specialization
2805   // information object.
2806   FunctionTemplateSpecializationInfo *FTSInfo
2807     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2808   if (FTSInfo)
2809     return FTSInfo->getTemplateSpecializationKind();
2810 
2811   MemberSpecializationInfo *MSInfo
2812     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
2813   if (MSInfo)
2814     return MSInfo->getTemplateSpecializationKind();
2815 
2816   return TSK_Undeclared;
2817 }
2818 
2819 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2820 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2821                                           SourceLocation PointOfInstantiation) {
2822   if (FunctionTemplateSpecializationInfo *FTSInfo
2823         = TemplateOrSpecialization.dyn_cast<
2824                                     FunctionTemplateSpecializationInfo*>()) {
2825     FTSInfo->setTemplateSpecializationKind(TSK);
2826     if (TSK != TSK_ExplicitSpecialization &&
2827         PointOfInstantiation.isValid() &&
2828         FTSInfo->getPointOfInstantiation().isInvalid())
2829       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
2830   } else if (MemberSpecializationInfo *MSInfo
2831              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
2832     MSInfo->setTemplateSpecializationKind(TSK);
2833     if (TSK != TSK_ExplicitSpecialization &&
2834         PointOfInstantiation.isValid() &&
2835         MSInfo->getPointOfInstantiation().isInvalid())
2836       MSInfo->setPointOfInstantiation(PointOfInstantiation);
2837   } else
2838     llvm_unreachable("Function cannot have a template specialization kind");
2839 }
2840 
getPointOfInstantiation() const2841 SourceLocation FunctionDecl::getPointOfInstantiation() const {
2842   if (FunctionTemplateSpecializationInfo *FTSInfo
2843         = TemplateOrSpecialization.dyn_cast<
2844                                         FunctionTemplateSpecializationInfo*>())
2845     return FTSInfo->getPointOfInstantiation();
2846   else if (MemberSpecializationInfo *MSInfo
2847              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
2848     return MSInfo->getPointOfInstantiation();
2849 
2850   return SourceLocation();
2851 }
2852 
isOutOfLine() const2853 bool FunctionDecl::isOutOfLine() const {
2854   if (Decl::isOutOfLine())
2855     return true;
2856 
2857   // If this function was instantiated from a member function of a
2858   // class template, check whether that member function was defined out-of-line.
2859   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
2860     const FunctionDecl *Definition;
2861     if (FD->hasBody(Definition))
2862       return Definition->isOutOfLine();
2863   }
2864 
2865   // If this function was instantiated from a function template,
2866   // check whether that function template was defined out-of-line.
2867   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
2868     const FunctionDecl *Definition;
2869     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
2870       return Definition->isOutOfLine();
2871   }
2872 
2873   return false;
2874 }
2875 
getSourceRange() const2876 SourceRange FunctionDecl::getSourceRange() const {
2877   return SourceRange(getOuterLocStart(), EndRangeLoc);
2878 }
2879 
getMemoryFunctionKind() const2880 unsigned FunctionDecl::getMemoryFunctionKind() const {
2881   IdentifierInfo *FnInfo = getIdentifier();
2882 
2883   if (!FnInfo)
2884     return 0;
2885 
2886   // Builtin handling.
2887   switch (getBuiltinID()) {
2888   case Builtin::BI__builtin_memset:
2889   case Builtin::BI__builtin___memset_chk:
2890   case Builtin::BImemset:
2891     return Builtin::BImemset;
2892 
2893   case Builtin::BI__builtin_memcpy:
2894   case Builtin::BI__builtin___memcpy_chk:
2895   case Builtin::BImemcpy:
2896     return Builtin::BImemcpy;
2897 
2898   case Builtin::BI__builtin_memmove:
2899   case Builtin::BI__builtin___memmove_chk:
2900   case Builtin::BImemmove:
2901     return Builtin::BImemmove;
2902 
2903   case Builtin::BIstrlcpy:
2904     return Builtin::BIstrlcpy;
2905   case Builtin::BIstrlcat:
2906     return Builtin::BIstrlcat;
2907 
2908   case Builtin::BI__builtin_memcmp:
2909   case Builtin::BImemcmp:
2910     return Builtin::BImemcmp;
2911 
2912   case Builtin::BI__builtin_strncpy:
2913   case Builtin::BI__builtin___strncpy_chk:
2914   case Builtin::BIstrncpy:
2915     return Builtin::BIstrncpy;
2916 
2917   case Builtin::BI__builtin_strncmp:
2918   case Builtin::BIstrncmp:
2919     return Builtin::BIstrncmp;
2920 
2921   case Builtin::BI__builtin_strncasecmp:
2922   case Builtin::BIstrncasecmp:
2923     return Builtin::BIstrncasecmp;
2924 
2925   case Builtin::BI__builtin_strncat:
2926   case Builtin::BI__builtin___strncat_chk:
2927   case Builtin::BIstrncat:
2928     return Builtin::BIstrncat;
2929 
2930   case Builtin::BI__builtin_strndup:
2931   case Builtin::BIstrndup:
2932     return Builtin::BIstrndup;
2933 
2934   case Builtin::BI__builtin_strlen:
2935   case Builtin::BIstrlen:
2936     return Builtin::BIstrlen;
2937 
2938   default:
2939     if (isExternC()) {
2940       if (FnInfo->isStr("memset"))
2941         return Builtin::BImemset;
2942       else if (FnInfo->isStr("memcpy"))
2943         return Builtin::BImemcpy;
2944       else if (FnInfo->isStr("memmove"))
2945         return Builtin::BImemmove;
2946       else if (FnInfo->isStr("memcmp"))
2947         return Builtin::BImemcmp;
2948       else if (FnInfo->isStr("strncpy"))
2949         return Builtin::BIstrncpy;
2950       else if (FnInfo->isStr("strncmp"))
2951         return Builtin::BIstrncmp;
2952       else if (FnInfo->isStr("strncasecmp"))
2953         return Builtin::BIstrncasecmp;
2954       else if (FnInfo->isStr("strncat"))
2955         return Builtin::BIstrncat;
2956       else if (FnInfo->isStr("strndup"))
2957         return Builtin::BIstrndup;
2958       else if (FnInfo->isStr("strlen"))
2959         return Builtin::BIstrlen;
2960     }
2961     break;
2962   }
2963   return 0;
2964 }
2965 
2966 //===----------------------------------------------------------------------===//
2967 // FieldDecl Implementation
2968 //===----------------------------------------------------------------------===//
2969 
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)2970 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
2971                              SourceLocation StartLoc, SourceLocation IdLoc,
2972                              IdentifierInfo *Id, QualType T,
2973                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2974                              InClassInitStyle InitStyle) {
2975   return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
2976                            BW, Mutable, InitStyle);
2977 }
2978 
CreateDeserialized(ASTContext & C,unsigned ID)2979 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2980   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl));
2981   return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(),
2982                              0, QualType(), 0, 0, false, ICIS_NoInit);
2983 }
2984 
isAnonymousStructOrUnion() const2985 bool FieldDecl::isAnonymousStructOrUnion() const {
2986   if (!isImplicit() || getDeclName())
2987     return false;
2988 
2989   if (const RecordType *Record = getType()->getAs<RecordType>())
2990     return Record->getDecl()->isAnonymousStructOrUnion();
2991 
2992   return false;
2993 }
2994 
getBitWidthValue(const ASTContext & Ctx) const2995 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
2996   assert(isBitField() && "not a bitfield");
2997   Expr *BitWidth = InitializerOrBitWidth.getPointer();
2998   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
2999 }
3000 
getFieldIndex() const3001 unsigned FieldDecl::getFieldIndex() const {
3002   if (CachedFieldIndex) return CachedFieldIndex - 1;
3003 
3004   unsigned Index = 0;
3005   const RecordDecl *RD = getParent();
3006 
3007   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
3008        I != E; ++I, ++Index)
3009     I->CachedFieldIndex = Index + 1;
3010 
3011   assert(CachedFieldIndex && "failed to find field in parent");
3012   return CachedFieldIndex - 1;
3013 }
3014 
getSourceRange() const3015 SourceRange FieldDecl::getSourceRange() const {
3016   if (const Expr *E = InitializerOrBitWidth.getPointer())
3017     return SourceRange(getInnerLocStart(), E->getLocEnd());
3018   return DeclaratorDecl::getSourceRange();
3019 }
3020 
setBitWidth(Expr * Width)3021 void FieldDecl::setBitWidth(Expr *Width) {
3022   assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() &&
3023          "bit width or initializer already set");
3024   InitializerOrBitWidth.setPointer(Width);
3025 }
3026 
setInClassInitializer(Expr * Init)3027 void FieldDecl::setInClassInitializer(Expr *Init) {
3028   assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() &&
3029          "bit width or initializer already set");
3030   InitializerOrBitWidth.setPointer(Init);
3031 }
3032 
3033 //===----------------------------------------------------------------------===//
3034 // TagDecl Implementation
3035 //===----------------------------------------------------------------------===//
3036 
getOuterLocStart() const3037 SourceLocation TagDecl::getOuterLocStart() const {
3038   return getTemplateOrInnerLocStart(this);
3039 }
3040 
getSourceRange() const3041 SourceRange TagDecl::getSourceRange() const {
3042   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3043   return SourceRange(getOuterLocStart(), E);
3044 }
3045 
getCanonicalDecl()3046 TagDecl* TagDecl::getCanonicalDecl() {
3047   return getFirstDeclaration();
3048 }
3049 
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)3050 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3051   TypedefNameDeclOrQualifier = TDD;
3052   if (TypeForDecl)
3053     assert(TypeForDecl->isLinkageValid());
3054   assert(isLinkageValid());
3055 }
3056 
startDefinition()3057 void TagDecl::startDefinition() {
3058   IsBeingDefined = true;
3059 
3060   if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
3061     struct CXXRecordDecl::DefinitionData *Data =
3062       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3063     for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I)
3064       cast<CXXRecordDecl>(*I)->DefinitionData = Data;
3065   }
3066 }
3067 
completeDefinition()3068 void TagDecl::completeDefinition() {
3069   assert((!isa<CXXRecordDecl>(this) ||
3070           cast<CXXRecordDecl>(this)->hasDefinition()) &&
3071          "definition completed but not started");
3072 
3073   IsCompleteDefinition = true;
3074   IsBeingDefined = false;
3075 
3076   if (ASTMutationListener *L = getASTMutationListener())
3077     L->CompletedTagDefinition(this);
3078 }
3079 
getDefinition() const3080 TagDecl *TagDecl::getDefinition() const {
3081   if (isCompleteDefinition())
3082     return const_cast<TagDecl *>(this);
3083 
3084   // If it's possible for us to have an out-of-date definition, check now.
3085   if (MayHaveOutOfDateDef) {
3086     if (IdentifierInfo *II = getIdentifier()) {
3087       if (II->isOutOfDate()) {
3088         updateOutOfDate(*II);
3089       }
3090     }
3091   }
3092 
3093   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
3094     return CXXRD->getDefinition();
3095 
3096   for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
3097        R != REnd; ++R)
3098     if (R->isCompleteDefinition())
3099       return *R;
3100 
3101   return 0;
3102 }
3103 
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)3104 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3105   if (QualifierLoc) {
3106     // Make sure the extended qualifier info is allocated.
3107     if (!hasExtInfo())
3108       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3109     // Set qualifier info.
3110     getExtInfo()->QualifierLoc = QualifierLoc;
3111   } else {
3112     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3113     if (hasExtInfo()) {
3114       if (getExtInfo()->NumTemplParamLists == 0) {
3115         getASTContext().Deallocate(getExtInfo());
3116         TypedefNameDeclOrQualifier = (TypedefNameDecl*) 0;
3117       }
3118       else
3119         getExtInfo()->QualifierLoc = QualifierLoc;
3120     }
3121   }
3122 }
3123 
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)3124 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
3125                                             unsigned NumTPLists,
3126                                             TemplateParameterList **TPLists) {
3127   assert(NumTPLists > 0);
3128   // Make sure the extended decl info is allocated.
3129   if (!hasExtInfo())
3130     // Allocate external info struct.
3131     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3132   // Set the template parameter lists info.
3133   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
3134 }
3135 
3136 //===----------------------------------------------------------------------===//
3137 // EnumDecl Implementation
3138 //===----------------------------------------------------------------------===//
3139 
anchor()3140 void EnumDecl::anchor() { }
3141 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)3142 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3143                            SourceLocation StartLoc, SourceLocation IdLoc,
3144                            IdentifierInfo *Id,
3145                            EnumDecl *PrevDecl, bool IsScoped,
3146                            bool IsScopedUsingClassTag, bool IsFixed) {
3147   EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl,
3148                                     IsScoped, IsScopedUsingClassTag, IsFixed);
3149   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3150   C.getTypeDeclType(Enum, PrevDecl);
3151   return Enum;
3152 }
3153 
CreateDeserialized(ASTContext & C,unsigned ID)3154 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3155   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl));
3156   EnumDecl *Enum = new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(),
3157                                       0, 0, false, false, false);
3158   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3159   return Enum;
3160 }
3161 
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)3162 void EnumDecl::completeDefinition(QualType NewType,
3163                                   QualType NewPromotionType,
3164                                   unsigned NumPositiveBits,
3165                                   unsigned NumNegativeBits) {
3166   assert(!isCompleteDefinition() && "Cannot redefine enums!");
3167   if (!IntegerType)
3168     IntegerType = NewType.getTypePtr();
3169   PromotionType = NewPromotionType;
3170   setNumPositiveBits(NumPositiveBits);
3171   setNumNegativeBits(NumNegativeBits);
3172   TagDecl::completeDefinition();
3173 }
3174 
getTemplateSpecializationKind() const3175 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3176   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3177     return MSI->getTemplateSpecializationKind();
3178 
3179   return TSK_Undeclared;
3180 }
3181 
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3182 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3183                                          SourceLocation PointOfInstantiation) {
3184   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3185   assert(MSI && "Not an instantiated member enumeration?");
3186   MSI->setTemplateSpecializationKind(TSK);
3187   if (TSK != TSK_ExplicitSpecialization &&
3188       PointOfInstantiation.isValid() &&
3189       MSI->getPointOfInstantiation().isInvalid())
3190     MSI->setPointOfInstantiation(PointOfInstantiation);
3191 }
3192 
getInstantiatedFromMemberEnum() const3193 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3194   if (SpecializationInfo)
3195     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3196 
3197   return 0;
3198 }
3199 
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)3200 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3201                                             TemplateSpecializationKind TSK) {
3202   assert(!SpecializationInfo && "Member enum is already a specialization");
3203   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3204 }
3205 
3206 //===----------------------------------------------------------------------===//
3207 // RecordDecl Implementation
3208 //===----------------------------------------------------------------------===//
3209 
RecordDecl(Kind DK,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3210 RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
3211                        SourceLocation StartLoc, SourceLocation IdLoc,
3212                        IdentifierInfo *Id, RecordDecl *PrevDecl)
3213   : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) {
3214   HasFlexibleArrayMember = false;
3215   AnonymousStructOrUnion = false;
3216   HasObjectMember = false;
3217   HasVolatileMember = false;
3218   LoadedFieldsFromExternalStorage = false;
3219   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3220 }
3221 
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3222 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3223                                SourceLocation StartLoc, SourceLocation IdLoc,
3224                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
3225   RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id,
3226                                      PrevDecl);
3227   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3228 
3229   C.getTypeDeclType(R, PrevDecl);
3230   return R;
3231 }
3232 
CreateDeserialized(const ASTContext & C,unsigned ID)3233 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3234   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl));
3235   RecordDecl *R = new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(),
3236                                        SourceLocation(), 0, 0);
3237   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3238   return R;
3239 }
3240 
isInjectedClassName() const3241 bool RecordDecl::isInjectedClassName() const {
3242   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3243     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3244 }
3245 
field_begin() const3246 RecordDecl::field_iterator RecordDecl::field_begin() const {
3247   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3248     LoadFieldsFromExternalStorage();
3249 
3250   return field_iterator(decl_iterator(FirstDecl));
3251 }
3252 
3253 /// completeDefinition - Notes that the definition of this type is now
3254 /// complete.
completeDefinition()3255 void RecordDecl::completeDefinition() {
3256   assert(!isCompleteDefinition() && "Cannot redefine record!");
3257   TagDecl::completeDefinition();
3258 }
3259 
3260 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3261 /// This which can be turned on with an attribute, pragma, or the
3262 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const3263 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3264   return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1;
3265 }
3266 
isFieldOrIndirectField(Decl::Kind K)3267 static bool isFieldOrIndirectField(Decl::Kind K) {
3268   return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3269 }
3270 
LoadFieldsFromExternalStorage() const3271 void RecordDecl::LoadFieldsFromExternalStorage() const {
3272   ExternalASTSource *Source = getASTContext().getExternalSource();
3273   assert(hasExternalLexicalStorage() && Source && "No external storage?");
3274 
3275   // Notify that we have a RecordDecl doing some initialization.
3276   ExternalASTSource::Deserializing TheFields(Source);
3277 
3278   SmallVector<Decl*, 64> Decls;
3279   LoadedFieldsFromExternalStorage = true;
3280   switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
3281                                            Decls)) {
3282   case ELR_Success:
3283     break;
3284 
3285   case ELR_AlreadyLoaded:
3286   case ELR_Failure:
3287     return;
3288   }
3289 
3290 #ifndef NDEBUG
3291   // Check that all decls we got were FieldDecls.
3292   for (unsigned i=0, e=Decls.size(); i != e; ++i)
3293     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3294 #endif
3295 
3296   if (Decls.empty())
3297     return;
3298 
3299   llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3300                                                  /*FieldsAlreadyLoaded=*/false);
3301 }
3302 
3303 //===----------------------------------------------------------------------===//
3304 // BlockDecl Implementation
3305 //===----------------------------------------------------------------------===//
3306 
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)3307 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3308   assert(ParamInfo == 0 && "Already has param info!");
3309 
3310   // Zero params -> null pointer.
3311   if (!NewParamInfo.empty()) {
3312     NumParams = NewParamInfo.size();
3313     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3314     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3315   }
3316 }
3317 
setCaptures(ASTContext & Context,const Capture * begin,const Capture * end,bool capturesCXXThis)3318 void BlockDecl::setCaptures(ASTContext &Context,
3319                             const Capture *begin,
3320                             const Capture *end,
3321                             bool capturesCXXThis) {
3322   CapturesCXXThis = capturesCXXThis;
3323 
3324   if (begin == end) {
3325     NumCaptures = 0;
3326     Captures = 0;
3327     return;
3328   }
3329 
3330   NumCaptures = end - begin;
3331 
3332   // Avoid new Capture[] because we don't want to provide a default
3333   // constructor.
3334   size_t allocationSize = NumCaptures * sizeof(Capture);
3335   void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
3336   memcpy(buffer, begin, allocationSize);
3337   Captures = static_cast<Capture*>(buffer);
3338 }
3339 
capturesVariable(const VarDecl * variable) const3340 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3341   for (capture_const_iterator
3342          i = capture_begin(), e = capture_end(); i != e; ++i)
3343     // Only auto vars can be captured, so no redeclaration worries.
3344     if (i->getVariable() == variable)
3345       return true;
3346 
3347   return false;
3348 }
3349 
getSourceRange() const3350 SourceRange BlockDecl::getSourceRange() const {
3351   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3352 }
3353 
3354 //===----------------------------------------------------------------------===//
3355 // Other Decl Allocation/Deallocation Method Implementations
3356 //===----------------------------------------------------------------------===//
3357 
anchor()3358 void TranslationUnitDecl::anchor() { }
3359 
Create(ASTContext & C)3360 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3361   return new (C) TranslationUnitDecl(C);
3362 }
3363 
anchor()3364 void LabelDecl::anchor() { }
3365 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)3366 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3367                              SourceLocation IdentL, IdentifierInfo *II) {
3368   return new (C) LabelDecl(DC, IdentL, II, 0, IdentL);
3369 }
3370 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)3371 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3372                              SourceLocation IdentL, IdentifierInfo *II,
3373                              SourceLocation GnuLabelL) {
3374   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3375   return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL);
3376 }
3377 
CreateDeserialized(ASTContext & C,unsigned ID)3378 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3379   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl));
3380   return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation());
3381 }
3382 
anchor()3383 void ValueDecl::anchor() { }
3384 
isWeak() const3385 bool ValueDecl::isWeak() const {
3386   for (attr_iterator I = attr_begin(), E = attr_end(); I != E; ++I)
3387     if (isa<WeakAttr>(*I) || isa<WeakRefAttr>(*I))
3388       return true;
3389 
3390   return isWeakImported();
3391 }
3392 
anchor()3393 void ImplicitParamDecl::anchor() { }
3394 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type)3395 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3396                                              SourceLocation IdLoc,
3397                                              IdentifierInfo *Id,
3398                                              QualType Type) {
3399   return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type);
3400 }
3401 
CreateDeserialized(ASTContext & C,unsigned ID)3402 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3403                                                          unsigned ID) {
3404   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl));
3405   return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType());
3406 }
3407 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInlineSpecified,bool hasWrittenPrototype,bool isConstexprSpecified)3408 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3409                                    SourceLocation StartLoc,
3410                                    const DeclarationNameInfo &NameInfo,
3411                                    QualType T, TypeSourceInfo *TInfo,
3412                                    StorageClass SC,
3413                                    bool isInlineSpecified,
3414                                    bool hasWrittenPrototype,
3415                                    bool isConstexprSpecified) {
3416   FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo,
3417                                            T, TInfo, SC,
3418                                            isInlineSpecified,
3419                                            isConstexprSpecified);
3420   New->HasWrittenPrototype = hasWrittenPrototype;
3421   return New;
3422 }
3423 
CreateDeserialized(ASTContext & C,unsigned ID)3424 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3425   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl));
3426   return new (Mem) FunctionDecl(Function, 0, SourceLocation(),
3427                                 DeclarationNameInfo(), QualType(), 0,
3428                                 SC_None, false, false);
3429 }
3430 
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3431 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3432   return new (C) BlockDecl(DC, L);
3433 }
3434 
CreateDeserialized(ASTContext & C,unsigned ID)3435 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3436   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl));
3437   return new (Mem) BlockDecl(0, SourceLocation());
3438 }
3439 
CreateDeserialized(ASTContext & C,unsigned ID)3440 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3441                                                    unsigned ID) {
3442   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(MSPropertyDecl));
3443   return new (Mem) MSPropertyDecl(0, SourceLocation(), DeclarationName(),
3444                                   QualType(), 0, SourceLocation(),
3445                                   0, 0);
3446 }
3447 
Create(ASTContext & C,DeclContext * DC,unsigned NumParams)3448 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
3449                                    unsigned NumParams) {
3450   unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*);
3451   return new (C.Allocate(Size)) CapturedDecl(DC, NumParams);
3452 }
3453 
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumParams)3454 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3455                                    unsigned NumParams) {
3456   unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*);
3457   void *Mem = AllocateDeserializedDecl(C, ID, Size);
3458   return new (Mem) CapturedDecl(0, NumParams);
3459 }
3460 
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)3461 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3462                                            SourceLocation L,
3463                                            IdentifierInfo *Id, QualType T,
3464                                            Expr *E, const llvm::APSInt &V) {
3465   return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
3466 }
3467 
3468 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3469 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3470   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl));
3471   return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0,
3472                                     llvm::APSInt());
3473 }
3474 
anchor()3475 void IndirectFieldDecl::anchor() { }
3476 
3477 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,NamedDecl ** CH,unsigned CHS)3478 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3479                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
3480                           unsigned CHS) {
3481   return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3482 }
3483 
CreateDeserialized(ASTContext & C,unsigned ID)3484 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3485                                                          unsigned ID) {
3486   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl));
3487   return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(),
3488                                      QualType(), 0, 0);
3489 }
3490 
getSourceRange() const3491 SourceRange EnumConstantDecl::getSourceRange() const {
3492   SourceLocation End = getLocation();
3493   if (Init)
3494     End = Init->getLocEnd();
3495   return SourceRange(getLocation(), End);
3496 }
3497 
anchor()3498 void TypeDecl::anchor() { }
3499 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3500 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3501                                  SourceLocation StartLoc, SourceLocation IdLoc,
3502                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3503   return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo);
3504 }
3505 
anchor()3506 void TypedefNameDecl::anchor() { }
3507 
CreateDeserialized(ASTContext & C,unsigned ID)3508 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3509   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl));
3510   return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0);
3511 }
3512 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3513 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3514                                      SourceLocation StartLoc,
3515                                      SourceLocation IdLoc, IdentifierInfo *Id,
3516                                      TypeSourceInfo *TInfo) {
3517   return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo);
3518 }
3519 
CreateDeserialized(ASTContext & C,unsigned ID)3520 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3521   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl));
3522   return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0);
3523 }
3524 
getSourceRange() const3525 SourceRange TypedefDecl::getSourceRange() const {
3526   SourceLocation RangeEnd = getLocation();
3527   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3528     if (typeIsPostfix(TInfo->getType()))
3529       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3530   }
3531   return SourceRange(getLocStart(), RangeEnd);
3532 }
3533 
getSourceRange() const3534 SourceRange TypeAliasDecl::getSourceRange() const {
3535   SourceLocation RangeEnd = getLocStart();
3536   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3537     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3538   return SourceRange(getLocStart(), RangeEnd);
3539 }
3540 
anchor()3541 void FileScopeAsmDecl::anchor() { }
3542 
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)3543 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3544                                            StringLiteral *Str,
3545                                            SourceLocation AsmLoc,
3546                                            SourceLocation RParenLoc) {
3547   return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3548 }
3549 
CreateDeserialized(ASTContext & C,unsigned ID)3550 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
3551                                                        unsigned ID) {
3552   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl));
3553   return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation());
3554 }
3555 
anchor()3556 void EmptyDecl::anchor() {}
3557 
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3558 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3559   return new (C) EmptyDecl(DC, L);
3560 }
3561 
CreateDeserialized(ASTContext & C,unsigned ID)3562 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3563   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EmptyDecl));
3564   return new (Mem) EmptyDecl(0, SourceLocation());
3565 }
3566 
3567 //===----------------------------------------------------------------------===//
3568 // ImportDecl Implementation
3569 //===----------------------------------------------------------------------===//
3570 
3571 /// \brief Retrieve the number of module identifiers needed to name the given
3572 /// module.
getNumModuleIdentifiers(Module * Mod)3573 static unsigned getNumModuleIdentifiers(Module *Mod) {
3574   unsigned Result = 1;
3575   while (Mod->Parent) {
3576     Mod = Mod->Parent;
3577     ++Result;
3578   }
3579   return Result;
3580 }
3581 
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)3582 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3583                        Module *Imported,
3584                        ArrayRef<SourceLocation> IdentifierLocs)
3585   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
3586     NextLocalImport()
3587 {
3588   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
3589   SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
3590   memcpy(StoredLocs, IdentifierLocs.data(),
3591          IdentifierLocs.size() * sizeof(SourceLocation));
3592 }
3593 
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)3594 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3595                        Module *Imported, SourceLocation EndLoc)
3596   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
3597     NextLocalImport()
3598 {
3599   *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
3600 }
3601 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)3602 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
3603                                SourceLocation StartLoc, Module *Imported,
3604                                ArrayRef<SourceLocation> IdentifierLocs) {
3605   void *Mem = C.Allocate(sizeof(ImportDecl) +
3606                          IdentifierLocs.size() * sizeof(SourceLocation));
3607   return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
3608 }
3609 
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)3610 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
3611                                        SourceLocation StartLoc,
3612                                        Module *Imported,
3613                                        SourceLocation EndLoc) {
3614   void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation));
3615   ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc);
3616   Import->setImplicit();
3617   return Import;
3618 }
3619 
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)3620 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3621                                            unsigned NumLocations) {
3622   void *Mem = AllocateDeserializedDecl(C, ID,
3623                                        (sizeof(ImportDecl) +
3624                                         NumLocations * sizeof(SourceLocation)));
3625   return new (Mem) ImportDecl(EmptyShell());
3626 }
3627 
getIdentifierLocs() const3628 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
3629   if (!ImportedAndComplete.getInt())
3630     return None;
3631 
3632   const SourceLocation *StoredLocs
3633     = reinterpret_cast<const SourceLocation *>(this + 1);
3634   return ArrayRef<SourceLocation>(StoredLocs,
3635                                   getNumModuleIdentifiers(getImportedModule()));
3636 }
3637 
getSourceRange() const3638 SourceRange ImportDecl::getSourceRange() const {
3639   if (!ImportedAndComplete.getInt())
3640     return SourceRange(getLocation(),
3641                        *reinterpret_cast<const SourceLocation *>(this + 1));
3642 
3643   return SourceRange(getLocation(), getIdentifierLocs().back());
3644 }
3645