1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclVisitor.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/CXXFieldCollector.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/SmallString.h"
41 #include <map>
42 #include <set>
43
44 using namespace clang;
45
46 //===----------------------------------------------------------------------===//
47 // CheckDefaultArgumentVisitor
48 //===----------------------------------------------------------------------===//
49
50 namespace {
51 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
52 /// the default argument of a parameter to determine whether it
53 /// contains any ill-formed subexpressions. For example, this will
54 /// diagnose the use of local variables or parameters within the
55 /// default argument expression.
56 class CheckDefaultArgumentVisitor
57 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
58 Expr *DefaultArg;
59 Sema *S;
60
61 public:
CheckDefaultArgumentVisitor(Expr * defarg,Sema * s)62 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
63 : DefaultArg(defarg), S(s) {}
64
65 bool VisitExpr(Expr *Node);
66 bool VisitDeclRefExpr(DeclRefExpr *DRE);
67 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
68 bool VisitLambdaExpr(LambdaExpr *Lambda);
69 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
70 };
71
72 /// VisitExpr - Visit all of the children of this expression.
VisitExpr(Expr * Node)73 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
74 bool IsInvalid = false;
75 for (Stmt::child_range I = Node->children(); I; ++I)
76 IsInvalid |= Visit(*I);
77 return IsInvalid;
78 }
79
80 /// VisitDeclRefExpr - Visit a reference to a declaration, to
81 /// determine whether this declaration can be used in the default
82 /// argument expression.
VisitDeclRefExpr(DeclRefExpr * DRE)83 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
84 NamedDecl *Decl = DRE->getDecl();
85 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
86 // C++ [dcl.fct.default]p9
87 // Default arguments are evaluated each time the function is
88 // called. The order of evaluation of function arguments is
89 // unspecified. Consequently, parameters of a function shall not
90 // be used in default argument expressions, even if they are not
91 // evaluated. Parameters of a function declared before a default
92 // argument expression are in scope and can hide namespace and
93 // class member names.
94 return S->Diag(DRE->getLocStart(),
95 diag::err_param_default_argument_references_param)
96 << Param->getDeclName() << DefaultArg->getSourceRange();
97 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
98 // C++ [dcl.fct.default]p7
99 // Local variables shall not be used in default argument
100 // expressions.
101 if (VDecl->isLocalVarDecl())
102 return S->Diag(DRE->getLocStart(),
103 diag::err_param_default_argument_references_local)
104 << VDecl->getDeclName() << DefaultArg->getSourceRange();
105 }
106
107 return false;
108 }
109
110 /// VisitCXXThisExpr - Visit a C++ "this" expression.
VisitCXXThisExpr(CXXThisExpr * ThisE)111 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
112 // C++ [dcl.fct.default]p8:
113 // The keyword this shall not be used in a default argument of a
114 // member function.
115 return S->Diag(ThisE->getLocStart(),
116 diag::err_param_default_argument_references_this)
117 << ThisE->getSourceRange();
118 }
119
VisitPseudoObjectExpr(PseudoObjectExpr * POE)120 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
121 bool Invalid = false;
122 for (PseudoObjectExpr::semantics_iterator
123 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
124 Expr *E = *i;
125
126 // Look through bindings.
127 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
128 E = OVE->getSourceExpr();
129 assert(E && "pseudo-object binding without source expression?");
130 }
131
132 Invalid |= Visit(E);
133 }
134 return Invalid;
135 }
136
VisitLambdaExpr(LambdaExpr * Lambda)137 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
138 // C++11 [expr.lambda.prim]p13:
139 // A lambda-expression appearing in a default argument shall not
140 // implicitly or explicitly capture any entity.
141 if (Lambda->capture_begin() == Lambda->capture_end())
142 return false;
143
144 return S->Diag(Lambda->getLocStart(),
145 diag::err_lambda_capture_default_arg);
146 }
147 }
148
149 void
CalledDecl(SourceLocation CallLoc,const CXXMethodDecl * Method)150 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
151 const CXXMethodDecl *Method) {
152 // If we have an MSAny spec already, don't bother.
153 if (!Method || ComputedEST == EST_MSAny)
154 return;
155
156 const FunctionProtoType *Proto
157 = Method->getType()->getAs<FunctionProtoType>();
158 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
159 if (!Proto)
160 return;
161
162 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
163
164 // If this function can throw any exceptions, make a note of that.
165 if (EST == EST_MSAny || EST == EST_None) {
166 ClearExceptions();
167 ComputedEST = EST;
168 return;
169 }
170
171 // FIXME: If the call to this decl is using any of its default arguments, we
172 // need to search them for potentially-throwing calls.
173
174 // If this function has a basic noexcept, it doesn't affect the outcome.
175 if (EST == EST_BasicNoexcept)
176 return;
177
178 // If we have a throw-all spec at this point, ignore the function.
179 if (ComputedEST == EST_None)
180 return;
181
182 // If we're still at noexcept(true) and there's a nothrow() callee,
183 // change to that specification.
184 if (EST == EST_DynamicNone) {
185 if (ComputedEST == EST_BasicNoexcept)
186 ComputedEST = EST_DynamicNone;
187 return;
188 }
189
190 // Check out noexcept specs.
191 if (EST == EST_ComputedNoexcept) {
192 FunctionProtoType::NoexceptResult NR =
193 Proto->getNoexceptSpec(Self->Context);
194 assert(NR != FunctionProtoType::NR_NoNoexcept &&
195 "Must have noexcept result for EST_ComputedNoexcept.");
196 assert(NR != FunctionProtoType::NR_Dependent &&
197 "Should not generate implicit declarations for dependent cases, "
198 "and don't know how to handle them anyway.");
199
200 // noexcept(false) -> no spec on the new function
201 if (NR == FunctionProtoType::NR_Throw) {
202 ClearExceptions();
203 ComputedEST = EST_None;
204 }
205 // noexcept(true) won't change anything either.
206 return;
207 }
208
209 assert(EST == EST_Dynamic && "EST case not considered earlier.");
210 assert(ComputedEST != EST_None &&
211 "Shouldn't collect exceptions when throw-all is guaranteed.");
212 ComputedEST = EST_Dynamic;
213 // Record the exceptions in this function's exception specification.
214 for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
215 EEnd = Proto->exception_end();
216 E != EEnd; ++E)
217 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
218 Exceptions.push_back(*E);
219 }
220
CalledExpr(Expr * E)221 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
222 if (!E || ComputedEST == EST_MSAny)
223 return;
224
225 // FIXME:
226 //
227 // C++0x [except.spec]p14:
228 // [An] implicit exception-specification specifies the type-id T if and
229 // only if T is allowed by the exception-specification of a function directly
230 // invoked by f's implicit definition; f shall allow all exceptions if any
231 // function it directly invokes allows all exceptions, and f shall allow no
232 // exceptions if every function it directly invokes allows no exceptions.
233 //
234 // Note in particular that if an implicit exception-specification is generated
235 // for a function containing a throw-expression, that specification can still
236 // be noexcept(true).
237 //
238 // Note also that 'directly invoked' is not defined in the standard, and there
239 // is no indication that we should only consider potentially-evaluated calls.
240 //
241 // Ultimately we should implement the intent of the standard: the exception
242 // specification should be the set of exceptions which can be thrown by the
243 // implicit definition. For now, we assume that any non-nothrow expression can
244 // throw any exception.
245
246 if (Self->canThrow(E))
247 ComputedEST = EST_None;
248 }
249
250 bool
SetParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)251 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
252 SourceLocation EqualLoc) {
253 if (RequireCompleteType(Param->getLocation(), Param->getType(),
254 diag::err_typecheck_decl_incomplete_type)) {
255 Param->setInvalidDecl();
256 return true;
257 }
258
259 // C++ [dcl.fct.default]p5
260 // A default argument expression is implicitly converted (clause
261 // 4) to the parameter type. The default argument expression has
262 // the same semantic constraints as the initializer expression in
263 // a declaration of a variable of the parameter type, using the
264 // copy-initialization semantics (8.5).
265 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
266 Param);
267 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
268 EqualLoc);
269 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
270 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
271 if (Result.isInvalid())
272 return true;
273 Arg = Result.takeAs<Expr>();
274
275 CheckCompletedExpr(Arg, EqualLoc);
276 Arg = MaybeCreateExprWithCleanups(Arg);
277
278 // Okay: add the default argument to the parameter
279 Param->setDefaultArg(Arg);
280
281 // We have already instantiated this parameter; provide each of the
282 // instantiations with the uninstantiated default argument.
283 UnparsedDefaultArgInstantiationsMap::iterator InstPos
284 = UnparsedDefaultArgInstantiations.find(Param);
285 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
286 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
287 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
288
289 // We're done tracking this parameter's instantiations.
290 UnparsedDefaultArgInstantiations.erase(InstPos);
291 }
292
293 return false;
294 }
295
296 /// ActOnParamDefaultArgument - Check whether the default argument
297 /// provided for a function parameter is well-formed. If so, attach it
298 /// to the parameter declaration.
299 void
ActOnParamDefaultArgument(Decl * param,SourceLocation EqualLoc,Expr * DefaultArg)300 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
301 Expr *DefaultArg) {
302 if (!param || !DefaultArg)
303 return;
304
305 ParmVarDecl *Param = cast<ParmVarDecl>(param);
306 UnparsedDefaultArgLocs.erase(Param);
307
308 // Default arguments are only permitted in C++
309 if (!getLangOpts().CPlusPlus) {
310 Diag(EqualLoc, diag::err_param_default_argument)
311 << DefaultArg->getSourceRange();
312 Param->setInvalidDecl();
313 return;
314 }
315
316 // Check for unexpanded parameter packs.
317 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
318 Param->setInvalidDecl();
319 return;
320 }
321
322 // Check that the default argument is well-formed
323 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
324 if (DefaultArgChecker.Visit(DefaultArg)) {
325 Param->setInvalidDecl();
326 return;
327 }
328
329 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
330 }
331
332 /// ActOnParamUnparsedDefaultArgument - We've seen a default
333 /// argument for a function parameter, but we can't parse it yet
334 /// because we're inside a class definition. Note that this default
335 /// argument will be parsed later.
ActOnParamUnparsedDefaultArgument(Decl * param,SourceLocation EqualLoc,SourceLocation ArgLoc)336 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
337 SourceLocation EqualLoc,
338 SourceLocation ArgLoc) {
339 if (!param)
340 return;
341
342 ParmVarDecl *Param = cast<ParmVarDecl>(param);
343 if (Param)
344 Param->setUnparsedDefaultArg();
345
346 UnparsedDefaultArgLocs[Param] = ArgLoc;
347 }
348
349 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
350 /// the default argument for the parameter param failed.
ActOnParamDefaultArgumentError(Decl * param)351 void Sema::ActOnParamDefaultArgumentError(Decl *param) {
352 if (!param)
353 return;
354
355 ParmVarDecl *Param = cast<ParmVarDecl>(param);
356
357 Param->setInvalidDecl();
358
359 UnparsedDefaultArgLocs.erase(Param);
360 }
361
362 /// CheckExtraCXXDefaultArguments - Check for any extra default
363 /// arguments in the declarator, which is not a function declaration
364 /// or definition and therefore is not permitted to have default
365 /// arguments. This routine should be invoked for every declarator
366 /// that is not a function declaration or definition.
CheckExtraCXXDefaultArguments(Declarator & D)367 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
368 // C++ [dcl.fct.default]p3
369 // A default argument expression shall be specified only in the
370 // parameter-declaration-clause of a function declaration or in a
371 // template-parameter (14.1). It shall not be specified for a
372 // parameter pack. If it is specified in a
373 // parameter-declaration-clause, it shall not occur within a
374 // declarator or abstract-declarator of a parameter-declaration.
375 bool MightBeFunction = D.isFunctionDeclarationContext();
376 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
377 DeclaratorChunk &chunk = D.getTypeObject(i);
378 if (chunk.Kind == DeclaratorChunk::Function) {
379 if (MightBeFunction) {
380 // This is a function declaration. It can have default arguments, but
381 // keep looking in case its return type is a function type with default
382 // arguments.
383 MightBeFunction = false;
384 continue;
385 }
386 for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
387 ParmVarDecl *Param =
388 cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
389 if (Param->hasUnparsedDefaultArg()) {
390 CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
391 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
392 << SourceRange((*Toks)[1].getLocation(),
393 Toks->back().getLocation());
394 delete Toks;
395 chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
396 } else if (Param->getDefaultArg()) {
397 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
398 << Param->getDefaultArg()->getSourceRange();
399 Param->setDefaultArg(0);
400 }
401 }
402 } else if (chunk.Kind != DeclaratorChunk::Paren) {
403 MightBeFunction = false;
404 }
405 }
406 }
407
functionDeclHasDefaultArgument(const FunctionDecl * FD)408 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
409 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
410 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
411 if (!PVD->hasDefaultArg())
412 return false;
413 if (!PVD->hasInheritedDefaultArg())
414 return true;
415 }
416 return false;
417 }
418
419 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
420 /// function, once we already know that they have the same
421 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
422 /// error, false otherwise.
MergeCXXFunctionDecl(FunctionDecl * New,FunctionDecl * Old,Scope * S)423 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
424 Scope *S) {
425 bool Invalid = false;
426
427 // C++ [dcl.fct.default]p4:
428 // For non-template functions, default arguments can be added in
429 // later declarations of a function in the same
430 // scope. Declarations in different scopes have completely
431 // distinct sets of default arguments. That is, declarations in
432 // inner scopes do not acquire default arguments from
433 // declarations in outer scopes, and vice versa. In a given
434 // function declaration, all parameters subsequent to a
435 // parameter with a default argument shall have default
436 // arguments supplied in this or previous declarations. A
437 // default argument shall not be redefined by a later
438 // declaration (not even to the same value).
439 //
440 // C++ [dcl.fct.default]p6:
441 // Except for member functions of class templates, the default arguments
442 // in a member function definition that appears outside of the class
443 // definition are added to the set of default arguments provided by the
444 // member function declaration in the class definition.
445 for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
446 ParmVarDecl *OldParam = Old->getParamDecl(p);
447 ParmVarDecl *NewParam = New->getParamDecl(p);
448
449 bool OldParamHasDfl = OldParam->hasDefaultArg();
450 bool NewParamHasDfl = NewParam->hasDefaultArg();
451
452 NamedDecl *ND = Old;
453 if (S && !isDeclInScope(ND, New->getDeclContext(), S))
454 // Ignore default parameters of old decl if they are not in
455 // the same scope.
456 OldParamHasDfl = false;
457
458 if (OldParamHasDfl && NewParamHasDfl) {
459
460 unsigned DiagDefaultParamID =
461 diag::err_param_default_argument_redefinition;
462
463 // MSVC accepts that default parameters be redefined for member functions
464 // of template class. The new default parameter's value is ignored.
465 Invalid = true;
466 if (getLangOpts().MicrosoftExt) {
467 CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
468 if (MD && MD->getParent()->getDescribedClassTemplate()) {
469 // Merge the old default argument into the new parameter.
470 NewParam->setHasInheritedDefaultArg();
471 if (OldParam->hasUninstantiatedDefaultArg())
472 NewParam->setUninstantiatedDefaultArg(
473 OldParam->getUninstantiatedDefaultArg());
474 else
475 NewParam->setDefaultArg(OldParam->getInit());
476 DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
477 Invalid = false;
478 }
479 }
480
481 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
482 // hint here. Alternatively, we could walk the type-source information
483 // for NewParam to find the last source location in the type... but it
484 // isn't worth the effort right now. This is the kind of test case that
485 // is hard to get right:
486 // int f(int);
487 // void g(int (*fp)(int) = f);
488 // void g(int (*fp)(int) = &f);
489 Diag(NewParam->getLocation(), DiagDefaultParamID)
490 << NewParam->getDefaultArgRange();
491
492 // Look for the function declaration where the default argument was
493 // actually written, which may be a declaration prior to Old.
494 for (FunctionDecl *Older = Old->getPreviousDecl();
495 Older; Older = Older->getPreviousDecl()) {
496 if (!Older->getParamDecl(p)->hasDefaultArg())
497 break;
498
499 OldParam = Older->getParamDecl(p);
500 }
501
502 Diag(OldParam->getLocation(), diag::note_previous_definition)
503 << OldParam->getDefaultArgRange();
504 } else if (OldParamHasDfl) {
505 // Merge the old default argument into the new parameter.
506 // It's important to use getInit() here; getDefaultArg()
507 // strips off any top-level ExprWithCleanups.
508 NewParam->setHasInheritedDefaultArg();
509 if (OldParam->hasUninstantiatedDefaultArg())
510 NewParam->setUninstantiatedDefaultArg(
511 OldParam->getUninstantiatedDefaultArg());
512 else
513 NewParam->setDefaultArg(OldParam->getInit());
514 } else if (NewParamHasDfl) {
515 if (New->getDescribedFunctionTemplate()) {
516 // Paragraph 4, quoted above, only applies to non-template functions.
517 Diag(NewParam->getLocation(),
518 diag::err_param_default_argument_template_redecl)
519 << NewParam->getDefaultArgRange();
520 Diag(Old->getLocation(), diag::note_template_prev_declaration)
521 << false;
522 } else if (New->getTemplateSpecializationKind()
523 != TSK_ImplicitInstantiation &&
524 New->getTemplateSpecializationKind() != TSK_Undeclared) {
525 // C++ [temp.expr.spec]p21:
526 // Default function arguments shall not be specified in a declaration
527 // or a definition for one of the following explicit specializations:
528 // - the explicit specialization of a function template;
529 // - the explicit specialization of a member function template;
530 // - the explicit specialization of a member function of a class
531 // template where the class template specialization to which the
532 // member function specialization belongs is implicitly
533 // instantiated.
534 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
535 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
536 << New->getDeclName()
537 << NewParam->getDefaultArgRange();
538 } else if (New->getDeclContext()->isDependentContext()) {
539 // C++ [dcl.fct.default]p6 (DR217):
540 // Default arguments for a member function of a class template shall
541 // be specified on the initial declaration of the member function
542 // within the class template.
543 //
544 // Reading the tea leaves a bit in DR217 and its reference to DR205
545 // leads me to the conclusion that one cannot add default function
546 // arguments for an out-of-line definition of a member function of a
547 // dependent type.
548 int WhichKind = 2;
549 if (CXXRecordDecl *Record
550 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
551 if (Record->getDescribedClassTemplate())
552 WhichKind = 0;
553 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
554 WhichKind = 1;
555 else
556 WhichKind = 2;
557 }
558
559 Diag(NewParam->getLocation(),
560 diag::err_param_default_argument_member_template_redecl)
561 << WhichKind
562 << NewParam->getDefaultArgRange();
563 }
564 }
565 }
566
567 // DR1344: If a default argument is added outside a class definition and that
568 // default argument makes the function a special member function, the program
569 // is ill-formed. This can only happen for constructors.
570 if (isa<CXXConstructorDecl>(New) &&
571 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
572 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
573 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
574 if (NewSM != OldSM) {
575 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
576 assert(NewParam->hasDefaultArg());
577 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
578 << NewParam->getDefaultArgRange() << NewSM;
579 Diag(Old->getLocation(), diag::note_previous_declaration);
580 }
581 }
582
583 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
584 // template has a constexpr specifier then all its declarations shall
585 // contain the constexpr specifier.
586 if (New->isConstexpr() != Old->isConstexpr()) {
587 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
588 << New << New->isConstexpr();
589 Diag(Old->getLocation(), diag::note_previous_declaration);
590 Invalid = true;
591 }
592
593 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
594 // argument expression, that declaration shall be a definition and shall be
595 // the only declaration of the function or function template in the
596 // translation unit.
597 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
598 functionDeclHasDefaultArgument(Old)) {
599 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
600 Diag(Old->getLocation(), diag::note_previous_declaration);
601 Invalid = true;
602 }
603
604 if (CheckEquivalentExceptionSpec(Old, New))
605 Invalid = true;
606
607 return Invalid;
608 }
609
610 /// \brief Merge the exception specifications of two variable declarations.
611 ///
612 /// This is called when there's a redeclaration of a VarDecl. The function
613 /// checks if the redeclaration might have an exception specification and
614 /// validates compatibility and merges the specs if necessary.
MergeVarDeclExceptionSpecs(VarDecl * New,VarDecl * Old)615 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
616 // Shortcut if exceptions are disabled.
617 if (!getLangOpts().CXXExceptions)
618 return;
619
620 assert(Context.hasSameType(New->getType(), Old->getType()) &&
621 "Should only be called if types are otherwise the same.");
622
623 QualType NewType = New->getType();
624 QualType OldType = Old->getType();
625
626 // We're only interested in pointers and references to functions, as well
627 // as pointers to member functions.
628 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
629 NewType = R->getPointeeType();
630 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
631 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
632 NewType = P->getPointeeType();
633 OldType = OldType->getAs<PointerType>()->getPointeeType();
634 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
635 NewType = M->getPointeeType();
636 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
637 }
638
639 if (!NewType->isFunctionProtoType())
640 return;
641
642 // There's lots of special cases for functions. For function pointers, system
643 // libraries are hopefully not as broken so that we don't need these
644 // workarounds.
645 if (CheckEquivalentExceptionSpec(
646 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
647 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
648 New->setInvalidDecl();
649 }
650 }
651
652 /// CheckCXXDefaultArguments - Verify that the default arguments for a
653 /// function declaration are well-formed according to C++
654 /// [dcl.fct.default].
CheckCXXDefaultArguments(FunctionDecl * FD)655 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
656 unsigned NumParams = FD->getNumParams();
657 unsigned p;
658
659 // Find first parameter with a default argument
660 for (p = 0; p < NumParams; ++p) {
661 ParmVarDecl *Param = FD->getParamDecl(p);
662 if (Param->hasDefaultArg())
663 break;
664 }
665
666 // C++ [dcl.fct.default]p4:
667 // In a given function declaration, all parameters
668 // subsequent to a parameter with a default argument shall
669 // have default arguments supplied in this or previous
670 // declarations. A default argument shall not be redefined
671 // by a later declaration (not even to the same value).
672 unsigned LastMissingDefaultArg = 0;
673 for (; p < NumParams; ++p) {
674 ParmVarDecl *Param = FD->getParamDecl(p);
675 if (!Param->hasDefaultArg()) {
676 if (Param->isInvalidDecl())
677 /* We already complained about this parameter. */;
678 else if (Param->getIdentifier())
679 Diag(Param->getLocation(),
680 diag::err_param_default_argument_missing_name)
681 << Param->getIdentifier();
682 else
683 Diag(Param->getLocation(),
684 diag::err_param_default_argument_missing);
685
686 LastMissingDefaultArg = p;
687 }
688 }
689
690 if (LastMissingDefaultArg > 0) {
691 // Some default arguments were missing. Clear out all of the
692 // default arguments up to (and including) the last missing
693 // default argument, so that we leave the function parameters
694 // in a semantically valid state.
695 for (p = 0; p <= LastMissingDefaultArg; ++p) {
696 ParmVarDecl *Param = FD->getParamDecl(p);
697 if (Param->hasDefaultArg()) {
698 Param->setDefaultArg(0);
699 }
700 }
701 }
702 }
703
704 // CheckConstexprParameterTypes - Check whether a function's parameter types
705 // are all literal types. If so, return true. If not, produce a suitable
706 // diagnostic and return false.
CheckConstexprParameterTypes(Sema & SemaRef,const FunctionDecl * FD)707 static bool CheckConstexprParameterTypes(Sema &SemaRef,
708 const FunctionDecl *FD) {
709 unsigned ArgIndex = 0;
710 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
711 for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
712 e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
713 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
714 SourceLocation ParamLoc = PD->getLocation();
715 if (!(*i)->isDependentType() &&
716 SemaRef.RequireLiteralType(ParamLoc, *i,
717 diag::err_constexpr_non_literal_param,
718 ArgIndex+1, PD->getSourceRange(),
719 isa<CXXConstructorDecl>(FD)))
720 return false;
721 }
722 return true;
723 }
724
725 /// \brief Get diagnostic %select index for tag kind for
726 /// record diagnostic message.
727 /// WARNING: Indexes apply to particular diagnostics only!
728 ///
729 /// \returns diagnostic %select index.
getRecordDiagFromTagKind(TagTypeKind Tag)730 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
731 switch (Tag) {
732 case TTK_Struct: return 0;
733 case TTK_Interface: return 1;
734 case TTK_Class: return 2;
735 default: llvm_unreachable("Invalid tag kind for record diagnostic!");
736 }
737 }
738
739 // CheckConstexprFunctionDecl - Check whether a function declaration satisfies
740 // the requirements of a constexpr function definition or a constexpr
741 // constructor definition. If so, return true. If not, produce appropriate
742 // diagnostics and return false.
743 //
744 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
CheckConstexprFunctionDecl(const FunctionDecl * NewFD)745 bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
746 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
747 if (MD && MD->isInstance()) {
748 // C++11 [dcl.constexpr]p4:
749 // The definition of a constexpr constructor shall satisfy the following
750 // constraints:
751 // - the class shall not have any virtual base classes;
752 const CXXRecordDecl *RD = MD->getParent();
753 if (RD->getNumVBases()) {
754 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
755 << isa<CXXConstructorDecl>(NewFD)
756 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
757 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
758 E = RD->vbases_end(); I != E; ++I)
759 Diag(I->getLocStart(),
760 diag::note_constexpr_virtual_base_here) << I->getSourceRange();
761 return false;
762 }
763 }
764
765 if (!isa<CXXConstructorDecl>(NewFD)) {
766 // C++11 [dcl.constexpr]p3:
767 // The definition of a constexpr function shall satisfy the following
768 // constraints:
769 // - it shall not be virtual;
770 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
771 if (Method && Method->isVirtual()) {
772 Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
773
774 // If it's not obvious why this function is virtual, find an overridden
775 // function which uses the 'virtual' keyword.
776 const CXXMethodDecl *WrittenVirtual = Method;
777 while (!WrittenVirtual->isVirtualAsWritten())
778 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
779 if (WrittenVirtual != Method)
780 Diag(WrittenVirtual->getLocation(),
781 diag::note_overridden_virtual_function);
782 return false;
783 }
784
785 // - its return type shall be a literal type;
786 QualType RT = NewFD->getResultType();
787 if (!RT->isDependentType() &&
788 RequireLiteralType(NewFD->getLocation(), RT,
789 diag::err_constexpr_non_literal_return))
790 return false;
791 }
792
793 // - each of its parameter types shall be a literal type;
794 if (!CheckConstexprParameterTypes(*this, NewFD))
795 return false;
796
797 return true;
798 }
799
800 /// Check the given declaration statement is legal within a constexpr function
801 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
802 ///
803 /// \return true if the body is OK (maybe only as an extension), false if we
804 /// have diagnosed a problem.
CheckConstexprDeclStmt(Sema & SemaRef,const FunctionDecl * Dcl,DeclStmt * DS,SourceLocation & Cxx1yLoc)805 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
806 DeclStmt *DS, SourceLocation &Cxx1yLoc) {
807 // C++11 [dcl.constexpr]p3 and p4:
808 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
809 // contain only
810 for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
811 DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
812 switch ((*DclIt)->getKind()) {
813 case Decl::StaticAssert:
814 case Decl::Using:
815 case Decl::UsingShadow:
816 case Decl::UsingDirective:
817 case Decl::UnresolvedUsingTypename:
818 case Decl::UnresolvedUsingValue:
819 // - static_assert-declarations
820 // - using-declarations,
821 // - using-directives,
822 continue;
823
824 case Decl::Typedef:
825 case Decl::TypeAlias: {
826 // - typedef declarations and alias-declarations that do not define
827 // classes or enumerations,
828 TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
829 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
830 // Don't allow variably-modified types in constexpr functions.
831 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
832 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
833 << TL.getSourceRange() << TL.getType()
834 << isa<CXXConstructorDecl>(Dcl);
835 return false;
836 }
837 continue;
838 }
839
840 case Decl::Enum:
841 case Decl::CXXRecord:
842 // C++1y allows types to be defined, not just declared.
843 if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
844 SemaRef.Diag(DS->getLocStart(),
845 SemaRef.getLangOpts().CPlusPlus1y
846 ? diag::warn_cxx11_compat_constexpr_type_definition
847 : diag::ext_constexpr_type_definition)
848 << isa<CXXConstructorDecl>(Dcl);
849 continue;
850
851 case Decl::EnumConstant:
852 case Decl::IndirectField:
853 case Decl::ParmVar:
854 // These can only appear with other declarations which are banned in
855 // C++11 and permitted in C++1y, so ignore them.
856 continue;
857
858 case Decl::Var: {
859 // C++1y [dcl.constexpr]p3 allows anything except:
860 // a definition of a variable of non-literal type or of static or
861 // thread storage duration or for which no initialization is performed.
862 VarDecl *VD = cast<VarDecl>(*DclIt);
863 if (VD->isThisDeclarationADefinition()) {
864 if (VD->isStaticLocal()) {
865 SemaRef.Diag(VD->getLocation(),
866 diag::err_constexpr_local_var_static)
867 << isa<CXXConstructorDecl>(Dcl)
868 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
869 return false;
870 }
871 if (!VD->getType()->isDependentType() &&
872 SemaRef.RequireLiteralType(
873 VD->getLocation(), VD->getType(),
874 diag::err_constexpr_local_var_non_literal_type,
875 isa<CXXConstructorDecl>(Dcl)))
876 return false;
877 if (!VD->hasInit()) {
878 SemaRef.Diag(VD->getLocation(),
879 diag::err_constexpr_local_var_no_init)
880 << isa<CXXConstructorDecl>(Dcl);
881 return false;
882 }
883 }
884 SemaRef.Diag(VD->getLocation(),
885 SemaRef.getLangOpts().CPlusPlus1y
886 ? diag::warn_cxx11_compat_constexpr_local_var
887 : diag::ext_constexpr_local_var)
888 << isa<CXXConstructorDecl>(Dcl);
889 continue;
890 }
891
892 case Decl::NamespaceAlias:
893 case Decl::Function:
894 // These are disallowed in C++11 and permitted in C++1y. Allow them
895 // everywhere as an extension.
896 if (!Cxx1yLoc.isValid())
897 Cxx1yLoc = DS->getLocStart();
898 continue;
899
900 default:
901 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
902 << isa<CXXConstructorDecl>(Dcl);
903 return false;
904 }
905 }
906
907 return true;
908 }
909
910 /// Check that the given field is initialized within a constexpr constructor.
911 ///
912 /// \param Dcl The constexpr constructor being checked.
913 /// \param Field The field being checked. This may be a member of an anonymous
914 /// struct or union nested within the class being checked.
915 /// \param Inits All declarations, including anonymous struct/union members and
916 /// indirect members, for which any initialization was provided.
917 /// \param Diagnosed Set to true if an error is produced.
CheckConstexprCtorInitializer(Sema & SemaRef,const FunctionDecl * Dcl,FieldDecl * Field,llvm::SmallSet<Decl *,16> & Inits,bool & Diagnosed)918 static void CheckConstexprCtorInitializer(Sema &SemaRef,
919 const FunctionDecl *Dcl,
920 FieldDecl *Field,
921 llvm::SmallSet<Decl*, 16> &Inits,
922 bool &Diagnosed) {
923 if (Field->isInvalidDecl())
924 return;
925
926 if (Field->isUnnamedBitfield())
927 return;
928
929 if (Field->isAnonymousStructOrUnion() &&
930 Field->getType()->getAsCXXRecordDecl()->isEmpty())
931 return;
932
933 if (!Inits.count(Field)) {
934 if (!Diagnosed) {
935 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
936 Diagnosed = true;
937 }
938 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
939 } else if (Field->isAnonymousStructOrUnion()) {
940 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
941 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
942 I != E; ++I)
943 // If an anonymous union contains an anonymous struct of which any member
944 // is initialized, all members must be initialized.
945 if (!RD->isUnion() || Inits.count(*I))
946 CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
947 }
948 }
949
950 /// Check the provided statement is allowed in a constexpr function
951 /// definition.
952 static bool
CheckConstexprFunctionStmt(Sema & SemaRef,const FunctionDecl * Dcl,Stmt * S,llvm::SmallVectorImpl<SourceLocation> & ReturnStmts,SourceLocation & Cxx1yLoc)953 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
954 llvm::SmallVectorImpl<SourceLocation> &ReturnStmts,
955 SourceLocation &Cxx1yLoc) {
956 // - its function-body shall be [...] a compound-statement that contains only
957 switch (S->getStmtClass()) {
958 case Stmt::NullStmtClass:
959 // - null statements,
960 return true;
961
962 case Stmt::DeclStmtClass:
963 // - static_assert-declarations
964 // - using-declarations,
965 // - using-directives,
966 // - typedef declarations and alias-declarations that do not define
967 // classes or enumerations,
968 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
969 return false;
970 return true;
971
972 case Stmt::ReturnStmtClass:
973 // - and exactly one return statement;
974 if (isa<CXXConstructorDecl>(Dcl)) {
975 // C++1y allows return statements in constexpr constructors.
976 if (!Cxx1yLoc.isValid())
977 Cxx1yLoc = S->getLocStart();
978 return true;
979 }
980
981 ReturnStmts.push_back(S->getLocStart());
982 return true;
983
984 case Stmt::CompoundStmtClass: {
985 // C++1y allows compound-statements.
986 if (!Cxx1yLoc.isValid())
987 Cxx1yLoc = S->getLocStart();
988
989 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
990 for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
991 BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
992 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
993 Cxx1yLoc))
994 return false;
995 }
996 return true;
997 }
998
999 case Stmt::AttributedStmtClass:
1000 if (!Cxx1yLoc.isValid())
1001 Cxx1yLoc = S->getLocStart();
1002 return true;
1003
1004 case Stmt::IfStmtClass: {
1005 // C++1y allows if-statements.
1006 if (!Cxx1yLoc.isValid())
1007 Cxx1yLoc = S->getLocStart();
1008
1009 IfStmt *If = cast<IfStmt>(S);
1010 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1011 Cxx1yLoc))
1012 return false;
1013 if (If->getElse() &&
1014 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1015 Cxx1yLoc))
1016 return false;
1017 return true;
1018 }
1019
1020 case Stmt::WhileStmtClass:
1021 case Stmt::DoStmtClass:
1022 case Stmt::ForStmtClass:
1023 case Stmt::CXXForRangeStmtClass:
1024 case Stmt::ContinueStmtClass:
1025 // C++1y allows all of these. We don't allow them as extensions in C++11,
1026 // because they don't make sense without variable mutation.
1027 if (!SemaRef.getLangOpts().CPlusPlus1y)
1028 break;
1029 if (!Cxx1yLoc.isValid())
1030 Cxx1yLoc = S->getLocStart();
1031 for (Stmt::child_range Children = S->children(); Children; ++Children)
1032 if (*Children &&
1033 !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1034 Cxx1yLoc))
1035 return false;
1036 return true;
1037
1038 case Stmt::SwitchStmtClass:
1039 case Stmt::CaseStmtClass:
1040 case Stmt::DefaultStmtClass:
1041 case Stmt::BreakStmtClass:
1042 // C++1y allows switch-statements, and since they don't need variable
1043 // mutation, we can reasonably allow them in C++11 as an extension.
1044 if (!Cxx1yLoc.isValid())
1045 Cxx1yLoc = S->getLocStart();
1046 for (Stmt::child_range Children = S->children(); Children; ++Children)
1047 if (*Children &&
1048 !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1049 Cxx1yLoc))
1050 return false;
1051 return true;
1052
1053 default:
1054 if (!isa<Expr>(S))
1055 break;
1056
1057 // C++1y allows expression-statements.
1058 if (!Cxx1yLoc.isValid())
1059 Cxx1yLoc = S->getLocStart();
1060 return true;
1061 }
1062
1063 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1064 << isa<CXXConstructorDecl>(Dcl);
1065 return false;
1066 }
1067
1068 /// Check the body for the given constexpr function declaration only contains
1069 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1070 ///
1071 /// \return true if the body is OK, false if we have diagnosed a problem.
CheckConstexprFunctionBody(const FunctionDecl * Dcl,Stmt * Body)1072 bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1073 if (isa<CXXTryStmt>(Body)) {
1074 // C++11 [dcl.constexpr]p3:
1075 // The definition of a constexpr function shall satisfy the following
1076 // constraints: [...]
1077 // - its function-body shall be = delete, = default, or a
1078 // compound-statement
1079 //
1080 // C++11 [dcl.constexpr]p4:
1081 // In the definition of a constexpr constructor, [...]
1082 // - its function-body shall not be a function-try-block;
1083 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1084 << isa<CXXConstructorDecl>(Dcl);
1085 return false;
1086 }
1087
1088 SmallVector<SourceLocation, 4> ReturnStmts;
1089
1090 // - its function-body shall be [...] a compound-statement that contains only
1091 // [... list of cases ...]
1092 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1093 SourceLocation Cxx1yLoc;
1094 for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
1095 BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
1096 if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
1097 return false;
1098 }
1099
1100 if (Cxx1yLoc.isValid())
1101 Diag(Cxx1yLoc,
1102 getLangOpts().CPlusPlus1y
1103 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1104 : diag::ext_constexpr_body_invalid_stmt)
1105 << isa<CXXConstructorDecl>(Dcl);
1106
1107 if (const CXXConstructorDecl *Constructor
1108 = dyn_cast<CXXConstructorDecl>(Dcl)) {
1109 const CXXRecordDecl *RD = Constructor->getParent();
1110 // DR1359:
1111 // - every non-variant non-static data member and base class sub-object
1112 // shall be initialized;
1113 // - if the class is a non-empty union, or for each non-empty anonymous
1114 // union member of a non-union class, exactly one non-static data member
1115 // shall be initialized;
1116 if (RD->isUnion()) {
1117 if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
1118 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1119 return false;
1120 }
1121 } else if (!Constructor->isDependentContext() &&
1122 !Constructor->isDelegatingConstructor()) {
1123 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1124
1125 // Skip detailed checking if we have enough initializers, and we would
1126 // allow at most one initializer per member.
1127 bool AnyAnonStructUnionMembers = false;
1128 unsigned Fields = 0;
1129 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1130 E = RD->field_end(); I != E; ++I, ++Fields) {
1131 if (I->isAnonymousStructOrUnion()) {
1132 AnyAnonStructUnionMembers = true;
1133 break;
1134 }
1135 }
1136 if (AnyAnonStructUnionMembers ||
1137 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1138 // Check initialization of non-static data members. Base classes are
1139 // always initialized so do not need to be checked. Dependent bases
1140 // might not have initializers in the member initializer list.
1141 llvm::SmallSet<Decl*, 16> Inits;
1142 for (CXXConstructorDecl::init_const_iterator
1143 I = Constructor->init_begin(), E = Constructor->init_end();
1144 I != E; ++I) {
1145 if (FieldDecl *FD = (*I)->getMember())
1146 Inits.insert(FD);
1147 else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
1148 Inits.insert(ID->chain_begin(), ID->chain_end());
1149 }
1150
1151 bool Diagnosed = false;
1152 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1153 E = RD->field_end(); I != E; ++I)
1154 CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
1155 if (Diagnosed)
1156 return false;
1157 }
1158 }
1159 } else {
1160 if (ReturnStmts.empty()) {
1161 // C++1y doesn't require constexpr functions to contain a 'return'
1162 // statement. We still do, unless the return type is void, because
1163 // otherwise if there's no return statement, the function cannot
1164 // be used in a core constant expression.
1165 bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
1166 Diag(Dcl->getLocation(),
1167 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1168 : diag::err_constexpr_body_no_return);
1169 return OK;
1170 }
1171 if (ReturnStmts.size() > 1) {
1172 Diag(ReturnStmts.back(),
1173 getLangOpts().CPlusPlus1y
1174 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1175 : diag::ext_constexpr_body_multiple_return);
1176 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1177 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1178 }
1179 }
1180
1181 // C++11 [dcl.constexpr]p5:
1182 // if no function argument values exist such that the function invocation
1183 // substitution would produce a constant expression, the program is
1184 // ill-formed; no diagnostic required.
1185 // C++11 [dcl.constexpr]p3:
1186 // - every constructor call and implicit conversion used in initializing the
1187 // return value shall be one of those allowed in a constant expression.
1188 // C++11 [dcl.constexpr]p4:
1189 // - every constructor involved in initializing non-static data members and
1190 // base class sub-objects shall be a constexpr constructor.
1191 SmallVector<PartialDiagnosticAt, 8> Diags;
1192 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1193 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1194 << isa<CXXConstructorDecl>(Dcl);
1195 for (size_t I = 0, N = Diags.size(); I != N; ++I)
1196 Diag(Diags[I].first, Diags[I].second);
1197 // Don't return false here: we allow this for compatibility in
1198 // system headers.
1199 }
1200
1201 return true;
1202 }
1203
1204 /// isCurrentClassName - Determine whether the identifier II is the
1205 /// name of the class type currently being defined. In the case of
1206 /// nested classes, this will only return true if II is the name of
1207 /// the innermost class.
isCurrentClassName(const IdentifierInfo & II,Scope *,const CXXScopeSpec * SS)1208 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1209 const CXXScopeSpec *SS) {
1210 assert(getLangOpts().CPlusPlus && "No class names in C!");
1211
1212 CXXRecordDecl *CurDecl;
1213 if (SS && SS->isSet() && !SS->isInvalid()) {
1214 DeclContext *DC = computeDeclContext(*SS, true);
1215 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1216 } else
1217 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1218
1219 if (CurDecl && CurDecl->getIdentifier())
1220 return &II == CurDecl->getIdentifier();
1221 return false;
1222 }
1223
1224 /// \brief Determine whether the given class is a base class of the given
1225 /// class, including looking at dependent bases.
findCircularInheritance(const CXXRecordDecl * Class,const CXXRecordDecl * Current)1226 static bool findCircularInheritance(const CXXRecordDecl *Class,
1227 const CXXRecordDecl *Current) {
1228 SmallVector<const CXXRecordDecl*, 8> Queue;
1229
1230 Class = Class->getCanonicalDecl();
1231 while (true) {
1232 for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1233 E = Current->bases_end();
1234 I != E; ++I) {
1235 CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1236 if (!Base)
1237 continue;
1238
1239 Base = Base->getDefinition();
1240 if (!Base)
1241 continue;
1242
1243 if (Base->getCanonicalDecl() == Class)
1244 return true;
1245
1246 Queue.push_back(Base);
1247 }
1248
1249 if (Queue.empty())
1250 return false;
1251
1252 Current = Queue.back();
1253 Queue.pop_back();
1254 }
1255
1256 return false;
1257 }
1258
1259 /// \brief Check the validity of a C++ base class specifier.
1260 ///
1261 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1262 /// and returns NULL otherwise.
1263 CXXBaseSpecifier *
CheckBaseSpecifier(CXXRecordDecl * Class,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)1264 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1265 SourceRange SpecifierRange,
1266 bool Virtual, AccessSpecifier Access,
1267 TypeSourceInfo *TInfo,
1268 SourceLocation EllipsisLoc) {
1269 QualType BaseType = TInfo->getType();
1270
1271 // C++ [class.union]p1:
1272 // A union shall not have base classes.
1273 if (Class->isUnion()) {
1274 Diag(Class->getLocation(), diag::err_base_clause_on_union)
1275 << SpecifierRange;
1276 return 0;
1277 }
1278
1279 if (EllipsisLoc.isValid() &&
1280 !TInfo->getType()->containsUnexpandedParameterPack()) {
1281 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1282 << TInfo->getTypeLoc().getSourceRange();
1283 EllipsisLoc = SourceLocation();
1284 }
1285
1286 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1287
1288 if (BaseType->isDependentType()) {
1289 // Make sure that we don't have circular inheritance among our dependent
1290 // bases. For non-dependent bases, the check for completeness below handles
1291 // this.
1292 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1293 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1294 ((BaseDecl = BaseDecl->getDefinition()) &&
1295 findCircularInheritance(Class, BaseDecl))) {
1296 Diag(BaseLoc, diag::err_circular_inheritance)
1297 << BaseType << Context.getTypeDeclType(Class);
1298
1299 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1300 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1301 << BaseType;
1302
1303 return 0;
1304 }
1305 }
1306
1307 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1308 Class->getTagKind() == TTK_Class,
1309 Access, TInfo, EllipsisLoc);
1310 }
1311
1312 // Base specifiers must be record types.
1313 if (!BaseType->isRecordType()) {
1314 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1315 return 0;
1316 }
1317
1318 // C++ [class.union]p1:
1319 // A union shall not be used as a base class.
1320 if (BaseType->isUnionType()) {
1321 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1322 return 0;
1323 }
1324
1325 // C++ [class.derived]p2:
1326 // The class-name in a base-specifier shall not be an incompletely
1327 // defined class.
1328 if (RequireCompleteType(BaseLoc, BaseType,
1329 diag::err_incomplete_base_class, SpecifierRange)) {
1330 Class->setInvalidDecl();
1331 return 0;
1332 }
1333
1334 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1335 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1336 assert(BaseDecl && "Record type has no declaration");
1337 BaseDecl = BaseDecl->getDefinition();
1338 assert(BaseDecl && "Base type is not incomplete, but has no definition");
1339 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1340 assert(CXXBaseDecl && "Base type is not a C++ type");
1341
1342 // C++ [class]p3:
1343 // If a class is marked final and it appears as a base-type-specifier in
1344 // base-clause, the program is ill-formed.
1345 if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1346 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1347 << CXXBaseDecl->getDeclName();
1348 Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1349 << CXXBaseDecl->getDeclName();
1350 return 0;
1351 }
1352
1353 if (BaseDecl->isInvalidDecl())
1354 Class->setInvalidDecl();
1355
1356 // Create the base specifier.
1357 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1358 Class->getTagKind() == TTK_Class,
1359 Access, TInfo, EllipsisLoc);
1360 }
1361
1362 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1363 /// one entry in the base class list of a class specifier, for
1364 /// example:
1365 /// class foo : public bar, virtual private baz {
1366 /// 'public bar' and 'virtual private baz' are each base-specifiers.
1367 BaseResult
ActOnBaseSpecifier(Decl * classdecl,SourceRange SpecifierRange,ParsedAttributes & Attributes,bool Virtual,AccessSpecifier Access,ParsedType basetype,SourceLocation BaseLoc,SourceLocation EllipsisLoc)1368 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1369 ParsedAttributes &Attributes,
1370 bool Virtual, AccessSpecifier Access,
1371 ParsedType basetype, SourceLocation BaseLoc,
1372 SourceLocation EllipsisLoc) {
1373 if (!classdecl)
1374 return true;
1375
1376 AdjustDeclIfTemplate(classdecl);
1377 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1378 if (!Class)
1379 return true;
1380
1381 // We do not support any C++11 attributes on base-specifiers yet.
1382 // Diagnose any attributes we see.
1383 if (!Attributes.empty()) {
1384 for (AttributeList *Attr = Attributes.getList(); Attr;
1385 Attr = Attr->getNext()) {
1386 if (Attr->isInvalid() ||
1387 Attr->getKind() == AttributeList::IgnoredAttribute)
1388 continue;
1389 Diag(Attr->getLoc(),
1390 Attr->getKind() == AttributeList::UnknownAttribute
1391 ? diag::warn_unknown_attribute_ignored
1392 : diag::err_base_specifier_attribute)
1393 << Attr->getName();
1394 }
1395 }
1396
1397 TypeSourceInfo *TInfo = 0;
1398 GetTypeFromParser(basetype, &TInfo);
1399
1400 if (EllipsisLoc.isInvalid() &&
1401 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1402 UPPC_BaseType))
1403 return true;
1404
1405 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1406 Virtual, Access, TInfo,
1407 EllipsisLoc))
1408 return BaseSpec;
1409 else
1410 Class->setInvalidDecl();
1411
1412 return true;
1413 }
1414
1415 /// \brief Performs the actual work of attaching the given base class
1416 /// specifiers to a C++ class.
AttachBaseSpecifiers(CXXRecordDecl * Class,CXXBaseSpecifier ** Bases,unsigned NumBases)1417 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1418 unsigned NumBases) {
1419 if (NumBases == 0)
1420 return false;
1421
1422 // Used to keep track of which base types we have already seen, so
1423 // that we can properly diagnose redundant direct base types. Note
1424 // that the key is always the unqualified canonical type of the base
1425 // class.
1426 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1427
1428 // Copy non-redundant base specifiers into permanent storage.
1429 unsigned NumGoodBases = 0;
1430 bool Invalid = false;
1431 for (unsigned idx = 0; idx < NumBases; ++idx) {
1432 QualType NewBaseType
1433 = Context.getCanonicalType(Bases[idx]->getType());
1434 NewBaseType = NewBaseType.getLocalUnqualifiedType();
1435
1436 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1437 if (KnownBase) {
1438 // C++ [class.mi]p3:
1439 // A class shall not be specified as a direct base class of a
1440 // derived class more than once.
1441 Diag(Bases[idx]->getLocStart(),
1442 diag::err_duplicate_base_class)
1443 << KnownBase->getType()
1444 << Bases[idx]->getSourceRange();
1445
1446 // Delete the duplicate base class specifier; we're going to
1447 // overwrite its pointer later.
1448 Context.Deallocate(Bases[idx]);
1449
1450 Invalid = true;
1451 } else {
1452 // Okay, add this new base class.
1453 KnownBase = Bases[idx];
1454 Bases[NumGoodBases++] = Bases[idx];
1455 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1456 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1457 if (Class->isInterface() &&
1458 (!RD->isInterface() ||
1459 KnownBase->getAccessSpecifier() != AS_public)) {
1460 // The Microsoft extension __interface does not permit bases that
1461 // are not themselves public interfaces.
1462 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1463 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1464 << RD->getSourceRange();
1465 Invalid = true;
1466 }
1467 if (RD->hasAttr<WeakAttr>())
1468 Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1469 }
1470 }
1471 }
1472
1473 // Attach the remaining base class specifiers to the derived class.
1474 Class->setBases(Bases, NumGoodBases);
1475
1476 // Delete the remaining (good) base class specifiers, since their
1477 // data has been copied into the CXXRecordDecl.
1478 for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1479 Context.Deallocate(Bases[idx]);
1480
1481 return Invalid;
1482 }
1483
1484 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
1485 /// class, after checking whether there are any duplicate base
1486 /// classes.
ActOnBaseSpecifiers(Decl * ClassDecl,CXXBaseSpecifier ** Bases,unsigned NumBases)1487 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1488 unsigned NumBases) {
1489 if (!ClassDecl || !Bases || !NumBases)
1490 return;
1491
1492 AdjustDeclIfTemplate(ClassDecl);
1493 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1494 }
1495
1496 /// \brief Determine whether the type \p Derived is a C++ class that is
1497 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base)1498 bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1499 if (!getLangOpts().CPlusPlus)
1500 return false;
1501
1502 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1503 if (!DerivedRD)
1504 return false;
1505
1506 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1507 if (!BaseRD)
1508 return false;
1509
1510 // If either the base or the derived type is invalid, don't try to
1511 // check whether one is derived from the other.
1512 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1513 return false;
1514
1515 // FIXME: instantiate DerivedRD if necessary. We need a PoI for this.
1516 return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1517 }
1518
1519 /// \brief Determine whether the type \p Derived is a C++ class that is
1520 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base,CXXBasePaths & Paths)1521 bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1522 if (!getLangOpts().CPlusPlus)
1523 return false;
1524
1525 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1526 if (!DerivedRD)
1527 return false;
1528
1529 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1530 if (!BaseRD)
1531 return false;
1532
1533 return DerivedRD->isDerivedFrom(BaseRD, Paths);
1534 }
1535
BuildBasePathArray(const CXXBasePaths & Paths,CXXCastPath & BasePathArray)1536 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1537 CXXCastPath &BasePathArray) {
1538 assert(BasePathArray.empty() && "Base path array must be empty!");
1539 assert(Paths.isRecordingPaths() && "Must record paths!");
1540
1541 const CXXBasePath &Path = Paths.front();
1542
1543 // We first go backward and check if we have a virtual base.
1544 // FIXME: It would be better if CXXBasePath had the base specifier for
1545 // the nearest virtual base.
1546 unsigned Start = 0;
1547 for (unsigned I = Path.size(); I != 0; --I) {
1548 if (Path[I - 1].Base->isVirtual()) {
1549 Start = I - 1;
1550 break;
1551 }
1552 }
1553
1554 // Now add all bases.
1555 for (unsigned I = Start, E = Path.size(); I != E; ++I)
1556 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1557 }
1558
1559 /// \brief Determine whether the given base path includes a virtual
1560 /// base class.
BasePathInvolvesVirtualBase(const CXXCastPath & BasePath)1561 bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1562 for (CXXCastPath::const_iterator B = BasePath.begin(),
1563 BEnd = BasePath.end();
1564 B != BEnd; ++B)
1565 if ((*B)->isVirtual())
1566 return true;
1567
1568 return false;
1569 }
1570
1571 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1572 /// conversion (where Derived and Base are class types) is
1573 /// well-formed, meaning that the conversion is unambiguous (and
1574 /// that all of the base classes are accessible). Returns true
1575 /// and emits a diagnostic if the code is ill-formed, returns false
1576 /// otherwise. Loc is the location where this routine should point to
1577 /// if there is an error, and Range is the source range to highlight
1578 /// if there is an error.
1579 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,unsigned InaccessibleBaseID,unsigned AmbigiousBaseConvID,SourceLocation Loc,SourceRange Range,DeclarationName Name,CXXCastPath * BasePath)1580 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1581 unsigned InaccessibleBaseID,
1582 unsigned AmbigiousBaseConvID,
1583 SourceLocation Loc, SourceRange Range,
1584 DeclarationName Name,
1585 CXXCastPath *BasePath) {
1586 // First, determine whether the path from Derived to Base is
1587 // ambiguous. This is slightly more expensive than checking whether
1588 // the Derived to Base conversion exists, because here we need to
1589 // explore multiple paths to determine if there is an ambiguity.
1590 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1591 /*DetectVirtual=*/false);
1592 bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1593 assert(DerivationOkay &&
1594 "Can only be used with a derived-to-base conversion");
1595 (void)DerivationOkay;
1596
1597 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1598 if (InaccessibleBaseID) {
1599 // Check that the base class can be accessed.
1600 switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1601 InaccessibleBaseID)) {
1602 case AR_inaccessible:
1603 return true;
1604 case AR_accessible:
1605 case AR_dependent:
1606 case AR_delayed:
1607 break;
1608 }
1609 }
1610
1611 // Build a base path if necessary.
1612 if (BasePath)
1613 BuildBasePathArray(Paths, *BasePath);
1614 return false;
1615 }
1616
1617 if (AmbigiousBaseConvID) {
1618 // We know that the derived-to-base conversion is ambiguous, and
1619 // we're going to produce a diagnostic. Perform the derived-to-base
1620 // search just one more time to compute all of the possible paths so
1621 // that we can print them out. This is more expensive than any of
1622 // the previous derived-to-base checks we've done, but at this point
1623 // performance isn't as much of an issue.
1624 Paths.clear();
1625 Paths.setRecordingPaths(true);
1626 bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1627 assert(StillOkay && "Can only be used with a derived-to-base conversion");
1628 (void)StillOkay;
1629
1630 // Build up a textual representation of the ambiguous paths, e.g.,
1631 // D -> B -> A, that will be used to illustrate the ambiguous
1632 // conversions in the diagnostic. We only print one of the paths
1633 // to each base class subobject.
1634 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1635
1636 Diag(Loc, AmbigiousBaseConvID)
1637 << Derived << Base << PathDisplayStr << Range << Name;
1638 }
1639 return true;
1640 }
1641
1642 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,SourceLocation Loc,SourceRange Range,CXXCastPath * BasePath,bool IgnoreAccess)1643 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1644 SourceLocation Loc, SourceRange Range,
1645 CXXCastPath *BasePath,
1646 bool IgnoreAccess) {
1647 return CheckDerivedToBaseConversion(Derived, Base,
1648 IgnoreAccess ? 0
1649 : diag::err_upcast_to_inaccessible_base,
1650 diag::err_ambiguous_derived_to_base_conv,
1651 Loc, Range, DeclarationName(),
1652 BasePath);
1653 }
1654
1655
1656 /// @brief Builds a string representing ambiguous paths from a
1657 /// specific derived class to different subobjects of the same base
1658 /// class.
1659 ///
1660 /// This function builds a string that can be used in error messages
1661 /// to show the different paths that one can take through the
1662 /// inheritance hierarchy to go from the derived class to different
1663 /// subobjects of a base class. The result looks something like this:
1664 /// @code
1665 /// struct D -> struct B -> struct A
1666 /// struct D -> struct C -> struct A
1667 /// @endcode
getAmbiguousPathsDisplayString(CXXBasePaths & Paths)1668 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1669 std::string PathDisplayStr;
1670 std::set<unsigned> DisplayedPaths;
1671 for (CXXBasePaths::paths_iterator Path = Paths.begin();
1672 Path != Paths.end(); ++Path) {
1673 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1674 // We haven't displayed a path to this particular base
1675 // class subobject yet.
1676 PathDisplayStr += "\n ";
1677 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1678 for (CXXBasePath::const_iterator Element = Path->begin();
1679 Element != Path->end(); ++Element)
1680 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1681 }
1682 }
1683
1684 return PathDisplayStr;
1685 }
1686
1687 //===----------------------------------------------------------------------===//
1688 // C++ class member Handling
1689 //===----------------------------------------------------------------------===//
1690
1691 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
ActOnAccessSpecifier(AccessSpecifier Access,SourceLocation ASLoc,SourceLocation ColonLoc,AttributeList * Attrs)1692 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1693 SourceLocation ASLoc,
1694 SourceLocation ColonLoc,
1695 AttributeList *Attrs) {
1696 assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1697 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1698 ASLoc, ColonLoc);
1699 CurContext->addHiddenDecl(ASDecl);
1700 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1701 }
1702
1703 /// CheckOverrideControl - Check C++11 override control semantics.
CheckOverrideControl(Decl * D)1704 void Sema::CheckOverrideControl(Decl *D) {
1705 if (D->isInvalidDecl())
1706 return;
1707
1708 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1709
1710 // Do we know which functions this declaration might be overriding?
1711 bool OverridesAreKnown = !MD ||
1712 (!MD->getParent()->hasAnyDependentBases() &&
1713 !MD->getType()->isDependentType());
1714
1715 if (!MD || !MD->isVirtual()) {
1716 if (OverridesAreKnown) {
1717 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1718 Diag(OA->getLocation(),
1719 diag::override_keyword_only_allowed_on_virtual_member_functions)
1720 << "override" << FixItHint::CreateRemoval(OA->getLocation());
1721 D->dropAttr<OverrideAttr>();
1722 }
1723 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1724 Diag(FA->getLocation(),
1725 diag::override_keyword_only_allowed_on_virtual_member_functions)
1726 << "final" << FixItHint::CreateRemoval(FA->getLocation());
1727 D->dropAttr<FinalAttr>();
1728 }
1729 }
1730 return;
1731 }
1732
1733 if (!OverridesAreKnown)
1734 return;
1735
1736 // C++11 [class.virtual]p5:
1737 // If a virtual function is marked with the virt-specifier override and
1738 // does not override a member function of a base class, the program is
1739 // ill-formed.
1740 bool HasOverriddenMethods =
1741 MD->begin_overridden_methods() != MD->end_overridden_methods();
1742 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1743 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1744 << MD->getDeclName();
1745 }
1746
1747 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1748 /// function overrides a virtual member function marked 'final', according to
1749 /// C++11 [class.virtual]p4.
CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl * New,const CXXMethodDecl * Old)1750 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1751 const CXXMethodDecl *Old) {
1752 if (!Old->hasAttr<FinalAttr>())
1753 return false;
1754
1755 Diag(New->getLocation(), diag::err_final_function_overridden)
1756 << New->getDeclName();
1757 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1758 return true;
1759 }
1760
InitializationHasSideEffects(const FieldDecl & FD)1761 static bool InitializationHasSideEffects(const FieldDecl &FD) {
1762 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1763 // FIXME: Destruction of ObjC lifetime types has side-effects.
1764 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1765 return !RD->isCompleteDefinition() ||
1766 !RD->hasTrivialDefaultConstructor() ||
1767 !RD->hasTrivialDestructor();
1768 return false;
1769 }
1770
getMSPropertyAttr(AttributeList * list)1771 static AttributeList *getMSPropertyAttr(AttributeList *list) {
1772 for (AttributeList* it = list; it != 0; it = it->getNext())
1773 if (it->isDeclspecPropertyAttribute())
1774 return it;
1775 return 0;
1776 }
1777
1778 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1779 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1780 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
1781 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1782 /// present (but parsing it has been deferred).
1783 NamedDecl *
ActOnCXXMemberDeclarator(Scope * S,AccessSpecifier AS,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,Expr * BW,const VirtSpecifiers & VS,InClassInitStyle InitStyle)1784 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1785 MultiTemplateParamsArg TemplateParameterLists,
1786 Expr *BW, const VirtSpecifiers &VS,
1787 InClassInitStyle InitStyle) {
1788 const DeclSpec &DS = D.getDeclSpec();
1789 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1790 DeclarationName Name = NameInfo.getName();
1791 SourceLocation Loc = NameInfo.getLoc();
1792
1793 // For anonymous bitfields, the location should point to the type.
1794 if (Loc.isInvalid())
1795 Loc = D.getLocStart();
1796
1797 Expr *BitWidth = static_cast<Expr*>(BW);
1798
1799 assert(isa<CXXRecordDecl>(CurContext));
1800 assert(!DS.isFriendSpecified());
1801
1802 bool isFunc = D.isDeclarationOfFunction();
1803
1804 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1805 // The Microsoft extension __interface only permits public member functions
1806 // and prohibits constructors, destructors, operators, non-public member
1807 // functions, static methods and data members.
1808 unsigned InvalidDecl;
1809 bool ShowDeclName = true;
1810 if (!isFunc)
1811 InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1812 else if (AS != AS_public)
1813 InvalidDecl = 2;
1814 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1815 InvalidDecl = 3;
1816 else switch (Name.getNameKind()) {
1817 case DeclarationName::CXXConstructorName:
1818 InvalidDecl = 4;
1819 ShowDeclName = false;
1820 break;
1821
1822 case DeclarationName::CXXDestructorName:
1823 InvalidDecl = 5;
1824 ShowDeclName = false;
1825 break;
1826
1827 case DeclarationName::CXXOperatorName:
1828 case DeclarationName::CXXConversionFunctionName:
1829 InvalidDecl = 6;
1830 break;
1831
1832 default:
1833 InvalidDecl = 0;
1834 break;
1835 }
1836
1837 if (InvalidDecl) {
1838 if (ShowDeclName)
1839 Diag(Loc, diag::err_invalid_member_in_interface)
1840 << (InvalidDecl-1) << Name;
1841 else
1842 Diag(Loc, diag::err_invalid_member_in_interface)
1843 << (InvalidDecl-1) << "";
1844 return 0;
1845 }
1846 }
1847
1848 // C++ 9.2p6: A member shall not be declared to have automatic storage
1849 // duration (auto, register) or with the extern storage-class-specifier.
1850 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1851 // data members and cannot be applied to names declared const or static,
1852 // and cannot be applied to reference members.
1853 switch (DS.getStorageClassSpec()) {
1854 case DeclSpec::SCS_unspecified:
1855 case DeclSpec::SCS_typedef:
1856 case DeclSpec::SCS_static:
1857 break;
1858 case DeclSpec::SCS_mutable:
1859 if (isFunc) {
1860 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1861
1862 // FIXME: It would be nicer if the keyword was ignored only for this
1863 // declarator. Otherwise we could get follow-up errors.
1864 D.getMutableDeclSpec().ClearStorageClassSpecs();
1865 }
1866 break;
1867 default:
1868 Diag(DS.getStorageClassSpecLoc(),
1869 diag::err_storageclass_invalid_for_member);
1870 D.getMutableDeclSpec().ClearStorageClassSpecs();
1871 break;
1872 }
1873
1874 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1875 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1876 !isFunc);
1877
1878 if (DS.isConstexprSpecified() && isInstField) {
1879 SemaDiagnosticBuilder B =
1880 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1881 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1882 if (InitStyle == ICIS_NoInit) {
1883 B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1884 D.getMutableDeclSpec().ClearConstexprSpec();
1885 const char *PrevSpec;
1886 unsigned DiagID;
1887 bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1888 PrevSpec, DiagID, getLangOpts());
1889 (void)Failed;
1890 assert(!Failed && "Making a constexpr member const shouldn't fail");
1891 } else {
1892 B << 1;
1893 const char *PrevSpec;
1894 unsigned DiagID;
1895 if (D.getMutableDeclSpec().SetStorageClassSpec(
1896 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1897 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1898 "This is the only DeclSpec that should fail to be applied");
1899 B << 1;
1900 } else {
1901 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1902 isInstField = false;
1903 }
1904 }
1905 }
1906
1907 NamedDecl *Member;
1908 if (isInstField) {
1909 CXXScopeSpec &SS = D.getCXXScopeSpec();
1910
1911 // Data members must have identifiers for names.
1912 if (!Name.isIdentifier()) {
1913 Diag(Loc, diag::err_bad_variable_name)
1914 << Name;
1915 return 0;
1916 }
1917
1918 IdentifierInfo *II = Name.getAsIdentifierInfo();
1919
1920 // Member field could not be with "template" keyword.
1921 // So TemplateParameterLists should be empty in this case.
1922 if (TemplateParameterLists.size()) {
1923 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1924 if (TemplateParams->size()) {
1925 // There is no such thing as a member field template.
1926 Diag(D.getIdentifierLoc(), diag::err_template_member)
1927 << II
1928 << SourceRange(TemplateParams->getTemplateLoc(),
1929 TemplateParams->getRAngleLoc());
1930 } else {
1931 // There is an extraneous 'template<>' for this member.
1932 Diag(TemplateParams->getTemplateLoc(),
1933 diag::err_template_member_noparams)
1934 << II
1935 << SourceRange(TemplateParams->getTemplateLoc(),
1936 TemplateParams->getRAngleLoc());
1937 }
1938 return 0;
1939 }
1940
1941 if (SS.isSet() && !SS.isInvalid()) {
1942 // The user provided a superfluous scope specifier inside a class
1943 // definition:
1944 //
1945 // class X {
1946 // int X::member;
1947 // };
1948 if (DeclContext *DC = computeDeclContext(SS, false))
1949 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1950 else
1951 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1952 << Name << SS.getRange();
1953
1954 SS.clear();
1955 }
1956
1957 AttributeList *MSPropertyAttr =
1958 getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
1959 if (MSPropertyAttr) {
1960 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1961 BitWidth, InitStyle, AS, MSPropertyAttr);
1962 if (!Member)
1963 return 0;
1964 isInstField = false;
1965 } else {
1966 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1967 BitWidth, InitStyle, AS);
1968 assert(Member && "HandleField never returns null");
1969 }
1970 } else {
1971 assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1972
1973 Member = HandleDeclarator(S, D, TemplateParameterLists);
1974 if (!Member)
1975 return 0;
1976
1977 // Non-instance-fields can't have a bitfield.
1978 if (BitWidth) {
1979 if (Member->isInvalidDecl()) {
1980 // don't emit another diagnostic.
1981 } else if (isa<VarDecl>(Member)) {
1982 // C++ 9.6p3: A bit-field shall not be a static member.
1983 // "static member 'A' cannot be a bit-field"
1984 Diag(Loc, diag::err_static_not_bitfield)
1985 << Name << BitWidth->getSourceRange();
1986 } else if (isa<TypedefDecl>(Member)) {
1987 // "typedef member 'x' cannot be a bit-field"
1988 Diag(Loc, diag::err_typedef_not_bitfield)
1989 << Name << BitWidth->getSourceRange();
1990 } else {
1991 // A function typedef ("typedef int f(); f a;").
1992 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1993 Diag(Loc, diag::err_not_integral_type_bitfield)
1994 << Name << cast<ValueDecl>(Member)->getType()
1995 << BitWidth->getSourceRange();
1996 }
1997
1998 BitWidth = 0;
1999 Member->setInvalidDecl();
2000 }
2001
2002 Member->setAccess(AS);
2003
2004 // If we have declared a member function template or static data member
2005 // template, set the access of the templated declaration as well.
2006 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2007 FunTmpl->getTemplatedDecl()->setAccess(AS);
2008 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2009 VarTmpl->getTemplatedDecl()->setAccess(AS);
2010 }
2011
2012 if (VS.isOverrideSpecified())
2013 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
2014 if (VS.isFinalSpecified())
2015 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
2016
2017 if (VS.getLastLocation().isValid()) {
2018 // Update the end location of a method that has a virt-specifiers.
2019 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2020 MD->setRangeEnd(VS.getLastLocation());
2021 }
2022
2023 CheckOverrideControl(Member);
2024
2025 assert((Name || isInstField) && "No identifier for non-field ?");
2026
2027 if (isInstField) {
2028 FieldDecl *FD = cast<FieldDecl>(Member);
2029 FieldCollector->Add(FD);
2030
2031 if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
2032 FD->getLocation())
2033 != DiagnosticsEngine::Ignored) {
2034 // Remember all explicit private FieldDecls that have a name, no side
2035 // effects and are not part of a dependent type declaration.
2036 if (!FD->isImplicit() && FD->getDeclName() &&
2037 FD->getAccess() == AS_private &&
2038 !FD->hasAttr<UnusedAttr>() &&
2039 !FD->getParent()->isDependentContext() &&
2040 !InitializationHasSideEffects(*FD))
2041 UnusedPrivateFields.insert(FD);
2042 }
2043 }
2044
2045 return Member;
2046 }
2047
2048 namespace {
2049 class UninitializedFieldVisitor
2050 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2051 Sema &S;
2052 ValueDecl *VD;
2053 public:
2054 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
UninitializedFieldVisitor(Sema & S,ValueDecl * VD)2055 UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2056 S(S) {
2057 if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
2058 this->VD = IFD->getAnonField();
2059 else
2060 this->VD = VD;
2061 }
2062
HandleExpr(Expr * E)2063 void HandleExpr(Expr *E) {
2064 if (!E) return;
2065
2066 // Expressions like x(x) sometimes lack the surrounding expressions
2067 // but need to be checked anyways.
2068 HandleValue(E);
2069 Visit(E);
2070 }
2071
HandleValue(Expr * E)2072 void HandleValue(Expr *E) {
2073 E = E->IgnoreParens();
2074
2075 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2076 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2077 return;
2078
2079 // FieldME is the inner-most MemberExpr that is not an anonymous struct
2080 // or union.
2081 MemberExpr *FieldME = ME;
2082
2083 Expr *Base = E;
2084 while (isa<MemberExpr>(Base)) {
2085 ME = cast<MemberExpr>(Base);
2086
2087 if (isa<VarDecl>(ME->getMemberDecl()))
2088 return;
2089
2090 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2091 if (!FD->isAnonymousStructOrUnion())
2092 FieldME = ME;
2093
2094 Base = ME->getBase();
2095 }
2096
2097 if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2098 unsigned diag = VD->getType()->isReferenceType()
2099 ? diag::warn_reference_field_is_uninit
2100 : diag::warn_field_is_uninit;
2101 S.Diag(FieldME->getExprLoc(), diag) << VD;
2102 }
2103 return;
2104 }
2105
2106 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2107 HandleValue(CO->getTrueExpr());
2108 HandleValue(CO->getFalseExpr());
2109 return;
2110 }
2111
2112 if (BinaryConditionalOperator *BCO =
2113 dyn_cast<BinaryConditionalOperator>(E)) {
2114 HandleValue(BCO->getCommon());
2115 HandleValue(BCO->getFalseExpr());
2116 return;
2117 }
2118
2119 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2120 switch (BO->getOpcode()) {
2121 default:
2122 return;
2123 case(BO_PtrMemD):
2124 case(BO_PtrMemI):
2125 HandleValue(BO->getLHS());
2126 return;
2127 case(BO_Comma):
2128 HandleValue(BO->getRHS());
2129 return;
2130 }
2131 }
2132 }
2133
VisitImplicitCastExpr(ImplicitCastExpr * E)2134 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2135 if (E->getCastKind() == CK_LValueToRValue)
2136 HandleValue(E->getSubExpr());
2137
2138 Inherited::VisitImplicitCastExpr(E);
2139 }
2140
VisitCXXMemberCallExpr(CXXMemberCallExpr * E)2141 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2142 Expr *Callee = E->getCallee();
2143 if (isa<MemberExpr>(Callee))
2144 HandleValue(Callee);
2145
2146 Inherited::VisitCXXMemberCallExpr(E);
2147 }
2148 };
CheckInitExprContainsUninitializedFields(Sema & S,Expr * E,ValueDecl * VD)2149 static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2150 ValueDecl *VD) {
2151 UninitializedFieldVisitor(S, VD).HandleExpr(E);
2152 }
2153 } // namespace
2154
2155 /// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
2156 /// in-class initializer for a non-static C++ class member, and after
2157 /// instantiating an in-class initializer in a class template. Such actions
2158 /// are deferred until the class is complete.
2159 void
ActOnCXXInClassMemberInitializer(Decl * D,SourceLocation InitLoc,Expr * InitExpr)2160 Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
2161 Expr *InitExpr) {
2162 FieldDecl *FD = cast<FieldDecl>(D);
2163 assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2164 "must set init style when field is created");
2165
2166 if (!InitExpr) {
2167 FD->setInvalidDecl();
2168 FD->removeInClassInitializer();
2169 return;
2170 }
2171
2172 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2173 FD->setInvalidDecl();
2174 FD->removeInClassInitializer();
2175 return;
2176 }
2177
2178 if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
2179 != DiagnosticsEngine::Ignored) {
2180 CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
2181 }
2182
2183 ExprResult Init = InitExpr;
2184 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2185 InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2186 InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2187 ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2188 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2189 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2190 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2191 if (Init.isInvalid()) {
2192 FD->setInvalidDecl();
2193 return;
2194 }
2195 }
2196
2197 // C++11 [class.base.init]p7:
2198 // The initialization of each base and member constitutes a
2199 // full-expression.
2200 Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2201 if (Init.isInvalid()) {
2202 FD->setInvalidDecl();
2203 return;
2204 }
2205
2206 InitExpr = Init.release();
2207
2208 FD->setInClassInitializer(InitExpr);
2209 }
2210
2211 /// \brief Find the direct and/or virtual base specifiers that
2212 /// correspond to the given base type, for use in base initialization
2213 /// within a constructor.
FindBaseInitializer(Sema & SemaRef,CXXRecordDecl * ClassDecl,QualType BaseType,const CXXBaseSpecifier * & DirectBaseSpec,const CXXBaseSpecifier * & VirtualBaseSpec)2214 static bool FindBaseInitializer(Sema &SemaRef,
2215 CXXRecordDecl *ClassDecl,
2216 QualType BaseType,
2217 const CXXBaseSpecifier *&DirectBaseSpec,
2218 const CXXBaseSpecifier *&VirtualBaseSpec) {
2219 // First, check for a direct base class.
2220 DirectBaseSpec = 0;
2221 for (CXXRecordDecl::base_class_const_iterator Base
2222 = ClassDecl->bases_begin();
2223 Base != ClassDecl->bases_end(); ++Base) {
2224 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2225 // We found a direct base of this type. That's what we're
2226 // initializing.
2227 DirectBaseSpec = &*Base;
2228 break;
2229 }
2230 }
2231
2232 // Check for a virtual base class.
2233 // FIXME: We might be able to short-circuit this if we know in advance that
2234 // there are no virtual bases.
2235 VirtualBaseSpec = 0;
2236 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2237 // We haven't found a base yet; search the class hierarchy for a
2238 // virtual base class.
2239 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2240 /*DetectVirtual=*/false);
2241 if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2242 BaseType, Paths)) {
2243 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2244 Path != Paths.end(); ++Path) {
2245 if (Path->back().Base->isVirtual()) {
2246 VirtualBaseSpec = Path->back().Base;
2247 break;
2248 }
2249 }
2250 }
2251 }
2252
2253 return DirectBaseSpec || VirtualBaseSpec;
2254 }
2255
2256 /// \brief Handle a C++ member initializer using braced-init-list syntax.
2257 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * InitList,SourceLocation EllipsisLoc)2258 Sema::ActOnMemInitializer(Decl *ConstructorD,
2259 Scope *S,
2260 CXXScopeSpec &SS,
2261 IdentifierInfo *MemberOrBase,
2262 ParsedType TemplateTypeTy,
2263 const DeclSpec &DS,
2264 SourceLocation IdLoc,
2265 Expr *InitList,
2266 SourceLocation EllipsisLoc) {
2267 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2268 DS, IdLoc, InitList,
2269 EllipsisLoc);
2270 }
2271
2272 /// \brief Handle a C++ member initializer using parentheses syntax.
2273 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,SourceLocation EllipsisLoc)2274 Sema::ActOnMemInitializer(Decl *ConstructorD,
2275 Scope *S,
2276 CXXScopeSpec &SS,
2277 IdentifierInfo *MemberOrBase,
2278 ParsedType TemplateTypeTy,
2279 const DeclSpec &DS,
2280 SourceLocation IdLoc,
2281 SourceLocation LParenLoc,
2282 ArrayRef<Expr *> Args,
2283 SourceLocation RParenLoc,
2284 SourceLocation EllipsisLoc) {
2285 Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2286 Args, RParenLoc);
2287 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2288 DS, IdLoc, List, EllipsisLoc);
2289 }
2290
2291 namespace {
2292
2293 // Callback to only accept typo corrections that can be a valid C++ member
2294 // intializer: either a non-static field member or a base class.
2295 class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2296 public:
MemInitializerValidatorCCC(CXXRecordDecl * ClassDecl)2297 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2298 : ClassDecl(ClassDecl) {}
2299
ValidateCandidate(const TypoCorrection & candidate)2300 bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
2301 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2302 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2303 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2304 return isa<TypeDecl>(ND);
2305 }
2306 return false;
2307 }
2308
2309 private:
2310 CXXRecordDecl *ClassDecl;
2311 };
2312
2313 }
2314
2315 /// \brief Handle a C++ member initializer.
2316 MemInitResult
BuildMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * Init,SourceLocation EllipsisLoc)2317 Sema::BuildMemInitializer(Decl *ConstructorD,
2318 Scope *S,
2319 CXXScopeSpec &SS,
2320 IdentifierInfo *MemberOrBase,
2321 ParsedType TemplateTypeTy,
2322 const DeclSpec &DS,
2323 SourceLocation IdLoc,
2324 Expr *Init,
2325 SourceLocation EllipsisLoc) {
2326 if (!ConstructorD)
2327 return true;
2328
2329 AdjustDeclIfTemplate(ConstructorD);
2330
2331 CXXConstructorDecl *Constructor
2332 = dyn_cast<CXXConstructorDecl>(ConstructorD);
2333 if (!Constructor) {
2334 // The user wrote a constructor initializer on a function that is
2335 // not a C++ constructor. Ignore the error for now, because we may
2336 // have more member initializers coming; we'll diagnose it just
2337 // once in ActOnMemInitializers.
2338 return true;
2339 }
2340
2341 CXXRecordDecl *ClassDecl = Constructor->getParent();
2342
2343 // C++ [class.base.init]p2:
2344 // Names in a mem-initializer-id are looked up in the scope of the
2345 // constructor's class and, if not found in that scope, are looked
2346 // up in the scope containing the constructor's definition.
2347 // [Note: if the constructor's class contains a member with the
2348 // same name as a direct or virtual base class of the class, a
2349 // mem-initializer-id naming the member or base class and composed
2350 // of a single identifier refers to the class member. A
2351 // mem-initializer-id for the hidden base class may be specified
2352 // using a qualified name. ]
2353 if (!SS.getScopeRep() && !TemplateTypeTy) {
2354 // Look for a member, first.
2355 DeclContext::lookup_result Result
2356 = ClassDecl->lookup(MemberOrBase);
2357 if (!Result.empty()) {
2358 ValueDecl *Member;
2359 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2360 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2361 if (EllipsisLoc.isValid())
2362 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2363 << MemberOrBase
2364 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2365
2366 return BuildMemberInitializer(Member, Init, IdLoc);
2367 }
2368 }
2369 }
2370 // It didn't name a member, so see if it names a class.
2371 QualType BaseType;
2372 TypeSourceInfo *TInfo = 0;
2373
2374 if (TemplateTypeTy) {
2375 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2376 } else if (DS.getTypeSpecType() == TST_decltype) {
2377 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2378 } else {
2379 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2380 LookupParsedName(R, S, &SS);
2381
2382 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2383 if (!TyD) {
2384 if (R.isAmbiguous()) return true;
2385
2386 // We don't want access-control diagnostics here.
2387 R.suppressDiagnostics();
2388
2389 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2390 bool NotUnknownSpecialization = false;
2391 DeclContext *DC = computeDeclContext(SS, false);
2392 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2393 NotUnknownSpecialization = !Record->hasAnyDependentBases();
2394
2395 if (!NotUnknownSpecialization) {
2396 // When the scope specifier can refer to a member of an unknown
2397 // specialization, we take it as a type name.
2398 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2399 SS.getWithLocInContext(Context),
2400 *MemberOrBase, IdLoc);
2401 if (BaseType.isNull())
2402 return true;
2403
2404 R.clear();
2405 R.setLookupName(MemberOrBase);
2406 }
2407 }
2408
2409 // If no results were found, try to correct typos.
2410 TypoCorrection Corr;
2411 MemInitializerValidatorCCC Validator(ClassDecl);
2412 if (R.empty() && BaseType.isNull() &&
2413 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2414 Validator, ClassDecl))) {
2415 std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2416 std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2417 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2418 // We have found a non-static data member with a similar
2419 // name to what was typed; complain and initialize that
2420 // member.
2421 Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2422 << MemberOrBase << true << CorrectedQuotedStr
2423 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2424 Diag(Member->getLocation(), diag::note_previous_decl)
2425 << CorrectedQuotedStr;
2426
2427 return BuildMemberInitializer(Member, Init, IdLoc);
2428 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2429 const CXXBaseSpecifier *DirectBaseSpec;
2430 const CXXBaseSpecifier *VirtualBaseSpec;
2431 if (FindBaseInitializer(*this, ClassDecl,
2432 Context.getTypeDeclType(Type),
2433 DirectBaseSpec, VirtualBaseSpec)) {
2434 // We have found a direct or virtual base class with a
2435 // similar name to what was typed; complain and initialize
2436 // that base class.
2437 Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2438 << MemberOrBase << false << CorrectedQuotedStr
2439 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2440
2441 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2442 : VirtualBaseSpec;
2443 Diag(BaseSpec->getLocStart(),
2444 diag::note_base_class_specified_here)
2445 << BaseSpec->getType()
2446 << BaseSpec->getSourceRange();
2447
2448 TyD = Type;
2449 }
2450 }
2451 }
2452
2453 if (!TyD && BaseType.isNull()) {
2454 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2455 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2456 return true;
2457 }
2458 }
2459
2460 if (BaseType.isNull()) {
2461 BaseType = Context.getTypeDeclType(TyD);
2462 if (SS.isSet()) {
2463 NestedNameSpecifier *Qualifier =
2464 static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2465
2466 // FIXME: preserve source range information
2467 BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2468 }
2469 }
2470 }
2471
2472 if (!TInfo)
2473 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2474
2475 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2476 }
2477
2478 /// Checks a member initializer expression for cases where reference (or
2479 /// pointer) members are bound to by-value parameters (or their addresses).
CheckForDanglingReferenceOrPointer(Sema & S,ValueDecl * Member,Expr * Init,SourceLocation IdLoc)2480 static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2481 Expr *Init,
2482 SourceLocation IdLoc) {
2483 QualType MemberTy = Member->getType();
2484
2485 // We only handle pointers and references currently.
2486 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2487 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2488 return;
2489
2490 const bool IsPointer = MemberTy->isPointerType();
2491 if (IsPointer) {
2492 if (const UnaryOperator *Op
2493 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2494 // The only case we're worried about with pointers requires taking the
2495 // address.
2496 if (Op->getOpcode() != UO_AddrOf)
2497 return;
2498
2499 Init = Op->getSubExpr();
2500 } else {
2501 // We only handle address-of expression initializers for pointers.
2502 return;
2503 }
2504 }
2505
2506 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2507 // We only warn when referring to a non-reference parameter declaration.
2508 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2509 if (!Parameter || Parameter->getType()->isReferenceType())
2510 return;
2511
2512 S.Diag(Init->getExprLoc(),
2513 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2514 : diag::warn_bind_ref_member_to_parameter)
2515 << Member << Parameter << Init->getSourceRange();
2516 } else {
2517 // Other initializers are fine.
2518 return;
2519 }
2520
2521 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2522 << (unsigned)IsPointer;
2523 }
2524
2525 MemInitResult
BuildMemberInitializer(ValueDecl * Member,Expr * Init,SourceLocation IdLoc)2526 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2527 SourceLocation IdLoc) {
2528 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2529 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2530 assert((DirectMember || IndirectMember) &&
2531 "Member must be a FieldDecl or IndirectFieldDecl");
2532
2533 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2534 return true;
2535
2536 if (Member->isInvalidDecl())
2537 return true;
2538
2539 // Diagnose value-uses of fields to initialize themselves, e.g.
2540 // foo(foo)
2541 // where foo is not also a parameter to the constructor.
2542 // TODO: implement -Wuninitialized and fold this into that framework.
2543 MultiExprArg Args;
2544 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2545 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2546 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2547 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2548 } else {
2549 // Template instantiation doesn't reconstruct ParenListExprs for us.
2550 Args = Init;
2551 }
2552
2553 if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2554 != DiagnosticsEngine::Ignored)
2555 for (unsigned i = 0, e = Args.size(); i != e; ++i)
2556 // FIXME: Warn about the case when other fields are used before being
2557 // initialized. For example, let this field be the i'th field. When
2558 // initializing the i'th field, throw a warning if any of the >= i'th
2559 // fields are used, as they are not yet initialized.
2560 // Right now we are only handling the case where the i'th field uses
2561 // itself in its initializer.
2562 // Also need to take into account that some fields may be initialized by
2563 // in-class initializers, see C++11 [class.base.init]p9.
2564 CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2565
2566 SourceRange InitRange = Init->getSourceRange();
2567
2568 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2569 // Can't check initialization for a member of dependent type or when
2570 // any of the arguments are type-dependent expressions.
2571 DiscardCleanupsInEvaluationContext();
2572 } else {
2573 bool InitList = false;
2574 if (isa<InitListExpr>(Init)) {
2575 InitList = true;
2576 Args = Init;
2577 }
2578
2579 // Initialize the member.
2580 InitializedEntity MemberEntity =
2581 DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2582 : InitializedEntity::InitializeMember(IndirectMember, 0);
2583 InitializationKind Kind =
2584 InitList ? InitializationKind::CreateDirectList(IdLoc)
2585 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2586 InitRange.getEnd());
2587
2588 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2589 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
2590 if (MemberInit.isInvalid())
2591 return true;
2592
2593 CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
2594
2595 // C++11 [class.base.init]p7:
2596 // The initialization of each base and member constitutes a
2597 // full-expression.
2598 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2599 if (MemberInit.isInvalid())
2600 return true;
2601
2602 Init = MemberInit.get();
2603 }
2604
2605 if (DirectMember) {
2606 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2607 InitRange.getBegin(), Init,
2608 InitRange.getEnd());
2609 } else {
2610 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2611 InitRange.getBegin(), Init,
2612 InitRange.getEnd());
2613 }
2614 }
2615
2616 MemInitResult
BuildDelegatingInitializer(TypeSourceInfo * TInfo,Expr * Init,CXXRecordDecl * ClassDecl)2617 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2618 CXXRecordDecl *ClassDecl) {
2619 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2620 if (!LangOpts.CPlusPlus11)
2621 return Diag(NameLoc, diag::err_delegating_ctor)
2622 << TInfo->getTypeLoc().getLocalSourceRange();
2623 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2624
2625 bool InitList = true;
2626 MultiExprArg Args = Init;
2627 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2628 InitList = false;
2629 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2630 }
2631
2632 SourceRange InitRange = Init->getSourceRange();
2633 // Initialize the object.
2634 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2635 QualType(ClassDecl->getTypeForDecl(), 0));
2636 InitializationKind Kind =
2637 InitList ? InitializationKind::CreateDirectList(NameLoc)
2638 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2639 InitRange.getEnd());
2640 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2641 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2642 Args, 0);
2643 if (DelegationInit.isInvalid())
2644 return true;
2645
2646 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2647 "Delegating constructor with no target?");
2648
2649 // C++11 [class.base.init]p7:
2650 // The initialization of each base and member constitutes a
2651 // full-expression.
2652 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2653 InitRange.getBegin());
2654 if (DelegationInit.isInvalid())
2655 return true;
2656
2657 // If we are in a dependent context, template instantiation will
2658 // perform this type-checking again. Just save the arguments that we
2659 // received in a ParenListExpr.
2660 // FIXME: This isn't quite ideal, since our ASTs don't capture all
2661 // of the information that we have about the base
2662 // initializer. However, deconstructing the ASTs is a dicey process,
2663 // and this approach is far more likely to get the corner cases right.
2664 if (CurContext->isDependentContext())
2665 DelegationInit = Owned(Init);
2666
2667 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2668 DelegationInit.takeAs<Expr>(),
2669 InitRange.getEnd());
2670 }
2671
2672 MemInitResult
BuildBaseInitializer(QualType BaseType,TypeSourceInfo * BaseTInfo,Expr * Init,CXXRecordDecl * ClassDecl,SourceLocation EllipsisLoc)2673 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2674 Expr *Init, CXXRecordDecl *ClassDecl,
2675 SourceLocation EllipsisLoc) {
2676 SourceLocation BaseLoc
2677 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2678
2679 if (!BaseType->isDependentType() && !BaseType->isRecordType())
2680 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2681 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2682
2683 // C++ [class.base.init]p2:
2684 // [...] Unless the mem-initializer-id names a nonstatic data
2685 // member of the constructor's class or a direct or virtual base
2686 // of that class, the mem-initializer is ill-formed. A
2687 // mem-initializer-list can initialize a base class using any
2688 // name that denotes that base class type.
2689 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2690
2691 SourceRange InitRange = Init->getSourceRange();
2692 if (EllipsisLoc.isValid()) {
2693 // This is a pack expansion.
2694 if (!BaseType->containsUnexpandedParameterPack()) {
2695 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2696 << SourceRange(BaseLoc, InitRange.getEnd());
2697
2698 EllipsisLoc = SourceLocation();
2699 }
2700 } else {
2701 // Check for any unexpanded parameter packs.
2702 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2703 return true;
2704
2705 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2706 return true;
2707 }
2708
2709 // Check for direct and virtual base classes.
2710 const CXXBaseSpecifier *DirectBaseSpec = 0;
2711 const CXXBaseSpecifier *VirtualBaseSpec = 0;
2712 if (!Dependent) {
2713 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2714 BaseType))
2715 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2716
2717 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2718 VirtualBaseSpec);
2719
2720 // C++ [base.class.init]p2:
2721 // Unless the mem-initializer-id names a nonstatic data member of the
2722 // constructor's class or a direct or virtual base of that class, the
2723 // mem-initializer is ill-formed.
2724 if (!DirectBaseSpec && !VirtualBaseSpec) {
2725 // If the class has any dependent bases, then it's possible that
2726 // one of those types will resolve to the same type as
2727 // BaseType. Therefore, just treat this as a dependent base
2728 // class initialization. FIXME: Should we try to check the
2729 // initialization anyway? It seems odd.
2730 if (ClassDecl->hasAnyDependentBases())
2731 Dependent = true;
2732 else
2733 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2734 << BaseType << Context.getTypeDeclType(ClassDecl)
2735 << BaseTInfo->getTypeLoc().getLocalSourceRange();
2736 }
2737 }
2738
2739 if (Dependent) {
2740 DiscardCleanupsInEvaluationContext();
2741
2742 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2743 /*IsVirtual=*/false,
2744 InitRange.getBegin(), Init,
2745 InitRange.getEnd(), EllipsisLoc);
2746 }
2747
2748 // C++ [base.class.init]p2:
2749 // If a mem-initializer-id is ambiguous because it designates both
2750 // a direct non-virtual base class and an inherited virtual base
2751 // class, the mem-initializer is ill-formed.
2752 if (DirectBaseSpec && VirtualBaseSpec)
2753 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2754 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2755
2756 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
2757 if (!BaseSpec)
2758 BaseSpec = VirtualBaseSpec;
2759
2760 // Initialize the base.
2761 bool InitList = true;
2762 MultiExprArg Args = Init;
2763 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2764 InitList = false;
2765 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2766 }
2767
2768 InitializedEntity BaseEntity =
2769 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2770 InitializationKind Kind =
2771 InitList ? InitializationKind::CreateDirectList(BaseLoc)
2772 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2773 InitRange.getEnd());
2774 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
2775 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
2776 if (BaseInit.isInvalid())
2777 return true;
2778
2779 // C++11 [class.base.init]p7:
2780 // The initialization of each base and member constitutes a
2781 // full-expression.
2782 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2783 if (BaseInit.isInvalid())
2784 return true;
2785
2786 // If we are in a dependent context, template instantiation will
2787 // perform this type-checking again. Just save the arguments that we
2788 // received in a ParenListExpr.
2789 // FIXME: This isn't quite ideal, since our ASTs don't capture all
2790 // of the information that we have about the base
2791 // initializer. However, deconstructing the ASTs is a dicey process,
2792 // and this approach is far more likely to get the corner cases right.
2793 if (CurContext->isDependentContext())
2794 BaseInit = Owned(Init);
2795
2796 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2797 BaseSpec->isVirtual(),
2798 InitRange.getBegin(),
2799 BaseInit.takeAs<Expr>(),
2800 InitRange.getEnd(), EllipsisLoc);
2801 }
2802
2803 // Create a static_cast\<T&&>(expr).
CastForMoving(Sema & SemaRef,Expr * E,QualType T=QualType ())2804 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2805 if (T.isNull()) T = E->getType();
2806 QualType TargetType = SemaRef.BuildReferenceType(
2807 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2808 SourceLocation ExprLoc = E->getLocStart();
2809 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2810 TargetType, ExprLoc);
2811
2812 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2813 SourceRange(ExprLoc, ExprLoc),
2814 E->getSourceRange()).take();
2815 }
2816
2817 /// ImplicitInitializerKind - How an implicit base or member initializer should
2818 /// initialize its base or member.
2819 enum ImplicitInitializerKind {
2820 IIK_Default,
2821 IIK_Copy,
2822 IIK_Move,
2823 IIK_Inherit
2824 };
2825
2826 static bool
BuildImplicitBaseInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,CXXBaseSpecifier * BaseSpec,bool IsInheritedVirtualBase,CXXCtorInitializer * & CXXBaseInit)2827 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2828 ImplicitInitializerKind ImplicitInitKind,
2829 CXXBaseSpecifier *BaseSpec,
2830 bool IsInheritedVirtualBase,
2831 CXXCtorInitializer *&CXXBaseInit) {
2832 InitializedEntity InitEntity
2833 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2834 IsInheritedVirtualBase);
2835
2836 ExprResult BaseInit;
2837
2838 switch (ImplicitInitKind) {
2839 case IIK_Inherit: {
2840 const CXXRecordDecl *Inherited =
2841 Constructor->getInheritedConstructor()->getParent();
2842 const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2843 if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2844 // C++11 [class.inhctor]p8:
2845 // Each expression in the expression-list is of the form
2846 // static_cast<T&&>(p), where p is the name of the corresponding
2847 // constructor parameter and T is the declared type of p.
2848 SmallVector<Expr*, 16> Args;
2849 for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2850 ParmVarDecl *PD = Constructor->getParamDecl(I);
2851 ExprResult ArgExpr =
2852 SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2853 VK_LValue, SourceLocation());
2854 if (ArgExpr.isInvalid())
2855 return true;
2856 Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2857 }
2858
2859 InitializationKind InitKind = InitializationKind::CreateDirect(
2860 Constructor->getLocation(), SourceLocation(), SourceLocation());
2861 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
2862 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2863 break;
2864 }
2865 }
2866 // Fall through.
2867 case IIK_Default: {
2868 InitializationKind InitKind
2869 = InitializationKind::CreateDefault(Constructor->getLocation());
2870 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
2871 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
2872 break;
2873 }
2874
2875 case IIK_Move:
2876 case IIK_Copy: {
2877 bool Moving = ImplicitInitKind == IIK_Move;
2878 ParmVarDecl *Param = Constructor->getParamDecl(0);
2879 QualType ParamType = Param->getType().getNonReferenceType();
2880
2881 Expr *CopyCtorArg =
2882 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2883 SourceLocation(), Param, false,
2884 Constructor->getLocation(), ParamType,
2885 VK_LValue, 0);
2886
2887 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2888
2889 // Cast to the base class to avoid ambiguities.
2890 QualType ArgTy =
2891 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2892 ParamType.getQualifiers());
2893
2894 if (Moving) {
2895 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2896 }
2897
2898 CXXCastPath BasePath;
2899 BasePath.push_back(BaseSpec);
2900 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2901 CK_UncheckedDerivedToBase,
2902 Moving ? VK_XValue : VK_LValue,
2903 &BasePath).take();
2904
2905 InitializationKind InitKind
2906 = InitializationKind::CreateDirect(Constructor->getLocation(),
2907 SourceLocation(), SourceLocation());
2908 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
2909 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
2910 break;
2911 }
2912 }
2913
2914 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2915 if (BaseInit.isInvalid())
2916 return true;
2917
2918 CXXBaseInit =
2919 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2920 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2921 SourceLocation()),
2922 BaseSpec->isVirtual(),
2923 SourceLocation(),
2924 BaseInit.takeAs<Expr>(),
2925 SourceLocation(),
2926 SourceLocation());
2927
2928 return false;
2929 }
2930
RefersToRValueRef(Expr * MemRef)2931 static bool RefersToRValueRef(Expr *MemRef) {
2932 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2933 return Referenced->getType()->isRValueReferenceType();
2934 }
2935
2936 static bool
BuildImplicitMemberInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,FieldDecl * Field,IndirectFieldDecl * Indirect,CXXCtorInitializer * & CXXMemberInit)2937 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2938 ImplicitInitializerKind ImplicitInitKind,
2939 FieldDecl *Field, IndirectFieldDecl *Indirect,
2940 CXXCtorInitializer *&CXXMemberInit) {
2941 if (Field->isInvalidDecl())
2942 return true;
2943
2944 SourceLocation Loc = Constructor->getLocation();
2945
2946 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2947 bool Moving = ImplicitInitKind == IIK_Move;
2948 ParmVarDecl *Param = Constructor->getParamDecl(0);
2949 QualType ParamType = Param->getType().getNonReferenceType();
2950
2951 // Suppress copying zero-width bitfields.
2952 if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2953 return false;
2954
2955 Expr *MemberExprBase =
2956 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2957 SourceLocation(), Param, false,
2958 Loc, ParamType, VK_LValue, 0);
2959
2960 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2961
2962 if (Moving) {
2963 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2964 }
2965
2966 // Build a reference to this field within the parameter.
2967 CXXScopeSpec SS;
2968 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2969 Sema::LookupMemberName);
2970 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2971 : cast<ValueDecl>(Field), AS_public);
2972 MemberLookup.resolveKind();
2973 ExprResult CtorArg
2974 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2975 ParamType, Loc,
2976 /*IsArrow=*/false,
2977 SS,
2978 /*TemplateKWLoc=*/SourceLocation(),
2979 /*FirstQualifierInScope=*/0,
2980 MemberLookup,
2981 /*TemplateArgs=*/0);
2982 if (CtorArg.isInvalid())
2983 return true;
2984
2985 // C++11 [class.copy]p15:
2986 // - if a member m has rvalue reference type T&&, it is direct-initialized
2987 // with static_cast<T&&>(x.m);
2988 if (RefersToRValueRef(CtorArg.get())) {
2989 CtorArg = CastForMoving(SemaRef, CtorArg.take());
2990 }
2991
2992 // When the field we are copying is an array, create index variables for
2993 // each dimension of the array. We use these index variables to subscript
2994 // the source array, and other clients (e.g., CodeGen) will perform the
2995 // necessary iteration with these index variables.
2996 SmallVector<VarDecl *, 4> IndexVariables;
2997 QualType BaseType = Field->getType();
2998 QualType SizeType = SemaRef.Context.getSizeType();
2999 bool InitializingArray = false;
3000 while (const ConstantArrayType *Array
3001 = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3002 InitializingArray = true;
3003 // Create the iteration variable for this array index.
3004 IdentifierInfo *IterationVarName = 0;
3005 {
3006 SmallString<8> Str;
3007 llvm::raw_svector_ostream OS(Str);
3008 OS << "__i" << IndexVariables.size();
3009 IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3010 }
3011 VarDecl *IterationVar
3012 = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3013 IterationVarName, SizeType,
3014 SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3015 SC_None);
3016 IndexVariables.push_back(IterationVar);
3017
3018 // Create a reference to the iteration variable.
3019 ExprResult IterationVarRef
3020 = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3021 assert(!IterationVarRef.isInvalid() &&
3022 "Reference to invented variable cannot fail!");
3023 IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
3024 assert(!IterationVarRef.isInvalid() &&
3025 "Conversion of invented variable cannot fail!");
3026
3027 // Subscript the array with this iteration variable.
3028 CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
3029 IterationVarRef.take(),
3030 Loc);
3031 if (CtorArg.isInvalid())
3032 return true;
3033
3034 BaseType = Array->getElementType();
3035 }
3036
3037 // The array subscript expression is an lvalue, which is wrong for moving.
3038 if (Moving && InitializingArray)
3039 CtorArg = CastForMoving(SemaRef, CtorArg.take());
3040
3041 // Construct the entity that we will be initializing. For an array, this
3042 // will be first element in the array, which may require several levels
3043 // of array-subscript entities.
3044 SmallVector<InitializedEntity, 4> Entities;
3045 Entities.reserve(1 + IndexVariables.size());
3046 if (Indirect)
3047 Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3048 else
3049 Entities.push_back(InitializedEntity::InitializeMember(Field));
3050 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3051 Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3052 0,
3053 Entities.back()));
3054
3055 // Direct-initialize to use the copy constructor.
3056 InitializationKind InitKind =
3057 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3058
3059 Expr *CtorArgE = CtorArg.takeAs<Expr>();
3060 InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3061
3062 ExprResult MemberInit
3063 = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3064 MultiExprArg(&CtorArgE, 1));
3065 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3066 if (MemberInit.isInvalid())
3067 return true;
3068
3069 if (Indirect) {
3070 assert(IndexVariables.size() == 0 &&
3071 "Indirect field improperly initialized");
3072 CXXMemberInit
3073 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3074 Loc, Loc,
3075 MemberInit.takeAs<Expr>(),
3076 Loc);
3077 } else
3078 CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3079 Loc, MemberInit.takeAs<Expr>(),
3080 Loc,
3081 IndexVariables.data(),
3082 IndexVariables.size());
3083 return false;
3084 }
3085
3086 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3087 "Unhandled implicit init kind!");
3088
3089 QualType FieldBaseElementType =
3090 SemaRef.Context.getBaseElementType(Field->getType());
3091
3092 if (FieldBaseElementType->isRecordType()) {
3093 InitializedEntity InitEntity
3094 = Indirect? InitializedEntity::InitializeMember(Indirect)
3095 : InitializedEntity::InitializeMember(Field);
3096 InitializationKind InitKind =
3097 InitializationKind::CreateDefault(Loc);
3098
3099 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3100 ExprResult MemberInit =
3101 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3102
3103 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3104 if (MemberInit.isInvalid())
3105 return true;
3106
3107 if (Indirect)
3108 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3109 Indirect, Loc,
3110 Loc,
3111 MemberInit.get(),
3112 Loc);
3113 else
3114 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3115 Field, Loc, Loc,
3116 MemberInit.get(),
3117 Loc);
3118 return false;
3119 }
3120
3121 if (!Field->getParent()->isUnion()) {
3122 if (FieldBaseElementType->isReferenceType()) {
3123 SemaRef.Diag(Constructor->getLocation(),
3124 diag::err_uninitialized_member_in_ctor)
3125 << (int)Constructor->isImplicit()
3126 << SemaRef.Context.getTagDeclType(Constructor->getParent())
3127 << 0 << Field->getDeclName();
3128 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3129 return true;
3130 }
3131
3132 if (FieldBaseElementType.isConstQualified()) {
3133 SemaRef.Diag(Constructor->getLocation(),
3134 diag::err_uninitialized_member_in_ctor)
3135 << (int)Constructor->isImplicit()
3136 << SemaRef.Context.getTagDeclType(Constructor->getParent())
3137 << 1 << Field->getDeclName();
3138 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3139 return true;
3140 }
3141 }
3142
3143 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3144 FieldBaseElementType->isObjCRetainableType() &&
3145 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3146 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3147 // ARC:
3148 // Default-initialize Objective-C pointers to NULL.
3149 CXXMemberInit
3150 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3151 Loc, Loc,
3152 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3153 Loc);
3154 return false;
3155 }
3156
3157 // Nothing to initialize.
3158 CXXMemberInit = 0;
3159 return false;
3160 }
3161
3162 namespace {
3163 struct BaseAndFieldInfo {
3164 Sema &S;
3165 CXXConstructorDecl *Ctor;
3166 bool AnyErrorsInInits;
3167 ImplicitInitializerKind IIK;
3168 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3169 SmallVector<CXXCtorInitializer*, 8> AllToInit;
3170
BaseAndFieldInfo__anon7fa201ac0411::BaseAndFieldInfo3171 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3172 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3173 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3174 if (Generated && Ctor->isCopyConstructor())
3175 IIK = IIK_Copy;
3176 else if (Generated && Ctor->isMoveConstructor())
3177 IIK = IIK_Move;
3178 else if (Ctor->getInheritedConstructor())
3179 IIK = IIK_Inherit;
3180 else
3181 IIK = IIK_Default;
3182 }
3183
isImplicitCopyOrMove__anon7fa201ac0411::BaseAndFieldInfo3184 bool isImplicitCopyOrMove() const {
3185 switch (IIK) {
3186 case IIK_Copy:
3187 case IIK_Move:
3188 return true;
3189
3190 case IIK_Default:
3191 case IIK_Inherit:
3192 return false;
3193 }
3194
3195 llvm_unreachable("Invalid ImplicitInitializerKind!");
3196 }
3197
addFieldInitializer__anon7fa201ac0411::BaseAndFieldInfo3198 bool addFieldInitializer(CXXCtorInitializer *Init) {
3199 AllToInit.push_back(Init);
3200
3201 // Check whether this initializer makes the field "used".
3202 if (Init->getInit()->HasSideEffects(S.Context))
3203 S.UnusedPrivateFields.remove(Init->getAnyMember());
3204
3205 return false;
3206 }
3207 };
3208 }
3209
3210 /// \brief Determine whether the given indirect field declaration is somewhere
3211 /// within an anonymous union.
isWithinAnonymousUnion(IndirectFieldDecl * F)3212 static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3213 for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3214 CEnd = F->chain_end();
3215 C != CEnd; ++C)
3216 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3217 if (Record->isUnion())
3218 return true;
3219
3220 return false;
3221 }
3222
3223 /// \brief Determine whether the given type is an incomplete or zero-lenfgth
3224 /// array type.
isIncompleteOrZeroLengthArrayType(ASTContext & Context,QualType T)3225 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3226 if (T->isIncompleteArrayType())
3227 return true;
3228
3229 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3230 if (!ArrayT->getSize())
3231 return true;
3232
3233 T = ArrayT->getElementType();
3234 }
3235
3236 return false;
3237 }
3238
CollectFieldInitializer(Sema & SemaRef,BaseAndFieldInfo & Info,FieldDecl * Field,IndirectFieldDecl * Indirect=0)3239 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3240 FieldDecl *Field,
3241 IndirectFieldDecl *Indirect = 0) {
3242 if (Field->isInvalidDecl())
3243 return false;
3244
3245 // Overwhelmingly common case: we have a direct initializer for this field.
3246 if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3247 return Info.addFieldInitializer(Init);
3248
3249 // C++11 [class.base.init]p8: if the entity is a non-static data member that
3250 // has a brace-or-equal-initializer, the entity is initialized as specified
3251 // in [dcl.init].
3252 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3253 Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3254 Info.Ctor->getLocation(), Field);
3255 CXXCtorInitializer *Init;
3256 if (Indirect)
3257 Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3258 SourceLocation(),
3259 SourceLocation(), DIE,
3260 SourceLocation());
3261 else
3262 Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3263 SourceLocation(),
3264 SourceLocation(), DIE,
3265 SourceLocation());
3266 return Info.addFieldInitializer(Init);
3267 }
3268
3269 // Don't build an implicit initializer for union members if none was
3270 // explicitly specified.
3271 if (Field->getParent()->isUnion() ||
3272 (Indirect && isWithinAnonymousUnion(Indirect)))
3273 return false;
3274
3275 // Don't initialize incomplete or zero-length arrays.
3276 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3277 return false;
3278
3279 // Don't try to build an implicit initializer if there were semantic
3280 // errors in any of the initializers (and therefore we might be
3281 // missing some that the user actually wrote).
3282 if (Info.AnyErrorsInInits)
3283 return false;
3284
3285 CXXCtorInitializer *Init = 0;
3286 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3287 Indirect, Init))
3288 return true;
3289
3290 if (!Init)
3291 return false;
3292
3293 return Info.addFieldInitializer(Init);
3294 }
3295
3296 bool
SetDelegatingInitializer(CXXConstructorDecl * Constructor,CXXCtorInitializer * Initializer)3297 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3298 CXXCtorInitializer *Initializer) {
3299 assert(Initializer->isDelegatingInitializer());
3300 Constructor->setNumCtorInitializers(1);
3301 CXXCtorInitializer **initializer =
3302 new (Context) CXXCtorInitializer*[1];
3303 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3304 Constructor->setCtorInitializers(initializer);
3305
3306 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3307 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3308 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3309 }
3310
3311 DelegatingCtorDecls.push_back(Constructor);
3312
3313 return false;
3314 }
3315
SetCtorInitializers(CXXConstructorDecl * Constructor,bool AnyErrors,ArrayRef<CXXCtorInitializer * > Initializers)3316 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3317 ArrayRef<CXXCtorInitializer *> Initializers) {
3318 if (Constructor->isDependentContext()) {
3319 // Just store the initializers as written, they will be checked during
3320 // instantiation.
3321 if (!Initializers.empty()) {
3322 Constructor->setNumCtorInitializers(Initializers.size());
3323 CXXCtorInitializer **baseOrMemberInitializers =
3324 new (Context) CXXCtorInitializer*[Initializers.size()];
3325 memcpy(baseOrMemberInitializers, Initializers.data(),
3326 Initializers.size() * sizeof(CXXCtorInitializer*));
3327 Constructor->setCtorInitializers(baseOrMemberInitializers);
3328 }
3329
3330 // Let template instantiation know whether we had errors.
3331 if (AnyErrors)
3332 Constructor->setInvalidDecl();
3333
3334 return false;
3335 }
3336
3337 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3338
3339 // We need to build the initializer AST according to order of construction
3340 // and not what user specified in the Initializers list.
3341 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3342 if (!ClassDecl)
3343 return true;
3344
3345 bool HadError = false;
3346
3347 for (unsigned i = 0; i < Initializers.size(); i++) {
3348 CXXCtorInitializer *Member = Initializers[i];
3349
3350 if (Member->isBaseInitializer())
3351 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3352 else
3353 Info.AllBaseFields[Member->getAnyMember()] = Member;
3354 }
3355
3356 // Keep track of the direct virtual bases.
3357 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3358 for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3359 E = ClassDecl->bases_end(); I != E; ++I) {
3360 if (I->isVirtual())
3361 DirectVBases.insert(I);
3362 }
3363
3364 // Push virtual bases before others.
3365 for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3366 E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3367
3368 if (CXXCtorInitializer *Value
3369 = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3370 // [class.base.init]p7, per DR257:
3371 // A mem-initializer where the mem-initializer-id names a virtual base
3372 // class is ignored during execution of a constructor of any class that
3373 // is not the most derived class.
3374 if (ClassDecl->isAbstract()) {
3375 // FIXME: Provide a fixit to remove the base specifier. This requires
3376 // tracking the location of the associated comma for a base specifier.
3377 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3378 << VBase->getType() << ClassDecl;
3379 DiagnoseAbstractType(ClassDecl);
3380 }
3381
3382 Info.AllToInit.push_back(Value);
3383 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3384 // [class.base.init]p8, per DR257:
3385 // If a given [...] base class is not named by a mem-initializer-id
3386 // [...] and the entity is not a virtual base class of an abstract
3387 // class, then [...] the entity is default-initialized.
3388 bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3389 CXXCtorInitializer *CXXBaseInit;
3390 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3391 VBase, IsInheritedVirtualBase,
3392 CXXBaseInit)) {
3393 HadError = true;
3394 continue;
3395 }
3396
3397 Info.AllToInit.push_back(CXXBaseInit);
3398 }
3399 }
3400
3401 // Non-virtual bases.
3402 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3403 E = ClassDecl->bases_end(); Base != E; ++Base) {
3404 // Virtuals are in the virtual base list and already constructed.
3405 if (Base->isVirtual())
3406 continue;
3407
3408 if (CXXCtorInitializer *Value
3409 = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3410 Info.AllToInit.push_back(Value);
3411 } else if (!AnyErrors) {
3412 CXXCtorInitializer *CXXBaseInit;
3413 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3414 Base, /*IsInheritedVirtualBase=*/false,
3415 CXXBaseInit)) {
3416 HadError = true;
3417 continue;
3418 }
3419
3420 Info.AllToInit.push_back(CXXBaseInit);
3421 }
3422 }
3423
3424 // Fields.
3425 for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3426 MemEnd = ClassDecl->decls_end();
3427 Mem != MemEnd; ++Mem) {
3428 if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3429 // C++ [class.bit]p2:
3430 // A declaration for a bit-field that omits the identifier declares an
3431 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
3432 // initialized.
3433 if (F->isUnnamedBitfield())
3434 continue;
3435
3436 // If we're not generating the implicit copy/move constructor, then we'll
3437 // handle anonymous struct/union fields based on their individual
3438 // indirect fields.
3439 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3440 continue;
3441
3442 if (CollectFieldInitializer(*this, Info, F))
3443 HadError = true;
3444 continue;
3445 }
3446
3447 // Beyond this point, we only consider default initialization.
3448 if (Info.isImplicitCopyOrMove())
3449 continue;
3450
3451 if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3452 if (F->getType()->isIncompleteArrayType()) {
3453 assert(ClassDecl->hasFlexibleArrayMember() &&
3454 "Incomplete array type is not valid");
3455 continue;
3456 }
3457
3458 // Initialize each field of an anonymous struct individually.
3459 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3460 HadError = true;
3461
3462 continue;
3463 }
3464 }
3465
3466 unsigned NumInitializers = Info.AllToInit.size();
3467 if (NumInitializers > 0) {
3468 Constructor->setNumCtorInitializers(NumInitializers);
3469 CXXCtorInitializer **baseOrMemberInitializers =
3470 new (Context) CXXCtorInitializer*[NumInitializers];
3471 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3472 NumInitializers * sizeof(CXXCtorInitializer*));
3473 Constructor->setCtorInitializers(baseOrMemberInitializers);
3474
3475 // Constructors implicitly reference the base and member
3476 // destructors.
3477 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3478 Constructor->getParent());
3479 }
3480
3481 return HadError;
3482 }
3483
PopulateKeysForFields(FieldDecl * Field,SmallVectorImpl<const void * > & IdealInits)3484 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3485 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3486 const RecordDecl *RD = RT->getDecl();
3487 if (RD->isAnonymousStructOrUnion()) {
3488 for (RecordDecl::field_iterator Field = RD->field_begin(),
3489 E = RD->field_end(); Field != E; ++Field)
3490 PopulateKeysForFields(*Field, IdealInits);
3491 return;
3492 }
3493 }
3494 IdealInits.push_back(Field);
3495 }
3496
GetKeyForBase(ASTContext & Context,QualType BaseType)3497 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3498 return Context.getCanonicalType(BaseType).getTypePtr();
3499 }
3500
GetKeyForMember(ASTContext & Context,CXXCtorInitializer * Member)3501 static const void *GetKeyForMember(ASTContext &Context,
3502 CXXCtorInitializer *Member) {
3503 if (!Member->isAnyMemberInitializer())
3504 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3505
3506 return Member->getAnyMember();
3507 }
3508
DiagnoseBaseOrMemInitializerOrder(Sema & SemaRef,const CXXConstructorDecl * Constructor,ArrayRef<CXXCtorInitializer * > Inits)3509 static void DiagnoseBaseOrMemInitializerOrder(
3510 Sema &SemaRef, const CXXConstructorDecl *Constructor,
3511 ArrayRef<CXXCtorInitializer *> Inits) {
3512 if (Constructor->getDeclContext()->isDependentContext())
3513 return;
3514
3515 // Don't check initializers order unless the warning is enabled at the
3516 // location of at least one initializer.
3517 bool ShouldCheckOrder = false;
3518 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3519 CXXCtorInitializer *Init = Inits[InitIndex];
3520 if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3521 Init->getSourceLocation())
3522 != DiagnosticsEngine::Ignored) {
3523 ShouldCheckOrder = true;
3524 break;
3525 }
3526 }
3527 if (!ShouldCheckOrder)
3528 return;
3529
3530 // Build the list of bases and members in the order that they'll
3531 // actually be initialized. The explicit initializers should be in
3532 // this same order but may be missing things.
3533 SmallVector<const void*, 32> IdealInitKeys;
3534
3535 const CXXRecordDecl *ClassDecl = Constructor->getParent();
3536
3537 // 1. Virtual bases.
3538 for (CXXRecordDecl::base_class_const_iterator VBase =
3539 ClassDecl->vbases_begin(),
3540 E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3541 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3542
3543 // 2. Non-virtual bases.
3544 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3545 E = ClassDecl->bases_end(); Base != E; ++Base) {
3546 if (Base->isVirtual())
3547 continue;
3548 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3549 }
3550
3551 // 3. Direct fields.
3552 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3553 E = ClassDecl->field_end(); Field != E; ++Field) {
3554 if (Field->isUnnamedBitfield())
3555 continue;
3556
3557 PopulateKeysForFields(*Field, IdealInitKeys);
3558 }
3559
3560 unsigned NumIdealInits = IdealInitKeys.size();
3561 unsigned IdealIndex = 0;
3562
3563 CXXCtorInitializer *PrevInit = 0;
3564 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3565 CXXCtorInitializer *Init = Inits[InitIndex];
3566 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3567
3568 // Scan forward to try to find this initializer in the idealized
3569 // initializers list.
3570 for (; IdealIndex != NumIdealInits; ++IdealIndex)
3571 if (InitKey == IdealInitKeys[IdealIndex])
3572 break;
3573
3574 // If we didn't find this initializer, it must be because we
3575 // scanned past it on a previous iteration. That can only
3576 // happen if we're out of order; emit a warning.
3577 if (IdealIndex == NumIdealInits && PrevInit) {
3578 Sema::SemaDiagnosticBuilder D =
3579 SemaRef.Diag(PrevInit->getSourceLocation(),
3580 diag::warn_initializer_out_of_order);
3581
3582 if (PrevInit->isAnyMemberInitializer())
3583 D << 0 << PrevInit->getAnyMember()->getDeclName();
3584 else
3585 D << 1 << PrevInit->getTypeSourceInfo()->getType();
3586
3587 if (Init->isAnyMemberInitializer())
3588 D << 0 << Init->getAnyMember()->getDeclName();
3589 else
3590 D << 1 << Init->getTypeSourceInfo()->getType();
3591
3592 // Move back to the initializer's location in the ideal list.
3593 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3594 if (InitKey == IdealInitKeys[IdealIndex])
3595 break;
3596
3597 assert(IdealIndex != NumIdealInits &&
3598 "initializer not found in initializer list");
3599 }
3600
3601 PrevInit = Init;
3602 }
3603 }
3604
3605 namespace {
CheckRedundantInit(Sema & S,CXXCtorInitializer * Init,CXXCtorInitializer * & PrevInit)3606 bool CheckRedundantInit(Sema &S,
3607 CXXCtorInitializer *Init,
3608 CXXCtorInitializer *&PrevInit) {
3609 if (!PrevInit) {
3610 PrevInit = Init;
3611 return false;
3612 }
3613
3614 if (FieldDecl *Field = Init->getAnyMember())
3615 S.Diag(Init->getSourceLocation(),
3616 diag::err_multiple_mem_initialization)
3617 << Field->getDeclName()
3618 << Init->getSourceRange();
3619 else {
3620 const Type *BaseClass = Init->getBaseClass();
3621 assert(BaseClass && "neither field nor base");
3622 S.Diag(Init->getSourceLocation(),
3623 diag::err_multiple_base_initialization)
3624 << QualType(BaseClass, 0)
3625 << Init->getSourceRange();
3626 }
3627 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3628 << 0 << PrevInit->getSourceRange();
3629
3630 return true;
3631 }
3632
3633 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3634 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3635
CheckRedundantUnionInit(Sema & S,CXXCtorInitializer * Init,RedundantUnionMap & Unions)3636 bool CheckRedundantUnionInit(Sema &S,
3637 CXXCtorInitializer *Init,
3638 RedundantUnionMap &Unions) {
3639 FieldDecl *Field = Init->getAnyMember();
3640 RecordDecl *Parent = Field->getParent();
3641 NamedDecl *Child = Field;
3642
3643 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3644 if (Parent->isUnion()) {
3645 UnionEntry &En = Unions[Parent];
3646 if (En.first && En.first != Child) {
3647 S.Diag(Init->getSourceLocation(),
3648 diag::err_multiple_mem_union_initialization)
3649 << Field->getDeclName()
3650 << Init->getSourceRange();
3651 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3652 << 0 << En.second->getSourceRange();
3653 return true;
3654 }
3655 if (!En.first) {
3656 En.first = Child;
3657 En.second = Init;
3658 }
3659 if (!Parent->isAnonymousStructOrUnion())
3660 return false;
3661 }
3662
3663 Child = Parent;
3664 Parent = cast<RecordDecl>(Parent->getDeclContext());
3665 }
3666
3667 return false;
3668 }
3669 }
3670
3671 /// ActOnMemInitializers - Handle the member initializers for a constructor.
ActOnMemInitializers(Decl * ConstructorDecl,SourceLocation ColonLoc,ArrayRef<CXXCtorInitializer * > MemInits,bool AnyErrors)3672 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3673 SourceLocation ColonLoc,
3674 ArrayRef<CXXCtorInitializer*> MemInits,
3675 bool AnyErrors) {
3676 if (!ConstructorDecl)
3677 return;
3678
3679 AdjustDeclIfTemplate(ConstructorDecl);
3680
3681 CXXConstructorDecl *Constructor
3682 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3683
3684 if (!Constructor) {
3685 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3686 return;
3687 }
3688
3689 // Mapping for the duplicate initializers check.
3690 // For member initializers, this is keyed with a FieldDecl*.
3691 // For base initializers, this is keyed with a Type*.
3692 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
3693
3694 // Mapping for the inconsistent anonymous-union initializers check.
3695 RedundantUnionMap MemberUnions;
3696
3697 bool HadError = false;
3698 for (unsigned i = 0; i < MemInits.size(); i++) {
3699 CXXCtorInitializer *Init = MemInits[i];
3700
3701 // Set the source order index.
3702 Init->setSourceOrder(i);
3703
3704 if (Init->isAnyMemberInitializer()) {
3705 FieldDecl *Field = Init->getAnyMember();
3706 if (CheckRedundantInit(*this, Init, Members[Field]) ||
3707 CheckRedundantUnionInit(*this, Init, MemberUnions))
3708 HadError = true;
3709 } else if (Init->isBaseInitializer()) {
3710 const void *Key =
3711 GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3712 if (CheckRedundantInit(*this, Init, Members[Key]))
3713 HadError = true;
3714 } else {
3715 assert(Init->isDelegatingInitializer());
3716 // This must be the only initializer
3717 if (MemInits.size() != 1) {
3718 Diag(Init->getSourceLocation(),
3719 diag::err_delegating_initializer_alone)
3720 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3721 // We will treat this as being the only initializer.
3722 }
3723 SetDelegatingInitializer(Constructor, MemInits[i]);
3724 // Return immediately as the initializer is set.
3725 return;
3726 }
3727 }
3728
3729 if (HadError)
3730 return;
3731
3732 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3733
3734 SetCtorInitializers(Constructor, AnyErrors, MemInits);
3735 }
3736
3737 void
MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl)3738 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3739 CXXRecordDecl *ClassDecl) {
3740 // Ignore dependent contexts. Also ignore unions, since their members never
3741 // have destructors implicitly called.
3742 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3743 return;
3744
3745 // FIXME: all the access-control diagnostics are positioned on the
3746 // field/base declaration. That's probably good; that said, the
3747 // user might reasonably want to know why the destructor is being
3748 // emitted, and we currently don't say.
3749
3750 // Non-static data members.
3751 for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3752 E = ClassDecl->field_end(); I != E; ++I) {
3753 FieldDecl *Field = *I;
3754 if (Field->isInvalidDecl())
3755 continue;
3756
3757 // Don't destroy incomplete or zero-length arrays.
3758 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3759 continue;
3760
3761 QualType FieldType = Context.getBaseElementType(Field->getType());
3762
3763 const RecordType* RT = FieldType->getAs<RecordType>();
3764 if (!RT)
3765 continue;
3766
3767 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3768 if (FieldClassDecl->isInvalidDecl())
3769 continue;
3770 if (FieldClassDecl->hasIrrelevantDestructor())
3771 continue;
3772 // The destructor for an implicit anonymous union member is never invoked.
3773 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3774 continue;
3775
3776 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3777 assert(Dtor && "No dtor found for FieldClassDecl!");
3778 CheckDestructorAccess(Field->getLocation(), Dtor,
3779 PDiag(diag::err_access_dtor_field)
3780 << Field->getDeclName()
3781 << FieldType);
3782
3783 MarkFunctionReferenced(Location, Dtor);
3784 DiagnoseUseOfDecl(Dtor, Location);
3785 }
3786
3787 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3788
3789 // Bases.
3790 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3791 E = ClassDecl->bases_end(); Base != E; ++Base) {
3792 // Bases are always records in a well-formed non-dependent class.
3793 const RecordType *RT = Base->getType()->getAs<RecordType>();
3794
3795 // Remember direct virtual bases.
3796 if (Base->isVirtual())
3797 DirectVirtualBases.insert(RT);
3798
3799 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3800 // If our base class is invalid, we probably can't get its dtor anyway.
3801 if (BaseClassDecl->isInvalidDecl())
3802 continue;
3803 if (BaseClassDecl->hasIrrelevantDestructor())
3804 continue;
3805
3806 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3807 assert(Dtor && "No dtor found for BaseClassDecl!");
3808
3809 // FIXME: caret should be on the start of the class name
3810 CheckDestructorAccess(Base->getLocStart(), Dtor,
3811 PDiag(diag::err_access_dtor_base)
3812 << Base->getType()
3813 << Base->getSourceRange(),
3814 Context.getTypeDeclType(ClassDecl));
3815
3816 MarkFunctionReferenced(Location, Dtor);
3817 DiagnoseUseOfDecl(Dtor, Location);
3818 }
3819
3820 // Virtual bases.
3821 for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3822 E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3823
3824 // Bases are always records in a well-formed non-dependent class.
3825 const RecordType *RT = VBase->getType()->castAs<RecordType>();
3826
3827 // Ignore direct virtual bases.
3828 if (DirectVirtualBases.count(RT))
3829 continue;
3830
3831 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3832 // If our base class is invalid, we probably can't get its dtor anyway.
3833 if (BaseClassDecl->isInvalidDecl())
3834 continue;
3835 if (BaseClassDecl->hasIrrelevantDestructor())
3836 continue;
3837
3838 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3839 assert(Dtor && "No dtor found for BaseClassDecl!");
3840 if (CheckDestructorAccess(
3841 ClassDecl->getLocation(), Dtor,
3842 PDiag(diag::err_access_dtor_vbase)
3843 << Context.getTypeDeclType(ClassDecl) << VBase->getType(),
3844 Context.getTypeDeclType(ClassDecl)) ==
3845 AR_accessible) {
3846 CheckDerivedToBaseConversion(
3847 Context.getTypeDeclType(ClassDecl), VBase->getType(),
3848 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
3849 SourceRange(), DeclarationName(), 0);
3850 }
3851
3852 MarkFunctionReferenced(Location, Dtor);
3853 DiagnoseUseOfDecl(Dtor, Location);
3854 }
3855 }
3856
ActOnDefaultCtorInitializers(Decl * CDtorDecl)3857 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3858 if (!CDtorDecl)
3859 return;
3860
3861 if (CXXConstructorDecl *Constructor
3862 = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3863 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3864 }
3865
RequireNonAbstractType(SourceLocation Loc,QualType T,unsigned DiagID,AbstractDiagSelID SelID)3866 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3867 unsigned DiagID, AbstractDiagSelID SelID) {
3868 class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3869 unsigned DiagID;
3870 AbstractDiagSelID SelID;
3871
3872 public:
3873 NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3874 : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3875
3876 void diagnose(Sema &S, SourceLocation Loc, QualType T) LLVM_OVERRIDE {
3877 if (Suppressed) return;
3878 if (SelID == -1)
3879 S.Diag(Loc, DiagID) << T;
3880 else
3881 S.Diag(Loc, DiagID) << SelID << T;
3882 }
3883 } Diagnoser(DiagID, SelID);
3884
3885 return RequireNonAbstractType(Loc, T, Diagnoser);
3886 }
3887
RequireNonAbstractType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)3888 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3889 TypeDiagnoser &Diagnoser) {
3890 if (!getLangOpts().CPlusPlus)
3891 return false;
3892
3893 if (const ArrayType *AT = Context.getAsArrayType(T))
3894 return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3895
3896 if (const PointerType *PT = T->getAs<PointerType>()) {
3897 // Find the innermost pointer type.
3898 while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3899 PT = T;
3900
3901 if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3902 return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3903 }
3904
3905 const RecordType *RT = T->getAs<RecordType>();
3906 if (!RT)
3907 return false;
3908
3909 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3910
3911 // We can't answer whether something is abstract until it has a
3912 // definition. If it's currently being defined, we'll walk back
3913 // over all the declarations when we have a full definition.
3914 const CXXRecordDecl *Def = RD->getDefinition();
3915 if (!Def || Def->isBeingDefined())
3916 return false;
3917
3918 if (!RD->isAbstract())
3919 return false;
3920
3921 Diagnoser.diagnose(*this, Loc, T);
3922 DiagnoseAbstractType(RD);
3923
3924 return true;
3925 }
3926
DiagnoseAbstractType(const CXXRecordDecl * RD)3927 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3928 // Check if we've already emitted the list of pure virtual functions
3929 // for this class.
3930 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3931 return;
3932
3933 // If the diagnostic is suppressed, don't emit the notes. We're only
3934 // going to emit them once, so try to attach them to a diagnostic we're
3935 // actually going to show.
3936 if (Diags.isLastDiagnosticIgnored())
3937 return;
3938
3939 CXXFinalOverriderMap FinalOverriders;
3940 RD->getFinalOverriders(FinalOverriders);
3941
3942 // Keep a set of seen pure methods so we won't diagnose the same method
3943 // more than once.
3944 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3945
3946 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3947 MEnd = FinalOverriders.end();
3948 M != MEnd;
3949 ++M) {
3950 for (OverridingMethods::iterator SO = M->second.begin(),
3951 SOEnd = M->second.end();
3952 SO != SOEnd; ++SO) {
3953 // C++ [class.abstract]p4:
3954 // A class is abstract if it contains or inherits at least one
3955 // pure virtual function for which the final overrider is pure
3956 // virtual.
3957
3958 //
3959 if (SO->second.size() != 1)
3960 continue;
3961
3962 if (!SO->second.front().Method->isPure())
3963 continue;
3964
3965 if (!SeenPureMethods.insert(SO->second.front().Method))
3966 continue;
3967
3968 Diag(SO->second.front().Method->getLocation(),
3969 diag::note_pure_virtual_function)
3970 << SO->second.front().Method->getDeclName() << RD->getDeclName();
3971 }
3972 }
3973
3974 if (!PureVirtualClassDiagSet)
3975 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3976 PureVirtualClassDiagSet->insert(RD);
3977 }
3978
3979 namespace {
3980 struct AbstractUsageInfo {
3981 Sema &S;
3982 CXXRecordDecl *Record;
3983 CanQualType AbstractType;
3984 bool Invalid;
3985
AbstractUsageInfo__anon7fa201ac0611::AbstractUsageInfo3986 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3987 : S(S), Record(Record),
3988 AbstractType(S.Context.getCanonicalType(
3989 S.Context.getTypeDeclType(Record))),
3990 Invalid(false) {}
3991
DiagnoseAbstractType__anon7fa201ac0611::AbstractUsageInfo3992 void DiagnoseAbstractType() {
3993 if (Invalid) return;
3994 S.DiagnoseAbstractType(Record);
3995 Invalid = true;
3996 }
3997
3998 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3999 };
4000
4001 struct CheckAbstractUsage {
4002 AbstractUsageInfo &Info;
4003 const NamedDecl *Ctx;
4004
CheckAbstractUsage__anon7fa201ac0611::CheckAbstractUsage4005 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4006 : Info(Info), Ctx(Ctx) {}
4007
Visit__anon7fa201ac0611::CheckAbstractUsage4008 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4009 switch (TL.getTypeLocClass()) {
4010 #define ABSTRACT_TYPELOC(CLASS, PARENT)
4011 #define TYPELOC(CLASS, PARENT) \
4012 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4013 #include "clang/AST/TypeLocNodes.def"
4014 }
4015 }
4016
Check__anon7fa201ac0611::CheckAbstractUsage4017 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4018 Visit(TL.getResultLoc(), Sema::AbstractReturnType);
4019 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4020 if (!TL.getArg(I))
4021 continue;
4022
4023 TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
4024 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4025 }
4026 }
4027
Check__anon7fa201ac0611::CheckAbstractUsage4028 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4029 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4030 }
4031
Check__anon7fa201ac0611::CheckAbstractUsage4032 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4033 // Visit the type parameters from a permissive context.
4034 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4035 TemplateArgumentLoc TAL = TL.getArgLoc(I);
4036 if (TAL.getArgument().getKind() == TemplateArgument::Type)
4037 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4038 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4039 // TODO: other template argument types?
4040 }
4041 }
4042
4043 // Visit pointee types from a permissive context.
4044 #define CheckPolymorphic(Type) \
4045 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4046 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4047 }
4048 CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic__anon7fa201ac0611::CheckAbstractUsage4049 CheckPolymorphic(ReferenceTypeLoc)
4050 CheckPolymorphic(MemberPointerTypeLoc)
4051 CheckPolymorphic(BlockPointerTypeLoc)
4052 CheckPolymorphic(AtomicTypeLoc)
4053
4054 /// Handle all the types we haven't given a more specific
4055 /// implementation for above.
4056 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4057 // Every other kind of type that we haven't called out already
4058 // that has an inner type is either (1) sugar or (2) contains that
4059 // inner type in some way as a subobject.
4060 if (TypeLoc Next = TL.getNextTypeLoc())
4061 return Visit(Next, Sel);
4062
4063 // If there's no inner type and we're in a permissive context,
4064 // don't diagnose.
4065 if (Sel == Sema::AbstractNone) return;
4066
4067 // Check whether the type matches the abstract type.
4068 QualType T = TL.getType();
4069 if (T->isArrayType()) {
4070 Sel = Sema::AbstractArrayType;
4071 T = Info.S.Context.getBaseElementType(T);
4072 }
4073 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4074 if (CT != Info.AbstractType) return;
4075
4076 // It matched; do some magic.
4077 if (Sel == Sema::AbstractArrayType) {
4078 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4079 << T << TL.getSourceRange();
4080 } else {
4081 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4082 << Sel << T << TL.getSourceRange();
4083 }
4084 Info.DiagnoseAbstractType();
4085 }
4086 };
4087
CheckType(const NamedDecl * D,TypeLoc TL,Sema::AbstractDiagSelID Sel)4088 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4089 Sema::AbstractDiagSelID Sel) {
4090 CheckAbstractUsage(*this, D).Visit(TL, Sel);
4091 }
4092
4093 }
4094
4095 /// Check for invalid uses of an abstract type in a method declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXMethodDecl * MD)4096 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4097 CXXMethodDecl *MD) {
4098 // No need to do the check on definitions, which require that
4099 // the return/param types be complete.
4100 if (MD->doesThisDeclarationHaveABody())
4101 return;
4102
4103 // For safety's sake, just ignore it if we don't have type source
4104 // information. This should never happen for non-implicit methods,
4105 // but...
4106 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4107 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4108 }
4109
4110 /// Check for invalid uses of an abstract type within a class definition.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXRecordDecl * RD)4111 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4112 CXXRecordDecl *RD) {
4113 for (CXXRecordDecl::decl_iterator
4114 I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
4115 Decl *D = *I;
4116 if (D->isImplicit()) continue;
4117
4118 // Methods and method templates.
4119 if (isa<CXXMethodDecl>(D)) {
4120 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4121 } else if (isa<FunctionTemplateDecl>(D)) {
4122 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4123 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4124
4125 // Fields and static variables.
4126 } else if (isa<FieldDecl>(D)) {
4127 FieldDecl *FD = cast<FieldDecl>(D);
4128 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4129 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4130 } else if (isa<VarDecl>(D)) {
4131 VarDecl *VD = cast<VarDecl>(D);
4132 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4133 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4134
4135 // Nested classes and class templates.
4136 } else if (isa<CXXRecordDecl>(D)) {
4137 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4138 } else if (isa<ClassTemplateDecl>(D)) {
4139 CheckAbstractClassUsage(Info,
4140 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4141 }
4142 }
4143 }
4144
4145 /// \brief Perform semantic checks on a class definition that has been
4146 /// completing, introducing implicitly-declared members, checking for
4147 /// abstract types, etc.
CheckCompletedCXXClass(CXXRecordDecl * Record)4148 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4149 if (!Record)
4150 return;
4151
4152 if (Record->isAbstract() && !Record->isInvalidDecl()) {
4153 AbstractUsageInfo Info(*this, Record);
4154 CheckAbstractClassUsage(Info, Record);
4155 }
4156
4157 // If this is not an aggregate type and has no user-declared constructor,
4158 // complain about any non-static data members of reference or const scalar
4159 // type, since they will never get initializers.
4160 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4161 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4162 !Record->isLambda()) {
4163 bool Complained = false;
4164 for (RecordDecl::field_iterator F = Record->field_begin(),
4165 FEnd = Record->field_end();
4166 F != FEnd; ++F) {
4167 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4168 continue;
4169
4170 if (F->getType()->isReferenceType() ||
4171 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4172 if (!Complained) {
4173 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4174 << Record->getTagKind() << Record;
4175 Complained = true;
4176 }
4177
4178 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4179 << F->getType()->isReferenceType()
4180 << F->getDeclName();
4181 }
4182 }
4183 }
4184
4185 if (Record->isDynamicClass() && !Record->isDependentType())
4186 DynamicClasses.push_back(Record);
4187
4188 if (Record->getIdentifier()) {
4189 // C++ [class.mem]p13:
4190 // If T is the name of a class, then each of the following shall have a
4191 // name different from T:
4192 // - every member of every anonymous union that is a member of class T.
4193 //
4194 // C++ [class.mem]p14:
4195 // In addition, if class T has a user-declared constructor (12.1), every
4196 // non-static data member of class T shall have a name different from T.
4197 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4198 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4199 ++I) {
4200 NamedDecl *D = *I;
4201 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4202 isa<IndirectFieldDecl>(D)) {
4203 Diag(D->getLocation(), diag::err_member_name_of_class)
4204 << D->getDeclName();
4205 break;
4206 }
4207 }
4208 }
4209
4210 // Warn if the class has virtual methods but non-virtual public destructor.
4211 if (Record->isPolymorphic() && !Record->isDependentType()) {
4212 CXXDestructorDecl *dtor = Record->getDestructor();
4213 if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4214 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4215 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4216 }
4217
4218 if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4219 Diag(Record->getLocation(), diag::warn_abstract_final_class);
4220 DiagnoseAbstractType(Record);
4221 }
4222
4223 if (!Record->isDependentType()) {
4224 for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4225 MEnd = Record->method_end();
4226 M != MEnd; ++M) {
4227 // See if a method overloads virtual methods in a base
4228 // class without overriding any.
4229 if (!M->isStatic())
4230 DiagnoseHiddenVirtualMethods(Record, *M);
4231
4232 // Check whether the explicitly-defaulted special members are valid.
4233 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4234 CheckExplicitlyDefaultedSpecialMember(*M);
4235
4236 // For an explicitly defaulted or deleted special member, we defer
4237 // determining triviality until the class is complete. That time is now!
4238 if (!M->isImplicit() && !M->isUserProvided()) {
4239 CXXSpecialMember CSM = getSpecialMember(*M);
4240 if (CSM != CXXInvalid) {
4241 M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4242
4243 // Inform the class that we've finished declaring this member.
4244 Record->finishedDefaultedOrDeletedMember(*M);
4245 }
4246 }
4247 }
4248 }
4249
4250 // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4251 // function that is not a constructor declares that member function to be
4252 // const. [...] The class of which that function is a member shall be
4253 // a literal type.
4254 //
4255 // If the class has virtual bases, any constexpr members will already have
4256 // been diagnosed by the checks performed on the member declaration, so
4257 // suppress this (less useful) diagnostic.
4258 //
4259 // We delay this until we know whether an explicitly-defaulted (or deleted)
4260 // destructor for the class is trivial.
4261 if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4262 !Record->isLiteral() && !Record->getNumVBases()) {
4263 for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4264 MEnd = Record->method_end();
4265 M != MEnd; ++M) {
4266 if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4267 switch (Record->getTemplateSpecializationKind()) {
4268 case TSK_ImplicitInstantiation:
4269 case TSK_ExplicitInstantiationDeclaration:
4270 case TSK_ExplicitInstantiationDefinition:
4271 // If a template instantiates to a non-literal type, but its members
4272 // instantiate to constexpr functions, the template is technically
4273 // ill-formed, but we allow it for sanity.
4274 continue;
4275
4276 case TSK_Undeclared:
4277 case TSK_ExplicitSpecialization:
4278 RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4279 diag::err_constexpr_method_non_literal);
4280 break;
4281 }
4282
4283 // Only produce one error per class.
4284 break;
4285 }
4286 }
4287 }
4288
4289 // Declare inheriting constructors. We do this eagerly here because:
4290 // - The standard requires an eager diagnostic for conflicting inheriting
4291 // constructors from different classes.
4292 // - The lazy declaration of the other implicit constructors is so as to not
4293 // waste space and performance on classes that are not meant to be
4294 // instantiated (e.g. meta-functions). This doesn't apply to classes that
4295 // have inheriting constructors.
4296 DeclareInheritingConstructors(Record);
4297 }
4298
4299 /// Is the special member function which would be selected to perform the
4300 /// specified operation on the specified class type a constexpr constructor?
specialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,bool ConstArg)4301 static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4302 Sema::CXXSpecialMember CSM,
4303 bool ConstArg) {
4304 Sema::SpecialMemberOverloadResult *SMOR =
4305 S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4306 false, false, false, false);
4307 if (!SMOR || !SMOR->getMethod())
4308 // A constructor we wouldn't select can't be "involved in initializing"
4309 // anything.
4310 return true;
4311 return SMOR->getMethod()->isConstexpr();
4312 }
4313
4314 /// Determine whether the specified special member function would be constexpr
4315 /// if it were implicitly defined.
defaultedSpecialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,bool ConstArg)4316 static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4317 Sema::CXXSpecialMember CSM,
4318 bool ConstArg) {
4319 if (!S.getLangOpts().CPlusPlus11)
4320 return false;
4321
4322 // C++11 [dcl.constexpr]p4:
4323 // In the definition of a constexpr constructor [...]
4324 bool Ctor = true;
4325 switch (CSM) {
4326 case Sema::CXXDefaultConstructor:
4327 // Since default constructor lookup is essentially trivial (and cannot
4328 // involve, for instance, template instantiation), we compute whether a
4329 // defaulted default constructor is constexpr directly within CXXRecordDecl.
4330 //
4331 // This is important for performance; we need to know whether the default
4332 // constructor is constexpr to determine whether the type is a literal type.
4333 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4334
4335 case Sema::CXXCopyConstructor:
4336 case Sema::CXXMoveConstructor:
4337 // For copy or move constructors, we need to perform overload resolution.
4338 break;
4339
4340 case Sema::CXXCopyAssignment:
4341 case Sema::CXXMoveAssignment:
4342 if (!S.getLangOpts().CPlusPlus1y)
4343 return false;
4344 // In C++1y, we need to perform overload resolution.
4345 Ctor = false;
4346 break;
4347
4348 case Sema::CXXDestructor:
4349 case Sema::CXXInvalid:
4350 return false;
4351 }
4352
4353 // -- if the class is a non-empty union, or for each non-empty anonymous
4354 // union member of a non-union class, exactly one non-static data member
4355 // shall be initialized; [DR1359]
4356 //
4357 // If we squint, this is guaranteed, since exactly one non-static data member
4358 // will be initialized (if the constructor isn't deleted), we just don't know
4359 // which one.
4360 if (Ctor && ClassDecl->isUnion())
4361 return true;
4362
4363 // -- the class shall not have any virtual base classes;
4364 if (Ctor && ClassDecl->getNumVBases())
4365 return false;
4366
4367 // C++1y [class.copy]p26:
4368 // -- [the class] is a literal type, and
4369 if (!Ctor && !ClassDecl->isLiteral())
4370 return false;
4371
4372 // -- every constructor involved in initializing [...] base class
4373 // sub-objects shall be a constexpr constructor;
4374 // -- the assignment operator selected to copy/move each direct base
4375 // class is a constexpr function, and
4376 for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4377 BEnd = ClassDecl->bases_end();
4378 B != BEnd; ++B) {
4379 const RecordType *BaseType = B->getType()->getAs<RecordType>();
4380 if (!BaseType) continue;
4381
4382 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4383 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4384 return false;
4385 }
4386
4387 // -- every constructor involved in initializing non-static data members
4388 // [...] shall be a constexpr constructor;
4389 // -- every non-static data member and base class sub-object shall be
4390 // initialized
4391 // -- for each non-stastic data member of X that is of class type (or array
4392 // thereof), the assignment operator selected to copy/move that member is
4393 // a constexpr function
4394 for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4395 FEnd = ClassDecl->field_end();
4396 F != FEnd; ++F) {
4397 if (F->isInvalidDecl())
4398 continue;
4399 if (const RecordType *RecordTy =
4400 S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4401 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4402 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4403 return false;
4404 }
4405 }
4406
4407 // All OK, it's constexpr!
4408 return true;
4409 }
4410
4411 static Sema::ImplicitExceptionSpecification
computeImplicitExceptionSpec(Sema & S,SourceLocation Loc,CXXMethodDecl * MD)4412 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4413 switch (S.getSpecialMember(MD)) {
4414 case Sema::CXXDefaultConstructor:
4415 return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4416 case Sema::CXXCopyConstructor:
4417 return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4418 case Sema::CXXCopyAssignment:
4419 return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4420 case Sema::CXXMoveConstructor:
4421 return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4422 case Sema::CXXMoveAssignment:
4423 return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4424 case Sema::CXXDestructor:
4425 return S.ComputeDefaultedDtorExceptionSpec(MD);
4426 case Sema::CXXInvalid:
4427 break;
4428 }
4429 assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4430 "only special members have implicit exception specs");
4431 return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4432 }
4433
4434 static void
updateExceptionSpec(Sema & S,FunctionDecl * FD,const FunctionProtoType * FPT,const Sema::ImplicitExceptionSpecification & ExceptSpec)4435 updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4436 const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4437 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4438 ExceptSpec.getEPI(EPI);
4439 FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4440 FPT->getArgTypes(), EPI));
4441 }
4442
EvaluateImplicitExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)4443 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4444 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4445 if (FPT->getExceptionSpecType() != EST_Unevaluated)
4446 return;
4447
4448 // Evaluate the exception specification.
4449 ImplicitExceptionSpecification ExceptSpec =
4450 computeImplicitExceptionSpec(*this, Loc, MD);
4451
4452 // Update the type of the special member to use it.
4453 updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4454
4455 // A user-provided destructor can be defined outside the class. When that
4456 // happens, be sure to update the exception specification on both
4457 // declarations.
4458 const FunctionProtoType *CanonicalFPT =
4459 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4460 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4461 updateExceptionSpec(*this, MD->getCanonicalDecl(),
4462 CanonicalFPT, ExceptSpec);
4463 }
4464
CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl * MD)4465 void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4466 CXXRecordDecl *RD = MD->getParent();
4467 CXXSpecialMember CSM = getSpecialMember(MD);
4468
4469 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4470 "not an explicitly-defaulted special member");
4471
4472 // Whether this was the first-declared instance of the constructor.
4473 // This affects whether we implicitly add an exception spec and constexpr.
4474 bool First = MD == MD->getCanonicalDecl();
4475
4476 bool HadError = false;
4477
4478 // C++11 [dcl.fct.def.default]p1:
4479 // A function that is explicitly defaulted shall
4480 // -- be a special member function (checked elsewhere),
4481 // -- have the same type (except for ref-qualifiers, and except that a
4482 // copy operation can take a non-const reference) as an implicit
4483 // declaration, and
4484 // -- not have default arguments.
4485 unsigned ExpectedParams = 1;
4486 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4487 ExpectedParams = 0;
4488 if (MD->getNumParams() != ExpectedParams) {
4489 // This also checks for default arguments: a copy or move constructor with a
4490 // default argument is classified as a default constructor, and assignment
4491 // operations and destructors can't have default arguments.
4492 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4493 << CSM << MD->getSourceRange();
4494 HadError = true;
4495 } else if (MD->isVariadic()) {
4496 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4497 << CSM << MD->getSourceRange();
4498 HadError = true;
4499 }
4500
4501 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4502
4503 bool CanHaveConstParam = false;
4504 if (CSM == CXXCopyConstructor)
4505 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4506 else if (CSM == CXXCopyAssignment)
4507 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4508
4509 QualType ReturnType = Context.VoidTy;
4510 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4511 // Check for return type matching.
4512 ReturnType = Type->getResultType();
4513 QualType ExpectedReturnType =
4514 Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4515 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4516 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4517 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4518 HadError = true;
4519 }
4520
4521 // A defaulted special member cannot have cv-qualifiers.
4522 if (Type->getTypeQuals()) {
4523 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4524 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4525 HadError = true;
4526 }
4527 }
4528
4529 // Check for parameter type matching.
4530 QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4531 bool HasConstParam = false;
4532 if (ExpectedParams && ArgType->isReferenceType()) {
4533 // Argument must be reference to possibly-const T.
4534 QualType ReferentType = ArgType->getPointeeType();
4535 HasConstParam = ReferentType.isConstQualified();
4536
4537 if (ReferentType.isVolatileQualified()) {
4538 Diag(MD->getLocation(),
4539 diag::err_defaulted_special_member_volatile_param) << CSM;
4540 HadError = true;
4541 }
4542
4543 if (HasConstParam && !CanHaveConstParam) {
4544 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4545 Diag(MD->getLocation(),
4546 diag::err_defaulted_special_member_copy_const_param)
4547 << (CSM == CXXCopyAssignment);
4548 // FIXME: Explain why this special member can't be const.
4549 } else {
4550 Diag(MD->getLocation(),
4551 diag::err_defaulted_special_member_move_const_param)
4552 << (CSM == CXXMoveAssignment);
4553 }
4554 HadError = true;
4555 }
4556 } else if (ExpectedParams) {
4557 // A copy assignment operator can take its argument by value, but a
4558 // defaulted one cannot.
4559 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4560 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4561 HadError = true;
4562 }
4563
4564 // C++11 [dcl.fct.def.default]p2:
4565 // An explicitly-defaulted function may be declared constexpr only if it
4566 // would have been implicitly declared as constexpr,
4567 // Do not apply this rule to members of class templates, since core issue 1358
4568 // makes such functions always instantiate to constexpr functions. For
4569 // functions which cannot be constexpr (for non-constructors in C++11 and for
4570 // destructors in C++1y), this is checked elsewhere.
4571 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4572 HasConstParam);
4573 if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4574 : isa<CXXConstructorDecl>(MD)) &&
4575 MD->isConstexpr() && !Constexpr &&
4576 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4577 Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4578 // FIXME: Explain why the special member can't be constexpr.
4579 HadError = true;
4580 }
4581
4582 // and may have an explicit exception-specification only if it is compatible
4583 // with the exception-specification on the implicit declaration.
4584 if (Type->hasExceptionSpec()) {
4585 // Delay the check if this is the first declaration of the special member,
4586 // since we may not have parsed some necessary in-class initializers yet.
4587 if (First) {
4588 // If the exception specification needs to be instantiated, do so now,
4589 // before we clobber it with an EST_Unevaluated specification below.
4590 if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4591 InstantiateExceptionSpec(MD->getLocStart(), MD);
4592 Type = MD->getType()->getAs<FunctionProtoType>();
4593 }
4594 DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4595 } else
4596 CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4597 }
4598
4599 // If a function is explicitly defaulted on its first declaration,
4600 if (First) {
4601 // -- it is implicitly considered to be constexpr if the implicit
4602 // definition would be,
4603 MD->setConstexpr(Constexpr);
4604
4605 // -- it is implicitly considered to have the same exception-specification
4606 // as if it had been implicitly declared,
4607 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4608 EPI.ExceptionSpecType = EST_Unevaluated;
4609 EPI.ExceptionSpecDecl = MD;
4610 MD->setType(Context.getFunctionType(ReturnType,
4611 ArrayRef<QualType>(&ArgType,
4612 ExpectedParams),
4613 EPI));
4614 }
4615
4616 if (ShouldDeleteSpecialMember(MD, CSM)) {
4617 if (First) {
4618 SetDeclDeleted(MD, MD->getLocation());
4619 } else {
4620 // C++11 [dcl.fct.def.default]p4:
4621 // [For a] user-provided explicitly-defaulted function [...] if such a
4622 // function is implicitly defined as deleted, the program is ill-formed.
4623 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4624 HadError = true;
4625 }
4626 }
4627
4628 if (HadError)
4629 MD->setInvalidDecl();
4630 }
4631
4632 /// Check whether the exception specification provided for an
4633 /// explicitly-defaulted special member matches the exception specification
4634 /// that would have been generated for an implicit special member, per
4635 /// C++11 [dcl.fct.def.default]p2.
CheckExplicitlyDefaultedMemberExceptionSpec(CXXMethodDecl * MD,const FunctionProtoType * SpecifiedType)4636 void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4637 CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4638 // Compute the implicit exception specification.
4639 FunctionProtoType::ExtProtoInfo EPI;
4640 computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4641 const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4642 Context.getFunctionType(Context.VoidTy, None, EPI));
4643
4644 // Ensure that it matches.
4645 CheckEquivalentExceptionSpec(
4646 PDiag(diag::err_incorrect_defaulted_exception_spec)
4647 << getSpecialMember(MD), PDiag(),
4648 ImplicitType, SourceLocation(),
4649 SpecifiedType, MD->getLocation());
4650 }
4651
CheckDelayedExplicitlyDefaultedMemberExceptionSpecs()4652 void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4653 for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4654 I != N; ++I)
4655 CheckExplicitlyDefaultedMemberExceptionSpec(
4656 DelayedDefaultedMemberExceptionSpecs[I].first,
4657 DelayedDefaultedMemberExceptionSpecs[I].second);
4658
4659 DelayedDefaultedMemberExceptionSpecs.clear();
4660 }
4661
4662 namespace {
4663 struct SpecialMemberDeletionInfo {
4664 Sema &S;
4665 CXXMethodDecl *MD;
4666 Sema::CXXSpecialMember CSM;
4667 bool Diagnose;
4668
4669 // Properties of the special member, computed for convenience.
4670 bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4671 SourceLocation Loc;
4672
4673 bool AllFieldsAreConst;
4674
SpecialMemberDeletionInfo__anon7fa201ac0711::SpecialMemberDeletionInfo4675 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4676 Sema::CXXSpecialMember CSM, bool Diagnose)
4677 : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4678 IsConstructor(false), IsAssignment(false), IsMove(false),
4679 ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4680 AllFieldsAreConst(true) {
4681 switch (CSM) {
4682 case Sema::CXXDefaultConstructor:
4683 case Sema::CXXCopyConstructor:
4684 IsConstructor = true;
4685 break;
4686 case Sema::CXXMoveConstructor:
4687 IsConstructor = true;
4688 IsMove = true;
4689 break;
4690 case Sema::CXXCopyAssignment:
4691 IsAssignment = true;
4692 break;
4693 case Sema::CXXMoveAssignment:
4694 IsAssignment = true;
4695 IsMove = true;
4696 break;
4697 case Sema::CXXDestructor:
4698 break;
4699 case Sema::CXXInvalid:
4700 llvm_unreachable("invalid special member kind");
4701 }
4702
4703 if (MD->getNumParams()) {
4704 ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4705 VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4706 }
4707 }
4708
inUnion__anon7fa201ac0711::SpecialMemberDeletionInfo4709 bool inUnion() const { return MD->getParent()->isUnion(); }
4710
4711 /// Look up the corresponding special member in the given class.
lookupIn__anon7fa201ac0711::SpecialMemberDeletionInfo4712 Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4713 unsigned Quals) {
4714 unsigned TQ = MD->getTypeQualifiers();
4715 // cv-qualifiers on class members don't affect default ctor / dtor calls.
4716 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4717 Quals = 0;
4718 return S.LookupSpecialMember(Class, CSM,
4719 ConstArg || (Quals & Qualifiers::Const),
4720 VolatileArg || (Quals & Qualifiers::Volatile),
4721 MD->getRefQualifier() == RQ_RValue,
4722 TQ & Qualifiers::Const,
4723 TQ & Qualifiers::Volatile);
4724 }
4725
4726 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4727
4728 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4729 bool shouldDeleteForField(FieldDecl *FD);
4730 bool shouldDeleteForAllConstMembers();
4731
4732 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4733 unsigned Quals);
4734 bool shouldDeleteForSubobjectCall(Subobject Subobj,
4735 Sema::SpecialMemberOverloadResult *SMOR,
4736 bool IsDtorCallInCtor);
4737
4738 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4739 };
4740 }
4741
4742 /// Is the given special member inaccessible when used on the given
4743 /// sub-object.
isAccessible(Subobject Subobj,CXXMethodDecl * target)4744 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4745 CXXMethodDecl *target) {
4746 /// If we're operating on a base class, the object type is the
4747 /// type of this special member.
4748 QualType objectTy;
4749 AccessSpecifier access = target->getAccess();
4750 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4751 objectTy = S.Context.getTypeDeclType(MD->getParent());
4752 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4753
4754 // If we're operating on a field, the object type is the type of the field.
4755 } else {
4756 objectTy = S.Context.getTypeDeclType(target->getParent());
4757 }
4758
4759 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4760 }
4761
4762 /// Check whether we should delete a special member due to the implicit
4763 /// definition containing a call to a special member of a subobject.
shouldDeleteForSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult * SMOR,bool IsDtorCallInCtor)4764 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4765 Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4766 bool IsDtorCallInCtor) {
4767 CXXMethodDecl *Decl = SMOR->getMethod();
4768 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4769
4770 int DiagKind = -1;
4771
4772 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4773 DiagKind = !Decl ? 0 : 1;
4774 else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4775 DiagKind = 2;
4776 else if (!isAccessible(Subobj, Decl))
4777 DiagKind = 3;
4778 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4779 !Decl->isTrivial()) {
4780 // A member of a union must have a trivial corresponding special member.
4781 // As a weird special case, a destructor call from a union's constructor
4782 // must be accessible and non-deleted, but need not be trivial. Such a
4783 // destructor is never actually called, but is semantically checked as
4784 // if it were.
4785 DiagKind = 4;
4786 }
4787
4788 if (DiagKind == -1)
4789 return false;
4790
4791 if (Diagnose) {
4792 if (Field) {
4793 S.Diag(Field->getLocation(),
4794 diag::note_deleted_special_member_class_subobject)
4795 << CSM << MD->getParent() << /*IsField*/true
4796 << Field << DiagKind << IsDtorCallInCtor;
4797 } else {
4798 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4799 S.Diag(Base->getLocStart(),
4800 diag::note_deleted_special_member_class_subobject)
4801 << CSM << MD->getParent() << /*IsField*/false
4802 << Base->getType() << DiagKind << IsDtorCallInCtor;
4803 }
4804
4805 if (DiagKind == 1)
4806 S.NoteDeletedFunction(Decl);
4807 // FIXME: Explain inaccessibility if DiagKind == 3.
4808 }
4809
4810 return true;
4811 }
4812
4813 /// Check whether we should delete a special member function due to having a
4814 /// direct or virtual base class or non-static data member of class type M.
shouldDeleteForClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)4815 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4816 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4817 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4818
4819 // C++11 [class.ctor]p5:
4820 // -- any direct or virtual base class, or non-static data member with no
4821 // brace-or-equal-initializer, has class type M (or array thereof) and
4822 // either M has no default constructor or overload resolution as applied
4823 // to M's default constructor results in an ambiguity or in a function
4824 // that is deleted or inaccessible
4825 // C++11 [class.copy]p11, C++11 [class.copy]p23:
4826 // -- a direct or virtual base class B that cannot be copied/moved because
4827 // overload resolution, as applied to B's corresponding special member,
4828 // results in an ambiguity or a function that is deleted or inaccessible
4829 // from the defaulted special member
4830 // C++11 [class.dtor]p5:
4831 // -- any direct or virtual base class [...] has a type with a destructor
4832 // that is deleted or inaccessible
4833 if (!(CSM == Sema::CXXDefaultConstructor &&
4834 Field && Field->hasInClassInitializer()) &&
4835 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4836 return true;
4837
4838 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4839 // -- any direct or virtual base class or non-static data member has a
4840 // type with a destructor that is deleted or inaccessible
4841 if (IsConstructor) {
4842 Sema::SpecialMemberOverloadResult *SMOR =
4843 S.LookupSpecialMember(Class, Sema::CXXDestructor,
4844 false, false, false, false, false);
4845 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4846 return true;
4847 }
4848
4849 return false;
4850 }
4851
4852 /// Check whether we should delete a special member function due to the class
4853 /// having a particular direct or virtual base class.
shouldDeleteForBase(CXXBaseSpecifier * Base)4854 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4855 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4856 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4857 }
4858
4859 /// Check whether we should delete a special member function due to the class
4860 /// having a particular non-static data member.
shouldDeleteForField(FieldDecl * FD)4861 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4862 QualType FieldType = S.Context.getBaseElementType(FD->getType());
4863 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4864
4865 if (CSM == Sema::CXXDefaultConstructor) {
4866 // For a default constructor, all references must be initialized in-class
4867 // and, if a union, it must have a non-const member.
4868 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4869 if (Diagnose)
4870 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4871 << MD->getParent() << FD << FieldType << /*Reference*/0;
4872 return true;
4873 }
4874 // C++11 [class.ctor]p5: any non-variant non-static data member of
4875 // const-qualified type (or array thereof) with no
4876 // brace-or-equal-initializer does not have a user-provided default
4877 // constructor.
4878 if (!inUnion() && FieldType.isConstQualified() &&
4879 !FD->hasInClassInitializer() &&
4880 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4881 if (Diagnose)
4882 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4883 << MD->getParent() << FD << FD->getType() << /*Const*/1;
4884 return true;
4885 }
4886
4887 if (inUnion() && !FieldType.isConstQualified())
4888 AllFieldsAreConst = false;
4889 } else if (CSM == Sema::CXXCopyConstructor) {
4890 // For a copy constructor, data members must not be of rvalue reference
4891 // type.
4892 if (FieldType->isRValueReferenceType()) {
4893 if (Diagnose)
4894 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4895 << MD->getParent() << FD << FieldType;
4896 return true;
4897 }
4898 } else if (IsAssignment) {
4899 // For an assignment operator, data members must not be of reference type.
4900 if (FieldType->isReferenceType()) {
4901 if (Diagnose)
4902 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4903 << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4904 return true;
4905 }
4906 if (!FieldRecord && FieldType.isConstQualified()) {
4907 // C++11 [class.copy]p23:
4908 // -- a non-static data member of const non-class type (or array thereof)
4909 if (Diagnose)
4910 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4911 << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4912 return true;
4913 }
4914 }
4915
4916 if (FieldRecord) {
4917 // Some additional restrictions exist on the variant members.
4918 if (!inUnion() && FieldRecord->isUnion() &&
4919 FieldRecord->isAnonymousStructOrUnion()) {
4920 bool AllVariantFieldsAreConst = true;
4921
4922 // FIXME: Handle anonymous unions declared within anonymous unions.
4923 for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4924 UE = FieldRecord->field_end();
4925 UI != UE; ++UI) {
4926 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4927
4928 if (!UnionFieldType.isConstQualified())
4929 AllVariantFieldsAreConst = false;
4930
4931 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4932 if (UnionFieldRecord &&
4933 shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4934 UnionFieldType.getCVRQualifiers()))
4935 return true;
4936 }
4937
4938 // At least one member in each anonymous union must be non-const
4939 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4940 FieldRecord->field_begin() != FieldRecord->field_end()) {
4941 if (Diagnose)
4942 S.Diag(FieldRecord->getLocation(),
4943 diag::note_deleted_default_ctor_all_const)
4944 << MD->getParent() << /*anonymous union*/1;
4945 return true;
4946 }
4947
4948 // Don't check the implicit member of the anonymous union type.
4949 // This is technically non-conformant, but sanity demands it.
4950 return false;
4951 }
4952
4953 if (shouldDeleteForClassSubobject(FieldRecord, FD,
4954 FieldType.getCVRQualifiers()))
4955 return true;
4956 }
4957
4958 return false;
4959 }
4960
4961 /// C++11 [class.ctor] p5:
4962 /// A defaulted default constructor for a class X is defined as deleted if
4963 /// X is a union and all of its variant members are of const-qualified type.
shouldDeleteForAllConstMembers()4964 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4965 // This is a silly definition, because it gives an empty union a deleted
4966 // default constructor. Don't do that.
4967 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4968 (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4969 if (Diagnose)
4970 S.Diag(MD->getParent()->getLocation(),
4971 diag::note_deleted_default_ctor_all_const)
4972 << MD->getParent() << /*not anonymous union*/0;
4973 return true;
4974 }
4975 return false;
4976 }
4977
4978 /// Determine whether a defaulted special member function should be defined as
4979 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4980 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
ShouldDeleteSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)4981 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4982 bool Diagnose) {
4983 if (MD->isInvalidDecl())
4984 return false;
4985 CXXRecordDecl *RD = MD->getParent();
4986 assert(!RD->isDependentType() && "do deletion after instantiation");
4987 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4988 return false;
4989
4990 // C++11 [expr.lambda.prim]p19:
4991 // The closure type associated with a lambda-expression has a
4992 // deleted (8.4.3) default constructor and a deleted copy
4993 // assignment operator.
4994 if (RD->isLambda() &&
4995 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4996 if (Diagnose)
4997 Diag(RD->getLocation(), diag::note_lambda_decl);
4998 return true;
4999 }
5000
5001 // For an anonymous struct or union, the copy and assignment special members
5002 // will never be used, so skip the check. For an anonymous union declared at
5003 // namespace scope, the constructor and destructor are used.
5004 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5005 RD->isAnonymousStructOrUnion())
5006 return false;
5007
5008 // C++11 [class.copy]p7, p18:
5009 // If the class definition declares a move constructor or move assignment
5010 // operator, an implicitly declared copy constructor or copy assignment
5011 // operator is defined as deleted.
5012 if (MD->isImplicit() &&
5013 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5014 CXXMethodDecl *UserDeclaredMove = 0;
5015
5016 // In Microsoft mode, a user-declared move only causes the deletion of the
5017 // corresponding copy operation, not both copy operations.
5018 if (RD->hasUserDeclaredMoveConstructor() &&
5019 (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
5020 if (!Diagnose) return true;
5021
5022 // Find any user-declared move constructor.
5023 for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
5024 E = RD->ctor_end(); I != E; ++I) {
5025 if (I->isMoveConstructor()) {
5026 UserDeclaredMove = *I;
5027 break;
5028 }
5029 }
5030 assert(UserDeclaredMove);
5031 } else if (RD->hasUserDeclaredMoveAssignment() &&
5032 (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
5033 if (!Diagnose) return true;
5034
5035 // Find any user-declared move assignment operator.
5036 for (CXXRecordDecl::method_iterator I = RD->method_begin(),
5037 E = RD->method_end(); I != E; ++I) {
5038 if (I->isMoveAssignmentOperator()) {
5039 UserDeclaredMove = *I;
5040 break;
5041 }
5042 }
5043 assert(UserDeclaredMove);
5044 }
5045
5046 if (UserDeclaredMove) {
5047 Diag(UserDeclaredMove->getLocation(),
5048 diag::note_deleted_copy_user_declared_move)
5049 << (CSM == CXXCopyAssignment) << RD
5050 << UserDeclaredMove->isMoveAssignmentOperator();
5051 return true;
5052 }
5053 }
5054
5055 // Do access control from the special member function
5056 ContextRAII MethodContext(*this, MD);
5057
5058 // C++11 [class.dtor]p5:
5059 // -- for a virtual destructor, lookup of the non-array deallocation function
5060 // results in an ambiguity or in a function that is deleted or inaccessible
5061 if (CSM == CXXDestructor && MD->isVirtual()) {
5062 FunctionDecl *OperatorDelete = 0;
5063 DeclarationName Name =
5064 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5065 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5066 OperatorDelete, false)) {
5067 if (Diagnose)
5068 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5069 return true;
5070 }
5071 }
5072
5073 SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5074
5075 for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5076 BE = RD->bases_end(); BI != BE; ++BI)
5077 if (!BI->isVirtual() &&
5078 SMI.shouldDeleteForBase(BI))
5079 return true;
5080
5081 // Per DR1611, do not consider virtual bases of constructors of abstract
5082 // classes, since we are not going to construct them.
5083 if (!RD->isAbstract() || !SMI.IsConstructor) {
5084 for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
5085 BE = RD->vbases_end();
5086 BI != BE; ++BI)
5087 if (SMI.shouldDeleteForBase(BI))
5088 return true;
5089 }
5090
5091 for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5092 FE = RD->field_end(); FI != FE; ++FI)
5093 if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5094 SMI.shouldDeleteForField(*FI))
5095 return true;
5096
5097 if (SMI.shouldDeleteForAllConstMembers())
5098 return true;
5099
5100 return false;
5101 }
5102
5103 /// Perform lookup for a special member of the specified kind, and determine
5104 /// whether it is trivial. If the triviality can be determined without the
5105 /// lookup, skip it. This is intended for use when determining whether a
5106 /// special member of a containing object is trivial, and thus does not ever
5107 /// perform overload resolution for default constructors.
5108 ///
5109 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5110 /// member that was most likely to be intended to be trivial, if any.
findTrivialSpecialMember(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,unsigned Quals,CXXMethodDecl ** Selected)5111 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5112 Sema::CXXSpecialMember CSM, unsigned Quals,
5113 CXXMethodDecl **Selected) {
5114 if (Selected)
5115 *Selected = 0;
5116
5117 switch (CSM) {
5118 case Sema::CXXInvalid:
5119 llvm_unreachable("not a special member");
5120
5121 case Sema::CXXDefaultConstructor:
5122 // C++11 [class.ctor]p5:
5123 // A default constructor is trivial if:
5124 // - all the [direct subobjects] have trivial default constructors
5125 //
5126 // Note, no overload resolution is performed in this case.
5127 if (RD->hasTrivialDefaultConstructor())
5128 return true;
5129
5130 if (Selected) {
5131 // If there's a default constructor which could have been trivial, dig it
5132 // out. Otherwise, if there's any user-provided default constructor, point
5133 // to that as an example of why there's not a trivial one.
5134 CXXConstructorDecl *DefCtor = 0;
5135 if (RD->needsImplicitDefaultConstructor())
5136 S.DeclareImplicitDefaultConstructor(RD);
5137 for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
5138 CE = RD->ctor_end(); CI != CE; ++CI) {
5139 if (!CI->isDefaultConstructor())
5140 continue;
5141 DefCtor = *CI;
5142 if (!DefCtor->isUserProvided())
5143 break;
5144 }
5145
5146 *Selected = DefCtor;
5147 }
5148
5149 return false;
5150
5151 case Sema::CXXDestructor:
5152 // C++11 [class.dtor]p5:
5153 // A destructor is trivial if:
5154 // - all the direct [subobjects] have trivial destructors
5155 if (RD->hasTrivialDestructor())
5156 return true;
5157
5158 if (Selected) {
5159 if (RD->needsImplicitDestructor())
5160 S.DeclareImplicitDestructor(RD);
5161 *Selected = RD->getDestructor();
5162 }
5163
5164 return false;
5165
5166 case Sema::CXXCopyConstructor:
5167 // C++11 [class.copy]p12:
5168 // A copy constructor is trivial if:
5169 // - the constructor selected to copy each direct [subobject] is trivial
5170 if (RD->hasTrivialCopyConstructor()) {
5171 if (Quals == Qualifiers::Const)
5172 // We must either select the trivial copy constructor or reach an
5173 // ambiguity; no need to actually perform overload resolution.
5174 return true;
5175 } else if (!Selected) {
5176 return false;
5177 }
5178 // In C++98, we are not supposed to perform overload resolution here, but we
5179 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5180 // cases like B as having a non-trivial copy constructor:
5181 // struct A { template<typename T> A(T&); };
5182 // struct B { mutable A a; };
5183 goto NeedOverloadResolution;
5184
5185 case Sema::CXXCopyAssignment:
5186 // C++11 [class.copy]p25:
5187 // A copy assignment operator is trivial if:
5188 // - the assignment operator selected to copy each direct [subobject] is
5189 // trivial
5190 if (RD->hasTrivialCopyAssignment()) {
5191 if (Quals == Qualifiers::Const)
5192 return true;
5193 } else if (!Selected) {
5194 return false;
5195 }
5196 // In C++98, we are not supposed to perform overload resolution here, but we
5197 // treat that as a language defect.
5198 goto NeedOverloadResolution;
5199
5200 case Sema::CXXMoveConstructor:
5201 case Sema::CXXMoveAssignment:
5202 NeedOverloadResolution:
5203 Sema::SpecialMemberOverloadResult *SMOR =
5204 S.LookupSpecialMember(RD, CSM,
5205 Quals & Qualifiers::Const,
5206 Quals & Qualifiers::Volatile,
5207 /*RValueThis*/false, /*ConstThis*/false,
5208 /*VolatileThis*/false);
5209
5210 // The standard doesn't describe how to behave if the lookup is ambiguous.
5211 // We treat it as not making the member non-trivial, just like the standard
5212 // mandates for the default constructor. This should rarely matter, because
5213 // the member will also be deleted.
5214 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5215 return true;
5216
5217 if (!SMOR->getMethod()) {
5218 assert(SMOR->getKind() ==
5219 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5220 return false;
5221 }
5222
5223 // We deliberately don't check if we found a deleted special member. We're
5224 // not supposed to!
5225 if (Selected)
5226 *Selected = SMOR->getMethod();
5227 return SMOR->getMethod()->isTrivial();
5228 }
5229
5230 llvm_unreachable("unknown special method kind");
5231 }
5232
findUserDeclaredCtor(CXXRecordDecl * RD)5233 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5234 for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5235 CI != CE; ++CI)
5236 if (!CI->isImplicit())
5237 return *CI;
5238
5239 // Look for constructor templates.
5240 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5241 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5242 if (CXXConstructorDecl *CD =
5243 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5244 return CD;
5245 }
5246
5247 return 0;
5248 }
5249
5250 /// The kind of subobject we are checking for triviality. The values of this
5251 /// enumeration are used in diagnostics.
5252 enum TrivialSubobjectKind {
5253 /// The subobject is a base class.
5254 TSK_BaseClass,
5255 /// The subobject is a non-static data member.
5256 TSK_Field,
5257 /// The object is actually the complete object.
5258 TSK_CompleteObject
5259 };
5260
5261 /// Check whether the special member selected for a given type would be trivial.
checkTrivialSubobjectCall(Sema & S,SourceLocation SubobjLoc,QualType SubType,Sema::CXXSpecialMember CSM,TrivialSubobjectKind Kind,bool Diagnose)5262 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5263 QualType SubType,
5264 Sema::CXXSpecialMember CSM,
5265 TrivialSubobjectKind Kind,
5266 bool Diagnose) {
5267 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5268 if (!SubRD)
5269 return true;
5270
5271 CXXMethodDecl *Selected;
5272 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5273 Diagnose ? &Selected : 0))
5274 return true;
5275
5276 if (Diagnose) {
5277 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5278 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5279 << Kind << SubType.getUnqualifiedType();
5280 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5281 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5282 } else if (!Selected)
5283 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5284 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5285 else if (Selected->isUserProvided()) {
5286 if (Kind == TSK_CompleteObject)
5287 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5288 << Kind << SubType.getUnqualifiedType() << CSM;
5289 else {
5290 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5291 << Kind << SubType.getUnqualifiedType() << CSM;
5292 S.Diag(Selected->getLocation(), diag::note_declared_at);
5293 }
5294 } else {
5295 if (Kind != TSK_CompleteObject)
5296 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5297 << Kind << SubType.getUnqualifiedType() << CSM;
5298
5299 // Explain why the defaulted or deleted special member isn't trivial.
5300 S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5301 }
5302 }
5303
5304 return false;
5305 }
5306
5307 /// Check whether the members of a class type allow a special member to be
5308 /// trivial.
checkTrivialClassMembers(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,bool ConstArg,bool Diagnose)5309 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5310 Sema::CXXSpecialMember CSM,
5311 bool ConstArg, bool Diagnose) {
5312 for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5313 FE = RD->field_end(); FI != FE; ++FI) {
5314 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5315 continue;
5316
5317 QualType FieldType = S.Context.getBaseElementType(FI->getType());
5318
5319 // Pretend anonymous struct or union members are members of this class.
5320 if (FI->isAnonymousStructOrUnion()) {
5321 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5322 CSM, ConstArg, Diagnose))
5323 return false;
5324 continue;
5325 }
5326
5327 // C++11 [class.ctor]p5:
5328 // A default constructor is trivial if [...]
5329 // -- no non-static data member of its class has a
5330 // brace-or-equal-initializer
5331 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5332 if (Diagnose)
5333 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5334 return false;
5335 }
5336
5337 // Objective C ARC 4.3.5:
5338 // [...] nontrivally ownership-qualified types are [...] not trivially
5339 // default constructible, copy constructible, move constructible, copy
5340 // assignable, move assignable, or destructible [...]
5341 if (S.getLangOpts().ObjCAutoRefCount &&
5342 FieldType.hasNonTrivialObjCLifetime()) {
5343 if (Diagnose)
5344 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5345 << RD << FieldType.getObjCLifetime();
5346 return false;
5347 }
5348
5349 if (ConstArg && !FI->isMutable())
5350 FieldType.addConst();
5351 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5352 TSK_Field, Diagnose))
5353 return false;
5354 }
5355
5356 return true;
5357 }
5358
5359 /// Diagnose why the specified class does not have a trivial special member of
5360 /// the given kind.
DiagnoseNontrivial(const CXXRecordDecl * RD,CXXSpecialMember CSM)5361 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5362 QualType Ty = Context.getRecordType(RD);
5363 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5364 Ty.addConst();
5365
5366 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5367 TSK_CompleteObject, /*Diagnose*/true);
5368 }
5369
5370 /// Determine whether a defaulted or deleted special member function is trivial,
5371 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5372 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
SpecialMemberIsTrivial(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)5373 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5374 bool Diagnose) {
5375 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5376
5377 CXXRecordDecl *RD = MD->getParent();
5378
5379 bool ConstArg = false;
5380
5381 // C++11 [class.copy]p12, p25:
5382 // A [special member] is trivial if its declared parameter type is the same
5383 // as if it had been implicitly declared [...]
5384 switch (CSM) {
5385 case CXXDefaultConstructor:
5386 case CXXDestructor:
5387 // Trivial default constructors and destructors cannot have parameters.
5388 break;
5389
5390 case CXXCopyConstructor:
5391 case CXXCopyAssignment: {
5392 // Trivial copy operations always have const, non-volatile parameter types.
5393 ConstArg = true;
5394 const ParmVarDecl *Param0 = MD->getParamDecl(0);
5395 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5396 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5397 if (Diagnose)
5398 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5399 << Param0->getSourceRange() << Param0->getType()
5400 << Context.getLValueReferenceType(
5401 Context.getRecordType(RD).withConst());
5402 return false;
5403 }
5404 break;
5405 }
5406
5407 case CXXMoveConstructor:
5408 case CXXMoveAssignment: {
5409 // Trivial move operations always have non-cv-qualified parameters.
5410 const ParmVarDecl *Param0 = MD->getParamDecl(0);
5411 const RValueReferenceType *RT =
5412 Param0->getType()->getAs<RValueReferenceType>();
5413 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5414 if (Diagnose)
5415 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5416 << Param0->getSourceRange() << Param0->getType()
5417 << Context.getRValueReferenceType(Context.getRecordType(RD));
5418 return false;
5419 }
5420 break;
5421 }
5422
5423 case CXXInvalid:
5424 llvm_unreachable("not a special member");
5425 }
5426
5427 // FIXME: We require that the parameter-declaration-clause is equivalent to
5428 // that of an implicit declaration, not just that the declared parameter type
5429 // matches, in order to prevent absuridities like a function simultaneously
5430 // being a trivial copy constructor and a non-trivial default constructor.
5431 // This issue has not yet been assigned a core issue number.
5432 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5433 if (Diagnose)
5434 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5435 diag::note_nontrivial_default_arg)
5436 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5437 return false;
5438 }
5439 if (MD->isVariadic()) {
5440 if (Diagnose)
5441 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5442 return false;
5443 }
5444
5445 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5446 // A copy/move [constructor or assignment operator] is trivial if
5447 // -- the [member] selected to copy/move each direct base class subobject
5448 // is trivial
5449 //
5450 // C++11 [class.copy]p12, C++11 [class.copy]p25:
5451 // A [default constructor or destructor] is trivial if
5452 // -- all the direct base classes have trivial [default constructors or
5453 // destructors]
5454 for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5455 BE = RD->bases_end(); BI != BE; ++BI)
5456 if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5457 ConstArg ? BI->getType().withConst()
5458 : BI->getType(),
5459 CSM, TSK_BaseClass, Diagnose))
5460 return false;
5461
5462 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5463 // A copy/move [constructor or assignment operator] for a class X is
5464 // trivial if
5465 // -- for each non-static data member of X that is of class type (or array
5466 // thereof), the constructor selected to copy/move that member is
5467 // trivial
5468 //
5469 // C++11 [class.copy]p12, C++11 [class.copy]p25:
5470 // A [default constructor or destructor] is trivial if
5471 // -- for all of the non-static data members of its class that are of class
5472 // type (or array thereof), each such class has a trivial [default
5473 // constructor or destructor]
5474 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5475 return false;
5476
5477 // C++11 [class.dtor]p5:
5478 // A destructor is trivial if [...]
5479 // -- the destructor is not virtual
5480 if (CSM == CXXDestructor && MD->isVirtual()) {
5481 if (Diagnose)
5482 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5483 return false;
5484 }
5485
5486 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5487 // A [special member] for class X is trivial if [...]
5488 // -- class X has no virtual functions and no virtual base classes
5489 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5490 if (!Diagnose)
5491 return false;
5492
5493 if (RD->getNumVBases()) {
5494 // Check for virtual bases. We already know that the corresponding
5495 // member in all bases is trivial, so vbases must all be direct.
5496 CXXBaseSpecifier &BS = *RD->vbases_begin();
5497 assert(BS.isVirtual());
5498 Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5499 return false;
5500 }
5501
5502 // Must have a virtual method.
5503 for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5504 ME = RD->method_end(); MI != ME; ++MI) {
5505 if (MI->isVirtual()) {
5506 SourceLocation MLoc = MI->getLocStart();
5507 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5508 return false;
5509 }
5510 }
5511
5512 llvm_unreachable("dynamic class with no vbases and no virtual functions");
5513 }
5514
5515 // Looks like it's trivial!
5516 return true;
5517 }
5518
5519 /// \brief Data used with FindHiddenVirtualMethod
5520 namespace {
5521 struct FindHiddenVirtualMethodData {
5522 Sema *S;
5523 CXXMethodDecl *Method;
5524 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5525 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5526 };
5527 }
5528
5529 /// \brief Check whether any most overriden method from MD in Methods
CheckMostOverridenMethods(const CXXMethodDecl * MD,const llvm::SmallPtrSet<const CXXMethodDecl *,8> & Methods)5530 static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5531 const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5532 if (MD->size_overridden_methods() == 0)
5533 return Methods.count(MD->getCanonicalDecl());
5534 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5535 E = MD->end_overridden_methods();
5536 I != E; ++I)
5537 if (CheckMostOverridenMethods(*I, Methods))
5538 return true;
5539 return false;
5540 }
5541
5542 /// \brief Member lookup function that determines whether a given C++
5543 /// method overloads virtual methods in a base class without overriding any,
5544 /// to be used with CXXRecordDecl::lookupInBases().
FindHiddenVirtualMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)5545 static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5546 CXXBasePath &Path,
5547 void *UserData) {
5548 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5549
5550 FindHiddenVirtualMethodData &Data
5551 = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5552
5553 DeclarationName Name = Data.Method->getDeclName();
5554 assert(Name.getNameKind() == DeclarationName::Identifier);
5555
5556 bool foundSameNameMethod = false;
5557 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5558 for (Path.Decls = BaseRecord->lookup(Name);
5559 !Path.Decls.empty();
5560 Path.Decls = Path.Decls.slice(1)) {
5561 NamedDecl *D = Path.Decls.front();
5562 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5563 MD = MD->getCanonicalDecl();
5564 foundSameNameMethod = true;
5565 // Interested only in hidden virtual methods.
5566 if (!MD->isVirtual())
5567 continue;
5568 // If the method we are checking overrides a method from its base
5569 // don't warn about the other overloaded methods.
5570 if (!Data.S->IsOverload(Data.Method, MD, false))
5571 return true;
5572 // Collect the overload only if its hidden.
5573 if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5574 overloadedMethods.push_back(MD);
5575 }
5576 }
5577
5578 if (foundSameNameMethod)
5579 Data.OverloadedMethods.append(overloadedMethods.begin(),
5580 overloadedMethods.end());
5581 return foundSameNameMethod;
5582 }
5583
5584 /// \brief Add the most overriden methods from MD to Methods
AddMostOverridenMethods(const CXXMethodDecl * MD,llvm::SmallPtrSet<const CXXMethodDecl *,8> & Methods)5585 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5586 llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5587 if (MD->size_overridden_methods() == 0)
5588 Methods.insert(MD->getCanonicalDecl());
5589 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5590 E = MD->end_overridden_methods();
5591 I != E; ++I)
5592 AddMostOverridenMethods(*I, Methods);
5593 }
5594
5595 /// \brief See if a method overloads virtual methods in a base class without
5596 /// overriding any.
DiagnoseHiddenVirtualMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)5597 void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5598 if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5599 MD->getLocation()) == DiagnosticsEngine::Ignored)
5600 return;
5601 if (!MD->getDeclName().isIdentifier())
5602 return;
5603
5604 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5605 /*bool RecordPaths=*/false,
5606 /*bool DetectVirtual=*/false);
5607 FindHiddenVirtualMethodData Data;
5608 Data.Method = MD;
5609 Data.S = this;
5610
5611 // Keep the base methods that were overriden or introduced in the subclass
5612 // by 'using' in a set. A base method not in this set is hidden.
5613 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5614 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5615 NamedDecl *ND = *I;
5616 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5617 ND = shad->getTargetDecl();
5618 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5619 AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5620 }
5621
5622 if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5623 !Data.OverloadedMethods.empty()) {
5624 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5625 << MD << (Data.OverloadedMethods.size() > 1);
5626
5627 for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5628 CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5629 PartialDiagnostic PD = PDiag(
5630 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5631 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5632 Diag(overloadedMD->getLocation(), PD);
5633 }
5634 }
5635 }
5636
ActOnFinishCXXMemberSpecification(Scope * S,SourceLocation RLoc,Decl * TagDecl,SourceLocation LBrac,SourceLocation RBrac,AttributeList * AttrList)5637 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5638 Decl *TagDecl,
5639 SourceLocation LBrac,
5640 SourceLocation RBrac,
5641 AttributeList *AttrList) {
5642 if (!TagDecl)
5643 return;
5644
5645 AdjustDeclIfTemplate(TagDecl);
5646
5647 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5648 if (l->getKind() != AttributeList::AT_Visibility)
5649 continue;
5650 l->setInvalid();
5651 Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5652 l->getName();
5653 }
5654
5655 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5656 // strict aliasing violation!
5657 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5658 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5659
5660 CheckCompletedCXXClass(
5661 dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5662 }
5663
5664 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5665 /// special functions, such as the default constructor, copy
5666 /// constructor, or destructor, to the given C++ class (C++
5667 /// [special]p1). This routine can only be executed just before the
5668 /// definition of the class is complete.
AddImplicitlyDeclaredMembersToClass(CXXRecordDecl * ClassDecl)5669 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5670 if (!ClassDecl->hasUserDeclaredConstructor())
5671 ++ASTContext::NumImplicitDefaultConstructors;
5672
5673 if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5674 ++ASTContext::NumImplicitCopyConstructors;
5675
5676 // If the properties or semantics of the copy constructor couldn't be
5677 // determined while the class was being declared, force a declaration
5678 // of it now.
5679 if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5680 DeclareImplicitCopyConstructor(ClassDecl);
5681 }
5682
5683 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5684 ++ASTContext::NumImplicitMoveConstructors;
5685
5686 if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5687 DeclareImplicitMoveConstructor(ClassDecl);
5688 }
5689
5690 if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5691 ++ASTContext::NumImplicitCopyAssignmentOperators;
5692
5693 // If we have a dynamic class, then the copy assignment operator may be
5694 // virtual, so we have to declare it immediately. This ensures that, e.g.,
5695 // it shows up in the right place in the vtable and that we diagnose
5696 // problems with the implicit exception specification.
5697 if (ClassDecl->isDynamicClass() ||
5698 ClassDecl->needsOverloadResolutionForCopyAssignment())
5699 DeclareImplicitCopyAssignment(ClassDecl);
5700 }
5701
5702 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5703 ++ASTContext::NumImplicitMoveAssignmentOperators;
5704
5705 // Likewise for the move assignment operator.
5706 if (ClassDecl->isDynamicClass() ||
5707 ClassDecl->needsOverloadResolutionForMoveAssignment())
5708 DeclareImplicitMoveAssignment(ClassDecl);
5709 }
5710
5711 if (!ClassDecl->hasUserDeclaredDestructor()) {
5712 ++ASTContext::NumImplicitDestructors;
5713
5714 // If we have a dynamic class, then the destructor may be virtual, so we
5715 // have to declare the destructor immediately. This ensures that, e.g., it
5716 // shows up in the right place in the vtable and that we diagnose problems
5717 // with the implicit exception specification.
5718 if (ClassDecl->isDynamicClass() ||
5719 ClassDecl->needsOverloadResolutionForDestructor())
5720 DeclareImplicitDestructor(ClassDecl);
5721 }
5722 }
5723
ActOnReenterDeclaratorTemplateScope(Scope * S,DeclaratorDecl * D)5724 void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5725 if (!D)
5726 return;
5727
5728 int NumParamList = D->getNumTemplateParameterLists();
5729 for (int i = 0; i < NumParamList; i++) {
5730 TemplateParameterList* Params = D->getTemplateParameterList(i);
5731 for (TemplateParameterList::iterator Param = Params->begin(),
5732 ParamEnd = Params->end();
5733 Param != ParamEnd; ++Param) {
5734 NamedDecl *Named = cast<NamedDecl>(*Param);
5735 if (Named->getDeclName()) {
5736 S->AddDecl(Named);
5737 IdResolver.AddDecl(Named);
5738 }
5739 }
5740 }
5741 }
5742
ActOnReenterTemplateScope(Scope * S,Decl * D)5743 void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5744 if (!D)
5745 return;
5746
5747 TemplateParameterList *Params = 0;
5748 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5749 Params = Template->getTemplateParameters();
5750 else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5751 = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5752 Params = PartialSpec->getTemplateParameters();
5753 else
5754 return;
5755
5756 for (TemplateParameterList::iterator Param = Params->begin(),
5757 ParamEnd = Params->end();
5758 Param != ParamEnd; ++Param) {
5759 NamedDecl *Named = cast<NamedDecl>(*Param);
5760 if (Named->getDeclName()) {
5761 S->AddDecl(Named);
5762 IdResolver.AddDecl(Named);
5763 }
5764 }
5765 }
5766
ActOnStartDelayedMemberDeclarations(Scope * S,Decl * RecordD)5767 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5768 if (!RecordD) return;
5769 AdjustDeclIfTemplate(RecordD);
5770 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5771 PushDeclContext(S, Record);
5772 }
5773
ActOnFinishDelayedMemberDeclarations(Scope * S,Decl * RecordD)5774 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5775 if (!RecordD) return;
5776 PopDeclContext();
5777 }
5778
5779 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
5780 /// parsing a top-level (non-nested) C++ class, and we are now
5781 /// parsing those parts of the given Method declaration that could
5782 /// not be parsed earlier (C++ [class.mem]p2), such as default
5783 /// arguments. This action should enter the scope of the given
5784 /// Method declaration as if we had just parsed the qualified method
5785 /// name. However, it should not bring the parameters into scope;
5786 /// that will be performed by ActOnDelayedCXXMethodParameter.
ActOnStartDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)5787 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5788 }
5789
5790 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
5791 /// C++ method declaration. We're (re-)introducing the given
5792 /// function parameter into scope for use in parsing later parts of
5793 /// the method declaration. For example, we could see an
5794 /// ActOnParamDefaultArgument event for this parameter.
ActOnDelayedCXXMethodParameter(Scope * S,Decl * ParamD)5795 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5796 if (!ParamD)
5797 return;
5798
5799 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5800
5801 // If this parameter has an unparsed default argument, clear it out
5802 // to make way for the parsed default argument.
5803 if (Param->hasUnparsedDefaultArg())
5804 Param->setDefaultArg(0);
5805
5806 S->AddDecl(Param);
5807 if (Param->getDeclName())
5808 IdResolver.AddDecl(Param);
5809 }
5810
5811 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5812 /// processing the delayed method declaration for Method. The method
5813 /// declaration is now considered finished. There may be a separate
5814 /// ActOnStartOfFunctionDef action later (not necessarily
5815 /// immediately!) for this method, if it was also defined inside the
5816 /// class body.
ActOnFinishDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)5817 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5818 if (!MethodD)
5819 return;
5820
5821 AdjustDeclIfTemplate(MethodD);
5822
5823 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5824
5825 // Now that we have our default arguments, check the constructor
5826 // again. It could produce additional diagnostics or affect whether
5827 // the class has implicitly-declared destructors, among other
5828 // things.
5829 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5830 CheckConstructor(Constructor);
5831
5832 // Check the default arguments, which we may have added.
5833 if (!Method->isInvalidDecl())
5834 CheckCXXDefaultArguments(Method);
5835 }
5836
5837 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5838 /// the well-formedness of the constructor declarator @p D with type @p
5839 /// R. If there are any errors in the declarator, this routine will
5840 /// emit diagnostics and set the invalid bit to true. In any case, the type
5841 /// will be updated to reflect a well-formed type for the constructor and
5842 /// returned.
CheckConstructorDeclarator(Declarator & D,QualType R,StorageClass & SC)5843 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5844 StorageClass &SC) {
5845 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5846
5847 // C++ [class.ctor]p3:
5848 // A constructor shall not be virtual (10.3) or static (9.4). A
5849 // constructor can be invoked for a const, volatile or const
5850 // volatile object. A constructor shall not be declared const,
5851 // volatile, or const volatile (9.3.2).
5852 if (isVirtual) {
5853 if (!D.isInvalidType())
5854 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5855 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5856 << SourceRange(D.getIdentifierLoc());
5857 D.setInvalidType();
5858 }
5859 if (SC == SC_Static) {
5860 if (!D.isInvalidType())
5861 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5862 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5863 << SourceRange(D.getIdentifierLoc());
5864 D.setInvalidType();
5865 SC = SC_None;
5866 }
5867
5868 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5869 if (FTI.TypeQuals != 0) {
5870 if (FTI.TypeQuals & Qualifiers::Const)
5871 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5872 << "const" << SourceRange(D.getIdentifierLoc());
5873 if (FTI.TypeQuals & Qualifiers::Volatile)
5874 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5875 << "volatile" << SourceRange(D.getIdentifierLoc());
5876 if (FTI.TypeQuals & Qualifiers::Restrict)
5877 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5878 << "restrict" << SourceRange(D.getIdentifierLoc());
5879 D.setInvalidType();
5880 }
5881
5882 // C++0x [class.ctor]p4:
5883 // A constructor shall not be declared with a ref-qualifier.
5884 if (FTI.hasRefQualifier()) {
5885 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5886 << FTI.RefQualifierIsLValueRef
5887 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5888 D.setInvalidType();
5889 }
5890
5891 // Rebuild the function type "R" without any type qualifiers (in
5892 // case any of the errors above fired) and with "void" as the
5893 // return type, since constructors don't have return types.
5894 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5895 if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5896 return R;
5897
5898 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5899 EPI.TypeQuals = 0;
5900 EPI.RefQualifier = RQ_None;
5901
5902 return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5903 }
5904
5905 /// CheckConstructor - Checks a fully-formed constructor for
5906 /// well-formedness, issuing any diagnostics required. Returns true if
5907 /// the constructor declarator is invalid.
CheckConstructor(CXXConstructorDecl * Constructor)5908 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5909 CXXRecordDecl *ClassDecl
5910 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5911 if (!ClassDecl)
5912 return Constructor->setInvalidDecl();
5913
5914 // C++ [class.copy]p3:
5915 // A declaration of a constructor for a class X is ill-formed if
5916 // its first parameter is of type (optionally cv-qualified) X and
5917 // either there are no other parameters or else all other
5918 // parameters have default arguments.
5919 if (!Constructor->isInvalidDecl() &&
5920 ((Constructor->getNumParams() == 1) ||
5921 (Constructor->getNumParams() > 1 &&
5922 Constructor->getParamDecl(1)->hasDefaultArg())) &&
5923 Constructor->getTemplateSpecializationKind()
5924 != TSK_ImplicitInstantiation) {
5925 QualType ParamType = Constructor->getParamDecl(0)->getType();
5926 QualType ClassTy = Context.getTagDeclType(ClassDecl);
5927 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5928 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5929 const char *ConstRef
5930 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5931 : " const &";
5932 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5933 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5934
5935 // FIXME: Rather that making the constructor invalid, we should endeavor
5936 // to fix the type.
5937 Constructor->setInvalidDecl();
5938 }
5939 }
5940 }
5941
5942 /// CheckDestructor - Checks a fully-formed destructor definition for
5943 /// well-formedness, issuing any diagnostics required. Returns true
5944 /// on error.
CheckDestructor(CXXDestructorDecl * Destructor)5945 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5946 CXXRecordDecl *RD = Destructor->getParent();
5947
5948 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
5949 SourceLocation Loc;
5950
5951 if (!Destructor->isImplicit())
5952 Loc = Destructor->getLocation();
5953 else
5954 Loc = RD->getLocation();
5955
5956 // If we have a virtual destructor, look up the deallocation function
5957 FunctionDecl *OperatorDelete = 0;
5958 DeclarationName Name =
5959 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5960 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5961 return true;
5962
5963 MarkFunctionReferenced(Loc, OperatorDelete);
5964
5965 Destructor->setOperatorDelete(OperatorDelete);
5966 }
5967
5968 return false;
5969 }
5970
5971 static inline bool
FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo & FTI)5972 FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5973 return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5974 FTI.ArgInfo[0].Param &&
5975 cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5976 }
5977
5978 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5979 /// the well-formednes of the destructor declarator @p D with type @p
5980 /// R. If there are any errors in the declarator, this routine will
5981 /// emit diagnostics and set the declarator to invalid. Even if this happens,
5982 /// will be updated to reflect a well-formed type for the destructor and
5983 /// returned.
CheckDestructorDeclarator(Declarator & D,QualType R,StorageClass & SC)5984 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5985 StorageClass& SC) {
5986 // C++ [class.dtor]p1:
5987 // [...] A typedef-name that names a class is a class-name
5988 // (7.1.3); however, a typedef-name that names a class shall not
5989 // be used as the identifier in the declarator for a destructor
5990 // declaration.
5991 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5992 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5993 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5994 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5995 else if (const TemplateSpecializationType *TST =
5996 DeclaratorType->getAs<TemplateSpecializationType>())
5997 if (TST->isTypeAlias())
5998 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5999 << DeclaratorType << 1;
6000
6001 // C++ [class.dtor]p2:
6002 // A destructor is used to destroy objects of its class type. A
6003 // destructor takes no parameters, and no return type can be
6004 // specified for it (not even void). The address of a destructor
6005 // shall not be taken. A destructor shall not be static. A
6006 // destructor can be invoked for a const, volatile or const
6007 // volatile object. A destructor shall not be declared const,
6008 // volatile or const volatile (9.3.2).
6009 if (SC == SC_Static) {
6010 if (!D.isInvalidType())
6011 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6012 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6013 << SourceRange(D.getIdentifierLoc())
6014 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6015
6016 SC = SC_None;
6017 }
6018 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6019 // Destructors don't have return types, but the parser will
6020 // happily parse something like:
6021 //
6022 // class X {
6023 // float ~X();
6024 // };
6025 //
6026 // The return type will be eliminated later.
6027 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6028 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6029 << SourceRange(D.getIdentifierLoc());
6030 }
6031
6032 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6033 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6034 if (FTI.TypeQuals & Qualifiers::Const)
6035 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6036 << "const" << SourceRange(D.getIdentifierLoc());
6037 if (FTI.TypeQuals & Qualifiers::Volatile)
6038 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6039 << "volatile" << SourceRange(D.getIdentifierLoc());
6040 if (FTI.TypeQuals & Qualifiers::Restrict)
6041 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6042 << "restrict" << SourceRange(D.getIdentifierLoc());
6043 D.setInvalidType();
6044 }
6045
6046 // C++0x [class.dtor]p2:
6047 // A destructor shall not be declared with a ref-qualifier.
6048 if (FTI.hasRefQualifier()) {
6049 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6050 << FTI.RefQualifierIsLValueRef
6051 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6052 D.setInvalidType();
6053 }
6054
6055 // Make sure we don't have any parameters.
6056 if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
6057 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6058
6059 // Delete the parameters.
6060 FTI.freeArgs();
6061 D.setInvalidType();
6062 }
6063
6064 // Make sure the destructor isn't variadic.
6065 if (FTI.isVariadic) {
6066 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6067 D.setInvalidType();
6068 }
6069
6070 // Rebuild the function type "R" without any type qualifiers or
6071 // parameters (in case any of the errors above fired) and with
6072 // "void" as the return type, since destructors don't have return
6073 // types.
6074 if (!D.isInvalidType())
6075 return R;
6076
6077 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6078 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6079 EPI.Variadic = false;
6080 EPI.TypeQuals = 0;
6081 EPI.RefQualifier = RQ_None;
6082 return Context.getFunctionType(Context.VoidTy, None, EPI);
6083 }
6084
6085 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6086 /// well-formednes of the conversion function declarator @p D with
6087 /// type @p R. If there are any errors in the declarator, this routine
6088 /// will emit diagnostics and return true. Otherwise, it will return
6089 /// false. Either way, the type @p R will be updated to reflect a
6090 /// well-formed type for the conversion operator.
CheckConversionDeclarator(Declarator & D,QualType & R,StorageClass & SC)6091 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6092 StorageClass& SC) {
6093 // C++ [class.conv.fct]p1:
6094 // Neither parameter types nor return type can be specified. The
6095 // type of a conversion function (8.3.5) is "function taking no
6096 // parameter returning conversion-type-id."
6097 if (SC == SC_Static) {
6098 if (!D.isInvalidType())
6099 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6100 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6101 << D.getName().getSourceRange();
6102 D.setInvalidType();
6103 SC = SC_None;
6104 }
6105
6106 QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6107
6108 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6109 // Conversion functions don't have return types, but the parser will
6110 // happily parse something like:
6111 //
6112 // class X {
6113 // float operator bool();
6114 // };
6115 //
6116 // The return type will be changed later anyway.
6117 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6118 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6119 << SourceRange(D.getIdentifierLoc());
6120 D.setInvalidType();
6121 }
6122
6123 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6124
6125 // Make sure we don't have any parameters.
6126 if (Proto->getNumArgs() > 0) {
6127 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6128
6129 // Delete the parameters.
6130 D.getFunctionTypeInfo().freeArgs();
6131 D.setInvalidType();
6132 } else if (Proto->isVariadic()) {
6133 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6134 D.setInvalidType();
6135 }
6136
6137 // Diagnose "&operator bool()" and other such nonsense. This
6138 // is actually a gcc extension which we don't support.
6139 if (Proto->getResultType() != ConvType) {
6140 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6141 << Proto->getResultType();
6142 D.setInvalidType();
6143 ConvType = Proto->getResultType();
6144 }
6145
6146 // C++ [class.conv.fct]p4:
6147 // The conversion-type-id shall not represent a function type nor
6148 // an array type.
6149 if (ConvType->isArrayType()) {
6150 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6151 ConvType = Context.getPointerType(ConvType);
6152 D.setInvalidType();
6153 } else if (ConvType->isFunctionType()) {
6154 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6155 ConvType = Context.getPointerType(ConvType);
6156 D.setInvalidType();
6157 }
6158
6159 // Rebuild the function type "R" without any parameters (in case any
6160 // of the errors above fired) and with the conversion type as the
6161 // return type.
6162 if (D.isInvalidType())
6163 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6164
6165 // C++0x explicit conversion operators.
6166 if (D.getDeclSpec().isExplicitSpecified())
6167 Diag(D.getDeclSpec().getExplicitSpecLoc(),
6168 getLangOpts().CPlusPlus11 ?
6169 diag::warn_cxx98_compat_explicit_conversion_functions :
6170 diag::ext_explicit_conversion_functions)
6171 << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6172 }
6173
6174 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6175 /// the declaration of the given C++ conversion function. This routine
6176 /// is responsible for recording the conversion function in the C++
6177 /// class, if possible.
ActOnConversionDeclarator(CXXConversionDecl * Conversion)6178 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6179 assert(Conversion && "Expected to receive a conversion function declaration");
6180
6181 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6182
6183 // Make sure we aren't redeclaring the conversion function.
6184 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6185
6186 // C++ [class.conv.fct]p1:
6187 // [...] A conversion function is never used to convert a
6188 // (possibly cv-qualified) object to the (possibly cv-qualified)
6189 // same object type (or a reference to it), to a (possibly
6190 // cv-qualified) base class of that type (or a reference to it),
6191 // or to (possibly cv-qualified) void.
6192 // FIXME: Suppress this warning if the conversion function ends up being a
6193 // virtual function that overrides a virtual function in a base class.
6194 QualType ClassType
6195 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6196 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6197 ConvType = ConvTypeRef->getPointeeType();
6198 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6199 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6200 /* Suppress diagnostics for instantiations. */;
6201 else if (ConvType->isRecordType()) {
6202 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6203 if (ConvType == ClassType)
6204 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6205 << ClassType;
6206 else if (IsDerivedFrom(ClassType, ConvType))
6207 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6208 << ClassType << ConvType;
6209 } else if (ConvType->isVoidType()) {
6210 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6211 << ClassType << ConvType;
6212 }
6213
6214 if (FunctionTemplateDecl *ConversionTemplate
6215 = Conversion->getDescribedFunctionTemplate())
6216 return ConversionTemplate;
6217
6218 return Conversion;
6219 }
6220
6221 //===----------------------------------------------------------------------===//
6222 // Namespace Handling
6223 //===----------------------------------------------------------------------===//
6224
6225 /// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6226 /// reopened.
DiagnoseNamespaceInlineMismatch(Sema & S,SourceLocation KeywordLoc,SourceLocation Loc,IdentifierInfo * II,bool * IsInline,NamespaceDecl * PrevNS)6227 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6228 SourceLocation Loc,
6229 IdentifierInfo *II, bool *IsInline,
6230 NamespaceDecl *PrevNS) {
6231 assert(*IsInline != PrevNS->isInline());
6232
6233 // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6234 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6235 // inline namespaces, with the intention of bringing names into namespace std.
6236 //
6237 // We support this just well enough to get that case working; this is not
6238 // sufficient to support reopening namespaces as inline in general.
6239 if (*IsInline && II && II->getName().startswith("__atomic") &&
6240 S.getSourceManager().isInSystemHeader(Loc)) {
6241 // Mark all prior declarations of the namespace as inline.
6242 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6243 NS = NS->getPreviousDecl())
6244 NS->setInline(*IsInline);
6245 // Patch up the lookup table for the containing namespace. This isn't really
6246 // correct, but it's good enough for this particular case.
6247 for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6248 E = PrevNS->decls_end(); I != E; ++I)
6249 if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6250 PrevNS->getParent()->makeDeclVisibleInContext(ND);
6251 return;
6252 }
6253
6254 if (PrevNS->isInline())
6255 // The user probably just forgot the 'inline', so suggest that it
6256 // be added back.
6257 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6258 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6259 else
6260 S.Diag(Loc, diag::err_inline_namespace_mismatch)
6261 << IsInline;
6262
6263 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6264 *IsInline = PrevNS->isInline();
6265 }
6266
6267 /// ActOnStartNamespaceDef - This is called at the start of a namespace
6268 /// definition.
ActOnStartNamespaceDef(Scope * NamespcScope,SourceLocation InlineLoc,SourceLocation NamespaceLoc,SourceLocation IdentLoc,IdentifierInfo * II,SourceLocation LBrace,AttributeList * AttrList)6269 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6270 SourceLocation InlineLoc,
6271 SourceLocation NamespaceLoc,
6272 SourceLocation IdentLoc,
6273 IdentifierInfo *II,
6274 SourceLocation LBrace,
6275 AttributeList *AttrList) {
6276 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6277 // For anonymous namespace, take the location of the left brace.
6278 SourceLocation Loc = II ? IdentLoc : LBrace;
6279 bool IsInline = InlineLoc.isValid();
6280 bool IsInvalid = false;
6281 bool IsStd = false;
6282 bool AddToKnown = false;
6283 Scope *DeclRegionScope = NamespcScope->getParent();
6284
6285 NamespaceDecl *PrevNS = 0;
6286 if (II) {
6287 // C++ [namespace.def]p2:
6288 // The identifier in an original-namespace-definition shall not
6289 // have been previously defined in the declarative region in
6290 // which the original-namespace-definition appears. The
6291 // identifier in an original-namespace-definition is the name of
6292 // the namespace. Subsequently in that declarative region, it is
6293 // treated as an original-namespace-name.
6294 //
6295 // Since namespace names are unique in their scope, and we don't
6296 // look through using directives, just look for any ordinary names.
6297
6298 const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6299 Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6300 Decl::IDNS_Namespace;
6301 NamedDecl *PrevDecl = 0;
6302 DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6303 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6304 ++I) {
6305 if ((*I)->getIdentifierNamespace() & IDNS) {
6306 PrevDecl = *I;
6307 break;
6308 }
6309 }
6310
6311 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6312
6313 if (PrevNS) {
6314 // This is an extended namespace definition.
6315 if (IsInline != PrevNS->isInline())
6316 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6317 &IsInline, PrevNS);
6318 } else if (PrevDecl) {
6319 // This is an invalid name redefinition.
6320 Diag(Loc, diag::err_redefinition_different_kind)
6321 << II;
6322 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6323 IsInvalid = true;
6324 // Continue on to push Namespc as current DeclContext and return it.
6325 } else if (II->isStr("std") &&
6326 CurContext->getRedeclContext()->isTranslationUnit()) {
6327 // This is the first "real" definition of the namespace "std", so update
6328 // our cache of the "std" namespace to point at this definition.
6329 PrevNS = getStdNamespace();
6330 IsStd = true;
6331 AddToKnown = !IsInline;
6332 } else {
6333 // We've seen this namespace for the first time.
6334 AddToKnown = !IsInline;
6335 }
6336 } else {
6337 // Anonymous namespaces.
6338
6339 // Determine whether the parent already has an anonymous namespace.
6340 DeclContext *Parent = CurContext->getRedeclContext();
6341 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6342 PrevNS = TU->getAnonymousNamespace();
6343 } else {
6344 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6345 PrevNS = ND->getAnonymousNamespace();
6346 }
6347
6348 if (PrevNS && IsInline != PrevNS->isInline())
6349 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6350 &IsInline, PrevNS);
6351 }
6352
6353 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6354 StartLoc, Loc, II, PrevNS);
6355 if (IsInvalid)
6356 Namespc->setInvalidDecl();
6357
6358 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6359
6360 // FIXME: Should we be merging attributes?
6361 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6362 PushNamespaceVisibilityAttr(Attr, Loc);
6363
6364 if (IsStd)
6365 StdNamespace = Namespc;
6366 if (AddToKnown)
6367 KnownNamespaces[Namespc] = false;
6368
6369 if (II) {
6370 PushOnScopeChains(Namespc, DeclRegionScope);
6371 } else {
6372 // Link the anonymous namespace into its parent.
6373 DeclContext *Parent = CurContext->getRedeclContext();
6374 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6375 TU->setAnonymousNamespace(Namespc);
6376 } else {
6377 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6378 }
6379
6380 CurContext->addDecl(Namespc);
6381
6382 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
6383 // behaves as if it were replaced by
6384 // namespace unique { /* empty body */ }
6385 // using namespace unique;
6386 // namespace unique { namespace-body }
6387 // where all occurrences of 'unique' in a translation unit are
6388 // replaced by the same identifier and this identifier differs
6389 // from all other identifiers in the entire program.
6390
6391 // We just create the namespace with an empty name and then add an
6392 // implicit using declaration, just like the standard suggests.
6393 //
6394 // CodeGen enforces the "universally unique" aspect by giving all
6395 // declarations semantically contained within an anonymous
6396 // namespace internal linkage.
6397
6398 if (!PrevNS) {
6399 UsingDirectiveDecl* UD
6400 = UsingDirectiveDecl::Create(Context, Parent,
6401 /* 'using' */ LBrace,
6402 /* 'namespace' */ SourceLocation(),
6403 /* qualifier */ NestedNameSpecifierLoc(),
6404 /* identifier */ SourceLocation(),
6405 Namespc,
6406 /* Ancestor */ Parent);
6407 UD->setImplicit();
6408 Parent->addDecl(UD);
6409 }
6410 }
6411
6412 ActOnDocumentableDecl(Namespc);
6413
6414 // Although we could have an invalid decl (i.e. the namespace name is a
6415 // redefinition), push it as current DeclContext and try to continue parsing.
6416 // FIXME: We should be able to push Namespc here, so that the each DeclContext
6417 // for the namespace has the declarations that showed up in that particular
6418 // namespace definition.
6419 PushDeclContext(NamespcScope, Namespc);
6420 return Namespc;
6421 }
6422
6423 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6424 /// is a namespace alias, returns the namespace it points to.
getNamespaceDecl(NamedDecl * D)6425 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6426 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6427 return AD->getNamespace();
6428 return dyn_cast_or_null<NamespaceDecl>(D);
6429 }
6430
6431 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
6432 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
ActOnFinishNamespaceDef(Decl * Dcl,SourceLocation RBrace)6433 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6434 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6435 assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6436 Namespc->setRBraceLoc(RBrace);
6437 PopDeclContext();
6438 if (Namespc->hasAttr<VisibilityAttr>())
6439 PopPragmaVisibility(true, RBrace);
6440 }
6441
getStdBadAlloc() const6442 CXXRecordDecl *Sema::getStdBadAlloc() const {
6443 return cast_or_null<CXXRecordDecl>(
6444 StdBadAlloc.get(Context.getExternalSource()));
6445 }
6446
getStdNamespace() const6447 NamespaceDecl *Sema::getStdNamespace() const {
6448 return cast_or_null<NamespaceDecl>(
6449 StdNamespace.get(Context.getExternalSource()));
6450 }
6451
6452 /// \brief Retrieve the special "std" namespace, which may require us to
6453 /// implicitly define the namespace.
getOrCreateStdNamespace()6454 NamespaceDecl *Sema::getOrCreateStdNamespace() {
6455 if (!StdNamespace) {
6456 // The "std" namespace has not yet been defined, so build one implicitly.
6457 StdNamespace = NamespaceDecl::Create(Context,
6458 Context.getTranslationUnitDecl(),
6459 /*Inline=*/false,
6460 SourceLocation(), SourceLocation(),
6461 &PP.getIdentifierTable().get("std"),
6462 /*PrevDecl=*/0);
6463 getStdNamespace()->setImplicit(true);
6464 }
6465
6466 return getStdNamespace();
6467 }
6468
isStdInitializerList(QualType Ty,QualType * Element)6469 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6470 assert(getLangOpts().CPlusPlus &&
6471 "Looking for std::initializer_list outside of C++.");
6472
6473 // We're looking for implicit instantiations of
6474 // template <typename E> class std::initializer_list.
6475
6476 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6477 return false;
6478
6479 ClassTemplateDecl *Template = 0;
6480 const TemplateArgument *Arguments = 0;
6481
6482 if (const RecordType *RT = Ty->getAs<RecordType>()) {
6483
6484 ClassTemplateSpecializationDecl *Specialization =
6485 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6486 if (!Specialization)
6487 return false;
6488
6489 Template = Specialization->getSpecializedTemplate();
6490 Arguments = Specialization->getTemplateArgs().data();
6491 } else if (const TemplateSpecializationType *TST =
6492 Ty->getAs<TemplateSpecializationType>()) {
6493 Template = dyn_cast_or_null<ClassTemplateDecl>(
6494 TST->getTemplateName().getAsTemplateDecl());
6495 Arguments = TST->getArgs();
6496 }
6497 if (!Template)
6498 return false;
6499
6500 if (!StdInitializerList) {
6501 // Haven't recognized std::initializer_list yet, maybe this is it.
6502 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6503 if (TemplateClass->getIdentifier() !=
6504 &PP.getIdentifierTable().get("initializer_list") ||
6505 !getStdNamespace()->InEnclosingNamespaceSetOf(
6506 TemplateClass->getDeclContext()))
6507 return false;
6508 // This is a template called std::initializer_list, but is it the right
6509 // template?
6510 TemplateParameterList *Params = Template->getTemplateParameters();
6511 if (Params->getMinRequiredArguments() != 1)
6512 return false;
6513 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6514 return false;
6515
6516 // It's the right template.
6517 StdInitializerList = Template;
6518 }
6519
6520 if (Template != StdInitializerList)
6521 return false;
6522
6523 // This is an instance of std::initializer_list. Find the argument type.
6524 if (Element)
6525 *Element = Arguments[0].getAsType();
6526 return true;
6527 }
6528
LookupStdInitializerList(Sema & S,SourceLocation Loc)6529 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6530 NamespaceDecl *Std = S.getStdNamespace();
6531 if (!Std) {
6532 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6533 return 0;
6534 }
6535
6536 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6537 Loc, Sema::LookupOrdinaryName);
6538 if (!S.LookupQualifiedName(Result, Std)) {
6539 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6540 return 0;
6541 }
6542 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6543 if (!Template) {
6544 Result.suppressDiagnostics();
6545 // We found something weird. Complain about the first thing we found.
6546 NamedDecl *Found = *Result.begin();
6547 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6548 return 0;
6549 }
6550
6551 // We found some template called std::initializer_list. Now verify that it's
6552 // correct.
6553 TemplateParameterList *Params = Template->getTemplateParameters();
6554 if (Params->getMinRequiredArguments() != 1 ||
6555 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6556 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6557 return 0;
6558 }
6559
6560 return Template;
6561 }
6562
BuildStdInitializerList(QualType Element,SourceLocation Loc)6563 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6564 if (!StdInitializerList) {
6565 StdInitializerList = LookupStdInitializerList(*this, Loc);
6566 if (!StdInitializerList)
6567 return QualType();
6568 }
6569
6570 TemplateArgumentListInfo Args(Loc, Loc);
6571 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6572 Context.getTrivialTypeSourceInfo(Element,
6573 Loc)));
6574 return Context.getCanonicalType(
6575 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6576 }
6577
isInitListConstructor(const CXXConstructorDecl * Ctor)6578 bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6579 // C++ [dcl.init.list]p2:
6580 // A constructor is an initializer-list constructor if its first parameter
6581 // is of type std::initializer_list<E> or reference to possibly cv-qualified
6582 // std::initializer_list<E> for some type E, and either there are no other
6583 // parameters or else all other parameters have default arguments.
6584 if (Ctor->getNumParams() < 1 ||
6585 (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6586 return false;
6587
6588 QualType ArgType = Ctor->getParamDecl(0)->getType();
6589 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6590 ArgType = RT->getPointeeType().getUnqualifiedType();
6591
6592 return isStdInitializerList(ArgType, 0);
6593 }
6594
6595 /// \brief Determine whether a using statement is in a context where it will be
6596 /// apply in all contexts.
IsUsingDirectiveInToplevelContext(DeclContext * CurContext)6597 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6598 switch (CurContext->getDeclKind()) {
6599 case Decl::TranslationUnit:
6600 return true;
6601 case Decl::LinkageSpec:
6602 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6603 default:
6604 return false;
6605 }
6606 }
6607
6608 namespace {
6609
6610 // Callback to only accept typo corrections that are namespaces.
6611 class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6612 public:
ValidateCandidate(const TypoCorrection & candidate)6613 bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
6614 if (NamedDecl *ND = candidate.getCorrectionDecl())
6615 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6616 return false;
6617 }
6618 };
6619
6620 }
6621
TryNamespaceTypoCorrection(Sema & S,LookupResult & R,Scope * Sc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)6622 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6623 CXXScopeSpec &SS,
6624 SourceLocation IdentLoc,
6625 IdentifierInfo *Ident) {
6626 NamespaceValidatorCCC Validator;
6627 R.clear();
6628 if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6629 R.getLookupKind(), Sc, &SS,
6630 Validator)) {
6631 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6632 std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6633 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
6634 bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
6635 Ident->getName().equals(CorrectedStr);
6636 S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6637 << Ident << DC << droppedSpecifier << CorrectedQuotedStr
6638 << SS.getRange() << FixItHint::CreateReplacement(
6639 Corrected.getCorrectionRange(), CorrectedStr);
6640 } else {
6641 S.Diag(IdentLoc, diag::err_using_directive_suggest)
6642 << Ident << CorrectedQuotedStr
6643 << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6644 }
6645
6646 S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6647 diag::note_namespace_defined_here) << CorrectedQuotedStr;
6648
6649 R.addDecl(Corrected.getCorrectionDecl());
6650 return true;
6651 }
6652 return false;
6653 }
6654
ActOnUsingDirective(Scope * S,SourceLocation UsingLoc,SourceLocation NamespcLoc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * NamespcName,AttributeList * AttrList)6655 Decl *Sema::ActOnUsingDirective(Scope *S,
6656 SourceLocation UsingLoc,
6657 SourceLocation NamespcLoc,
6658 CXXScopeSpec &SS,
6659 SourceLocation IdentLoc,
6660 IdentifierInfo *NamespcName,
6661 AttributeList *AttrList) {
6662 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6663 assert(NamespcName && "Invalid NamespcName.");
6664 assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6665
6666 // This can only happen along a recovery path.
6667 while (S->getFlags() & Scope::TemplateParamScope)
6668 S = S->getParent();
6669 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6670
6671 UsingDirectiveDecl *UDir = 0;
6672 NestedNameSpecifier *Qualifier = 0;
6673 if (SS.isSet())
6674 Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6675
6676 // Lookup namespace name.
6677 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6678 LookupParsedName(R, S, &SS);
6679 if (R.isAmbiguous())
6680 return 0;
6681
6682 if (R.empty()) {
6683 R.clear();
6684 // Allow "using namespace std;" or "using namespace ::std;" even if
6685 // "std" hasn't been defined yet, for GCC compatibility.
6686 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6687 NamespcName->isStr("std")) {
6688 Diag(IdentLoc, diag::ext_using_undefined_std);
6689 R.addDecl(getOrCreateStdNamespace());
6690 R.resolveKind();
6691 }
6692 // Otherwise, attempt typo correction.
6693 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6694 }
6695
6696 if (!R.empty()) {
6697 NamedDecl *Named = R.getFoundDecl();
6698 assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6699 && "expected namespace decl");
6700 // C++ [namespace.udir]p1:
6701 // A using-directive specifies that the names in the nominated
6702 // namespace can be used in the scope in which the
6703 // using-directive appears after the using-directive. During
6704 // unqualified name lookup (3.4.1), the names appear as if they
6705 // were declared in the nearest enclosing namespace which
6706 // contains both the using-directive and the nominated
6707 // namespace. [Note: in this context, "contains" means "contains
6708 // directly or indirectly". ]
6709
6710 // Find enclosing context containing both using-directive and
6711 // nominated namespace.
6712 NamespaceDecl *NS = getNamespaceDecl(Named);
6713 DeclContext *CommonAncestor = cast<DeclContext>(NS);
6714 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6715 CommonAncestor = CommonAncestor->getParent();
6716
6717 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6718 SS.getWithLocInContext(Context),
6719 IdentLoc, Named, CommonAncestor);
6720
6721 if (IsUsingDirectiveInToplevelContext(CurContext) &&
6722 !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6723 Diag(IdentLoc, diag::warn_using_directive_in_header);
6724 }
6725
6726 PushUsingDirective(S, UDir);
6727 } else {
6728 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6729 }
6730
6731 if (UDir)
6732 ProcessDeclAttributeList(S, UDir, AttrList);
6733
6734 return UDir;
6735 }
6736
PushUsingDirective(Scope * S,UsingDirectiveDecl * UDir)6737 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6738 // If the scope has an associated entity and the using directive is at
6739 // namespace or translation unit scope, add the UsingDirectiveDecl into
6740 // its lookup structure so qualified name lookup can find it.
6741 DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6742 if (Ctx && !Ctx->isFunctionOrMethod())
6743 Ctx->addDecl(UDir);
6744 else
6745 // Otherwise, it is at block sope. The using-directives will affect lookup
6746 // only to the end of the scope.
6747 S->PushUsingDirective(UDir);
6748 }
6749
6750
ActOnUsingDeclaration(Scope * S,AccessSpecifier AS,bool HasUsingKeyword,SourceLocation UsingLoc,CXXScopeSpec & SS,UnqualifiedId & Name,AttributeList * AttrList,bool HasTypenameKeyword,SourceLocation TypenameLoc)6751 Decl *Sema::ActOnUsingDeclaration(Scope *S,
6752 AccessSpecifier AS,
6753 bool HasUsingKeyword,
6754 SourceLocation UsingLoc,
6755 CXXScopeSpec &SS,
6756 UnqualifiedId &Name,
6757 AttributeList *AttrList,
6758 bool HasTypenameKeyword,
6759 SourceLocation TypenameLoc) {
6760 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6761
6762 switch (Name.getKind()) {
6763 case UnqualifiedId::IK_ImplicitSelfParam:
6764 case UnqualifiedId::IK_Identifier:
6765 case UnqualifiedId::IK_OperatorFunctionId:
6766 case UnqualifiedId::IK_LiteralOperatorId:
6767 case UnqualifiedId::IK_ConversionFunctionId:
6768 break;
6769
6770 case UnqualifiedId::IK_ConstructorName:
6771 case UnqualifiedId::IK_ConstructorTemplateId:
6772 // C++11 inheriting constructors.
6773 Diag(Name.getLocStart(),
6774 getLangOpts().CPlusPlus11 ?
6775 diag::warn_cxx98_compat_using_decl_constructor :
6776 diag::err_using_decl_constructor)
6777 << SS.getRange();
6778
6779 if (getLangOpts().CPlusPlus11) break;
6780
6781 return 0;
6782
6783 case UnqualifiedId::IK_DestructorName:
6784 Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6785 << SS.getRange();
6786 return 0;
6787
6788 case UnqualifiedId::IK_TemplateId:
6789 Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6790 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6791 return 0;
6792 }
6793
6794 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6795 DeclarationName TargetName = TargetNameInfo.getName();
6796 if (!TargetName)
6797 return 0;
6798
6799 // Warn about access declarations.
6800 if (!HasUsingKeyword) {
6801 Diag(Name.getLocStart(),
6802 getLangOpts().CPlusPlus11 ? diag::err_access_decl
6803 : diag::warn_access_decl_deprecated)
6804 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6805 }
6806
6807 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6808 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6809 return 0;
6810
6811 NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6812 TargetNameInfo, AttrList,
6813 /* IsInstantiation */ false,
6814 HasTypenameKeyword, TypenameLoc);
6815 if (UD)
6816 PushOnScopeChains(UD, S, /*AddToContext*/ false);
6817
6818 return UD;
6819 }
6820
6821 /// \brief Determine whether a using declaration considers the given
6822 /// declarations as "equivalent", e.g., if they are redeclarations of
6823 /// the same entity or are both typedefs of the same type.
6824 static bool
IsEquivalentForUsingDecl(ASTContext & Context,NamedDecl * D1,NamedDecl * D2,bool & SuppressRedeclaration)6825 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6826 bool &SuppressRedeclaration) {
6827 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6828 SuppressRedeclaration = false;
6829 return true;
6830 }
6831
6832 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6833 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6834 SuppressRedeclaration = true;
6835 return Context.hasSameType(TD1->getUnderlyingType(),
6836 TD2->getUnderlyingType());
6837 }
6838
6839 return false;
6840 }
6841
6842
6843 /// Determines whether to create a using shadow decl for a particular
6844 /// decl, given the set of decls existing prior to this using lookup.
CheckUsingShadowDecl(UsingDecl * Using,NamedDecl * Orig,const LookupResult & Previous)6845 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6846 const LookupResult &Previous) {
6847 // Diagnose finding a decl which is not from a base class of the
6848 // current class. We do this now because there are cases where this
6849 // function will silently decide not to build a shadow decl, which
6850 // will pre-empt further diagnostics.
6851 //
6852 // We don't need to do this in C++0x because we do the check once on
6853 // the qualifier.
6854 //
6855 // FIXME: diagnose the following if we care enough:
6856 // struct A { int foo; };
6857 // struct B : A { using A::foo; };
6858 // template <class T> struct C : A {};
6859 // template <class T> struct D : C<T> { using B::foo; } // <---
6860 // This is invalid (during instantiation) in C++03 because B::foo
6861 // resolves to the using decl in B, which is not a base class of D<T>.
6862 // We can't diagnose it immediately because C<T> is an unknown
6863 // specialization. The UsingShadowDecl in D<T> then points directly
6864 // to A::foo, which will look well-formed when we instantiate.
6865 // The right solution is to not collapse the shadow-decl chain.
6866 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6867 DeclContext *OrigDC = Orig->getDeclContext();
6868
6869 // Handle enums and anonymous structs.
6870 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6871 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6872 while (OrigRec->isAnonymousStructOrUnion())
6873 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6874
6875 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6876 if (OrigDC == CurContext) {
6877 Diag(Using->getLocation(),
6878 diag::err_using_decl_nested_name_specifier_is_current_class)
6879 << Using->getQualifierLoc().getSourceRange();
6880 Diag(Orig->getLocation(), diag::note_using_decl_target);
6881 return true;
6882 }
6883
6884 Diag(Using->getQualifierLoc().getBeginLoc(),
6885 diag::err_using_decl_nested_name_specifier_is_not_base_class)
6886 << Using->getQualifier()
6887 << cast<CXXRecordDecl>(CurContext)
6888 << Using->getQualifierLoc().getSourceRange();
6889 Diag(Orig->getLocation(), diag::note_using_decl_target);
6890 return true;
6891 }
6892 }
6893
6894 if (Previous.empty()) return false;
6895
6896 NamedDecl *Target = Orig;
6897 if (isa<UsingShadowDecl>(Target))
6898 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6899
6900 // If the target happens to be one of the previous declarations, we
6901 // don't have a conflict.
6902 //
6903 // FIXME: but we might be increasing its access, in which case we
6904 // should redeclare it.
6905 NamedDecl *NonTag = 0, *Tag = 0;
6906 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6907 I != E; ++I) {
6908 NamedDecl *D = (*I)->getUnderlyingDecl();
6909 bool Result;
6910 if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6911 return Result;
6912
6913 (isa<TagDecl>(D) ? Tag : NonTag) = D;
6914 }
6915
6916 if (Target->isFunctionOrFunctionTemplate()) {
6917 FunctionDecl *FD;
6918 if (isa<FunctionTemplateDecl>(Target))
6919 FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6920 else
6921 FD = cast<FunctionDecl>(Target);
6922
6923 NamedDecl *OldDecl = 0;
6924 switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6925 case Ovl_Overload:
6926 return false;
6927
6928 case Ovl_NonFunction:
6929 Diag(Using->getLocation(), diag::err_using_decl_conflict);
6930 break;
6931
6932 // We found a decl with the exact signature.
6933 case Ovl_Match:
6934 // If we're in a record, we want to hide the target, so we
6935 // return true (without a diagnostic) to tell the caller not to
6936 // build a shadow decl.
6937 if (CurContext->isRecord())
6938 return true;
6939
6940 // If we're not in a record, this is an error.
6941 Diag(Using->getLocation(), diag::err_using_decl_conflict);
6942 break;
6943 }
6944
6945 Diag(Target->getLocation(), diag::note_using_decl_target);
6946 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6947 return true;
6948 }
6949
6950 // Target is not a function.
6951
6952 if (isa<TagDecl>(Target)) {
6953 // No conflict between a tag and a non-tag.
6954 if (!Tag) return false;
6955
6956 Diag(Using->getLocation(), diag::err_using_decl_conflict);
6957 Diag(Target->getLocation(), diag::note_using_decl_target);
6958 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6959 return true;
6960 }
6961
6962 // No conflict between a tag and a non-tag.
6963 if (!NonTag) return false;
6964
6965 Diag(Using->getLocation(), diag::err_using_decl_conflict);
6966 Diag(Target->getLocation(), diag::note_using_decl_target);
6967 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6968 return true;
6969 }
6970
6971 /// Builds a shadow declaration corresponding to a 'using' declaration.
BuildUsingShadowDecl(Scope * S,UsingDecl * UD,NamedDecl * Orig)6972 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6973 UsingDecl *UD,
6974 NamedDecl *Orig) {
6975
6976 // If we resolved to another shadow declaration, just coalesce them.
6977 NamedDecl *Target = Orig;
6978 if (isa<UsingShadowDecl>(Target)) {
6979 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6980 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6981 }
6982
6983 UsingShadowDecl *Shadow
6984 = UsingShadowDecl::Create(Context, CurContext,
6985 UD->getLocation(), UD, Target);
6986 UD->addShadowDecl(Shadow);
6987
6988 Shadow->setAccess(UD->getAccess());
6989 if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6990 Shadow->setInvalidDecl();
6991
6992 if (S)
6993 PushOnScopeChains(Shadow, S);
6994 else
6995 CurContext->addDecl(Shadow);
6996
6997
6998 return Shadow;
6999 }
7000
7001 /// Hides a using shadow declaration. This is required by the current
7002 /// using-decl implementation when a resolvable using declaration in a
7003 /// class is followed by a declaration which would hide or override
7004 /// one or more of the using decl's targets; for example:
7005 ///
7006 /// struct Base { void foo(int); };
7007 /// struct Derived : Base {
7008 /// using Base::foo;
7009 /// void foo(int);
7010 /// };
7011 ///
7012 /// The governing language is C++03 [namespace.udecl]p12:
7013 ///
7014 /// When a using-declaration brings names from a base class into a
7015 /// derived class scope, member functions in the derived class
7016 /// override and/or hide member functions with the same name and
7017 /// parameter types in a base class (rather than conflicting).
7018 ///
7019 /// There are two ways to implement this:
7020 /// (1) optimistically create shadow decls when they're not hidden
7021 /// by existing declarations, or
7022 /// (2) don't create any shadow decls (or at least don't make them
7023 /// visible) until we've fully parsed/instantiated the class.
7024 /// The problem with (1) is that we might have to retroactively remove
7025 /// a shadow decl, which requires several O(n) operations because the
7026 /// decl structures are (very reasonably) not designed for removal.
7027 /// (2) avoids this but is very fiddly and phase-dependent.
HideUsingShadowDecl(Scope * S,UsingShadowDecl * Shadow)7028 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7029 if (Shadow->getDeclName().getNameKind() ==
7030 DeclarationName::CXXConversionFunctionName)
7031 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7032
7033 // Remove it from the DeclContext...
7034 Shadow->getDeclContext()->removeDecl(Shadow);
7035
7036 // ...and the scope, if applicable...
7037 if (S) {
7038 S->RemoveDecl(Shadow);
7039 IdResolver.RemoveDecl(Shadow);
7040 }
7041
7042 // ...and the using decl.
7043 Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7044
7045 // TODO: complain somehow if Shadow was used. It shouldn't
7046 // be possible for this to happen, because...?
7047 }
7048
7049 namespace {
7050 class UsingValidatorCCC : public CorrectionCandidateCallback {
7051 public:
UsingValidatorCCC(bool HasTypenameKeyword,bool IsInstantiation)7052 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation)
7053 : HasTypenameKeyword(HasTypenameKeyword),
7054 IsInstantiation(IsInstantiation) {}
7055
ValidateCandidate(const TypoCorrection & Candidate)7056 bool ValidateCandidate(const TypoCorrection &Candidate) LLVM_OVERRIDE {
7057 NamedDecl *ND = Candidate.getCorrectionDecl();
7058
7059 // Keywords are not valid here.
7060 if (!ND || isa<NamespaceDecl>(ND))
7061 return false;
7062
7063 // Completely unqualified names are invalid for a 'using' declaration.
7064 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7065 return false;
7066
7067 if (isa<TypeDecl>(ND))
7068 return HasTypenameKeyword || !IsInstantiation;
7069
7070 return !HasTypenameKeyword;
7071 }
7072
7073 private:
7074 bool HasTypenameKeyword;
7075 bool IsInstantiation;
7076 };
7077 } // end anonymous namespace
7078
7079 /// Builds a using declaration.
7080 ///
7081 /// \param IsInstantiation - Whether this call arises from an
7082 /// instantiation of an unresolved using declaration. We treat
7083 /// the lookup differently for these declarations.
BuildUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,AttributeList * AttrList,bool IsInstantiation,bool HasTypenameKeyword,SourceLocation TypenameLoc)7084 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7085 SourceLocation UsingLoc,
7086 CXXScopeSpec &SS,
7087 const DeclarationNameInfo &NameInfo,
7088 AttributeList *AttrList,
7089 bool IsInstantiation,
7090 bool HasTypenameKeyword,
7091 SourceLocation TypenameLoc) {
7092 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7093 SourceLocation IdentLoc = NameInfo.getLoc();
7094 assert(IdentLoc.isValid() && "Invalid TargetName location.");
7095
7096 // FIXME: We ignore attributes for now.
7097
7098 if (SS.isEmpty()) {
7099 Diag(IdentLoc, diag::err_using_requires_qualname);
7100 return 0;
7101 }
7102
7103 // Do the redeclaration lookup in the current scope.
7104 LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7105 ForRedeclaration);
7106 Previous.setHideTags(false);
7107 if (S) {
7108 LookupName(Previous, S);
7109
7110 // It is really dumb that we have to do this.
7111 LookupResult::Filter F = Previous.makeFilter();
7112 while (F.hasNext()) {
7113 NamedDecl *D = F.next();
7114 if (!isDeclInScope(D, CurContext, S))
7115 F.erase();
7116 }
7117 F.done();
7118 } else {
7119 assert(IsInstantiation && "no scope in non-instantiation");
7120 assert(CurContext->isRecord() && "scope not record in instantiation");
7121 LookupQualifiedName(Previous, CurContext);
7122 }
7123
7124 // Check for invalid redeclarations.
7125 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
7126 SS, IdentLoc, Previous))
7127 return 0;
7128
7129 // Check for bad qualifiers.
7130 if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
7131 return 0;
7132
7133 DeclContext *LookupContext = computeDeclContext(SS);
7134 NamedDecl *D;
7135 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7136 if (!LookupContext) {
7137 if (HasTypenameKeyword) {
7138 // FIXME: not all declaration name kinds are legal here
7139 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7140 UsingLoc, TypenameLoc,
7141 QualifierLoc,
7142 IdentLoc, NameInfo.getName());
7143 } else {
7144 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7145 QualifierLoc, NameInfo);
7146 }
7147 } else {
7148 D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
7149 NameInfo, HasTypenameKeyword);
7150 }
7151 D->setAccess(AS);
7152 CurContext->addDecl(D);
7153
7154 if (!LookupContext) return D;
7155 UsingDecl *UD = cast<UsingDecl>(D);
7156
7157 if (RequireCompleteDeclContext(SS, LookupContext)) {
7158 UD->setInvalidDecl();
7159 return UD;
7160 }
7161
7162 // The normal rules do not apply to inheriting constructor declarations.
7163 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7164 if (CheckInheritingConstructorUsingDecl(UD))
7165 UD->setInvalidDecl();
7166 return UD;
7167 }
7168
7169 // Otherwise, look up the target name.
7170
7171 LookupResult R(*this, NameInfo, LookupOrdinaryName);
7172
7173 // Unlike most lookups, we don't always want to hide tag
7174 // declarations: tag names are visible through the using declaration
7175 // even if hidden by ordinary names, *except* in a dependent context
7176 // where it's important for the sanity of two-phase lookup.
7177 if (!IsInstantiation)
7178 R.setHideTags(false);
7179
7180 // For the purposes of this lookup, we have a base object type
7181 // equal to that of the current context.
7182 if (CurContext->isRecord()) {
7183 R.setBaseObjectType(
7184 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7185 }
7186
7187 LookupQualifiedName(R, LookupContext);
7188
7189 // Try to correct typos if possible.
7190 if (R.empty()) {
7191 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation);
7192 if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
7193 R.getLookupKind(), S, &SS, CCC)){
7194 // We reject any correction for which ND would be NULL.
7195 NamedDecl *ND = Corrected.getCorrectionDecl();
7196 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
7197 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
7198 R.setLookupName(Corrected.getCorrection());
7199 R.addDecl(ND);
7200 // We reject candidates where droppedSpecifier == true, hence the
7201 // literal '0' below.
7202 Diag(R.getNameLoc(), diag::err_no_member_suggest)
7203 << NameInfo.getName() << LookupContext << 0
7204 << CorrectedQuotedStr << SS.getRange()
7205 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
7206 CorrectedStr);
7207 Diag(ND->getLocation(), diag::note_previous_decl)
7208 << CorrectedQuotedStr;
7209 } else {
7210 Diag(IdentLoc, diag::err_no_member)
7211 << NameInfo.getName() << LookupContext << SS.getRange();
7212 UD->setInvalidDecl();
7213 return UD;
7214 }
7215 }
7216
7217 if (R.isAmbiguous()) {
7218 UD->setInvalidDecl();
7219 return UD;
7220 }
7221
7222 if (HasTypenameKeyword) {
7223 // If we asked for a typename and got a non-type decl, error out.
7224 if (!R.getAsSingle<TypeDecl>()) {
7225 Diag(IdentLoc, diag::err_using_typename_non_type);
7226 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7227 Diag((*I)->getUnderlyingDecl()->getLocation(),
7228 diag::note_using_decl_target);
7229 UD->setInvalidDecl();
7230 return UD;
7231 }
7232 } else {
7233 // If we asked for a non-typename and we got a type, error out,
7234 // but only if this is an instantiation of an unresolved using
7235 // decl. Otherwise just silently find the type name.
7236 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7237 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7238 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7239 UD->setInvalidDecl();
7240 return UD;
7241 }
7242 }
7243
7244 // C++0x N2914 [namespace.udecl]p6:
7245 // A using-declaration shall not name a namespace.
7246 if (R.getAsSingle<NamespaceDecl>()) {
7247 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7248 << SS.getRange();
7249 UD->setInvalidDecl();
7250 return UD;
7251 }
7252
7253 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7254 if (!CheckUsingShadowDecl(UD, *I, Previous))
7255 BuildUsingShadowDecl(S, UD, *I);
7256 }
7257
7258 return UD;
7259 }
7260
7261 /// Additional checks for a using declaration referring to a constructor name.
CheckInheritingConstructorUsingDecl(UsingDecl * UD)7262 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7263 assert(!UD->hasTypename() && "expecting a constructor name");
7264
7265 const Type *SourceType = UD->getQualifier()->getAsType();
7266 assert(SourceType &&
7267 "Using decl naming constructor doesn't have type in scope spec.");
7268 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7269
7270 // Check whether the named type is a direct base class.
7271 CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7272 CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7273 for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7274 BaseIt != BaseE; ++BaseIt) {
7275 CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7276 if (CanonicalSourceType == BaseType)
7277 break;
7278 if (BaseIt->getType()->isDependentType())
7279 break;
7280 }
7281
7282 if (BaseIt == BaseE) {
7283 // Did not find SourceType in the bases.
7284 Diag(UD->getUsingLoc(),
7285 diag::err_using_decl_constructor_not_in_direct_base)
7286 << UD->getNameInfo().getSourceRange()
7287 << QualType(SourceType, 0) << TargetClass;
7288 return true;
7289 }
7290
7291 if (!CurContext->isDependentContext())
7292 BaseIt->setInheritConstructors();
7293
7294 return false;
7295 }
7296
7297 /// Checks that the given using declaration is not an invalid
7298 /// redeclaration. Note that this is checking only for the using decl
7299 /// itself, not for any ill-formedness among the UsingShadowDecls.
CheckUsingDeclRedeclaration(SourceLocation UsingLoc,bool HasTypenameKeyword,const CXXScopeSpec & SS,SourceLocation NameLoc,const LookupResult & Prev)7300 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7301 bool HasTypenameKeyword,
7302 const CXXScopeSpec &SS,
7303 SourceLocation NameLoc,
7304 const LookupResult &Prev) {
7305 // C++03 [namespace.udecl]p8:
7306 // C++0x [namespace.udecl]p10:
7307 // A using-declaration is a declaration and can therefore be used
7308 // repeatedly where (and only where) multiple declarations are
7309 // allowed.
7310 //
7311 // That's in non-member contexts.
7312 if (!CurContext->getRedeclContext()->isRecord())
7313 return false;
7314
7315 NestedNameSpecifier *Qual
7316 = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7317
7318 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7319 NamedDecl *D = *I;
7320
7321 bool DTypename;
7322 NestedNameSpecifier *DQual;
7323 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7324 DTypename = UD->hasTypename();
7325 DQual = UD->getQualifier();
7326 } else if (UnresolvedUsingValueDecl *UD
7327 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7328 DTypename = false;
7329 DQual = UD->getQualifier();
7330 } else if (UnresolvedUsingTypenameDecl *UD
7331 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7332 DTypename = true;
7333 DQual = UD->getQualifier();
7334 } else continue;
7335
7336 // using decls differ if one says 'typename' and the other doesn't.
7337 // FIXME: non-dependent using decls?
7338 if (HasTypenameKeyword != DTypename) continue;
7339
7340 // using decls differ if they name different scopes (but note that
7341 // template instantiation can cause this check to trigger when it
7342 // didn't before instantiation).
7343 if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7344 Context.getCanonicalNestedNameSpecifier(DQual))
7345 continue;
7346
7347 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7348 Diag(D->getLocation(), diag::note_using_decl) << 1;
7349 return true;
7350 }
7351
7352 return false;
7353 }
7354
7355
7356 /// Checks that the given nested-name qualifier used in a using decl
7357 /// in the current context is appropriately related to the current
7358 /// scope. If an error is found, diagnoses it and returns true.
CheckUsingDeclQualifier(SourceLocation UsingLoc,const CXXScopeSpec & SS,SourceLocation NameLoc)7359 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7360 const CXXScopeSpec &SS,
7361 SourceLocation NameLoc) {
7362 DeclContext *NamedContext = computeDeclContext(SS);
7363
7364 if (!CurContext->isRecord()) {
7365 // C++03 [namespace.udecl]p3:
7366 // C++0x [namespace.udecl]p8:
7367 // A using-declaration for a class member shall be a member-declaration.
7368
7369 // If we weren't able to compute a valid scope, it must be a
7370 // dependent class scope.
7371 if (!NamedContext || NamedContext->isRecord()) {
7372 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7373 << SS.getRange();
7374 return true;
7375 }
7376
7377 // Otherwise, everything is known to be fine.
7378 return false;
7379 }
7380
7381 // The current scope is a record.
7382
7383 // If the named context is dependent, we can't decide much.
7384 if (!NamedContext) {
7385 // FIXME: in C++0x, we can diagnose if we can prove that the
7386 // nested-name-specifier does not refer to a base class, which is
7387 // still possible in some cases.
7388
7389 // Otherwise we have to conservatively report that things might be
7390 // okay.
7391 return false;
7392 }
7393
7394 if (!NamedContext->isRecord()) {
7395 // Ideally this would point at the last name in the specifier,
7396 // but we don't have that level of source info.
7397 Diag(SS.getRange().getBegin(),
7398 diag::err_using_decl_nested_name_specifier_is_not_class)
7399 << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7400 return true;
7401 }
7402
7403 if (!NamedContext->isDependentContext() &&
7404 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7405 return true;
7406
7407 if (getLangOpts().CPlusPlus11) {
7408 // C++0x [namespace.udecl]p3:
7409 // In a using-declaration used as a member-declaration, the
7410 // nested-name-specifier shall name a base class of the class
7411 // being defined.
7412
7413 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7414 cast<CXXRecordDecl>(NamedContext))) {
7415 if (CurContext == NamedContext) {
7416 Diag(NameLoc,
7417 diag::err_using_decl_nested_name_specifier_is_current_class)
7418 << SS.getRange();
7419 return true;
7420 }
7421
7422 Diag(SS.getRange().getBegin(),
7423 diag::err_using_decl_nested_name_specifier_is_not_base_class)
7424 << (NestedNameSpecifier*) SS.getScopeRep()
7425 << cast<CXXRecordDecl>(CurContext)
7426 << SS.getRange();
7427 return true;
7428 }
7429
7430 return false;
7431 }
7432
7433 // C++03 [namespace.udecl]p4:
7434 // A using-declaration used as a member-declaration shall refer
7435 // to a member of a base class of the class being defined [etc.].
7436
7437 // Salient point: SS doesn't have to name a base class as long as
7438 // lookup only finds members from base classes. Therefore we can
7439 // diagnose here only if we can prove that that can't happen,
7440 // i.e. if the class hierarchies provably don't intersect.
7441
7442 // TODO: it would be nice if "definitely valid" results were cached
7443 // in the UsingDecl and UsingShadowDecl so that these checks didn't
7444 // need to be repeated.
7445
7446 struct UserData {
7447 llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7448
7449 static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7450 UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7451 Data->Bases.insert(Base);
7452 return true;
7453 }
7454
7455 bool hasDependentBases(const CXXRecordDecl *Class) {
7456 return !Class->forallBases(collect, this);
7457 }
7458
7459 /// Returns true if the base is dependent or is one of the
7460 /// accumulated base classes.
7461 static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7462 UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7463 return !Data->Bases.count(Base);
7464 }
7465
7466 bool mightShareBases(const CXXRecordDecl *Class) {
7467 return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7468 }
7469 };
7470
7471 UserData Data;
7472
7473 // Returns false if we find a dependent base.
7474 if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7475 return false;
7476
7477 // Returns false if the class has a dependent base or if it or one
7478 // of its bases is present in the base set of the current context.
7479 if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7480 return false;
7481
7482 Diag(SS.getRange().getBegin(),
7483 diag::err_using_decl_nested_name_specifier_is_not_base_class)
7484 << (NestedNameSpecifier*) SS.getScopeRep()
7485 << cast<CXXRecordDecl>(CurContext)
7486 << SS.getRange();
7487
7488 return true;
7489 }
7490
ActOnAliasDeclaration(Scope * S,AccessSpecifier AS,MultiTemplateParamsArg TemplateParamLists,SourceLocation UsingLoc,UnqualifiedId & Name,AttributeList * AttrList,TypeResult Type)7491 Decl *Sema::ActOnAliasDeclaration(Scope *S,
7492 AccessSpecifier AS,
7493 MultiTemplateParamsArg TemplateParamLists,
7494 SourceLocation UsingLoc,
7495 UnqualifiedId &Name,
7496 AttributeList *AttrList,
7497 TypeResult Type) {
7498 // Skip up to the relevant declaration scope.
7499 while (S->getFlags() & Scope::TemplateParamScope)
7500 S = S->getParent();
7501 assert((S->getFlags() & Scope::DeclScope) &&
7502 "got alias-declaration outside of declaration scope");
7503
7504 if (Type.isInvalid())
7505 return 0;
7506
7507 bool Invalid = false;
7508 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7509 TypeSourceInfo *TInfo = 0;
7510 GetTypeFromParser(Type.get(), &TInfo);
7511
7512 if (DiagnoseClassNameShadow(CurContext, NameInfo))
7513 return 0;
7514
7515 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7516 UPPC_DeclarationType)) {
7517 Invalid = true;
7518 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7519 TInfo->getTypeLoc().getBeginLoc());
7520 }
7521
7522 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7523 LookupName(Previous, S);
7524
7525 // Warn about shadowing the name of a template parameter.
7526 if (Previous.isSingleResult() &&
7527 Previous.getFoundDecl()->isTemplateParameter()) {
7528 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7529 Previous.clear();
7530 }
7531
7532 assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7533 "name in alias declaration must be an identifier");
7534 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7535 Name.StartLocation,
7536 Name.Identifier, TInfo);
7537
7538 NewTD->setAccess(AS);
7539
7540 if (Invalid)
7541 NewTD->setInvalidDecl();
7542
7543 ProcessDeclAttributeList(S, NewTD, AttrList);
7544
7545 CheckTypedefForVariablyModifiedType(S, NewTD);
7546 Invalid |= NewTD->isInvalidDecl();
7547
7548 bool Redeclaration = false;
7549
7550 NamedDecl *NewND;
7551 if (TemplateParamLists.size()) {
7552 TypeAliasTemplateDecl *OldDecl = 0;
7553 TemplateParameterList *OldTemplateParams = 0;
7554
7555 if (TemplateParamLists.size() != 1) {
7556 Diag(UsingLoc, diag::err_alias_template_extra_headers)
7557 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7558 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7559 }
7560 TemplateParameterList *TemplateParams = TemplateParamLists[0];
7561
7562 // Only consider previous declarations in the same scope.
7563 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7564 /*ExplicitInstantiationOrSpecialization*/false);
7565 if (!Previous.empty()) {
7566 Redeclaration = true;
7567
7568 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7569 if (!OldDecl && !Invalid) {
7570 Diag(UsingLoc, diag::err_redefinition_different_kind)
7571 << Name.Identifier;
7572
7573 NamedDecl *OldD = Previous.getRepresentativeDecl();
7574 if (OldD->getLocation().isValid())
7575 Diag(OldD->getLocation(), diag::note_previous_definition);
7576
7577 Invalid = true;
7578 }
7579
7580 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7581 if (TemplateParameterListsAreEqual(TemplateParams,
7582 OldDecl->getTemplateParameters(),
7583 /*Complain=*/true,
7584 TPL_TemplateMatch))
7585 OldTemplateParams = OldDecl->getTemplateParameters();
7586 else
7587 Invalid = true;
7588
7589 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7590 if (!Invalid &&
7591 !Context.hasSameType(OldTD->getUnderlyingType(),
7592 NewTD->getUnderlyingType())) {
7593 // FIXME: The C++0x standard does not clearly say this is ill-formed,
7594 // but we can't reasonably accept it.
7595 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7596 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7597 if (OldTD->getLocation().isValid())
7598 Diag(OldTD->getLocation(), diag::note_previous_definition);
7599 Invalid = true;
7600 }
7601 }
7602 }
7603
7604 // Merge any previous default template arguments into our parameters,
7605 // and check the parameter list.
7606 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7607 TPC_TypeAliasTemplate))
7608 return 0;
7609
7610 TypeAliasTemplateDecl *NewDecl =
7611 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7612 Name.Identifier, TemplateParams,
7613 NewTD);
7614
7615 NewDecl->setAccess(AS);
7616
7617 if (Invalid)
7618 NewDecl->setInvalidDecl();
7619 else if (OldDecl)
7620 NewDecl->setPreviousDeclaration(OldDecl);
7621
7622 NewND = NewDecl;
7623 } else {
7624 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7625 NewND = NewTD;
7626 }
7627
7628 if (!Redeclaration)
7629 PushOnScopeChains(NewND, S);
7630
7631 ActOnDocumentableDecl(NewND);
7632 return NewND;
7633 }
7634
ActOnNamespaceAliasDef(Scope * S,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)7635 Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7636 SourceLocation NamespaceLoc,
7637 SourceLocation AliasLoc,
7638 IdentifierInfo *Alias,
7639 CXXScopeSpec &SS,
7640 SourceLocation IdentLoc,
7641 IdentifierInfo *Ident) {
7642
7643 // Lookup the namespace name.
7644 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7645 LookupParsedName(R, S, &SS);
7646
7647 // Check if we have a previous declaration with the same name.
7648 NamedDecl *PrevDecl
7649 = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7650 ForRedeclaration);
7651 if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7652 PrevDecl = 0;
7653
7654 if (PrevDecl) {
7655 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7656 // We already have an alias with the same name that points to the same
7657 // namespace, so don't create a new one.
7658 // FIXME: At some point, we'll want to create the (redundant)
7659 // declaration to maintain better source information.
7660 if (!R.isAmbiguous() && !R.empty() &&
7661 AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7662 return 0;
7663 }
7664
7665 unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7666 diag::err_redefinition_different_kind;
7667 Diag(AliasLoc, DiagID) << Alias;
7668 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7669 return 0;
7670 }
7671
7672 if (R.isAmbiguous())
7673 return 0;
7674
7675 if (R.empty()) {
7676 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7677 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7678 return 0;
7679 }
7680 }
7681
7682 NamespaceAliasDecl *AliasDecl =
7683 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7684 Alias, SS.getWithLocInContext(Context),
7685 IdentLoc, R.getFoundDecl());
7686
7687 PushOnScopeChains(AliasDecl, S);
7688 return AliasDecl;
7689 }
7690
7691 Sema::ImplicitExceptionSpecification
ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)7692 Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7693 CXXMethodDecl *MD) {
7694 CXXRecordDecl *ClassDecl = MD->getParent();
7695
7696 // C++ [except.spec]p14:
7697 // An implicitly declared special member function (Clause 12) shall have an
7698 // exception-specification. [...]
7699 ImplicitExceptionSpecification ExceptSpec(*this);
7700 if (ClassDecl->isInvalidDecl())
7701 return ExceptSpec;
7702
7703 // Direct base-class constructors.
7704 for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7705 BEnd = ClassDecl->bases_end();
7706 B != BEnd; ++B) {
7707 if (B->isVirtual()) // Handled below.
7708 continue;
7709
7710 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7711 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7712 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7713 // If this is a deleted function, add it anyway. This might be conformant
7714 // with the standard. This might not. I'm not sure. It might not matter.
7715 if (Constructor)
7716 ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7717 }
7718 }
7719
7720 // Virtual base-class constructors.
7721 for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7722 BEnd = ClassDecl->vbases_end();
7723 B != BEnd; ++B) {
7724 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7725 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7726 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7727 // If this is a deleted function, add it anyway. This might be conformant
7728 // with the standard. This might not. I'm not sure. It might not matter.
7729 if (Constructor)
7730 ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7731 }
7732 }
7733
7734 // Field constructors.
7735 for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7736 FEnd = ClassDecl->field_end();
7737 F != FEnd; ++F) {
7738 if (F->hasInClassInitializer()) {
7739 if (Expr *E = F->getInClassInitializer())
7740 ExceptSpec.CalledExpr(E);
7741 else if (!F->isInvalidDecl())
7742 // DR1351:
7743 // If the brace-or-equal-initializer of a non-static data member
7744 // invokes a defaulted default constructor of its class or of an
7745 // enclosing class in a potentially evaluated subexpression, the
7746 // program is ill-formed.
7747 //
7748 // This resolution is unworkable: the exception specification of the
7749 // default constructor can be needed in an unevaluated context, in
7750 // particular, in the operand of a noexcept-expression, and we can be
7751 // unable to compute an exception specification for an enclosed class.
7752 //
7753 // We do not allow an in-class initializer to require the evaluation
7754 // of the exception specification for any in-class initializer whose
7755 // definition is not lexically complete.
7756 Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7757 } else if (const RecordType *RecordTy
7758 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7759 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7760 CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7761 // If this is a deleted function, add it anyway. This might be conformant
7762 // with the standard. This might not. I'm not sure. It might not matter.
7763 // In particular, the problem is that this function never gets called. It
7764 // might just be ill-formed because this function attempts to refer to
7765 // a deleted function here.
7766 if (Constructor)
7767 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7768 }
7769 }
7770
7771 return ExceptSpec;
7772 }
7773
7774 Sema::ImplicitExceptionSpecification
ComputeInheritingCtorExceptionSpec(CXXConstructorDecl * CD)7775 Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7776 CXXRecordDecl *ClassDecl = CD->getParent();
7777
7778 // C++ [except.spec]p14:
7779 // An inheriting constructor [...] shall have an exception-specification. [...]
7780 ImplicitExceptionSpecification ExceptSpec(*this);
7781 if (ClassDecl->isInvalidDecl())
7782 return ExceptSpec;
7783
7784 // Inherited constructor.
7785 const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7786 const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7787 // FIXME: Copying or moving the parameters could add extra exceptions to the
7788 // set, as could the default arguments for the inherited constructor. This
7789 // will be addressed when we implement the resolution of core issue 1351.
7790 ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7791
7792 // Direct base-class constructors.
7793 for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7794 BEnd = ClassDecl->bases_end();
7795 B != BEnd; ++B) {
7796 if (B->isVirtual()) // Handled below.
7797 continue;
7798
7799 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7800 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7801 if (BaseClassDecl == InheritedDecl)
7802 continue;
7803 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7804 if (Constructor)
7805 ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7806 }
7807 }
7808
7809 // Virtual base-class constructors.
7810 for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7811 BEnd = ClassDecl->vbases_end();
7812 B != BEnd; ++B) {
7813 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7814 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7815 if (BaseClassDecl == InheritedDecl)
7816 continue;
7817 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7818 if (Constructor)
7819 ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7820 }
7821 }
7822
7823 // Field constructors.
7824 for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7825 FEnd = ClassDecl->field_end();
7826 F != FEnd; ++F) {
7827 if (F->hasInClassInitializer()) {
7828 if (Expr *E = F->getInClassInitializer())
7829 ExceptSpec.CalledExpr(E);
7830 else if (!F->isInvalidDecl())
7831 Diag(CD->getLocation(),
7832 diag::err_in_class_initializer_references_def_ctor) << CD;
7833 } else if (const RecordType *RecordTy
7834 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7835 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7836 CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7837 if (Constructor)
7838 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7839 }
7840 }
7841
7842 return ExceptSpec;
7843 }
7844
7845 namespace {
7846 /// RAII object to register a special member as being currently declared.
7847 struct DeclaringSpecialMember {
7848 Sema &S;
7849 Sema::SpecialMemberDecl D;
7850 bool WasAlreadyBeingDeclared;
7851
DeclaringSpecialMember__anon7fa201ac0b11::DeclaringSpecialMember7852 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7853 : S(S), D(RD, CSM) {
7854 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7855 if (WasAlreadyBeingDeclared)
7856 // This almost never happens, but if it does, ensure that our cache
7857 // doesn't contain a stale result.
7858 S.SpecialMemberCache.clear();
7859
7860 // FIXME: Register a note to be produced if we encounter an error while
7861 // declaring the special member.
7862 }
~DeclaringSpecialMember__anon7fa201ac0b11::DeclaringSpecialMember7863 ~DeclaringSpecialMember() {
7864 if (!WasAlreadyBeingDeclared)
7865 S.SpecialMembersBeingDeclared.erase(D);
7866 }
7867
7868 /// \brief Are we already trying to declare this special member?
isAlreadyBeingDeclared__anon7fa201ac0b11::DeclaringSpecialMember7869 bool isAlreadyBeingDeclared() const {
7870 return WasAlreadyBeingDeclared;
7871 }
7872 };
7873 }
7874
DeclareImplicitDefaultConstructor(CXXRecordDecl * ClassDecl)7875 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7876 CXXRecordDecl *ClassDecl) {
7877 // C++ [class.ctor]p5:
7878 // A default constructor for a class X is a constructor of class X
7879 // that can be called without an argument. If there is no
7880 // user-declared constructor for class X, a default constructor is
7881 // implicitly declared. An implicitly-declared default constructor
7882 // is an inline public member of its class.
7883 assert(ClassDecl->needsImplicitDefaultConstructor() &&
7884 "Should not build implicit default constructor!");
7885
7886 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7887 if (DSM.isAlreadyBeingDeclared())
7888 return 0;
7889
7890 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7891 CXXDefaultConstructor,
7892 false);
7893
7894 // Create the actual constructor declaration.
7895 CanQualType ClassType
7896 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7897 SourceLocation ClassLoc = ClassDecl->getLocation();
7898 DeclarationName Name
7899 = Context.DeclarationNames.getCXXConstructorName(ClassType);
7900 DeclarationNameInfo NameInfo(Name, ClassLoc);
7901 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7902 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7903 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7904 Constexpr);
7905 DefaultCon->setAccess(AS_public);
7906 DefaultCon->setDefaulted();
7907 DefaultCon->setImplicit();
7908
7909 // Build an exception specification pointing back at this constructor.
7910 FunctionProtoType::ExtProtoInfo EPI;
7911 EPI.ExceptionSpecType = EST_Unevaluated;
7912 EPI.ExceptionSpecDecl = DefaultCon;
7913 DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
7914
7915 // We don't need to use SpecialMemberIsTrivial here; triviality for default
7916 // constructors is easy to compute.
7917 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7918
7919 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7920 SetDeclDeleted(DefaultCon, ClassLoc);
7921
7922 // Note that we have declared this constructor.
7923 ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7924
7925 if (Scope *S = getScopeForContext(ClassDecl))
7926 PushOnScopeChains(DefaultCon, S, false);
7927 ClassDecl->addDecl(DefaultCon);
7928
7929 return DefaultCon;
7930 }
7931
DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)7932 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7933 CXXConstructorDecl *Constructor) {
7934 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7935 !Constructor->doesThisDeclarationHaveABody() &&
7936 !Constructor->isDeleted()) &&
7937 "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7938
7939 CXXRecordDecl *ClassDecl = Constructor->getParent();
7940 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7941
7942 SynthesizedFunctionScope Scope(*this, Constructor);
7943 DiagnosticErrorTrap Trap(Diags);
7944 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7945 Trap.hasErrorOccurred()) {
7946 Diag(CurrentLocation, diag::note_member_synthesized_at)
7947 << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7948 Constructor->setInvalidDecl();
7949 return;
7950 }
7951
7952 SourceLocation Loc = Constructor->getLocation();
7953 Constructor->setBody(new (Context) CompoundStmt(Loc));
7954
7955 Constructor->setUsed();
7956 MarkVTableUsed(CurrentLocation, ClassDecl);
7957
7958 if (ASTMutationListener *L = getASTMutationListener()) {
7959 L->CompletedImplicitDefinition(Constructor);
7960 }
7961 }
7962
ActOnFinishDelayedMemberInitializers(Decl * D)7963 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7964 // Check that any explicitly-defaulted methods have exception specifications
7965 // compatible with their implicit exception specifications.
7966 CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7967 }
7968
7969 namespace {
7970 /// Information on inheriting constructors to declare.
7971 class InheritingConstructorInfo {
7972 public:
InheritingConstructorInfo(Sema & SemaRef,CXXRecordDecl * Derived)7973 InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
7974 : SemaRef(SemaRef), Derived(Derived) {
7975 // Mark the constructors that we already have in the derived class.
7976 //
7977 // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7978 // unless there is a user-declared constructor with the same signature in
7979 // the class where the using-declaration appears.
7980 visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
7981 }
7982
inheritAll(CXXRecordDecl * RD)7983 void inheritAll(CXXRecordDecl *RD) {
7984 visitAll(RD, &InheritingConstructorInfo::inherit);
7985 }
7986
7987 private:
7988 /// Information about an inheriting constructor.
7989 struct InheritingConstructor {
InheritingConstructor__anon7fa201ac0c11::InheritingConstructorInfo::InheritingConstructor7990 InheritingConstructor()
7991 : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
7992
7993 /// If \c true, a constructor with this signature is already declared
7994 /// in the derived class.
7995 bool DeclaredInDerived;
7996
7997 /// The constructor which is inherited.
7998 const CXXConstructorDecl *BaseCtor;
7999
8000 /// The derived constructor we declared.
8001 CXXConstructorDecl *DerivedCtor;
8002 };
8003
8004 /// Inheriting constructors with a given canonical type. There can be at
8005 /// most one such non-template constructor, and any number of templated
8006 /// constructors.
8007 struct InheritingConstructorsForType {
8008 InheritingConstructor NonTemplate;
8009 llvm::SmallVector<
8010 std::pair<TemplateParameterList*, InheritingConstructor>, 4> Templates;
8011
getEntry__anon7fa201ac0c11::InheritingConstructorInfo::InheritingConstructorsForType8012 InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
8013 if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
8014 TemplateParameterList *ParamList = FTD->getTemplateParameters();
8015 for (unsigned I = 0, N = Templates.size(); I != N; ++I)
8016 if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
8017 false, S.TPL_TemplateMatch))
8018 return Templates[I].second;
8019 Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
8020 return Templates.back().second;
8021 }
8022
8023 return NonTemplate;
8024 }
8025 };
8026
8027 /// Get or create the inheriting constructor record for a constructor.
getEntry(const CXXConstructorDecl * Ctor,QualType CtorType)8028 InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
8029 QualType CtorType) {
8030 return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
8031 .getEntry(SemaRef, Ctor);
8032 }
8033
8034 typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
8035
8036 /// Process all constructors for a class.
visitAll(const CXXRecordDecl * RD,VisitFn Callback)8037 void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
8038 for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
8039 CtorE = RD->ctor_end();
8040 CtorIt != CtorE; ++CtorIt)
8041 (this->*Callback)(*CtorIt);
8042 for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
8043 I(RD->decls_begin()), E(RD->decls_end());
8044 I != E; ++I) {
8045 const FunctionDecl *FD = (*I)->getTemplatedDecl();
8046 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
8047 (this->*Callback)(CD);
8048 }
8049 }
8050
8051 /// Note that a constructor (or constructor template) was declared in Derived.
noteDeclaredInDerived(const CXXConstructorDecl * Ctor)8052 void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
8053 getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
8054 }
8055
8056 /// Inherit a single constructor.
inherit(const CXXConstructorDecl * Ctor)8057 void inherit(const CXXConstructorDecl *Ctor) {
8058 const FunctionProtoType *CtorType =
8059 Ctor->getType()->castAs<FunctionProtoType>();
8060 ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
8061 FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
8062
8063 SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
8064
8065 // Core issue (no number yet): the ellipsis is always discarded.
8066 if (EPI.Variadic) {
8067 SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
8068 SemaRef.Diag(Ctor->getLocation(),
8069 diag::note_using_decl_constructor_ellipsis);
8070 EPI.Variadic = false;
8071 }
8072
8073 // Declare a constructor for each number of parameters.
8074 //
8075 // C++11 [class.inhctor]p1:
8076 // The candidate set of inherited constructors from the class X named in
8077 // the using-declaration consists of [... modulo defects ...] for each
8078 // constructor or constructor template of X, the set of constructors or
8079 // constructor templates that results from omitting any ellipsis parameter
8080 // specification and successively omitting parameters with a default
8081 // argument from the end of the parameter-type-list
8082 unsigned MinParams = minParamsToInherit(Ctor);
8083 unsigned Params = Ctor->getNumParams();
8084 if (Params >= MinParams) {
8085 do
8086 declareCtor(UsingLoc, Ctor,
8087 SemaRef.Context.getFunctionType(
8088 Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
8089 while (Params > MinParams &&
8090 Ctor->getParamDecl(--Params)->hasDefaultArg());
8091 }
8092 }
8093
8094 /// Find the using-declaration which specified that we should inherit the
8095 /// constructors of \p Base.
getUsingLoc(const CXXRecordDecl * Base)8096 SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8097 // No fancy lookup required; just look for the base constructor name
8098 // directly within the derived class.
8099 ASTContext &Context = SemaRef.Context;
8100 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8101 Context.getCanonicalType(Context.getRecordType(Base)));
8102 DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8103 return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8104 }
8105
minParamsToInherit(const CXXConstructorDecl * Ctor)8106 unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8107 // C++11 [class.inhctor]p3:
8108 // [F]or each constructor template in the candidate set of inherited
8109 // constructors, a constructor template is implicitly declared
8110 if (Ctor->getDescribedFunctionTemplate())
8111 return 0;
8112
8113 // For each non-template constructor in the candidate set of inherited
8114 // constructors other than a constructor having no parameters or a
8115 // copy/move constructor having a single parameter, a constructor is
8116 // implicitly declared [...]
8117 if (Ctor->getNumParams() == 0)
8118 return 1;
8119 if (Ctor->isCopyOrMoveConstructor())
8120 return 2;
8121
8122 // Per discussion on core reflector, never inherit a constructor which
8123 // would become a default, copy, or move constructor of Derived either.
8124 const ParmVarDecl *PD = Ctor->getParamDecl(0);
8125 const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8126 return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8127 }
8128
8129 /// Declare a single inheriting constructor, inheriting the specified
8130 /// constructor, with the given type.
declareCtor(SourceLocation UsingLoc,const CXXConstructorDecl * BaseCtor,QualType DerivedType)8131 void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8132 QualType DerivedType) {
8133 InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8134
8135 // C++11 [class.inhctor]p3:
8136 // ... a constructor is implicitly declared with the same constructor
8137 // characteristics unless there is a user-declared constructor with
8138 // the same signature in the class where the using-declaration appears
8139 if (Entry.DeclaredInDerived)
8140 return;
8141
8142 // C++11 [class.inhctor]p7:
8143 // If two using-declarations declare inheriting constructors with the
8144 // same signature, the program is ill-formed
8145 if (Entry.DerivedCtor) {
8146 if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8147 // Only diagnose this once per constructor.
8148 if (Entry.DerivedCtor->isInvalidDecl())
8149 return;
8150 Entry.DerivedCtor->setInvalidDecl();
8151
8152 SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8153 SemaRef.Diag(BaseCtor->getLocation(),
8154 diag::note_using_decl_constructor_conflict_current_ctor);
8155 SemaRef.Diag(Entry.BaseCtor->getLocation(),
8156 diag::note_using_decl_constructor_conflict_previous_ctor);
8157 SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8158 diag::note_using_decl_constructor_conflict_previous_using);
8159 } else {
8160 // Core issue (no number): if the same inheriting constructor is
8161 // produced by multiple base class constructors from the same base
8162 // class, the inheriting constructor is defined as deleted.
8163 SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8164 }
8165
8166 return;
8167 }
8168
8169 ASTContext &Context = SemaRef.Context;
8170 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8171 Context.getCanonicalType(Context.getRecordType(Derived)));
8172 DeclarationNameInfo NameInfo(Name, UsingLoc);
8173
8174 TemplateParameterList *TemplateParams = 0;
8175 if (const FunctionTemplateDecl *FTD =
8176 BaseCtor->getDescribedFunctionTemplate()) {
8177 TemplateParams = FTD->getTemplateParameters();
8178 // We're reusing template parameters from a different DeclContext. This
8179 // is questionable at best, but works out because the template depth in
8180 // both places is guaranteed to be 0.
8181 // FIXME: Rebuild the template parameters in the new context, and
8182 // transform the function type to refer to them.
8183 }
8184
8185 // Build type source info pointing at the using-declaration. This is
8186 // required by template instantiation.
8187 TypeSourceInfo *TInfo =
8188 Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8189 FunctionProtoTypeLoc ProtoLoc =
8190 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8191
8192 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8193 Context, Derived, UsingLoc, NameInfo, DerivedType,
8194 TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8195 /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8196
8197 // Build an unevaluated exception specification for this constructor.
8198 const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8199 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8200 EPI.ExceptionSpecType = EST_Unevaluated;
8201 EPI.ExceptionSpecDecl = DerivedCtor;
8202 DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
8203 FPT->getArgTypes(), EPI));
8204
8205 // Build the parameter declarations.
8206 SmallVector<ParmVarDecl *, 16> ParamDecls;
8207 for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
8208 TypeSourceInfo *TInfo =
8209 Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
8210 ParmVarDecl *PD = ParmVarDecl::Create(
8211 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
8212 FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
8213 PD->setScopeInfo(0, I);
8214 PD->setImplicit();
8215 ParamDecls.push_back(PD);
8216 ProtoLoc.setArg(I, PD);
8217 }
8218
8219 // Set up the new constructor.
8220 DerivedCtor->setAccess(BaseCtor->getAccess());
8221 DerivedCtor->setParams(ParamDecls);
8222 DerivedCtor->setInheritedConstructor(BaseCtor);
8223 if (BaseCtor->isDeleted())
8224 SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8225
8226 // If this is a constructor template, build the template declaration.
8227 if (TemplateParams) {
8228 FunctionTemplateDecl *DerivedTemplate =
8229 FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8230 TemplateParams, DerivedCtor);
8231 DerivedTemplate->setAccess(BaseCtor->getAccess());
8232 DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8233 Derived->addDecl(DerivedTemplate);
8234 } else {
8235 Derived->addDecl(DerivedCtor);
8236 }
8237
8238 Entry.BaseCtor = BaseCtor;
8239 Entry.DerivedCtor = DerivedCtor;
8240 }
8241
8242 Sema &SemaRef;
8243 CXXRecordDecl *Derived;
8244 typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8245 MapType Map;
8246 };
8247 }
8248
DeclareInheritingConstructors(CXXRecordDecl * ClassDecl)8249 void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8250 // Defer declaring the inheriting constructors until the class is
8251 // instantiated.
8252 if (ClassDecl->isDependentContext())
8253 return;
8254
8255 // Find base classes from which we might inherit constructors.
8256 SmallVector<CXXRecordDecl*, 4> InheritedBases;
8257 for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8258 BaseE = ClassDecl->bases_end();
8259 BaseIt != BaseE; ++BaseIt)
8260 if (BaseIt->getInheritConstructors())
8261 InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8262
8263 // Go no further if we're not inheriting any constructors.
8264 if (InheritedBases.empty())
8265 return;
8266
8267 // Declare the inherited constructors.
8268 InheritingConstructorInfo ICI(*this, ClassDecl);
8269 for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8270 ICI.inheritAll(InheritedBases[I]);
8271 }
8272
DefineInheritingConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)8273 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8274 CXXConstructorDecl *Constructor) {
8275 CXXRecordDecl *ClassDecl = Constructor->getParent();
8276 assert(Constructor->getInheritedConstructor() &&
8277 !Constructor->doesThisDeclarationHaveABody() &&
8278 !Constructor->isDeleted());
8279
8280 SynthesizedFunctionScope Scope(*this, Constructor);
8281 DiagnosticErrorTrap Trap(Diags);
8282 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8283 Trap.hasErrorOccurred()) {
8284 Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8285 << Context.getTagDeclType(ClassDecl);
8286 Constructor->setInvalidDecl();
8287 return;
8288 }
8289
8290 SourceLocation Loc = Constructor->getLocation();
8291 Constructor->setBody(new (Context) CompoundStmt(Loc));
8292
8293 Constructor->setUsed();
8294 MarkVTableUsed(CurrentLocation, ClassDecl);
8295
8296 if (ASTMutationListener *L = getASTMutationListener()) {
8297 L->CompletedImplicitDefinition(Constructor);
8298 }
8299 }
8300
8301
8302 Sema::ImplicitExceptionSpecification
ComputeDefaultedDtorExceptionSpec(CXXMethodDecl * MD)8303 Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8304 CXXRecordDecl *ClassDecl = MD->getParent();
8305
8306 // C++ [except.spec]p14:
8307 // An implicitly declared special member function (Clause 12) shall have
8308 // an exception-specification.
8309 ImplicitExceptionSpecification ExceptSpec(*this);
8310 if (ClassDecl->isInvalidDecl())
8311 return ExceptSpec;
8312
8313 // Direct base-class destructors.
8314 for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8315 BEnd = ClassDecl->bases_end();
8316 B != BEnd; ++B) {
8317 if (B->isVirtual()) // Handled below.
8318 continue;
8319
8320 if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8321 ExceptSpec.CalledDecl(B->getLocStart(),
8322 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8323 }
8324
8325 // Virtual base-class destructors.
8326 for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8327 BEnd = ClassDecl->vbases_end();
8328 B != BEnd; ++B) {
8329 if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8330 ExceptSpec.CalledDecl(B->getLocStart(),
8331 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8332 }
8333
8334 // Field destructors.
8335 for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8336 FEnd = ClassDecl->field_end();
8337 F != FEnd; ++F) {
8338 if (const RecordType *RecordTy
8339 = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8340 ExceptSpec.CalledDecl(F->getLocation(),
8341 LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8342 }
8343
8344 return ExceptSpec;
8345 }
8346
DeclareImplicitDestructor(CXXRecordDecl * ClassDecl)8347 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8348 // C++ [class.dtor]p2:
8349 // If a class has no user-declared destructor, a destructor is
8350 // declared implicitly. An implicitly-declared destructor is an
8351 // inline public member of its class.
8352 assert(ClassDecl->needsImplicitDestructor());
8353
8354 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8355 if (DSM.isAlreadyBeingDeclared())
8356 return 0;
8357
8358 // Create the actual destructor declaration.
8359 CanQualType ClassType
8360 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8361 SourceLocation ClassLoc = ClassDecl->getLocation();
8362 DeclarationName Name
8363 = Context.DeclarationNames.getCXXDestructorName(ClassType);
8364 DeclarationNameInfo NameInfo(Name, ClassLoc);
8365 CXXDestructorDecl *Destructor
8366 = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8367 QualType(), 0, /*isInline=*/true,
8368 /*isImplicitlyDeclared=*/true);
8369 Destructor->setAccess(AS_public);
8370 Destructor->setDefaulted();
8371 Destructor->setImplicit();
8372
8373 // Build an exception specification pointing back at this destructor.
8374 FunctionProtoType::ExtProtoInfo EPI;
8375 EPI.ExceptionSpecType = EST_Unevaluated;
8376 EPI.ExceptionSpecDecl = Destructor;
8377 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8378
8379 AddOverriddenMethods(ClassDecl, Destructor);
8380
8381 // We don't need to use SpecialMemberIsTrivial here; triviality for
8382 // destructors is easy to compute.
8383 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8384
8385 if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8386 SetDeclDeleted(Destructor, ClassLoc);
8387
8388 // Note that we have declared this destructor.
8389 ++ASTContext::NumImplicitDestructorsDeclared;
8390
8391 // Introduce this destructor into its scope.
8392 if (Scope *S = getScopeForContext(ClassDecl))
8393 PushOnScopeChains(Destructor, S, false);
8394 ClassDecl->addDecl(Destructor);
8395
8396 return Destructor;
8397 }
8398
DefineImplicitDestructor(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)8399 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8400 CXXDestructorDecl *Destructor) {
8401 assert((Destructor->isDefaulted() &&
8402 !Destructor->doesThisDeclarationHaveABody() &&
8403 !Destructor->isDeleted()) &&
8404 "DefineImplicitDestructor - call it for implicit default dtor");
8405 CXXRecordDecl *ClassDecl = Destructor->getParent();
8406 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8407
8408 if (Destructor->isInvalidDecl())
8409 return;
8410
8411 SynthesizedFunctionScope Scope(*this, Destructor);
8412
8413 DiagnosticErrorTrap Trap(Diags);
8414 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8415 Destructor->getParent());
8416
8417 if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8418 Diag(CurrentLocation, diag::note_member_synthesized_at)
8419 << CXXDestructor << Context.getTagDeclType(ClassDecl);
8420
8421 Destructor->setInvalidDecl();
8422 return;
8423 }
8424
8425 SourceLocation Loc = Destructor->getLocation();
8426 Destructor->setBody(new (Context) CompoundStmt(Loc));
8427 Destructor->setUsed();
8428 MarkVTableUsed(CurrentLocation, ClassDecl);
8429
8430 if (ASTMutationListener *L = getASTMutationListener()) {
8431 L->CompletedImplicitDefinition(Destructor);
8432 }
8433 }
8434
8435 /// \brief Perform any semantic analysis which needs to be delayed until all
8436 /// pending class member declarations have been parsed.
ActOnFinishCXXMemberDecls()8437 void Sema::ActOnFinishCXXMemberDecls() {
8438 // If the context is an invalid C++ class, just suppress these checks.
8439 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8440 if (Record->isInvalidDecl()) {
8441 DelayedDestructorExceptionSpecChecks.clear();
8442 return;
8443 }
8444 }
8445
8446 // Perform any deferred checking of exception specifications for virtual
8447 // destructors.
8448 for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8449 i != e; ++i) {
8450 const CXXDestructorDecl *Dtor =
8451 DelayedDestructorExceptionSpecChecks[i].first;
8452 assert(!Dtor->getParent()->isDependentType() &&
8453 "Should not ever add destructors of templates into the list.");
8454 CheckOverridingFunctionExceptionSpec(Dtor,
8455 DelayedDestructorExceptionSpecChecks[i].second);
8456 }
8457 DelayedDestructorExceptionSpecChecks.clear();
8458 }
8459
AdjustDestructorExceptionSpec(CXXRecordDecl * ClassDecl,CXXDestructorDecl * Destructor)8460 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8461 CXXDestructorDecl *Destructor) {
8462 assert(getLangOpts().CPlusPlus11 &&
8463 "adjusting dtor exception specs was introduced in c++11");
8464
8465 // C++11 [class.dtor]p3:
8466 // A declaration of a destructor that does not have an exception-
8467 // specification is implicitly considered to have the same exception-
8468 // specification as an implicit declaration.
8469 const FunctionProtoType *DtorType = Destructor->getType()->
8470 getAs<FunctionProtoType>();
8471 if (DtorType->hasExceptionSpec())
8472 return;
8473
8474 // Replace the destructor's type, building off the existing one. Fortunately,
8475 // the only thing of interest in the destructor type is its extended info.
8476 // The return and arguments are fixed.
8477 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8478 EPI.ExceptionSpecType = EST_Unevaluated;
8479 EPI.ExceptionSpecDecl = Destructor;
8480 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8481
8482 // FIXME: If the destructor has a body that could throw, and the newly created
8483 // spec doesn't allow exceptions, we should emit a warning, because this
8484 // change in behavior can break conforming C++03 programs at runtime.
8485 // However, we don't have a body or an exception specification yet, so it
8486 // needs to be done somewhere else.
8487 }
8488
8489 /// When generating a defaulted copy or move assignment operator, if a field
8490 /// should be copied with __builtin_memcpy rather than via explicit assignments,
8491 /// do so. This optimization only applies for arrays of scalars, and for arrays
8492 /// of class type where the selected copy/move-assignment operator is trivial.
8493 static StmtResult
buildMemcpyForAssignmentOp(Sema & S,SourceLocation Loc,QualType T,Expr * To,Expr * From)8494 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8495 Expr *To, Expr *From) {
8496 // Compute the size of the memory buffer to be copied.
8497 QualType SizeType = S.Context.getSizeType();
8498 llvm::APInt Size(S.Context.getTypeSize(SizeType),
8499 S.Context.getTypeSizeInChars(T).getQuantity());
8500
8501 // Take the address of the field references for "from" and "to". We
8502 // directly construct UnaryOperators here because semantic analysis
8503 // does not permit us to take the address of an xvalue.
8504 From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8505 S.Context.getPointerType(From->getType()),
8506 VK_RValue, OK_Ordinary, Loc);
8507 To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8508 S.Context.getPointerType(To->getType()),
8509 VK_RValue, OK_Ordinary, Loc);
8510
8511 const Type *E = T->getBaseElementTypeUnsafe();
8512 bool NeedsCollectableMemCpy =
8513 E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8514
8515 // Create a reference to the __builtin_objc_memmove_collectable function
8516 StringRef MemCpyName = NeedsCollectableMemCpy ?
8517 "__builtin_objc_memmove_collectable" :
8518 "__builtin_memcpy";
8519 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8520 Sema::LookupOrdinaryName);
8521 S.LookupName(R, S.TUScope, true);
8522
8523 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8524 if (!MemCpy)
8525 // Something went horribly wrong earlier, and we will have complained
8526 // about it.
8527 return StmtError();
8528
8529 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8530 VK_RValue, Loc, 0);
8531 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8532
8533 Expr *CallArgs[] = {
8534 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8535 };
8536 ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8537 Loc, CallArgs, Loc);
8538
8539 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8540 return S.Owned(Call.takeAs<Stmt>());
8541 }
8542
8543 /// \brief Builds a statement that copies/moves the given entity from \p From to
8544 /// \c To.
8545 ///
8546 /// This routine is used to copy/move the members of a class with an
8547 /// implicitly-declared copy/move assignment operator. When the entities being
8548 /// copied are arrays, this routine builds for loops to copy them.
8549 ///
8550 /// \param S The Sema object used for type-checking.
8551 ///
8552 /// \param Loc The location where the implicit copy/move is being generated.
8553 ///
8554 /// \param T The type of the expressions being copied/moved. Both expressions
8555 /// must have this type.
8556 ///
8557 /// \param To The expression we are copying/moving to.
8558 ///
8559 /// \param From The expression we are copying/moving from.
8560 ///
8561 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8562 /// Otherwise, it's a non-static member subobject.
8563 ///
8564 /// \param Copying Whether we're copying or moving.
8565 ///
8566 /// \param Depth Internal parameter recording the depth of the recursion.
8567 ///
8568 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8569 /// if a memcpy should be used instead.
8570 static StmtResult
buildSingleCopyAssignRecursively(Sema & S,SourceLocation Loc,QualType T,Expr * To,Expr * From,bool CopyingBaseSubobject,bool Copying,unsigned Depth=0)8571 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8572 Expr *To, Expr *From,
8573 bool CopyingBaseSubobject, bool Copying,
8574 unsigned Depth = 0) {
8575 // C++11 [class.copy]p28:
8576 // Each subobject is assigned in the manner appropriate to its type:
8577 //
8578 // - if the subobject is of class type, as if by a call to operator= with
8579 // the subobject as the object expression and the corresponding
8580 // subobject of x as a single function argument (as if by explicit
8581 // qualification; that is, ignoring any possible virtual overriding
8582 // functions in more derived classes);
8583 //
8584 // C++03 [class.copy]p13:
8585 // - if the subobject is of class type, the copy assignment operator for
8586 // the class is used (as if by explicit qualification; that is,
8587 // ignoring any possible virtual overriding functions in more derived
8588 // classes);
8589 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8590 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8591
8592 // Look for operator=.
8593 DeclarationName Name
8594 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8595 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8596 S.LookupQualifiedName(OpLookup, ClassDecl, false);
8597
8598 // Prior to C++11, filter out any result that isn't a copy/move-assignment
8599 // operator.
8600 if (!S.getLangOpts().CPlusPlus11) {
8601 LookupResult::Filter F = OpLookup.makeFilter();
8602 while (F.hasNext()) {
8603 NamedDecl *D = F.next();
8604 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8605 if (Method->isCopyAssignmentOperator() ||
8606 (!Copying && Method->isMoveAssignmentOperator()))
8607 continue;
8608
8609 F.erase();
8610 }
8611 F.done();
8612 }
8613
8614 // Suppress the protected check (C++ [class.protected]) for each of the
8615 // assignment operators we found. This strange dance is required when
8616 // we're assigning via a base classes's copy-assignment operator. To
8617 // ensure that we're getting the right base class subobject (without
8618 // ambiguities), we need to cast "this" to that subobject type; to
8619 // ensure that we don't go through the virtual call mechanism, we need
8620 // to qualify the operator= name with the base class (see below). However,
8621 // this means that if the base class has a protected copy assignment
8622 // operator, the protected member access check will fail. So, we
8623 // rewrite "protected" access to "public" access in this case, since we
8624 // know by construction that we're calling from a derived class.
8625 if (CopyingBaseSubobject) {
8626 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8627 L != LEnd; ++L) {
8628 if (L.getAccess() == AS_protected)
8629 L.setAccess(AS_public);
8630 }
8631 }
8632
8633 // Create the nested-name-specifier that will be used to qualify the
8634 // reference to operator=; this is required to suppress the virtual
8635 // call mechanism.
8636 CXXScopeSpec SS;
8637 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8638 SS.MakeTrivial(S.Context,
8639 NestedNameSpecifier::Create(S.Context, 0, false,
8640 CanonicalT),
8641 Loc);
8642
8643 // Create the reference to operator=.
8644 ExprResult OpEqualRef
8645 = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8646 /*TemplateKWLoc=*/SourceLocation(),
8647 /*FirstQualifierInScope=*/0,
8648 OpLookup,
8649 /*TemplateArgs=*/0,
8650 /*SuppressQualifierCheck=*/true);
8651 if (OpEqualRef.isInvalid())
8652 return StmtError();
8653
8654 // Build the call to the assignment operator.
8655
8656 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8657 OpEqualRef.takeAs<Expr>(),
8658 Loc, From, Loc);
8659 if (Call.isInvalid())
8660 return StmtError();
8661
8662 // If we built a call to a trivial 'operator=' while copying an array,
8663 // bail out. We'll replace the whole shebang with a memcpy.
8664 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8665 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8666 return StmtResult((Stmt*)0);
8667
8668 // Convert to an expression-statement, and clean up any produced
8669 // temporaries.
8670 return S.ActOnExprStmt(Call);
8671 }
8672
8673 // - if the subobject is of scalar type, the built-in assignment
8674 // operator is used.
8675 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8676 if (!ArrayTy) {
8677 ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8678 if (Assignment.isInvalid())
8679 return StmtError();
8680 return S.ActOnExprStmt(Assignment);
8681 }
8682
8683 // - if the subobject is an array, each element is assigned, in the
8684 // manner appropriate to the element type;
8685
8686 // Construct a loop over the array bounds, e.g.,
8687 //
8688 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8689 //
8690 // that will copy each of the array elements.
8691 QualType SizeType = S.Context.getSizeType();
8692
8693 // Create the iteration variable.
8694 IdentifierInfo *IterationVarName = 0;
8695 {
8696 SmallString<8> Str;
8697 llvm::raw_svector_ostream OS(Str);
8698 OS << "__i" << Depth;
8699 IterationVarName = &S.Context.Idents.get(OS.str());
8700 }
8701 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8702 IterationVarName, SizeType,
8703 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8704 SC_None);
8705
8706 // Initialize the iteration variable to zero.
8707 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8708 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8709
8710 // Create a reference to the iteration variable; we'll use this several
8711 // times throughout.
8712 Expr *IterationVarRef
8713 = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8714 assert(IterationVarRef && "Reference to invented variable cannot fail!");
8715 Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8716 assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8717
8718 // Create the DeclStmt that holds the iteration variable.
8719 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8720
8721 // Subscript the "from" and "to" expressions with the iteration variable.
8722 From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8723 IterationVarRefRVal,
8724 Loc));
8725 To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8726 IterationVarRefRVal,
8727 Loc));
8728 if (!Copying) // Cast to rvalue
8729 From = CastForMoving(S, From);
8730
8731 // Build the copy/move for an individual element of the array.
8732 StmtResult Copy =
8733 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8734 To, From, CopyingBaseSubobject,
8735 Copying, Depth + 1);
8736 // Bail out if copying fails or if we determined that we should use memcpy.
8737 if (Copy.isInvalid() || !Copy.get())
8738 return Copy;
8739
8740 // Create the comparison against the array bound.
8741 llvm::APInt Upper
8742 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8743 Expr *Comparison
8744 = new (S.Context) BinaryOperator(IterationVarRefRVal,
8745 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8746 BO_NE, S.Context.BoolTy,
8747 VK_RValue, OK_Ordinary, Loc, false);
8748
8749 // Create the pre-increment of the iteration variable.
8750 Expr *Increment
8751 = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8752 VK_LValue, OK_Ordinary, Loc);
8753
8754 // Construct the loop that copies all elements of this array.
8755 return S.ActOnForStmt(Loc, Loc, InitStmt,
8756 S.MakeFullExpr(Comparison),
8757 0, S.MakeFullDiscardedValueExpr(Increment),
8758 Loc, Copy.take());
8759 }
8760
8761 static StmtResult
buildSingleCopyAssign(Sema & S,SourceLocation Loc,QualType T,Expr * To,Expr * From,bool CopyingBaseSubobject,bool Copying)8762 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8763 Expr *To, Expr *From,
8764 bool CopyingBaseSubobject, bool Copying) {
8765 // Maybe we should use a memcpy?
8766 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8767 T.isTriviallyCopyableType(S.Context))
8768 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8769
8770 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8771 CopyingBaseSubobject,
8772 Copying, 0));
8773
8774 // If we ended up picking a trivial assignment operator for an array of a
8775 // non-trivially-copyable class type, just emit a memcpy.
8776 if (!Result.isInvalid() && !Result.get())
8777 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8778
8779 return Result;
8780 }
8781
8782 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl * MD)8783 Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8784 CXXRecordDecl *ClassDecl = MD->getParent();
8785
8786 ImplicitExceptionSpecification ExceptSpec(*this);
8787 if (ClassDecl->isInvalidDecl())
8788 return ExceptSpec;
8789
8790 const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8791 assert(T->getNumArgs() == 1 && "not a copy assignment op");
8792 unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8793
8794 // C++ [except.spec]p14:
8795 // An implicitly declared special member function (Clause 12) shall have an
8796 // exception-specification. [...]
8797
8798 // It is unspecified whether or not an implicit copy assignment operator
8799 // attempts to deduplicate calls to assignment operators of virtual bases are
8800 // made. As such, this exception specification is effectively unspecified.
8801 // Based on a similar decision made for constness in C++0x, we're erring on
8802 // the side of assuming such calls to be made regardless of whether they
8803 // actually happen.
8804 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8805 BaseEnd = ClassDecl->bases_end();
8806 Base != BaseEnd; ++Base) {
8807 if (Base->isVirtual())
8808 continue;
8809
8810 CXXRecordDecl *BaseClassDecl
8811 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8812 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8813 ArgQuals, false, 0))
8814 ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8815 }
8816
8817 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8818 BaseEnd = ClassDecl->vbases_end();
8819 Base != BaseEnd; ++Base) {
8820 CXXRecordDecl *BaseClassDecl
8821 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8822 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8823 ArgQuals, false, 0))
8824 ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8825 }
8826
8827 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8828 FieldEnd = ClassDecl->field_end();
8829 Field != FieldEnd;
8830 ++Field) {
8831 QualType FieldType = Context.getBaseElementType(Field->getType());
8832 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8833 if (CXXMethodDecl *CopyAssign =
8834 LookupCopyingAssignment(FieldClassDecl,
8835 ArgQuals | FieldType.getCVRQualifiers(),
8836 false, 0))
8837 ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8838 }
8839 }
8840
8841 return ExceptSpec;
8842 }
8843
DeclareImplicitCopyAssignment(CXXRecordDecl * ClassDecl)8844 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8845 // Note: The following rules are largely analoguous to the copy
8846 // constructor rules. Note that virtual bases are not taken into account
8847 // for determining the argument type of the operator. Note also that
8848 // operators taking an object instead of a reference are allowed.
8849 assert(ClassDecl->needsImplicitCopyAssignment());
8850
8851 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8852 if (DSM.isAlreadyBeingDeclared())
8853 return 0;
8854
8855 QualType ArgType = Context.getTypeDeclType(ClassDecl);
8856 QualType RetType = Context.getLValueReferenceType(ArgType);
8857 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
8858 if (Const)
8859 ArgType = ArgType.withConst();
8860 ArgType = Context.getLValueReferenceType(ArgType);
8861
8862 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8863 CXXCopyAssignment,
8864 Const);
8865
8866 // An implicitly-declared copy assignment operator is an inline public
8867 // member of its class.
8868 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8869 SourceLocation ClassLoc = ClassDecl->getLocation();
8870 DeclarationNameInfo NameInfo(Name, ClassLoc);
8871 CXXMethodDecl *CopyAssignment =
8872 CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8873 /*TInfo=*/ 0, /*StorageClass=*/ SC_None,
8874 /*isInline=*/ true, Constexpr, SourceLocation());
8875 CopyAssignment->setAccess(AS_public);
8876 CopyAssignment->setDefaulted();
8877 CopyAssignment->setImplicit();
8878
8879 // Build an exception specification pointing back at this member.
8880 FunctionProtoType::ExtProtoInfo EPI;
8881 EPI.ExceptionSpecType = EST_Unevaluated;
8882 EPI.ExceptionSpecDecl = CopyAssignment;
8883 CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8884
8885 // Add the parameter to the operator.
8886 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8887 ClassLoc, ClassLoc, /*Id=*/0,
8888 ArgType, /*TInfo=*/0,
8889 SC_None, 0);
8890 CopyAssignment->setParams(FromParam);
8891
8892 AddOverriddenMethods(ClassDecl, CopyAssignment);
8893
8894 CopyAssignment->setTrivial(
8895 ClassDecl->needsOverloadResolutionForCopyAssignment()
8896 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8897 : ClassDecl->hasTrivialCopyAssignment());
8898
8899 // C++11 [class.copy]p19:
8900 // .... If the class definition does not explicitly declare a copy
8901 // assignment operator, there is no user-declared move constructor, and
8902 // there is no user-declared move assignment operator, a copy assignment
8903 // operator is implicitly declared as defaulted.
8904 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8905 SetDeclDeleted(CopyAssignment, ClassLoc);
8906
8907 // Note that we have added this copy-assignment operator.
8908 ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8909
8910 if (Scope *S = getScopeForContext(ClassDecl))
8911 PushOnScopeChains(CopyAssignment, S, false);
8912 ClassDecl->addDecl(CopyAssignment);
8913
8914 return CopyAssignment;
8915 }
8916
8917 /// Diagnose an implicit copy operation for a class which is odr-used, but
8918 /// which is deprecated because the class has a user-declared copy constructor,
8919 /// copy assignment operator, or destructor.
diagnoseDeprecatedCopyOperation(Sema & S,CXXMethodDecl * CopyOp,SourceLocation UseLoc)8920 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
8921 SourceLocation UseLoc) {
8922 assert(CopyOp->isImplicit());
8923
8924 CXXRecordDecl *RD = CopyOp->getParent();
8925 CXXMethodDecl *UserDeclaredOperation = 0;
8926
8927 // In Microsoft mode, assignment operations don't affect constructors and
8928 // vice versa.
8929 if (RD->hasUserDeclaredDestructor()) {
8930 UserDeclaredOperation = RD->getDestructor();
8931 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
8932 RD->hasUserDeclaredCopyConstructor() &&
8933 !S.getLangOpts().MicrosoftMode) {
8934 // Find any user-declared copy constructor.
8935 for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
8936 E = RD->ctor_end(); I != E; ++I) {
8937 if (I->isCopyConstructor()) {
8938 UserDeclaredOperation = *I;
8939 break;
8940 }
8941 }
8942 assert(UserDeclaredOperation);
8943 } else if (isa<CXXConstructorDecl>(CopyOp) &&
8944 RD->hasUserDeclaredCopyAssignment() &&
8945 !S.getLangOpts().MicrosoftMode) {
8946 // Find any user-declared move assignment operator.
8947 for (CXXRecordDecl::method_iterator I = RD->method_begin(),
8948 E = RD->method_end(); I != E; ++I) {
8949 if (I->isCopyAssignmentOperator()) {
8950 UserDeclaredOperation = *I;
8951 break;
8952 }
8953 }
8954 assert(UserDeclaredOperation);
8955 }
8956
8957 if (UserDeclaredOperation) {
8958 S.Diag(UserDeclaredOperation->getLocation(),
8959 diag::warn_deprecated_copy_operation)
8960 << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
8961 << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
8962 S.Diag(UseLoc, diag::note_member_synthesized_at)
8963 << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
8964 : Sema::CXXCopyAssignment)
8965 << RD;
8966 }
8967 }
8968
DefineImplicitCopyAssignment(SourceLocation CurrentLocation,CXXMethodDecl * CopyAssignOperator)8969 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8970 CXXMethodDecl *CopyAssignOperator) {
8971 assert((CopyAssignOperator->isDefaulted() &&
8972 CopyAssignOperator->isOverloadedOperator() &&
8973 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8974 !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8975 !CopyAssignOperator->isDeleted()) &&
8976 "DefineImplicitCopyAssignment called for wrong function");
8977
8978 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8979
8980 if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8981 CopyAssignOperator->setInvalidDecl();
8982 return;
8983 }
8984
8985 // C++11 [class.copy]p18:
8986 // The [definition of an implicitly declared copy assignment operator] is
8987 // deprecated if the class has a user-declared copy constructor or a
8988 // user-declared destructor.
8989 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
8990 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
8991
8992 CopyAssignOperator->setUsed();
8993
8994 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8995 DiagnosticErrorTrap Trap(Diags);
8996
8997 // C++0x [class.copy]p30:
8998 // The implicitly-defined or explicitly-defaulted copy assignment operator
8999 // for a non-union class X performs memberwise copy assignment of its
9000 // subobjects. The direct base classes of X are assigned first, in the
9001 // order of their declaration in the base-specifier-list, and then the
9002 // immediate non-static data members of X are assigned, in the order in
9003 // which they were declared in the class definition.
9004
9005 // The statements that form the synthesized function body.
9006 SmallVector<Stmt*, 8> Statements;
9007
9008 // The parameter for the "other" object, which we are copying from.
9009 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
9010 Qualifiers OtherQuals = Other->getType().getQualifiers();
9011 QualType OtherRefType = Other->getType();
9012 if (const LValueReferenceType *OtherRef
9013 = OtherRefType->getAs<LValueReferenceType>()) {
9014 OtherRefType = OtherRef->getPointeeType();
9015 OtherQuals = OtherRefType.getQualifiers();
9016 }
9017
9018 // Our location for everything implicitly-generated.
9019 SourceLocation Loc = CopyAssignOperator->getLocation();
9020
9021 // Construct a reference to the "other" object. We'll be using this
9022 // throughout the generated ASTs.
9023 Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9024 assert(OtherRef && "Reference to parameter cannot fail!");
9025
9026 // Construct the "this" pointer. We'll be using this throughout the generated
9027 // ASTs.
9028 Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9029 assert(This && "Reference to this cannot fail!");
9030
9031 // Assign base classes.
9032 bool Invalid = false;
9033 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9034 E = ClassDecl->bases_end(); Base != E; ++Base) {
9035 // Form the assignment:
9036 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
9037 QualType BaseType = Base->getType().getUnqualifiedType();
9038 if (!BaseType->isRecordType()) {
9039 Invalid = true;
9040 continue;
9041 }
9042
9043 CXXCastPath BasePath;
9044 BasePath.push_back(Base);
9045
9046 // Construct the "from" expression, which is an implicit cast to the
9047 // appropriately-qualified base type.
9048 Expr *From = OtherRef;
9049 From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
9050 CK_UncheckedDerivedToBase,
9051 VK_LValue, &BasePath).take();
9052
9053 // Dereference "this".
9054 ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9055
9056 // Implicitly cast "this" to the appropriately-qualified base type.
9057 To = ImpCastExprToType(To.take(),
9058 Context.getCVRQualifiedType(BaseType,
9059 CopyAssignOperator->getTypeQualifiers()),
9060 CK_UncheckedDerivedToBase,
9061 VK_LValue, &BasePath);
9062
9063 // Build the copy.
9064 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
9065 To.get(), From,
9066 /*CopyingBaseSubobject=*/true,
9067 /*Copying=*/true);
9068 if (Copy.isInvalid()) {
9069 Diag(CurrentLocation, diag::note_member_synthesized_at)
9070 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9071 CopyAssignOperator->setInvalidDecl();
9072 return;
9073 }
9074
9075 // Success! Record the copy.
9076 Statements.push_back(Copy.takeAs<Expr>());
9077 }
9078
9079 // Assign non-static members.
9080 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9081 FieldEnd = ClassDecl->field_end();
9082 Field != FieldEnd; ++Field) {
9083 if (Field->isUnnamedBitfield())
9084 continue;
9085
9086 if (Field->isInvalidDecl()) {
9087 Invalid = true;
9088 continue;
9089 }
9090
9091 // Check for members of reference type; we can't copy those.
9092 if (Field->getType()->isReferenceType()) {
9093 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9094 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9095 Diag(Field->getLocation(), diag::note_declared_at);
9096 Diag(CurrentLocation, diag::note_member_synthesized_at)
9097 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9098 Invalid = true;
9099 continue;
9100 }
9101
9102 // Check for members of const-qualified, non-class type.
9103 QualType BaseType = Context.getBaseElementType(Field->getType());
9104 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9105 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9106 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9107 Diag(Field->getLocation(), diag::note_declared_at);
9108 Diag(CurrentLocation, diag::note_member_synthesized_at)
9109 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9110 Invalid = true;
9111 continue;
9112 }
9113
9114 // Suppress assigning zero-width bitfields.
9115 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9116 continue;
9117
9118 QualType FieldType = Field->getType().getNonReferenceType();
9119 if (FieldType->isIncompleteArrayType()) {
9120 assert(ClassDecl->hasFlexibleArrayMember() &&
9121 "Incomplete array type is not valid");
9122 continue;
9123 }
9124
9125 // Build references to the field in the object we're copying from and to.
9126 CXXScopeSpec SS; // Intentionally empty
9127 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9128 LookupMemberName);
9129 MemberLookup.addDecl(*Field);
9130 MemberLookup.resolveKind();
9131 ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9132 Loc, /*IsArrow=*/false,
9133 SS, SourceLocation(), 0,
9134 MemberLookup, 0);
9135 ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9136 Loc, /*IsArrow=*/true,
9137 SS, SourceLocation(), 0,
9138 MemberLookup, 0);
9139 assert(!From.isInvalid() && "Implicit field reference cannot fail");
9140 assert(!To.isInvalid() && "Implicit field reference cannot fail");
9141
9142 // Build the copy of this field.
9143 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
9144 To.get(), From.get(),
9145 /*CopyingBaseSubobject=*/false,
9146 /*Copying=*/true);
9147 if (Copy.isInvalid()) {
9148 Diag(CurrentLocation, diag::note_member_synthesized_at)
9149 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9150 CopyAssignOperator->setInvalidDecl();
9151 return;
9152 }
9153
9154 // Success! Record the copy.
9155 Statements.push_back(Copy.takeAs<Stmt>());
9156 }
9157
9158 if (!Invalid) {
9159 // Add a "return *this;"
9160 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9161
9162 StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9163 if (Return.isInvalid())
9164 Invalid = true;
9165 else {
9166 Statements.push_back(Return.takeAs<Stmt>());
9167
9168 if (Trap.hasErrorOccurred()) {
9169 Diag(CurrentLocation, diag::note_member_synthesized_at)
9170 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9171 Invalid = true;
9172 }
9173 }
9174 }
9175
9176 if (Invalid) {
9177 CopyAssignOperator->setInvalidDecl();
9178 return;
9179 }
9180
9181 StmtResult Body;
9182 {
9183 CompoundScopeRAII CompoundScope(*this);
9184 Body = ActOnCompoundStmt(Loc, Loc, Statements,
9185 /*isStmtExpr=*/false);
9186 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9187 }
9188 CopyAssignOperator->setBody(Body.takeAs<Stmt>());
9189
9190 if (ASTMutationListener *L = getASTMutationListener()) {
9191 L->CompletedImplicitDefinition(CopyAssignOperator);
9192 }
9193 }
9194
9195 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl * MD)9196 Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9197 CXXRecordDecl *ClassDecl = MD->getParent();
9198
9199 ImplicitExceptionSpecification ExceptSpec(*this);
9200 if (ClassDecl->isInvalidDecl())
9201 return ExceptSpec;
9202
9203 // C++0x [except.spec]p14:
9204 // An implicitly declared special member function (Clause 12) shall have an
9205 // exception-specification. [...]
9206
9207 // It is unspecified whether or not an implicit move assignment operator
9208 // attempts to deduplicate calls to assignment operators of virtual bases are
9209 // made. As such, this exception specification is effectively unspecified.
9210 // Based on a similar decision made for constness in C++0x, we're erring on
9211 // the side of assuming such calls to be made regardless of whether they
9212 // actually happen.
9213 // Note that a move constructor is not implicitly declared when there are
9214 // virtual bases, but it can still be user-declared and explicitly defaulted.
9215 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9216 BaseEnd = ClassDecl->bases_end();
9217 Base != BaseEnd; ++Base) {
9218 if (Base->isVirtual())
9219 continue;
9220
9221 CXXRecordDecl *BaseClassDecl
9222 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9223 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9224 0, false, 0))
9225 ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9226 }
9227
9228 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9229 BaseEnd = ClassDecl->vbases_end();
9230 Base != BaseEnd; ++Base) {
9231 CXXRecordDecl *BaseClassDecl
9232 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9233 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9234 0, false, 0))
9235 ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9236 }
9237
9238 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9239 FieldEnd = ClassDecl->field_end();
9240 Field != FieldEnd;
9241 ++Field) {
9242 QualType FieldType = Context.getBaseElementType(Field->getType());
9243 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9244 if (CXXMethodDecl *MoveAssign =
9245 LookupMovingAssignment(FieldClassDecl,
9246 FieldType.getCVRQualifiers(),
9247 false, 0))
9248 ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9249 }
9250 }
9251
9252 return ExceptSpec;
9253 }
9254
9255 /// Determine whether the class type has any direct or indirect virtual base
9256 /// classes which have a non-trivial move assignment operator.
9257 static bool
hasVirtualBaseWithNonTrivialMoveAssignment(Sema & S,CXXRecordDecl * ClassDecl)9258 hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
9259 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9260 BaseEnd = ClassDecl->vbases_end();
9261 Base != BaseEnd; ++Base) {
9262 CXXRecordDecl *BaseClass =
9263 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9264
9265 // Try to declare the move assignment. If it would be deleted, then the
9266 // class does not have a non-trivial move assignment.
9267 if (BaseClass->needsImplicitMoveAssignment())
9268 S.DeclareImplicitMoveAssignment(BaseClass);
9269
9270 if (BaseClass->hasNonTrivialMoveAssignment())
9271 return true;
9272 }
9273
9274 return false;
9275 }
9276
9277 /// Determine whether the given type either has a move constructor or is
9278 /// trivially copyable.
9279 static bool
hasMoveOrIsTriviallyCopyable(Sema & S,QualType Type,bool IsConstructor)9280 hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
9281 Type = S.Context.getBaseElementType(Type);
9282
9283 // FIXME: Technically, non-trivially-copyable non-class types, such as
9284 // reference types, are supposed to return false here, but that appears
9285 // to be a standard defect.
9286 CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
9287 if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
9288 return true;
9289
9290 if (Type.isTriviallyCopyableType(S.Context))
9291 return true;
9292
9293 if (IsConstructor) {
9294 // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
9295 // give the right answer.
9296 if (ClassDecl->needsImplicitMoveConstructor())
9297 S.DeclareImplicitMoveConstructor(ClassDecl);
9298 return ClassDecl->hasMoveConstructor();
9299 }
9300
9301 // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
9302 // give the right answer.
9303 if (ClassDecl->needsImplicitMoveAssignment())
9304 S.DeclareImplicitMoveAssignment(ClassDecl);
9305 return ClassDecl->hasMoveAssignment();
9306 }
9307
9308 /// Determine whether all non-static data members and direct or virtual bases
9309 /// of class \p ClassDecl have either a move operation, or are trivially
9310 /// copyable.
subobjectsHaveMoveOrTrivialCopy(Sema & S,CXXRecordDecl * ClassDecl,bool IsConstructor)9311 static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
9312 bool IsConstructor) {
9313 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9314 BaseEnd = ClassDecl->bases_end();
9315 Base != BaseEnd; ++Base) {
9316 if (Base->isVirtual())
9317 continue;
9318
9319 if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9320 return false;
9321 }
9322
9323 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9324 BaseEnd = ClassDecl->vbases_end();
9325 Base != BaseEnd; ++Base) {
9326 if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9327 return false;
9328 }
9329
9330 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9331 FieldEnd = ClassDecl->field_end();
9332 Field != FieldEnd; ++Field) {
9333 if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9334 return false;
9335 }
9336
9337 return true;
9338 }
9339
DeclareImplicitMoveAssignment(CXXRecordDecl * ClassDecl)9340 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9341 // C++11 [class.copy]p20:
9342 // If the definition of a class X does not explicitly declare a move
9343 // assignment operator, one will be implicitly declared as defaulted
9344 // if and only if:
9345 //
9346 // - [first 4 bullets]
9347 assert(ClassDecl->needsImplicitMoveAssignment());
9348
9349 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9350 if (DSM.isAlreadyBeingDeclared())
9351 return 0;
9352
9353 // [Checked after we build the declaration]
9354 // - the move assignment operator would not be implicitly defined as
9355 // deleted,
9356
9357 // [DR1402]:
9358 // - X has no direct or indirect virtual base class with a non-trivial
9359 // move assignment operator, and
9360 // - each of X's non-static data members and direct or virtual base classes
9361 // has a type that either has a move assignment operator or is trivially
9362 // copyable.
9363 if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9364 !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9365 ClassDecl->setFailedImplicitMoveAssignment();
9366 return 0;
9367 }
9368
9369 // Note: The following rules are largely analoguous to the move
9370 // constructor rules.
9371
9372 QualType ArgType = Context.getTypeDeclType(ClassDecl);
9373 QualType RetType = Context.getLValueReferenceType(ArgType);
9374 ArgType = Context.getRValueReferenceType(ArgType);
9375
9376 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9377 CXXMoveAssignment,
9378 false);
9379
9380 // An implicitly-declared move assignment operator is an inline public
9381 // member of its class.
9382 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9383 SourceLocation ClassLoc = ClassDecl->getLocation();
9384 DeclarationNameInfo NameInfo(Name, ClassLoc);
9385 CXXMethodDecl *MoveAssignment =
9386 CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9387 /*TInfo=*/0, /*StorageClass=*/SC_None,
9388 /*isInline=*/true, Constexpr, SourceLocation());
9389 MoveAssignment->setAccess(AS_public);
9390 MoveAssignment->setDefaulted();
9391 MoveAssignment->setImplicit();
9392
9393 // Build an exception specification pointing back at this member.
9394 FunctionProtoType::ExtProtoInfo EPI;
9395 EPI.ExceptionSpecType = EST_Unevaluated;
9396 EPI.ExceptionSpecDecl = MoveAssignment;
9397 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9398
9399 // Add the parameter to the operator.
9400 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9401 ClassLoc, ClassLoc, /*Id=*/0,
9402 ArgType, /*TInfo=*/0,
9403 SC_None, 0);
9404 MoveAssignment->setParams(FromParam);
9405
9406 AddOverriddenMethods(ClassDecl, MoveAssignment);
9407
9408 MoveAssignment->setTrivial(
9409 ClassDecl->needsOverloadResolutionForMoveAssignment()
9410 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9411 : ClassDecl->hasTrivialMoveAssignment());
9412
9413 // C++0x [class.copy]p9:
9414 // If the definition of a class X does not explicitly declare a move
9415 // assignment operator, one will be implicitly declared as defaulted if and
9416 // only if:
9417 // [...]
9418 // - the move assignment operator would not be implicitly defined as
9419 // deleted.
9420 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9421 // Cache this result so that we don't try to generate this over and over
9422 // on every lookup, leaking memory and wasting time.
9423 ClassDecl->setFailedImplicitMoveAssignment();
9424 return 0;
9425 }
9426
9427 // Note that we have added this copy-assignment operator.
9428 ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9429
9430 if (Scope *S = getScopeForContext(ClassDecl))
9431 PushOnScopeChains(MoveAssignment, S, false);
9432 ClassDecl->addDecl(MoveAssignment);
9433
9434 return MoveAssignment;
9435 }
9436
DefineImplicitMoveAssignment(SourceLocation CurrentLocation,CXXMethodDecl * MoveAssignOperator)9437 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9438 CXXMethodDecl *MoveAssignOperator) {
9439 assert((MoveAssignOperator->isDefaulted() &&
9440 MoveAssignOperator->isOverloadedOperator() &&
9441 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9442 !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9443 !MoveAssignOperator->isDeleted()) &&
9444 "DefineImplicitMoveAssignment called for wrong function");
9445
9446 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9447
9448 if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9449 MoveAssignOperator->setInvalidDecl();
9450 return;
9451 }
9452
9453 MoveAssignOperator->setUsed();
9454
9455 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9456 DiagnosticErrorTrap Trap(Diags);
9457
9458 // C++0x [class.copy]p28:
9459 // The implicitly-defined or move assignment operator for a non-union class
9460 // X performs memberwise move assignment of its subobjects. The direct base
9461 // classes of X are assigned first, in the order of their declaration in the
9462 // base-specifier-list, and then the immediate non-static data members of X
9463 // are assigned, in the order in which they were declared in the class
9464 // definition.
9465
9466 // The statements that form the synthesized function body.
9467 SmallVector<Stmt*, 8> Statements;
9468
9469 // The parameter for the "other" object, which we are move from.
9470 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9471 QualType OtherRefType = Other->getType()->
9472 getAs<RValueReferenceType>()->getPointeeType();
9473 assert(!OtherRefType.getQualifiers() &&
9474 "Bad argument type of defaulted move assignment");
9475
9476 // Our location for everything implicitly-generated.
9477 SourceLocation Loc = MoveAssignOperator->getLocation();
9478
9479 // Construct a reference to the "other" object. We'll be using this
9480 // throughout the generated ASTs.
9481 Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9482 assert(OtherRef && "Reference to parameter cannot fail!");
9483 // Cast to rvalue.
9484 OtherRef = CastForMoving(*this, OtherRef);
9485
9486 // Construct the "this" pointer. We'll be using this throughout the generated
9487 // ASTs.
9488 Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9489 assert(This && "Reference to this cannot fail!");
9490
9491 // Assign base classes.
9492 bool Invalid = false;
9493 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9494 E = ClassDecl->bases_end(); Base != E; ++Base) {
9495 // Form the assignment:
9496 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9497 QualType BaseType = Base->getType().getUnqualifiedType();
9498 if (!BaseType->isRecordType()) {
9499 Invalid = true;
9500 continue;
9501 }
9502
9503 CXXCastPath BasePath;
9504 BasePath.push_back(Base);
9505
9506 // Construct the "from" expression, which is an implicit cast to the
9507 // appropriately-qualified base type.
9508 Expr *From = OtherRef;
9509 From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9510 VK_XValue, &BasePath).take();
9511
9512 // Dereference "this".
9513 ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9514
9515 // Implicitly cast "this" to the appropriately-qualified base type.
9516 To = ImpCastExprToType(To.take(),
9517 Context.getCVRQualifiedType(BaseType,
9518 MoveAssignOperator->getTypeQualifiers()),
9519 CK_UncheckedDerivedToBase,
9520 VK_LValue, &BasePath);
9521
9522 // Build the move.
9523 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9524 To.get(), From,
9525 /*CopyingBaseSubobject=*/true,
9526 /*Copying=*/false);
9527 if (Move.isInvalid()) {
9528 Diag(CurrentLocation, diag::note_member_synthesized_at)
9529 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9530 MoveAssignOperator->setInvalidDecl();
9531 return;
9532 }
9533
9534 // Success! Record the move.
9535 Statements.push_back(Move.takeAs<Expr>());
9536 }
9537
9538 // Assign non-static members.
9539 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9540 FieldEnd = ClassDecl->field_end();
9541 Field != FieldEnd; ++Field) {
9542 if (Field->isUnnamedBitfield())
9543 continue;
9544
9545 if (Field->isInvalidDecl()) {
9546 Invalid = true;
9547 continue;
9548 }
9549
9550 // Check for members of reference type; we can't move those.
9551 if (Field->getType()->isReferenceType()) {
9552 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9553 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9554 Diag(Field->getLocation(), diag::note_declared_at);
9555 Diag(CurrentLocation, diag::note_member_synthesized_at)
9556 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9557 Invalid = true;
9558 continue;
9559 }
9560
9561 // Check for members of const-qualified, non-class type.
9562 QualType BaseType = Context.getBaseElementType(Field->getType());
9563 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9564 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9565 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9566 Diag(Field->getLocation(), diag::note_declared_at);
9567 Diag(CurrentLocation, diag::note_member_synthesized_at)
9568 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9569 Invalid = true;
9570 continue;
9571 }
9572
9573 // Suppress assigning zero-width bitfields.
9574 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9575 continue;
9576
9577 QualType FieldType = Field->getType().getNonReferenceType();
9578 if (FieldType->isIncompleteArrayType()) {
9579 assert(ClassDecl->hasFlexibleArrayMember() &&
9580 "Incomplete array type is not valid");
9581 continue;
9582 }
9583
9584 // Build references to the field in the object we're copying from and to.
9585 CXXScopeSpec SS; // Intentionally empty
9586 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9587 LookupMemberName);
9588 MemberLookup.addDecl(*Field);
9589 MemberLookup.resolveKind();
9590 ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9591 Loc, /*IsArrow=*/false,
9592 SS, SourceLocation(), 0,
9593 MemberLookup, 0);
9594 ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9595 Loc, /*IsArrow=*/true,
9596 SS, SourceLocation(), 0,
9597 MemberLookup, 0);
9598 assert(!From.isInvalid() && "Implicit field reference cannot fail");
9599 assert(!To.isInvalid() && "Implicit field reference cannot fail");
9600
9601 assert(!From.get()->isLValue() && // could be xvalue or prvalue
9602 "Member reference with rvalue base must be rvalue except for reference "
9603 "members, which aren't allowed for move assignment.");
9604
9605 // Build the move of this field.
9606 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9607 To.get(), From.get(),
9608 /*CopyingBaseSubobject=*/false,
9609 /*Copying=*/false);
9610 if (Move.isInvalid()) {
9611 Diag(CurrentLocation, diag::note_member_synthesized_at)
9612 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9613 MoveAssignOperator->setInvalidDecl();
9614 return;
9615 }
9616
9617 // Success! Record the copy.
9618 Statements.push_back(Move.takeAs<Stmt>());
9619 }
9620
9621 if (!Invalid) {
9622 // Add a "return *this;"
9623 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9624
9625 StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9626 if (Return.isInvalid())
9627 Invalid = true;
9628 else {
9629 Statements.push_back(Return.takeAs<Stmt>());
9630
9631 if (Trap.hasErrorOccurred()) {
9632 Diag(CurrentLocation, diag::note_member_synthesized_at)
9633 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9634 Invalid = true;
9635 }
9636 }
9637 }
9638
9639 if (Invalid) {
9640 MoveAssignOperator->setInvalidDecl();
9641 return;
9642 }
9643
9644 StmtResult Body;
9645 {
9646 CompoundScopeRAII CompoundScope(*this);
9647 Body = ActOnCompoundStmt(Loc, Loc, Statements,
9648 /*isStmtExpr=*/false);
9649 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9650 }
9651 MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9652
9653 if (ASTMutationListener *L = getASTMutationListener()) {
9654 L->CompletedImplicitDefinition(MoveAssignOperator);
9655 }
9656 }
9657
9658 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl * MD)9659 Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9660 CXXRecordDecl *ClassDecl = MD->getParent();
9661
9662 ImplicitExceptionSpecification ExceptSpec(*this);
9663 if (ClassDecl->isInvalidDecl())
9664 return ExceptSpec;
9665
9666 const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9667 assert(T->getNumArgs() >= 1 && "not a copy ctor");
9668 unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9669
9670 // C++ [except.spec]p14:
9671 // An implicitly declared special member function (Clause 12) shall have an
9672 // exception-specification. [...]
9673 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9674 BaseEnd = ClassDecl->bases_end();
9675 Base != BaseEnd;
9676 ++Base) {
9677 // Virtual bases are handled below.
9678 if (Base->isVirtual())
9679 continue;
9680
9681 CXXRecordDecl *BaseClassDecl
9682 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9683 if (CXXConstructorDecl *CopyConstructor =
9684 LookupCopyingConstructor(BaseClassDecl, Quals))
9685 ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9686 }
9687 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9688 BaseEnd = ClassDecl->vbases_end();
9689 Base != BaseEnd;
9690 ++Base) {
9691 CXXRecordDecl *BaseClassDecl
9692 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9693 if (CXXConstructorDecl *CopyConstructor =
9694 LookupCopyingConstructor(BaseClassDecl, Quals))
9695 ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9696 }
9697 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9698 FieldEnd = ClassDecl->field_end();
9699 Field != FieldEnd;
9700 ++Field) {
9701 QualType FieldType = Context.getBaseElementType(Field->getType());
9702 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9703 if (CXXConstructorDecl *CopyConstructor =
9704 LookupCopyingConstructor(FieldClassDecl,
9705 Quals | FieldType.getCVRQualifiers()))
9706 ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9707 }
9708 }
9709
9710 return ExceptSpec;
9711 }
9712
DeclareImplicitCopyConstructor(CXXRecordDecl * ClassDecl)9713 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9714 CXXRecordDecl *ClassDecl) {
9715 // C++ [class.copy]p4:
9716 // If the class definition does not explicitly declare a copy
9717 // constructor, one is declared implicitly.
9718 assert(ClassDecl->needsImplicitCopyConstructor());
9719
9720 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9721 if (DSM.isAlreadyBeingDeclared())
9722 return 0;
9723
9724 QualType ClassType = Context.getTypeDeclType(ClassDecl);
9725 QualType ArgType = ClassType;
9726 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9727 if (Const)
9728 ArgType = ArgType.withConst();
9729 ArgType = Context.getLValueReferenceType(ArgType);
9730
9731 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9732 CXXCopyConstructor,
9733 Const);
9734
9735 DeclarationName Name
9736 = Context.DeclarationNames.getCXXConstructorName(
9737 Context.getCanonicalType(ClassType));
9738 SourceLocation ClassLoc = ClassDecl->getLocation();
9739 DeclarationNameInfo NameInfo(Name, ClassLoc);
9740
9741 // An implicitly-declared copy constructor is an inline public
9742 // member of its class.
9743 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9744 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9745 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9746 Constexpr);
9747 CopyConstructor->setAccess(AS_public);
9748 CopyConstructor->setDefaulted();
9749
9750 // Build an exception specification pointing back at this member.
9751 FunctionProtoType::ExtProtoInfo EPI;
9752 EPI.ExceptionSpecType = EST_Unevaluated;
9753 EPI.ExceptionSpecDecl = CopyConstructor;
9754 CopyConstructor->setType(
9755 Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9756
9757 // Add the parameter to the constructor.
9758 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9759 ClassLoc, ClassLoc,
9760 /*IdentifierInfo=*/0,
9761 ArgType, /*TInfo=*/0,
9762 SC_None, 0);
9763 CopyConstructor->setParams(FromParam);
9764
9765 CopyConstructor->setTrivial(
9766 ClassDecl->needsOverloadResolutionForCopyConstructor()
9767 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9768 : ClassDecl->hasTrivialCopyConstructor());
9769
9770 // C++11 [class.copy]p8:
9771 // ... If the class definition does not explicitly declare a copy
9772 // constructor, there is no user-declared move constructor, and there is no
9773 // user-declared move assignment operator, a copy constructor is implicitly
9774 // declared as defaulted.
9775 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9776 SetDeclDeleted(CopyConstructor, ClassLoc);
9777
9778 // Note that we have declared this constructor.
9779 ++ASTContext::NumImplicitCopyConstructorsDeclared;
9780
9781 if (Scope *S = getScopeForContext(ClassDecl))
9782 PushOnScopeChains(CopyConstructor, S, false);
9783 ClassDecl->addDecl(CopyConstructor);
9784
9785 return CopyConstructor;
9786 }
9787
DefineImplicitCopyConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * CopyConstructor)9788 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9789 CXXConstructorDecl *CopyConstructor) {
9790 assert((CopyConstructor->isDefaulted() &&
9791 CopyConstructor->isCopyConstructor() &&
9792 !CopyConstructor->doesThisDeclarationHaveABody() &&
9793 !CopyConstructor->isDeleted()) &&
9794 "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9795
9796 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9797 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9798
9799 // C++11 [class.copy]p7:
9800 // The [definition of an implicitly declared copy constructro] is
9801 // deprecated if the class has a user-declared copy assignment operator
9802 // or a user-declared destructor.
9803 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
9804 diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
9805
9806 SynthesizedFunctionScope Scope(*this, CopyConstructor);
9807 DiagnosticErrorTrap Trap(Diags);
9808
9809 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9810 Trap.hasErrorOccurred()) {
9811 Diag(CurrentLocation, diag::note_member_synthesized_at)
9812 << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9813 CopyConstructor->setInvalidDecl();
9814 } else {
9815 Sema::CompoundScopeRAII CompoundScope(*this);
9816 CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9817 CopyConstructor->getLocation(),
9818 MultiStmtArg(),
9819 /*isStmtExpr=*/false)
9820 .takeAs<Stmt>());
9821 }
9822
9823 CopyConstructor->setUsed();
9824 if (ASTMutationListener *L = getASTMutationListener()) {
9825 L->CompletedImplicitDefinition(CopyConstructor);
9826 }
9827 }
9828
9829 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl * MD)9830 Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9831 CXXRecordDecl *ClassDecl = MD->getParent();
9832
9833 // C++ [except.spec]p14:
9834 // An implicitly declared special member function (Clause 12) shall have an
9835 // exception-specification. [...]
9836 ImplicitExceptionSpecification ExceptSpec(*this);
9837 if (ClassDecl->isInvalidDecl())
9838 return ExceptSpec;
9839
9840 // Direct base-class constructors.
9841 for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9842 BEnd = ClassDecl->bases_end();
9843 B != BEnd; ++B) {
9844 if (B->isVirtual()) // Handled below.
9845 continue;
9846
9847 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9848 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9849 CXXConstructorDecl *Constructor =
9850 LookupMovingConstructor(BaseClassDecl, 0);
9851 // If this is a deleted function, add it anyway. This might be conformant
9852 // with the standard. This might not. I'm not sure. It might not matter.
9853 if (Constructor)
9854 ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9855 }
9856 }
9857
9858 // Virtual base-class constructors.
9859 for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9860 BEnd = ClassDecl->vbases_end();
9861 B != BEnd; ++B) {
9862 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9863 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9864 CXXConstructorDecl *Constructor =
9865 LookupMovingConstructor(BaseClassDecl, 0);
9866 // If this is a deleted function, add it anyway. This might be conformant
9867 // with the standard. This might not. I'm not sure. It might not matter.
9868 if (Constructor)
9869 ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9870 }
9871 }
9872
9873 // Field constructors.
9874 for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9875 FEnd = ClassDecl->field_end();
9876 F != FEnd; ++F) {
9877 QualType FieldType = Context.getBaseElementType(F->getType());
9878 if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9879 CXXConstructorDecl *Constructor =
9880 LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9881 // If this is a deleted function, add it anyway. This might be conformant
9882 // with the standard. This might not. I'm not sure. It might not matter.
9883 // In particular, the problem is that this function never gets called. It
9884 // might just be ill-formed because this function attempts to refer to
9885 // a deleted function here.
9886 if (Constructor)
9887 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9888 }
9889 }
9890
9891 return ExceptSpec;
9892 }
9893
DeclareImplicitMoveConstructor(CXXRecordDecl * ClassDecl)9894 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9895 CXXRecordDecl *ClassDecl) {
9896 // C++11 [class.copy]p9:
9897 // If the definition of a class X does not explicitly declare a move
9898 // constructor, one will be implicitly declared as defaulted if and only if:
9899 //
9900 // - [first 4 bullets]
9901 assert(ClassDecl->needsImplicitMoveConstructor());
9902
9903 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9904 if (DSM.isAlreadyBeingDeclared())
9905 return 0;
9906
9907 // [Checked after we build the declaration]
9908 // - the move assignment operator would not be implicitly defined as
9909 // deleted,
9910
9911 // [DR1402]:
9912 // - each of X's non-static data members and direct or virtual base classes
9913 // has a type that either has a move constructor or is trivially copyable.
9914 if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9915 ClassDecl->setFailedImplicitMoveConstructor();
9916 return 0;
9917 }
9918
9919 QualType ClassType = Context.getTypeDeclType(ClassDecl);
9920 QualType ArgType = Context.getRValueReferenceType(ClassType);
9921
9922 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9923 CXXMoveConstructor,
9924 false);
9925
9926 DeclarationName Name
9927 = Context.DeclarationNames.getCXXConstructorName(
9928 Context.getCanonicalType(ClassType));
9929 SourceLocation ClassLoc = ClassDecl->getLocation();
9930 DeclarationNameInfo NameInfo(Name, ClassLoc);
9931
9932 // C++11 [class.copy]p11:
9933 // An implicitly-declared copy/move constructor is an inline public
9934 // member of its class.
9935 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9936 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9937 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9938 Constexpr);
9939 MoveConstructor->setAccess(AS_public);
9940 MoveConstructor->setDefaulted();
9941
9942 // Build an exception specification pointing back at this member.
9943 FunctionProtoType::ExtProtoInfo EPI;
9944 EPI.ExceptionSpecType = EST_Unevaluated;
9945 EPI.ExceptionSpecDecl = MoveConstructor;
9946 MoveConstructor->setType(
9947 Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9948
9949 // Add the parameter to the constructor.
9950 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9951 ClassLoc, ClassLoc,
9952 /*IdentifierInfo=*/0,
9953 ArgType, /*TInfo=*/0,
9954 SC_None, 0);
9955 MoveConstructor->setParams(FromParam);
9956
9957 MoveConstructor->setTrivial(
9958 ClassDecl->needsOverloadResolutionForMoveConstructor()
9959 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9960 : ClassDecl->hasTrivialMoveConstructor());
9961
9962 // C++0x [class.copy]p9:
9963 // If the definition of a class X does not explicitly declare a move
9964 // constructor, one will be implicitly declared as defaulted if and only if:
9965 // [...]
9966 // - the move constructor would not be implicitly defined as deleted.
9967 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9968 // Cache this result so that we don't try to generate this over and over
9969 // on every lookup, leaking memory and wasting time.
9970 ClassDecl->setFailedImplicitMoveConstructor();
9971 return 0;
9972 }
9973
9974 // Note that we have declared this constructor.
9975 ++ASTContext::NumImplicitMoveConstructorsDeclared;
9976
9977 if (Scope *S = getScopeForContext(ClassDecl))
9978 PushOnScopeChains(MoveConstructor, S, false);
9979 ClassDecl->addDecl(MoveConstructor);
9980
9981 return MoveConstructor;
9982 }
9983
DefineImplicitMoveConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * MoveConstructor)9984 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9985 CXXConstructorDecl *MoveConstructor) {
9986 assert((MoveConstructor->isDefaulted() &&
9987 MoveConstructor->isMoveConstructor() &&
9988 !MoveConstructor->doesThisDeclarationHaveABody() &&
9989 !MoveConstructor->isDeleted()) &&
9990 "DefineImplicitMoveConstructor - call it for implicit move ctor");
9991
9992 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9993 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9994
9995 SynthesizedFunctionScope Scope(*this, MoveConstructor);
9996 DiagnosticErrorTrap Trap(Diags);
9997
9998 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9999 Trap.hasErrorOccurred()) {
10000 Diag(CurrentLocation, diag::note_member_synthesized_at)
10001 << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
10002 MoveConstructor->setInvalidDecl();
10003 } else {
10004 Sema::CompoundScopeRAII CompoundScope(*this);
10005 MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
10006 MoveConstructor->getLocation(),
10007 MultiStmtArg(),
10008 /*isStmtExpr=*/false)
10009 .takeAs<Stmt>());
10010 }
10011
10012 MoveConstructor->setUsed();
10013
10014 if (ASTMutationListener *L = getASTMutationListener()) {
10015 L->CompletedImplicitDefinition(MoveConstructor);
10016 }
10017 }
10018
isImplicitlyDeleted(FunctionDecl * FD)10019 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
10020 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
10021 }
10022
10023 /// \brief Mark the call operator of the given lambda closure type as "used".
markLambdaCallOperatorUsed(Sema & S,CXXRecordDecl * Lambda)10024 static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
10025 CXXMethodDecl *CallOperator
10026 = cast<CXXMethodDecl>(
10027 Lambda->lookup(
10028 S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
10029 CallOperator->setReferenced();
10030 CallOperator->setUsed();
10031 }
10032
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)10033 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
10034 SourceLocation CurrentLocation,
10035 CXXConversionDecl *Conv)
10036 {
10037 CXXRecordDecl *Lambda = Conv->getParent();
10038
10039 // Make sure that the lambda call operator is marked used.
10040 markLambdaCallOperatorUsed(*this, Lambda);
10041
10042 Conv->setUsed();
10043
10044 SynthesizedFunctionScope Scope(*this, Conv);
10045 DiagnosticErrorTrap Trap(Diags);
10046
10047 // Return the address of the __invoke function.
10048 DeclarationName InvokeName = &Context.Idents.get("__invoke");
10049 CXXMethodDecl *Invoke
10050 = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
10051 Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
10052 VK_LValue, Conv->getLocation()).take();
10053 assert(FunctionRef && "Can't refer to __invoke function?");
10054 Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
10055 Conv->setBody(new (Context) CompoundStmt(Context, Return,
10056 Conv->getLocation(),
10057 Conv->getLocation()));
10058
10059 // Fill in the __invoke function with a dummy implementation. IR generation
10060 // will fill in the actual details.
10061 Invoke->setUsed();
10062 Invoke->setReferenced();
10063 Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
10064
10065 if (ASTMutationListener *L = getASTMutationListener()) {
10066 L->CompletedImplicitDefinition(Conv);
10067 L->CompletedImplicitDefinition(Invoke);
10068 }
10069 }
10070
DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)10071 void Sema::DefineImplicitLambdaToBlockPointerConversion(
10072 SourceLocation CurrentLocation,
10073 CXXConversionDecl *Conv)
10074 {
10075 Conv->setUsed();
10076
10077 SynthesizedFunctionScope Scope(*this, Conv);
10078 DiagnosticErrorTrap Trap(Diags);
10079
10080 // Copy-initialize the lambda object as needed to capture it.
10081 Expr *This = ActOnCXXThis(CurrentLocation).take();
10082 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
10083
10084 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
10085 Conv->getLocation(),
10086 Conv, DerefThis);
10087
10088 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
10089 // behavior. Note that only the general conversion function does this
10090 // (since it's unusable otherwise); in the case where we inline the
10091 // block literal, it has block literal lifetime semantics.
10092 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
10093 BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
10094 CK_CopyAndAutoreleaseBlockObject,
10095 BuildBlock.get(), 0, VK_RValue);
10096
10097 if (BuildBlock.isInvalid()) {
10098 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10099 Conv->setInvalidDecl();
10100 return;
10101 }
10102
10103 // Create the return statement that returns the block from the conversion
10104 // function.
10105 StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
10106 if (Return.isInvalid()) {
10107 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10108 Conv->setInvalidDecl();
10109 return;
10110 }
10111
10112 // Set the body of the conversion function.
10113 Stmt *ReturnS = Return.take();
10114 Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
10115 Conv->getLocation(),
10116 Conv->getLocation()));
10117
10118 // We're done; notify the mutation listener, if any.
10119 if (ASTMutationListener *L = getASTMutationListener()) {
10120 L->CompletedImplicitDefinition(Conv);
10121 }
10122 }
10123
10124 /// \brief Determine whether the given list arguments contains exactly one
10125 /// "real" (non-default) argument.
hasOneRealArgument(MultiExprArg Args)10126 static bool hasOneRealArgument(MultiExprArg Args) {
10127 switch (Args.size()) {
10128 case 0:
10129 return false;
10130
10131 default:
10132 if (!Args[1]->isDefaultArgument())
10133 return false;
10134
10135 // fall through
10136 case 1:
10137 return !Args[0]->isDefaultArgument();
10138 }
10139
10140 return false;
10141 }
10142
10143 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)10144 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10145 CXXConstructorDecl *Constructor,
10146 MultiExprArg ExprArgs,
10147 bool HadMultipleCandidates,
10148 bool IsListInitialization,
10149 bool RequiresZeroInit,
10150 unsigned ConstructKind,
10151 SourceRange ParenRange) {
10152 bool Elidable = false;
10153
10154 // C++0x [class.copy]p34:
10155 // When certain criteria are met, an implementation is allowed to
10156 // omit the copy/move construction of a class object, even if the
10157 // copy/move constructor and/or destructor for the object have
10158 // side effects. [...]
10159 // - when a temporary class object that has not been bound to a
10160 // reference (12.2) would be copied/moved to a class object
10161 // with the same cv-unqualified type, the copy/move operation
10162 // can be omitted by constructing the temporary object
10163 // directly into the target of the omitted copy/move
10164 if (ConstructKind == CXXConstructExpr::CK_Complete &&
10165 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10166 Expr *SubExpr = ExprArgs[0];
10167 Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10168 }
10169
10170 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10171 Elidable, ExprArgs, HadMultipleCandidates,
10172 IsListInitialization, RequiresZeroInit,
10173 ConstructKind, ParenRange);
10174 }
10175
10176 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
10177 /// including handling of its default argument expressions.
10178 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)10179 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10180 CXXConstructorDecl *Constructor, bool Elidable,
10181 MultiExprArg ExprArgs,
10182 bool HadMultipleCandidates,
10183 bool IsListInitialization,
10184 bool RequiresZeroInit,
10185 unsigned ConstructKind,
10186 SourceRange ParenRange) {
10187 MarkFunctionReferenced(ConstructLoc, Constructor);
10188 return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
10189 Constructor, Elidable, ExprArgs,
10190 HadMultipleCandidates,
10191 IsListInitialization, RequiresZeroInit,
10192 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10193 ParenRange));
10194 }
10195
FinalizeVarWithDestructor(VarDecl * VD,const RecordType * Record)10196 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10197 if (VD->isInvalidDecl()) return;
10198
10199 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10200 if (ClassDecl->isInvalidDecl()) return;
10201 if (ClassDecl->hasIrrelevantDestructor()) return;
10202 if (ClassDecl->isDependentContext()) return;
10203
10204 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10205 MarkFunctionReferenced(VD->getLocation(), Destructor);
10206 CheckDestructorAccess(VD->getLocation(), Destructor,
10207 PDiag(diag::err_access_dtor_var)
10208 << VD->getDeclName()
10209 << VD->getType());
10210 DiagnoseUseOfDecl(Destructor, VD->getLocation());
10211
10212 if (!VD->hasGlobalStorage()) return;
10213
10214 // Emit warning for non-trivial dtor in global scope (a real global,
10215 // class-static, function-static).
10216 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10217
10218 // TODO: this should be re-enabled for static locals by !CXAAtExit
10219 if (!VD->isStaticLocal())
10220 Diag(VD->getLocation(), diag::warn_global_destructor);
10221 }
10222
10223 /// \brief Given a constructor and the set of arguments provided for the
10224 /// constructor, convert the arguments and add any required default arguments
10225 /// to form a proper call to this constructor.
10226 ///
10227 /// \returns true if an error occurred, false otherwise.
10228 bool
CompleteConstructorCall(CXXConstructorDecl * Constructor,MultiExprArg ArgsPtr,SourceLocation Loc,SmallVectorImpl<Expr * > & ConvertedArgs,bool AllowExplicit,bool IsListInitialization)10229 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10230 MultiExprArg ArgsPtr,
10231 SourceLocation Loc,
10232 SmallVectorImpl<Expr*> &ConvertedArgs,
10233 bool AllowExplicit,
10234 bool IsListInitialization) {
10235 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10236 unsigned NumArgs = ArgsPtr.size();
10237 Expr **Args = ArgsPtr.data();
10238
10239 const FunctionProtoType *Proto
10240 = Constructor->getType()->getAs<FunctionProtoType>();
10241 assert(Proto && "Constructor without a prototype?");
10242 unsigned NumArgsInProto = Proto->getNumArgs();
10243
10244 // If too few arguments are available, we'll fill in the rest with defaults.
10245 if (NumArgs < NumArgsInProto)
10246 ConvertedArgs.reserve(NumArgsInProto);
10247 else
10248 ConvertedArgs.reserve(NumArgs);
10249
10250 VariadicCallType CallType =
10251 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10252 SmallVector<Expr *, 8> AllArgs;
10253 bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10254 Proto, 0,
10255 llvm::makeArrayRef(Args, NumArgs),
10256 AllArgs,
10257 CallType, AllowExplicit,
10258 IsListInitialization);
10259 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10260
10261 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10262
10263 CheckConstructorCall(Constructor,
10264 llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10265 AllArgs.size()),
10266 Proto, Loc);
10267
10268 return Invalid;
10269 }
10270
10271 static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema & SemaRef,const FunctionDecl * FnDecl)10272 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10273 const FunctionDecl *FnDecl) {
10274 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10275 if (isa<NamespaceDecl>(DC)) {
10276 return SemaRef.Diag(FnDecl->getLocation(),
10277 diag::err_operator_new_delete_declared_in_namespace)
10278 << FnDecl->getDeclName();
10279 }
10280
10281 if (isa<TranslationUnitDecl>(DC) &&
10282 FnDecl->getStorageClass() == SC_Static) {
10283 return SemaRef.Diag(FnDecl->getLocation(),
10284 diag::err_operator_new_delete_declared_static)
10285 << FnDecl->getDeclName();
10286 }
10287
10288 return false;
10289 }
10290
10291 static inline bool
CheckOperatorNewDeleteTypes(Sema & SemaRef,const FunctionDecl * FnDecl,CanQualType ExpectedResultType,CanQualType ExpectedFirstParamType,unsigned DependentParamTypeDiag,unsigned InvalidParamTypeDiag)10292 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10293 CanQualType ExpectedResultType,
10294 CanQualType ExpectedFirstParamType,
10295 unsigned DependentParamTypeDiag,
10296 unsigned InvalidParamTypeDiag) {
10297 QualType ResultType =
10298 FnDecl->getType()->getAs<FunctionType>()->getResultType();
10299
10300 // Check that the result type is not dependent.
10301 if (ResultType->isDependentType())
10302 return SemaRef.Diag(FnDecl->getLocation(),
10303 diag::err_operator_new_delete_dependent_result_type)
10304 << FnDecl->getDeclName() << ExpectedResultType;
10305
10306 // Check that the result type is what we expect.
10307 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10308 return SemaRef.Diag(FnDecl->getLocation(),
10309 diag::err_operator_new_delete_invalid_result_type)
10310 << FnDecl->getDeclName() << ExpectedResultType;
10311
10312 // A function template must have at least 2 parameters.
10313 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10314 return SemaRef.Diag(FnDecl->getLocation(),
10315 diag::err_operator_new_delete_template_too_few_parameters)
10316 << FnDecl->getDeclName();
10317
10318 // The function decl must have at least 1 parameter.
10319 if (FnDecl->getNumParams() == 0)
10320 return SemaRef.Diag(FnDecl->getLocation(),
10321 diag::err_operator_new_delete_too_few_parameters)
10322 << FnDecl->getDeclName();
10323
10324 // Check the first parameter type is not dependent.
10325 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10326 if (FirstParamType->isDependentType())
10327 return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10328 << FnDecl->getDeclName() << ExpectedFirstParamType;
10329
10330 // Check that the first parameter type is what we expect.
10331 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10332 ExpectedFirstParamType)
10333 return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10334 << FnDecl->getDeclName() << ExpectedFirstParamType;
10335
10336 return false;
10337 }
10338
10339 static bool
CheckOperatorNewDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)10340 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10341 // C++ [basic.stc.dynamic.allocation]p1:
10342 // A program is ill-formed if an allocation function is declared in a
10343 // namespace scope other than global scope or declared static in global
10344 // scope.
10345 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10346 return true;
10347
10348 CanQualType SizeTy =
10349 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10350
10351 // C++ [basic.stc.dynamic.allocation]p1:
10352 // The return type shall be void*. The first parameter shall have type
10353 // std::size_t.
10354 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10355 SizeTy,
10356 diag::err_operator_new_dependent_param_type,
10357 diag::err_operator_new_param_type))
10358 return true;
10359
10360 // C++ [basic.stc.dynamic.allocation]p1:
10361 // The first parameter shall not have an associated default argument.
10362 if (FnDecl->getParamDecl(0)->hasDefaultArg())
10363 return SemaRef.Diag(FnDecl->getLocation(),
10364 diag::err_operator_new_default_arg)
10365 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10366
10367 return false;
10368 }
10369
10370 static bool
CheckOperatorDeleteDeclaration(Sema & SemaRef,FunctionDecl * FnDecl)10371 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10372 // C++ [basic.stc.dynamic.deallocation]p1:
10373 // A program is ill-formed if deallocation functions are declared in a
10374 // namespace scope other than global scope or declared static in global
10375 // scope.
10376 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10377 return true;
10378
10379 // C++ [basic.stc.dynamic.deallocation]p2:
10380 // Each deallocation function shall return void and its first parameter
10381 // shall be void*.
10382 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10383 SemaRef.Context.VoidPtrTy,
10384 diag::err_operator_delete_dependent_param_type,
10385 diag::err_operator_delete_param_type))
10386 return true;
10387
10388 return false;
10389 }
10390
10391 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
10392 /// of this overloaded operator is well-formed. If so, returns false;
10393 /// otherwise, emits appropriate diagnostics and returns true.
CheckOverloadedOperatorDeclaration(FunctionDecl * FnDecl)10394 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10395 assert(FnDecl && FnDecl->isOverloadedOperator() &&
10396 "Expected an overloaded operator declaration");
10397
10398 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10399
10400 // C++ [over.oper]p5:
10401 // The allocation and deallocation functions, operator new,
10402 // operator new[], operator delete and operator delete[], are
10403 // described completely in 3.7.3. The attributes and restrictions
10404 // found in the rest of this subclause do not apply to them unless
10405 // explicitly stated in 3.7.3.
10406 if (Op == OO_Delete || Op == OO_Array_Delete)
10407 return CheckOperatorDeleteDeclaration(*this, FnDecl);
10408
10409 if (Op == OO_New || Op == OO_Array_New)
10410 return CheckOperatorNewDeclaration(*this, FnDecl);
10411
10412 // C++ [over.oper]p6:
10413 // An operator function shall either be a non-static member
10414 // function or be a non-member function and have at least one
10415 // parameter whose type is a class, a reference to a class, an
10416 // enumeration, or a reference to an enumeration.
10417 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10418 if (MethodDecl->isStatic())
10419 return Diag(FnDecl->getLocation(),
10420 diag::err_operator_overload_static) << FnDecl->getDeclName();
10421 } else {
10422 bool ClassOrEnumParam = false;
10423 for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10424 ParamEnd = FnDecl->param_end();
10425 Param != ParamEnd; ++Param) {
10426 QualType ParamType = (*Param)->getType().getNonReferenceType();
10427 if (ParamType->isDependentType() || ParamType->isRecordType() ||
10428 ParamType->isEnumeralType()) {
10429 ClassOrEnumParam = true;
10430 break;
10431 }
10432 }
10433
10434 if (!ClassOrEnumParam)
10435 return Diag(FnDecl->getLocation(),
10436 diag::err_operator_overload_needs_class_or_enum)
10437 << FnDecl->getDeclName();
10438 }
10439
10440 // C++ [over.oper]p8:
10441 // An operator function cannot have default arguments (8.3.6),
10442 // except where explicitly stated below.
10443 //
10444 // Only the function-call operator allows default arguments
10445 // (C++ [over.call]p1).
10446 if (Op != OO_Call) {
10447 for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10448 Param != FnDecl->param_end(); ++Param) {
10449 if ((*Param)->hasDefaultArg())
10450 return Diag((*Param)->getLocation(),
10451 diag::err_operator_overload_default_arg)
10452 << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10453 }
10454 }
10455
10456 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10457 { false, false, false }
10458 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10459 , { Unary, Binary, MemberOnly }
10460 #include "clang/Basic/OperatorKinds.def"
10461 };
10462
10463 bool CanBeUnaryOperator = OperatorUses[Op][0];
10464 bool CanBeBinaryOperator = OperatorUses[Op][1];
10465 bool MustBeMemberOperator = OperatorUses[Op][2];
10466
10467 // C++ [over.oper]p8:
10468 // [...] Operator functions cannot have more or fewer parameters
10469 // than the number required for the corresponding operator, as
10470 // described in the rest of this subclause.
10471 unsigned NumParams = FnDecl->getNumParams()
10472 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10473 if (Op != OO_Call &&
10474 ((NumParams == 1 && !CanBeUnaryOperator) ||
10475 (NumParams == 2 && !CanBeBinaryOperator) ||
10476 (NumParams < 1) || (NumParams > 2))) {
10477 // We have the wrong number of parameters.
10478 unsigned ErrorKind;
10479 if (CanBeUnaryOperator && CanBeBinaryOperator) {
10480 ErrorKind = 2; // 2 -> unary or binary.
10481 } else if (CanBeUnaryOperator) {
10482 ErrorKind = 0; // 0 -> unary
10483 } else {
10484 assert(CanBeBinaryOperator &&
10485 "All non-call overloaded operators are unary or binary!");
10486 ErrorKind = 1; // 1 -> binary
10487 }
10488
10489 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10490 << FnDecl->getDeclName() << NumParams << ErrorKind;
10491 }
10492
10493 // Overloaded operators other than operator() cannot be variadic.
10494 if (Op != OO_Call &&
10495 FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10496 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10497 << FnDecl->getDeclName();
10498 }
10499
10500 // Some operators must be non-static member functions.
10501 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10502 return Diag(FnDecl->getLocation(),
10503 diag::err_operator_overload_must_be_member)
10504 << FnDecl->getDeclName();
10505 }
10506
10507 // C++ [over.inc]p1:
10508 // The user-defined function called operator++ implements the
10509 // prefix and postfix ++ operator. If this function is a member
10510 // function with no parameters, or a non-member function with one
10511 // parameter of class or enumeration type, it defines the prefix
10512 // increment operator ++ for objects of that type. If the function
10513 // is a member function with one parameter (which shall be of type
10514 // int) or a non-member function with two parameters (the second
10515 // of which shall be of type int), it defines the postfix
10516 // increment operator ++ for objects of that type.
10517 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10518 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10519 bool ParamIsInt = false;
10520 if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10521 ParamIsInt = BT->getKind() == BuiltinType::Int;
10522
10523 if (!ParamIsInt)
10524 return Diag(LastParam->getLocation(),
10525 diag::err_operator_overload_post_incdec_must_be_int)
10526 << LastParam->getType() << (Op == OO_MinusMinus);
10527 }
10528
10529 return false;
10530 }
10531
10532 /// CheckLiteralOperatorDeclaration - Check whether the declaration
10533 /// of this literal operator function is well-formed. If so, returns
10534 /// false; otherwise, emits appropriate diagnostics and returns true.
CheckLiteralOperatorDeclaration(FunctionDecl * FnDecl)10535 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10536 if (isa<CXXMethodDecl>(FnDecl)) {
10537 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10538 << FnDecl->getDeclName();
10539 return true;
10540 }
10541
10542 if (FnDecl->isExternC()) {
10543 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10544 return true;
10545 }
10546
10547 bool Valid = false;
10548
10549 // This might be the definition of a literal operator template.
10550 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10551 // This might be a specialization of a literal operator template.
10552 if (!TpDecl)
10553 TpDecl = FnDecl->getPrimaryTemplate();
10554
10555 // template <char...> type operator "" name() is the only valid template
10556 // signature, and the only valid signature with no parameters.
10557 if (TpDecl) {
10558 if (FnDecl->param_size() == 0) {
10559 // Must have only one template parameter
10560 TemplateParameterList *Params = TpDecl->getTemplateParameters();
10561 if (Params->size() == 1) {
10562 NonTypeTemplateParmDecl *PmDecl =
10563 dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10564
10565 // The template parameter must be a char parameter pack.
10566 if (PmDecl && PmDecl->isTemplateParameterPack() &&
10567 Context.hasSameType(PmDecl->getType(), Context.CharTy))
10568 Valid = true;
10569 }
10570 }
10571 } else if (FnDecl->param_size()) {
10572 // Check the first parameter
10573 FunctionDecl::param_iterator Param = FnDecl->param_begin();
10574
10575 QualType T = (*Param)->getType().getUnqualifiedType();
10576
10577 // unsigned long long int, long double, and any character type are allowed
10578 // as the only parameters.
10579 if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10580 Context.hasSameType(T, Context.LongDoubleTy) ||
10581 Context.hasSameType(T, Context.CharTy) ||
10582 Context.hasSameType(T, Context.WideCharTy) ||
10583 Context.hasSameType(T, Context.Char16Ty) ||
10584 Context.hasSameType(T, Context.Char32Ty)) {
10585 if (++Param == FnDecl->param_end())
10586 Valid = true;
10587 goto FinishedParams;
10588 }
10589
10590 // Otherwise it must be a pointer to const; let's strip those qualifiers.
10591 const PointerType *PT = T->getAs<PointerType>();
10592 if (!PT)
10593 goto FinishedParams;
10594 T = PT->getPointeeType();
10595 if (!T.isConstQualified() || T.isVolatileQualified())
10596 goto FinishedParams;
10597 T = T.getUnqualifiedType();
10598
10599 // Move on to the second parameter;
10600 ++Param;
10601
10602 // If there is no second parameter, the first must be a const char *
10603 if (Param == FnDecl->param_end()) {
10604 if (Context.hasSameType(T, Context.CharTy))
10605 Valid = true;
10606 goto FinishedParams;
10607 }
10608
10609 // const char *, const wchar_t*, const char16_t*, and const char32_t*
10610 // are allowed as the first parameter to a two-parameter function
10611 if (!(Context.hasSameType(T, Context.CharTy) ||
10612 Context.hasSameType(T, Context.WideCharTy) ||
10613 Context.hasSameType(T, Context.Char16Ty) ||
10614 Context.hasSameType(T, Context.Char32Ty)))
10615 goto FinishedParams;
10616
10617 // The second and final parameter must be an std::size_t
10618 T = (*Param)->getType().getUnqualifiedType();
10619 if (Context.hasSameType(T, Context.getSizeType()) &&
10620 ++Param == FnDecl->param_end())
10621 Valid = true;
10622 }
10623
10624 // FIXME: This diagnostic is absolutely terrible.
10625 FinishedParams:
10626 if (!Valid) {
10627 Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10628 << FnDecl->getDeclName();
10629 return true;
10630 }
10631
10632 // A parameter-declaration-clause containing a default argument is not
10633 // equivalent to any of the permitted forms.
10634 for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10635 ParamEnd = FnDecl->param_end();
10636 Param != ParamEnd; ++Param) {
10637 if ((*Param)->hasDefaultArg()) {
10638 Diag((*Param)->getDefaultArgRange().getBegin(),
10639 diag::err_literal_operator_default_argument)
10640 << (*Param)->getDefaultArgRange();
10641 break;
10642 }
10643 }
10644
10645 StringRef LiteralName
10646 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10647 if (LiteralName[0] != '_') {
10648 // C++11 [usrlit.suffix]p1:
10649 // Literal suffix identifiers that do not start with an underscore
10650 // are reserved for future standardization.
10651 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
10652 << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
10653 }
10654
10655 return false;
10656 }
10657
10658 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10659 /// linkage specification, including the language and (if present)
10660 /// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10661 /// the location of the language string literal, which is provided
10662 /// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10663 /// the '{' brace. Otherwise, this linkage specification does not
10664 /// have any braces.
ActOnStartLinkageSpecification(Scope * S,SourceLocation ExternLoc,SourceLocation LangLoc,StringRef Lang,SourceLocation LBraceLoc)10665 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10666 SourceLocation LangLoc,
10667 StringRef Lang,
10668 SourceLocation LBraceLoc) {
10669 LinkageSpecDecl::LanguageIDs Language;
10670 if (Lang == "\"C\"")
10671 Language = LinkageSpecDecl::lang_c;
10672 else if (Lang == "\"C++\"")
10673 Language = LinkageSpecDecl::lang_cxx;
10674 else {
10675 Diag(LangLoc, diag::err_bad_language);
10676 return 0;
10677 }
10678
10679 // FIXME: Add all the various semantics of linkage specifications
10680
10681 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10682 ExternLoc, LangLoc, Language,
10683 LBraceLoc.isValid());
10684 CurContext->addDecl(D);
10685 PushDeclContext(S, D);
10686 return D;
10687 }
10688
10689 /// ActOnFinishLinkageSpecification - Complete the definition of
10690 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
10691 /// valid, it's the position of the closing '}' brace in a linkage
10692 /// specification that uses braces.
ActOnFinishLinkageSpecification(Scope * S,Decl * LinkageSpec,SourceLocation RBraceLoc)10693 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10694 Decl *LinkageSpec,
10695 SourceLocation RBraceLoc) {
10696 if (LinkageSpec) {
10697 if (RBraceLoc.isValid()) {
10698 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10699 LSDecl->setRBraceLoc(RBraceLoc);
10700 }
10701 PopDeclContext();
10702 }
10703 return LinkageSpec;
10704 }
10705
ActOnEmptyDeclaration(Scope * S,AttributeList * AttrList,SourceLocation SemiLoc)10706 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10707 AttributeList *AttrList,
10708 SourceLocation SemiLoc) {
10709 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10710 // Attribute declarations appertain to empty declaration so we handle
10711 // them here.
10712 if (AttrList)
10713 ProcessDeclAttributeList(S, ED, AttrList);
10714
10715 CurContext->addDecl(ED);
10716 return ED;
10717 }
10718
10719 /// \brief Perform semantic analysis for the variable declaration that
10720 /// occurs within a C++ catch clause, returning the newly-created
10721 /// variable.
BuildExceptionDeclaration(Scope * S,TypeSourceInfo * TInfo,SourceLocation StartLoc,SourceLocation Loc,IdentifierInfo * Name)10722 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10723 TypeSourceInfo *TInfo,
10724 SourceLocation StartLoc,
10725 SourceLocation Loc,
10726 IdentifierInfo *Name) {
10727 bool Invalid = false;
10728 QualType ExDeclType = TInfo->getType();
10729
10730 // Arrays and functions decay.
10731 if (ExDeclType->isArrayType())
10732 ExDeclType = Context.getArrayDecayedType(ExDeclType);
10733 else if (ExDeclType->isFunctionType())
10734 ExDeclType = Context.getPointerType(ExDeclType);
10735
10736 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10737 // The exception-declaration shall not denote a pointer or reference to an
10738 // incomplete type, other than [cv] void*.
10739 // N2844 forbids rvalue references.
10740 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10741 Diag(Loc, diag::err_catch_rvalue_ref);
10742 Invalid = true;
10743 }
10744
10745 QualType BaseType = ExDeclType;
10746 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10747 unsigned DK = diag::err_catch_incomplete;
10748 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10749 BaseType = Ptr->getPointeeType();
10750 Mode = 1;
10751 DK = diag::err_catch_incomplete_ptr;
10752 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10753 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10754 BaseType = Ref->getPointeeType();
10755 Mode = 2;
10756 DK = diag::err_catch_incomplete_ref;
10757 }
10758 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10759 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10760 Invalid = true;
10761
10762 if (!Invalid && !ExDeclType->isDependentType() &&
10763 RequireNonAbstractType(Loc, ExDeclType,
10764 diag::err_abstract_type_in_decl,
10765 AbstractVariableType))
10766 Invalid = true;
10767
10768 // Only the non-fragile NeXT runtime currently supports C++ catches
10769 // of ObjC types, and no runtime supports catching ObjC types by value.
10770 if (!Invalid && getLangOpts().ObjC1) {
10771 QualType T = ExDeclType;
10772 if (const ReferenceType *RT = T->getAs<ReferenceType>())
10773 T = RT->getPointeeType();
10774
10775 if (T->isObjCObjectType()) {
10776 Diag(Loc, diag::err_objc_object_catch);
10777 Invalid = true;
10778 } else if (T->isObjCObjectPointerType()) {
10779 // FIXME: should this be a test for macosx-fragile specifically?
10780 if (getLangOpts().ObjCRuntime.isFragile())
10781 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10782 }
10783 }
10784
10785 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10786 ExDeclType, TInfo, SC_None);
10787 ExDecl->setExceptionVariable(true);
10788
10789 // In ARC, infer 'retaining' for variables of retainable type.
10790 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10791 Invalid = true;
10792
10793 if (!Invalid && !ExDeclType->isDependentType()) {
10794 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10795 // Insulate this from anything else we might currently be parsing.
10796 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10797
10798 // C++ [except.handle]p16:
10799 // The object declared in an exception-declaration or, if the
10800 // exception-declaration does not specify a name, a temporary (12.2) is
10801 // copy-initialized (8.5) from the exception object. [...]
10802 // The object is destroyed when the handler exits, after the destruction
10803 // of any automatic objects initialized within the handler.
10804 //
10805 // We just pretend to initialize the object with itself, then make sure
10806 // it can be destroyed later.
10807 QualType initType = ExDeclType;
10808
10809 InitializedEntity entity =
10810 InitializedEntity::InitializeVariable(ExDecl);
10811 InitializationKind initKind =
10812 InitializationKind::CreateCopy(Loc, SourceLocation());
10813
10814 Expr *opaqueValue =
10815 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10816 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
10817 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
10818 if (result.isInvalid())
10819 Invalid = true;
10820 else {
10821 // If the constructor used was non-trivial, set this as the
10822 // "initializer".
10823 CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10824 if (!construct->getConstructor()->isTrivial()) {
10825 Expr *init = MaybeCreateExprWithCleanups(construct);
10826 ExDecl->setInit(init);
10827 }
10828
10829 // And make sure it's destructable.
10830 FinalizeVarWithDestructor(ExDecl, recordType);
10831 }
10832 }
10833 }
10834
10835 if (Invalid)
10836 ExDecl->setInvalidDecl();
10837
10838 return ExDecl;
10839 }
10840
10841 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10842 /// handler.
ActOnExceptionDeclarator(Scope * S,Declarator & D)10843 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10844 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10845 bool Invalid = D.isInvalidType();
10846
10847 // Check for unexpanded parameter packs.
10848 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10849 UPPC_ExceptionType)) {
10850 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10851 D.getIdentifierLoc());
10852 Invalid = true;
10853 }
10854
10855 IdentifierInfo *II = D.getIdentifier();
10856 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10857 LookupOrdinaryName,
10858 ForRedeclaration)) {
10859 // The scope should be freshly made just for us. There is just no way
10860 // it contains any previous declaration.
10861 assert(!S->isDeclScope(PrevDecl));
10862 if (PrevDecl->isTemplateParameter()) {
10863 // Maybe we will complain about the shadowed template parameter.
10864 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10865 PrevDecl = 0;
10866 }
10867 }
10868
10869 if (D.getCXXScopeSpec().isSet() && !Invalid) {
10870 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10871 << D.getCXXScopeSpec().getRange();
10872 Invalid = true;
10873 }
10874
10875 VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10876 D.getLocStart(),
10877 D.getIdentifierLoc(),
10878 D.getIdentifier());
10879 if (Invalid)
10880 ExDecl->setInvalidDecl();
10881
10882 // Add the exception declaration into this scope.
10883 if (II)
10884 PushOnScopeChains(ExDecl, S);
10885 else
10886 CurContext->addDecl(ExDecl);
10887
10888 ProcessDeclAttributes(S, ExDecl, D);
10889 return ExDecl;
10890 }
10891
ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * AssertMessageExpr,SourceLocation RParenLoc)10892 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10893 Expr *AssertExpr,
10894 Expr *AssertMessageExpr,
10895 SourceLocation RParenLoc) {
10896 StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10897
10898 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10899 return 0;
10900
10901 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10902 AssertMessage, RParenLoc, false);
10903 }
10904
BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * AssertMessage,SourceLocation RParenLoc,bool Failed)10905 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10906 Expr *AssertExpr,
10907 StringLiteral *AssertMessage,
10908 SourceLocation RParenLoc,
10909 bool Failed) {
10910 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10911 !Failed) {
10912 // In a static_assert-declaration, the constant-expression shall be a
10913 // constant expression that can be contextually converted to bool.
10914 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10915 if (Converted.isInvalid())
10916 Failed = true;
10917
10918 llvm::APSInt Cond;
10919 if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10920 diag::err_static_assert_expression_is_not_constant,
10921 /*AllowFold=*/false).isInvalid())
10922 Failed = true;
10923
10924 if (!Failed && !Cond) {
10925 SmallString<256> MsgBuffer;
10926 llvm::raw_svector_ostream Msg(MsgBuffer);
10927 AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10928 Diag(StaticAssertLoc, diag::err_static_assert_failed)
10929 << Msg.str() << AssertExpr->getSourceRange();
10930 Failed = true;
10931 }
10932 }
10933
10934 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10935 AssertExpr, AssertMessage, RParenLoc,
10936 Failed);
10937
10938 CurContext->addDecl(Decl);
10939 return Decl;
10940 }
10941
10942 /// \brief Perform semantic analysis of the given friend type declaration.
10943 ///
10944 /// \returns A friend declaration that.
CheckFriendTypeDecl(SourceLocation LocStart,SourceLocation FriendLoc,TypeSourceInfo * TSInfo)10945 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10946 SourceLocation FriendLoc,
10947 TypeSourceInfo *TSInfo) {
10948 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10949
10950 QualType T = TSInfo->getType();
10951 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10952
10953 // C++03 [class.friend]p2:
10954 // An elaborated-type-specifier shall be used in a friend declaration
10955 // for a class.*
10956 //
10957 // * The class-key of the elaborated-type-specifier is required.
10958 if (!ActiveTemplateInstantiations.empty()) {
10959 // Do not complain about the form of friend template types during
10960 // template instantiation; we will already have complained when the
10961 // template was declared.
10962 } else {
10963 if (!T->isElaboratedTypeSpecifier()) {
10964 // If we evaluated the type to a record type, suggest putting
10965 // a tag in front.
10966 if (const RecordType *RT = T->getAs<RecordType>()) {
10967 RecordDecl *RD = RT->getDecl();
10968
10969 std::string InsertionText = std::string(" ") + RD->getKindName();
10970
10971 Diag(TypeRange.getBegin(),
10972 getLangOpts().CPlusPlus11 ?
10973 diag::warn_cxx98_compat_unelaborated_friend_type :
10974 diag::ext_unelaborated_friend_type)
10975 << (unsigned) RD->getTagKind()
10976 << T
10977 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10978 InsertionText);
10979 } else {
10980 Diag(FriendLoc,
10981 getLangOpts().CPlusPlus11 ?
10982 diag::warn_cxx98_compat_nonclass_type_friend :
10983 diag::ext_nonclass_type_friend)
10984 << T
10985 << TypeRange;
10986 }
10987 } else if (T->getAs<EnumType>()) {
10988 Diag(FriendLoc,
10989 getLangOpts().CPlusPlus11 ?
10990 diag::warn_cxx98_compat_enum_friend :
10991 diag::ext_enum_friend)
10992 << T
10993 << TypeRange;
10994 }
10995
10996 // C++11 [class.friend]p3:
10997 // A friend declaration that does not declare a function shall have one
10998 // of the following forms:
10999 // friend elaborated-type-specifier ;
11000 // friend simple-type-specifier ;
11001 // friend typename-specifier ;
11002 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
11003 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
11004 }
11005
11006 // If the type specifier in a friend declaration designates a (possibly
11007 // cv-qualified) class type, that class is declared as a friend; otherwise,
11008 // the friend declaration is ignored.
11009 return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
11010 }
11011
11012 /// Handle a friend tag declaration where the scope specifier was
11013 /// templated.
ActOnTemplatedFriendTag(Scope * S,SourceLocation FriendLoc,unsigned TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,MultiTemplateParamsArg TempParamLists)11014 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
11015 unsigned TagSpec, SourceLocation TagLoc,
11016 CXXScopeSpec &SS,
11017 IdentifierInfo *Name,
11018 SourceLocation NameLoc,
11019 AttributeList *Attr,
11020 MultiTemplateParamsArg TempParamLists) {
11021 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11022
11023 bool isExplicitSpecialization = false;
11024 bool Invalid = false;
11025
11026 if (TemplateParameterList *TemplateParams =
11027 MatchTemplateParametersToScopeSpecifier(
11028 TagLoc, NameLoc, SS, TempParamLists, /*friend*/ true,
11029 isExplicitSpecialization, Invalid)) {
11030 if (TemplateParams->size() > 0) {
11031 // This is a declaration of a class template.
11032 if (Invalid)
11033 return 0;
11034
11035 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
11036 SS, Name, NameLoc, Attr,
11037 TemplateParams, AS_public,
11038 /*ModulePrivateLoc=*/SourceLocation(),
11039 TempParamLists.size() - 1,
11040 TempParamLists.data()).take();
11041 } else {
11042 // The "template<>" header is extraneous.
11043 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11044 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11045 isExplicitSpecialization = true;
11046 }
11047 }
11048
11049 if (Invalid) return 0;
11050
11051 bool isAllExplicitSpecializations = true;
11052 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
11053 if (TempParamLists[I]->size()) {
11054 isAllExplicitSpecializations = false;
11055 break;
11056 }
11057 }
11058
11059 // FIXME: don't ignore attributes.
11060
11061 // If it's explicit specializations all the way down, just forget
11062 // about the template header and build an appropriate non-templated
11063 // friend. TODO: for source fidelity, remember the headers.
11064 if (isAllExplicitSpecializations) {
11065 if (SS.isEmpty()) {
11066 bool Owned = false;
11067 bool IsDependent = false;
11068 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
11069 Attr, AS_public,
11070 /*ModulePrivateLoc=*/SourceLocation(),
11071 MultiTemplateParamsArg(), Owned, IsDependent,
11072 /*ScopedEnumKWLoc=*/SourceLocation(),
11073 /*ScopedEnumUsesClassTag=*/false,
11074 /*UnderlyingType=*/TypeResult());
11075 }
11076
11077 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11078 ElaboratedTypeKeyword Keyword
11079 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11080 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
11081 *Name, NameLoc);
11082 if (T.isNull())
11083 return 0;
11084
11085 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11086 if (isa<DependentNameType>(T)) {
11087 DependentNameTypeLoc TL =
11088 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11089 TL.setElaboratedKeywordLoc(TagLoc);
11090 TL.setQualifierLoc(QualifierLoc);
11091 TL.setNameLoc(NameLoc);
11092 } else {
11093 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
11094 TL.setElaboratedKeywordLoc(TagLoc);
11095 TL.setQualifierLoc(QualifierLoc);
11096 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
11097 }
11098
11099 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11100 TSI, FriendLoc, TempParamLists);
11101 Friend->setAccess(AS_public);
11102 CurContext->addDecl(Friend);
11103 return Friend;
11104 }
11105
11106 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
11107
11108
11109
11110 // Handle the case of a templated-scope friend class. e.g.
11111 // template <class T> class A<T>::B;
11112 // FIXME: we don't support these right now.
11113 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11114 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
11115 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11116 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11117 TL.setElaboratedKeywordLoc(TagLoc);
11118 TL.setQualifierLoc(SS.getWithLocInContext(Context));
11119 TL.setNameLoc(NameLoc);
11120
11121 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11122 TSI, FriendLoc, TempParamLists);
11123 Friend->setAccess(AS_public);
11124 Friend->setUnsupportedFriend(true);
11125 CurContext->addDecl(Friend);
11126 return Friend;
11127 }
11128
11129
11130 /// Handle a friend type declaration. This works in tandem with
11131 /// ActOnTag.
11132 ///
11133 /// Notes on friend class templates:
11134 ///
11135 /// We generally treat friend class declarations as if they were
11136 /// declaring a class. So, for example, the elaborated type specifier
11137 /// in a friend declaration is required to obey the restrictions of a
11138 /// class-head (i.e. no typedefs in the scope chain), template
11139 /// parameters are required to match up with simple template-ids, &c.
11140 /// However, unlike when declaring a template specialization, it's
11141 /// okay to refer to a template specialization without an empty
11142 /// template parameter declaration, e.g.
11143 /// friend class A<T>::B<unsigned>;
11144 /// We permit this as a special case; if there are any template
11145 /// parameters present at all, require proper matching, i.e.
11146 /// template <> template \<class T> friend class A<int>::B;
ActOnFriendTypeDecl(Scope * S,const DeclSpec & DS,MultiTemplateParamsArg TempParams)11147 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
11148 MultiTemplateParamsArg TempParams) {
11149 SourceLocation Loc = DS.getLocStart();
11150
11151 assert(DS.isFriendSpecified());
11152 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11153
11154 // Try to convert the decl specifier to a type. This works for
11155 // friend templates because ActOnTag never produces a ClassTemplateDecl
11156 // for a TUK_Friend.
11157 Declarator TheDeclarator(DS, Declarator::MemberContext);
11158 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11159 QualType T = TSI->getType();
11160 if (TheDeclarator.isInvalidType())
11161 return 0;
11162
11163 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11164 return 0;
11165
11166 // This is definitely an error in C++98. It's probably meant to
11167 // be forbidden in C++0x, too, but the specification is just
11168 // poorly written.
11169 //
11170 // The problem is with declarations like the following:
11171 // template <T> friend A<T>::foo;
11172 // where deciding whether a class C is a friend or not now hinges
11173 // on whether there exists an instantiation of A that causes
11174 // 'foo' to equal C. There are restrictions on class-heads
11175 // (which we declare (by fiat) elaborated friend declarations to
11176 // be) that makes this tractable.
11177 //
11178 // FIXME: handle "template <> friend class A<T>;", which
11179 // is possibly well-formed? Who even knows?
11180 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11181 Diag(Loc, diag::err_tagless_friend_type_template)
11182 << DS.getSourceRange();
11183 return 0;
11184 }
11185
11186 // C++98 [class.friend]p1: A friend of a class is a function
11187 // or class that is not a member of the class . . .
11188 // This is fixed in DR77, which just barely didn't make the C++03
11189 // deadline. It's also a very silly restriction that seriously
11190 // affects inner classes and which nobody else seems to implement;
11191 // thus we never diagnose it, not even in -pedantic.
11192 //
11193 // But note that we could warn about it: it's always useless to
11194 // friend one of your own members (it's not, however, worthless to
11195 // friend a member of an arbitrary specialization of your template).
11196
11197 Decl *D;
11198 if (unsigned NumTempParamLists = TempParams.size())
11199 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11200 NumTempParamLists,
11201 TempParams.data(),
11202 TSI,
11203 DS.getFriendSpecLoc());
11204 else
11205 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11206
11207 if (!D)
11208 return 0;
11209
11210 D->setAccess(AS_public);
11211 CurContext->addDecl(D);
11212
11213 return D;
11214 }
11215
ActOnFriendFunctionDecl(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParams)11216 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11217 MultiTemplateParamsArg TemplateParams) {
11218 const DeclSpec &DS = D.getDeclSpec();
11219
11220 assert(DS.isFriendSpecified());
11221 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11222
11223 SourceLocation Loc = D.getIdentifierLoc();
11224 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11225
11226 // C++ [class.friend]p1
11227 // A friend of a class is a function or class....
11228 // Note that this sees through typedefs, which is intended.
11229 // It *doesn't* see through dependent types, which is correct
11230 // according to [temp.arg.type]p3:
11231 // If a declaration acquires a function type through a
11232 // type dependent on a template-parameter and this causes
11233 // a declaration that does not use the syntactic form of a
11234 // function declarator to have a function type, the program
11235 // is ill-formed.
11236 if (!TInfo->getType()->isFunctionType()) {
11237 Diag(Loc, diag::err_unexpected_friend);
11238
11239 // It might be worthwhile to try to recover by creating an
11240 // appropriate declaration.
11241 return 0;
11242 }
11243
11244 // C++ [namespace.memdef]p3
11245 // - If a friend declaration in a non-local class first declares a
11246 // class or function, the friend class or function is a member
11247 // of the innermost enclosing namespace.
11248 // - The name of the friend is not found by simple name lookup
11249 // until a matching declaration is provided in that namespace
11250 // scope (either before or after the class declaration granting
11251 // friendship).
11252 // - If a friend function is called, its name may be found by the
11253 // name lookup that considers functions from namespaces and
11254 // classes associated with the types of the function arguments.
11255 // - When looking for a prior declaration of a class or a function
11256 // declared as a friend, scopes outside the innermost enclosing
11257 // namespace scope are not considered.
11258
11259 CXXScopeSpec &SS = D.getCXXScopeSpec();
11260 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11261 DeclarationName Name = NameInfo.getName();
11262 assert(Name);
11263
11264 // Check for unexpanded parameter packs.
11265 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11266 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11267 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11268 return 0;
11269
11270 // The context we found the declaration in, or in which we should
11271 // create the declaration.
11272 DeclContext *DC;
11273 Scope *DCScope = S;
11274 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11275 ForRedeclaration);
11276
11277 // FIXME: there are different rules in local classes
11278
11279 // There are four cases here.
11280 // - There's no scope specifier, in which case we just go to the
11281 // appropriate scope and look for a function or function template
11282 // there as appropriate.
11283 // Recover from invalid scope qualifiers as if they just weren't there.
11284 if (SS.isInvalid() || !SS.isSet()) {
11285 // C++0x [namespace.memdef]p3:
11286 // If the name in a friend declaration is neither qualified nor
11287 // a template-id and the declaration is a function or an
11288 // elaborated-type-specifier, the lookup to determine whether
11289 // the entity has been previously declared shall not consider
11290 // any scopes outside the innermost enclosing namespace.
11291 // C++0x [class.friend]p11:
11292 // If a friend declaration appears in a local class and the name
11293 // specified is an unqualified name, a prior declaration is
11294 // looked up without considering scopes that are outside the
11295 // innermost enclosing non-class scope. For a friend function
11296 // declaration, if there is no prior declaration, the program is
11297 // ill-formed.
11298 bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
11299 bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11300
11301 // Find the appropriate context according to the above.
11302 DC = CurContext;
11303
11304 // Skip class contexts. If someone can cite chapter and verse
11305 // for this behavior, that would be nice --- it's what GCC and
11306 // EDG do, and it seems like a reasonable intent, but the spec
11307 // really only says that checks for unqualified existing
11308 // declarations should stop at the nearest enclosing namespace,
11309 // not that they should only consider the nearest enclosing
11310 // namespace.
11311 while (DC->isRecord())
11312 DC = DC->getParent();
11313
11314 DeclContext *LookupDC = DC;
11315 while (LookupDC->isTransparentContext())
11316 LookupDC = LookupDC->getParent();
11317
11318 while (true) {
11319 LookupQualifiedName(Previous, LookupDC);
11320
11321 // TODO: decide what we think about using declarations.
11322 if (isLocal)
11323 break;
11324
11325 if (!Previous.empty()) {
11326 DC = LookupDC;
11327 break;
11328 }
11329
11330 if (isTemplateId) {
11331 if (isa<TranslationUnitDecl>(LookupDC)) break;
11332 } else {
11333 if (LookupDC->isFileContext()) break;
11334 }
11335 LookupDC = LookupDC->getParent();
11336 }
11337
11338 DCScope = getScopeForDeclContext(S, DC);
11339
11340 // C++ [class.friend]p6:
11341 // A function can be defined in a friend declaration of a class if and
11342 // only if the class is a non-local class (9.8), the function name is
11343 // unqualified, and the function has namespace scope.
11344 if (isLocal && D.isFunctionDefinition()) {
11345 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11346 }
11347
11348 // - There's a non-dependent scope specifier, in which case we
11349 // compute it and do a previous lookup there for a function
11350 // or function template.
11351 } else if (!SS.getScopeRep()->isDependent()) {
11352 DC = computeDeclContext(SS);
11353 if (!DC) return 0;
11354
11355 if (RequireCompleteDeclContext(SS, DC)) return 0;
11356
11357 LookupQualifiedName(Previous, DC);
11358
11359 // Ignore things found implicitly in the wrong scope.
11360 // TODO: better diagnostics for this case. Suggesting the right
11361 // qualified scope would be nice...
11362 LookupResult::Filter F = Previous.makeFilter();
11363 while (F.hasNext()) {
11364 NamedDecl *D = F.next();
11365 if (!DC->InEnclosingNamespaceSetOf(
11366 D->getDeclContext()->getRedeclContext()))
11367 F.erase();
11368 }
11369 F.done();
11370
11371 if (Previous.empty()) {
11372 D.setInvalidType();
11373 Diag(Loc, diag::err_qualified_friend_not_found)
11374 << Name << TInfo->getType();
11375 return 0;
11376 }
11377
11378 // C++ [class.friend]p1: A friend of a class is a function or
11379 // class that is not a member of the class . . .
11380 if (DC->Equals(CurContext))
11381 Diag(DS.getFriendSpecLoc(),
11382 getLangOpts().CPlusPlus11 ?
11383 diag::warn_cxx98_compat_friend_is_member :
11384 diag::err_friend_is_member);
11385
11386 if (D.isFunctionDefinition()) {
11387 // C++ [class.friend]p6:
11388 // A function can be defined in a friend declaration of a class if and
11389 // only if the class is a non-local class (9.8), the function name is
11390 // unqualified, and the function has namespace scope.
11391 SemaDiagnosticBuilder DB
11392 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11393
11394 DB << SS.getScopeRep();
11395 if (DC->isFileContext())
11396 DB << FixItHint::CreateRemoval(SS.getRange());
11397 SS.clear();
11398 }
11399
11400 // - There's a scope specifier that does not match any template
11401 // parameter lists, in which case we use some arbitrary context,
11402 // create a method or method template, and wait for instantiation.
11403 // - There's a scope specifier that does match some template
11404 // parameter lists, which we don't handle right now.
11405 } else {
11406 if (D.isFunctionDefinition()) {
11407 // C++ [class.friend]p6:
11408 // A function can be defined in a friend declaration of a class if and
11409 // only if the class is a non-local class (9.8), the function name is
11410 // unqualified, and the function has namespace scope.
11411 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11412 << SS.getScopeRep();
11413 }
11414
11415 DC = CurContext;
11416 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11417 }
11418
11419 if (!DC->isRecord()) {
11420 // This implies that it has to be an operator or function.
11421 if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11422 D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11423 D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11424 Diag(Loc, diag::err_introducing_special_friend) <<
11425 (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11426 D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11427 return 0;
11428 }
11429 }
11430
11431 // FIXME: This is an egregious hack to cope with cases where the scope stack
11432 // does not contain the declaration context, i.e., in an out-of-line
11433 // definition of a class.
11434 Scope FakeDCScope(S, Scope::DeclScope, Diags);
11435 if (!DCScope) {
11436 FakeDCScope.setEntity(DC);
11437 DCScope = &FakeDCScope;
11438 }
11439
11440 bool AddToScope = true;
11441 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11442 TemplateParams, AddToScope);
11443 if (!ND) return 0;
11444
11445 assert(ND->getDeclContext() == DC);
11446 assert(ND->getLexicalDeclContext() == CurContext);
11447
11448 // Add the function declaration to the appropriate lookup tables,
11449 // adjusting the redeclarations list as necessary. We don't
11450 // want to do this yet if the friending class is dependent.
11451 //
11452 // Also update the scope-based lookup if the target context's
11453 // lookup context is in lexical scope.
11454 if (!CurContext->isDependentContext()) {
11455 DC = DC->getRedeclContext();
11456 DC->makeDeclVisibleInContext(ND);
11457 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11458 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11459 }
11460
11461 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11462 D.getIdentifierLoc(), ND,
11463 DS.getFriendSpecLoc());
11464 FrD->setAccess(AS_public);
11465 CurContext->addDecl(FrD);
11466
11467 if (ND->isInvalidDecl()) {
11468 FrD->setInvalidDecl();
11469 } else {
11470 if (DC->isRecord()) CheckFriendAccess(ND);
11471
11472 FunctionDecl *FD;
11473 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11474 FD = FTD->getTemplatedDecl();
11475 else
11476 FD = cast<FunctionDecl>(ND);
11477
11478 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
11479 // default argument expression, that declaration shall be a definition
11480 // and shall be the only declaration of the function or function
11481 // template in the translation unit.
11482 if (functionDeclHasDefaultArgument(FD)) {
11483 if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
11484 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
11485 Diag(OldFD->getLocation(), diag::note_previous_declaration);
11486 } else if (!D.isFunctionDefinition())
11487 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
11488 }
11489
11490 // Mark templated-scope function declarations as unsupported.
11491 if (FD->getNumTemplateParameterLists())
11492 FrD->setUnsupportedFriend(true);
11493 }
11494
11495 return ND;
11496 }
11497
SetDeclDeleted(Decl * Dcl,SourceLocation DelLoc)11498 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11499 AdjustDeclIfTemplate(Dcl);
11500
11501 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11502 if (!Fn) {
11503 Diag(DelLoc, diag::err_deleted_non_function);
11504 return;
11505 }
11506
11507 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11508 // Don't consider the implicit declaration we generate for explicit
11509 // specializations. FIXME: Do not generate these implicit declarations.
11510 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11511 || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11512 Diag(DelLoc, diag::err_deleted_decl_not_first);
11513 Diag(Prev->getLocation(), diag::note_previous_declaration);
11514 }
11515 // If the declaration wasn't the first, we delete the function anyway for
11516 // recovery.
11517 Fn = Fn->getCanonicalDecl();
11518 }
11519
11520 if (Fn->isDeleted())
11521 return;
11522
11523 // See if we're deleting a function which is already known to override a
11524 // non-deleted virtual function.
11525 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11526 bool IssuedDiagnostic = false;
11527 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11528 E = MD->end_overridden_methods();
11529 I != E; ++I) {
11530 if (!(*MD->begin_overridden_methods())->isDeleted()) {
11531 if (!IssuedDiagnostic) {
11532 Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11533 IssuedDiagnostic = true;
11534 }
11535 Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11536 }
11537 }
11538 }
11539
11540 Fn->setDeletedAsWritten();
11541 }
11542
SetDeclDefaulted(Decl * Dcl,SourceLocation DefaultLoc)11543 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11544 CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11545
11546 if (MD) {
11547 if (MD->getParent()->isDependentType()) {
11548 MD->setDefaulted();
11549 MD->setExplicitlyDefaulted();
11550 return;
11551 }
11552
11553 CXXSpecialMember Member = getSpecialMember(MD);
11554 if (Member == CXXInvalid) {
11555 if (!MD->isInvalidDecl())
11556 Diag(DefaultLoc, diag::err_default_special_members);
11557 return;
11558 }
11559
11560 MD->setDefaulted();
11561 MD->setExplicitlyDefaulted();
11562
11563 // If this definition appears within the record, do the checking when
11564 // the record is complete.
11565 const FunctionDecl *Primary = MD;
11566 if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11567 // Find the uninstantiated declaration that actually had the '= default'
11568 // on it.
11569 Pattern->isDefined(Primary);
11570
11571 // If the method was defaulted on its first declaration, we will have
11572 // already performed the checking in CheckCompletedCXXClass. Such a
11573 // declaration doesn't trigger an implicit definition.
11574 if (Primary == Primary->getCanonicalDecl())
11575 return;
11576
11577 CheckExplicitlyDefaultedSpecialMember(MD);
11578
11579 // The exception specification is needed because we are defining the
11580 // function.
11581 ResolveExceptionSpec(DefaultLoc,
11582 MD->getType()->castAs<FunctionProtoType>());
11583
11584 if (MD->isInvalidDecl())
11585 return;
11586
11587 switch (Member) {
11588 case CXXDefaultConstructor:
11589 DefineImplicitDefaultConstructor(DefaultLoc,
11590 cast<CXXConstructorDecl>(MD));
11591 break;
11592 case CXXCopyConstructor:
11593 DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
11594 break;
11595 case CXXCopyAssignment:
11596 DefineImplicitCopyAssignment(DefaultLoc, MD);
11597 break;
11598 case CXXDestructor:
11599 DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
11600 break;
11601 case CXXMoveConstructor:
11602 DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
11603 break;
11604 case CXXMoveAssignment:
11605 DefineImplicitMoveAssignment(DefaultLoc, MD);
11606 break;
11607 case CXXInvalid:
11608 llvm_unreachable("Invalid special member.");
11609 }
11610 } else {
11611 Diag(DefaultLoc, diag::err_default_special_members);
11612 }
11613 }
11614
SearchForReturnInStmt(Sema & Self,Stmt * S)11615 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11616 for (Stmt::child_range CI = S->children(); CI; ++CI) {
11617 Stmt *SubStmt = *CI;
11618 if (!SubStmt)
11619 continue;
11620 if (isa<ReturnStmt>(SubStmt))
11621 Self.Diag(SubStmt->getLocStart(),
11622 diag::err_return_in_constructor_handler);
11623 if (!isa<Expr>(SubStmt))
11624 SearchForReturnInStmt(Self, SubStmt);
11625 }
11626 }
11627
DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt * TryBlock)11628 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11629 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11630 CXXCatchStmt *Handler = TryBlock->getHandler(I);
11631 SearchForReturnInStmt(*this, Handler);
11632 }
11633 }
11634
CheckOverridingFunctionAttributes(const CXXMethodDecl * New,const CXXMethodDecl * Old)11635 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11636 const CXXMethodDecl *Old) {
11637 const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11638 const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11639
11640 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11641
11642 // If the calling conventions match, everything is fine
11643 if (NewCC == OldCC)
11644 return false;
11645
11646 // If either of the calling conventions are set to "default", we need to pick
11647 // something more sensible based on the target. This supports code where the
11648 // one method explicitly sets thiscall, and another has no explicit calling
11649 // convention.
11650 CallingConv Default =
11651 Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11652 if (NewCC == CC_Default)
11653 NewCC = Default;
11654 if (OldCC == CC_Default)
11655 OldCC = Default;
11656
11657 // If the calling conventions still don't match, then report the error
11658 if (NewCC != OldCC) {
11659 Diag(New->getLocation(),
11660 diag::err_conflicting_overriding_cc_attributes)
11661 << New->getDeclName() << New->getType() << Old->getType();
11662 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11663 return true;
11664 }
11665
11666 return false;
11667 }
11668
CheckOverridingFunctionReturnType(const CXXMethodDecl * New,const CXXMethodDecl * Old)11669 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11670 const CXXMethodDecl *Old) {
11671 QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11672 QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11673
11674 if (Context.hasSameType(NewTy, OldTy) ||
11675 NewTy->isDependentType() || OldTy->isDependentType())
11676 return false;
11677
11678 // Check if the return types are covariant
11679 QualType NewClassTy, OldClassTy;
11680
11681 /// Both types must be pointers or references to classes.
11682 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11683 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11684 NewClassTy = NewPT->getPointeeType();
11685 OldClassTy = OldPT->getPointeeType();
11686 }
11687 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11688 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11689 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11690 NewClassTy = NewRT->getPointeeType();
11691 OldClassTy = OldRT->getPointeeType();
11692 }
11693 }
11694 }
11695
11696 // The return types aren't either both pointers or references to a class type.
11697 if (NewClassTy.isNull()) {
11698 Diag(New->getLocation(),
11699 diag::err_different_return_type_for_overriding_virtual_function)
11700 << New->getDeclName() << NewTy << OldTy;
11701 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11702
11703 return true;
11704 }
11705
11706 // C++ [class.virtual]p6:
11707 // If the return type of D::f differs from the return type of B::f, the
11708 // class type in the return type of D::f shall be complete at the point of
11709 // declaration of D::f or shall be the class type D.
11710 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11711 if (!RT->isBeingDefined() &&
11712 RequireCompleteType(New->getLocation(), NewClassTy,
11713 diag::err_covariant_return_incomplete,
11714 New->getDeclName()))
11715 return true;
11716 }
11717
11718 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11719 // Check if the new class derives from the old class.
11720 if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11721 Diag(New->getLocation(),
11722 diag::err_covariant_return_not_derived)
11723 << New->getDeclName() << NewTy << OldTy;
11724 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11725 return true;
11726 }
11727
11728 // Check if we the conversion from derived to base is valid.
11729 if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11730 diag::err_covariant_return_inaccessible_base,
11731 diag::err_covariant_return_ambiguous_derived_to_base_conv,
11732 // FIXME: Should this point to the return type?
11733 New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11734 // FIXME: this note won't trigger for delayed access control
11735 // diagnostics, and it's impossible to get an undelayed error
11736 // here from access control during the original parse because
11737 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11738 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11739 return true;
11740 }
11741 }
11742
11743 // The qualifiers of the return types must be the same.
11744 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11745 Diag(New->getLocation(),
11746 diag::err_covariant_return_type_different_qualifications)
11747 << New->getDeclName() << NewTy << OldTy;
11748 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11749 return true;
11750 };
11751
11752
11753 // The new class type must have the same or less qualifiers as the old type.
11754 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11755 Diag(New->getLocation(),
11756 diag::err_covariant_return_type_class_type_more_qualified)
11757 << New->getDeclName() << NewTy << OldTy;
11758 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11759 return true;
11760 };
11761
11762 return false;
11763 }
11764
11765 /// \brief Mark the given method pure.
11766 ///
11767 /// \param Method the method to be marked pure.
11768 ///
11769 /// \param InitRange the source range that covers the "0" initializer.
CheckPureMethod(CXXMethodDecl * Method,SourceRange InitRange)11770 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11771 SourceLocation EndLoc = InitRange.getEnd();
11772 if (EndLoc.isValid())
11773 Method->setRangeEnd(EndLoc);
11774
11775 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11776 Method->setPure();
11777 return false;
11778 }
11779
11780 if (!Method->isInvalidDecl())
11781 Diag(Method->getLocation(), diag::err_non_virtual_pure)
11782 << Method->getDeclName() << InitRange;
11783 return true;
11784 }
11785
11786 /// \brief Determine whether the given declaration is a static data member.
isStaticDataMember(const Decl * D)11787 static bool isStaticDataMember(const Decl *D) {
11788 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
11789 return Var->isStaticDataMember();
11790
11791 return false;
11792 }
11793
11794 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11795 /// an initializer for the out-of-line declaration 'Dcl'. The scope
11796 /// is a fresh scope pushed for just this purpose.
11797 ///
11798 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11799 /// static data member of class X, names should be looked up in the scope of
11800 /// class X.
ActOnCXXEnterDeclInitializer(Scope * S,Decl * D)11801 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11802 // If there is no declaration, there was an error parsing it.
11803 if (D == 0 || D->isInvalidDecl()) return;
11804
11805 // We should only get called for declarations with scope specifiers, like:
11806 // int foo::bar;
11807 assert(D->isOutOfLine());
11808 EnterDeclaratorContext(S, D->getDeclContext());
11809
11810 // If we are parsing the initializer for a static data member, push a
11811 // new expression evaluation context that is associated with this static
11812 // data member.
11813 if (isStaticDataMember(D))
11814 PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11815 }
11816
11817 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11818 /// initializer for the out-of-line declaration 'D'.
ActOnCXXExitDeclInitializer(Scope * S,Decl * D)11819 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11820 // If there is no declaration, there was an error parsing it.
11821 if (D == 0 || D->isInvalidDecl()) return;
11822
11823 if (isStaticDataMember(D))
11824 PopExpressionEvaluationContext();
11825
11826 assert(D->isOutOfLine());
11827 ExitDeclaratorContext(S);
11828 }
11829
11830 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11831 /// C++ if/switch/while/for statement.
11832 /// e.g: "if (int x = f()) {...}"
ActOnCXXConditionDeclaration(Scope * S,Declarator & D)11833 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11834 // C++ 6.4p2:
11835 // The declarator shall not specify a function or an array.
11836 // The type-specifier-seq shall not contain typedef and shall not declare a
11837 // new class or enumeration.
11838 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11839 "Parser allowed 'typedef' as storage class of condition decl.");
11840
11841 Decl *Dcl = ActOnDeclarator(S, D);
11842 if (!Dcl)
11843 return true;
11844
11845 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11846 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11847 << D.getSourceRange();
11848 return true;
11849 }
11850
11851 return Dcl;
11852 }
11853
LoadExternalVTableUses()11854 void Sema::LoadExternalVTableUses() {
11855 if (!ExternalSource)
11856 return;
11857
11858 SmallVector<ExternalVTableUse, 4> VTables;
11859 ExternalSource->ReadUsedVTables(VTables);
11860 SmallVector<VTableUse, 4> NewUses;
11861 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11862 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11863 = VTablesUsed.find(VTables[I].Record);
11864 // Even if a definition wasn't required before, it may be required now.
11865 if (Pos != VTablesUsed.end()) {
11866 if (!Pos->second && VTables[I].DefinitionRequired)
11867 Pos->second = true;
11868 continue;
11869 }
11870
11871 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11872 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11873 }
11874
11875 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11876 }
11877
MarkVTableUsed(SourceLocation Loc,CXXRecordDecl * Class,bool DefinitionRequired)11878 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11879 bool DefinitionRequired) {
11880 // Ignore any vtable uses in unevaluated operands or for classes that do
11881 // not have a vtable.
11882 if (!Class->isDynamicClass() || Class->isDependentContext() ||
11883 CurContext->isDependentContext() || isUnevaluatedContext())
11884 return;
11885
11886 // Try to insert this class into the map.
11887 LoadExternalVTableUses();
11888 Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11889 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11890 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11891 if (!Pos.second) {
11892 // If we already had an entry, check to see if we are promoting this vtable
11893 // to required a definition. If so, we need to reappend to the VTableUses
11894 // list, since we may have already processed the first entry.
11895 if (DefinitionRequired && !Pos.first->second) {
11896 Pos.first->second = true;
11897 } else {
11898 // Otherwise, we can early exit.
11899 return;
11900 }
11901 }
11902
11903 // Local classes need to have their virtual members marked
11904 // immediately. For all other classes, we mark their virtual members
11905 // at the end of the translation unit.
11906 if (Class->isLocalClass())
11907 MarkVirtualMembersReferenced(Loc, Class);
11908 else
11909 VTableUses.push_back(std::make_pair(Class, Loc));
11910 }
11911
DefineUsedVTables()11912 bool Sema::DefineUsedVTables() {
11913 LoadExternalVTableUses();
11914 if (VTableUses.empty())
11915 return false;
11916
11917 // Note: The VTableUses vector could grow as a result of marking
11918 // the members of a class as "used", so we check the size each
11919 // time through the loop and prefer indices (which are stable) to
11920 // iterators (which are not).
11921 bool DefinedAnything = false;
11922 for (unsigned I = 0; I != VTableUses.size(); ++I) {
11923 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11924 if (!Class)
11925 continue;
11926
11927 SourceLocation Loc = VTableUses[I].second;
11928
11929 bool DefineVTable = true;
11930
11931 // If this class has a key function, but that key function is
11932 // defined in another translation unit, we don't need to emit the
11933 // vtable even though we're using it.
11934 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11935 if (KeyFunction && !KeyFunction->hasBody()) {
11936 switch (KeyFunction->getTemplateSpecializationKind()) {
11937 case TSK_Undeclared:
11938 case TSK_ExplicitSpecialization:
11939 case TSK_ExplicitInstantiationDeclaration:
11940 // The key function is in another translation unit.
11941 DefineVTable = false;
11942 break;
11943
11944 case TSK_ExplicitInstantiationDefinition:
11945 case TSK_ImplicitInstantiation:
11946 // We will be instantiating the key function.
11947 break;
11948 }
11949 } else if (!KeyFunction) {
11950 // If we have a class with no key function that is the subject
11951 // of an explicit instantiation declaration, suppress the
11952 // vtable; it will live with the explicit instantiation
11953 // definition.
11954 bool IsExplicitInstantiationDeclaration
11955 = Class->getTemplateSpecializationKind()
11956 == TSK_ExplicitInstantiationDeclaration;
11957 for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11958 REnd = Class->redecls_end();
11959 R != REnd; ++R) {
11960 TemplateSpecializationKind TSK
11961 = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11962 if (TSK == TSK_ExplicitInstantiationDeclaration)
11963 IsExplicitInstantiationDeclaration = true;
11964 else if (TSK == TSK_ExplicitInstantiationDefinition) {
11965 IsExplicitInstantiationDeclaration = false;
11966 break;
11967 }
11968 }
11969
11970 if (IsExplicitInstantiationDeclaration)
11971 DefineVTable = false;
11972 }
11973
11974 // The exception specifications for all virtual members may be needed even
11975 // if we are not providing an authoritative form of the vtable in this TU.
11976 // We may choose to emit it available_externally anyway.
11977 if (!DefineVTable) {
11978 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11979 continue;
11980 }
11981
11982 // Mark all of the virtual members of this class as referenced, so
11983 // that we can build a vtable. Then, tell the AST consumer that a
11984 // vtable for this class is required.
11985 DefinedAnything = true;
11986 MarkVirtualMembersReferenced(Loc, Class);
11987 CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11988 Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11989
11990 // Optionally warn if we're emitting a weak vtable.
11991 if (Class->isExternallyVisible() &&
11992 Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11993 const FunctionDecl *KeyFunctionDef = 0;
11994 if (!KeyFunction ||
11995 (KeyFunction->hasBody(KeyFunctionDef) &&
11996 KeyFunctionDef->isInlined()))
11997 Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11998 TSK_ExplicitInstantiationDefinition
11999 ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
12000 << Class;
12001 }
12002 }
12003 VTableUses.clear();
12004
12005 return DefinedAnything;
12006 }
12007
MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,const CXXRecordDecl * RD)12008 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
12009 const CXXRecordDecl *RD) {
12010 for (CXXRecordDecl::method_iterator I = RD->method_begin(),
12011 E = RD->method_end(); I != E; ++I)
12012 if ((*I)->isVirtual() && !(*I)->isPure())
12013 ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
12014 }
12015
MarkVirtualMembersReferenced(SourceLocation Loc,const CXXRecordDecl * RD)12016 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
12017 const CXXRecordDecl *RD) {
12018 // Mark all functions which will appear in RD's vtable as used.
12019 CXXFinalOverriderMap FinalOverriders;
12020 RD->getFinalOverriders(FinalOverriders);
12021 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
12022 E = FinalOverriders.end();
12023 I != E; ++I) {
12024 for (OverridingMethods::const_iterator OI = I->second.begin(),
12025 OE = I->second.end();
12026 OI != OE; ++OI) {
12027 assert(OI->second.size() > 0 && "no final overrider");
12028 CXXMethodDecl *Overrider = OI->second.front().Method;
12029
12030 // C++ [basic.def.odr]p2:
12031 // [...] A virtual member function is used if it is not pure. [...]
12032 if (!Overrider->isPure())
12033 MarkFunctionReferenced(Loc, Overrider);
12034 }
12035 }
12036
12037 // Only classes that have virtual bases need a VTT.
12038 if (RD->getNumVBases() == 0)
12039 return;
12040
12041 for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
12042 e = RD->bases_end(); i != e; ++i) {
12043 const CXXRecordDecl *Base =
12044 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
12045 if (Base->getNumVBases() == 0)
12046 continue;
12047 MarkVirtualMembersReferenced(Loc, Base);
12048 }
12049 }
12050
12051 /// SetIvarInitializers - This routine builds initialization ASTs for the
12052 /// Objective-C implementation whose ivars need be initialized.
SetIvarInitializers(ObjCImplementationDecl * ObjCImplementation)12053 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
12054 if (!getLangOpts().CPlusPlus)
12055 return;
12056 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
12057 SmallVector<ObjCIvarDecl*, 8> ivars;
12058 CollectIvarsToConstructOrDestruct(OID, ivars);
12059 if (ivars.empty())
12060 return;
12061 SmallVector<CXXCtorInitializer*, 32> AllToInit;
12062 for (unsigned i = 0; i < ivars.size(); i++) {
12063 FieldDecl *Field = ivars[i];
12064 if (Field->isInvalidDecl())
12065 continue;
12066
12067 CXXCtorInitializer *Member;
12068 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
12069 InitializationKind InitKind =
12070 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
12071
12072 InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
12073 ExprResult MemberInit =
12074 InitSeq.Perform(*this, InitEntity, InitKind, None);
12075 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
12076 // Note, MemberInit could actually come back empty if no initialization
12077 // is required (e.g., because it would call a trivial default constructor)
12078 if (!MemberInit.get() || MemberInit.isInvalid())
12079 continue;
12080
12081 Member =
12082 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
12083 SourceLocation(),
12084 MemberInit.takeAs<Expr>(),
12085 SourceLocation());
12086 AllToInit.push_back(Member);
12087
12088 // Be sure that the destructor is accessible and is marked as referenced.
12089 if (const RecordType *RecordTy
12090 = Context.getBaseElementType(Field->getType())
12091 ->getAs<RecordType>()) {
12092 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
12093 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
12094 MarkFunctionReferenced(Field->getLocation(), Destructor);
12095 CheckDestructorAccess(Field->getLocation(), Destructor,
12096 PDiag(diag::err_access_dtor_ivar)
12097 << Context.getBaseElementType(Field->getType()));
12098 }
12099 }
12100 }
12101 ObjCImplementation->setIvarInitializers(Context,
12102 AllToInit.data(), AllToInit.size());
12103 }
12104 }
12105
12106 static
DelegatingCycleHelper(CXXConstructorDecl * Ctor,llvm::SmallSet<CXXConstructorDecl *,4> & Valid,llvm::SmallSet<CXXConstructorDecl *,4> & Invalid,llvm::SmallSet<CXXConstructorDecl *,4> & Current,Sema & S)12107 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
12108 llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
12109 llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
12110 llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
12111 Sema &S) {
12112 if (Ctor->isInvalidDecl())
12113 return;
12114
12115 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
12116
12117 // Target may not be determinable yet, for instance if this is a dependent
12118 // call in an uninstantiated template.
12119 if (Target) {
12120 const FunctionDecl *FNTarget = 0;
12121 (void)Target->hasBody(FNTarget);
12122 Target = const_cast<CXXConstructorDecl*>(
12123 cast_or_null<CXXConstructorDecl>(FNTarget));
12124 }
12125
12126 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
12127 // Avoid dereferencing a null pointer here.
12128 *TCanonical = Target ? Target->getCanonicalDecl() : 0;
12129
12130 if (!Current.insert(Canonical))
12131 return;
12132
12133 // We know that beyond here, we aren't chaining into a cycle.
12134 if (!Target || !Target->isDelegatingConstructor() ||
12135 Target->isInvalidDecl() || Valid.count(TCanonical)) {
12136 Valid.insert(Current.begin(), Current.end());
12137 Current.clear();
12138 // We've hit a cycle.
12139 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
12140 Current.count(TCanonical)) {
12141 // If we haven't diagnosed this cycle yet, do so now.
12142 if (!Invalid.count(TCanonical)) {
12143 S.Diag((*Ctor->init_begin())->getSourceLocation(),
12144 diag::warn_delegating_ctor_cycle)
12145 << Ctor;
12146
12147 // Don't add a note for a function delegating directly to itself.
12148 if (TCanonical != Canonical)
12149 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
12150
12151 CXXConstructorDecl *C = Target;
12152 while (C->getCanonicalDecl() != Canonical) {
12153 const FunctionDecl *FNTarget = 0;
12154 (void)C->getTargetConstructor()->hasBody(FNTarget);
12155 assert(FNTarget && "Ctor cycle through bodiless function");
12156
12157 C = const_cast<CXXConstructorDecl*>(
12158 cast<CXXConstructorDecl>(FNTarget));
12159 S.Diag(C->getLocation(), diag::note_which_delegates_to);
12160 }
12161 }
12162
12163 Invalid.insert(Current.begin(), Current.end());
12164 Current.clear();
12165 } else {
12166 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12167 }
12168 }
12169
12170
CheckDelegatingCtorCycles()12171 void Sema::CheckDelegatingCtorCycles() {
12172 llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12173
12174 for (DelegatingCtorDeclsType::iterator
12175 I = DelegatingCtorDecls.begin(ExternalSource),
12176 E = DelegatingCtorDecls.end();
12177 I != E; ++I)
12178 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12179
12180 for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
12181 CE = Invalid.end();
12182 CI != CE; ++CI)
12183 (*CI)->setInvalidDecl();
12184 }
12185
12186 namespace {
12187 /// \brief AST visitor that finds references to the 'this' expression.
12188 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12189 Sema &S;
12190
12191 public:
FindCXXThisExpr(Sema & S)12192 explicit FindCXXThisExpr(Sema &S) : S(S) { }
12193
VisitCXXThisExpr(CXXThisExpr * E)12194 bool VisitCXXThisExpr(CXXThisExpr *E) {
12195 S.Diag(E->getLocation(), diag::err_this_static_member_func)
12196 << E->isImplicit();
12197 return false;
12198 }
12199 };
12200 }
12201
checkThisInStaticMemberFunctionType(CXXMethodDecl * Method)12202 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12203 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12204 if (!TSInfo)
12205 return false;
12206
12207 TypeLoc TL = TSInfo->getTypeLoc();
12208 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12209 if (!ProtoTL)
12210 return false;
12211
12212 // C++11 [expr.prim.general]p3:
12213 // [The expression this] shall not appear before the optional
12214 // cv-qualifier-seq and it shall not appear within the declaration of a
12215 // static member function (although its type and value category are defined
12216 // within a static member function as they are within a non-static member
12217 // function). [ Note: this is because declaration matching does not occur
12218 // until the complete declarator is known. - end note ]
12219 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12220 FindCXXThisExpr Finder(*this);
12221
12222 // If the return type came after the cv-qualifier-seq, check it now.
12223 if (Proto->hasTrailingReturn() &&
12224 !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
12225 return true;
12226
12227 // Check the exception specification.
12228 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12229 return true;
12230
12231 return checkThisInStaticMemberFunctionAttributes(Method);
12232 }
12233
checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl * Method)12234 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12235 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12236 if (!TSInfo)
12237 return false;
12238
12239 TypeLoc TL = TSInfo->getTypeLoc();
12240 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12241 if (!ProtoTL)
12242 return false;
12243
12244 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12245 FindCXXThisExpr Finder(*this);
12246
12247 switch (Proto->getExceptionSpecType()) {
12248 case EST_Uninstantiated:
12249 case EST_Unevaluated:
12250 case EST_BasicNoexcept:
12251 case EST_DynamicNone:
12252 case EST_MSAny:
12253 case EST_None:
12254 break;
12255
12256 case EST_ComputedNoexcept:
12257 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12258 return true;
12259
12260 case EST_Dynamic:
12261 for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
12262 EEnd = Proto->exception_end();
12263 E != EEnd; ++E) {
12264 if (!Finder.TraverseType(*E))
12265 return true;
12266 }
12267 break;
12268 }
12269
12270 return false;
12271 }
12272
checkThisInStaticMemberFunctionAttributes(CXXMethodDecl * Method)12273 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12274 FindCXXThisExpr Finder(*this);
12275
12276 // Check attributes.
12277 for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
12278 A != AEnd; ++A) {
12279 // FIXME: This should be emitted by tblgen.
12280 Expr *Arg = 0;
12281 ArrayRef<Expr *> Args;
12282 if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
12283 Arg = G->getArg();
12284 else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
12285 Arg = G->getArg();
12286 else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
12287 Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12288 else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
12289 Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12290 else if (ExclusiveLockFunctionAttr *ELF
12291 = dyn_cast<ExclusiveLockFunctionAttr>(*A))
12292 Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
12293 else if (SharedLockFunctionAttr *SLF
12294 = dyn_cast<SharedLockFunctionAttr>(*A))
12295 Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
12296 else if (ExclusiveTrylockFunctionAttr *ETLF
12297 = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
12298 Arg = ETLF->getSuccessValue();
12299 Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12300 } else if (SharedTrylockFunctionAttr *STLF
12301 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
12302 Arg = STLF->getSuccessValue();
12303 Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12304 } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
12305 Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
12306 else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
12307 Arg = LR->getArg();
12308 else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
12309 Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12310 else if (ExclusiveLocksRequiredAttr *ELR
12311 = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
12312 Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
12313 else if (SharedLocksRequiredAttr *SLR
12314 = dyn_cast<SharedLocksRequiredAttr>(*A))
12315 Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
12316
12317 if (Arg && !Finder.TraverseStmt(Arg))
12318 return true;
12319
12320 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12321 if (!Finder.TraverseStmt(Args[I]))
12322 return true;
12323 }
12324 }
12325
12326 return false;
12327 }
12328
12329 void
checkExceptionSpecification(ExceptionSpecificationType EST,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr,SmallVectorImpl<QualType> & Exceptions,FunctionProtoType::ExtProtoInfo & EPI)12330 Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12331 ArrayRef<ParsedType> DynamicExceptions,
12332 ArrayRef<SourceRange> DynamicExceptionRanges,
12333 Expr *NoexceptExpr,
12334 SmallVectorImpl<QualType> &Exceptions,
12335 FunctionProtoType::ExtProtoInfo &EPI) {
12336 Exceptions.clear();
12337 EPI.ExceptionSpecType = EST;
12338 if (EST == EST_Dynamic) {
12339 Exceptions.reserve(DynamicExceptions.size());
12340 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12341 // FIXME: Preserve type source info.
12342 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12343
12344 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12345 collectUnexpandedParameterPacks(ET, Unexpanded);
12346 if (!Unexpanded.empty()) {
12347 DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12348 UPPC_ExceptionType,
12349 Unexpanded);
12350 continue;
12351 }
12352
12353 // Check that the type is valid for an exception spec, and
12354 // drop it if not.
12355 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12356 Exceptions.push_back(ET);
12357 }
12358 EPI.NumExceptions = Exceptions.size();
12359 EPI.Exceptions = Exceptions.data();
12360 return;
12361 }
12362
12363 if (EST == EST_ComputedNoexcept) {
12364 // If an error occurred, there's no expression here.
12365 if (NoexceptExpr) {
12366 assert((NoexceptExpr->isTypeDependent() ||
12367 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12368 Context.BoolTy) &&
12369 "Parser should have made sure that the expression is boolean");
12370 if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12371 EPI.ExceptionSpecType = EST_BasicNoexcept;
12372 return;
12373 }
12374
12375 if (!NoexceptExpr->isValueDependent())
12376 NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12377 diag::err_noexcept_needs_constant_expression,
12378 /*AllowFold*/ false).take();
12379 EPI.NoexceptExpr = NoexceptExpr;
12380 }
12381 return;
12382 }
12383 }
12384
12385 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
IdentifyCUDATarget(const FunctionDecl * D)12386 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12387 // Implicitly declared functions (e.g. copy constructors) are
12388 // __host__ __device__
12389 if (D->isImplicit())
12390 return CFT_HostDevice;
12391
12392 if (D->hasAttr<CUDAGlobalAttr>())
12393 return CFT_Global;
12394
12395 if (D->hasAttr<CUDADeviceAttr>()) {
12396 if (D->hasAttr<CUDAHostAttr>())
12397 return CFT_HostDevice;
12398 return CFT_Device;
12399 }
12400
12401 return CFT_Host;
12402 }
12403
CheckCUDATarget(CUDAFunctionTarget CallerTarget,CUDAFunctionTarget CalleeTarget)12404 bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12405 CUDAFunctionTarget CalleeTarget) {
12406 // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12407 // Callable from the device only."
12408 if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12409 return true;
12410
12411 // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12412 // Callable from the host only."
12413 // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12414 // Callable from the host only."
12415 if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12416 (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12417 return true;
12418
12419 if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12420 return true;
12421
12422 return false;
12423 }
12424
12425 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12426 ///
HandleMSProperty(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS,AttributeList * MSPropertyAttr)12427 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12428 SourceLocation DeclStart,
12429 Declarator &D, Expr *BitWidth,
12430 InClassInitStyle InitStyle,
12431 AccessSpecifier AS,
12432 AttributeList *MSPropertyAttr) {
12433 IdentifierInfo *II = D.getIdentifier();
12434 if (!II) {
12435 Diag(DeclStart, diag::err_anonymous_property);
12436 return NULL;
12437 }
12438 SourceLocation Loc = D.getIdentifierLoc();
12439
12440 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12441 QualType T = TInfo->getType();
12442 if (getLangOpts().CPlusPlus) {
12443 CheckExtraCXXDefaultArguments(D);
12444
12445 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12446 UPPC_DataMemberType)) {
12447 D.setInvalidType();
12448 T = Context.IntTy;
12449 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12450 }
12451 }
12452
12453 DiagnoseFunctionSpecifiers(D.getDeclSpec());
12454
12455 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12456 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12457 diag::err_invalid_thread)
12458 << DeclSpec::getSpecifierName(TSCS);
12459
12460 // Check to see if this name was declared as a member previously
12461 NamedDecl *PrevDecl = 0;
12462 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12463 LookupName(Previous, S);
12464 switch (Previous.getResultKind()) {
12465 case LookupResult::Found:
12466 case LookupResult::FoundUnresolvedValue:
12467 PrevDecl = Previous.getAsSingle<NamedDecl>();
12468 break;
12469
12470 case LookupResult::FoundOverloaded:
12471 PrevDecl = Previous.getRepresentativeDecl();
12472 break;
12473
12474 case LookupResult::NotFound:
12475 case LookupResult::NotFoundInCurrentInstantiation:
12476 case LookupResult::Ambiguous:
12477 break;
12478 }
12479
12480 if (PrevDecl && PrevDecl->isTemplateParameter()) {
12481 // Maybe we will complain about the shadowed template parameter.
12482 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12483 // Just pretend that we didn't see the previous declaration.
12484 PrevDecl = 0;
12485 }
12486
12487 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12488 PrevDecl = 0;
12489
12490 SourceLocation TSSL = D.getLocStart();
12491 MSPropertyDecl *NewPD;
12492 const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12493 NewPD = new (Context) MSPropertyDecl(Record, Loc,
12494 II, T, TInfo, TSSL,
12495 Data.GetterId, Data.SetterId);
12496 ProcessDeclAttributes(TUScope, NewPD, D);
12497 NewPD->setAccess(AS);
12498
12499 if (NewPD->isInvalidDecl())
12500 Record->setInvalidDecl();
12501
12502 if (D.getDeclSpec().isModulePrivateSpecified())
12503 NewPD->setModulePrivate();
12504
12505 if (NewPD->isInvalidDecl() && PrevDecl) {
12506 // Don't introduce NewFD into scope; there's already something
12507 // with the same name in the same scope.
12508 } else if (II) {
12509 PushOnScopeChains(NewPD, S);
12510 } else
12511 Record->addDecl(NewPD);
12512
12513 return NewPD;
12514 }
12515