1 //===-- llvm/Support/CFG.h - Process LLVM structures as graphs --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines specializations of GraphTraits that allow Function and
11 // BasicBlock graphs to be treated as proper graphs for generic algorithms.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_SUPPORT_CFG_H
16 #define LLVM_SUPPORT_CFG_H
17
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/InstrTypes.h"
21
22 namespace llvm {
23
24 //===----------------------------------------------------------------------===//
25 // BasicBlock pred_iterator definition
26 //===----------------------------------------------------------------------===//
27
28 template <class Ptr, class USE_iterator> // Predecessor Iterator
29 class PredIterator : public std::iterator<std::forward_iterator_tag,
30 Ptr, ptrdiff_t, Ptr*, Ptr*> {
31 typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*,
32 Ptr*> super;
33 typedef PredIterator<Ptr, USE_iterator> Self;
34 USE_iterator It;
35
advancePastNonTerminators()36 inline void advancePastNonTerminators() {
37 // Loop to ignore non terminator uses (for example BlockAddresses).
38 while (!It.atEnd() && !isa<TerminatorInst>(*It))
39 ++It;
40 }
41
42 public:
43 typedef typename super::pointer pointer;
44 typedef typename super::reference reference;
45
PredIterator()46 PredIterator() {}
PredIterator(Ptr * bb)47 explicit inline PredIterator(Ptr *bb) : It(bb->use_begin()) {
48 advancePastNonTerminators();
49 }
PredIterator(Ptr * bb,bool)50 inline PredIterator(Ptr *bb, bool) : It(bb->use_end()) {}
51
52 inline bool operator==(const Self& x) const { return It == x.It; }
53 inline bool operator!=(const Self& x) const { return !operator==(x); }
54
55 inline reference operator*() const {
56 assert(!It.atEnd() && "pred_iterator out of range!");
57 return cast<TerminatorInst>(*It)->getParent();
58 }
59 inline pointer *operator->() const { return &operator*(); }
60
61 inline Self& operator++() { // Preincrement
62 assert(!It.atEnd() && "pred_iterator out of range!");
63 ++It; advancePastNonTerminators();
64 return *this;
65 }
66
67 inline Self operator++(int) { // Postincrement
68 Self tmp = *this; ++*this; return tmp;
69 }
70
71 /// getOperandNo - Return the operand number in the predecessor's
72 /// terminator of the successor.
getOperandNo()73 unsigned getOperandNo() const {
74 return It.getOperandNo();
75 }
76
77 /// getUse - Return the operand Use in the predecessor's terminator
78 /// of the successor.
getUse()79 Use &getUse() const {
80 return It.getUse();
81 }
82 };
83
84 typedef PredIterator<BasicBlock, Value::use_iterator> pred_iterator;
85 typedef PredIterator<const BasicBlock,
86 Value::const_use_iterator> const_pred_iterator;
87
pred_begin(BasicBlock * BB)88 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
pred_begin(const BasicBlock * BB)89 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
90 return const_pred_iterator(BB);
91 }
pred_end(BasicBlock * BB)92 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
pred_end(const BasicBlock * BB)93 inline const_pred_iterator pred_end(const BasicBlock *BB) {
94 return const_pred_iterator(BB, true);
95 }
96
97
98
99 //===----------------------------------------------------------------------===//
100 // BasicBlock succ_iterator definition
101 //===----------------------------------------------------------------------===//
102
103 template <class Term_, class BB_> // Successor Iterator
104 class SuccIterator : public std::iterator<std::bidirectional_iterator_tag,
105 BB_, ptrdiff_t, BB_*, BB_*> {
106 const Term_ Term;
107 unsigned idx;
108 typedef std::iterator<std::bidirectional_iterator_tag, BB_, ptrdiff_t, BB_*,
109 BB_*> super;
110 typedef SuccIterator<Term_, BB_> Self;
111
index_is_valid(int idx)112 inline bool index_is_valid(int idx) {
113 return idx >= 0 && (unsigned) idx < Term->getNumSuccessors();
114 }
115
116 public:
117 typedef typename super::pointer pointer;
118 typedef typename super::reference reference;
119 // TODO: This can be random access iterator, only operator[] missing.
120
SuccIterator(Term_ T)121 explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator
122 }
SuccIterator(Term_ T,bool)123 inline SuccIterator(Term_ T, bool) // end iterator
124 : Term(T) {
125 if (Term)
126 idx = Term->getNumSuccessors();
127 else
128 // Term == NULL happens, if a basic block is not fully constructed and
129 // consequently getTerminator() returns NULL. In this case we construct a
130 // SuccIterator which describes a basic block that has zero successors.
131 // Defining SuccIterator for incomplete and malformed CFGs is especially
132 // useful for debugging.
133 idx = 0;
134 }
135
136 inline const Self &operator=(const Self &I) {
137 assert(Term == I.Term &&"Cannot assign iterators to two different blocks!");
138 idx = I.idx;
139 return *this;
140 }
141
142 /// getSuccessorIndex - This is used to interface between code that wants to
143 /// operate on terminator instructions directly.
getSuccessorIndex()144 unsigned getSuccessorIndex() const { return idx; }
145
146 inline bool operator==(const Self& x) const { return idx == x.idx; }
147 inline bool operator!=(const Self& x) const { return !operator==(x); }
148
149 inline reference operator*() const { return Term->getSuccessor(idx); }
150 inline pointer operator->() const { return operator*(); }
151
152 inline Self& operator++() { ++idx; return *this; } // Preincrement
153
154 inline Self operator++(int) { // Postincrement
155 Self tmp = *this; ++*this; return tmp;
156 }
157
158 inline Self& operator--() { --idx; return *this; } // Predecrement
159 inline Self operator--(int) { // Postdecrement
160 Self tmp = *this; --*this; return tmp;
161 }
162
163 inline bool operator<(const Self& x) const {
164 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
165 return idx < x.idx;
166 }
167
168 inline bool operator<=(const Self& x) const {
169 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
170 return idx <= x.idx;
171 }
172 inline bool operator>=(const Self& x) const {
173 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
174 return idx >= x.idx;
175 }
176
177 inline bool operator>(const Self& x) const {
178 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
179 return idx > x.idx;
180 }
181
182 inline Self& operator+=(int Right) {
183 unsigned new_idx = idx + Right;
184 assert(index_is_valid(new_idx) && "Iterator index out of bound");
185 idx = new_idx;
186 return *this;
187 }
188
189 inline Self operator+(int Right) {
190 Self tmp = *this;
191 tmp += Right;
192 return tmp;
193 }
194
195 inline Self& operator-=(int Right) {
196 return operator+=(-Right);
197 }
198
199 inline Self operator-(int Right) {
200 return operator+(-Right);
201 }
202
203 inline int operator-(const Self& x) {
204 assert(Term == x.Term && "Cannot work on iterators of different blocks!");
205 int distance = idx - x.idx;
206 return distance;
207 }
208
209 // This works for read access, however write access is difficult as changes
210 // to Term are only possible with Term->setSuccessor(idx). Pointers that can
211 // be modified are not available.
212 //
213 // inline pointer operator[](int offset) {
214 // Self tmp = *this;
215 // tmp += offset;
216 // return tmp.operator*();
217 // }
218
219 /// Get the source BB of this iterator.
getSource()220 inline BB_ *getSource() {
221 assert(Term && "Source not available, if basic block was malformed");
222 return Term->getParent();
223 }
224 };
225
226 typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator;
227 typedef SuccIterator<const TerminatorInst*,
228 const BasicBlock> succ_const_iterator;
229
succ_begin(BasicBlock * BB)230 inline succ_iterator succ_begin(BasicBlock *BB) {
231 return succ_iterator(BB->getTerminator());
232 }
succ_begin(const BasicBlock * BB)233 inline succ_const_iterator succ_begin(const BasicBlock *BB) {
234 return succ_const_iterator(BB->getTerminator());
235 }
succ_end(BasicBlock * BB)236 inline succ_iterator succ_end(BasicBlock *BB) {
237 return succ_iterator(BB->getTerminator(), true);
238 }
succ_end(const BasicBlock * BB)239 inline succ_const_iterator succ_end(const BasicBlock *BB) {
240 return succ_const_iterator(BB->getTerminator(), true);
241 }
242
243 template <typename T, typename U> struct isPodLike<SuccIterator<T, U> > {
244 static const bool value = isPodLike<T>::value;
245 };
246
247
248
249 //===--------------------------------------------------------------------===//
250 // GraphTraits specializations for basic block graphs (CFGs)
251 //===--------------------------------------------------------------------===//
252
253 // Provide specializations of GraphTraits to be able to treat a function as a
254 // graph of basic blocks...
255
256 template <> struct GraphTraits<BasicBlock*> {
257 typedef BasicBlock NodeType;
258 typedef succ_iterator ChildIteratorType;
259
260 static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
261 static inline ChildIteratorType child_begin(NodeType *N) {
262 return succ_begin(N);
263 }
264 static inline ChildIteratorType child_end(NodeType *N) {
265 return succ_end(N);
266 }
267 };
268
269 template <> struct GraphTraits<const BasicBlock*> {
270 typedef const BasicBlock NodeType;
271 typedef succ_const_iterator ChildIteratorType;
272
273 static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
274
275 static inline ChildIteratorType child_begin(NodeType *N) {
276 return succ_begin(N);
277 }
278 static inline ChildIteratorType child_end(NodeType *N) {
279 return succ_end(N);
280 }
281 };
282
283 // Provide specializations of GraphTraits to be able to treat a function as a
284 // graph of basic blocks... and to walk it in inverse order. Inverse order for
285 // a function is considered to be when traversing the predecessor edges of a BB
286 // instead of the successor edges.
287 //
288 template <> struct GraphTraits<Inverse<BasicBlock*> > {
289 typedef BasicBlock NodeType;
290 typedef pred_iterator ChildIteratorType;
291 static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
292 static inline ChildIteratorType child_begin(NodeType *N) {
293 return pred_begin(N);
294 }
295 static inline ChildIteratorType child_end(NodeType *N) {
296 return pred_end(N);
297 }
298 };
299
300 template <> struct GraphTraits<Inverse<const BasicBlock*> > {
301 typedef const BasicBlock NodeType;
302 typedef const_pred_iterator ChildIteratorType;
303 static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
304 return G.Graph;
305 }
306 static inline ChildIteratorType child_begin(NodeType *N) {
307 return pred_begin(N);
308 }
309 static inline ChildIteratorType child_end(NodeType *N) {
310 return pred_end(N);
311 }
312 };
313
314
315
316 //===--------------------------------------------------------------------===//
317 // GraphTraits specializations for function basic block graphs (CFGs)
318 //===--------------------------------------------------------------------===//
319
320 // Provide specializations of GraphTraits to be able to treat a function as a
321 // graph of basic blocks... these are the same as the basic block iterators,
322 // except that the root node is implicitly the first node of the function.
323 //
324 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
325 static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
326
327 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
328 typedef Function::iterator nodes_iterator;
329 static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
330 static nodes_iterator nodes_end (Function *F) { return F->end(); }
331 static size_t size (Function *F) { return F->size(); }
332 };
333 template <> struct GraphTraits<const Function*> :
334 public GraphTraits<const BasicBlock*> {
335 static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
336
337 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
338 typedef Function::const_iterator nodes_iterator;
339 static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
340 static nodes_iterator nodes_end (const Function *F) { return F->end(); }
341 static size_t size (const Function *F) { return F->size(); }
342 };
343
344
345 // Provide specializations of GraphTraits to be able to treat a function as a
346 // graph of basic blocks... and to walk it in inverse order. Inverse order for
347 // a function is considered to be when traversing the predecessor edges of a BB
348 // instead of the successor edges.
349 //
350 template <> struct GraphTraits<Inverse<Function*> > :
351 public GraphTraits<Inverse<BasicBlock*> > {
352 static NodeType *getEntryNode(Inverse<Function*> G) {
353 return &G.Graph->getEntryBlock();
354 }
355 };
356 template <> struct GraphTraits<Inverse<const Function*> > :
357 public GraphTraits<Inverse<const BasicBlock*> > {
358 static NodeType *getEntryNode(Inverse<const Function *> G) {
359 return &G.Graph->getEntryBlock();
360 }
361 };
362
363 } // End llvm namespace
364
365 #endif
366