• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Defines the C++ Decl subclasses, other than those for templates
12 /// (found in DeclTemplate.h) and friends (in DeclFriend.h).
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_CLANG_AST_DECLCXX_H
17 #define LLVM_CLANG_AST_DECLCXX_H
18 
19 #include "clang/AST/ASTUnresolvedSet.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/Support/Compiler.h"
28 
29 namespace clang {
30 
31 class ClassTemplateDecl;
32 class ClassTemplateSpecializationDecl;
33 class CXXBasePath;
34 class CXXBasePaths;
35 class CXXConstructorDecl;
36 class CXXConversionDecl;
37 class CXXDestructorDecl;
38 class CXXMethodDecl;
39 class CXXRecordDecl;
40 class CXXMemberLookupCriteria;
41 class CXXFinalOverriderMap;
42 class CXXIndirectPrimaryBaseSet;
43 class FriendDecl;
44 class LambdaExpr;
45 class UsingDecl;
46 
47 /// \brief Represents any kind of function declaration, whether it is a
48 /// concrete function or a function template.
49 class AnyFunctionDecl {
50   NamedDecl *Function;
51 
AnyFunctionDecl(NamedDecl * ND)52   AnyFunctionDecl(NamedDecl *ND) : Function(ND) { }
53 
54 public:
AnyFunctionDecl(FunctionDecl * FD)55   AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { }
56   AnyFunctionDecl(FunctionTemplateDecl *FTD);
57 
58   /// \brief Implicily converts any function or function template into a
59   /// named declaration.
60   operator NamedDecl *() const { return Function; }
61 
62   /// \brief Retrieve the underlying function or function template.
get()63   NamedDecl *get() const { return Function; }
64 
getFromNamedDecl(NamedDecl * ND)65   static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) {
66     return AnyFunctionDecl(ND);
67   }
68 };
69 
70 } // end namespace clang
71 
72 namespace llvm {
73   // Provide PointerLikeTypeTraits for non-cvr pointers.
74   template<>
75   class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> {
76   public:
getAsVoidPointer(::clang::AnyFunctionDecl F)77     static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) {
78       return F.get();
79     }
getFromVoidPointer(void * P)80     static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) {
81       return ::clang::AnyFunctionDecl::getFromNamedDecl(
82                                       static_cast< ::clang::NamedDecl*>(P));
83     }
84 
85     enum { NumLowBitsAvailable = 2 };
86   };
87 
88 } // end namespace llvm
89 
90 namespace clang {
91 
92 /// \brief Represents an access specifier followed by colon ':'.
93 ///
94 /// An objects of this class represents sugar for the syntactic occurrence
95 /// of an access specifier followed by a colon in the list of member
96 /// specifiers of a C++ class definition.
97 ///
98 /// Note that they do not represent other uses of access specifiers,
99 /// such as those occurring in a list of base specifiers.
100 /// Also note that this class has nothing to do with so-called
101 /// "access declarations" (C++98 11.3 [class.access.dcl]).
102 class AccessSpecDecl : public Decl {
103   virtual void anchor();
104   /// \brief The location of the ':'.
105   SourceLocation ColonLoc;
106 
AccessSpecDecl(AccessSpecifier AS,DeclContext * DC,SourceLocation ASLoc,SourceLocation ColonLoc)107   AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
108                  SourceLocation ASLoc, SourceLocation ColonLoc)
109     : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
110     setAccess(AS);
111   }
AccessSpecDecl(EmptyShell Empty)112   AccessSpecDecl(EmptyShell Empty)
113     : Decl(AccessSpec, Empty) { }
114 public:
115   /// \brief The location of the access specifier.
getAccessSpecifierLoc()116   SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
117   /// \brief Sets the location of the access specifier.
setAccessSpecifierLoc(SourceLocation ASLoc)118   void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
119 
120   /// \brief The location of the colon following the access specifier.
getColonLoc()121   SourceLocation getColonLoc() const { return ColonLoc; }
122   /// \brief Sets the location of the colon.
setColonLoc(SourceLocation CLoc)123   void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
124 
getSourceRange()125   SourceRange getSourceRange() const LLVM_READONLY {
126     return SourceRange(getAccessSpecifierLoc(), getColonLoc());
127   }
128 
Create(ASTContext & C,AccessSpecifier AS,DeclContext * DC,SourceLocation ASLoc,SourceLocation ColonLoc)129   static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
130                                 DeclContext *DC, SourceLocation ASLoc,
131                                 SourceLocation ColonLoc) {
132     return new (C) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
133   }
134   static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
135 
136   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)137   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)138   static bool classofKind(Kind K) { return K == AccessSpec; }
139 };
140 
141 
142 /// \brief Represents a base class of a C++ class.
143 ///
144 /// Each CXXBaseSpecifier represents a single, direct base class (or
145 /// struct) of a C++ class (or struct). It specifies the type of that
146 /// base class, whether it is a virtual or non-virtual base, and what
147 /// level of access (public, protected, private) is used for the
148 /// derivation. For example:
149 ///
150 /// \code
151 ///   class A { };
152 ///   class B { };
153 ///   class C : public virtual A, protected B { };
154 /// \endcode
155 ///
156 /// In this code, C will have two CXXBaseSpecifiers, one for "public
157 /// virtual A" and the other for "protected B".
158 class CXXBaseSpecifier {
159   /// \brief The source code range that covers the full base
160   /// specifier, including the "virtual" (if present) and access
161   /// specifier (if present).
162   SourceRange Range;
163 
164   /// \brief The source location of the ellipsis, if this is a pack
165   /// expansion.
166   SourceLocation EllipsisLoc;
167 
168   /// \brief Whether this is a virtual base class or not.
169   bool Virtual : 1;
170 
171   /// \brief Whether this is the base of a class (true) or of a struct (false).
172   ///
173   /// This determines the mapping from the access specifier as written in the
174   /// source code to the access specifier used for semantic analysis.
175   bool BaseOfClass : 1;
176 
177   /// \brief Access specifier as written in the source code (may be AS_none).
178   ///
179   /// The actual type of data stored here is an AccessSpecifier, but we use
180   /// "unsigned" here to work around a VC++ bug.
181   unsigned Access : 2;
182 
183   /// \brief Whether the class contains a using declaration
184   /// to inherit the named class's constructors.
185   bool InheritConstructors : 1;
186 
187   /// \brief The type of the base class.
188   ///
189   /// This will be a class or struct (or a typedef of such). The source code
190   /// range does not include the \c virtual or the access specifier.
191   TypeSourceInfo *BaseTypeInfo;
192 
193 public:
CXXBaseSpecifier()194   CXXBaseSpecifier() { }
195 
CXXBaseSpecifier(SourceRange R,bool V,bool BC,AccessSpecifier A,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)196   CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
197                    TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
198     : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
199       Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { }
200 
201   /// \brief Retrieves the source range that contains the entire base specifier.
getSourceRange()202   SourceRange getSourceRange() const LLVM_READONLY { return Range; }
getLocStart()203   SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
getLocEnd()204   SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
205 
206   /// \brief Determines whether the base class is a virtual base class (or not).
isVirtual()207   bool isVirtual() const { return Virtual; }
208 
209   /// \brief Determine whether this base class is a base of a class declared
210   /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
isBaseOfClass()211   bool isBaseOfClass() const { return BaseOfClass; }
212 
213   /// \brief Determine whether this base specifier is a pack expansion.
isPackExpansion()214   bool isPackExpansion() const { return EllipsisLoc.isValid(); }
215 
216   /// \brief Determine whether this base class's constructors get inherited.
getInheritConstructors()217   bool getInheritConstructors() const { return InheritConstructors; }
218 
219   /// \brief Set that this base class's constructors should be inherited.
220   void setInheritConstructors(bool Inherit = true) {
221     InheritConstructors = Inherit;
222   }
223 
224   /// \brief For a pack expansion, determine the location of the ellipsis.
getEllipsisLoc()225   SourceLocation getEllipsisLoc() const {
226     return EllipsisLoc;
227   }
228 
229   /// \brief Returns the access specifier for this base specifier.
230   ///
231   /// This is the actual base specifier as used for semantic analysis, so
232   /// the result can never be AS_none. To retrieve the access specifier as
233   /// written in the source code, use getAccessSpecifierAsWritten().
getAccessSpecifier()234   AccessSpecifier getAccessSpecifier() const {
235     if ((AccessSpecifier)Access == AS_none)
236       return BaseOfClass? AS_private : AS_public;
237     else
238       return (AccessSpecifier)Access;
239   }
240 
241   /// \brief Retrieves the access specifier as written in the source code
242   /// (which may mean that no access specifier was explicitly written).
243   ///
244   /// Use getAccessSpecifier() to retrieve the access specifier for use in
245   /// semantic analysis.
getAccessSpecifierAsWritten()246   AccessSpecifier getAccessSpecifierAsWritten() const {
247     return (AccessSpecifier)Access;
248   }
249 
250   /// \brief Retrieves the type of the base class.
251   ///
252   /// This type will always be an unqualified class type.
getType()253   QualType getType() const {
254     return BaseTypeInfo->getType().getUnqualifiedType();
255   }
256 
257   /// \brief Retrieves the type and source location of the base class.
getTypeSourceInfo()258   TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
259 };
260 
261 /// The inheritance model to use for member pointers of a given CXXRecordDecl.
262 enum MSInheritanceModel {
263   MSIM_Single,
264   MSIM_SinglePolymorphic,
265   MSIM_Multiple,
266   MSIM_MultiplePolymorphic,
267   MSIM_Virtual,
268   MSIM_Unspecified
269 };
270 
271 /// \brief Represents a C++ struct/union/class.
272 ///
273 /// FIXME: This class will disappear once we've properly taught RecordDecl
274 /// to deal with C++-specific things.
275 class CXXRecordDecl : public RecordDecl {
276 
277   friend void TagDecl::startDefinition();
278 
279   /// Values used in DefinitionData fields to represent special members.
280   enum SpecialMemberFlags {
281     SMF_DefaultConstructor = 0x1,
282     SMF_CopyConstructor = 0x2,
283     SMF_MoveConstructor = 0x4,
284     SMF_CopyAssignment = 0x8,
285     SMF_MoveAssignment = 0x10,
286     SMF_Destructor = 0x20,
287     SMF_All = 0x3f
288   };
289 
290   struct DefinitionData {
291     DefinitionData(CXXRecordDecl *D);
292 
293     /// \brief True if this class has any user-declared constructors.
294     bool UserDeclaredConstructor : 1;
295 
296     /// \brief The user-declared special members which this class has.
297     unsigned UserDeclaredSpecialMembers : 6;
298 
299     /// \brief True when this class is an aggregate.
300     bool Aggregate : 1;
301 
302     /// \brief True when this class is a POD-type.
303     bool PlainOldData : 1;
304 
305     /// true when this class is empty for traits purposes,
306     /// i.e. has no data members other than 0-width bit-fields, has no
307     /// virtual function/base, and doesn't inherit from a non-empty
308     /// class. Doesn't take union-ness into account.
309     bool Empty : 1;
310 
311     /// \brief True when this class is polymorphic, i.e., has at
312     /// least one virtual member or derives from a polymorphic class.
313     bool Polymorphic : 1;
314 
315     /// \brief True when this class is abstract, i.e., has at least
316     /// one pure virtual function, (that can come from a base class).
317     bool Abstract : 1;
318 
319     /// \brief True when this class has standard layout.
320     ///
321     /// C++11 [class]p7.  A standard-layout class is a class that:
322     /// * has no non-static data members of type non-standard-layout class (or
323     ///   array of such types) or reference,
324     /// * has no virtual functions (10.3) and no virtual base classes (10.1),
325     /// * has the same access control (Clause 11) for all non-static data
326     ///   members
327     /// * has no non-standard-layout base classes,
328     /// * either has no non-static data members in the most derived class and at
329     ///   most one base class with non-static data members, or has no base
330     ///   classes with non-static data members, and
331     /// * has no base classes of the same type as the first non-static data
332     ///   member.
333     bool IsStandardLayout : 1;
334 
335     /// \brief True when there are no non-empty base classes.
336     ///
337     /// This is a helper bit of state used to implement IsStandardLayout more
338     /// efficiently.
339     bool HasNoNonEmptyBases : 1;
340 
341     /// \brief True when there are private non-static data members.
342     bool HasPrivateFields : 1;
343 
344     /// \brief True when there are protected non-static data members.
345     bool HasProtectedFields : 1;
346 
347     /// \brief True when there are private non-static data members.
348     bool HasPublicFields : 1;
349 
350     /// \brief True if this class (or any subobject) has mutable fields.
351     bool HasMutableFields : 1;
352 
353     /// \brief True if there no non-field members declared by the user.
354     bool HasOnlyCMembers : 1;
355 
356     /// \brief True if any field has an in-class initializer.
357     bool HasInClassInitializer : 1;
358 
359     /// \brief True if any field is of reference type, and does not have an
360     /// in-class initializer.
361     ///
362     /// In this case, value-initialization of this class is illegal in C++98
363     /// even if the class has a trivial default constructor.
364     bool HasUninitializedReferenceMember : 1;
365 
366     /// \brief These flags are \c true if a defaulted corresponding special
367     /// member can't be fully analyzed without performing overload resolution.
368     /// @{
369     bool NeedOverloadResolutionForMoveConstructor : 1;
370     bool NeedOverloadResolutionForMoveAssignment : 1;
371     bool NeedOverloadResolutionForDestructor : 1;
372     /// @}
373 
374     /// \brief These flags are \c true if an implicit defaulted corresponding
375     /// special member would be defined as deleted.
376     /// @{
377     bool DefaultedMoveConstructorIsDeleted : 1;
378     bool DefaultedMoveAssignmentIsDeleted : 1;
379     bool DefaultedDestructorIsDeleted : 1;
380     /// @}
381 
382     /// \brief The trivial special members which this class has, per
383     /// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25,
384     /// C++11 [class.dtor]p5, or would have if the member were not suppressed.
385     ///
386     /// This excludes any user-declared but not user-provided special members
387     /// which have been declared but not yet defined.
388     unsigned HasTrivialSpecialMembers : 6;
389 
390     /// \brief The declared special members of this class which are known to be
391     /// non-trivial.
392     ///
393     /// This excludes any user-declared but not user-provided special members
394     /// which have been declared but not yet defined, and any implicit special
395     /// members which have not yet been declared.
396     unsigned DeclaredNonTrivialSpecialMembers : 6;
397 
398     /// \brief True when this class has a destructor with no semantic effect.
399     bool HasIrrelevantDestructor : 1;
400 
401     /// \brief True when this class has at least one user-declared constexpr
402     /// constructor which is neither the copy nor move constructor.
403     bool HasConstexprNonCopyMoveConstructor : 1;
404 
405     /// \brief True if a defaulted default constructor for this class would
406     /// be constexpr.
407     bool DefaultedDefaultConstructorIsConstexpr : 1;
408 
409     /// \brief True if this class has a constexpr default constructor.
410     ///
411     /// This is true for either a user-declared constexpr default constructor
412     /// or an implicitly declared constexpr default constructor..
413     bool HasConstexprDefaultConstructor : 1;
414 
415     /// \brief True when this class contains at least one non-static data
416     /// member or base class of non-literal or volatile type.
417     bool HasNonLiteralTypeFieldsOrBases : 1;
418 
419     /// \brief True when visible conversion functions are already computed
420     /// and are available.
421     bool ComputedVisibleConversions : 1;
422 
423     /// \brief Whether we have a C++11 user-provided default constructor (not
424     /// explicitly deleted or defaulted).
425     bool UserProvidedDefaultConstructor : 1;
426 
427     /// \brief The special members which have been declared for this class,
428     /// either by the user or implicitly.
429     unsigned DeclaredSpecialMembers : 6;
430 
431     /// \brief Whether an implicit copy constructor would have a const-qualified
432     /// parameter.
433     bool ImplicitCopyConstructorHasConstParam : 1;
434 
435     /// \brief Whether an implicit copy assignment operator would have a
436     /// const-qualified parameter.
437     bool ImplicitCopyAssignmentHasConstParam : 1;
438 
439     /// \brief Whether any declared copy constructor has a const-qualified
440     /// parameter.
441     bool HasDeclaredCopyConstructorWithConstParam : 1;
442 
443     /// \brief Whether any declared copy assignment operator has either a
444     /// const-qualified reference parameter or a non-reference parameter.
445     bool HasDeclaredCopyAssignmentWithConstParam : 1;
446 
447     /// \brief Whether an implicit move constructor was attempted to be declared
448     /// but would have been deleted.
449     bool FailedImplicitMoveConstructor : 1;
450 
451     /// \brief Whether an implicit move assignment operator was attempted to be
452     /// declared but would have been deleted.
453     bool FailedImplicitMoveAssignment : 1;
454 
455     /// \brief Whether this class describes a C++ lambda.
456     bool IsLambda : 1;
457 
458     /// \brief The number of base class specifiers in Bases.
459     unsigned NumBases;
460 
461     /// \brief The number of virtual base class specifiers in VBases.
462     unsigned NumVBases;
463 
464     /// \brief Base classes of this class.
465     ///
466     /// FIXME: This is wasted space for a union.
467     LazyCXXBaseSpecifiersPtr Bases;
468 
469     /// \brief direct and indirect virtual base classes of this class.
470     LazyCXXBaseSpecifiersPtr VBases;
471 
472     /// \brief The conversion functions of this C++ class (but not its
473     /// inherited conversion functions).
474     ///
475     /// Each of the entries in this overload set is a CXXConversionDecl.
476     ASTUnresolvedSet Conversions;
477 
478     /// \brief The conversion functions of this C++ class and all those
479     /// inherited conversion functions that are visible in this class.
480     ///
481     /// Each of the entries in this overload set is a CXXConversionDecl or a
482     /// FunctionTemplateDecl.
483     ASTUnresolvedSet VisibleConversions;
484 
485     /// \brief The declaration which defines this record.
486     CXXRecordDecl *Definition;
487 
488     /// \brief The first friend declaration in this class, or null if there
489     /// aren't any.
490     ///
491     /// This is actually currently stored in reverse order.
492     LazyDeclPtr FirstFriend;
493 
494     /// \brief Retrieve the set of direct base classes.
getBasesDefinitionData495     CXXBaseSpecifier *getBases() const {
496       if (!Bases.isOffset())
497         return Bases.get(0);
498       return getBasesSlowCase();
499     }
500 
501     /// \brief Retrieve the set of virtual base classes.
getVBasesDefinitionData502     CXXBaseSpecifier *getVBases() const {
503       if (!VBases.isOffset())
504         return VBases.get(0);
505       return getVBasesSlowCase();
506     }
507 
508   private:
509     CXXBaseSpecifier *getBasesSlowCase() const;
510     CXXBaseSpecifier *getVBasesSlowCase() const;
511   } *DefinitionData;
512 
513   /// \brief Describes a C++ closure type (generated by a lambda expression).
514   struct LambdaDefinitionData : public DefinitionData {
515     typedef LambdaExpr::Capture Capture;
516 
LambdaDefinitionDataLambdaDefinitionData517     LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, bool Dependent)
518       : DefinitionData(D), Dependent(Dependent), NumCaptures(0),
519         NumExplicitCaptures(0), ManglingNumber(0), ContextDecl(0), Captures(0),
520         MethodTyInfo(Info)
521     {
522       IsLambda = true;
523     }
524 
525     /// \brief Whether this lambda is known to be dependent, even if its
526     /// context isn't dependent.
527     ///
528     /// A lambda with a non-dependent context can be dependent if it occurs
529     /// within the default argument of a function template, because the
530     /// lambda will have been created with the enclosing context as its
531     /// declaration context, rather than function. This is an unfortunate
532     /// artifact of having to parse the default arguments before
533     unsigned Dependent : 1;
534 
535     /// \brief The number of captures in this lambda.
536     unsigned NumCaptures : 16;
537 
538     /// \brief The number of explicit captures in this lambda.
539     unsigned NumExplicitCaptures : 15;
540 
541     /// \brief The number used to indicate this lambda expression for name
542     /// mangling in the Itanium C++ ABI.
543     unsigned ManglingNumber;
544 
545     /// \brief The declaration that provides context for this lambda, if the
546     /// actual DeclContext does not suffice. This is used for lambdas that
547     /// occur within default arguments of function parameters within the class
548     /// or within a data member initializer.
549     Decl *ContextDecl;
550 
551     /// \brief The list of captures, both explicit and implicit, for this
552     /// lambda.
553     Capture *Captures;
554 
555     /// \brief The type of the call method.
556     TypeSourceInfo *MethodTyInfo;
557   };
558 
data()559   struct DefinitionData &data() {
560     assert(DefinitionData && "queried property of class with no definition");
561     return *DefinitionData;
562   }
563 
data()564   const struct DefinitionData &data() const {
565     assert(DefinitionData && "queried property of class with no definition");
566     return *DefinitionData;
567   }
568 
getLambdaData()569   struct LambdaDefinitionData &getLambdaData() const {
570     assert(DefinitionData && "queried property of lambda with no definition");
571     assert(DefinitionData->IsLambda &&
572            "queried lambda property of non-lambda class");
573     return static_cast<LambdaDefinitionData &>(*DefinitionData);
574   }
575 
576   /// \brief The template or declaration that this declaration
577   /// describes or was instantiated from, respectively.
578   ///
579   /// For non-templates, this value will be null. For record
580   /// declarations that describe a class template, this will be a
581   /// pointer to a ClassTemplateDecl. For member
582   /// classes of class template specializations, this will be the
583   /// MemberSpecializationInfo referring to the member class that was
584   /// instantiated or specialized.
585   llvm::PointerUnion<ClassTemplateDecl*, MemberSpecializationInfo*>
586     TemplateOrInstantiation;
587 
588   friend class DeclContext;
589   friend class LambdaExpr;
590 
591   /// \brief Called from setBases and addedMember to notify the class that a
592   /// direct or virtual base class or a member of class type has been added.
593   void addedClassSubobject(CXXRecordDecl *Base);
594 
595   /// \brief Notify the class that member has been added.
596   ///
597   /// This routine helps maintain information about the class based on which
598   /// members have been added. It will be invoked by DeclContext::addDecl()
599   /// whenever a member is added to this record.
600   void addedMember(Decl *D);
601 
602   void markedVirtualFunctionPure();
603   friend void FunctionDecl::setPure(bool);
604 
605   friend class ASTNodeImporter;
606 
607   /// \brief Get the head of our list of friend declarations, possibly
608   /// deserializing the friends from an external AST source.
609   FriendDecl *getFirstFriend() const;
610 
611 protected:
612   CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
613                 SourceLocation StartLoc, SourceLocation IdLoc,
614                 IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
615 
616 public:
617   /// \brief Iterator that traverses the base classes of a class.
618   typedef CXXBaseSpecifier*       base_class_iterator;
619 
620   /// \brief Iterator that traverses the base classes of a class.
621   typedef const CXXBaseSpecifier* base_class_const_iterator;
622 
623   /// \brief Iterator that traverses the base classes of a class in reverse
624   /// order.
625   typedef std::reverse_iterator<base_class_iterator>
626     reverse_base_class_iterator;
627 
628   /// \brief Iterator that traverses the base classes of a class in reverse
629   /// order.
630   typedef std::reverse_iterator<base_class_const_iterator>
631     reverse_base_class_const_iterator;
632 
getCanonicalDecl()633   virtual CXXRecordDecl *getCanonicalDecl() {
634     return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
635   }
getCanonicalDecl()636   virtual const CXXRecordDecl *getCanonicalDecl() const {
637     return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
638   }
639 
getPreviousDecl()640   const CXXRecordDecl *getPreviousDecl() const {
641     return cast_or_null<CXXRecordDecl>(RecordDecl::getPreviousDecl());
642   }
getPreviousDecl()643   CXXRecordDecl *getPreviousDecl() {
644     return cast_or_null<CXXRecordDecl>(RecordDecl::getPreviousDecl());
645   }
646 
getMostRecentDecl()647   const CXXRecordDecl *getMostRecentDecl() const {
648     return cast_or_null<CXXRecordDecl>(RecordDecl::getMostRecentDecl());
649   }
getMostRecentDecl()650   CXXRecordDecl *getMostRecentDecl() {
651     return cast_or_null<CXXRecordDecl>(RecordDecl::getMostRecentDecl());
652   }
653 
getDefinition()654   CXXRecordDecl *getDefinition() const {
655     if (!DefinitionData) return 0;
656     return data().Definition;
657   }
658 
hasDefinition()659   bool hasDefinition() const { return DefinitionData != 0; }
660 
661   static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
662                                SourceLocation StartLoc, SourceLocation IdLoc,
663                                IdentifierInfo *Id, CXXRecordDecl* PrevDecl=0,
664                                bool DelayTypeCreation = false);
665   static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
666                                      TypeSourceInfo *Info, SourceLocation Loc,
667                                      bool DependentLambda);
668   static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
669 
isDynamicClass()670   bool isDynamicClass() const {
671     return data().Polymorphic || data().NumVBases != 0;
672   }
673 
674   /// \brief Sets the base classes of this struct or class.
675   void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
676 
677   /// \brief Retrieves the number of base classes of this class.
getNumBases()678   unsigned getNumBases() const { return data().NumBases; }
679 
bases_begin()680   base_class_iterator bases_begin() { return data().getBases(); }
bases_begin()681   base_class_const_iterator bases_begin() const { return data().getBases(); }
bases_end()682   base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
bases_end()683   base_class_const_iterator bases_end() const {
684     return bases_begin() + data().NumBases;
685   }
bases_rbegin()686   reverse_base_class_iterator       bases_rbegin() {
687     return reverse_base_class_iterator(bases_end());
688   }
bases_rbegin()689   reverse_base_class_const_iterator bases_rbegin() const {
690     return reverse_base_class_const_iterator(bases_end());
691   }
bases_rend()692   reverse_base_class_iterator bases_rend() {
693     return reverse_base_class_iterator(bases_begin());
694   }
bases_rend()695   reverse_base_class_const_iterator bases_rend() const {
696     return reverse_base_class_const_iterator(bases_begin());
697   }
698 
699   /// \brief Retrieves the number of virtual base classes of this class.
getNumVBases()700   unsigned getNumVBases() const { return data().NumVBases; }
701 
vbases_begin()702   base_class_iterator vbases_begin() { return data().getVBases(); }
vbases_begin()703   base_class_const_iterator vbases_begin() const { return data().getVBases(); }
vbases_end()704   base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
vbases_end()705   base_class_const_iterator vbases_end() const {
706     return vbases_begin() + data().NumVBases;
707   }
vbases_rbegin()708   reverse_base_class_iterator vbases_rbegin() {
709     return reverse_base_class_iterator(vbases_end());
710   }
vbases_rbegin()711   reverse_base_class_const_iterator vbases_rbegin() const {
712     return reverse_base_class_const_iterator(vbases_end());
713   }
vbases_rend()714   reverse_base_class_iterator vbases_rend() {
715     return reverse_base_class_iterator(vbases_begin());
716   }
vbases_rend()717   reverse_base_class_const_iterator vbases_rend() const {
718     return reverse_base_class_const_iterator(vbases_begin());
719  }
720 
721   /// \brief Determine whether this class has any dependent base classes which
722   /// are not the current instantiation.
723   bool hasAnyDependentBases() const;
724 
725   /// Iterator access to method members.  The method iterator visits
726   /// all method members of the class, including non-instance methods,
727   /// special methods, etc.
728   typedef specific_decl_iterator<CXXMethodDecl> method_iterator;
729 
730   /// \brief Method begin iterator.  Iterates in the order the methods
731   /// were declared.
method_begin()732   method_iterator method_begin() const {
733     return method_iterator(decls_begin());
734   }
735   /// \brief Method past-the-end iterator.
method_end()736   method_iterator method_end() const {
737     return method_iterator(decls_end());
738   }
739 
740   /// Iterator access to constructor members.
741   typedef specific_decl_iterator<CXXConstructorDecl> ctor_iterator;
742 
ctor_begin()743   ctor_iterator ctor_begin() const {
744     return ctor_iterator(decls_begin());
745   }
ctor_end()746   ctor_iterator ctor_end() const {
747     return ctor_iterator(decls_end());
748   }
749 
750   /// An iterator over friend declarations.  All of these are defined
751   /// in DeclFriend.h.
752   class friend_iterator;
753   friend_iterator friend_begin() const;
754   friend_iterator friend_end() const;
755   void pushFriendDecl(FriendDecl *FD);
756 
757   /// Determines whether this record has any friends.
hasFriends()758   bool hasFriends() const {
759     return data().FirstFriend.isValid();
760   }
761 
762   /// \brief \c true if we know for sure that this class has a single,
763   /// accessible, unambiguous move constructor that is not deleted.
hasSimpleMoveConstructor()764   bool hasSimpleMoveConstructor() const {
765     return !hasUserDeclaredMoveConstructor() && hasMoveConstructor();
766   }
767   /// \brief \c true if we know for sure that this class has a single,
768   /// accessible, unambiguous move assignment operator that is not deleted.
hasSimpleMoveAssignment()769   bool hasSimpleMoveAssignment() const {
770     return !hasUserDeclaredMoveAssignment() && hasMoveAssignment();
771   }
772   /// \brief \c true if we know for sure that this class has an accessible
773   /// destructor that is not deleted.
hasSimpleDestructor()774   bool hasSimpleDestructor() const {
775     return !hasUserDeclaredDestructor() &&
776            !data().DefaultedDestructorIsDeleted;
777   }
778 
779   /// \brief Determine whether this class has any default constructors.
hasDefaultConstructor()780   bool hasDefaultConstructor() const {
781     return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
782            needsImplicitDefaultConstructor();
783   }
784 
785   /// \brief Determine if we need to declare a default constructor for
786   /// this class.
787   ///
788   /// This value is used for lazy creation of default constructors.
needsImplicitDefaultConstructor()789   bool needsImplicitDefaultConstructor() const {
790     return !data().UserDeclaredConstructor &&
791            !(data().DeclaredSpecialMembers & SMF_DefaultConstructor);
792   }
793 
794   /// \brief Determine whether this class has any user-declared constructors.
795   ///
796   /// When true, a default constructor will not be implicitly declared.
hasUserDeclaredConstructor()797   bool hasUserDeclaredConstructor() const {
798     return data().UserDeclaredConstructor;
799   }
800 
801   /// \brief Whether this class has a user-provided default constructor
802   /// per C++11.
hasUserProvidedDefaultConstructor()803   bool hasUserProvidedDefaultConstructor() const {
804     return data().UserProvidedDefaultConstructor;
805   }
806 
807   /// \brief Determine whether this class has a user-declared copy constructor.
808   ///
809   /// When false, a copy constructor will be implicitly declared.
hasUserDeclaredCopyConstructor()810   bool hasUserDeclaredCopyConstructor() const {
811     return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
812   }
813 
814   /// \brief Determine whether this class needs an implicit copy
815   /// constructor to be lazily declared.
needsImplicitCopyConstructor()816   bool needsImplicitCopyConstructor() const {
817     return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
818   }
819 
820   /// \brief Determine whether we need to eagerly declare a defaulted copy
821   /// constructor for this class.
needsOverloadResolutionForCopyConstructor()822   bool needsOverloadResolutionForCopyConstructor() const {
823     return data().HasMutableFields;
824   }
825 
826   /// \brief Determine whether an implicit copy constructor for this type
827   /// would have a parameter with a const-qualified reference type.
implicitCopyConstructorHasConstParam()828   bool implicitCopyConstructorHasConstParam() const {
829     return data().ImplicitCopyConstructorHasConstParam;
830   }
831 
832   /// \brief Determine whether this class has a copy constructor with
833   /// a parameter type which is a reference to a const-qualified type.
hasCopyConstructorWithConstParam()834   bool hasCopyConstructorWithConstParam() const {
835     return data().HasDeclaredCopyConstructorWithConstParam ||
836            (needsImplicitCopyConstructor() &&
837             implicitCopyConstructorHasConstParam());
838   }
839 
840   /// \brief Whether this class has a user-declared move constructor or
841   /// assignment operator.
842   ///
843   /// When false, a move constructor and assignment operator may be
844   /// implicitly declared.
hasUserDeclaredMoveOperation()845   bool hasUserDeclaredMoveOperation() const {
846     return data().UserDeclaredSpecialMembers &
847              (SMF_MoveConstructor | SMF_MoveAssignment);
848   }
849 
850   /// \brief Determine whether this class has had a move constructor
851   /// declared by the user.
hasUserDeclaredMoveConstructor()852   bool hasUserDeclaredMoveConstructor() const {
853     return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
854   }
855 
856   /// \brief Determine whether this class has a move constructor.
hasMoveConstructor()857   bool hasMoveConstructor() const {
858     return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
859            needsImplicitMoveConstructor();
860   }
861 
862   /// \brief Determine whether implicit move constructor generation for this
863   /// class has failed before.
hasFailedImplicitMoveConstructor()864   bool hasFailedImplicitMoveConstructor() const {
865     return data().FailedImplicitMoveConstructor;
866   }
867 
868   /// \brief Set whether implicit move constructor generation for this class
869   /// has failed before.
870   void setFailedImplicitMoveConstructor(bool Failed = true) {
871     data().FailedImplicitMoveConstructor = Failed;
872   }
873 
874   /// \brief Determine whether this class should get an implicit move
875   /// constructor or if any existing special member function inhibits this.
needsImplicitMoveConstructor()876   bool needsImplicitMoveConstructor() const {
877     return !hasFailedImplicitMoveConstructor() &&
878            !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
879            !hasUserDeclaredCopyConstructor() &&
880            !hasUserDeclaredCopyAssignment() &&
881            !hasUserDeclaredMoveAssignment() &&
882            !hasUserDeclaredDestructor() &&
883            !data().DefaultedMoveConstructorIsDeleted;
884   }
885 
886   /// \brief Determine whether we need to eagerly declare a defaulted move
887   /// constructor for this class.
needsOverloadResolutionForMoveConstructor()888   bool needsOverloadResolutionForMoveConstructor() const {
889     return data().NeedOverloadResolutionForMoveConstructor;
890   }
891 
892   /// \brief Determine whether this class has a user-declared copy assignment
893   /// operator.
894   ///
895   /// When false, a copy assigment operator will be implicitly declared.
hasUserDeclaredCopyAssignment()896   bool hasUserDeclaredCopyAssignment() const {
897     return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
898   }
899 
900   /// \brief Determine whether this class needs an implicit copy
901   /// assignment operator to be lazily declared.
needsImplicitCopyAssignment()902   bool needsImplicitCopyAssignment() const {
903     return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
904   }
905 
906   /// \brief Determine whether we need to eagerly declare a defaulted copy
907   /// assignment operator for this class.
needsOverloadResolutionForCopyAssignment()908   bool needsOverloadResolutionForCopyAssignment() const {
909     return data().HasMutableFields;
910   }
911 
912   /// \brief Determine whether an implicit copy assignment operator for this
913   /// type would have a parameter with a const-qualified reference type.
implicitCopyAssignmentHasConstParam()914   bool implicitCopyAssignmentHasConstParam() const {
915     return data().ImplicitCopyAssignmentHasConstParam;
916   }
917 
918   /// \brief Determine whether this class has a copy assignment operator with
919   /// a parameter type which is a reference to a const-qualified type or is not
920   /// a reference.
hasCopyAssignmentWithConstParam()921   bool hasCopyAssignmentWithConstParam() const {
922     return data().HasDeclaredCopyAssignmentWithConstParam ||
923            (needsImplicitCopyAssignment() &&
924             implicitCopyAssignmentHasConstParam());
925   }
926 
927   /// \brief Determine whether this class has had a move assignment
928   /// declared by the user.
hasUserDeclaredMoveAssignment()929   bool hasUserDeclaredMoveAssignment() const {
930     return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
931   }
932 
933   /// \brief Determine whether this class has a move assignment operator.
hasMoveAssignment()934   bool hasMoveAssignment() const {
935     return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
936            needsImplicitMoveAssignment();
937   }
938 
939   /// \brief Determine whether implicit move assignment generation for this
940   /// class has failed before.
hasFailedImplicitMoveAssignment()941   bool hasFailedImplicitMoveAssignment() const {
942     return data().FailedImplicitMoveAssignment;
943   }
944 
945   /// \brief Set whether implicit move assignment generation for this class
946   /// has failed before.
947   void setFailedImplicitMoveAssignment(bool Failed = true) {
948     data().FailedImplicitMoveAssignment = Failed;
949   }
950 
951   /// \brief Determine whether this class should get an implicit move
952   /// assignment operator or if any existing special member function inhibits
953   /// this.
needsImplicitMoveAssignment()954   bool needsImplicitMoveAssignment() const {
955     return !hasFailedImplicitMoveAssignment() &&
956            !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
957            !hasUserDeclaredCopyConstructor() &&
958            !hasUserDeclaredCopyAssignment() &&
959            !hasUserDeclaredMoveConstructor() &&
960            !hasUserDeclaredDestructor() &&
961            !data().DefaultedMoveAssignmentIsDeleted;
962   }
963 
964   /// \brief Determine whether we need to eagerly declare a move assignment
965   /// operator for this class.
needsOverloadResolutionForMoveAssignment()966   bool needsOverloadResolutionForMoveAssignment() const {
967     return data().NeedOverloadResolutionForMoveAssignment;
968   }
969 
970   /// \brief Determine whether this class has a user-declared destructor.
971   ///
972   /// When false, a destructor will be implicitly declared.
hasUserDeclaredDestructor()973   bool hasUserDeclaredDestructor() const {
974     return data().UserDeclaredSpecialMembers & SMF_Destructor;
975   }
976 
977   /// \brief Determine whether this class needs an implicit destructor to
978   /// be lazily declared.
needsImplicitDestructor()979   bool needsImplicitDestructor() const {
980     return !(data().DeclaredSpecialMembers & SMF_Destructor);
981   }
982 
983   /// \brief Determine whether we need to eagerly declare a destructor for this
984   /// class.
needsOverloadResolutionForDestructor()985   bool needsOverloadResolutionForDestructor() const {
986     return data().NeedOverloadResolutionForDestructor;
987   }
988 
989   /// \brief Determine whether this class describes a lambda function object.
isLambda()990   bool isLambda() const { return hasDefinition() && data().IsLambda; }
991 
992   /// \brief For a closure type, retrieve the mapping from captured
993   /// variables and \c this to the non-static data members that store the
994   /// values or references of the captures.
995   ///
996   /// \param Captures Will be populated with the mapping from captured
997   /// variables to the corresponding fields.
998   ///
999   /// \param ThisCapture Will be set to the field declaration for the
1000   /// \c this capture.
1001   ///
1002   /// \note No entries will be added for init-captures, as they do not capture
1003   /// variables.
1004   void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1005                         FieldDecl *&ThisCapture) const;
1006 
1007   typedef const LambdaExpr::Capture* capture_const_iterator;
captures_begin()1008   capture_const_iterator captures_begin() const {
1009     return isLambda() ? getLambdaData().Captures : NULL;
1010   }
captures_end()1011   capture_const_iterator captures_end() const {
1012     return isLambda() ? captures_begin() + getLambdaData().NumCaptures : NULL;
1013   }
1014 
1015   typedef UnresolvedSetIterator conversion_iterator;
conversion_begin()1016   conversion_iterator conversion_begin() const {
1017     return data().Conversions.begin();
1018   }
conversion_end()1019   conversion_iterator conversion_end() const {
1020     return data().Conversions.end();
1021   }
1022 
1023   /// Removes a conversion function from this class.  The conversion
1024   /// function must currently be a member of this class.  Furthermore,
1025   /// this class must currently be in the process of being defined.
1026   void removeConversion(const NamedDecl *Old);
1027 
1028   /// \brief Get all conversion functions visible in current class,
1029   /// including conversion function templates.
1030   std::pair<conversion_iterator, conversion_iterator>
1031     getVisibleConversionFunctions();
1032 
1033   /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
1034   /// which is a class with no user-declared constructors, no private
1035   /// or protected non-static data members, no base classes, and no virtual
1036   /// functions (C++ [dcl.init.aggr]p1).
isAggregate()1037   bool isAggregate() const { return data().Aggregate; }
1038 
1039   /// \brief Whether this class has any in-class initializers
1040   /// for non-static data members.
hasInClassInitializer()1041   bool hasInClassInitializer() const { return data().HasInClassInitializer; }
1042 
1043   /// \brief Whether this class or any of its subobjects has any members of
1044   /// reference type which would make value-initialization ill-formed.
1045   ///
1046   /// Per C++03 [dcl.init]p5:
1047   ///  - if T is a non-union class type without a user-declared constructor,
1048   ///    then every non-static data member and base-class component of T is
1049   ///    value-initialized [...] A program that calls for [...]
1050   ///    value-initialization of an entity of reference type is ill-formed.
hasUninitializedReferenceMember()1051   bool hasUninitializedReferenceMember() const {
1052     return !isUnion() && !hasUserDeclaredConstructor() &&
1053            data().HasUninitializedReferenceMember;
1054   }
1055 
1056   /// \brief Whether this class is a POD-type (C++ [class]p4)
1057   ///
1058   /// For purposes of this function a class is POD if it is an aggregate
1059   /// that has no non-static non-POD data members, no reference data
1060   /// members, no user-defined copy assignment operator and no
1061   /// user-defined destructor.
1062   ///
1063   /// Note that this is the C++ TR1 definition of POD.
isPOD()1064   bool isPOD() const { return data().PlainOldData; }
1065 
1066   /// \brief True if this class is C-like, without C++-specific features, e.g.
1067   /// it contains only public fields, no bases, tag kind is not 'class', etc.
1068   bool isCLike() const;
1069 
1070   /// \brief Determine whether this is an empty class in the sense of
1071   /// (C++11 [meta.unary.prop]).
1072   ///
1073   /// A non-union class is empty iff it has a virtual function, virtual base,
1074   /// data member (other than 0-width bit-field) or inherits from a non-empty
1075   /// class.
1076   ///
1077   /// \note This does NOT include a check for union-ness.
isEmpty()1078   bool isEmpty() const { return data().Empty; }
1079 
1080   /// Whether this class is polymorphic (C++ [class.virtual]),
1081   /// which means that the class contains or inherits a virtual function.
isPolymorphic()1082   bool isPolymorphic() const { return data().Polymorphic; }
1083 
1084   /// \brief Determine whether this class has a pure virtual function.
1085   ///
1086   /// The class is is abstract per (C++ [class.abstract]p2) if it declares
1087   /// a pure virtual function or inherits a pure virtual function that is
1088   /// not overridden.
isAbstract()1089   bool isAbstract() const { return data().Abstract; }
1090 
1091   /// \brief Determine whether this class has standard layout per
1092   /// (C++ [class]p7)
isStandardLayout()1093   bool isStandardLayout() const { return data().IsStandardLayout; }
1094 
1095   /// \brief Determine whether this class, or any of its class subobjects,
1096   /// contains a mutable field.
hasMutableFields()1097   bool hasMutableFields() const { return data().HasMutableFields; }
1098 
1099   /// \brief Determine whether this class has a trivial default constructor
1100   /// (C++11 [class.ctor]p5).
hasTrivialDefaultConstructor()1101   bool hasTrivialDefaultConstructor() const {
1102     return hasDefaultConstructor() &&
1103            (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
1104   }
1105 
1106   /// \brief Determine whether this class has a non-trivial default constructor
1107   /// (C++11 [class.ctor]p5).
hasNonTrivialDefaultConstructor()1108   bool hasNonTrivialDefaultConstructor() const {
1109     return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
1110            (needsImplicitDefaultConstructor() &&
1111             !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
1112   }
1113 
1114   /// \brief Determine whether this class has at least one constexpr constructor
1115   /// other than the copy or move constructors.
hasConstexprNonCopyMoveConstructor()1116   bool hasConstexprNonCopyMoveConstructor() const {
1117     return data().HasConstexprNonCopyMoveConstructor ||
1118            (needsImplicitDefaultConstructor() &&
1119             defaultedDefaultConstructorIsConstexpr());
1120   }
1121 
1122   /// \brief Determine whether a defaulted default constructor for this class
1123   /// would be constexpr.
defaultedDefaultConstructorIsConstexpr()1124   bool defaultedDefaultConstructorIsConstexpr() const {
1125     return data().DefaultedDefaultConstructorIsConstexpr &&
1126            (!isUnion() || hasInClassInitializer());
1127   }
1128 
1129   /// \brief Determine whether this class has a constexpr default constructor.
hasConstexprDefaultConstructor()1130   bool hasConstexprDefaultConstructor() const {
1131     return data().HasConstexprDefaultConstructor ||
1132            (needsImplicitDefaultConstructor() &&
1133             defaultedDefaultConstructorIsConstexpr());
1134   }
1135 
1136   /// \brief Determine whether this class has a trivial copy constructor
1137   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
hasTrivialCopyConstructor()1138   bool hasTrivialCopyConstructor() const {
1139     return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
1140   }
1141 
1142   /// \brief Determine whether this class has a non-trivial copy constructor
1143   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
hasNonTrivialCopyConstructor()1144   bool hasNonTrivialCopyConstructor() const {
1145     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
1146            !hasTrivialCopyConstructor();
1147   }
1148 
1149   /// \brief Determine whether this class has a trivial move constructor
1150   /// (C++11 [class.copy]p12)
hasTrivialMoveConstructor()1151   bool hasTrivialMoveConstructor() const {
1152     return hasMoveConstructor() &&
1153            (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
1154   }
1155 
1156   /// \brief Determine whether this class has a non-trivial move constructor
1157   /// (C++11 [class.copy]p12)
hasNonTrivialMoveConstructor()1158   bool hasNonTrivialMoveConstructor() const {
1159     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
1160            (needsImplicitMoveConstructor() &&
1161             !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
1162   }
1163 
1164   /// \brief Determine whether this class has a trivial copy assignment operator
1165   /// (C++ [class.copy]p11, C++11 [class.copy]p25)
hasTrivialCopyAssignment()1166   bool hasTrivialCopyAssignment() const {
1167     return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
1168   }
1169 
1170   /// \brief Determine whether this class has a non-trivial copy assignment
1171   /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
hasNonTrivialCopyAssignment()1172   bool hasNonTrivialCopyAssignment() const {
1173     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
1174            !hasTrivialCopyAssignment();
1175   }
1176 
1177   /// \brief Determine whether this class has a trivial move assignment operator
1178   /// (C++11 [class.copy]p25)
hasTrivialMoveAssignment()1179   bool hasTrivialMoveAssignment() const {
1180     return hasMoveAssignment() &&
1181            (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
1182   }
1183 
1184   /// \brief Determine whether this class has a non-trivial move assignment
1185   /// operator (C++11 [class.copy]p25)
hasNonTrivialMoveAssignment()1186   bool hasNonTrivialMoveAssignment() const {
1187     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
1188            (needsImplicitMoveAssignment() &&
1189             !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
1190   }
1191 
1192   /// \brief Determine whether this class has a trivial destructor
1193   /// (C++ [class.dtor]p3)
hasTrivialDestructor()1194   bool hasTrivialDestructor() const {
1195     return data().HasTrivialSpecialMembers & SMF_Destructor;
1196   }
1197 
1198   /// \brief Determine whether this class has a non-trivial destructor
1199   /// (C++ [class.dtor]p3)
hasNonTrivialDestructor()1200   bool hasNonTrivialDestructor() const {
1201     return !(data().HasTrivialSpecialMembers & SMF_Destructor);
1202   }
1203 
1204   /// \brief Determine whether this class has a destructor which has no
1205   /// semantic effect.
1206   ///
1207   /// Any such destructor will be trivial, public, defaulted and not deleted,
1208   /// and will call only irrelevant destructors.
hasIrrelevantDestructor()1209   bool hasIrrelevantDestructor() const {
1210     return data().HasIrrelevantDestructor;
1211   }
1212 
1213   /// \brief Determine whether this class has a non-literal or/ volatile type
1214   /// non-static data member or base class.
hasNonLiteralTypeFieldsOrBases()1215   bool hasNonLiteralTypeFieldsOrBases() const {
1216     return data().HasNonLiteralTypeFieldsOrBases;
1217   }
1218 
1219   /// \brief Determine whether this class is considered trivially copyable per
1220   /// (C++11 [class]p6).
1221   bool isTriviallyCopyable() const;
1222 
1223   /// \brief Determine whether this class is considered trivial.
1224   ///
1225   /// C++11 [class]p6:
1226   ///    "A trivial class is a class that has a trivial default constructor and
1227   ///    is trivially copiable."
isTrivial()1228   bool isTrivial() const {
1229     return isTriviallyCopyable() && hasTrivialDefaultConstructor();
1230   }
1231 
1232   /// \brief Determine whether this class is a literal type.
1233   ///
1234   /// C++11 [basic.types]p10:
1235   ///   A class type that has all the following properties:
1236   ///     - it has a trivial destructor
1237   ///     - every constructor call and full-expression in the
1238   ///       brace-or-equal-intializers for non-static data members (if any) is
1239   ///       a constant expression.
1240   ///     - it is an aggregate type or has at least one constexpr constructor
1241   ///       or constructor template that is not a copy or move constructor, and
1242   ///     - all of its non-static data members and base classes are of literal
1243   ///       types
1244   ///
1245   /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
1246   /// treating types with trivial default constructors as literal types.
isLiteral()1247   bool isLiteral() const {
1248     return hasTrivialDestructor() &&
1249            (isAggregate() || hasConstexprNonCopyMoveConstructor() ||
1250             hasTrivialDefaultConstructor()) &&
1251            !hasNonLiteralTypeFieldsOrBases();
1252   }
1253 
1254   /// \brief If this record is an instantiation of a member class,
1255   /// retrieves the member class from which it was instantiated.
1256   ///
1257   /// This routine will return non-null for (non-templated) member
1258   /// classes of class templates. For example, given:
1259   ///
1260   /// \code
1261   /// template<typename T>
1262   /// struct X {
1263   ///   struct A { };
1264   /// };
1265   /// \endcode
1266   ///
1267   /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
1268   /// whose parent is the class template specialization X<int>. For
1269   /// this declaration, getInstantiatedFromMemberClass() will return
1270   /// the CXXRecordDecl X<T>::A. When a complete definition of
1271   /// X<int>::A is required, it will be instantiated from the
1272   /// declaration returned by getInstantiatedFromMemberClass().
1273   CXXRecordDecl *getInstantiatedFromMemberClass() const;
1274 
1275   /// \brief If this class is an instantiation of a member class of a
1276   /// class template specialization, retrieves the member specialization
1277   /// information.
getMemberSpecializationInfo()1278   MemberSpecializationInfo *getMemberSpecializationInfo() const {
1279     return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1280   }
1281 
1282   /// \brief Specify that this record is an instantiation of the
1283   /// member class \p RD.
1284   void setInstantiationOfMemberClass(CXXRecordDecl *RD,
1285                                      TemplateSpecializationKind TSK);
1286 
1287   /// \brief Retrieves the class template that is described by this
1288   /// class declaration.
1289   ///
1290   /// Every class template is represented as a ClassTemplateDecl and a
1291   /// CXXRecordDecl. The former contains template properties (such as
1292   /// the template parameter lists) while the latter contains the
1293   /// actual description of the template's
1294   /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
1295   /// CXXRecordDecl that from a ClassTemplateDecl, while
1296   /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
1297   /// a CXXRecordDecl.
getDescribedClassTemplate()1298   ClassTemplateDecl *getDescribedClassTemplate() const {
1299     return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl*>();
1300   }
1301 
setDescribedClassTemplate(ClassTemplateDecl * Template)1302   void setDescribedClassTemplate(ClassTemplateDecl *Template) {
1303     TemplateOrInstantiation = Template;
1304   }
1305 
1306   /// \brief Determine whether this particular class is a specialization or
1307   /// instantiation of a class template or member class of a class template,
1308   /// and how it was instantiated or specialized.
1309   TemplateSpecializationKind getTemplateSpecializationKind() const;
1310 
1311   /// \brief Set the kind of specialization or template instantiation this is.
1312   void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
1313 
1314   /// \brief Returns the destructor decl for this class.
1315   CXXDestructorDecl *getDestructor() const;
1316 
1317   /// \brief If the class is a local class [class.local], returns
1318   /// the enclosing function declaration.
isLocalClass()1319   const FunctionDecl *isLocalClass() const {
1320     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
1321       return RD->isLocalClass();
1322 
1323     return dyn_cast<FunctionDecl>(getDeclContext());
1324   }
1325 
1326   /// \brief Determine whether this dependent class is a current instantiation,
1327   /// when viewed from within the given context.
1328   bool isCurrentInstantiation(const DeclContext *CurContext) const;
1329 
1330   /// \brief Determine whether this class is derived from the class \p Base.
1331   ///
1332   /// This routine only determines whether this class is derived from \p Base,
1333   /// but does not account for factors that may make a Derived -> Base class
1334   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1335   /// base class subobjects.
1336   ///
1337   /// \param Base the base class we are searching for.
1338   ///
1339   /// \returns true if this class is derived from Base, false otherwise.
1340   bool isDerivedFrom(const CXXRecordDecl *Base) const;
1341 
1342   /// \brief Determine whether this class is derived from the type \p Base.
1343   ///
1344   /// This routine only determines whether this class is derived from \p Base,
1345   /// but does not account for factors that may make a Derived -> Base class
1346   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1347   /// base class subobjects.
1348   ///
1349   /// \param Base the base class we are searching for.
1350   ///
1351   /// \param Paths will contain the paths taken from the current class to the
1352   /// given \p Base class.
1353   ///
1354   /// \returns true if this class is derived from \p Base, false otherwise.
1355   ///
1356   /// \todo add a separate paramaeter to configure IsDerivedFrom, rather than
1357   /// tangling input and output in \p Paths
1358   bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
1359 
1360   /// \brief Determine whether this class is virtually derived from
1361   /// the class \p Base.
1362   ///
1363   /// This routine only determines whether this class is virtually
1364   /// derived from \p Base, but does not account for factors that may
1365   /// make a Derived -> Base class ill-formed, such as
1366   /// private/protected inheritance or multiple, ambiguous base class
1367   /// subobjects.
1368   ///
1369   /// \param Base the base class we are searching for.
1370   ///
1371   /// \returns true if this class is virtually derived from Base,
1372   /// false otherwise.
1373   bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
1374 
1375   /// \brief Determine whether this class is provably not derived from
1376   /// the type \p Base.
1377   bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
1378 
1379   /// \brief Function type used by forallBases() as a callback.
1380   ///
1381   /// \param BaseDefinition the definition of the base class
1382   ///
1383   /// \returns true if this base matched the search criteria
1384   typedef bool ForallBasesCallback(const CXXRecordDecl *BaseDefinition,
1385                                    void *UserData);
1386 
1387   /// \brief Determines if the given callback holds for all the direct
1388   /// or indirect base classes of this type.
1389   ///
1390   /// The class itself does not count as a base class.  This routine
1391   /// returns false if the class has non-computable base classes.
1392   ///
1393   /// \param BaseMatches Callback invoked for each (direct or indirect) base
1394   /// class of this type, or if \p AllowShortCircut is true then until a call
1395   /// returns false.
1396   ///
1397   /// \param UserData Passed as the second argument of every call to
1398   /// \p BaseMatches.
1399   ///
1400   /// \param AllowShortCircuit if false, forces the callback to be called
1401   /// for every base class, even if a dependent or non-matching base was
1402   /// found.
1403   bool forallBases(ForallBasesCallback *BaseMatches, void *UserData,
1404                    bool AllowShortCircuit = true) const;
1405 
1406   /// \brief Function type used by lookupInBases() to determine whether a
1407   /// specific base class subobject matches the lookup criteria.
1408   ///
1409   /// \param Specifier the base-class specifier that describes the inheritance
1410   /// from the base class we are trying to match.
1411   ///
1412   /// \param Path the current path, from the most-derived class down to the
1413   /// base named by the \p Specifier.
1414   ///
1415   /// \param UserData a single pointer to user-specified data, provided to
1416   /// lookupInBases().
1417   ///
1418   /// \returns true if this base matched the search criteria, false otherwise.
1419   typedef bool BaseMatchesCallback(const CXXBaseSpecifier *Specifier,
1420                                    CXXBasePath &Path,
1421                                    void *UserData);
1422 
1423   /// \brief Look for entities within the base classes of this C++ class,
1424   /// transitively searching all base class subobjects.
1425   ///
1426   /// This routine uses the callback function \p BaseMatches to find base
1427   /// classes meeting some search criteria, walking all base class subobjects
1428   /// and populating the given \p Paths structure with the paths through the
1429   /// inheritance hierarchy that resulted in a match. On a successful search,
1430   /// the \p Paths structure can be queried to retrieve the matching paths and
1431   /// to determine if there were any ambiguities.
1432   ///
1433   /// \param BaseMatches callback function used to determine whether a given
1434   /// base matches the user-defined search criteria.
1435   ///
1436   /// \param UserData user data pointer that will be provided to \p BaseMatches.
1437   ///
1438   /// \param Paths used to record the paths from this class to its base class
1439   /// subobjects that match the search criteria.
1440   ///
1441   /// \returns true if there exists any path from this class to a base class
1442   /// subobject that matches the search criteria.
1443   bool lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData,
1444                      CXXBasePaths &Paths) const;
1445 
1446   /// \brief Base-class lookup callback that determines whether the given
1447   /// base class specifier refers to a specific class declaration.
1448   ///
1449   /// This callback can be used with \c lookupInBases() to determine whether
1450   /// a given derived class has is a base class subobject of a particular type.
1451   /// The user data pointer should refer to the canonical CXXRecordDecl of the
1452   /// base class that we are searching for.
1453   static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
1454                             CXXBasePath &Path, void *BaseRecord);
1455 
1456   /// \brief Base-class lookup callback that determines whether the
1457   /// given base class specifier refers to a specific class
1458   /// declaration and describes virtual derivation.
1459   ///
1460   /// This callback can be used with \c lookupInBases() to determine
1461   /// whether a given derived class has is a virtual base class
1462   /// subobject of a particular type.  The user data pointer should
1463   /// refer to the canonical CXXRecordDecl of the base class that we
1464   /// are searching for.
1465   static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
1466                                    CXXBasePath &Path, void *BaseRecord);
1467 
1468   /// \brief Base-class lookup callback that determines whether there exists
1469   /// a tag with the given name.
1470   ///
1471   /// This callback can be used with \c lookupInBases() to find tag members
1472   /// of the given name within a C++ class hierarchy. The user data pointer
1473   /// is an opaque \c DeclarationName pointer.
1474   static bool FindTagMember(const CXXBaseSpecifier *Specifier,
1475                             CXXBasePath &Path, void *Name);
1476 
1477   /// \brief Base-class lookup callback that determines whether there exists
1478   /// a member with the given name.
1479   ///
1480   /// This callback can be used with \c lookupInBases() to find members
1481   /// of the given name within a C++ class hierarchy. The user data pointer
1482   /// is an opaque \c DeclarationName pointer.
1483   static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
1484                                  CXXBasePath &Path, void *Name);
1485 
1486   /// \brief Base-class lookup callback that determines whether there exists
1487   /// a member with the given name that can be used in a nested-name-specifier.
1488   ///
1489   /// This callback can be used with \c lookupInBases() to find membes of
1490   /// the given name within a C++ class hierarchy that can occur within
1491   /// nested-name-specifiers.
1492   static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
1493                                             CXXBasePath &Path,
1494                                             void *UserData);
1495 
1496   /// \brief Retrieve the final overriders for each virtual member
1497   /// function in the class hierarchy where this class is the
1498   /// most-derived class in the class hierarchy.
1499   void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
1500 
1501   /// \brief Get the indirect primary bases for this class.
1502   void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
1503 
1504   /// Renders and displays an inheritance diagram
1505   /// for this C++ class and all of its base classes (transitively) using
1506   /// GraphViz.
1507   void viewInheritance(ASTContext& Context) const;
1508 
1509   /// \brief Calculates the access of a decl that is reached
1510   /// along a path.
MergeAccess(AccessSpecifier PathAccess,AccessSpecifier DeclAccess)1511   static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
1512                                      AccessSpecifier DeclAccess) {
1513     assert(DeclAccess != AS_none);
1514     if (DeclAccess == AS_private) return AS_none;
1515     return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
1516   }
1517 
1518   /// \brief Indicates that the declaration of a defaulted or deleted special
1519   /// member function is now complete.
1520   void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
1521 
1522   /// \brief Indicates that the definition of this class is now complete.
1523   virtual void completeDefinition();
1524 
1525   /// \brief Indicates that the definition of this class is now complete,
1526   /// and provides a final overrider map to help determine
1527   ///
1528   /// \param FinalOverriders The final overrider map for this class, which can
1529   /// be provided as an optimization for abstract-class checking. If NULL,
1530   /// final overriders will be computed if they are needed to complete the
1531   /// definition.
1532   void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
1533 
1534   /// \brief Determine whether this class may end up being abstract, even though
1535   /// it is not yet known to be abstract.
1536   ///
1537   /// \returns true if this class is not known to be abstract but has any
1538   /// base classes that are abstract. In this case, \c completeDefinition()
1539   /// will need to compute final overriders to determine whether the class is
1540   /// actually abstract.
1541   bool mayBeAbstract() const;
1542 
1543   /// \brief If this is the closure type of a lambda expression, retrieve the
1544   /// number to be used for name mangling in the Itanium C++ ABI.
1545   ///
1546   /// Zero indicates that this closure type has internal linkage, so the
1547   /// mangling number does not matter, while a non-zero value indicates which
1548   /// lambda expression this is in this particular context.
getLambdaManglingNumber()1549   unsigned getLambdaManglingNumber() const {
1550     assert(isLambda() && "Not a lambda closure type!");
1551     return getLambdaData().ManglingNumber;
1552   }
1553 
1554   /// \brief Retrieve the declaration that provides additional context for a
1555   /// lambda, when the normal declaration context is not specific enough.
1556   ///
1557   /// Certain contexts (default arguments of in-class function parameters and
1558   /// the initializers of data members) have separate name mangling rules for
1559   /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
1560   /// the declaration in which the lambda occurs, e.g., the function parameter
1561   /// or the non-static data member. Otherwise, it returns NULL to imply that
1562   /// the declaration context suffices.
getLambdaContextDecl()1563   Decl *getLambdaContextDecl() const {
1564     assert(isLambda() && "Not a lambda closure type!");
1565     return getLambdaData().ContextDecl;
1566   }
1567 
1568   /// \brief Set the mangling number and context declaration for a lambda
1569   /// class.
setLambdaMangling(unsigned ManglingNumber,Decl * ContextDecl)1570   void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) {
1571     getLambdaData().ManglingNumber = ManglingNumber;
1572     getLambdaData().ContextDecl = ContextDecl;
1573   }
1574 
1575   /// \brief Returns the inheritance model used for this record.
1576   MSInheritanceModel getMSInheritanceModel() const;
1577 
1578   /// \brief Determine whether this lambda expression was known to be dependent
1579   /// at the time it was created, even if its context does not appear to be
1580   /// dependent.
1581   ///
1582   /// This flag is a workaround for an issue with parsing, where default
1583   /// arguments are parsed before their enclosing function declarations have
1584   /// been created. This means that any lambda expressions within those
1585   /// default arguments will have as their DeclContext the context enclosing
1586   /// the function declaration, which may be non-dependent even when the
1587   /// function declaration itself is dependent. This flag indicates when we
1588   /// know that the lambda is dependent despite that.
isDependentLambda()1589   bool isDependentLambda() const {
1590     return isLambda() && getLambdaData().Dependent;
1591   }
1592 
getLambdaTypeInfo()1593   TypeSourceInfo *getLambdaTypeInfo() const {
1594     return getLambdaData().MethodTyInfo;
1595   }
1596 
classof(const Decl * D)1597   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1598   static bool classofKind(Kind K) {
1599     return K >= firstCXXRecord && K <= lastCXXRecord;
1600   }
1601 
1602   friend class ASTDeclReader;
1603   friend class ASTDeclWriter;
1604   friend class ASTReader;
1605   friend class ASTWriter;
1606 };
1607 
1608 /// \brief Represents a static or instance method of a struct/union/class.
1609 ///
1610 /// In the terminology of the C++ Standard, these are the (static and
1611 /// non-static) member functions, whether virtual or not.
1612 class CXXMethodDecl : public FunctionDecl {
1613   virtual void anchor();
1614 protected:
CXXMethodDecl(Kind DK,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInline,bool isConstexpr,SourceLocation EndLocation)1615   CXXMethodDecl(Kind DK, CXXRecordDecl *RD, SourceLocation StartLoc,
1616                 const DeclarationNameInfo &NameInfo,
1617                 QualType T, TypeSourceInfo *TInfo,
1618                 StorageClass SC, bool isInline,
1619                 bool isConstexpr, SourceLocation EndLocation)
1620     : FunctionDecl(DK, RD, StartLoc, NameInfo, T, TInfo,
1621                    SC, isInline, isConstexpr) {
1622     if (EndLocation.isValid())
1623       setRangeEnd(EndLocation);
1624   }
1625 
1626 public:
1627   static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
1628                                SourceLocation StartLoc,
1629                                const DeclarationNameInfo &NameInfo,
1630                                QualType T, TypeSourceInfo *TInfo,
1631                                StorageClass SC,
1632                                bool isInline,
1633                                bool isConstexpr,
1634                                SourceLocation EndLocation);
1635 
1636   static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1637 
1638   bool isStatic() const;
isInstance()1639   bool isInstance() const { return !isStatic(); }
1640 
isConst()1641   bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
isVolatile()1642   bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
1643 
isVirtual()1644   bool isVirtual() const {
1645     CXXMethodDecl *CD =
1646       cast<CXXMethodDecl>(const_cast<CXXMethodDecl*>(this)->getCanonicalDecl());
1647 
1648     // Methods declared in interfaces are automatically (pure) virtual.
1649     if (CD->isVirtualAsWritten() ||
1650           (CD->getParent()->isInterface() && CD->isUserProvided()))
1651       return true;
1652 
1653     return (CD->begin_overridden_methods() != CD->end_overridden_methods());
1654   }
1655 
1656   /// \brief Determine whether this is a usual deallocation function
1657   /// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded
1658   /// delete or delete[] operator with a particular signature.
1659   bool isUsualDeallocationFunction() const;
1660 
1661   /// \brief Determine whether this is a copy-assignment operator, regardless
1662   /// of whether it was declared implicitly or explicitly.
1663   bool isCopyAssignmentOperator() const;
1664 
1665   /// \brief Determine whether this is a move assignment operator.
1666   bool isMoveAssignmentOperator() const;
1667 
getCanonicalDecl()1668   const CXXMethodDecl *getCanonicalDecl() const {
1669     return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
1670   }
getCanonicalDecl()1671   CXXMethodDecl *getCanonicalDecl() {
1672     return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
1673   }
1674 
1675   /// True if this method is user-declared and was not
1676   /// deleted or defaulted on its first declaration.
isUserProvided()1677   bool isUserProvided() const {
1678     return !(isDeleted() || getCanonicalDecl()->isDefaulted());
1679   }
1680 
1681   ///
1682   void addOverriddenMethod(const CXXMethodDecl *MD);
1683 
1684   typedef const CXXMethodDecl *const* method_iterator;
1685 
1686   method_iterator begin_overridden_methods() const;
1687   method_iterator end_overridden_methods() const;
1688   unsigned size_overridden_methods() const;
1689 
1690   /// Returns the parent of this method declaration, which
1691   /// is the class in which this method is defined.
getParent()1692   const CXXRecordDecl *getParent() const {
1693     return cast<CXXRecordDecl>(FunctionDecl::getParent());
1694   }
1695 
1696   /// Returns the parent of this method declaration, which
1697   /// is the class in which this method is defined.
getParent()1698   CXXRecordDecl *getParent() {
1699     return const_cast<CXXRecordDecl *>(
1700              cast<CXXRecordDecl>(FunctionDecl::getParent()));
1701   }
1702 
1703   /// \brief Returns the type of the \c this pointer.
1704   ///
1705   /// Should only be called for instance (i.e., non-static) methods.
1706   QualType getThisType(ASTContext &C) const;
1707 
getTypeQualifiers()1708   unsigned getTypeQualifiers() const {
1709     return getType()->getAs<FunctionProtoType>()->getTypeQuals();
1710   }
1711 
1712   /// \brief Retrieve the ref-qualifier associated with this method.
1713   ///
1714   /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
1715   /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
1716   /// @code
1717   /// struct X {
1718   ///   void f() &;
1719   ///   void g() &&;
1720   ///   void h();
1721   /// };
1722   /// @endcode
getRefQualifier()1723   RefQualifierKind getRefQualifier() const {
1724     return getType()->getAs<FunctionProtoType>()->getRefQualifier();
1725   }
1726 
1727   bool hasInlineBody() const;
1728 
1729   /// \brief Determine whether this is a lambda closure type's static member
1730   /// function that is used for the result of the lambda's conversion to
1731   /// function pointer (for a lambda with no captures).
1732   ///
1733   /// The function itself, if used, will have a placeholder body that will be
1734   /// supplied by IR generation to either forward to the function call operator
1735   /// or clone the function call operator.
1736   bool isLambdaStaticInvoker() const;
1737 
1738   /// \brief Find the method in \p RD that corresponds to this one.
1739   ///
1740   /// Find if \p RD or one of the classes it inherits from override this method.
1741   /// If so, return it. \p RD is assumed to be a subclass of the class defining
1742   /// this method (or be the class itself), unless \p MayBeBase is set to true.
1743   CXXMethodDecl *
1744   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1745                                 bool MayBeBase = false);
1746 
1747   const CXXMethodDecl *
1748   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1749                                 bool MayBeBase = false) const {
1750     return const_cast<CXXMethodDecl *>(this)
1751               ->getCorrespondingMethodInClass(RD, MayBeBase);
1752   }
1753 
1754   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1755   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1756   static bool classofKind(Kind K) {
1757     return K >= firstCXXMethod && K <= lastCXXMethod;
1758   }
1759 };
1760 
1761 /// \brief Represents a C++ base or member initializer.
1762 ///
1763 /// This is part of a constructor initializer that
1764 /// initializes one non-static member variable or one base class. For
1765 /// example, in the following, both 'A(a)' and 'f(3.14159)' are member
1766 /// initializers:
1767 ///
1768 /// \code
1769 /// class A { };
1770 /// class B : public A {
1771 ///   float f;
1772 /// public:
1773 ///   B(A& a) : A(a), f(3.14159) { }
1774 /// };
1775 /// \endcode
1776 class CXXCtorInitializer {
1777   /// \brief Either the base class name/delegating constructor type (stored as
1778   /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
1779   /// (IndirectFieldDecl*) being initialized.
1780   llvm::PointerUnion3<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
1781     Initializee;
1782 
1783   /// \brief The source location for the field name or, for a base initializer
1784   /// pack expansion, the location of the ellipsis.
1785   ///
1786   /// In the case of a delegating
1787   /// constructor, it will still include the type's source location as the
1788   /// Initializee points to the CXXConstructorDecl (to allow loop detection).
1789   SourceLocation MemberOrEllipsisLocation;
1790 
1791   /// \brief The argument used to initialize the base or member, which may
1792   /// end up constructing an object (when multiple arguments are involved).
1793   Stmt *Init;
1794 
1795   /// \brief Location of the left paren of the ctor-initializer.
1796   SourceLocation LParenLoc;
1797 
1798   /// \brief Location of the right paren of the ctor-initializer.
1799   SourceLocation RParenLoc;
1800 
1801   /// \brief If the initializee is a type, whether that type makes this
1802   /// a delegating initialization.
1803   bool IsDelegating : 1;
1804 
1805   /// \brief If the initializer is a base initializer, this keeps track
1806   /// of whether the base is virtual or not.
1807   bool IsVirtual : 1;
1808 
1809   /// \brief Whether or not the initializer is explicitly written
1810   /// in the sources.
1811   bool IsWritten : 1;
1812 
1813   /// If IsWritten is true, then this number keeps track of the textual order
1814   /// of this initializer in the original sources, counting from 0; otherwise,
1815   /// it stores the number of array index variables stored after this object
1816   /// in memory.
1817   unsigned SourceOrderOrNumArrayIndices : 13;
1818 
1819   CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
1820                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
1821                      SourceLocation R, VarDecl **Indices, unsigned NumIndices);
1822 
1823 public:
1824   /// \brief Creates a new base-class initializer.
1825   explicit
1826   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
1827                      SourceLocation L, Expr *Init, SourceLocation R,
1828                      SourceLocation EllipsisLoc);
1829 
1830   /// \brief Creates a new member initializer.
1831   explicit
1832   CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
1833                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
1834                      SourceLocation R);
1835 
1836   /// \brief Creates a new anonymous field initializer.
1837   explicit
1838   CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
1839                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
1840                      SourceLocation R);
1841 
1842   /// \brief Creates a new delegating initializer.
1843   explicit
1844   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
1845                      SourceLocation L, Expr *Init, SourceLocation R);
1846 
1847   /// \brief Creates a new member initializer that optionally contains
1848   /// array indices used to describe an elementwise initialization.
1849   static CXXCtorInitializer *Create(ASTContext &Context, FieldDecl *Member,
1850                                     SourceLocation MemberLoc, SourceLocation L,
1851                                     Expr *Init, SourceLocation R,
1852                                     VarDecl **Indices, unsigned NumIndices);
1853 
1854   /// \brief Determine whether this initializer is initializing a base class.
isBaseInitializer()1855   bool isBaseInitializer() const {
1856     return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
1857   }
1858 
1859   /// \brief Determine whether this initializer is initializing a non-static
1860   /// data member.
isMemberInitializer()1861   bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
1862 
isAnyMemberInitializer()1863   bool isAnyMemberInitializer() const {
1864     return isMemberInitializer() || isIndirectMemberInitializer();
1865   }
1866 
isIndirectMemberInitializer()1867   bool isIndirectMemberInitializer() const {
1868     return Initializee.is<IndirectFieldDecl*>();
1869   }
1870 
1871   /// \brief Determine whether this initializer is an implicit initializer
1872   /// generated for a field with an initializer defined on the member
1873   /// declaration.
1874   ///
1875   /// In-class member initializers (also known as "non-static data member
1876   /// initializations", NSDMIs) were introduced in C++11.
isInClassMemberInitializer()1877   bool isInClassMemberInitializer() const {
1878     return isa<CXXDefaultInitExpr>(Init);
1879   }
1880 
1881   /// \brief Determine whether this initializer is creating a delegating
1882   /// constructor.
isDelegatingInitializer()1883   bool isDelegatingInitializer() const {
1884     return Initializee.is<TypeSourceInfo*>() && IsDelegating;
1885   }
1886 
1887   /// \brief Determine whether this initializer is a pack expansion.
isPackExpansion()1888   bool isPackExpansion() const {
1889     return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
1890   }
1891 
1892   // \brief For a pack expansion, returns the location of the ellipsis.
getEllipsisLoc()1893   SourceLocation getEllipsisLoc() const {
1894     assert(isPackExpansion() && "Initializer is not a pack expansion");
1895     return MemberOrEllipsisLocation;
1896   }
1897 
1898   /// If this is a base class initializer, returns the type of the
1899   /// base class with location information. Otherwise, returns an NULL
1900   /// type location.
1901   TypeLoc getBaseClassLoc() const;
1902 
1903   /// If this is a base class initializer, returns the type of the base class.
1904   /// Otherwise, returns null.
1905   const Type *getBaseClass() const;
1906 
1907   /// Returns whether the base is virtual or not.
isBaseVirtual()1908   bool isBaseVirtual() const {
1909     assert(isBaseInitializer() && "Must call this on base initializer!");
1910 
1911     return IsVirtual;
1912   }
1913 
1914   /// \brief Returns the declarator information for a base class or delegating
1915   /// initializer.
getTypeSourceInfo()1916   TypeSourceInfo *getTypeSourceInfo() const {
1917     return Initializee.dyn_cast<TypeSourceInfo *>();
1918   }
1919 
1920   /// \brief If this is a member initializer, returns the declaration of the
1921   /// non-static data member being initialized. Otherwise, returns null.
getMember()1922   FieldDecl *getMember() const {
1923     if (isMemberInitializer())
1924       return Initializee.get<FieldDecl*>();
1925     return 0;
1926   }
getAnyMember()1927   FieldDecl *getAnyMember() const {
1928     if (isMemberInitializer())
1929       return Initializee.get<FieldDecl*>();
1930     if (isIndirectMemberInitializer())
1931       return Initializee.get<IndirectFieldDecl*>()->getAnonField();
1932     return 0;
1933   }
1934 
getIndirectMember()1935   IndirectFieldDecl *getIndirectMember() const {
1936     if (isIndirectMemberInitializer())
1937       return Initializee.get<IndirectFieldDecl*>();
1938     return 0;
1939   }
1940 
getMemberLocation()1941   SourceLocation getMemberLocation() const {
1942     return MemberOrEllipsisLocation;
1943   }
1944 
1945   /// \brief Determine the source location of the initializer.
1946   SourceLocation getSourceLocation() const;
1947 
1948   /// \brief Determine the source range covering the entire initializer.
1949   SourceRange getSourceRange() const LLVM_READONLY;
1950 
1951   /// \brief Determine whether this initializer is explicitly written
1952   /// in the source code.
isWritten()1953   bool isWritten() const { return IsWritten; }
1954 
1955   /// \brief Return the source position of the initializer, counting from 0.
1956   /// If the initializer was implicit, -1 is returned.
getSourceOrder()1957   int getSourceOrder() const {
1958     return IsWritten ? static_cast<int>(SourceOrderOrNumArrayIndices) : -1;
1959   }
1960 
1961   /// \brief Set the source order of this initializer.
1962   ///
1963   /// This can only be called once for each initializer; it cannot be called
1964   /// on an initializer having a positive number of (implicit) array indices.
1965   ///
1966   /// This assumes that the initialzier was written in the source code, and
1967   /// ensures that isWritten() returns true.
setSourceOrder(int pos)1968   void setSourceOrder(int pos) {
1969     assert(!IsWritten &&
1970            "calling twice setSourceOrder() on the same initializer");
1971     assert(SourceOrderOrNumArrayIndices == 0 &&
1972            "setSourceOrder() used when there are implicit array indices");
1973     assert(pos >= 0 &&
1974            "setSourceOrder() used to make an initializer implicit");
1975     IsWritten = true;
1976     SourceOrderOrNumArrayIndices = static_cast<unsigned>(pos);
1977   }
1978 
getLParenLoc()1979   SourceLocation getLParenLoc() const { return LParenLoc; }
getRParenLoc()1980   SourceLocation getRParenLoc() const { return RParenLoc; }
1981 
1982   /// \brief Determine the number of implicit array indices used while
1983   /// described an array member initialization.
getNumArrayIndices()1984   unsigned getNumArrayIndices() const {
1985     return IsWritten ? 0 : SourceOrderOrNumArrayIndices;
1986   }
1987 
1988   /// \brief Retrieve a particular array index variable used to
1989   /// describe an array member initialization.
getArrayIndex(unsigned I)1990   VarDecl *getArrayIndex(unsigned I) {
1991     assert(I < getNumArrayIndices() && "Out of bounds member array index");
1992     return reinterpret_cast<VarDecl **>(this + 1)[I];
1993   }
getArrayIndex(unsigned I)1994   const VarDecl *getArrayIndex(unsigned I) const {
1995     assert(I < getNumArrayIndices() && "Out of bounds member array index");
1996     return reinterpret_cast<const VarDecl * const *>(this + 1)[I];
1997   }
setArrayIndex(unsigned I,VarDecl * Index)1998   void setArrayIndex(unsigned I, VarDecl *Index) {
1999     assert(I < getNumArrayIndices() && "Out of bounds member array index");
2000     reinterpret_cast<VarDecl **>(this + 1)[I] = Index;
2001   }
getArrayIndexes()2002   ArrayRef<VarDecl *> getArrayIndexes() {
2003     assert(getNumArrayIndices() != 0 && "Getting indexes for non-array init");
2004     return ArrayRef<VarDecl *>(reinterpret_cast<VarDecl **>(this + 1),
2005                                getNumArrayIndices());
2006   }
2007 
2008   /// \brief Get the initializer.
getInit()2009   Expr *getInit() const { return static_cast<Expr*>(Init); }
2010 };
2011 
2012 /// \brief Represents a C++ constructor within a class.
2013 ///
2014 /// For example:
2015 ///
2016 /// \code
2017 /// class X {
2018 /// public:
2019 ///   explicit X(int); // represented by a CXXConstructorDecl.
2020 /// };
2021 /// \endcode
2022 class CXXConstructorDecl : public CXXMethodDecl {
2023   virtual void anchor();
2024   /// \brief Whether this constructor declaration has the \c explicit keyword
2025   /// specified.
2026   bool IsExplicitSpecified : 1;
2027 
2028   /// \name Support for base and member initializers.
2029   /// \{
2030   /// \brief The arguments used to initialize the base or member.
2031   CXXCtorInitializer **CtorInitializers;
2032   unsigned NumCtorInitializers;
2033   /// \}
2034 
CXXConstructorDecl(CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isExplicitSpecified,bool isInline,bool isImplicitlyDeclared,bool isConstexpr)2035   CXXConstructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
2036                      const DeclarationNameInfo &NameInfo,
2037                      QualType T, TypeSourceInfo *TInfo,
2038                      bool isExplicitSpecified, bool isInline,
2039                      bool isImplicitlyDeclared, bool isConstexpr)
2040     : CXXMethodDecl(CXXConstructor, RD, StartLoc, NameInfo, T, TInfo,
2041                     SC_None, isInline, isConstexpr, SourceLocation()),
2042       IsExplicitSpecified(isExplicitSpecified), CtorInitializers(0),
2043       NumCtorInitializers(0) {
2044     setImplicit(isImplicitlyDeclared);
2045   }
2046 
2047 public:
2048   static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2049   static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2050                                     SourceLocation StartLoc,
2051                                     const DeclarationNameInfo &NameInfo,
2052                                     QualType T, TypeSourceInfo *TInfo,
2053                                     bool isExplicit,
2054                                     bool isInline, bool isImplicitlyDeclared,
2055                                     bool isConstexpr);
2056 
2057   /// \brief Determine whether this constructor declaration has the
2058   /// \c explicit keyword specified.
isExplicitSpecified()2059   bool isExplicitSpecified() const { return IsExplicitSpecified; }
2060 
2061   /// \brief Determine whether this constructor was marked "explicit" or not.
isExplicit()2062   bool isExplicit() const {
2063     return cast<CXXConstructorDecl>(getFirstDeclaration())
2064       ->isExplicitSpecified();
2065   }
2066 
2067   /// \brief Iterates through the member/base initializer list.
2068   typedef CXXCtorInitializer **init_iterator;
2069 
2070   /// \brief Iterates through the member/base initializer list.
2071   typedef CXXCtorInitializer * const * init_const_iterator;
2072 
2073   /// \brief Retrieve an iterator to the first initializer.
init_begin()2074   init_iterator       init_begin()       { return CtorInitializers; }
2075   /// \brief Retrieve an iterator to the first initializer.
init_begin()2076   init_const_iterator init_begin() const { return CtorInitializers; }
2077 
2078   /// \brief Retrieve an iterator past the last initializer.
init_end()2079   init_iterator       init_end()       {
2080     return CtorInitializers + NumCtorInitializers;
2081   }
2082   /// \brief Retrieve an iterator past the last initializer.
init_end()2083   init_const_iterator init_end() const {
2084     return CtorInitializers + NumCtorInitializers;
2085   }
2086 
2087   typedef std::reverse_iterator<init_iterator> init_reverse_iterator;
2088   typedef std::reverse_iterator<init_const_iterator>
2089           init_const_reverse_iterator;
2090 
init_rbegin()2091   init_reverse_iterator init_rbegin() {
2092     return init_reverse_iterator(init_end());
2093   }
init_rbegin()2094   init_const_reverse_iterator init_rbegin() const {
2095     return init_const_reverse_iterator(init_end());
2096   }
2097 
init_rend()2098   init_reverse_iterator init_rend() {
2099     return init_reverse_iterator(init_begin());
2100   }
init_rend()2101   init_const_reverse_iterator init_rend() const {
2102     return init_const_reverse_iterator(init_begin());
2103   }
2104 
2105   /// \brief Determine the number of arguments used to initialize the member
2106   /// or base.
getNumCtorInitializers()2107   unsigned getNumCtorInitializers() const {
2108       return NumCtorInitializers;
2109   }
2110 
setNumCtorInitializers(unsigned numCtorInitializers)2111   void setNumCtorInitializers(unsigned numCtorInitializers) {
2112     NumCtorInitializers = numCtorInitializers;
2113   }
2114 
setCtorInitializers(CXXCtorInitializer ** initializers)2115   void setCtorInitializers(CXXCtorInitializer ** initializers) {
2116     CtorInitializers = initializers;
2117   }
2118 
2119   /// \brief Determine whether this constructor is a delegating constructor.
isDelegatingConstructor()2120   bool isDelegatingConstructor() const {
2121     return (getNumCtorInitializers() == 1) &&
2122       CtorInitializers[0]->isDelegatingInitializer();
2123   }
2124 
2125   /// \brief When this constructor delegates to another, retrieve the target.
2126   CXXConstructorDecl *getTargetConstructor() const;
2127 
2128   /// Whether this constructor is a default
2129   /// constructor (C++ [class.ctor]p5), which can be used to
2130   /// default-initialize a class of this type.
2131   bool isDefaultConstructor() const;
2132 
2133   /// \brief Whether this constructor is a copy constructor (C++ [class.copy]p2,
2134   /// which can be used to copy the class.
2135   ///
2136   /// \p TypeQuals will be set to the qualifiers on the
2137   /// argument type. For example, \p TypeQuals would be set to \c
2138   /// Qualifiers::Const for the following copy constructor:
2139   ///
2140   /// \code
2141   /// class X {
2142   /// public:
2143   ///   X(const X&);
2144   /// };
2145   /// \endcode
2146   bool isCopyConstructor(unsigned &TypeQuals) const;
2147 
2148   /// Whether this constructor is a copy
2149   /// constructor (C++ [class.copy]p2, which can be used to copy the
2150   /// class.
isCopyConstructor()2151   bool isCopyConstructor() const {
2152     unsigned TypeQuals = 0;
2153     return isCopyConstructor(TypeQuals);
2154   }
2155 
2156   /// \brief Determine whether this constructor is a move constructor
2157   /// (C++0x [class.copy]p3), which can be used to move values of the class.
2158   ///
2159   /// \param TypeQuals If this constructor is a move constructor, will be set
2160   /// to the type qualifiers on the referent of the first parameter's type.
2161   bool isMoveConstructor(unsigned &TypeQuals) const;
2162 
2163   /// \brief Determine whether this constructor is a move constructor
2164   /// (C++0x [class.copy]p3), which can be used to move values of the class.
isMoveConstructor()2165   bool isMoveConstructor() const {
2166     unsigned TypeQuals = 0;
2167     return isMoveConstructor(TypeQuals);
2168   }
2169 
2170   /// \brief Determine whether this is a copy or move constructor.
2171   ///
2172   /// \param TypeQuals Will be set to the type qualifiers on the reference
2173   /// parameter, if in fact this is a copy or move constructor.
2174   bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
2175 
2176   /// \brief Determine whether this a copy or move constructor.
isCopyOrMoveConstructor()2177   bool isCopyOrMoveConstructor() const {
2178     unsigned Quals;
2179     return isCopyOrMoveConstructor(Quals);
2180   }
2181 
2182   /// Whether this constructor is a
2183   /// converting constructor (C++ [class.conv.ctor]), which can be
2184   /// used for user-defined conversions.
2185   bool isConvertingConstructor(bool AllowExplicit) const;
2186 
2187   /// \brief Determine whether this is a member template specialization that
2188   /// would copy the object to itself. Such constructors are never used to copy
2189   /// an object.
2190   bool isSpecializationCopyingObject() const;
2191 
2192   /// \brief Get the constructor that this inheriting constructor is based on.
2193   const CXXConstructorDecl *getInheritedConstructor() const;
2194 
2195   /// \brief Set the constructor that this inheriting constructor is based on.
2196   void setInheritedConstructor(const CXXConstructorDecl *BaseCtor);
2197 
getCanonicalDecl()2198   const CXXConstructorDecl *getCanonicalDecl() const {
2199     return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2200   }
getCanonicalDecl()2201   CXXConstructorDecl *getCanonicalDecl() {
2202     return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2203   }
2204 
2205   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2206   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2207   static bool classofKind(Kind K) { return K == CXXConstructor; }
2208 
2209   friend class ASTDeclReader;
2210   friend class ASTDeclWriter;
2211 };
2212 
2213 /// \brief Represents a C++ destructor within a class.
2214 ///
2215 /// For example:
2216 ///
2217 /// \code
2218 /// class X {
2219 /// public:
2220 ///   ~X(); // represented by a CXXDestructorDecl.
2221 /// };
2222 /// \endcode
2223 class CXXDestructorDecl : public CXXMethodDecl {
2224   virtual void anchor();
2225 
2226   FunctionDecl *OperatorDelete;
2227 
CXXDestructorDecl(CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isImplicitlyDeclared)2228   CXXDestructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
2229                     const DeclarationNameInfo &NameInfo,
2230                     QualType T, TypeSourceInfo *TInfo,
2231                     bool isInline, bool isImplicitlyDeclared)
2232     : CXXMethodDecl(CXXDestructor, RD, StartLoc, NameInfo, T, TInfo,
2233                     SC_None, isInline, /*isConstexpr=*/false, SourceLocation()),
2234       OperatorDelete(0) {
2235     setImplicit(isImplicitlyDeclared);
2236   }
2237 
2238 public:
2239   static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2240                                    SourceLocation StartLoc,
2241                                    const DeclarationNameInfo &NameInfo,
2242                                    QualType T, TypeSourceInfo* TInfo,
2243                                    bool isInline,
2244                                    bool isImplicitlyDeclared);
2245   static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
2246 
setOperatorDelete(FunctionDecl * OD)2247   void setOperatorDelete(FunctionDecl *OD) { OperatorDelete = OD; }
getOperatorDelete()2248   const FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
2249 
2250   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2251   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2252   static bool classofKind(Kind K) { return K == CXXDestructor; }
2253 
2254   friend class ASTDeclReader;
2255   friend class ASTDeclWriter;
2256 };
2257 
2258 /// \brief Represents a C++ conversion function within a class.
2259 ///
2260 /// For example:
2261 ///
2262 /// \code
2263 /// class X {
2264 /// public:
2265 ///   operator bool();
2266 /// };
2267 /// \endcode
2268 class CXXConversionDecl : public CXXMethodDecl {
2269   virtual void anchor();
2270   /// Whether this conversion function declaration is marked
2271   /// "explicit", meaning that it can only be applied when the user
2272   /// explicitly wrote a cast. This is a C++0x feature.
2273   bool IsExplicitSpecified : 1;
2274 
CXXConversionDecl(CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isExplicitSpecified,bool isConstexpr,SourceLocation EndLocation)2275   CXXConversionDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
2276                     const DeclarationNameInfo &NameInfo,
2277                     QualType T, TypeSourceInfo *TInfo,
2278                     bool isInline, bool isExplicitSpecified,
2279                     bool isConstexpr, SourceLocation EndLocation)
2280     : CXXMethodDecl(CXXConversion, RD, StartLoc, NameInfo, T, TInfo,
2281                     SC_None, isInline, isConstexpr, EndLocation),
2282       IsExplicitSpecified(isExplicitSpecified) { }
2283 
2284 public:
2285   static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2286                                    SourceLocation StartLoc,
2287                                    const DeclarationNameInfo &NameInfo,
2288                                    QualType T, TypeSourceInfo *TInfo,
2289                                    bool isInline, bool isExplicit,
2290                                    bool isConstexpr,
2291                                    SourceLocation EndLocation);
2292   static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2293 
2294   /// Whether this conversion function declaration is marked
2295   /// "explicit", meaning that it can only be used for direct initialization
2296   /// (including explitly written casts).  This is a C++11 feature.
isExplicitSpecified()2297   bool isExplicitSpecified() const { return IsExplicitSpecified; }
2298 
2299   /// \brief Whether this is an explicit conversion operator (C++11 and later).
2300   ///
2301   /// Explicit conversion operators are only considered for direct
2302   /// initialization, e.g., when the user has explicitly written a cast.
isExplicit()2303   bool isExplicit() const {
2304     return cast<CXXConversionDecl>(getFirstDeclaration())
2305       ->isExplicitSpecified();
2306   }
2307 
2308   /// \brief Returns the type that this conversion function is converting to.
getConversionType()2309   QualType getConversionType() const {
2310     return getType()->getAs<FunctionType>()->getResultType();
2311   }
2312 
2313   /// \brief Determine whether this conversion function is a conversion from
2314   /// a lambda closure type to a block pointer.
2315   bool isLambdaToBlockPointerConversion() const;
2316 
2317   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2318   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2319   static bool classofKind(Kind K) { return K == CXXConversion; }
2320 
2321   friend class ASTDeclReader;
2322   friend class ASTDeclWriter;
2323 };
2324 
2325 /// \brief Represents a linkage specification.
2326 ///
2327 /// For example:
2328 /// \code
2329 ///   extern "C" void foo();
2330 /// \endcode
2331 class LinkageSpecDecl : public Decl, public DeclContext {
2332   virtual void anchor();
2333 public:
2334   /// \brief Represents the language in a linkage specification.
2335   ///
2336   /// The values are part of the serialization ABI for
2337   /// ASTs and cannot be changed without altering that ABI.  To help
2338   /// ensure a stable ABI for this, we choose the DW_LANG_ encodings
2339   /// from the dwarf standard.
2340   enum LanguageIDs {
2341     lang_c = /* DW_LANG_C */ 0x0002,
2342     lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004
2343   };
2344 private:
2345   /// \brief The language for this linkage specification.
2346   unsigned Language : 3;
2347   /// \brief True if this linkage spec has braces.
2348   ///
2349   /// This is needed so that hasBraces() returns the correct result while the
2350   /// linkage spec body is being parsed.  Once RBraceLoc has been set this is
2351   /// not used, so it doesn't need to be serialized.
2352   unsigned HasBraces : 1;
2353   /// \brief The source location for the extern keyword.
2354   SourceLocation ExternLoc;
2355   /// \brief The source location for the right brace (if valid).
2356   SourceLocation RBraceLoc;
2357 
LinkageSpecDecl(DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs lang,bool HasBraces)2358   LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2359                   SourceLocation LangLoc, LanguageIDs lang, bool HasBraces)
2360     : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2361       Language(lang), HasBraces(HasBraces), ExternLoc(ExternLoc),
2362       RBraceLoc(SourceLocation()) { }
2363 
2364 public:
2365   static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
2366                                  SourceLocation ExternLoc,
2367                                  SourceLocation LangLoc, LanguageIDs Lang,
2368                                  bool HasBraces);
2369   static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2370 
2371   /// \brief Return the language specified by this linkage specification.
getLanguage()2372   LanguageIDs getLanguage() const { return LanguageIDs(Language); }
2373   /// \brief Set the language specified by this linkage specification.
setLanguage(LanguageIDs L)2374   void setLanguage(LanguageIDs L) { Language = L; }
2375 
2376   /// \brief Determines whether this linkage specification had braces in
2377   /// its syntactic form.
hasBraces()2378   bool hasBraces() const {
2379     assert(!RBraceLoc.isValid() || HasBraces);
2380     return HasBraces;
2381   }
2382 
getExternLoc()2383   SourceLocation getExternLoc() const { return ExternLoc; }
getRBraceLoc()2384   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setExternLoc(SourceLocation L)2385   void setExternLoc(SourceLocation L) { ExternLoc = L; }
setRBraceLoc(SourceLocation L)2386   void setRBraceLoc(SourceLocation L) {
2387     RBraceLoc = L;
2388     HasBraces = RBraceLoc.isValid();
2389   }
2390 
getLocEnd()2391   SourceLocation getLocEnd() const LLVM_READONLY {
2392     if (hasBraces())
2393       return getRBraceLoc();
2394     // No braces: get the end location of the (only) declaration in context
2395     // (if present).
2396     return decls_empty() ? getLocation() : decls_begin()->getLocEnd();
2397   }
2398 
getSourceRange()2399   SourceRange getSourceRange() const LLVM_READONLY {
2400     return SourceRange(ExternLoc, getLocEnd());
2401   }
2402 
classof(const Decl * D)2403   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2404   static bool classofKind(Kind K) { return K == LinkageSpec; }
castToDeclContext(const LinkageSpecDecl * D)2405   static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
2406     return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
2407   }
castFromDeclContext(const DeclContext * DC)2408   static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
2409     return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
2410   }
2411 };
2412 
2413 /// \brief Represents C++ using-directive.
2414 ///
2415 /// For example:
2416 /// \code
2417 ///    using namespace std;
2418 /// \endcode
2419 ///
2420 /// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
2421 /// artificial names for all using-directives in order to store
2422 /// them in DeclContext effectively.
2423 class UsingDirectiveDecl : public NamedDecl {
2424   virtual void anchor();
2425   /// \brief The location of the \c using keyword.
2426   SourceLocation UsingLoc;
2427 
2428   /// \brief The location of the \c namespace keyword.
2429   SourceLocation NamespaceLoc;
2430 
2431   /// \brief The nested-name-specifier that precedes the namespace.
2432   NestedNameSpecifierLoc QualifierLoc;
2433 
2434   /// \brief The namespace nominated by this using-directive.
2435   NamedDecl *NominatedNamespace;
2436 
2437   /// Enclosing context containing both using-directive and nominated
2438   /// namespace.
2439   DeclContext *CommonAncestor;
2440 
2441   /// \brief Returns special DeclarationName used by using-directives.
2442   ///
2443   /// This is only used by DeclContext for storing UsingDirectiveDecls in
2444   /// its lookup structure.
getName()2445   static DeclarationName getName() {
2446     return DeclarationName::getUsingDirectiveName();
2447   }
2448 
UsingDirectiveDecl(DeclContext * DC,SourceLocation UsingLoc,SourceLocation NamespcLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Nominated,DeclContext * CommonAncestor)2449   UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
2450                      SourceLocation NamespcLoc,
2451                      NestedNameSpecifierLoc QualifierLoc,
2452                      SourceLocation IdentLoc,
2453                      NamedDecl *Nominated,
2454                      DeclContext *CommonAncestor)
2455     : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
2456       NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
2457       NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { }
2458 
2459 public:
2460   /// \brief Retrieve the nested-name-specifier that qualifies the
2461   /// name of the namespace, with source-location information.
getQualifierLoc()2462   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2463 
2464   /// \brief Retrieve the nested-name-specifier that qualifies the
2465   /// name of the namespace.
getQualifier()2466   NestedNameSpecifier *getQualifier() const {
2467     return QualifierLoc.getNestedNameSpecifier();
2468   }
2469 
getNominatedNamespaceAsWritten()2470   NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
getNominatedNamespaceAsWritten()2471   const NamedDecl *getNominatedNamespaceAsWritten() const {
2472     return NominatedNamespace;
2473   }
2474 
2475   /// \brief Returns the namespace nominated by this using-directive.
2476   NamespaceDecl *getNominatedNamespace();
2477 
getNominatedNamespace()2478   const NamespaceDecl *getNominatedNamespace() const {
2479     return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
2480   }
2481 
2482   /// \brief Returns the common ancestor context of this using-directive and
2483   /// its nominated namespace.
getCommonAncestor()2484   DeclContext *getCommonAncestor() { return CommonAncestor; }
getCommonAncestor()2485   const DeclContext *getCommonAncestor() const { return CommonAncestor; }
2486 
2487   /// \brief Return the location of the \c using keyword.
getUsingLoc()2488   SourceLocation getUsingLoc() const { return UsingLoc; }
2489 
2490   // FIXME: Could omit 'Key' in name.
2491   /// \brief Returns the location of the \c namespace keyword.
getNamespaceKeyLocation()2492   SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
2493 
2494   /// \brief Returns the location of this using declaration's identifier.
getIdentLocation()2495   SourceLocation getIdentLocation() const { return getLocation(); }
2496 
2497   static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
2498                                     SourceLocation UsingLoc,
2499                                     SourceLocation NamespaceLoc,
2500                                     NestedNameSpecifierLoc QualifierLoc,
2501                                     SourceLocation IdentLoc,
2502                                     NamedDecl *Nominated,
2503                                     DeclContext *CommonAncestor);
2504   static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2505 
getSourceRange()2506   SourceRange getSourceRange() const LLVM_READONLY {
2507     return SourceRange(UsingLoc, getLocation());
2508   }
2509 
classof(const Decl * D)2510   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2511   static bool classofKind(Kind K) { return K == UsingDirective; }
2512 
2513   // Friend for getUsingDirectiveName.
2514   friend class DeclContext;
2515 
2516   friend class ASTDeclReader;
2517 };
2518 
2519 /// \brief Represents a C++ namespace alias.
2520 ///
2521 /// For example:
2522 ///
2523 /// \code
2524 /// namespace Foo = Bar;
2525 /// \endcode
2526 class NamespaceAliasDecl : public NamedDecl {
2527   virtual void anchor();
2528 
2529   /// \brief The location of the \c namespace keyword.
2530   SourceLocation NamespaceLoc;
2531 
2532   /// \brief The location of the namespace's identifier.
2533   ///
2534   /// This is accessed by TargetNameLoc.
2535   SourceLocation IdentLoc;
2536 
2537   /// \brief The nested-name-specifier that precedes the namespace.
2538   NestedNameSpecifierLoc QualifierLoc;
2539 
2540   /// \brief The Decl that this alias points to, either a NamespaceDecl or
2541   /// a NamespaceAliasDecl.
2542   NamedDecl *Namespace;
2543 
NamespaceAliasDecl(DeclContext * DC,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)2544   NamespaceAliasDecl(DeclContext *DC, SourceLocation NamespaceLoc,
2545                      SourceLocation AliasLoc, IdentifierInfo *Alias,
2546                      NestedNameSpecifierLoc QualifierLoc,
2547                      SourceLocation IdentLoc, NamedDecl *Namespace)
2548     : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias),
2549       NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
2550       QualifierLoc(QualifierLoc), Namespace(Namespace) { }
2551 
2552   friend class ASTDeclReader;
2553 
2554 public:
2555   /// \brief Retrieve the nested-name-specifier that qualifies the
2556   /// name of the namespace, with source-location information.
getQualifierLoc()2557   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2558 
2559   /// \brief Retrieve the nested-name-specifier that qualifies the
2560   /// name of the namespace.
getQualifier()2561   NestedNameSpecifier *getQualifier() const {
2562     return QualifierLoc.getNestedNameSpecifier();
2563   }
2564 
2565   /// \brief Retrieve the namespace declaration aliased by this directive.
getNamespace()2566   NamespaceDecl *getNamespace() {
2567     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
2568       return AD->getNamespace();
2569 
2570     return cast<NamespaceDecl>(Namespace);
2571   }
2572 
getNamespace()2573   const NamespaceDecl *getNamespace() const {
2574     return const_cast<NamespaceAliasDecl*>(this)->getNamespace();
2575   }
2576 
2577   /// Returns the location of the alias name, i.e. 'foo' in
2578   /// "namespace foo = ns::bar;".
getAliasLoc()2579   SourceLocation getAliasLoc() const { return getLocation(); }
2580 
2581   /// Returns the location of the \c namespace keyword.
getNamespaceLoc()2582   SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
2583 
2584   /// Returns the location of the identifier in the named namespace.
getTargetNameLoc()2585   SourceLocation getTargetNameLoc() const { return IdentLoc; }
2586 
2587   /// \brief Retrieve the namespace that this alias refers to, which
2588   /// may either be a NamespaceDecl or a NamespaceAliasDecl.
getAliasedNamespace()2589   NamedDecl *getAliasedNamespace() const { return Namespace; }
2590 
2591   static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
2592                                     SourceLocation NamespaceLoc,
2593                                     SourceLocation AliasLoc,
2594                                     IdentifierInfo *Alias,
2595                                     NestedNameSpecifierLoc QualifierLoc,
2596                                     SourceLocation IdentLoc,
2597                                     NamedDecl *Namespace);
2598 
2599   static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2600 
getSourceRange()2601   virtual SourceRange getSourceRange() const LLVM_READONLY {
2602     return SourceRange(NamespaceLoc, IdentLoc);
2603   }
2604 
classof(const Decl * D)2605   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2606   static bool classofKind(Kind K) { return K == NamespaceAlias; }
2607 };
2608 
2609 /// \brief Represents a shadow declaration introduced into a scope by a
2610 /// (resolved) using declaration.
2611 ///
2612 /// For example,
2613 /// \code
2614 /// namespace A {
2615 ///   void foo();
2616 /// }
2617 /// namespace B {
2618 ///   using A::foo; // <- a UsingDecl
2619 ///                 // Also creates a UsingShadowDecl for A::foo() in B
2620 /// }
2621 /// \endcode
2622 class UsingShadowDecl : public NamedDecl {
2623   virtual void anchor();
2624 
2625   /// The referenced declaration.
2626   NamedDecl *Underlying;
2627 
2628   /// \brief The using declaration which introduced this decl or the next using
2629   /// shadow declaration contained in the aforementioned using declaration.
2630   NamedDecl *UsingOrNextShadow;
2631   friend class UsingDecl;
2632 
UsingShadowDecl(DeclContext * DC,SourceLocation Loc,UsingDecl * Using,NamedDecl * Target)2633   UsingShadowDecl(DeclContext *DC, SourceLocation Loc, UsingDecl *Using,
2634                   NamedDecl *Target)
2635     : NamedDecl(UsingShadow, DC, Loc, DeclarationName()),
2636       Underlying(Target),
2637       UsingOrNextShadow(reinterpret_cast<NamedDecl *>(Using)) {
2638     if (Target) {
2639       setDeclName(Target->getDeclName());
2640       IdentifierNamespace = Target->getIdentifierNamespace();
2641     }
2642     setImplicit();
2643   }
2644 
2645 public:
Create(ASTContext & C,DeclContext * DC,SourceLocation Loc,UsingDecl * Using,NamedDecl * Target)2646   static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
2647                                  SourceLocation Loc, UsingDecl *Using,
2648                                  NamedDecl *Target) {
2649     return new (C) UsingShadowDecl(DC, Loc, Using, Target);
2650   }
2651 
2652   static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2653 
2654   /// \brief Gets the underlying declaration which has been brought into the
2655   /// local scope.
getTargetDecl()2656   NamedDecl *getTargetDecl() const { return Underlying; }
2657 
2658   /// \brief Sets the underlying declaration which has been brought into the
2659   /// local scope.
setTargetDecl(NamedDecl * ND)2660   void setTargetDecl(NamedDecl* ND) {
2661     assert(ND && "Target decl is null!");
2662     Underlying = ND;
2663     IdentifierNamespace = ND->getIdentifierNamespace();
2664   }
2665 
2666   /// \brief Gets the using declaration to which this declaration is tied.
2667   UsingDecl *getUsingDecl() const;
2668 
2669   /// \brief The next using shadow declaration contained in the shadow decl
2670   /// chain of the using declaration which introduced this decl.
getNextUsingShadowDecl()2671   UsingShadowDecl *getNextUsingShadowDecl() const {
2672     return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
2673   }
2674 
classof(const Decl * D)2675   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2676   static bool classofKind(Kind K) { return K == Decl::UsingShadow; }
2677 
2678   friend class ASTDeclReader;
2679   friend class ASTDeclWriter;
2680 };
2681 
2682 /// \brief Represents a C++ using-declaration.
2683 ///
2684 /// For example:
2685 /// \code
2686 ///    using someNameSpace::someIdentifier;
2687 /// \endcode
2688 class UsingDecl : public NamedDecl {
2689   virtual void anchor();
2690 
2691   /// \brief The source location of the 'using' keyword itself.
2692   SourceLocation UsingLocation;
2693 
2694   /// \brief The nested-name-specifier that precedes the name.
2695   NestedNameSpecifierLoc QualifierLoc;
2696 
2697   /// \brief Provides source/type location info for the declaration name
2698   /// embedded in the ValueDecl base class.
2699   DeclarationNameLoc DNLoc;
2700 
2701   /// \brief The first shadow declaration of the shadow decl chain associated
2702   /// with this using declaration.
2703   ///
2704   /// The bool member of the pair store whether this decl has the \c typename
2705   /// keyword.
2706   llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
2707 
UsingDecl(DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool HasTypenameKeyword)2708   UsingDecl(DeclContext *DC, SourceLocation UL,
2709             NestedNameSpecifierLoc QualifierLoc,
2710             const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
2711     : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
2712       UsingLocation(UL), QualifierLoc(QualifierLoc),
2713       DNLoc(NameInfo.getInfo()), FirstUsingShadow(0, HasTypenameKeyword) {
2714   }
2715 
2716 public:
2717   /// \brief Return the source location of the 'using' keyword.
getUsingLoc()2718   SourceLocation getUsingLoc() const { return UsingLocation; }
2719 
2720   /// \brief Set the source location of the 'using' keyword.
setUsingLoc(SourceLocation L)2721   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
2722 
2723   /// \brief Retrieve the nested-name-specifier that qualifies the name,
2724   /// with source-location information.
getQualifierLoc()2725   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2726 
2727   /// \brief Retrieve the nested-name-specifier that qualifies the name.
getQualifier()2728   NestedNameSpecifier *getQualifier() const {
2729     return QualifierLoc.getNestedNameSpecifier();
2730   }
2731 
getNameInfo()2732   DeclarationNameInfo getNameInfo() const {
2733     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2734   }
2735 
2736   /// \brief Return true if it is a C++03 access declaration (no 'using').
isAccessDeclaration()2737   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
2738 
2739   /// \brief Return true if the using declaration has 'typename'.
hasTypename()2740   bool hasTypename() const { return FirstUsingShadow.getInt(); }
2741 
2742   /// \brief Sets whether the using declaration has 'typename'.
setTypename(bool TN)2743   void setTypename(bool TN) { FirstUsingShadow.setInt(TN); }
2744 
2745   /// \brief Iterates through the using shadow declarations associated with
2746   /// this using declaration.
2747   class shadow_iterator {
2748     /// \brief The current using shadow declaration.
2749     UsingShadowDecl *Current;
2750 
2751   public:
2752     typedef UsingShadowDecl*          value_type;
2753     typedef UsingShadowDecl*          reference;
2754     typedef UsingShadowDecl*          pointer;
2755     typedef std::forward_iterator_tag iterator_category;
2756     typedef std::ptrdiff_t            difference_type;
2757 
shadow_iterator()2758     shadow_iterator() : Current(0) { }
shadow_iterator(UsingShadowDecl * C)2759     explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { }
2760 
2761     reference operator*() const { return Current; }
2762     pointer operator->() const { return Current; }
2763 
2764     shadow_iterator& operator++() {
2765       Current = Current->getNextUsingShadowDecl();
2766       return *this;
2767     }
2768 
2769     shadow_iterator operator++(int) {
2770       shadow_iterator tmp(*this);
2771       ++(*this);
2772       return tmp;
2773     }
2774 
2775     friend bool operator==(shadow_iterator x, shadow_iterator y) {
2776       return x.Current == y.Current;
2777     }
2778     friend bool operator!=(shadow_iterator x, shadow_iterator y) {
2779       return x.Current != y.Current;
2780     }
2781   };
2782 
shadow_begin()2783   shadow_iterator shadow_begin() const {
2784     return shadow_iterator(FirstUsingShadow.getPointer());
2785   }
shadow_end()2786   shadow_iterator shadow_end() const { return shadow_iterator(); }
2787 
2788   /// \brief Return the number of shadowed declarations associated with this
2789   /// using declaration.
shadow_size()2790   unsigned shadow_size() const {
2791     return std::distance(shadow_begin(), shadow_end());
2792   }
2793 
2794   void addShadowDecl(UsingShadowDecl *S);
2795   void removeShadowDecl(UsingShadowDecl *S);
2796 
2797   static UsingDecl *Create(ASTContext &C, DeclContext *DC,
2798                            SourceLocation UsingL,
2799                            NestedNameSpecifierLoc QualifierLoc,
2800                            const DeclarationNameInfo &NameInfo,
2801                            bool HasTypenameKeyword);
2802 
2803   static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2804 
2805   SourceRange getSourceRange() const LLVM_READONLY;
2806 
classof(const Decl * D)2807   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2808   static bool classofKind(Kind K) { return K == Using; }
2809 
2810   friend class ASTDeclReader;
2811   friend class ASTDeclWriter;
2812 };
2813 
2814 /// \brief Represents a dependent using declaration which was not marked with
2815 /// \c typename.
2816 ///
2817 /// Unlike non-dependent using declarations, these *only* bring through
2818 /// non-types; otherwise they would break two-phase lookup.
2819 ///
2820 /// \code
2821 /// template \<class T> class A : public Base<T> {
2822 ///   using Base<T>::foo;
2823 /// };
2824 /// \endcode
2825 class UnresolvedUsingValueDecl : public ValueDecl {
2826   virtual void anchor();
2827 
2828   /// \brief The source location of the 'using' keyword
2829   SourceLocation UsingLocation;
2830 
2831   /// \brief The nested-name-specifier that precedes the name.
2832   NestedNameSpecifierLoc QualifierLoc;
2833 
2834   /// \brief Provides source/type location info for the declaration name
2835   /// embedded in the ValueDecl base class.
2836   DeclarationNameLoc DNLoc;
2837 
UnresolvedUsingValueDecl(DeclContext * DC,QualType Ty,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo)2838   UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
2839                            SourceLocation UsingLoc,
2840                            NestedNameSpecifierLoc QualifierLoc,
2841                            const DeclarationNameInfo &NameInfo)
2842     : ValueDecl(UnresolvedUsingValue, DC,
2843                 NameInfo.getLoc(), NameInfo.getName(), Ty),
2844       UsingLocation(UsingLoc), QualifierLoc(QualifierLoc),
2845       DNLoc(NameInfo.getInfo())
2846   { }
2847 
2848 public:
2849   /// \brief Returns the source location of the 'using' keyword.
getUsingLoc()2850   SourceLocation getUsingLoc() const { return UsingLocation; }
2851 
2852   /// \brief Set the source location of the 'using' keyword.
setUsingLoc(SourceLocation L)2853   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
2854 
2855   /// \brief Return true if it is a C++03 access declaration (no 'using').
isAccessDeclaration()2856   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
2857 
2858   /// \brief Retrieve the nested-name-specifier that qualifies the name,
2859   /// with source-location information.
getQualifierLoc()2860   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2861 
2862   /// \brief Retrieve the nested-name-specifier that qualifies the name.
getQualifier()2863   NestedNameSpecifier *getQualifier() const {
2864     return QualifierLoc.getNestedNameSpecifier();
2865   }
2866 
getNameInfo()2867   DeclarationNameInfo getNameInfo() const {
2868     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2869   }
2870 
2871   static UnresolvedUsingValueDecl *
2872     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
2873            NestedNameSpecifierLoc QualifierLoc,
2874            const DeclarationNameInfo &NameInfo);
2875 
2876   static UnresolvedUsingValueDecl *
2877   CreateDeserialized(ASTContext &C, unsigned ID);
2878 
2879   SourceRange getSourceRange() const LLVM_READONLY;
2880 
classof(const Decl * D)2881   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2882   static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
2883 
2884   friend class ASTDeclReader;
2885   friend class ASTDeclWriter;
2886 };
2887 
2888 /// \brief Represents a dependent using declaration which was marked with
2889 /// \c typename.
2890 ///
2891 /// \code
2892 /// template \<class T> class A : public Base<T> {
2893 ///   using typename Base<T>::foo;
2894 /// };
2895 /// \endcode
2896 ///
2897 /// The type associated with an unresolved using typename decl is
2898 /// currently always a typename type.
2899 class UnresolvedUsingTypenameDecl : public TypeDecl {
2900   virtual void anchor();
2901 
2902   /// \brief The source location of the 'typename' keyword
2903   SourceLocation TypenameLocation;
2904 
2905   /// \brief The nested-name-specifier that precedes the name.
2906   NestedNameSpecifierLoc QualifierLoc;
2907 
UnresolvedUsingTypenameDecl(DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,IdentifierInfo * TargetName)2908   UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
2909                               SourceLocation TypenameLoc,
2910                               NestedNameSpecifierLoc QualifierLoc,
2911                               SourceLocation TargetNameLoc,
2912                               IdentifierInfo *TargetName)
2913     : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
2914                UsingLoc),
2915       TypenameLocation(TypenameLoc), QualifierLoc(QualifierLoc) { }
2916 
2917   friend class ASTDeclReader;
2918 
2919 public:
2920   /// \brief Returns the source location of the 'using' keyword.
getUsingLoc()2921   SourceLocation getUsingLoc() const { return getLocStart(); }
2922 
2923   /// \brief Returns the source location of the 'typename' keyword.
getTypenameLoc()2924   SourceLocation getTypenameLoc() const { return TypenameLocation; }
2925 
2926   /// \brief Retrieve the nested-name-specifier that qualifies the name,
2927   /// with source-location information.
getQualifierLoc()2928   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2929 
2930   /// \brief Retrieve the nested-name-specifier that qualifies the name.
getQualifier()2931   NestedNameSpecifier *getQualifier() const {
2932     return QualifierLoc.getNestedNameSpecifier();
2933   }
2934 
2935   static UnresolvedUsingTypenameDecl *
2936     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
2937            SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
2938            SourceLocation TargetNameLoc, DeclarationName TargetName);
2939 
2940   static UnresolvedUsingTypenameDecl *
2941   CreateDeserialized(ASTContext &C, unsigned ID);
2942 
classof(const Decl * D)2943   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2944   static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
2945 };
2946 
2947 /// \brief Represents a C++11 static_assert declaration.
2948 class StaticAssertDecl : public Decl {
2949   virtual void anchor();
2950   llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
2951   StringLiteral *Message;
2952   SourceLocation RParenLoc;
2953 
StaticAssertDecl(DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * Message,SourceLocation RParenLoc,bool Failed)2954   StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
2955                    Expr *AssertExpr, StringLiteral *Message,
2956                    SourceLocation RParenLoc, bool Failed)
2957     : Decl(StaticAssert, DC, StaticAssertLoc),
2958       AssertExprAndFailed(AssertExpr, Failed), Message(Message),
2959       RParenLoc(RParenLoc) { }
2960 
2961 public:
2962   static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
2963                                   SourceLocation StaticAssertLoc,
2964                                   Expr *AssertExpr, StringLiteral *Message,
2965                                   SourceLocation RParenLoc, bool Failed);
2966   static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2967 
getAssertExpr()2968   Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
getAssertExpr()2969   const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
2970 
getMessage()2971   StringLiteral *getMessage() { return Message; }
getMessage()2972   const StringLiteral *getMessage() const { return Message; }
2973 
isFailed()2974   bool isFailed() const { return AssertExprAndFailed.getInt(); }
2975 
getRParenLoc()2976   SourceLocation getRParenLoc() const { return RParenLoc; }
2977 
getSourceRange()2978   SourceRange getSourceRange() const LLVM_READONLY {
2979     return SourceRange(getLocation(), getRParenLoc());
2980   }
2981 
classof(const Decl * D)2982   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2983   static bool classofKind(Kind K) { return K == StaticAssert; }
2984 
2985   friend class ASTDeclReader;
2986 };
2987 
2988 /// An instance of this class represents the declaration of a property
2989 /// member.  This is a Microsoft extension to C++, first introduced in
2990 /// Visual Studio .NET 2003 as a parallel to similar features in C#
2991 /// and Managed C++.
2992 ///
2993 /// A property must always be a non-static class member.
2994 ///
2995 /// A property member superficially resembles a non-static data
2996 /// member, except preceded by a property attribute:
2997 ///   __declspec(property(get=GetX, put=PutX)) int x;
2998 /// Either (but not both) of the 'get' and 'put' names may be omitted.
2999 ///
3000 /// A reference to a property is always an lvalue.  If the lvalue
3001 /// undergoes lvalue-to-rvalue conversion, then a getter name is
3002 /// required, and that member is called with no arguments.
3003 /// If the lvalue is assigned into, then a setter name is required,
3004 /// and that member is called with one argument, the value assigned.
3005 /// Both operations are potentially overloaded.  Compound assignments
3006 /// are permitted, as are the increment and decrement operators.
3007 ///
3008 /// The getter and putter methods are permitted to be overloaded,
3009 /// although their return and parameter types are subject to certain
3010 /// restrictions according to the type of the property.
3011 ///
3012 /// A property declared using an incomplete array type may
3013 /// additionally be subscripted, adding extra parameters to the getter
3014 /// and putter methods.
3015 class MSPropertyDecl : public DeclaratorDecl {
3016   IdentifierInfo *GetterId, *SetterId;
3017 
3018 public:
MSPropertyDecl(DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL,IdentifierInfo * Getter,IdentifierInfo * Setter)3019   MSPropertyDecl(DeclContext *DC, SourceLocation L,
3020                  DeclarationName N, QualType T, TypeSourceInfo *TInfo,
3021                  SourceLocation StartL, IdentifierInfo *Getter,
3022                  IdentifierInfo *Setter):
3023   DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL), GetterId(Getter),
3024   SetterId(Setter) {}
3025 
3026   static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3027 
classof(const Decl * D)3028   static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
3029 
hasGetter()3030   bool hasGetter() const { return GetterId != NULL; }
getGetterId()3031   IdentifierInfo* getGetterId() const { return GetterId; }
hasSetter()3032   bool hasSetter() const { return SetterId != NULL; }
getSetterId()3033   IdentifierInfo* getSetterId() const { return SetterId; }
3034 
3035   friend class ASTDeclReader;
3036 };
3037 
3038 /// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
3039 /// into a diagnostic with <<.
3040 const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3041                                     AccessSpecifier AS);
3042 
3043 const PartialDiagnostic &operator<<(const PartialDiagnostic &DB,
3044                                     AccessSpecifier AS);
3045 
3046 } // end namespace clang
3047 
3048 #endif
3049