1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #ifndef EIGEN_BLAS_COMMON_H
11 #define EIGEN_BLAS_COMMON_H
12
13 #include <iostream>
14 #include <complex>
15
16 #ifndef SCALAR
17 #error the token SCALAR must be defined to compile this file
18 #endif
19
20 #include <Eigen/src/misc/blas.h>
21
22
23 #define NOTR 0
24 #define TR 1
25 #define ADJ 2
26
27 #define LEFT 0
28 #define RIGHT 1
29
30 #define UP 0
31 #define LO 1
32
33 #define NUNIT 0
34 #define UNIT 1
35
36 #define INVALID 0xff
37
38 #define OP(X) ( ((X)=='N' || (X)=='n') ? NOTR \
39 : ((X)=='T' || (X)=='t') ? TR \
40 : ((X)=='C' || (X)=='c') ? ADJ \
41 : INVALID)
42
43 #define SIDE(X) ( ((X)=='L' || (X)=='l') ? LEFT \
44 : ((X)=='R' || (X)=='r') ? RIGHT \
45 : INVALID)
46
47 #define UPLO(X) ( ((X)=='U' || (X)=='u') ? UP \
48 : ((X)=='L' || (X)=='l') ? LO \
49 : INVALID)
50
51 #define DIAG(X) ( ((X)=='N' || (X)=='N') ? NUNIT \
52 : ((X)=='U' || (X)=='u') ? UNIT \
53 : INVALID)
54
55
check_op(const char * op)56 inline bool check_op(const char* op)
57 {
58 return OP(*op)!=0xff;
59 }
60
check_side(const char * side)61 inline bool check_side(const char* side)
62 {
63 return SIDE(*side)!=0xff;
64 }
65
check_uplo(const char * uplo)66 inline bool check_uplo(const char* uplo)
67 {
68 return UPLO(*uplo)!=0xff;
69 }
70
71 #include <Eigen/Core>
72 #include <Eigen/Jacobi>
73
74
75 namespace Eigen {
76 #include "BandTriangularSolver.h"
77 }
78
79 using namespace Eigen;
80
81 typedef SCALAR Scalar;
82 typedef NumTraits<Scalar>::Real RealScalar;
83 typedef std::complex<RealScalar> Complex;
84
85 enum
86 {
87 IsComplex = Eigen::NumTraits<SCALAR>::IsComplex,
88 Conj = IsComplex
89 };
90
91 typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> PlainMatrixType;
92 typedef Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > MatrixType;
93 typedef Map<Matrix<Scalar,Dynamic,1>, 0, InnerStride<Dynamic> > StridedVectorType;
94 typedef Map<Matrix<Scalar,Dynamic,1> > CompactVectorType;
95
96 template<typename T>
97 Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >
matrix(T * data,int rows,int cols,int stride)98 matrix(T* data, int rows, int cols, int stride)
99 {
100 return Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride));
101 }
102
103 template<typename T>
vector(T * data,int size,int incr)104 Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > vector(T* data, int size, int incr)
105 {
106 return Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr));
107 }
108
109 template<typename T>
vector(T * data,int size)110 Map<Matrix<T,Dynamic,1> > vector(T* data, int size)
111 {
112 return Map<Matrix<T,Dynamic,1> >(data, size);
113 }
114
115 template<typename T>
get_compact_vector(T * x,int n,int incx)116 T* get_compact_vector(T* x, int n, int incx)
117 {
118 if(incx==1)
119 return x;
120
121 T* ret = new Scalar[n];
122 if(incx<0) vector(ret,n) = vector(x,n,-incx).reverse();
123 else vector(ret,n) = vector(x,n, incx);
124 return ret;
125 }
126
127 template<typename T>
copy_back(T * x_cpy,T * x,int n,int incx)128 T* copy_back(T* x_cpy, T* x, int n, int incx)
129 {
130 if(x_cpy==x)
131 return 0;
132
133 if(incx<0) vector(x,n,-incx).reverse() = vector(x_cpy,n);
134 else vector(x,n, incx) = vector(x_cpy,n);
135 return x_cpy;
136 }
137
138 #define EIGEN_BLAS_FUNC(X) EIGEN_CAT(SCALAR_SUFFIX,X##_)
139
140 #endif // EIGEN_BLAS_COMMON_H
141